WO2021218912A1 - 含苯基并内磺酰胺的化合物 - Google Patents

含苯基并内磺酰胺的化合物 Download PDF

Info

Publication number
WO2021218912A1
WO2021218912A1 PCT/CN2021/089889 CN2021089889W WO2021218912A1 WO 2021218912 A1 WO2021218912 A1 WO 2021218912A1 CN 2021089889 W CN2021089889 W CN 2021089889W WO 2021218912 A1 WO2021218912 A1 WO 2021218912A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
reaction solution
solution
alkyl
Prior art date
Application number
PCT/CN2021/089889
Other languages
English (en)
French (fr)
Inventor
刘希乐
丁照中
陈曙辉
胡利红
万海文
蒋秀
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CA3177298A priority Critical patent/CA3177298C/en
Priority to US17/922,195 priority patent/US11718610B2/en
Priority to AU2021262977A priority patent/AU2021262977B2/en
Priority to CN202180030966.8A priority patent/CN115443274B/zh
Priority to IL297743A priority patent/IL297743B2/en
Priority to KR1020227041520A priority patent/KR102574950B1/ko
Priority to EP21797624.0A priority patent/EP4144731B1/en
Priority to JP2022566606A priority patent/JP7296017B2/ja
Publication of WO2021218912A1 publication Critical patent/WO2021218912A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • the present invention relates to a class of compounds containing phenyllactams, in particular to the compound represented by the formula (II), its pharmaceutically acceptable salt or its isomers.
  • Mitogen-activated protein kinases exist in a series of cell processes such as cell proliferation, differentiation, apoptosis and stress response.
  • the RAS-RAF-MEK-ERK pathway is one of the most widely known MAPK pathways. This pathway firstly combines extracellular growth factors (PDGF or EGF) with transmembrane receptors (EGFR or PDGFR, etc.) to activate the receptor. The activated receptor makes the RAS protein in the membrane and GTP through the guanic acid exchange factor (SOS).
  • PDGF or EGF extracellular growth factors
  • EGFR or PDGFR, etc. transmembrane receptors
  • SOS guanic acid exchange factor
  • activated RAS further phosphorylates RAF indirectly; activated RAF phosphorylates on two serine residues of MEK1/2; activated MEK1/2 in turn activates its downstream substrate ERK1/2; phosphoric acid After dimerization, the transformed ERK1/2 migrate to the nucleus and accumulate.
  • ERK in the nucleus is involved in many cellular functions, including nuclear transport, signal transduction, DNA repair, and mRNA processing and translation. If the genes involved in this pathway are mutated or overexpression of growth factors, downstream signal proteins or protein kinases, it will cause the continuous activation of cell pathways, uncontrollable cell proliferation, and ultimately lead to the formation of tumors.
  • RAS mutations For example, about 30% of human cancer cells are RAS mutations, of which KRAS mutations are the most common subtype of RAS mutations. KRAS mutations account for about 22% of all human tumor cells, of which 70-90% are pancreas Cancer, 10-20% of non-small cell lung cancers, and 25-35% of colorectal cancers are all KRAS mutations; about 8% of tumors are BRAF mutations, of which 50-60% are melanomas and 40-60% are papillary Thyroid cancer, etc. are all BRAF mutations.
  • ERK 1/2 External signal-regulated kinase
  • RAS/RAF/MEK/ERK As the "final manager" downstream of the RAS/RAF/MEK/ERK pathway, targeted inhibition of ERK1/2 is expected to be used to treat abnormal activation of the MAPK pathway (RAS /RAF/MEK and other activation mutations) may also be effective for patients who develop resistance to RAF or MEK inhibitors due to the reactivation of ERK1/2.
  • MAPK pathway inhibitors can effectively inhibit BRAF and RAS mutations in cancer cells.
  • BRAF inhibitors velofenib, darafenib and MEK inhibitor trametinib have been approved for treatment BRAF mutant melanoma.
  • BRAF inhibitors include MEK transactivation of CRAF, RTK, up-regulation of NRAS signal, and MEK activating mutations; MEK inhibitor resistance mechanisms include MEK mutations to reduce its combination with drugs or enhance MEK itself Activity, and BRAF or KRAS amplification, etc. Either RAF inhibitor resistance or MEK inhibitor resistance will reactivate the RAS-RAF-MEK-ERK pathway, leading to continued expansion of cancer cells. Therefore, the development of a new type of dual-mechanism ERK inhibitor will be effective not only for patients with mutations in the MAPK signaling pathway, but also for patients with resistance to BRAF and MEK inhibitors.
  • the present invention provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof,
  • T 1 is CH or N
  • n 1 or 2;
  • R 1 and R 2 are each independently H, D, F, Cl or C 1-3 alkyl, wherein said C 1-3 alkyl is optionally selected from F, Cl, Br by 1, 2 or 3 And substituted by the substituents of I;
  • R 1 and R 2 form together with the carbon atom to which they are attached
  • R 3 and R 4 are each independently H or C 1-3 alkyl, wherein the C 1-3 alkyl is optionally selected by 1, 2 or 3 independently selected from F, Cl, Br, I and -OH Substituent substituted;
  • R 5 and R 6 are each independently H or C 1-3 alkyl, wherein said C 1-3 alkyl is optionally selected by 1, 2 or 3 independently selected from F, Cl, Br, I, -OH and -Substituted by substituents of OCH 3;
  • R 7 is phenyl or pyridinyl, wherein said phenyl and pyridyl are optionally substituted with three or four R a;
  • R 8 is H, F, Cl or Br
  • R 9 is tetrahydro-2H-pyranyl, wherein the tetrahydro-2H-pyranyl is optionally substituted with 1, 2, 3 or 4 R b ;
  • Each R a is independently F, Cl, Br, I, C 1-3 alkyl, C 1-3 alkoxy, NH-C 1-3 alkyl or N- (C 1-3 alkyl) 2, Wherein said C 1-3 alkyl group, C 1-3 alkoxy group, -NH-C 1-3 alkyl group and -N-(C 1-3 alkyl) 2 are each independently optionally selected by 1, 2 or 3 substituents independently selected from F, Cl, Br, I and -OH;
  • Each R b is independently F, Cl, Br, I, D, or C 1-3 alkyl, wherein the C 1-3 alkyl is optionally selected from F, Cl, Br, I and -OH substituents are substituted.
  • the present invention also provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof,
  • T 1 is CH or N
  • n 1 or 2;
  • R 1 and R 2 are each independently H, F, Cl or C 1-3 alkyl, wherein said C 1-3 alkyl is optionally selected from F, Cl, Br and I by 1, 2 or 3 Is substituted by the substituent;
  • R 1 and R 2 form together with the carbon atom to which they are attached
  • R 3 and R 4 are each independently H or C 1-3 alkyl, wherein the C 1-3 alkyl is optionally selected by 1, 2 or 3 independently selected from F, Cl, Br, I and -OH Substituent substituted;
  • R 5 and R 6 are each independently H or C 1-3 alkyl, wherein said C 1-3 alkyl is optionally selected by 1, 2 or 3 independently selected from F, Cl, Br, I, -OH and -Substituted by substituents of OCH 3;
  • R 7 is phenyl or pyridinyl, wherein said phenyl and pyridyl are optionally substituted with three or four R a;
  • R 8 is H, F, Cl or Br
  • R 9 is tetrahydro-2H-pyranyl, wherein the tetrahydro-2H-pyranyl is optionally substituted with 1, 2, 3 or 4 R b ;
  • Each R a is independently F, Cl, Br, I, C 1-3 alkyl, C 1-3 alkoxy, NH-C 1-3 alkyl or N- (C 1-3 alkyl) 2, Wherein said C 1-3 alkyl group, C 1-3 alkoxy group, -NH-C 1-3 alkyl group and -N-(C 1-3 alkyl) 2 are each independently optionally selected by 1, 2 or 3 substituents independently selected from F, Cl, Br, I and -OH;
  • Each R b is independently F, Cl, Br, I, D, or C 1-3 alkyl, wherein the C 1-3 alkyl is optionally selected from F, Cl, Br, I and -OH substituents are substituted.
  • the present invention also provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • n 1 or 2;
  • R 1 and R 2 are each independently H, F, Cl or C 1-3 alkyl, wherein said C 1-3 alkyl is optionally selected from F, Cl, Br and I by 1, 2 or 3 Is substituted by the substituent;
  • R 1 and R 2 form together with the carbon atom to which they are attached
  • R 3 and R 4 are each independently H or C 1-3 alkyl, wherein the C 1-3 alkyl is optionally substituted by 1, 2 or 3 substituents independently selected from F, Cl, Br and I replace;
  • R 5 and R 6 are each independently H or C 1-3 alkyl, wherein said C 1-3 alkyl is optionally selected by 1, 2 or 3 independently selected from F, Cl, Br, I, -OH and -Substituted by substituents of OCH 3;
  • R 7 is phenyl, wherein said phenyl is optionally substituted with three or four R a;
  • R 8 is H, F or Cl
  • R 9 is tetrahydro-2H-pyranyl, wherein the tetrahydro-2H-pyranyl is optionally substituted with 1, 2, 3 or 4 R b ;
  • Each R a is independently F, Cl, Br, I, C 1-3 alkyl or a C 1-3 alkoxy, wherein said C 1-3 alkyl and a C 1-3 alkoxy group optionally substituted with 1 , 2 or 3 substituents independently selected from F, Cl, Br, I and -OH;
  • Each R b is independently F, Cl, Br, I or C 1-3 alkyl, wherein said C 1-3 alkyl is optionally selected from F, Cl, Br, I and -OH is substituted by the substituent.
  • the above-mentioned compound has a structure represented by formula (I-1) or (I-2):
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are as defined in the present invention.
  • each of the foregoing R b is independently F, Cl, Br, I, D, or -CH 3 , and other variables are as defined in the present invention.
  • each of the above R b is independently F, Cl, Br, I or -CH 3 , and other variables are as defined in the present invention.
  • R 9 is Which said Optionally substituted by 1, 2, 3 or 4 R b , R b and other variables are as defined in the present invention.
  • R 9 is R b and other variables are as defined in the present invention.
  • the above-mentioned compound has a structure represented by formula (III-1) or (III-2):
  • n 0, 1, 2, 3 or 4;
  • T 1 , R b , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are as defined in the present invention.
  • the above-mentioned compound has a structure represented by formula (I-3) or (I-4):
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are as defined in the present invention.
  • R 1 and R 2 are each independently H, D, F, Cl or -CH 3 , and other variables are as defined in the present invention.
  • R 1 and R 2 are each independently H, F, Cl or -CH 3 , and other variables are as defined in the present invention.
  • R 1 and R 2 are each independently H, and other variables are as defined in the present invention.
  • R 1 and R 2 form together with the carbon atom to which they are attached
  • Other variables are as defined in the present invention.
  • R 3 and R 4 are each independently H or -CH 3 , wherein the -CH 3 is optionally 1, 2 or 3 independently selected from F, Cl, Br, I and The -OH substituent is substituted, and other variables are as defined in the present invention.
  • R 3 and R 4 are each independently H or -CH 3 , wherein the -CH 3 is optionally selected from F, Cl, Br and I by 1, 2 or 3 Substituents are substituted, and other variables are as defined in the present invention.
  • R 3 and R 4 are each independently H or -CH 3 , and other variables are as defined in the present invention.
  • R 5 and R 6 are each independently H or -CH 3 , wherein the -CH 3 is optionally selected from F, Cl, Br, I,
  • the substituents of -OH and -OCH 3 are substituted, and other variables are as defined in the present invention.
  • R 5 and R 6 are each independently H, -CH 3 or Other variables are as defined in the present invention.
  • R 5 and R 6 are each independently H or Other variables are as defined in the present invention.
  • the above-mentioned compound has a structure represented by formula (III-3) or (III-4):
  • n 0, 1, 2, 3 or 4;
  • T 1 , R b , R 7 and R 8 are as defined in the present invention.
  • R 3 is -CH 3 , wherein the -CH 3 is optionally substituted with 1, 2 or 3 substituents independently selected from F, Cl, Br, I and -OH;
  • R 5 is -CH 3 , wherein the -CH 3 is optionally substituted with 1, 2 or 3 substituents independently selected from F, Cl, Br, I, -OH and -OCH 3 .
  • the above-mentioned compound has a structure represented by formula (I-5) or (I-6):
  • R 7 and R 8 are as defined in the present invention.
  • R 3 is -CH 3 , wherein the -CH 3 is optionally substituted with 1, 2 or 3 substituents independently selected from F, Cl, Br, I and -OH;
  • R 5 is -CH 3 , wherein the -CH 3 is optionally substituted with 1, 2 or 3 substituents independently selected from F, Cl, Br, I, -OH and -OCH 3 .
  • the above-mentioned compound has a structure represented by formula (I-5) or (I-6):
  • R 7 and R 8 are as defined in the present invention.
  • R 3 is -CH 3 , wherein the -CH 3 is optionally substituted with 1, 2 or 3 substituents independently selected from F, Cl, Br and I;
  • R 5 is -CH 3 , wherein the -CH 3 is optionally substituted with 1, 2 or 3 substituents independently selected from F, Cl, Br, I, -OH and -OCH 3 .
  • each of the above Ra is independently F, Cl, Br, I, -CH 3 , -OCH 3 , -NH-CH 3 or Other variables are as defined in the present invention.
  • each of the above Ra is independently F, Cl, Br, I, -CH 3 or -OCH 3 , and other variables are as defined in the present invention.
  • each of the foregoing Ra is independently F, Cl, -CH 3 , -OCH 3 or Other variables are as defined in the present invention.
  • each of the above Ra is independently F or -OCH 3 , and other variables are as defined in the present invention.
  • R 7 is R a and the other variables are as defined in the present invention.
  • R 7 is R a and the other variables are as defined in the present invention.
  • the present invention provides a compound of the following formula or a pharmaceutically acceptable salt thereof:
  • the present invention provides a compound of the following formula or a pharmaceutically acceptable salt thereof:
  • the present invention also provides the application of the above-mentioned compound and its pharmaceutically acceptable salt in the preparation of ERK1/2 inhibitor drugs.
  • the compound of the present invention has good inhibitory activity on ERK1/2. It is expected to be used for canceration caused by abnormal activation of MAPK signaling pathway (activating mutations such as RAS/RAF/MEK), and it may also be effective for patients who develop resistance to RAF or MEK inhibitors due to reactivation of ERK1/2; the compound of the present invention is effective in mice Oral absorption in dogs and dogs is better, the clearance rate is lower, the exposure is higher, and the bioavailability is better; the compound of the present invention has a significant inhibitory effect on the growth of human lung cancer Calu-6 cell subcutaneous xenograft tumor model tumor-bearing mice .
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues. , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from a compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salt or similar salts.
  • the acid addition salt can be obtained by contacting the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, the organic acid includes, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods. In general, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All these isomers and their mixtures are included in the scope of the present invention.
  • enantiomer or “optical isomer” refers to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” is caused by the inability to rotate freely because of double bonds or single bonds of ring-forming carbon atoms.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the relationship between the molecules is non-mirror-image relationship.
  • wedge-shaped solid line keys And wedge-shaped dashed key Represents the absolute configuration of a three-dimensional center, with a straight solid line key And straight dashed key Indicates the relative configuration of the three-dimensional center, using wavy lines Represents a wedge-shaped solid line key Or wedge-shaped dashed key Or use wavy lines Represents a straight solid line key And straight dashed key
  • the term “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in enantiomers” refers to one of the isomers or pairs of
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or 96% or greater, or 97% or greater, or 98% or greater, or 99% or greater, or 99.5% or greater, or 99.6% or greater, or 99.7% or greater, or 99.8% or greater, or greater than or equal 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90%, and the content of the other isomer or enantiomer is 10%, the isomer or enantiomer excess (ee value) is 80% .
  • optically active (R)- and (S)-isomers and D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If you want to obtain an enantiomer of a compound of the present invention, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, in which the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure The desired enantiomer.
  • the molecule when the molecule contains a basic functional group (such as an amino group) or an acidic functional group (such as a carboxyl group), it forms a diastereomeric salt with an appropriate optically active acid or base, and then passes through a conventional method known in the art The diastereoisomers are resolved, and then the pure enantiomers are recovered.
  • the separation of enantiomers and diastereomers is usually accomplished through the use of chromatography, which uses a chiral stationary phase and is optionally combined with chemical derivatization (for example, the formation of amino groups from amines). Formate).
  • the compound of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • deuterium can be substituted for hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs can reduce toxic side effects and increase drug stability. , Enhance the efficacy, extend the biological half-life of drugs and other advantages. All changes in the isotopic composition of the compounds of the present invention, whether radioactive or not, are included in the scope of the present invention.
  • “Optional” or “optionally” means that the event or condition described later may but not necessarily occur, and the description includes a situation in which the event or condition occurs and a situation in which the event or condition does not occur.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by a substituent.
  • the substituent may include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the compound after substitution Is stable.
  • Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis that they can be chemically realized.
  • any variable such as R
  • its definition in each case is independent.
  • the group can optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • substituents When a substituent is vacant, it means that the substituent is absent. For example, when X in A-X is vacant, it means that the structure is actually A.
  • substituents do not indicate which atom is connected to the substituted group, such substituents can be bonded via any atom.
  • a pyridyl group can pass through any one of the pyridine ring as a substituent. The carbon atom is attached to the substituted group.
  • the middle linking group L is -MW-, at this time -MW- can be formed by connecting ring A and ring B in the same direction as the reading order from left to right It can also be formed by connecting ring A and ring B in the opposite direction to the reading order from left to right
  • Combinations of the linking groups, substituents, and/or variants thereof are only permitted if such combinations result in stable compounds.
  • any one or more sites of the group can be connected to other groups through chemical bonds.
  • the chemical bond between the site and other groups can be a straight solid bond Straight dashed key Or wavy line Express.
  • the straight solid bond in -OCH 3 means that it is connected to other groups through the oxygen atom in the group;
  • the straight dashed bond in indicates that the two ends of the nitrogen atom in the group are connected to other groups;
  • the wavy lines in indicate that the phenyl group is connected to other groups through the 1 and 2 carbon atoms.
  • the number of atoms in a ring is generally defined as the number of ring members.
  • “5-7 membered ring” refers to a “ring” in which 5-7 atoms are arranged around.
  • 5-membered ring means a cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, cycloalkynyl, heterocycloalkynyl, aryl, or heteroaryl composed of 5 ring atoms. base.
  • the ring includes a single ring, as well as a double ring system such as a spiro ring, a fused ring and a bridged ring.
  • the ring optionally contains 1, 2, or 3 heteroatoms independently selected from O, S, and N.
  • the term "ring” also includes a ring system containing at least one ring, where each "ring" independently meets the above definition.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
  • Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 1-3 haloalkyl means monohaloalkyl and polyhaloalkyl containing 1 to 3 carbon atoms.
  • the C 1-3 haloalkyl group includes C 1-2 , C 2-3 , C 3 , C 2 and C 1 haloalkyl group and the like.
  • Examples of C 1-3 haloalkyl include, but are not limited to, trifluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, pentachloroethyl, 3-bromopropyl, and the like.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms that are attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • C 6-10 aromatic ring and “C 6-10 aryl” can be used interchangeably, and the term “C 6-10 aromatic ring” or “C 6-10 aryl” means from 6 to A cyclic hydrocarbon group composed of 10 carbon atoms with a conjugated ⁇ -electron system, which can be a monocyclic, fused bicyclic or fused tricyclic system, in which each ring is aromatic. It may be monovalent, divalent or multivalent, and C 6-10 aryl groups include C 6-9 , C 9 , C 10 and C 6 aryl groups and the like. Examples of C 6-10 aryl groups include, but are not limited to, phenyl, naphthyl (including 1-naphthyl, 2-naphthyl, etc.).
  • C n-n+m or C n -C n+m includes any specific case of n to n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , including any range from n to n+m, for example, C 1- 12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12, etc.; similarly, from n to n +m member means that the number of atoms in the ring is from n to n+m, for example, 3-12 membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membered ring, 9-membered
  • D stands for deuterium, an isotope of hydrogen.
  • the chemical symbol can also be 2 H, also called heavy hydrogen, which consists of one proton, one neutron and one electron.
  • leaving group refers to a functional group or atom that can be replaced by another functional group or atom through a substitution reaction (for example, an affinity substitution reaction).
  • representative leaving groups include triflate; chlorine, bromine, iodine; sulfonate groups, such as methanesulfonate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters, etc.; acyloxy groups, such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl, such as alkanoyl (such as acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl, such as tert-butoxycarbonyl (Boc) ; Arylmethyloxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethyloxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-Methoxyphenyl)methyl; silyl groups, such as trimethylsilyl (TMS) and tert-butyldi
  • hydroxy protecting group refers to a protecting group suitable for preventing side reactions of the hydroxyl group.
  • Representative hydroxy protecting groups include but are not limited to: alkyl groups, such as methyl, ethyl, and tert-butyl; acyl groups, such as alkanoyl groups (such as acetyl); arylmethyl groups, such as benzyl (Bn), Methoxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and so on.
  • alkyl groups such as methyl, ethyl, and tert-butyl
  • acyl groups such as alkanoyl groups (such as acetyl)
  • arylmethyl groups such as benzyl (Bn), Methoxybenzyl (PMB), 9-fluor
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art.
  • SXRD single crystal X-ray diffraction
  • the cultured single crystal is collected with the Bruker D8 venture diffractometer to collect the diffraction intensity data
  • the light source is CuK ⁇ radiation
  • the scanning method After scanning and collecting relevant data, the direct method (Shelxs97) is further used to analyze the crystal structure to confirm the absolute configuration.
  • the solvent used in the present invention is commercially available.
  • BF 3 ⁇ Et 2 O stands for boron trifluoride ether adduct
  • DMSO dimethyl sulfoxide
  • DMF stands for N,N-dimethylformamide
  • DPBS Dulbecco's phosphate Buffer
  • EDCI stands for 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
  • HOBt stands for 1-hydroxybenzotriazole
  • HPLC stands for high pressure liquid chromatography
  • LCMS stands for liquid chromatography mass spectrometry Chromatography
  • MeOH represents methanol
  • NMM represents nitrogen methylmorpholine
  • Pd(dppf)Cl 2 ⁇ CH 2 Cl 2 represents [1,1'-bis(diphenylphosphino)ferrocene] palladium dichloride dichloride Methane adduct
  • Pd(PPh 3 ) 4 stands for tetrakistriphenylphosphine palladium
  • FIG. 1 Tumor volume of each group at different time points
  • Figure 2 The effect of the test substance on the body weight of mice.
  • the reaction solution was extracted with ethyl acetate (100 mL).
  • the organic phase was extracted with 2 molar sodium hydroxide (50 ml ⁇ 3 times) aqueous solution.
  • the combined aqueous phase was adjusted to pH 2 with 2 molar hydrochloric acid (500 ml) solution, and then extracted with ethyl acetate (300 ml ⁇ 2 times), and the combined organic phase was concentrated under reduced pressure to obtain the crude compound 1C.
  • reaction solution was diluted with ethyl acetate (20 ml) and washed with 1 molar hydrochloric acid (20 ml ⁇ 1 time) aqueous solution, the aqueous phase was extracted with ethyl acetate (20 ml ⁇ 2 times), and the combined organic phase was used It was washed with brine (20 ml ⁇ 1 time), dried and concentrated under reduced pressure to obtain the crude compound 2B.
  • reaction solution was adjusted to pH ⁇ 7 with aqueous hydrochloric acid (2M), and then extracted with dichloromethane (10 ml ⁇ 2 times), and then washed with water (10 ⁇ 1 times).
  • dichloromethane 10 ml ⁇ 2 times
  • washed with water 10 ⁇ 1 times.
  • the combined organic phase was filtered, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • the crude product was prepared and separated by high performance liquid chromatography (formic acid system) to obtain the free base of compound 2.
  • reaction solution was adjusted to pH ⁇ 7 with aqueous hydrochloric acid (2M), and then extracted with dichloromethane (10 ml ⁇ 2 times), and then washed with water (10 ml ⁇ 1 time).
  • dichloromethane 10 ml ⁇ 2 times
  • washed with water 10 ml ⁇ 1 time
  • the combined organic phase was filtered, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • the crude product was prepared and separated by high performance liquid chromatography (formic acid system) to obtain the free base of compound 3.
  • reaction solution was adjusted to pH ⁇ 7 with aqueous hydrochloric acid (2 moles), and then extracted with dichloromethane (10 ml ⁇ 2 times), and then washed with water (10 ⁇ 1 times).
  • dichloromethane 10 ml ⁇ 2 times
  • washed with water 10 ⁇ 1 times.
  • the combined organic phase was filtered, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • the crude product was prepared and separated by high performance liquid chromatography (formic acid system) to obtain the free base of compound 4.
  • reaction solution was quenched by adding saturated ammonium chloride (20 ml) solution, then diluted with water (10 ml), extracted with ethyl acetate (10 ml ⁇ 2 times), and the organic phase was brine (10 ml ⁇ 1 time) Washing, combining the organic phases and concentrating under reduced pressure to obtain a crude product.
  • the crude product is prepared and separated by high performance liquid chromatography (formic acid system) to obtain compound 5C.
  • reaction solution was diluted with water (10 ml) and extracted with dichloromethane (10 ml ⁇ 3 times), washed with water (20 ml ⁇ 1 time), the combined organic phases were filtered, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • the crude product was prepared and separated by high performance liquid chromatography (formic acid system) to obtain the free base of compound 5.
  • reaction solution was quenched by adding saturated ammonium chloride (30 mL) solution, then diluted with water (30 mL), extracted with ethyl acetate (50 mL ⁇ 2 times), and the organic phase was washed with brine (80 mL ⁇ 1 time) ) Wash, combine the organic phases and concentrate under reduced pressure to obtain a crude product.
  • LiAlD 4 (910 mg, 23.98 mmol, 1.24 mL) was added to a solution of compound 9D (3.16 g, 7.99 mmol) in tetrahydrofuran (35 mL). The reaction solution was stirred at 0°C for 20 minutes. After the reaction, the mixture was quenched by adding 15% sodium hydroxide (0.91 ml) aqueous solution, and then filtered, and the filtrate was concentrated under reduced pressure to obtain crude 9E and used directly in the next step.
  • chlorosulfonic acid 61.32 g, 526.21 mmol, 35.04 mL
  • dichloromethane 20 mL
  • the reaction solution was slowly added to ice water, and then extracted with dichloromethane (100 ml ⁇ 2 times), the combined organic phase was washed with water (100 ml ⁇ 2 times), dried, filtered, and concentrated under reduced pressure to obtain Crude 11B was used directly in the next step.
  • NBS (2.91 g, 16.32 mmol) and AIBN (24.37 mg, 148.40 micromol) were added to a solution of compound 11B (4 g, 14.84 mmol) in dichloromethane (100 mL), and the reaction solution was stirred at 80°C. After 3 hours, the reaction solution was filtered and concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (eluted with petroleum ether) to obtain compound 11C.
  • Trifluoroacetic acid (1.23 g, 10.76 mmol, 796.86 ml) was added to a solution of compound 12C (600 mg, 1.08 mmol) in dichloromethane (10 ml), and the reaction solution was stirred at 50° C. for 6 hours. After the reaction was completed, the reaction solution was diluted with water (30 mL) and extracted with ethyl acetate (30 mL ⁇ 2 times). The organic phase was washed with brine (30 ml ⁇ 1 time), dried, filtered, and concentrated under reduced pressure to obtain the crude compound 12D, which was used directly in the next step.
  • LCMS (ESI): m/z: 502.19 [M+1].
  • Trifluoroacetic acid (1.2 g, 10.5 mmol, 777.39 mL) was added to a solution of compound 13A (1.2 g, 2.1 mmol) in dichloromethane (15 mL), and the reaction solution was stirred at 50° C. for 16 hours. After the reaction was completed, the reaction solution was diluted with water (30 mL) and extracted with ethyl acetate (30 mL ⁇ 2 times). The organic phase was washed with brine (30 ml ⁇ 1 time), dried, filtered, and concentrated under reduced pressure to obtain the crude compound 13B, which was used directly in the next step.
  • LCMS (ESI): m/z: 516.9 [M+1].
  • Cell culture medium 88% RPMI-1640, 10% fetal bovine serum, 1% L-glutamine and 1% penicillin-streptomycin;
  • the compound of the present invention has a certain anti-proliferation activity of Calu-6 cells.
  • Cell culture medium 89% Mc’Coy 5A, 10% fetal bovine serum and 1% penicillin-streptomycin;
  • pancreatin (4) Add 1 ml of pancreatin to the cell culture flask, shake it gently to make the pancreatin fully contact with the cells and then remove the pancreatin, then put the culture flask in a 37°C incubator containing 5% CO 2 for about 1 min;
  • the IC 50 value can be obtained by four-parameter curve fitting ("log(inhibitor) vs. GraphPad Prism" response--Variable slope” mode).
  • the compound of the present invention has good HCT116 cell anti-proliferation activity.
  • Cell line A375 (purchased from Pronox), DMEM medium, penicillin/streptomycin antibiotics were purchased from Vicente, and fetal bovine serum was purchased from Biosera.
  • CellTiter-glo chemiluminescence detection reagent for cell viability
  • A375 cells were planted in a white 96-well plate, 80 micromole cell suspension per well, which contained 2000 A375 cells.
  • the cell plate was cultured overnight in a carbon dioxide incubator.
  • the compound to be tested was diluted 3-fold to the 9th concentration with a discharge gun, that is, diluted from 6 millimolar to 0.91 micromolar, and set up a double-well experiment.
  • the concentration of the compound transferred to the cell plate ranges from 30 micromolar to 4.57 nanomolar.
  • the cell plate was placed in a carbon dioxide incubator for 5 days.
  • Another cell plate is prepared, and the signal value is read as the maximum value (Max value in the following equation) on the day of drug addition to participate in data analysis.
  • 25 micromoles of cell viability chemiluminescence detection reagent per well was added to the cell plate, and the luminescence signal was stabilized by incubating for 10 minutes at room temperature.
  • Use multi-marker analyzer to read.
  • the IC 50 value can be obtained by four-parameter curve fitting ("log(inhibitor) vs. GraphPad Prism" response--Variable slope” mode).
  • the compound of the present invention has good A375 cell anti-proliferation activity.
  • the cell line COLO205 (purchased from Pronox), RPMI1640 medium, penicillin/streptomycin antibiotics were purchased from Vicente, and fetal bovine serum was purchased from Biosera.
  • CellTiter-glo chemiluminescence detection reagent for cell viability
  • the COLO205 cells were planted in a white 96-well plate, 80 micromole cell suspension per well, which contained 3000 COLO205 cells.
  • the cell plate was placed in a carbon dioxide incubator for overnight culture.
  • the compound to be tested was diluted 3-fold to the ninth concentration with a discharge gun, that is, diluted from 200 micromolar to 0.03 micromolar, and set up a double-well experiment.
  • the concentration of the compound transferred to the cell plate ranges from 1 micromolar to 0.15 nanomolar.
  • the cell plate was placed in a carbon dioxide incubator for 3 days. Another cell plate is prepared, and the signal value is read as the maximum value (Max value in the following equation) on the day of drug addition to participate in data analysis.
  • Use multi-marker analyzer to read.
  • the IC 50 value can be obtained by four-parameter curve fitting ("log(inhibitor) vs. GraphPad Prism" response--Variable slope” mode).
  • the compound of the present invention has good anti-proliferation activity of Colo205 cells.
  • the compound of the present invention has good Calu-6 ERK phosphorylation inhibitory activity.
  • the purpose of this experiment is to study the pharmacokinetics of the test compound in mice and dogs after a single oral administration.
  • blood samples are collected and the actual blood collection time is recorded. After the blood sample is collected, it is immediately transferred to a labeled centrifuge tube containing K2-EDTA, and then the plasma is collected after centrifugation. The plasma was transferred to a pre-cooled centrifuge tube, quickly frozen in dry ice, and stored in an ultra-low temperature refrigerator at -70 ⁇ 10°C until the LC-MS/MS analysis.
  • the pharmacokinetic software is used to process the plasma drug concentration data of the compound in a non-compartmental model.
  • the peak concentration (C max ), peak time (T max ) and quantifiable end time can be obtained directly from the plasma concentration-time diagram.
  • the following pharmacokinetic parameters were calculated using the log-linear trapezoidal method: half-life (T 1/2 ), apparent volume of distribution (V dss ) and clearance rate (Cl), and the area under the time-plasma concentration curve from 0 o’clock to the end time. (AUC 0-last ).
  • mice The pharmacokinetic parameters of a single intravenous administration of the compound of the present invention in mice
  • the compound of the present invention is better orally absorbed in mice, and the exposure is higher.
  • Cells Human lung cancer Calu-6 cells were cultured in vitro, 0.2Units/ml bovine insulin, 10% fetal bovine serum, 37°C and 5% CO 2 were cultured in EMEM medium. Use pancreatin-EDTA for routine digestion and passage twice a week. When the cell saturation is 80%-90% and the number reaches the requirement, the cells are collected, counted, and inoculated.
  • mice in each group 1: Number of mice in each group; 2: Administration volume parameter: 10 ⁇ L/g based on mouse body weight. If the weight loss exceeds 15%, stop the drug until the body weight is restored to within 10% and then re-administer; 3: 0.5% MC (methyl cellulose).
  • the tumor diameter was measured with vernier calipers twice a week.
  • TGI total tumor growth rate
  • T/C relative tumor growth rate
  • Relative tumor proliferation rate T/C (%) T RTV /C RTV ⁇ 100%
  • TRTV average RTV of the treatment group
  • C RTV average RTV of the negative control group
  • RTV relative tumor volume
  • the data of T RTV and C RTV are taken on the same day.
  • TGI (%) reflects the tumor growth inhibition rate.
  • TGI(%) [1-(Average tumor volume at the end of a certain treatment group-average tumor volume at the start of the treatment group)/(Average tumor volume at the end of treatment in the solvent control group-average tumor volume at the start of treatment in the solvent control group Tumor volume)] ⁇ 100%.
  • the statistical analysis is based on the RTV data at the end of the experiment using SPSS software for analysis.
  • the comparison between groups was analyzed by one-way ANOVA, and the variance was uneven (the F value was significantly different), and the Games-Howell method was used to test. p ⁇ 0.05 considered a significant difference.
  • the compound of the present invention has a significant inhibitory effect on the growth of human lung cancer Calu-6 cell subcutaneous xenograft tumor model tumor-bearing mice.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本发明公开了一类含芳基并内磺酰胺的化合物,具体公开了式(Ⅱ)所示化合物、其药学上可接受的盐或其异构体。

