WO2021218882A1 - 半导体结构及其形成方法、存储器 - Google Patents

半导体结构及其形成方法、存储器 Download PDF

Info

Publication number
WO2021218882A1
WO2021218882A1 PCT/CN2021/089781 CN2021089781W WO2021218882A1 WO 2021218882 A1 WO2021218882 A1 WO 2021218882A1 CN 2021089781 W CN2021089781 W CN 2021089781W WO 2021218882 A1 WO2021218882 A1 WO 2021218882A1
Authority
WO
WIPO (PCT)
Prior art keywords
active
layer
forming
semiconductor
semiconductor structure
Prior art date
Application number
PCT/CN2021/089781
Other languages
English (en)
French (fr)
Inventor
朱一明
平尔萱
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to EP21765539.8A priority Critical patent/EP3933922A4/en
Priority to US17/460,414 priority patent/US11895852B2/en
Publication of WO2021218882A1 publication Critical patent/WO2021218882A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • H10B63/34Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the vertical channel field-effect transistor type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line

Definitions

  • This application relates to the field of semiconductor technology, and in particular to a semiconductor structure, a method of forming the same, and a memory.
  • the memory usually includes a data storage unit and a control transistor that controls the data storage unit.
  • the integration of transistors restricts the storage density of the memory.
  • the channel size of the transistor is reduced to reduce the size of the transistor, thereby increasing the storage density of the memory.
  • the transistor performance is reduced due to the narrow channel effect and the short channel effect, which affects the performance of the memory and restricts the further improvement of the transistor size and the storage density of the memory.
  • the technical problem to be solved by this application is to provide a semiconductor structure and a method for forming the same, a memory and a method for forming the same, so as to further improve the storage density of the memory.
  • the present application provides a method for forming a semiconductor structure, including: providing a substrate on which a sacrificial layer and an active layer on the surface of the sacrificial layer are formed; and etching the active layer.
  • the method further includes: filling a conductive material in the opening to form a bit line connection line in the opening, and the bottom of the bit line connection line is connected to the bit line.
  • bit line connecting line and the bit line are formed in the same process step.
  • the openings are formed at both ends of each of the active lines, and the openings on the ends of the same side of each of the active lines are distributed at intervals.
  • it further includes: forming a first doped region in the active column; forming a channel region located above the first doped region and a channel region located above the channel region in the semiconductor column A second doped region; forming a gate structure surrounding the channel region.
  • the method for forming the first doped region includes: performing ion implantation on the active column to form the first doped region in the active column; and the second doped region
  • the forming method includes: ion implanting the semiconductor pillar to form the second doped region at the top of the semiconductor pillar.
  • the method for forming the first doped region includes: adopting an in-situ doping process, and in the process of forming the active layer by an epitaxial growth process, doping the active layer to form a second doped region.
  • a doped layer after the active layer is patterned to form the active column, the first doped layer is patterned into a first doped region.
  • the method for forming the channel region and the second doped region includes: adopting an in-situ doping process, performing in-situ doping during the process of forming the semiconductor column by an epitaxial growth process, and then Forming the channel region and the second doped region.
  • the method further includes: forming an isolation dielectric layer filling the openings between the active pillars.
  • the method for forming the semiconductor pillar includes: forming a protective layer on the first isolation layer and the isolation dielectric layer; forming an epitaxial via in the protective layer; and exposing the bottom of the epitaxial via The top surface of the active column; epitaxially grow a semiconductor material on the top surface of the active column to form a semiconductor column located in the epitaxial through hole; and remove the protective layer.
  • a semiconductor material is epitaxially spread on the top surface of the active pillar; then the semiconductor material is etched and trimmed to form a semiconductor pillar on the top of the active pillar.
  • the method for forming the gate structure includes: sequentially forming a gate dielectric layer and a gate layer on the semiconductor pillar, the first isolation layer, and the isolation dielectric layer; The layer is patterned to form a gate structure located on the surface of the first isolation layer and the isolation dielectric layer, surrounding a part of the height of the semiconductor pillar, and exposing the top area of the semiconductor pillar.
  • the gate electrodes on the surfaces of the semiconductor pillars arranged on the same straight line in the second direction are connected.
  • a second isolation layer covering the gate structure and the second doped region is formed, and the second isolation layer exposes the top surface of the bit line connection line and the second doped region.
  • the technical solution of the present application also provides a semiconductor structure, including: a substrate; a plurality of discrete active pillars located on the substrate and arranged in an array along a first direction and a second direction. There are gaps between the substrates; bit lines located in the gaps; semiconductor pillars located on the surface of the active pillars.
  • the semiconductor structure further includes a bit line connection line located on a side surface of the active pillar, and the bottom of the bit line connection line is connected to the bit line.
  • the semiconductor structure further includes: a first doped region formed in the active pillar; a channel region formed in the semiconductor pillar and located above the first doped region; Two doped regions are formed in the semiconductor pillar and above the channel region; the gate structure surrounds the channel region.