Description

含苯基并内磺酰胺的化合物
本申请要求申请日为2020年4月30日的中国专利申请CN202010363156.1和申请日为2021年2月2日的中国专利申请CN202110145140.8的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一类含苯基并内磺酰胺的化合物,具体涉及式(Ⅱ)所示化合物、其药学上可接受的盐或其异构体。
背景技术
丝裂活化蛋白激酶(mitogen-activated protein kinases,MAPK)通路存在于细胞增殖、分化、凋亡与应激反应等一系列细胞进程中。其中,RAS-RAF-MEK-ERK通路是最广为人知的MAPK通路之一。该通路首先由细胞外生长因子(PDGF或EGF)与跨膜受体(EGFR或PDGFR等)结合,活化受体,活化的受体通过鸟甘酸交换因子(SOS)使膜内的RAS蛋白与GTP结合并活化;被激活的RAS进一步间接磷酸化RAF;活化的RAF在MEK1/2的两个丝氨酸残基上进行磷酸化;被激活的MEK1/2反过来激活其下游底物ERK1/2;磷酸化的ERK1/2二聚后移向细胞核内并积聚。在细胞核内的ERK涉及到许多细胞功能,包括核转运、信号传导、DNA修复以及mRNA加工与翻译等。若该通路涉及的基因发生突变或生长因子、下游信号蛋白或蛋白激酶过表达,将会导致细胞通路的持续激活,细胞增殖失控并最终导致肿瘤的形成。例如,大约30%的人类癌细胞属于RAS突变,其中KRAS突变是RAS突变中最常见的一种亚型,KRAS突变的肿瘤大约占人类所有肿瘤细胞的22%,其中70-90%的胰腺癌、10-20%的非小细胞肺癌以及25-35%的结直肠癌都属于KRAS突变;大约8%的肿瘤属于BRAF突变,其中50-60%的黑色素瘤以及40-60%的乳头状甲状腺癌等均属于BRAF突变。
外信号调节激酶(ERK 1/2)是MAPK家族的重要成员,作为RAS/RAF/MEK/ERK通路下游的“最终管理器”,靶向抑制ERK1/2有望用于治疗MAPK通路异常激活(RAS/RAF/MEK等激活变异)造成的癌变,也可能对由于ERK1/2重新激活而产生RAF或MEK抑制剂耐药的患者有效。据许多临床前报道,MAPK通路抑制剂可以有效地抑制BRAF和RAS突变的癌细胞,例如,BRAF抑制剂威罗菲尼、达拉菲尼以及MEK抑制剂曲美替尼已被批准用于治疗BRAF突变的黑色素瘤。然而,这些药物仍然存在着耐药问题。BRAF抑制剂耐药机理已经被证实,其中包括MEK反式激活CRAF、RTK,NRAS信号的上调,以及MEK激活突变等;MEK抑制剂耐药机制包括MEK突变降低其与药物的结合或增强MEK本身活性、以及BRAF或KRAS扩增等。不论是RAF抑制剂耐药还是MEK抑制剂耐药都将使RAS-RAF-MEK-ERK通路重新激活从而导致癌细胞持续扩增。所以,开发一类新型的双机制ERK抑制剂,不仅将对MAPK信号通路产生突变的病人有效,对于BRAF、MEK抑制剂产生耐药的病人也将同样有效。
发明内容
本发明提供了式(Ⅱ)所示化合物或其药学上可接受的盐,
Figure PCTCN2021089889-appb-000001
其中,
T 1为CH或N;
n为1或2;
R 1和R 2各自独立地为H、D、F、Cl或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br和I的取代基所取代;
或R 1和R 2与其连接的碳原子一起形成
Figure PCTCN2021089889-appb-000002
R 3和R 4各自独立地为H或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代;
R 5和R 6各自独立地为H或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br、I、-OH和-OCH 3的取代基所取代;
R 7为苯基或吡啶基,其中所述苯基和吡啶基任选被1、2、3或4个R a所取代;
R 8为H、F、Cl或Br;
R 9为四氢-2H-吡喃基,其中所述四氢-2H-吡喃基任选被1、2、3或4个R b所取代;
各R a独立地为F、Cl、Br、I、C 1-3烷基、C 1-3烷氧基、NH-C 1-3烷基或N-(C 1-3烷基) 2,其中所述C 1-3烷基、C 1-3烷氧基、-NH-C 1-3烷基和-N-(C 1-3烷基) 2分别独立地任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代;
各R b独立地为F、Cl、Br、I、D或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代。
本发明还提供了式(Ⅱ)所示化合物或其药学上可接受的盐,
Figure PCTCN2021089889-appb-000003
其中,
T 1为CH或N;
n为1或2;
R 1和R 2各自独立地为H、F、Cl或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br和I的取代基所取代;
或R 1和R 2与其连接的碳原子一起形成
Figure PCTCN2021089889-appb-000004
R 3和R 4各自独立地为H或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代;
R 5和R 6各自独立地为H或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br、I、-OH和-OCH 3的取代基所取代;
R 7为苯基或吡啶基,其中所述苯基和吡啶基任选被1、2、3或4个R a所取代;
R 8为H、F、Cl或Br;
R 9为四氢-2H-吡喃基,其中所述四氢-2H-吡喃基任选被1、2、3或4个R b所取代;
各R a独立地为F、Cl、Br、I、C 1-3烷基、C 1-3烷氧基、NH-C 1-3烷基或N-(C 1-3烷基) 2,其中所述C 1-3烷基、C 1-3烷氧基、-NH-C 1-3烷基和-N-(C 1-3烷基) 2分别独立地任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代;
各R b独立地为F、Cl、Br、I、D或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代。
本发明还提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021089889-appb-000005
其中,n为1或2;
R 1和R 2各自独立地为H、F、Cl或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br和I的取代基所取代;
或R 1和R 2与其连接的碳原子一起形成
Figure PCTCN2021089889-appb-000006
R 3和R 4各自独立地为H或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br和I的取代基所取代;
R 5和R 6各自独立地为H或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br、I、-OH和-OCH 3的取代基所取代;
R 7为苯基,其中所述苯基任选被1、2、3或4个R a所取代;
R 8为H、F或Cl;
R 9为四氢-2H-吡喃基,其中所述四氢-2H-吡喃基任选被1、2、3或4个R b所取代;
各R a独立地为F、Cl、Br、I、C 1-3烷基或C 1-3烷氧基,其中所述C 1-3烷基和C 1-3烷氧基任选被1、 2或3个独立选自F、Cl、Br、I和-OH的取代基所取代;
各R b独立地为F、Cl、Br、I或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代。
在本发明的一些方案中,上述化合物具有式(I-1)或(I-2)所示结构:
Figure PCTCN2021089889-appb-000007
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8和R 9如本发明所定义。
在本发明的一些方案中,上述各R b独立地为F、Cl、Br、I、D或-CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述各R b独立地为F、Cl、Br、I或-CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R 9
Figure PCTCN2021089889-appb-000008
其中所述
Figure PCTCN2021089889-appb-000009
任选被1、2、3或4个R b所取代,R b及其他变量如本发明所定义。
在本发明的一些方案中,上述R 9
Figure PCTCN2021089889-appb-000010
其他变量如本发明所定义。
在本发明的一些方案中,上述R 9
Figure PCTCN2021089889-appb-000011
R b及其他变量如本发明所定义。
在本发明的一些方案中,上述所述化合物具有式(Ⅲ-1)或(Ⅲ-2)所示结构:
Figure PCTCN2021089889-appb-000012
其中,
m为0、1、2、3或4;
T 1、R b、R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8如本发明所定义。
在本发明的一些方案中,上述化合物具有式(I-3)或(I-4)所示结构:
Figure PCTCN2021089889-appb-000013
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8如本发明所定义。
在本发明的一些方案中,上述R 1和R 2各自独立地为H、D、F、Cl或-CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1和R 2各自独立地为H、F、Cl或-CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1和R 2各自独立地为H,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1和R 2与其连接的碳原子一起形成
Figure PCTCN2021089889-appb-000014
其他变量如本发明所定义。
在本发明的一些方案中,上述R 3和R 4各自独立地为H或-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3和R 4各自独立地为H或-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br和I的取代基所取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3和R 4各自独立地为H或-CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R 5和R 6各自独立地为H或-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I、-OH和-OCH 3的取代基所取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 5和R 6各自独立地为H、-CH 3
Figure PCTCN2021089889-appb-000015
其他变量如本发明所定义。
在本发明的一些方案中,上述R 5和R 6各自独立地为H或
Figure PCTCN2021089889-appb-000016
其他变量如本发明所定义。
在本发明的一些方案中,上述化合物具有式(Ⅲ-3)或(Ⅲ-4)所示结构:
Figure PCTCN2021089889-appb-000017
其中,
m为0、1、2、3或4;
T 1、R b、R 7和R 8如本发明所定义;
R 3为-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代;
R 5为-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I、-OH和-OCH 3的取代基所取代。
在本发明的一些方案中,上述化合物具有式(I-5)或(I-6)所示结构:
Figure PCTCN2021089889-appb-000018
其中,R 7和R 8如本发明所定义;
R 3为-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代;
R 5为-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I、-OH和-OCH 3的取代基所取代。
在本发明的一些方案中,上述化合物具有式(I-5)或(I-6)所示结构:
Figure PCTCN2021089889-appb-000019
其中,R 7和R 8如本发明所定义;
R 3为-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br和I的取代基所取代;
R 5为-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I、-OH和-OCH 3的取代基所取代。
在本发明的一些方案中,上述各R a独立地为F、Cl、Br、I、-CH 3、-OCH 3、-NH-CH 3
Figure PCTCN2021089889-appb-000020
其他变量如本发明所定义。
在本发明的一些方案中,上述各R a独立地为F、Cl、Br、I、-CH 3或-OCH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述各R a独立地为F、Cl、-CH 3、-OCH 3
Figure PCTCN2021089889-appb-000021
其他变量如本发明所定义。
在本发明的一些方案中,上述各R a独立地为F或-OCH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R 7
Figure PCTCN2021089889-appb-000022
Figure PCTCN2021089889-appb-000023
R a及其他变量如本发明所定义。
在本发明的一些方案中,上述R 7
Figure PCTCN2021089889-appb-000024
Figure PCTCN2021089889-appb-000025
R a及其他变量如本发明所定义。
在本发明的一些方案中,上述R 7
Figure PCTCN2021089889-appb-000026
Figure PCTCN2021089889-appb-000027
其他变量如本发明所定义。
在本发明的一些方案中,上述R 7
Figure PCTCN2021089889-appb-000028
Figure PCTCN2021089889-appb-000029
其他变量如本发明所定义。
在本发明的一些方案中,上述R 7
Figure PCTCN2021089889-appb-000030
其他变量如本发明所定义。
在本发明的一些方案中,上述R 7
Figure PCTCN2021089889-appb-000031
其他变量如本发明所定义。
在本发明还有一些方案是由上述各变量任意组合而来。
本发明提供了下式化合物或其药学上可接受的盐:
Figure PCTCN2021089889-appb-000032
Figure PCTCN2021089889-appb-000033
本发明提供了下式化合物或其药学上可接受的盐:
Figure PCTCN2021089889-appb-000034
Figure PCTCN2021089889-appb-000035
本发明还提供了上述化合物及其药学上可接受的盐在制备ERK1/2抑制剂药物中的应用。
技术效果
本发明化合物对ERK1/2具有很好的抑制活性。有望用于MAPK信号通路异常激活(RAS/RAF/MEK等激活变异)造成的癌变,也可能对由于ERK1/2重新激活而产生RAF或MEK抑制剂耐药的患者有效;本发明化合物在小鼠和犬中口服吸收较好,清除率较低,暴露量较高,具有较好的生物利用度;本发明化合物对人肺癌Calu-6细胞皮下异种移植瘤模型荷瘤鼠生长有显著的抑制作用。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过 敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2021089889-appb-000036
和楔形虚线键
Figure PCTCN2021089889-appb-000037
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2021089889-appb-000038
和直形虚线键
Figure PCTCN2021089889-appb-000039
表示立体中心的相对构型,用波浪线
Figure PCTCN2021089889-appb-000040
表示楔形实线键
Figure PCTCN2021089889-appb-000041
或楔形虚线键
Figure PCTCN2021089889-appb-000042
或用波浪线
Figure PCTCN2021089889-appb-000043
表示直形实线键
Figure PCTCN2021089889-appb-000044
和直形虚线键
Figure PCTCN2021089889-appb-000045
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2021089889-appb-000046
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2021089889-appb-000047
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2021089889-appb-000048
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2021089889-appb-000049
直形虚线键
Figure PCTCN2021089889-appb-000050
或波浪线
Figure PCTCN2021089889-appb-000051
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2021089889-appb-000052
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2021089889-appb-000053
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连。
除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-7元环”是指环绕排列5-7个原子的“环”。
除非另有规定,“5元环”表示由5个环原子组成的环烷基、杂环烷基、环烯基、杂环烯基、环炔基、杂环炔基、芳基或杂芳基。所述的环包括单环,也包括螺环、并环和桥环等双环体系。除非另有规定,该环任选地包含1、2或3个独立选自O、S和N的杂原子。术语“环”还包括含有至少一个环的环系,其中的每一个“环”均独立地符合上述定义。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3卤代烷基”表示包含1至3个碳原子的单卤代烷基和多卤代烷基。所述C 1-3卤代烷基包括C 1-2、C 2-3、C 3、C 2和C 1卤代烷基等。C 1-3卤代烷基的实例包括但不限于三氟甲基、三氯甲基、2,2,2-三氟乙基、五氟乙基、五氯乙基、3-溴丙基等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,术语“C 6-10芳环”和“C 6-10芳基”可以互换使用,术语“C 6-10芳环”或“C 6-10芳基”表示由6至10个碳原子组成的具有共轭π电子体系的环状碳氢基团,它可以是单环、稠合双环或稠合三环体系,其中各个环均为芳香性的。其可以是一价、二价或者多价,C 6-10芳基包括C 6-9、C 9、C 10和C 6芳基等。C 6-10芳基的实例包括但不限于苯基、萘基(包括1-萘基和2-萘基等)。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1- 12包括C 1-3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“D”表示为氘,氢的同位素,化学符号也可为 2H,又称重氢,由一个质子、一个中子和一个电子组成。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲和取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如:链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2021089889-appb-000054
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:BF 3·Et 2O代表三氟化硼乙醚加合物;DMSO代表二甲基亚砜;DMF代表N,N-二甲基甲酰胺;DPBS代表杜氏磷酸盐缓冲液;EDCI代表1-(3-二甲胺基丙基)-3-乙基碳二亚胺;HOBt代表1-羟基苯并三唑;HPLC代表高压液相色谱;LCMS代表液质联用色谱;MeOH代表甲醇;NMM代表氮甲基吗啡啉;Pd(dppf)Cl 2·CH 2Cl 2代表[1,1'-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷加合物;Pd(PPh 3) 4代表四三苯基膦钯;PBS代编磷酸盐缓冲液;HATU代表O-(7-氮杂苯并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;PMB代表对甲氧基苄基;NMP代表氮甲基吡咯烷酮;DIEA代表N,N-二异丙基乙胺;LiAlD 4代表氘代四氢铝锂;MsCl代表甲烷磺酰氯;BNS代表N-溴代丁二酰 亚胺;AIBN代表偶氮二异丁腈。
附图说明
图1:各组在不同时间点的瘤体积;
图2:受试物对小鼠体重的影响。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1
Figure PCTCN2021089889-appb-000055
化合物1A:
Figure PCTCN2021089889-appb-000056
将化合物SM1(4克,17.53毫摩尔),钯/碳(400毫克,17.53毫摩尔,10%纯度)溶于甲醇(40毫升)中,反应液用氢气置换三次排出空气,然后在氢气(15psi)保护下于15℃下搅拌2小时。反应液过滤,滤液减压浓缩得到粗品1A直接用于下一步反应。 1H NMR(400MHz,DMSO-d 6)δ=7.59(d,J=8.4Hz,1H),6.94(d,J=2.0Hz,1H),6.89(dd,J=1.9,8.5Hz,1H)。
化合物1B:
Figure PCTCN2021089889-appb-000057
0℃条件下,向化合物溴化铜(3.00克,13.43毫摩尔,628.93微升)和亚硝酸叔丁酯(3.38克,32.79毫摩尔,3.9毫升)的乙腈(30毫升)中逐滴加入化合物1A(2.66克,13.42毫摩尔)的乙腈(30毫升)溶液。滴加完后,反应液在0℃条件下搅拌1小时。然后在15℃条件下搅拌15小时。反应液用水(100毫升)稀释,加入盐酸溶液(2摩尔)将pH调到2以下。然后用乙酸乙酯(100毫升×2次)萃取。合并有机相减压浓缩得到化合物1B。 1H NMR(400MHz,DMSO-d 6)δ=8.51(d,J=1.2Hz,1H),8.09(dd,J=1.7,8.2Hz,1H),7.87(d,J=8.2Hz,1H)。
化合物1C:
Figure PCTCN2021089889-appb-000058
将化合物1B(4.26克,16.25毫摩尔)溶于四氢呋喃(50毫升)中,加入硼氢化钠(6.40克,169.05毫摩尔)。反应液冷却到-8℃,然后在-8℃下逐滴加入BF 3·Et 2O(26.45克,186.36毫摩尔,23毫升)。并在-8℃条件下搅拌10分钟。然后在80℃条件下搅拌2小时。将反应液倒入冰水(120毫升)中,用2摩尔的氢氧化钠(100毫升)溶液将反应液的pH调节到10。反应液用乙酸乙酯(100毫升)萃取。有机相用2摩尔的氢氧化钠(50毫升×3次)水溶液萃取。合并的水相用2摩尔的盐酸(500毫升)溶液将pH调节到2,然后用乙酸乙酯(300毫升×2次)萃取,合并有机相经减压浓缩得到粗品化合物1C。 1H NMR(400MHz,DMSO-d 6)δ=8.12(d,J=1.6Hz,1H),7.97(br s,1H),7.87(dd,J=1.8,8.2Hz,1H),7.53(d,J=8.3Hz,1H),4.37(br s,2H)。
化合物1D:
Figure PCTCN2021089889-appb-000059
氮气保护下,将化合物1C(3.1克,12.50毫摩尔),2-溴-(2S)丙酸乙酯(3.40克,18.78毫摩尔)和碳酸钾(5.06克,36.65毫摩尔)溶于DMF(30毫升)中,混合液在20℃条件下搅拌1小时。反应液用50毫升水稀释,然后用乙酸乙酯(50毫升×3次)萃取。合并有机相,减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=10:1-5:1洗脱)得到化合物1D。 1H NMR(400MHz,CDCl 3)δ=7.93(d,J=1.5Hz,1H),7.72(dd,J=1.8,8.2Hz,1H),7.30(d,J=8.3Hz,1H),4.82(d,J=14.1Hz,1H),4.59-4.46(m,2H),4.20(dq,J=1.4,7.2Hz,2H),1.63(d,J=7.3Hz,3H),1.26(s,3H)。
化合物1E:
Figure PCTCN2021089889-appb-000060
氮气保护下,将双频哪醇硼酸酯(1.19克,4.69毫摩尔),化合物1D(1.36克,3.91毫摩尔),Pd(dppf)Cl 2·CH 2Cl 2(319毫克,390.63微摩尔)和醋酸钾(767毫克,7.82毫摩尔)溶于二氧六环(14毫升)中,混合液在90℃条件下搅拌16小时。反应液过滤,将滤液减压浓缩得到粗品化合物1E。
化合物1F:
Figure PCTCN2021089889-appb-000061
氮气保护下,将化合物1E(2.53克,6.40毫摩尔),2,4,5-三氯嘧啶(2.35克,12.81毫摩尔),Pd(PPh 3) 4(740毫克,640.38微摩尔)和碳酸钠(1.36克,12.83毫摩尔)溶于二氧六环(24毫升)和水(8毫升)中,混合液在90℃条件下搅拌2小时。将反应液过滤,向滤液中加入乙酸乙酯(50毫升),用饱和氯化钠溶液(50毫升×3次)洗涤。合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=10:1-4:1洗脱)得到化合物1F。 1H NMR(400MHz,CDCl 3)δ=8.72(s,1H),8.42(d,J=1.1Hz,1H),8.19(dd,J=1.7,8.1Hz,1H),7.59(d,J=8.1Hz,1H),4.99(d,J=14.5Hz,1H),4.71-4.54(m,2H),4.22(dq,J=1.5,7.2Hz,2H),1.67(d,J=7.2Hz,3H),1.30-1.26(m,3H)。
化合物1G:
Figure PCTCN2021089889-appb-000062
氮气保护下,将化合物1F(865毫克,2.08毫摩尔),四氢吡喃-4-胺(420毫克,4.15毫摩尔),DIEA(675.22毫克,5.22毫摩尔,910微升)溶于二氧六环(9毫升)中,混合液在90℃条件下搅拌16小时。反应液用乙酸乙酯(20毫升)稀释并用1摩尔的盐酸(20毫升×1次)水溶液洗涤,水相用乙酸乙酯(20毫升×2次)萃取,合并的有机相用盐水(20毫升×1次)洗涤,经干燥、减压浓缩得到粗品化合物1G。 1H NMR(400MHz,CDCl 3)δ=8.33(s,1H),8.27(s,1H),8.08(dd,J=1.3,8.1Hz,1H),7.52(d,J=8.1Hz,1H),5.34(br s,1H),4.95(d,J=14.3Hz,1H),4.64-4.58(m,2H),4.22(dq,J=1.4,7.1Hz,2H),4.03-3.98(m,2H),3.56(dt,J=1.7,11.5Hz,2H),2.07-2.02(m,2H),1.67(d,J=7.4Hz,3H),1.61-1.55(m,2H),1.31-1.27(m,3H)。
化合物1H:
Figure PCTCN2021089889-appb-000063
向化合物1G(1.03克,2.14毫摩尔)的四氢呋喃(10毫升)和甲醇(10毫升)溶液中加入一水合氢氧化锂(4摩尔,1.1毫升)。混合液在20℃条件下搅拌16小时。反应液减压浓缩,用2摩尔的盐酸(2毫升)溶液将调节pH=4,然后用乙酸乙酯(20毫升×3次)萃取。合并的有机相过滤,滤液减压浓缩得粗品化合物1H。 1H NMR(400MHz,CDCl 3)δ=8.32(br s,1H),8.23(s,1H),8.03(br d,J=7.5Hz,1H),7.52(d,J=8.0Hz,1H),6.15-6.07(m,1H),4.83(br d,J=13.7Hz,1H),4.67-4.55(m,3H),4.02-3.96(m,3H),3.58-3.51(m,2H),2.02(br d,J=10.7Hz,2H),1.69(d,J=7.3Hz,3H),1.27(t,J=7.2Hz,2H)。
化合物1:
Figure PCTCN2021089889-appb-000064
氮气保护下,将化合物1H(247毫克,545.36微摩尔),(2S)-2-氨基-2-(3-氟-5-甲氧基-苯基)乙醇(101毫克,545.37微摩尔),HOBt(82毫克,606.85微摩尔),NMM(61毫克,603.08微摩尔,66.30微升)和EDCI(115毫克,599.89微摩尔)溶于DMF(3毫升)和二氯甲烷(6毫升)的混合溶剂中,混合液在20℃条件下搅拌16小时。反应液减压浓缩得到残渣,残渣用二氯甲烷(40毫升)稀释,然后用盐酸水溶液(2摩尔,40毫升×2次)洗涤。合并有机相过滤,滤液减压浓缩得到粗品。粗品经高效液相色谱制备分离(三氟乙酸体系),得到化合物1的游离碱。 1H NMR(400MHz,MeOH-d 4)δ=8.38(s,1H),8.24(d,J=0.9Hz,1H),8.16(dd,J=1.5,8.1Hz,1H),7.71(d,J=8.1Hz,1H),6.77(s,1H),6.70(brd,J=9.4Hz,1H),6.65-6.55(m,1H),4.99-4.91(m,2H),4.71(d,J=14.7Hz,1H),4.64-4.59(m,1H),4.09-3.95(m,3H),3.81(s,3H),3.79-3.67(m,2H),3.55(dt,J=1.9,11.6Hz,2H),2.01(br dd,J=2.0,12.5Hz,2H),1.70-1.57(m,5H)。LCMS(ESI)m/z:620.3[M+1]。
实施例2
Figure PCTCN2021089889-appb-000065
化合物2B:
Figure PCTCN2021089889-appb-000066
向化合物1F(200毫克,480.45微摩尔)的二氧六环(3毫升)溶液中加入化合物2A(74.76毫克,480.45微摩尔,HCl)和DIEA(186.28毫克,1.44毫摩尔251.06微升),反应液90℃条件下搅拌24小时。反应结束后,反应液用乙酸乙酯(20毫升)稀释并用1摩尔的盐酸(20毫升×1次)水溶液洗涤,水相用乙酸乙酯(20毫升×2次)萃取,合并的有机相用盐水(20毫升×1次)洗涤,经干燥、减压浓缩得到粗品化合物2B。 1H NMR(400MHz,CDCl 3)δ=8.37(s,1H),8.29(s,1H),8.09(dd,1H,J=1.5,8.2Hz),7.53(d,1H,J=8.1Hz),5.32(br d,1H,J=8.1Hz),4.96(d,1H,J=14.3Hz),4.6-4.7(m,2H),4.46(s,2H),4.1-4.2(m,2H),3.8-3.9(m,1H),3.5-3.6(m,2H),2.2-2.4(m,1H),1.67(d,3H,J=7.3Hz),1.3-1.3(m,3H).LCMS(ESI):m/z:416.2[M+1]。
化合物2C:
Figure PCTCN2021089889-appb-000067
向化合物2B(60毫克,120.25微摩尔)的四氢呋喃(3毫升)溶液中加入一水和氢氧化锂(15.14毫克,360.75微摩尔)的水(0.5毫升)溶液,反应液在25℃下搅拌1小时。反应完全后,将反应液减压浓缩,用2摩尔的盐酸(2毫升)溶液将调节pH=4,然后用乙酸乙酯(20毫升×3次)萃取。合并的有机相过滤,滤液经减压浓缩得粗品化合物2C。LCMS(ESI):m/z:471.0[M+1]。
化合物2C:
Figure PCTCN2021089889-appb-000068
向化合物2C(50毫克,106.18微摩尔)的二氯甲烷(3毫升)溶液中加入(2S)-2-氨基-2-(3-氟-5-甲氧基-苯基)乙醇(28.24毫克,127.42微摩尔)和DIEA(41.17毫克,318.54微摩尔,55.48微升),混合液在0℃下搅拌15分钟,然后将HATU(48.45毫克,127.42微摩尔)加入到混合液中,反应液在0℃下搅拌1小时。反应液用盐酸(2M)水溶液调节PH<7,然后用二氯甲烷(10毫升×2次)萃取,然后用水(10×1次)洗涤。合并有机相过滤,滤液减压浓缩得到粗品。粗品经高效液相色谱制备分离(甲酸体系),得到化合物2的游离碱。 1H NMR(CD 3OD,400MHz)δ=8.41(s,1H),8.26(d,1H,J=1.1Hz),8.18(dd,1H,J=1.6,8.1Hz),7.72(d,1H,J=8.1Hz),6.77(s,1H),6.70(td,1H,J=1.7,9.3Hz),6.6-6.6(m,1H),5.0-5.0(m,1H),4.72(d,1H,J=14.8Hz),4.5-4.7(m,4H),4.2-4.4(m,1H),4.07(dt,1H,J=3.9,11.2Hz),3.9-4.0(m,1H),3.81(s,3H),3.7-3.8(m,2H),3.5-3.6(m,2H),2.1-2.3(m,1H),1.7-1.8(m,1H),1.62(d,3H,J=7.1Hz).LCMS(ESI):m/z:638.0[M+1]。
实施例3
Figure PCTCN2021089889-appb-000069
化合物3B:
Figure PCTCN2021089889-appb-000070
氮气保护下,将化合物1E(500毫克,1.26毫摩尔),3A(454毫克,1.99毫摩尔,255.06微升),Pd(PPh 3) 4(145毫克,125.48微摩尔)和碳酸钠(409毫克,3.86毫摩尔)溶于二氧六环(8毫升)和水(2毫升)中,混合液在100℃条件下搅拌1小时。将反应液过滤,向滤液中加入乙酸乙酯(30毫升),用饱和氯化钠溶液(30毫升×1次)洗涤。合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=1:1洗脱)得到化合物3B。 1H NMR(400MHz,CDCl 3)δ=8.84(s,1H),8.35(d,J=1.3Hz,1H),8.12(dd,J=1.6,8.1Hz,1H),7.58(d,J=8.1Hz,1H),4.98(d,J=14.4Hz,1H),4.67-4.57(m,2H),4.25-4.18(m,2H),1.67(d,J=7.3Hz,3H),1.31-1.27(m,3H).LCMS(ESI):m/z:527.2[M+1]。LCMS(ESI):m/z:461.9[M+1]。
化合物3C:
Figure PCTCN2021089889-appb-000071
向化合物3B(100毫克,217.05微摩尔)的二氧六环(3毫升)溶液中加入DIEA(61毫克,471.98微摩尔,82.21微升)和四氢吡喃-4-胺(66毫克,652.52微摩尔)。反应液在90℃条件下搅拌16小时。反应结束后,混合液用水(10毫升)稀释并用乙酸乙酯(10毫升×2次)萃取。合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=1:1洗脱)得到化合物3C。LCMS(ESI):m/z:527.2[M+1]。
化合物3D:
Figure PCTCN2021089889-appb-000072
向化合物3C(100毫克,190.33微摩尔)的四氢呋喃(1毫升)和乙醇(1毫升)溶液中加入一水和氢氧化锂(12毫克,285.96微摩尔)的水(1毫升)溶液,反应液在25℃下搅拌1小时。反应完全后将反应液减压浓缩,用盐酸(2摩尔)水溶液将反应液调节pH=2,然后用乙酸乙酯(10毫升×3次)萃取。合并的有机相过滤,滤液减压浓缩得粗品化合物3D。LCMS(ESI):m/z:497.2[M+1]。
化合物3:
Figure PCTCN2021089889-appb-000073
向化合物3D(70毫克,140.74微摩尔)的二氯甲烷(3毫升)溶液中加入(2S)-2-氨基-2-(3-氟-5-甲氧基-苯基)乙醇(58毫克,261.67微摩尔)和DIEA(74.20毫克,574.11微摩尔,100微升),反应液在0℃下搅拌5分钟。然后将HATU(70毫克,184.10微摩尔)加入到反应液中继续反应2小时。反应液用盐酸(2M)水溶液调节PH<7,然后用二氯甲烷(10毫升×2次)萃取,然后用水(10毫升×1次)洗涤。合并有机相过滤,滤液减压浓缩得到粗品。粗品经高效液相色谱制备分离(甲酸体系),得到化合物3的游离碱。 1H NMR(400MHz,CD 3OD)δ=8.46(s,1H),8.15(d,J=1.1Hz,1H),8.08(dd,J=1.6,8.1Hz,1H),7.68(d,J=8.1Hz,1H),6.75(s,1H),6.72-6.65(m,1H),6.59(td,J=2.3,10.8Hz,1H),4.95- 4.90(m,2H),4.69(d,J=14.6Hz,1H),4.60(s,1H),4.07-3.93(m,3H),3.79(s,3H),3.75-3.66(m,2H),3.52(dt,J=1.9,11.6Hz,2H),2.03-1.94(m,2H),1.68-1.53(m,5H).LCMS(ESI):m/z:666.3[M+1]。
实施例4
Figure PCTCN2021089889-appb-000074
化合物4B:
Figure PCTCN2021089889-appb-000075
氮气保护下,将化合物1E(100毫克,252.99微摩尔),化合物4A(97.69毫克,379.48微摩尔),Pd(dppf)Cl 2.CH 2Cl 2(10.33毫克,12.65微摩尔)和碳酸钠(53.63毫克,505.97微摩尔)溶于二氧六环(5毫升)和水(1毫升)中,反应液在80℃条件下搅拌2小时。反应结束后,向反应液中加入0.5毫升盐酸(2摩尔)淬灭反应,混合液用水(10毫升)稀释并用乙酸乙酯(10毫升×2次)萃取。合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=2:1洗脱)得到化合物4B。 1H NMR(400MHz,CDCl 3)δ=8.27(s,1H),7.83(s,1H),7.65(dd,1H,J=1.4,8.0Hz),7.49(d,1H,J=8.1Hz),6.90(d,1H,J=2.5Hz),4.90(d,1H,J=14.1Hz),4.5-4.6(m,2H),4.1-4.2(m,2H),1.6-1.6(m,3H),1.2-1.3(m,3H).LCMS(ESI):m/z:647.0[M+1]。
化合物4C:
Figure PCTCN2021089889-appb-000076
氮气保护下,将化合物4B(50毫克,0.125毫摩尔),四氢吡喃-4-胺(25.36毫克,0.251毫摩尔),DIEA(48.61毫克,0.376毫摩尔,65.51微升)溶于NMP(3毫升)中,混合液在140℃条件下搅拌4小时。反应液用乙酸乙酯(10毫升)稀释并用2摩尔的盐酸(10毫升×1次)水溶液洗涤,有机相用乙酸乙酯(10毫升×2次)萃取,合并的有机相用盐水(10毫升×1次)洗涤,合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=10:1-4:1洗脱)得到化合物4C。 1H NMR(400MHz,CDCl 3)δ=8.07(s,1H),7.77(s,1H),7.6-7.7(m,1H),7.4-7.5(m,1H),6.26(s,1H),4.87(d,1H,J=13.9Hz),4.5-4.6(m,2H),4.43(br d,1H,J=7.7Hz),4.1-4.2(m,2H),3.9-4.0(m,2H),3.7-3.9(m,1H),3.48(br t,2H,J=10.8Hz),1.9-1.9(m,2H),1.60(d,3H,J=7.3Hz),1.42(br d,2H,J=3.9Hz),1.2-1.2(m,3H).LCMS(ESI):m/z:480.1[M+1]。
化合物4D:
Figure PCTCN2021089889-appb-000077
向化合物4C(50毫克,104.17微摩尔)的四氢呋喃(5毫升)溶液中加入一水和氢氧化锂(21.86毫克,520.86微摩尔)的水(1毫升)溶液,反应液在25℃条件下搅拌2小时。反应完全后,将反应液减压浓缩,用2摩尔的盐酸水溶液将反应液调节pH=2,然后用乙酸乙酯(10毫升×3次)萃取。合并的有机相过滤,滤液减压浓缩得粗品化合物4D。 1H NMR(400MHz,CD 3OD)δ=8.06(s,1H),7.86(s,1H),7.79(dd,1H,J=1.4,8.0Hz),7.6-7.7(m,1H),6.59(s,1H),4.94(br s,2H),4.72(d,1H,J=14.5Hz),4.54(q,1H,J=7.3Hz),4.0-4.0(m,2H),3.5-3.6(m,2H),3.4-3.5(m,2H),2.0-2.1(m,2H),1.7-1.7(m,3H),1.5-1.6(m,2H).LCMS(ESI):m/z:452.0[M+1]。
化合物4:
Figure PCTCN2021089889-appb-000078
0℃下,向化合物4D(40毫克,88.51微摩尔)和(2S)-2-氨基-2-(3-氟-5-甲氧基-苯基)乙醇(21.58毫克,97.36微摩尔)的二氯甲烷(4毫升)溶液中加入DIEA(34.32毫克,265.53微摩尔,46.25微 升),混合液在0℃下搅拌20分钟,然后加入HATU(40.39毫克,106.21微摩尔)继续在0℃下搅拌40分钟。反应液用盐酸(2摩尔)水溶液调节PH<7,然后用二氯甲烷(10毫升×2次)萃取,然后用水(10×1次)洗涤。合并有机相过滤,滤液减压浓缩得到粗品。粗品经高效液相色谱制备分离(甲酸体系),得到化合物4的游离碱。 1H NMR(400MHz,CD 3OD)δ=8.06(s,1H),7.88(s,1H),7.80(dd,1H,J=1.3,8.1Hz),7.69(d,1H,J=7.9Hz),6.77(s,1H),6.70(br d,1H,J=9.9Hz),6.61(td,1H,J=2.2,10.8Hz),6.57(s,1H),4.9-5.0(m,2H),4.6-4.7(m,2H),3.9-4.1(m,3H),3.81(s,3H),3.7-3.8(m,2H),3.5-3.6(m,2H),2.0-2.1(m,2H),1.61(d,3H,J=7.1Hz),1.56(br dd,2H,J=3.5,11.8Hz).LCMS(ESI):m/z:619.0[M+1]。
实施例5
Figure PCTCN2021089889-appb-000079
化合物5C:
Figure PCTCN2021089889-appb-000080
氮气保护,-15℃下,向异丙基溴化镁(1.3摩尔,3.75毫升)的四氢呋喃(12毫升)溶液中缓慢加入化合物5A(1克,4.77毫摩尔)的四氢呋喃(4毫升)溶液。混合液在-15℃下搅拌2小时,然后加入化合物5B(1.33克,4.78毫摩尔)的四氢呋喃(4毫升)溶液,反应液在-15℃下继续搅拌2小 时。反应结束后加入饱和氯化铵(20毫升)溶液淬灭反应液,然后用水(10毫升)稀释,用乙酸乙酯(10毫升×2次)萃取,有机相用盐水(10毫升×1次)洗涤,合并有机相减压浓缩得到粗品,粗品经高效液相色谱制备分离(甲酸体系),得到化合物5C。 1H NMR(400MHz,DMSO-d6)δ=7.32(br t,J=4.5Hz,2H),7.23(br d,J=9.5Hz,1H),5.24(d,J=5.9Hz,1H),4.36(q,J=6.2Hz,1H),3.83(dd,J=6.1,9.9Hz,1H),3.71(dd,J=7.2,10.0Hz,1H),1.14-1.10(m,9H),0.79(s,9H),-0.07(d,J=12.1Hz,6H).LCMS(ESI):m/z:408.4[M+1]。
化合物5D:
Figure PCTCN2021089889-appb-000081
向化合物5C(280毫克,686.20微摩尔)的二氧六环(3毫升)溶液中加入盐酸/二氧六环(4摩尔,1.5毫升)。反应液在25℃条件下搅拌0.5小时。反应结束后,将混合液减压浓缩得到粗品5D直接用于下一步。