  • the semiconductor structure further includes an isolation dielectric layer, which fills the openings between the active pillars.
  • the technical solution of the present application also provides a memory, including: the semiconductor structure formed by the above method; a memory cell located above the semiconductor structure, the memory cell connected to the top surface of the second doped region.
  • the storage unit includes a capacitive storage unit, a magnetic storage unit, a ferroelectric storage unit, a phase change storage unit, or a resistance storage unit.
  • a sacrificial layer and an active layer on the surface of the sacrificial layer are formed on a substrate, and a bit line is used to replace the position of the sacrificial layer, thereby forming a buried bit line, thereby facilitating the subsequent formation of vertical
  • the source/drain of the bottom of the vertical transistor is led out through the bit line of the transistor.
  • the thickness of the active layer is relatively low, and subsequent formation of semiconductor pillars on the top of the active pillars formed by the patterned active layer can reduce the pattern occurrence after the active layer is patterned. Risk of collapse.
  • vertical transistors occupy a smaller layout size, and the channel width is determined by the thickness of the active layer.
  • the area of the transistor can be reduced without reducing the channel width, thereby improving the semiconductor structure.
  • the degree of integration is the reason for manufacturing the transistor.
  • the memory of the present application includes a semiconductor structure with a vertical transistor array, which can increase the storage density of the memory when the size of the transistor is small.
  • FIGS. 1-11C are structural schematic diagrams of the formation process of the semiconductor structure according to an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a memory according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a memory according to an embodiment of the application.
  • FIG. 1 to FIG. 11C are schematic diagrams of the semiconductor formation process of an embodiment of the application.
  • a substrate 110 is provided, and a sacrificial layer 120 and an active layer 130 on the surface of the sacrificial layer 120 are formed on the surface of the substrate 110.
  • the substrate 110 may be single crystal silicon, germanium, SiC, etc., and various semiconductor materials may have a single-layer structure or a composite structure.
  • the substrate 110 includes a semiconductor base and a dielectric formed on the surface of the semiconductor base. Layers, etc., are not limited here.
  • the sacrificial layer 120 and the active layer 130 may be sequentially formed on the surface of the substrate 110 through a deposition process.
  • the active layer 130 is made of semiconductor materials, such as Si, Ge, SiC, or SiG, etc., which may be one or more of semiconductor materials.
  • the material of the sacrificial layer 120 is different from the material of the substrate 110 and the active layer 120, so that the subsequent process of removing the sacrificial layer 120 reduces the influence on the substrate 110 and the active layer 130.
  • the substrate 110 is a silicon substrate
  • the sacrificial layer 120 is a SiGe layer
  • the active layer 130 is a silicon layer.
  • an epitaxial growth process after the sacrificial layer 120 is epitaxially formed on the surface of the substrate 110, an active layer 130 is formed on the surface of the sacrificial layer 120 through an epitaxial process.
  • the sacrificial layer 120 is made of a different material from the substrate 110 and the active layer 130, in the process of removing the sacrificial layer 120, the gap between the sacrificial layer 120 and the substrate 110 and the active layer 130 It suffices to have a higher etching selection ratio.
  • the substrate 110, the sacrificial layer 120, and the active layer 130 may be an SOI substrate, wherein the buried oxide layer in the SOI substrate serves as the sacrificial layer 120.
  • ion implantation may be performed on a bulk silicon substrate to form a doped layer inside the bulk silicon substrate as the sacrificial layer 120.
  • Ge implantation is performed on bulk silicon, and by controlling the depth of Ge implantation, a SiGe layer is formed inside the bulk silicon as the sacrificial layer 120, the silicon layer under the doped layer is the substrate 110, and the silicon layer under the doped layer is used as the active layer .
  • the doped layer may also be formed by implanting other elements, such as C, O, N, etc., so that the etching rate of the doped layer is different from the material layers above and below, so as to form the doped layer.
  • the sacrificial layer 120 is described.
  • the material of the sacrificial layer 120 may be silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, or the like.
  • the active layer 130 is used to form the bottom doped region of the vertical transistor, that is, the source/drain.
  • the sacrificial layer 120 is used for subsequent replacement to form bit lines.
  • the thickness of the sacrificial layer 120 and the active layer 130 are set reasonably.
  • the thickness of the sacrificial layer 120 may be 35 nm-50 nm
  • the thickness of the active layer 130 may be 30 nm-50 nm.
  • the bottom doped region of the transistor is formed separately from the upper channel region and the top doped region, which can reduce the thickness of the active layer 130, thereby reducing subsequent patterning of the active layer 130 Later, the formed active pattern has a probability of collapse.
  • the active layer 130 and the sacrificial layer 120 are etched to the surface of the substrate 110 to form a plurality of active lines 131 arranged in parallel and extending along the first direction.
  • the method of forming the active line 131 further includes: forming a patterned mask layer (not shown in the figure) on the surface of the active layer 130, and the patterned mask layer has an edge An opening pattern extending in one direction; using the patterned mask layer as a mask, the active layer 130 and the sacrificial layer 120 are etched to form a long active line 131 and a long sacrificial layer 120a.
  • the first direction is the y direction.
  • the active layer 130 and the sacrificial layer 120 are etched by a dry etching process.