化合物5:
Figure PCTCN2021089889-appb-000082
0℃下,向化合物1H(70毫克,154.56微摩尔)的二氯甲烷(3毫升)溶液中加入化合物5D(55毫克,243.28微摩尔)和DIEA(81.62毫克,631.54微摩尔,110微升),反应液在0℃下搅拌5分钟,然后加入HATU(79毫克,207.77微摩尔)继续反应2小时。反应结束后,将反应液用水(10毫升)稀释并用二氯甲烷(10毫升×3次)萃取,水(20毫升×1次)洗涤,合并有机相过滤,滤液减压浓缩得到粗品。粗品经高效液相色谱制备分离(甲酸体系),得到化合物5的游离碱。 1H NMR(400MHz,CD 3OD)δ=8.36(s,1H),8.22(s,1H),8.15(dd,J=1.5,8.0Hz,1H),7.69(d,J=8.2Hz,1H),7.23(s,1H),7.14-7.05(m,2H),4.94(br t,J=5.8Hz,2H),4.69(d,J=14.8Hz,1H),4.63-4.57(m,1H),4.09-3.93(m,3H),3.79-3.69(m,2H),3.58-3.48(m,2H),1.99(br dd,J=1.8,12.8Hz,2H),1.68-1.55(m,5H).LCMS(ESI):m/z:624.4[M+1]。
实施例6
Figure PCTCN2021089889-appb-000083
化合物6B:
Figure PCTCN2021089889-appb-000084
向化合物6A(5克,32.44毫摩尔)的二氯甲烷(80毫升)溶液中加入硫酸铜(12.94克,81.10毫摩尔,12.45毫升)和(S)-2-甲基丙基-2-亚磺酰胺(4.72克,38.93毫摩尔)。反应液在50℃条件下搅拌16小时。反应结束后,将反应液过滤、减压浓缩得到粗品。粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=40:1-10:1洗脱)得到化合物6B。 1H NMR(400MHz,CDCl 3)δ=8.50(d,J=1.0Hz,1H),7.20-7.15(m,2H),6.77(td,J=2.3,10.3Hz,1H),3.86(s,3H),1.27(s,9H)。
化合物6C:
Figure PCTCN2021089889-appb-000085
-78℃,氮气保护下,向化合物6B(5.3克,20.60毫摩尔)的四氢呋喃(100毫升)溶液中加入甲基溴化镁(3摩尔,17.1毫升),反应液在15℃条件下搅拌16小时。反应结束后,向反应液中加入饱和的氯化铵(30毫升)溶液,有机相用乙酸乙酯(10毫升×2次)萃取,合并的有机相用盐水(10毫升×1次)洗涤,合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=5:1-1:1洗脱)得到化合物6C。LCMS(ESI):m/z:547.2[M+1]。
化合物6D:
Figure PCTCN2021089889-appb-000086
向化合物6C(3.67克,13.43毫摩尔)的二氧六环(72毫升)溶液中加入盐酸/二氧六环(4摩尔,36毫升)。反应液在20℃条件下搅拌1小时。反应结束后将反应液减压浓缩得到粗品6D的盐酸盐直接用于下一步。
化合物6F:
Figure PCTCN2021089889-appb-000087
0℃下,向化合物6E(900毫克,4.39毫摩尔)的二氯甲烷(20毫升)溶液中加入化合物6D盐酸盐(1.05克,5.11毫摩尔)和DIEA(2.37克,18.37毫摩尔,3.2毫升)。然后加入HATU(2.2克,5.79毫摩尔),反应液在0℃条件下搅2小时。反应完全后,反应液用水(50毫升)稀释,有机相用二氯甲烷(50毫升×3次)萃取,合并的有机相用盐水(10毫升×1次)洗涤,合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(二氯甲烷:甲醇=50:0-50:1洗脱)得到化合物6F。LCMS(ESI):m/z:442.3[M+1]。
化合物6G:
Figure PCTCN2021089889-appb-000088
0℃下,向化合物6F(300毫克,841.78微摩尔)的二氯甲烷(5毫升)溶液中加入三氟乙酸(1.92克,16.88毫摩尔,1.25毫升)。反应液在20℃条件下搅拌3小时。反应结束后,将混合液减压浓缩得到粗品6G直接用于下一步。LCMS(ESI):m/z:257.1[M+1]。
化合物6I:
Figure PCTCN2021089889-appb-000089
向化合物6G(310毫克,837.17微摩尔)的乙腈(5毫升)溶液中加入DIEA(430.36毫克,3.33毫摩尔,580微升)和化合物6H(435毫克,1.25毫摩尔)。反应液在80℃条件下搅拌16小时。反应结束后,反应液用水(20毫升)稀释,有机相用二氯甲烷(20毫升×3次)萃取,合并的有机相用盐水(10毫升×1次)洗涤,合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(二氯甲烷:甲醇=10:1洗脱)得到化合物6I。 1H NMR(400MHz,DMSO-d6)δ=8.70(br d,J=7.9Hz,1H),8.20(d,J=1.6Hz,1H),7.91(dd,J=1.8,8.3Hz,1H),7.60(d,J=8.3Hz,1H),6.79-6.60(m,3H),5.24(t,J=5.4Hz,1H),4.94(d,J=15.0Hz,1H),4.89-4.83(m,1H),4.61(d,J=15.0Hz,1H),4.34(t,J=6.7Hz,1H),3.84-3.70(m,5H),1.32(d,J=7.0Hz,3H).LCMS(ESI):m/z:489.0[M+1]。
化合物6J:
Figure PCTCN2021089889-appb-000090
氮气保护下,将化合物6I(130毫克,266.75微摩尔),双频哪醇硼酸酯,Pd(dppf)Cl 2.CH 2Cl 2(12毫克,14.69微摩尔),叔丁醇钾(80毫克,815.16微摩尔)溶于二氧六环(3毫升)中,反应液在90℃条件下搅拌1小时。反应结束后,将反应液减压浓缩得到粗品化合物6J直接用于下一步。LCMS(ESI):m/z:453.1[M+1]。
化合物6K:
Figure PCTCN2021089889-appb-000091
氮气保护下,将化合物6J(140毫克,261.97微摩尔),2,4,5-三氯嘧啶(114毫克,621.51微摩尔,56.29微升),Pd(PPh 3) 4(30毫克,25.96微摩尔)和碳酸钠(70毫克,660.44微摩尔)溶于二氧六环(4毫升)和水(1毫升)中,反应液在100℃条件下搅拌1小时。反应结束后,将反应液减压浓缩,滤液用水(20毫升)稀释并用乙酸乙酯(20毫升×3次)萃取。合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=1:1洗脱)得到化合物6K。LCMS(ESI):m/z:555.1[M+1]。
化合物6:
Figure PCTCN2021089889-appb-000092
向化合物6K(70毫克,126.03微摩尔)的二氧六环(3毫升)溶液中加入DIEA(44.52毫克,344.48微摩尔,60微升)和四氢吡喃-4-胺(40毫克,395.47微摩尔)。反应液在90℃条件下搅拌16小时。反应液用水(20毫升)稀释并用乙酸乙酯(15毫升×3次)萃取,有机相用盐水(30毫升×1次)洗涤,合并有机相,过滤,减压浓缩得到粗品。粗品经高效液相色谱制备分离(甲酸体系),得到化合物6的游离碱。 1H NMR(400MHz,CD 3OD)δ=8.37(s,1H),8.22(d,J=1.0Hz,1H),8.15(dd,J=1.6,8.1Hz,1H),7.69(d,J=8.1Hz,1H),6.75(s,1H),6.71-6.65(m,1H),6.54(td,J=2.2,10.7Hz,1H),5.04(d,J=14.8Hz,1H),5.00-4.92(m,1H),4.76(d,J=14.9Hz,1H),4.47(t,J=6.6Hz,1H),4.08-3.93(m,5H),3.79(s,3H),3.53(dt,J=1.9,11.6Hz,2H),1.99(br dd,J=2.2,12.4Hz,2H),1.68-1.56(m,2H),1.44(d,J=7.0Hz,3H).LCMS(ESI):m/z:620.5[M+1]。
实施例7
Figure PCTCN2021089889-appb-000093
化合物7:
Figure PCTCN2021089889-appb-000094
0℃下,向化合物1H(100毫克,220.79微摩尔)的二氯甲烷(3毫升)溶液中加入化合物7A(65.78毫克,350.52微摩尔)和DIEA(118.72毫克,918.60微摩尔,160微升),反应液在0℃下搅拌10分钟.然后加入HATU(112毫克,294.56微摩尔)继续搅拌2小时。反应液用水(10毫升)稀释并用过二氯甲烷(10毫升×3次)萃取,有机相用盐水(20毫升×1次)洗涤,合并有机相过滤、减压浓缩得到粗品。粗品经高效液相色谱制备分离(甲酸体系),得到化合物7的游离碱。 1H NMR(400MHz,CD 3OD)δ=8.36(s,1H),8.22(d,J=1.1Hz,1H),8.15(dd,J=1.6,8.1Hz,1H),7.69(d,J=8.4Hz,1H),7.25-7.19(m,1H),7.16(s,1H),7.10(dd,J=7.6,15.3Hz,2H),4.96-4.93(m,1H),4.93-4.89(m,1H),4.69(d,J=14.8Hz,1H),4.59(q,J=7.0Hz,1H),4.10-3.93(m,3H),3.78-3.66(m,2H),3.53(dt,J=1.9,11.7Hz,2H),2.33(s,3H),1.99(br dd,J=1.9,12.6Hz,2H),1.68-1.55(m,5H).LCMS(ESI):m/z:586.1[M+1]。
实施例8
Figure PCTCN2021089889-appb-000095
化合物8B:
Figure PCTCN2021089889-appb-000096
向化合物8A(9克,48.39毫摩尔)的二氯甲烷(300毫升)溶液中加入硫酸铜(19.31克,120.96毫摩尔,18.57毫升)和(S)-2-甲基丙基-2-亚磺酰胺(7克,57.76毫摩尔)。反应液在50℃条件下搅拌48小时。将反应液过滤,滤液减压浓缩得到粗品。粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=40:1-10:1洗脱)得到化合物8B。
化合物8C:
Figure PCTCN2021089889-appb-000097
-78℃,氮气保护下,向烯丙基溴化镁(1摩尔,21.78毫升)的四氢呋喃(40毫升)溶液中加入化合物8B(3克,10.37毫摩尔)的四氢呋喃(20毫升)溶液,反应液在-78℃条件下搅拌1小时。反应结束后,混合液用饱和的氯化铵(30毫升)溶液淬灭,然后用水(50毫升)稀释,用乙酸乙酯(50毫升×3次)萃取,有机相用盐水(50毫升×1次)洗涤,合并有机相减压浓缩得到粗品,粗品经高 效液相色谱制备分离(甲酸体系),得到化合物8C。LCMS(ESI):m/z:319.0[M+1]。
化合物8D:
Figure PCTCN2021089889-appb-000098
-78℃,臭氧(3.15毫摩尔,15psi)条件下,将化合物8C(1克,3.15毫摩尔)溶于二氯甲烷(10毫升)和甲醇(10毫升)中,硼氢化钠(240.00毫克,6.34毫摩尔)加入到反应液中,并在-78℃条件下搅拌3小时。反应结束后,加入饱和的氯化铵(30毫升)溶液淬灭反应液,然后用水(30毫升)稀释,乙酸乙酯(50毫升×2次)萃取,有机相用盐水(80毫升×1次)洗涤,合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=3:1洗脱)得到化合物8D。LCMS(ESI):m/z:337.0[M+1]。
化合物8E:
Figure PCTCN2021089889-appb-000099
将化合物8D(100.00毫克,311.30微摩尔)溶于二甲胺(2摩尔,3毫升)中,微波条件下,120℃反应4小时。反应结束后,将反应液减压浓缩得到粗品,粗品经硅胶柱层析纯化(二氯甲烷:甲醇=10:1洗脱)得到化合物8E。LCMS(ESI):m/z:286.1[M+1]。
化合物8F:
Figure PCTCN2021089889-appb-000100
向化合物8E(90毫克,315.34微摩尔)的二氧六环(2毫升)溶液中加入盐酸/二氧六环(4摩尔,1毫升)。反应液在25℃下搅拌1小时。反应结束后,将反应液减压浓缩得到粗品化合物8F的盐酸盐直接用于下一步。 1H NMR(400MHz,DMSO-d6)δ=8.33(br s,3H),7.57(br t,J=7.9Hz,1H),6.73-6.58(m,2H),4.26(br d,J=1.6Hz,1H),3.84-3.66(m,2H),3.07(s,6H)。
化合物8:
Figure PCTCN2021089889-appb-000101
0℃下,向化合物1H(100毫克,220.79微摩尔)的二氯甲烷(3毫升)溶液中加入化合物8F(54.00毫克,248.06微摩尔,HCl)和DIEA(118.72毫克,918.60微摩尔,160微升)。反应液搅拌10分钟后加入HATU(110毫克,289.30微摩尔)继续搅拌2小时。反应液用水(10毫升)稀释并用二氯甲烷(10毫升×3次)萃取。有机相用盐水(20毫升×1)洗涤,合并有机相过滤,滤液减压浓缩得到粗品,粗品经高效液相色谱制备分离(甲酸体系),然后用手性拆分方法(0.1%氨水甲醇体系,保留时间3.6分钟,ee值:100%)得到化合物8的游离碱。 1H NMR(400MHz,MeOH-d 4)δ=8.37(s,1H),8.22(d,J=1.1Hz,1H),8.16(dd,J=1.6,8.1Hz,1H),7.70(d,J=8.1Hz,1H),7.45(dd,J=7.3,8.5Hz,1H),6.56(d,J=7.2Hz,1H),6.49(d,J=8.4Hz,1H),4.92-4.89(m,1H),4.81-4.65(m,2H),4.60(q,J=7.1Hz,1H),4.12-3.93(m,3H),3.80(dq,J=5.6,10.9Hz,2H),3.53(dt,J=1.9,11.6Hz,2H),2.91(s,6H),2.04-1.95(m,2H),1.66-1.56(m,5H).LCMS(ESI):m/z:616.3[M+1]。
实施例9
Figure PCTCN2021089889-appb-000102
Figure PCTCN2021089889-appb-000103
化合物9C:
Figure PCTCN2021089889-appb-000104
将化合物9A(2克,14.58毫摩尔,1.89毫升)溶于甲醇(2毫升)中,加入化合物9B(2.08克,13.13毫摩尔,1.85毫升),混合液在10℃条件下搅拌16小时。反应完全后,将混合液经减压减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=4:1-2:1洗脱)得到化合物9C。 1H NMR(400MHz,CDCl 3)δ=7.24(d,J=8.5Hz,2H),6.92-6.79(m,2H),3.80(s,3H),3.75(s,2H),3.69(s,6H),3.44(quin,J=6.2Hz,1H),2.59(d,J=6.3Hz,4H)。
化合物9D:
Figure PCTCN2021089889-appb-000105
向化合物9C(2.85克,9.65毫摩尔)的四氢呋喃(30毫升)溶液中加入(Boc) 2O(2.53克,11.57毫摩尔,2.66毫升)和DIEA(1.77克,13.68毫摩尔,2.38毫升)。混合液在10℃条件下搅拌16小 时。反应完全后,将混合液减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=10:1-5:1洗脱)得到化合物9D。 1H NMR(400MHz,CDCl 3)δ=7.22(br s,2H),6.85(d,J=8.6Hz,2H),4.42(br s,2H),4.35-4.20(m,1H),3.85-3.73(m,3H),3.61(s,6H),2.86-2.50(m,4H),1.50(br d,J=16.0Hz,9H)。LCMS(ESI):m/z:296.1[M+1]。
化合物9E:
Figure PCTCN2021089889-appb-000106
氮气保护下,向化合物9D(3.16克,7.99毫摩尔)的四氢呋喃(35毫升)溶液中加入LiAlD 4(910毫克,23.98毫摩尔,1.24毫升)。反应液在0℃条件下搅拌20分钟。反应结束后,向混合液中加入15%的氢氧化钠(0.91毫升)水溶液淬灭,然后过滤,滤液经减压浓缩得到粗品9E直接用于下一步。 1H NMR(400MHz,CDCl 3)δ=7.21(br d,J=7.4Hz,2H),6.88-6.82(m,2H),4.52-4.32(m,1H),4.26(brs,2H),3.80(s,3H),1.67(br d,J=6.9Hz,4H),1.50-1.46(m,9H)。
化合物9F:
Figure PCTCN2021089889-appb-000107
向化合物9E(1.5克,4.37毫摩尔)的四氢呋喃(20毫升)溶液中加入叔丁醇钾(975.00毫克,8.69毫摩尔),搅拌15分钟后,加入MsCl(555.00毫克,4.85毫摩尔,375.00微升)和叔丁醇钾(495.00毫克,4.41毫摩尔),混合液在25℃条件下搅拌2小时,反应结束后,向反应液中加入饱和的氯化铵(10毫升)溶液,然后用乙酸乙酯(50毫升×3次)萃取。合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=10:1-5:1洗脱)得到化合物9F。 1H NMR(400MHz,DMSO-d 6)δ=7.15(d,J=8.7Hz,2H),6.87(d,J=8.7Hz,2H),4.29(br s,2H),4.08-3.75(m,1H),3.71(s,3H),1.63(br t,J=12.3Hz,2H),1.46-1.30(m,11H)
化合物9G:
Figure PCTCN2021089889-appb-000108
向化合物9F(560毫克,1.72毫摩尔)的甲醇(2毫升)溶液中加入盐酸/二氧六环(4摩尔,2毫 升)。反应液在25℃条件下搅拌2小时。反应结束后,将反应液倒入甲基叔丁基醚(10毫升)中,过滤得到滤饼,将滤饼溶于水(10毫升),用氢氧化钠(2摩尔)水溶液调节pH=11,然后用乙酸乙酯(10毫升×2次)萃取。合并有机相减压浓缩得到粗品9G直接用于下一步。 1H NMR(400MHz,CDCl 3)δ=7.25(d,J=8.6Hz,2H),6.90-6.83(m,2H),3.81(s,3H),3.78(s,2H),2.73(tt,J=4.1,10.5Hz,1H),1.84(dd,J=4.1,13.3Hz,2H),1.45(br d,J=11.7Hz,2H)。
化合物9H:
Figure PCTCN2021089889-appb-000109
向化合物9G(150毫克,665.72微摩尔)的甲醇(10毫升)溶液中加入钯/碳(50毫克,10%纯度)。氢气(0.8Mpa)条件下,反应液50℃搅拌16小时。反应完全后,过滤,将滤液减压浓缩然后溶于甲醇(1毫升)中,用盐酸/二氧六环(4摩尔)将混合液的pH调节到1,然后将甲基叔丁基醚(5毫升)加入到混合液中过滤得到粗品9H直接用于下一步。 1H NMR(400MHz,DMSO-d 6)δ=8.11(br s,2H),3.29-3.15(m,1H),1.82(dd,J=4.2,13.0Hz,2H),1.52(br t,J=12.0Hz,2H)。
化合物9I:
Figure PCTCN2021089889-appb-000110
向化合物的1F(1.18克,2.83毫摩尔)的四氢呋喃(5毫升)和水(5毫升)的溶液中加入一水合氢氧化锂(472.00毫克,11.25毫摩尔)。反应液在0℃下搅拌1小时。反应结束后,向反应液中加入水(10毫升),然后用乙酸乙酯(10毫升×1次)萃取,水相用盐酸(2摩尔)调节pH=2,并用二氯甲烷(10毫升×2次)萃取,合并有机相过滤,减压浓缩得到粗品9I直接用于下一步。 1H NMR(400MHz,CDCl 3)δ=8.73(s,1H),8.42(d,J=1.3Hz,1H),8.20(dd,J=1.5,8.1Hz,1H),7.59(d,J=8.1Hz,1H),4.94-4.86(m,1H),4.70-4.60(m,2H),1.72(d,J=7.3Hz,3H)。LCMS(ESI):m/z:387.9[M+1]。
化合物9J:
Figure PCTCN2021089889-appb-000111
0℃下,向化合物9I(450毫克,1.04毫摩尔,89.44%纯度)的二氯甲烷(10毫升)溶液中加入HATU(585.85毫克,1.54毫摩尔),(2S)-2-氨基-2-(3-氟-5-甲氧基-苯基)乙醇(280毫克,1.26毫摩尔) 和DIEA(406.27毫克,3.14毫摩尔,547.54微升)。反应液在15℃下搅拌30分钟。反应液加入水(2毫升)稀释,并用乙酸乙酯(2毫升×3次)萃取,合并有机相过滤,滤液减压浓缩得到粗品。粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=2:1洗脱)得到化合物9F。 1H NMR(400MHz,CDCl 3)δ=8.68-8.64(m,2H),8.39-8.32(m,2H),8.19-8.12(m,2H),7.56-7.44(m,2H),6.60-6.24(m,7H),4.99-4.90(m,2H),4.74-4.67(m,1H),4.56-4.50(m,3H),3.70(s,3H),1.97-1.92(m,3H),1.57-1.50(m,7H)。LCMS(ESI):m/z:555.0[M+1]。
化合物9:
Figure PCTCN2021089889-appb-000112
向化合物9J(90毫克,162.04微摩尔)和9H(70毫克,393.05微摩尔)的二氧六环(3毫升)溶液中加入DIEA(83.85毫克,648.75微摩尔,113微升)。反应液在100℃闷罐条件下搅拌16小时。反应液用水(5毫升)稀释,并用乙酸乙酯(2毫升×3次)萃取,合并有机相经干燥、过滤后减压浓缩得到粗品,粗品经高效液相色谱制备分离(甲酸体系),得到化合物9的游离碱。 1H NMR(400MHz,MeOH-d 4)δ=8.36(s,1H),8.22(s,1H),8.15(dd,J=1.5,8.1Hz,1H),7.69(d,J=8.3Hz,1H),6.75(s,1H),6.68(br d,J=9.3Hz,1H),6.59(td,J=2.2,10.7Hz,1H),4.92(d,J=7.1Hz,1H),4.83-4.79(m,1H),4.70(d,J=15.0Hz,1H),4.59(q,J=7.1Hz,1H),4.10-3.97(m,1H),3.79(s,3H),3.76-3.69(m,2H),1.98(dd,J=4.1,13.4Hz,2H),1.63-1.55(m,5H)。LCMS(ESI):m/z:624.0[M+1]。
实施例10
Figure PCTCN2021089889-appb-000113
化合物10A:
Figure PCTCN2021089889-appb-000114
氮气保护下,将化合物1C(400毫克,1.61毫摩尔),乙基-2-溴乙酸乙酯(404毫克,2.42毫摩尔,267.55微升),碳酸钾(450毫克,3.26毫摩尔)溶于DMF(6毫升)中,反应液在25℃下搅拌16小时。反应结束后,用水(30毫升)稀释并用乙酸乙酯(20毫升×3次)萃取。有机相用盐水(50毫升×1次)洗涤,合并有机相减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=10:1-5:1洗脱)得到化合物10A。 1H NMR(400MHz,CDCl 3)δ=7.96(d,J=1.6Hz,1H),7.74(dd,J=1.8,8.3Hz,1H),7.30(d,J=8.2Hz,1H),4.59(s,2H),4.24(q,J=7.1Hz,2H),4.08(s,2H),1.30(t,J=7.2Hz,3H).LCMS(ESI):m/z:320.0[M+1]。
化合物10B:
Figure PCTCN2021089889-appb-000115
氮气保护下,将化合物10A(360毫克,1.08毫摩尔),双频哪醇硼酸酯(410毫克,1.61毫摩尔),Pd(dppf)Cl 2.CH 2Cl 2(45毫克,55.10微摩尔)和醋酸钾(320毫克,3.26毫摩尔)溶于二氧六环(4毫升)中,反应液在90℃条件下搅拌1小时。将反应液减压浓缩得到粗品化合物10B直接用于下一步。LCMS(ESI):m/z:300.1[M+1]。
化合物10C:
Figure PCTCN2021089889-appb-000116
氮气保护下,将化合物10B(322毫克,1.08毫摩尔),2,4,5-三氯嘧啶(355毫克,1.94毫摩尔),Pd(PPh 3) 4(62毫克,53.65微摩尔)和碳酸钠(235毫克,2.22毫摩尔)溶于二氧六环(6毫升)和水(1.5毫升)中,反应液在90℃条件下搅拌2小时。反应结束后,将反应液过滤,滤液用水(20毫升)稀释并用乙酸乙酯(20毫升×3次)萃取。有机相用盐水(30毫升×1次)洗涤,经干燥、过滤、减压浓缩后得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=1:1洗脱)得到化合物10C。LCMS(ESI):m/z:374.0[M+1]。
化合物10D:
Figure PCTCN2021089889-appb-000117
向化合物10C(185毫克,459.91微摩尔)的二氧六环(4毫升)加入四氢吡喃-4-胺(140毫克,1.38毫摩尔,694.34微升)和DIEA(148.40毫克,1.15毫摩尔,200微升),反应液在90℃条件下搅拌16小时。向反应液中加入水(10毫升)和氯化铵(20毫升),然后用乙酸乙酯(20毫升×3次)萃取。有机相用盐水(20毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品10D直接用于下一步反应。LCMS(ESI):m/z:467.1[M+1]。
化合物10E:
Figure PCTCN2021089889-appb-000118
向化合物10D(140毫克,299.83微摩尔)的四氢呋喃(2毫升)和乙醇(1毫升)溶液中加入一水合氢氧化锂(20毫克,476.64微摩尔)的水(1毫升)溶液,反应液在20℃下搅拌0.5小时。反应液用水(10毫升)稀释并用乙酸乙酯(10毫升×1次)萃取,水相加入盐酸(2摩尔)水溶液调节pH=2,然后用乙酸乙酯(10毫升×3次)萃取。合并有机相经干燥、过滤后减压浓缩得到粗品10E直接用于下一步。LCMS(ESI):m/z:438.9[M+1]。
化合物10:
Figure PCTCN2021089889-appb-000119
0℃下,向化合物10E(120毫克,273.42微摩尔)的二氯甲烷(4毫升)溶液中加入(2S)-2-氨基-2-(3-氟-5-甲氧基-苯基)乙醇(90毫克,406.03微摩尔)和DIEA(148.40毫克,1.15毫摩尔,200微升),反应液在0℃下搅拌10分钟。然后加入HATU(142毫克,373.46微摩尔)继续反应2小时。反应液用水(10毫升)稀释并用乙酸乙酯(10毫升×3次)萃取。有机相用盐水(20毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品。粗品经高效液相色谱制备分离(甲酸体系),得到化合物10的游离碱。 1H NMR(400MHz,CD 3OD)δ=8.36(s,1H),8.24(d,J=1.1Hz,1H),8.15(dd,J=1.5,8.2Hz,1H),7.68(d,J=8.2Hz,1H),6.77(s,1H),6.71(br d,J=9.4Hz,1H),6.58(td,J=2.3,10.8Hz,1H),4.99(dd,J=5.3,6.9Hz,1H),4.79-4.62(m,2H),4.19-3.93(m,5H),3.83-3.68(m,5H),3.53(dt,J=2.0,11.7Hz,2H),1.99(br dd,J=2.1,12.4Hz,2H),1.68-1.55(m,2H).LCMS(ESI):m/z:606.1[M+1]。
实施例11
Figure PCTCN2021089889-appb-000120
化合物11B:
Figure PCTCN2021089889-appb-000121
0℃下,向化合物11A(30克,175.40毫摩尔,21.58毫升)的的二氯甲烷(20毫升)溶液中缓慢加入氯磺酸(61.32克,526.21毫摩尔,35.04毫升),混合液在20℃下搅拌3小时。反应完全后,将反应液缓慢地加入到冰水中,然后用二氯甲烷(100毫升×2次)萃取,合并有机相用水(100毫升×2次)洗涤,经干燥、过滤后减压浓缩得到粗品11B直接用于下一步。 1H NMR(CDCl 3,400MHz)δ8.22(d,1H,J=2.1Hz),7.75(dd,1H,J=2.0,8.2Hz),7.33(d,1H,J=8.2Hz),2.76(s,3H)。
化合物11C:
Figure PCTCN2021089889-appb-000122
向化合物11B(4克,14.84毫摩尔)的二氯甲烷(100毫升)溶液中加入NBS(2.91克,16.32毫摩尔)和AIBN(24.37毫克,148.40微摩尔),反应液在80℃条件下搅拌3小时,反应结束后将反应液 过滤后减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚洗脱)得到化合物11C。 1H NMR(CDCl 3,400MHz)δ8.23(d,1H,J=2.1Hz),7.86(dd,1H,J=2.0,8.3Hz),7.63(d,1H,J=8.4Hz),4.94(s,2H)。
化合物11D:
Figure PCTCN2021089889-appb-000123
向化合物11C(1克,2.87毫摩尔)和化合物(R)-叔丁基-2-氨基丙酯(521.35毫克,2.87毫摩尔)的乙腈(10毫升)溶液中加入碳酸钠(912.55毫克,8.61毫摩尔)的水(2毫升)溶液,混合液在20℃下搅拌1小时,然后在80℃条件下搅拌13小时。反应完全后,反应液用水(20毫升)稀释并用乙酸乙酯(20毫升×3次)萃取。有机相用盐水(20毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品化合物11D直接用于下一步。 1H NMR(CDCl 3,400MHz)δ7.94(s,1H),7.72(d,1H,J=8.2Hz),7.29(d,1H,J=8.2Hz),4.86(d,1H,J=13.9Hz),4.4-4.5(m,2H),1.61(d,3H,J=7.3Hz),1.45(s,9H)。LCMS(ESI):m/z:377.9[M+1]。
化合物11E:
Figure PCTCN2021089889-appb-000124
氮气保护下,将化合物11D(15克,39.87毫摩尔),双频哪醇硼酸酯(15.19克,59.80毫摩尔),Pd(dppf)Cl 2.CH 2Cl 2(1.63克,1.99毫摩尔)和醋酸钾(7.82克,79.73毫摩尔)溶于二氧六环(70毫升)中,反应液在90℃条件下搅拌1小时。将反应液减压浓缩得到粗品化合物11E直接用于下一步。LCMS(ESI):m/z:341.7[M+1]。
化合物11F:
Figure PCTCN2021089889-appb-000125
氮气保护下,将化合物11E(4.2克,12.31毫摩尔),2,4,5-三氯嘧啶(4.52克,24.62毫摩尔),Pd(PPh 3) 4(711.25毫克,615.50微摩尔)和碳酸钠(2.61克,24.62毫摩尔)溶于二氧六环(20毫升)和水(4毫升)中,反应液在90℃条件下搅拌16小时。反应结束后,将反应液过滤,滤液用水(30毫升)稀释并用乙酸乙酯(30毫升×3次)萃取。有机相用盐水(30毫升×1次)洗涤,经干燥、过滤、减压浓缩后得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=10:1-3:1洗脱)得到化合物11F。 1H NMR(CDCl 3,400MHz)δ8.71(s,1H),8.41(d,1H,J=1.1Hz),8.18(dd,1H,J=1.5,8.1Hz),7.58(d,1H, J=8.1Hz),5.01(d,1H,J=14.5Hz),4.62(d,1H,J=14.5Hz),4.48(d,1H,J=7.3Hz),1.64(d,3H,J=7.3Hz),1.46(s,9H)。
化合物11H:
Figure PCTCN2021089889-appb-000126
向化合物11F(1.3克,2.93毫摩尔)的二氧六环(4毫升)溶液中加入化合物11克(682.86毫克,4.39毫摩尔)和DIEA(1.89克,14.63毫摩尔,2.55毫升),反应液在100℃条件下搅拌16小时,反应液用乙酸乙酯(30毫升)稀释并用1摩尔的盐酸(30毫升×1次)水溶液洗涤,水相用乙酸乙酯(30毫升×3次)萃取,合并的有机相用盐水(30毫升×1次)洗涤,经干燥、减压浓缩得到粗品。粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=5:1-2:1洗脱)得到化合物11H。 1H NMR(CDCl 3,400MHz)δ8.2-8.3(m,1H),8.18(br s,1H),7.99(dd,1H,J=1.4,8.1Hz),7.44(d,1H,J=8.3Hz),5.47(br d,1H,J=9.0Hz),4.91(d,1H,J=14.4Hz),4.6-4.7(m,1H),4.52(d,1H,J=14.3Hz),4.40(q,1H,J=7.3Hz),4.1-4.3(m,2H),3.99(br dd,1H,J=4.4,11.6Hz),3.4-3.6(m,2H),1.9-2.0(m,1H),1.8-1.9(m,1H),1.56(d,3H,J=7.4Hz),1.38(s,9H),LCMS(ESI):m/z:526.9[M+1]。
化合物11I:
Figure PCTCN2021089889-appb-000127
向化合物11H(850毫克,1.61毫摩尔)的二氯甲烷(10毫升)溶液中加入三氟乙酸(1.84克,16.13毫摩尔,1.19毫升),反应液在50℃条件下搅拌16小时。反应完全后,反应液用水(30毫升)稀释并用乙酸乙酯(30毫升×2次)萃取。有机相用盐水(30毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品化合物11I直接用于下一步。LCMS(ESI):m/z:470.8[M+1]。
化合物11:
Figure PCTCN2021089889-appb-000128
-5℃下,向化合物11I(639.6毫克,1.36毫摩尔)的二氯甲烷(10毫升)溶液中加入(2S)-2-氨基- 2-(3-氟-5-甲氧基-苯基)乙醇(361.3毫克,1.63毫摩尔)和DIEA(526.65毫克,4.07毫摩尔,200微升),反应液在0℃下搅拌10分钟。然后加入HATU(774.70毫克,2.04毫摩尔)继续反应1小时。反应液用水(10毫升)稀释并用二氯甲烷(10毫升×3次)萃取。有机相用盐水(20毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品。粗品经高效液相色谱制备分离(三氟乙酸体系),得到化合物11的游离碱。 1H NMR(CD 3OD,400MHz)δ8.43(s,1H),8.25(s,1H),8.17(dd,1H,J=1.5,8.2Hz),7.72(d,1H,J=8.1Hz),6.77(s,1H),6.7-6.7(m,1H),6.61(td,1H,J=2.3,10.8Hz),4.9-4.9(m,1H),4.7-4.7(m,1H),4.6-4.6(m,1H),4.2-4.4(m,1H),4.1-4.2(m,1H),4.0-4.1(m,1H),3.81(s,3H),3.7-3.8(m,2H),3.4-3.6(m,2H),2.0-2.1(m,1H),1.7-1.9(m,1H),1.5-1.7(m,3H).LCMS(ESI):m/z:684.1[M+1]。
实施例12
Figure PCTCN2021089889-appb-000129
化合物12A:
Figure PCTCN2021089889-appb-000130
氮气保护下,将化合物11E(14.8克,43.38毫摩尔),2,4-二氯嘧啶-5胺(14.23克,86.76毫摩尔),Pd(PPh 3) 4(2.51克,2.17毫摩尔)和碳酸钠(9.2克,86.76毫摩尔)溶于二氧六环(50毫升)和水(10毫升)中,反应液在90℃条件下搅拌16小时。反应结束后,将反应液过滤,滤液用水(100毫升)稀释并用乙酸乙酯(100毫升×2次)萃取。有机相用盐水(100毫升×1次)洗涤,经干燥、过滤、 减压浓缩后得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=10:1-3:1洗脱)得到化合物12A。LCMS(ESI):m/z:424.8[M+1]。
化合物12B:
Figure PCTCN2021089889-appb-000131
向溴化亚铜(50.64毫克,353.02微摩尔,10.75微升)和叔丁基亚硝酸酯(60.67毫克,588.37微摩尔,69.98微升)的乙腈(3毫升)溶液中加入化合物12A(100毫克,235.35微摩尔)的乙腈(3毫升)溶液,反应物在20℃下搅拌18小时。反应液用水(10毫升)稀释并用乙酸乙酯(10毫升×2次)萃取。有机相用盐水(10毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品。粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=1:1洗脱)得到化合物12B。 1H NMR(CDCl 3,400MHz)δ8.84(s,1H),8.35(d,1H,J=1.1Hz),8.11(dd,1H,J=1.6,8.1Hz),7.57(d,1H,J=8.4Hz),5.01(d,1H,J=14.5Hz),4.62(d,1H,J=14.5Hz),4.49(d,1H,J=7.4Hz),1.64(d,3H,J=7.4Hz),1.46(s,9H).LCMS(ESI):m/z:489.8[M+1]。
化合物12C:
Figure PCTCN2021089889-appb-000132
向化合物12B(1.5克,3.07毫摩尔)的二氧六环(15毫升)溶液中加入化合物9H(869.3毫克,6.14毫摩尔)和DIEA(1.19克,9.21毫摩尔,2.55毫升),反应液在90℃条件下搅拌16小时,反应液用乙酸乙酯(30毫升)稀释并用1摩尔的盐酸(30毫升×1次)水溶液洗涤,水相用乙酸乙酯(30毫升×3次)萃取,合并的有机相用盐水(30毫升×1次)洗涤,经干燥、减压浓缩得到粗品。粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=5:1-2:1洗脱)得到化合物12C。 1H NMR(CDCl 3,400MHz)δ8.66(d,1H,J=5.1Hz),8.4-8.5(m,1H),8.36(dd,1H,J=1.6,8.1Hz),7.63(d,1H,J=5.1Hz),7.5-7.5(m,1H),4.9-5.0(m,1H),4.54(d,1H,J=14.6Hz),4.40(q,1H,J=7.3Hz),1.56(d,3H,J=7.3Hz),1.38(s,9H)。LCMS(ESI):m/z:559.1[M+1]。
化合物12D:
Figure PCTCN2021089889-appb-000133
向化合物12C(600毫克,1.08毫摩尔)的二氯甲烷(10毫升)溶液中加入三氟乙酸(1.23克,10.76毫摩尔,796.86毫升),反应液在50℃条件下搅拌6小时。反应完全后,反应液用水(30毫升)稀释并用乙酸乙酯(30毫升×2次)萃取。有机相用盐水(30毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品化合物12D直接用于下一步。LCMS(ESI):m/z:502.19[M+1]。
化合物12:
Figure PCTCN2021089889-appb-000134
-5℃下,向化合物12D(400毫克,797.79微摩尔)的二氯甲烷(10毫升)溶液中加入(2S)-2-氨基-2-(3-氟-5-甲氧基-苯基)乙醇(212.2毫克,957.34微摩尔)和DIEA(309.32毫克,2.39毫摩尔,416.87微升),反应液在0℃下搅拌10分钟。然后加入HATU(455.01毫克,1.2毫摩尔)继续反应1小时。反应液用水(10毫升)稀释并用二氯甲烷(10毫升×3次)萃取。有机相用盐水(20毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品。粗品经高效液相色谱制备分离(三氟乙酸体系),得到化合物12的游离碱。 1H NMR(CD 3OD,400MHz)δ8.48(s,1H),8.17(s,1H),8.0-8.1(m,1H),7.70(d,1H,J=8.1Hz),6.77(s,1H),6.70(br d,1H,J=9.5Hz),6.6-6.7(m,1H),5.0-5.0(m,1H),4.69(s,1H),4.6-4.6(m,1H),4.0-4.1(m,1H),3.81(s,3H),3.7-3.8(m,2H),1.99(dd,2H,J=4.2,13.3Hz),1.5-1.7(m,6H).LCMS(ESI):m/z:670.0[M+1]。
实施例13
Figure PCTCN2021089889-appb-000135
化合物13A:
Figure PCTCN2021089889-appb-000136
向化合物12B(1.5克,3.07毫摩尔)的二氧六环(10毫升)溶液中加入化合物11G(955.37毫克,6.14毫摩尔)和DIEA(1.98克,15.35毫摩尔,2.67毫升),反应液在90℃条件下搅拌16小时,反应液用乙酸乙酯(30毫升)稀释并用1摩尔的盐酸(30毫升×1次)水溶液洗涤,水相用乙酸乙酯(30毫升×3次)萃取,合并的有机相用盐水(30毫升×1次)洗涤,经干燥、减压浓缩得到粗品。粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=5:1-2:1洗脱)得到化合物13A。LCMS(ESI):m/z:572.9[M+1]。化合物13B:
Figure PCTCN2021089889-appb-000137
向化合物13A(1.2克,2.1毫摩尔)的二氯甲烷(15毫升)溶液中加入三氟乙酸(1.2克,10.5毫摩尔,777.39毫升),反应液在50℃条件下搅拌16小时。反应完全后,反应液用水(30毫升)稀释并用乙酸乙酯(30毫升×2次)萃取。有机相用盐水(30毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品化合物13B直接用于下一步。LCMS(ESI):m/z:516.9[M+1]。
化合物13:
Figure PCTCN2021089889-appb-000138
-5℃下,向化合物13B(900毫克,1.75毫摩尔)的二氯甲烷(20毫升)溶液中加入(2S)-2-氨基-2-(3-氟-5-甲氧基-苯基)乙醇(464.51毫克,2.1毫摩尔)和DIEA(677.12毫克,5.24毫摩尔,912.56微升),反应液在-5℃下搅拌10分钟。然后加入HATU(455.01毫克,1.2毫摩尔)继续反应1小时。反应液用水(10毫升)稀释并用二氯甲烷(20毫升×3次)萃取。有机相用盐水(20毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品。粗品经高效液相色谱制备分离(三氟乙酸体系),得到化合物13的游离碱。 1H NMR(CD 3OD,400MHz)δ8.52(s,1H),8.18(s,1H),8.10(dd,1H,J=1.5,8.1Hz),7.71(d, 1H,J=8.1Hz),6.77(s,1H),6.70(br d,1H,J=9.3Hz),6.61(td,1H,J=2.1,10.7Hz),5.0-5.0(m,2H),4.7-4.8(m,2H),4.61(q,1H,J=7.1Hz),4.2-4.4(m,1H),4.12(br t,1H,J=12.3Hz),4.0-4.1(m,1H),3.81(s,3H),3.7-3.8(m,2H),3.5-3.7(m,2H),2.05(dq,1H,J=4.3,12.6Hz),1.83(br dd,1H,J=3.5,13.3Hz),1.61(d,3H,J=7.1Hz)。LCMS(ESI):m/z:684.1[M+1]。
实施例14
Figure PCTCN2021089889-appb-000139
化合物14A:
Figure PCTCN2021089889-appb-000140
向化合物1B(1.4克,5.34毫摩尔)的四氢呋喃(10毫升)溶液中硼氘化钠(646.80毫克,17.10毫摩尔),然后将反应液温度降至-5℃,将三氟化硼乙醚(2.43克,17.09毫摩尔,2.11毫升)缓慢地滴加到反应液中,混合液在80℃条件下搅拌两小时。反应结束后,0℃下用氯化铵水溶液(20毫升)将反应液淬灭,然后加入乙酸乙酯(60毫升)后过滤,滤液用乙酸乙酯(20毫升×2次)萃取,合并的有机相用盐水(30毫升×1次)洗涤,经干燥、减压浓缩得到粗品。粗品用石油醚:乙酸乙酯=3:1在25℃下搅拌0.5小时,过滤得到的滤饼即为化合物14A。 1H NMR(400MHz,DMSO-d 6)δ=8.12(d,J=1.3Hz,1H),7.95(s,1H),7.87(dd,J=1.3,8.2Hz,1H),7.54(d,J=8.3Hz,1H)。LCMS(ESI):m/z:250.11。
化合物14B:
Figure PCTCN2021089889-appb-000141
氮气保护下,将化合物14A(990毫克,3.60毫摩尔),2-溴-(2S)丙酸乙酯(990毫克,5.14毫摩尔)和碳酸钾990毫克,5.47毫摩尔)溶于DMF(10毫升)中,混合液在20℃条件下搅拌16小时。反应液用30毫升水稀释,然后用乙酸乙酯(30毫升×2次)萃取。合并的有机相用水(40毫升×2次)洗涤,减压浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=20:1-15:1洗脱)得到化合物14B。 1H NMR(400MHz,CDCl 3,400MHz)δ=7.86(d,J=1.7Hz,1H),7.65(dd,J=1.7,8.3Hz,1H),7.20(d,J=8.7Hz,1H),4.47(q,J=7.3Hz,1H),4.17-4.07(m,2H),1.56(d,J=7.3Hz,3H),1.19(t,J=7.1Hz,3H).LCMS(ESI):m/z:350.22[M+1]。
化合物14C:
Figure PCTCN2021089889-appb-000142
氮气保护下,将化合物14B(550毫克,1.57毫摩尔),双频哪醇硼酸酯(630毫克,2.48毫摩尔),Pd(dppf)Cl 2.CH 2Cl 2(80毫克,97.96微摩尔)和醋酸钾(314毫克,3.2毫摩尔)溶于二氧六环(8毫升)中,反应液在100℃条件下搅拌2小时。将反应液过滤、减压浓缩得到粗品化合物14C直接用于下一步。LCMS(ESI):m/z:315.15[M+1]。
化合物14D:
Figure PCTCN2021089889-appb-000143
氮气保护下,将化合物14C(494毫克,1.57毫摩尔),2,4-二氯嘧啶-5胺(462毫克,2.82毫摩尔),Pd(PPh 3) 4(96毫克,83.08微摩尔)和碳酸钠(334毫克,3.15毫摩尔)溶于二氧六环(5毫升)和水(1毫升)中,反应液在100℃条件下搅拌2小时。反应结束后,将反应液过滤,经干燥、过滤、减压浓缩后得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=3:1-1:1洗脱)得到化合物14D。 1H NMR(CDCl 3,400MHz)δ=8.20(d,J=1.1Hz,1H),8.13(s,1H),8.00(dd,J=1.4,8.0Hz,1H),7.51(d,J=8.0Hz,1H),4.51(q,J=7.3Hz,1H),4.19-4.09(m,2H),1.59(d,J=7.4Hz,3H),1.24-1.17(m,3H).LCMS(ESI):m/z:398.86[M+1]。
化合物14E:
Figure PCTCN2021089889-appb-000144
0℃下,向溴化亚铜(360毫克,2.51毫摩尔,76.43微升)和叔丁基亚硝酸酯(387毫克,3.75毫摩尔,446.37微升)的乙腈(3毫升)溶液中加入化合物14D(500毫克,1.25毫摩尔)的乙腈(3毫升)溶液,反应物在25℃下搅拌12小时。反应液用水(10毫升)稀释并用乙酸乙酯(10毫升×3次)萃取。有机相用盐水(10毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品。粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=4:1-3:1洗脱)得到化合物14E。 1H NMR(CDCl 3,400MHz)δ=8.76(s,1H),8.27(d,J=1.1Hz,1H),8.04(dd,J=1.7,8.1Hz,1H),7.50(d,J=8.1Hz,1H),4.52(q,J=7.3Hz,1H),4.18-4.10(m,2H),1.59(d,J=7.3Hz,3H),1.23-1.18(m,3H)。LCMS(ESI):m/z:462.74[M+1]。
化合物14F:
Figure PCTCN2021089889-appb-000145
向化合物14E(370毫克,799.58微摩尔)的二氧六环(5毫升)溶液中加入化合物四氢吡喃胺(202毫克,2.00毫摩尔)和DIEA(207毫克,1.60毫摩尔,278.98微升),反应液在90℃条件下搅拌4小时,反应液用水(10毫升)稀释并用乙酸乙酯(10毫升×3次)萃取,合并的有机相经干燥、减压浓缩得到粗品14F直接用于下一步。 1H NMR(CDCl 3,400MHz)δ=8.37(s,1H),8.13(d,J=1.0Hz,1H),7.94(dd,J=1.6,8.0Hz,1H),7.53-7.38(m,1H),4.52(q,J=7.3Hz,1H),4.20-4.10(m,2H),3.96-3.89(m,2H),3.52-3.42(m,2H),2.01-1.91(m,2H),1.59(d,J=7.4Hz,3H),1.51-1.47(m,3H),1.22-1.20(m,3H)。LCMS(ESI):m/z:527.43[M+1]。
化合物14G:
Figure PCTCN2021089889-appb-000146
向化合物14F(370毫克,701.52微摩尔)的四氢呋喃(2毫升)溶液中加入一水和氢氧化锂(59毫克,1.4毫摩尔)的水(2毫升)溶液,反应液在20℃条件下搅拌0.5小时。反应完全后,将反应液减压 浓缩,用2摩尔的盐酸水溶液将反应液调节pH=2,然后用乙酸乙酯(10毫升×3次)萃取。合并的有机相过滤,滤液减压浓缩得粗品化合物14G。 1H NMR(400MHz,DMSO-d 6)δ=8.54(s,1H),8.08(s,1H),8.04-7.95(m,1H),7.76(d,J=8.0Hz,1H),4.41(q,J=7.3Hz,1H),3.97-3.90(m,1H),3.86(br d,J=10.8Hz,2H),3.42-3.38(m,2H),1.84(br d,J=10.1Hz,2H),1.56-1.47(m,5H)。
化合物14:
Figure PCTCN2021089889-appb-000147
向化合物14G(330毫克,660.83微摩尔)和(2S)-2-氨基-2-(3-氟-5-甲氧基-苯基)乙醇(176毫克,794.02微摩尔)的二氯甲烷(5毫升)溶液中加入HATU(376毫克,988.88微摩尔)和DIEA(170毫克,1.32毫摩尔,229.11微升),反应液在20℃下搅拌1小时。反应液用水(10毫升)稀释并用二氯甲烷(20毫升×3次)萃取。有机相用盐水(20毫升×1次)洗涤,经干燥、过滤后减压浓缩得到粗品。粗品经高效液相色谱制备分离(三氟乙酸体系),得到化合物14的游离碱。 1H NMR(400MHz,CD 3OD)δ=8.48(s,1H),8.17(d,J=1.0Hz,1H),8.10(dd,J=1.6,8.1Hz,1H),7.70(d,J=8.4Hz,1H),6.77(s,1H),6.73-6.67(m,1H),6.61(td,J=2.3,10.8Hz,1H),4.98-4.91(m,1H),4.61(q,J=7.0Hz,1H),4.10-4.02(m,1H),4.01-3.94(m,2H),3.83-3.79(m,3H),3.78-3.68(m,2H),3.59-3.49(m,2H),2.04-1.96(m,2H),1.68-1.56(m,5H)。LCMS(ESI):m/z:666.10[M+1]。
活性测试
实验例1:Calu-6(Kras Q61K)抗增殖活性实验
实验材料:
名称 品牌货号
Calu-6细胞 ATCC-HTB-56
RPMI1640培养基 Cibco-22400-089
胎牛血清 Cellmax-BL100-02
左旋谷酰胺 Gibco-35050-061
DPBS Corning-21-031-CVR
胰蛋白酶 Gibco-25200-072
双抗(青霉素、链霉素) Merck-TMS-AB2-C
CellTiterGlo Promega-g7573
细胞板 Greiner-781091
Echo浅孔板 Labcyte-LP-0200
实验步骤:
细胞接种:
(1)细胞培养基:88%RPMI-1640,10%胎牛血清,1%左旋谷酰胺和1%青霉素-链霉素;
(2)培养基,胰蛋白酶和DPBS置于37℃水浴预热;
(3)除去细胞培养瓶中原有培养基,并用6毫升PBS清洗一次;
(4)向细胞培养瓶中加入3.5毫升胰酶,轻轻晃动,使胰酶与细胞充分接触后除去胰酶,后将培养瓶放入含5%CO 2的37℃培养箱约1分钟;
(5)用10毫升细胞培养基重悬细胞,取出约0.6毫升细胞悬液计数(ViCell XR);
(6)用培养基将细胞悬液稀释到铺板所需的细胞密度2.5×10 4个细胞每毫升;
(7)在细胞板四周每孔中加入100微升PBS,向其它孔中加入40微升细胞悬液,放入含5%CO 2的37℃培养箱中培养过夜。
(8)取所需的细胞量和培养基于新的T75培养瓶中继续培养。
加药:
(1)用DMSO将待测化合物配制成10毫摩尔溶液;
(2)取9微升化合物到Echo用浅孔板(Labcyte,#LP-0200)中,1000rpm离心浅孔板10秒;
(3)吸出细胞板外围的DPBS;
(4)用Echo对化合物进行梯度稀释和加药,将每个化合物稀释10个浓度梯度并分别加100纳升到384细胞板中,然后将细胞板放回到培养箱中培养三天;
(5)再向细胞板外围加入100微升DPBS。
读板、分析数据:
(1)加CTG并读板:向细胞板的每个孔中加入20微升的CellTiterGlo,避光震荡10min,在Envision上读板。
实验结果:
Figure PCTCN2021089889-appb-000148
Figure PCTCN2021089889-appb-000149
实验结论:本发明化合物具有一定的Calu-6细胞抗增殖活性。
实验例2:HCT116(Kras G13D)抗增殖活性实验
实验材料:
1)实验试剂耗材:
名称 品牌货号
Mc’Coy 5A培养基 BI-01-075-1ACS
胎牛血清 Biosera-FB-1058/500
0.25%胰蛋白酶 源培-S310KJ
双抗(青霉素、链霉素) Procell-PB180120
CellTiter Glo Promega-G7573
细胞板 Corning-3610
2)实验仪器:
名称 品牌货号
细胞计数板 求精
Victor Nivo PerkinElmer
实验步骤:
细胞接种:
(1)细胞培养基:89%Mc’Coy 5A,10%胎牛血清和1%青霉素-链霉素;
(2)培养基,胰蛋白酶置于37℃水浴预热;
(3)除去细胞培养瓶中的培养基,并用1毫升胰酶清洗一次;
(4)向细胞培养瓶中加入1毫升胰酶,轻轻晃动,使胰酶与细胞充分接触后除去胰酶,后将培养瓶放入含5%CO 2的37℃培养箱约1min;
(5)用2毫升细胞培养基重悬细胞,取出约0.01毫升细胞悬液计数;
(6)用培养基将细胞悬液稀释到铺板所需的细胞密度2.5×10 4个细胞每毫升;
(7)在细胞板四周每孔中加入100微升培养基,向其它孔中加入80微升细胞悬液,放入含5%CO 2的37℃培养箱中培养过夜。
(8)取所需的细胞量和培养基于新的T75培养瓶中继续培养。
加药:
(1)用DMSO将待测化合物配制成10毫摩尔溶液:
(2)对化合物进行9个浓度梯度,3倍稀释,即从6毫摩尔到2.7微摩尔设置双复孔实验,向中间板中加入78微升培养基,再按照相应位置转移2微升每孔的梯度稀释化合物至中间板,混匀后,转移20微升每孔到细胞板中,转移到细胞板中的化合物终浓度为30微摩尔到13.7纳摩尔。细胞板置于二氧化碳培养箱中再培养3天。
1)读板、分析数据:
(1)加CTG并读板:向细胞板的每个孔中加入20微升CellTiter Glo,避光震荡10min;
(2)在Victor Nivo上读板;
数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中"log(inhibitor)vs.response--Variable slope"模式得出)。
实验结果:
Figure PCTCN2021089889-appb-000150
实验结论:本发明化合物具有较好的HCT116细胞抗增殖活性。
实验例3:A375(BRAF V600E)抗增殖活性实验
实验材料:
细胞株A375(购自普诺赛)、DMEM培养基,盘尼西林/链霉素抗生素购自维森特,胎牛血清购自Biosera。CellTiter-glo(细胞活率化学发光检测试剂)试剂购自Promega。
实验步骤:
将A375细胞种于白色96孔板中,80微摩尔细胞悬液每孔,其中包含2000个A375细胞。细胞 板置于二氧化碳培养箱中过夜培养。将待测化合物用排枪进3倍稀释至第9个浓度,即从6毫摩尔稀释至0.91微摩尔,设置双复孔实验。向中间板中加入78微摩尔培养基,再按照对应位置,转移2微摩尔每孔的梯度稀释化合物至中间板,混匀后转移20微摩尔每孔到细胞板中。转移到细胞板中的化合物浓度范围是30微摩尔至4.57纳摩尔。细胞板置于二氧化碳培养箱中培养5天。另准备一块细胞板,在加药当天读取信号值作为最大值(下面方程式中Max值)参与数据分析。向此细胞板每孔加入25微摩尔细胞活率化学发光检测试剂,室温孵育10分钟使发光信号稳定。采用多标记分析仪读数。加入化合物的细胞板结束孵育后,向细胞板中加入每孔25微摩尔的细胞活率化学发光检测试剂,室温孵育10分钟使发光信号稳定。采用多标记分析仪读数。
数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中"log(inhibitor)vs.response--Variable slope"模式得出)。
实验结果:
Figure PCTCN2021089889-appb-000151
实验结论:本发明化合物具有较好的A375细胞抗增殖活性。
实验例4:Colo205(BRAF V600E)抗增殖活性实验
实验材料:
细胞株COLO205(购自普诺赛)、RPMI1640培养基,盘尼西林/链霉素抗生素购自维森特,胎牛血清购自Biosera。CellTiter-glo(细胞活率化学发光检测试剂)试剂购自Promega。
实验方法:
COLO205细胞抗增殖实验:
将COLO205细胞种于白色96孔板中,80微摩尔细胞悬液每孔,其中包含3000个COLO205细胞。细胞板置于二氧化碳培养箱中过夜培养。将待测化合物用排枪进3倍稀释至第9个浓度,即从200微摩尔稀释至0.03微摩尔,设置双复孔实验。向中间板中加入78微摩尔培养基,再按照对应 位置,转移2微摩尔每孔的梯度稀释化合物至中间板,混匀后转移20微摩尔每孔到细胞板中。转移到细胞板中的化合物浓度范围是1微摩尔至0.15纳摩尔。细胞板置于二氧化碳培养箱中培养3天。另准备一块细胞板,在加药当天读取信号值作为最大值(下面方程式中Max值)参与数据分析。向此细胞板每孔加入25微摩尔细胞活率化学发光检测试剂,室温孵育10分钟使发光信号稳定。采用多标记分析仪读数。加入化合物的细胞板结束孵育后,向细胞板中加入每孔25微摩尔的细胞活率化学发光检测试剂,室温孵育10分钟使发光信号稳定。采用多标记分析仪读数。
数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中"log(inhibitor)vs.response--Variable slope"模式得出)。
实验结果:
Figure PCTCN2021089889-appb-000152
实验结论:本发明化合物具有较好的Colo205细胞抗增殖活性。
实验例5:Calu-6(Kras Q61K)ERK磷酸化抑制试验
实验材料:
试剂耗材:
Figure PCTCN2021089889-appb-000153
Figure PCTCN2021089889-appb-000154
主要仪器:
仪器 生产厂家 型号
生物安全柜 AIRTECH BSC-1304IIA2
二氧化碳培养箱 Thermo 311
细胞计数仪 BECKMAN Vi-cellXR
酶标仪 PerkinElmer Envision
离心机 Eppendorf Centrifuge 5810R
化合物信息(其它化合物来源于L1000配置的化合物母液)
细胞信息:
细胞名称 培养条件 来源 货号
Calu6 1640+10%FBS ATCC ATCC-HTB-56
实验步骤和方法:
1)复苏细胞并培养至对数生长期,用胰酶消化,种96孔板,每孔30000细胞数,放入培养箱中孵育过夜。
2)将DMSO溶解的梯度化合物1微升加入96孔板中,放回至培养箱中孵育1小时。
3)取出细胞板,将培养基倾去,每孔加入50微升细胞裂解液(含1%的封闭肽)。
4)500转混匀裂解液板,室温孵育裂解30分钟。
5)按照1:1:38的比例配制试剂盒中的抗体混合液。
6)每孔转移16微升细胞裂解液至HTRF板中,随后加入配置好的抗体混合液4微升。
7)孵育过夜后用Envision读板,根据ratio(Ex665/Ex615荧光强度的比值)得到拟合的曲线并根据Graphpad的四参数拟合公式Y=Bottom+(Top-Bottom)/(1+10^((Log EC 50-X)*HillSlope))计算得出EC 50
实验结果:
Figure PCTCN2021089889-appb-000155
Figure PCTCN2021089889-appb-000156
实验结论:本发明化合物具有较好的Calu-6 ERK磷酸化抑制活性。
实验例6小鼠、和犬单次静脉与口服给药的药代动力学研究
实验目的:
本实验旨在研究供试化合物单次口服给药后,化合物在小鼠和犬体内的药代动力学情况。
样品收集与制备:
静脉注射或口服给药后,采集血液样本,记录实际采血时间。血样采集以后,立即转移至贴有标签的含K2-EDTA的离心管中,随后离心处理后取血浆。将血浆转移至预冷的离心管,在干冰中速冻,并储存在-70±10℃超低温冰箱中,直到进行LC-MS/MS分析。
药代动力学数据分析:
使用药动学软件,以非房室模型对化合物的血浆药物浓度数据进行处理。达峰浓度(C max)和达峰时间(T max)以及可定量末时间,从血药浓度-时间图中直接获得。使用对数线性梯形法计算下列药代动力学参数:半衰期(T 1/2),表观分布容积(V dss)以及清除率(Cl),0点到末端时间点时间-血浆浓度曲线下面积(AUC 0-last)。
1.小鼠单次静脉与口服给药的药代动力学数据
小鼠单次静脉给药给予本发明化合物的药代动力学参数
Figure PCTCN2021089889-appb-000157
Figure PCTCN2021089889-appb-000158
小鼠单次口服给药本发明化合物的药代动力学参数
Figure PCTCN2021089889-appb-000159
实验结论:本发明化合物在小鼠中口服吸收较好,暴露量较高。
2.犬单次静脉与口服给药的药代动力学数据
犬单次静脉和口服给药本发明化合物的药代动力学参数
Figure PCTCN2021089889-appb-000160
Figure PCTCN2021089889-appb-000161
实验结论:本发明化合物在犬中口服吸收较好,清除率较低,暴露量较高,具有较好的生物利用度。
实验例7:人源肺癌Calu-6细胞皮下异种移植肿瘤BALB/c裸小鼠模型的体内药效学实验
实验材料:
1.1实验动物及饲养环境
1.1.1实验动物
种属:小鼠
品系:BALB/c裸小鼠
到货周龄:6-8周龄
性别:雌性
1.1.2饲养环境
动物在SPF级动物房以IVC(独立送风系统,恒温恒湿)笼具饲养(每笼3-5只)
温度:20-26℃
湿度:40-70%
1.2肿瘤组织或细胞信息
细胞:人肺癌Calu-6细胞体外培养,EMEM培养基中加0.2Units/毫升牛胰岛素,10%胎牛血清,37℃5%CO 2孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种。
1.3其它试剂信息
名称 生产厂家 货号 保存条件
胎牛血清 Hyclone SV30087.03 -20℃
Trypsin Gibco 25200-072 -20℃
EMEM培养基 ATCC ATCC30-2003 2-8℃
1.4仪器信息
名称 生产厂家 型号
二氧化碳培养箱 赛莫飞世尔(Thermo Fisher) Heracell240i
低温高速离心机 艾本德(Eppendorf) 5810R
分析天平 赛多利斯(Sartorius) SECURA225D-1CN
普通天平 常州天之平仪器设备有限公司 EL-2KJ
数显游标卡尺 三丰 0~150mm
实验方法与步骤:
2.1肿瘤细胞接种
细胞接种:将0.2毫升Calu-6细胞(1:1与基质胶配比)皮下接种于每只小鼠的右后背,肿瘤平均体积达到173mm 3时开始分组给药。
2.2分组
表1实验动物分组及给药方案
Figure PCTCN2021089889-appb-000162
注:1:每组小鼠数目;2:给药体积参数:根据小鼠体重10μL/g。如果体重下降超过15%,则停药,直到体重恢复到10%以内再给药;3:0.5%MC(甲基纤维素)。
2.3肿瘤测量和实验指标
每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。
化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。相对肿瘤增殖率T/C(%)=T RTV/C RTV×100%(T RTV:治疗组RTV平均值;C RTV:阴性对照组RTV平均值)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=V t/V 0,其中V 0是分组给药时(即D0)测量所得肿瘤体积,V t为某一次测量时的肿瘤体积,T RTV与C RTV取同一天数据。
TGI(%),反映肿瘤生长抑制率。TGI(%)=[1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。
2.5统计分析
统计分析基于试验结束时RTV的数据运用SPSS软件进行分析。组间比较用one-way ANOVA进行分析,方差不齐(F值有显著性差异),应用Games-Howell法进行检验。p<0.05认为有显著性差异。
3.实验结果
3.1受试物对人肺癌裸鼠皮下移植肿瘤生长的抑制作用
本实验评价了受试物在人肺癌异种移植瘤模型中的药效,以溶剂对照组为参照。各组在不同时间点的肿瘤体积如错误!未找到引用源。所示。给药组化合物1,TGI为107%、化合物3TGI为110%、化合物9TGI为108%以及化合物11TGI为109%,有显著抑瘤作用(P<0.01)。
3.2体重变化情况
小鼠体重、状态未见明显异常。受试物对小鼠体重的影响见图2。
实验结论:
本发明化合物对人肺癌Calu-6细胞皮下异种移植瘤模型荷瘤鼠生长有显著的抑制作用。

Claims (21)

  1. 式(Ⅱ)所示化合物或其药学上可接受的盐,
    Figure PCTCN2021089889-appb-100001
    其中,
    T 1为CH或N;
    n为1或2;
    R 1和R 2各自独立地为H、D、F、Cl或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br和I的取代基所取代;
    或R 1和R 2与其连接的碳原子一起形成
    Figure PCTCN2021089889-appb-100002
    R 3和R 4各自独立地为H或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代;
    R 5和R 6各自独立地为H或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br、I、-OH和-OCH 3的取代基所取代;
    R 7为苯基或吡啶基,其中所述苯基和吡啶基任选被1、2、3或4个R a所取代;
    R 8为H、F、Cl或Br;
    R 9为四氢-2H-吡喃基,其中所述四氢-2H-吡喃基任选被1、2、3或4个R b所取代;
    各R a独立地为F、Cl、Br、I、C 1-3烷基、C 1-3烷氧基、NH-C 1-3烷基或N-(C 1-3烷基) 2,其中所述C 1-3烷基、C 1-3烷氧基、-NH-C 1-3烷基和-N-(C 1-3烷基) 2分别独立地任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代;
    各R b独立地为F、Cl、Br、I、D或C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代。
  2. 根据权利要求1所述的化合物或其药学上可接受的盐,其中所述化合物具有式(I-1)、(I-2)或(Ⅱ-1)所示结构:
    Figure PCTCN2021089889-appb-100003
    Figure PCTCN2021089889-appb-100004
    其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8和R 9如权利要求1所定义。
  3. 根据权利要求1所述的化合物或其药学上可接受的盐,其中各R b独立地为F、Cl、Br、I、D或-CH 3
  4. 根据权利要求1~3任一项所述的化合物或其药学上可接受的盐,其中R 9
    Figure PCTCN2021089889-appb-100005
    其中所述
    Figure PCTCN2021089889-appb-100006
    任选被1、2、3或4个R b所取代。
  5. 根据权利要求4所述的化合物或其药学上可接受的盐,其中R 9
    Figure PCTCN2021089889-appb-100007
    Figure PCTCN2021089889-appb-100008
  6. 根据权利要求1所述的化合物或其药学上可接受的盐,其中所述化合物具有式(Ⅲ-1)或(Ⅲ-2)所示结构:
    Figure PCTCN2021089889-appb-100009
    其中,
    m为0、1、2、3或4;
    T 1、R b、R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8如权利要求1所定义。
  7. 根据权利要求6所述的化合物或其药学上可接受的盐,其中所述化合物具有式(I-3)或(I-4)所示结构:
    Figure PCTCN2021089889-appb-100010
    其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8如权利要求6所定义。
  8. 根据权利要求1、2、6或7任一项所述的化合物或其药学上可接受的盐,其中R 1和R 2各自独立地为H、D、F、Cl或-CH 3
  9. 根据权利要求1、2、6或7任一项所述的化合物或其药学上可接受的盐,其中R 1和R 2与其连接的碳原子一起形成
    Figure PCTCN2021089889-appb-100011
  10. 根据权利要求1、2、6或7任一项所述的化合物或其药学上可接受的盐,其中R 3和R 4各自独立地为H或-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代。
  11. 根据权利要求10所述的化合物或其药学上可接受的盐,其中R 3和R 4各自独立地为H、-CH 3
    Figure PCTCN2021089889-appb-100012
  12. 根据权利要求1、2、6或7任一项所述的化合物或其药学上可接受的盐,其中R 5和R 6各自独立地为H或-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I、-OH和-OCH 3的取代基所取代。
  13. 根据权利要求12所述的化合物或其药学上可接受的盐,其中R 5和R 6各自独立地为H、-CH 3
    Figure PCTCN2021089889-appb-100013
  14. 根据权利要求1所述的化合物或其药学上可接受的盐,其中所述化合物具有式(Ⅲ-3)或(Ⅲ-4)所示结构:
    Figure PCTCN2021089889-appb-100014
    其中,
    m为0、1、2、3或4;
    T 1、R b、R 7和R 8如权利要求1所定义;
    R 3为-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代;
    R 5为-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I、-OH和-OCH 3的取代基所取代。
  15. 根据权利要求1所述的化合物或其药学上可接受的盐,其中所述化合物具有式(I-5)或(I-6)所示结构:
    Figure PCTCN2021089889-appb-100015
    其中,R 7和R 8如权利要求1所定义;
    R 3为-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I和-OH的取代基所取代;
    R 5为-CH 3,其中所述-CH 3任选被1、2或3个独立选自F、Cl、Br、I、-OH和-OCH 3的取代基所取代。
  16. 根据权利要求1所述的化合物或其药学上可接受的盐,其中各R a独立地为F、Cl、Br、I、-CH 3、-OCH 3、-NH-CH 3
    Figure PCTCN2021089889-appb-100016
  17. 根据权利要求1、2、6、7、13或14任一项所述的化合物或其药学上可接受的盐,其中R 7
    Figure PCTCN2021089889-appb-100017
  18. 根据权利要求17所述的化合物或其药学上可接受的盐,其中R 7
    Figure PCTCN2021089889-appb-100018
    Figure PCTCN2021089889-appb-100019
  19. 下式化合物或其药学上可接受的盐:
    Figure PCTCN2021089889-appb-100020
    Figure PCTCN2021089889-appb-100021
  20. 下式化合物或其药学上可接受的盐:
    Figure PCTCN2021089889-appb-100022
    Figure PCTCN2021089889-appb-100023
  21. 根据权利要求1~20任一项所述的化合物或其药学上可接受的盐在制备ERK1/2抑制剂药物中的应用。
PCT/CN2021/089889 2020-04-30 2021-04-26 含苯基并内磺酰胺的化合物 WO2021218912A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3177298A CA3177298C (en) 2020-04-30 2021-04-26 Compounds containing benzosultam as erk inhibitors
US17/922,195 US11718610B2 (en) 2020-04-30 2021-04-26 Compounds containing benzosultam
AU2021262977A AU2021262977B2 (en) 2020-04-30 2021-04-26 Compounds containing benzosultam
CN202180030966.8A CN115443274B (zh) 2020-04-30 2021-04-26 含苯基并内磺酰胺的化合物
IL297743A IL297743B2 (en) 2020-04-30 2021-04-26 Compounds containing benzosultam
KR1020227041520A KR102574950B1 (ko) 2020-04-30 2021-04-26 벤조술탐 함유 화합물
EP21797624.0A EP4144731B1 (en) 2020-04-30 2021-04-26 Compounds containing benzosultam
JP2022566606A JP7296017B2 (ja) 2020-04-30 2021-04-26 ベンゾスルタムを含む化合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010363156 2020-04-30
CN202010363156.1 2020-04-30
CN202110145140.8 2021-02-02
CN202110145140 2021-02-02

Publications (1)

Publication Number Publication Date
WO2021218912A1 true WO2021218912A1 (zh) 2021-11-04

Family

ID=78331766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089889 WO2021218912A1 (zh) 2020-04-30 2021-04-26 含苯基并内磺酰胺的化合物

Country Status (9)

Country Link
US (1) US11718610B2 (zh)
EP (1) EP4144731B1 (zh)
JP (1) JP7296017B2 (zh)
KR (1) KR102574950B1 (zh)
CN (1) CN115443274B (zh)
AU (1) AU2021262977B2 (zh)
CA (1) CA3177298C (zh)
IL (1) IL297743B2 (zh)
WO (1) WO2021218912A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008462A1 (ja) 2021-07-27 2023-02-02 東レ株式会社 癌の治療及び/又は予防のための医薬品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263393A (en) * 1979-09-06 1981-04-21 Eastman Kodak Company Novel electron donor precursors and photographic element containing them
WO1999041246A1 (en) * 1998-02-11 1999-08-19 Du Pont Pharmaceuticals Company Novel cyclic sulfonamide derivatives as metalloproteinase inhibitors
WO2015140717A1 (en) * 2014-03-18 2015-09-24 Iteos Therapeutics Novel 3-indol substituted derivatives, pharmaceutical compositions and methods for use
CN107635990A (zh) * 2015-03-17 2018-01-26 辉瑞公司 新型3‑吲哚取代的衍生物、药物组合物及使用方法
CN108617166A (zh) * 2015-10-21 2018-10-02 大冢制药株式会社 蛋白激酶抑制剂苯并内酰胺化合物
CN110831939A (zh) * 2017-04-20 2020-02-21 大冢制药株式会社 作为erk1/2抑制剂的6-嘧啶-异吲哚衍生物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA103319C2 (en) 2008-05-06 2013-10-10 Глаксосмитклайн Ллк Thiazole- and oxazole-benzene sulfonamide compounds
EA201590600A1 (ru) 2012-09-19 2015-07-30 Новартис Аг Дигидропирролидинопиримидины в качестве ингибиторов киназы
CN104529933B (zh) * 2015-01-14 2017-10-17 山东大学 取代邻苯甲酰磺酰亚胺类组蛋白去乙酰化酶抑制剂及制备方法和应用
JP2019534260A (ja) * 2016-10-07 2019-11-28 アラクセス ファーマ エルエルシー Rasの阻害剤としての複素環式化合物およびその使用方法
CN109608444B (zh) 2018-11-27 2022-02-11 中国药科大学 含异吲哚啉酮的erk抑制剂及其制备方法与用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263393A (en) * 1979-09-06 1981-04-21 Eastman Kodak Company Novel electron donor precursors and photographic element containing them
WO1999041246A1 (en) * 1998-02-11 1999-08-19 Du Pont Pharmaceuticals Company Novel cyclic sulfonamide derivatives as metalloproteinase inhibitors
WO2015140717A1 (en) * 2014-03-18 2015-09-24 Iteos Therapeutics Novel 3-indol substituted derivatives, pharmaceutical compositions and methods for use
CN107635990A (zh) * 2015-03-17 2018-01-26 辉瑞公司 新型3‑吲哚取代的衍生物、药物组合物及使用方法
CN108617166A (zh) * 2015-10-21 2018-10-02 大冢制药株式会社 蛋白激酶抑制剂苯并内酰胺化合物
CN110831939A (zh) * 2017-04-20 2020-02-21 大冢制药株式会社 作为erk1/2抑制剂的6-嘧啶-异吲哚衍生物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4144731A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008462A1 (ja) 2021-07-27 2023-02-02 東レ株式会社 癌の治療及び/又は予防のための医薬品

Also Published As

Publication number Publication date
CA3177298A1 (en) 2021-11-04
KR20220163521A (ko) 2022-12-09
JP7296017B2 (ja) 2023-06-21
AU2021262977B2 (en) 2023-07-13
IL297743A (en) 2022-12-01
EP4144731A4 (en) 2023-10-25
IL297743B1 (en) 2024-02-01
KR102574950B1 (ko) 2023-09-06
CA3177298C (en) 2023-11-21
CN115443274A (zh) 2022-12-06
JP2023515720A (ja) 2023-04-13
CN115443274B (zh) 2025-04-25
US20230183230A1 (en) 2023-06-15
EP4144731A1 (en) 2023-03-08
EP4144731C0 (en) 2025-01-22
US11718610B2 (en) 2023-08-08
IL297743B2 (en) 2024-06-01
EP4144731B1 (en) 2025-01-22
AU2021262977A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2022199587A1 (zh) 嘧啶并杂环类化合物及其应用
JP7088906B2 (ja) Fgfr4阻害剤並びにその製造方法及び使用
TWI758999B (zh) 作為erk抑制劑的噻唑并內醯胺類化合物及其應用
TWI863422B (zh) 哌橋取代的雜環并嘧啶類化合物
JP2022515335A (ja) 置換ピラゾロ[1,5-a]ピリジン化合物、該化合物を含む組成物およびその使用
CN116120315B (zh) 一种kras g12c抑制剂及其应用
WO2021098703A1 (zh) 作为高选择性ros1抑制剂的化合物及其应用
TW202408506A (zh) 一種含氮化合物及其應用
EP3919495A1 (en) Indolo heptamyl oxime analogue as parp inhibitor
US20250051330A1 (en) Heterocyclic compound having anti-tumor activity and use thereof
KR20200096261A (ko) 설폰아마이드 화합물 및 이의 용도
CN111763215A (zh) 一种具有含氮杂环结构的化合物及其制备方法和用途
KR102668124B1 (ko) Pd-l1 면역조절제인 비닐 피리딘 카르복사미드 화합물
KR20220024199A (ko) Ccr2/ccr5 길항제로서의 헤테로시클로알킬류 화합물
WO2021218912A1 (zh) 含苯基并内磺酰胺的化合物
WO2022156765A1 (zh) 吡唑并吡嗪联三环类化合物及其应用
JP7237169B2 (ja) Pd-l1免疫調整剤であるフルオロビニルベンズアミド化合物
HK40078957A (zh) 含苯基并内磺酰胺的化合物
WO2020011141A1 (zh) 一种二芳基吡唑化合物及包含该化合物的组合物及其用途
CN114957259A (zh) 氰基取代的芳香双环类化合物及其应用
WO2022262699A1 (zh) 取代的苯并咪唑类化合物及包含该化合物的组合物及其用途
WO2020147842A1 (zh) 吡啶并嘧啶类化合物在制备治疗鼻咽癌药物中的应用
EA046344B1 (ru) Соединение в качестве высокоселективного ингибитора ros1 и его применение
CN119278203A (zh) 一种化合物及其在制备bcl-xl抑制剂中的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797624

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 297743

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 3177298

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022566606

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227041520

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021797624

Country of ref document: EP

Effective date: 20221130

ENP Entry into the national phase

Ref document number: 2021262977

Country of ref document: AU

Date of ref document: 20210426

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 11202254584W

Country of ref document: SG