  • a corresponding etching gas is selected to etch the active layer 130 and the sacrificial layer 120. eclipse.
  • a first isolation layer 500 is formed on the surface of the substrate 110 to fill the gap between the active lines 131; the end of the active line 131 is etched to form a surface that exposes the surface of the substrate 110 A hole 501 is opened, and the sidewall of the hole 501 exposes the sacrificial layer 120a.
  • the material of the first isolation layer 500 is different from that of the sacrificial layer 120 a, and the material of the first isolation layer 500 is a dielectric material for providing electrical isolation between the active lines 131.
  • the material of the first isolation layer 500 is silicon oxide.
  • the method of forming the first isolation layer 500 is a chemical vapor deposition process. The surface of the substrate 100 is formed to fill the gap between adjacent active lines 131 and cover the top of the active lines 131. After the isolation material layer is formed, the isolation material layer is planarized to form the first isolation layer 500.
  • the top of the first isolation layer 500 is flush with the top of the active line 131; in other embodiments, the top of the active line 131 is also reserved for correcting the active layer A patterned mask layer of active lines is patterned, and the first isolation layer 500 is flush with the patterned mask layer; in other embodiments, before the first isolation layer 500 is formed, the The patterned mask layer has been removed, and the first isolation layer 500 also covers the top of the active line. In the subsequent process, the top of the active line 131 can be protected.
  • the end of the active line 131 is etched to form an opening 501.
  • the sidewall of the opening 501 exposes the sacrificial layer 120a.
  • the openings 501 are formed on the ends of the same side of each active line, or the openings are formed on the ends of both sides of each active line, and each of the active lines The openings are formed on only one end of the wire, and the openings on the ends on the same side are distributed at intervals to reduce the density of the openings in a local area and increase the process window.
  • the sacrificial layer 120a is removed along the opening 501, and a gap 600 is formed between the bottom of the active line 131 and the substrate 110.
  • the sacrificial layer 120a is removed by a wet etching process, and those skilled in the art can select an appropriate etching solution according to the material of the sacrificial layer 120a, so that during the wet etching process, the sacrificial layer 120a and the sacrificial layer 120a
  • the active line 131 and the first isolation layer 500 have a higher etching selection ratio, so as to reduce the impact on the active line 131 and the first isolation layer 500 during the process of removing the sacrificial layer 120a .
  • the active line 131 is supported by the first isolation layer 500 and suspended above the substrate 110 to form a gap 600 with the substrate 110.
  • FIG. 5B is a schematic cross-sectional view taken along the secant line A-A' in FIG. 5A
  • FIG. 5C is an along view A schematic cross-sectional view of the secant line B-B' in 5A.
  • a conductive material such as polysilicon or metal materials such as W, Co, Ag, or Al, may be formed in the gap 600 by methods such as atomic layer deposition, chemical vapor deposition, or physical vapor deposition.
  • the conductive material may also be a multilayer material, such as a combination of TiN and W.
  • the conductive material fills the gap 600 to form a bit line 701 at the bottom of the active line 131; the conductive material also fills the opening 501, and covers the first isolation layer 500 and the active
  • the top of the line 131 is subsequently etched back or planarized to remove the conductive material on the top of the first isolation layer 500 and the top of the active line 131.
  • the opening 501 is filled with conductive material to form a bit line connection line 702 in the opening 501.
  • the bottom of the bit line connection line 702 is connected to the bit line 701 for embedding the
  • the bit line 701 under the active line 131 is led out to facilitate the application of control signals to the bit line 701.
  • the bit line 701 is located below the active line 131, forms an electrical connection with the active line 131, and extends along the extending direction of the active line 131.
  • the bit line 701 and the bit line connecting line 702 are formed at the same time in the same process step to save process cost.
  • FIGS. 6A to 6C Please refer to FIGS. 6A to 6C to pattern the active line 131 to form a number of discrete active pillars 132.
  • both the active lines 131 and the first isolation layer 500 are patterned to form elongated openings extending in the x direction, and the active lines 131 are patterned to form active
  • the pillars 132 are arranged in an array along the first direction (y direction) and the second direction (x direction).
  • the active line 131 is etched to the surface of the bit line 701, so that the bit lines 701 at the bottom of the active pillars 132 arranged on the same straight line along the y direction are continuous.
  • the angle between the first direction and the second direction is 90°; in other embodiments, the angle between the first direction and the second direction is 60° to 90°.
  • the isolation dielectric layer 502 is filled in the openings between the adjacent active pillars 132 and the adjacent first isolation layer 500a; ion implantation is performed on the active pillars 132 to form the first doped Miscellaneous area 1311.
  • the first doped region 1311 can also be formed by diffusion treatment. Specifically, a transition layer with doping elements is formed on the surface of the substrate 110 between adjacent active lines 131 (please refer to FIG. 2); at least part of the transition layer 310 with doping atoms is doped by diffusion treatment. The impurity elements diffuse into the active line 131 to form a doped active line, which is patterned to form the first doped region 1311. In other embodiments, it is also possible to form a transition layer with doped elements on the surface of the substrate between the active pillars 132 (please refer to FIG. 6A), and then diffuse the doped elements into the active pillars 132 through diffusion treatment , The first doped region 1311 is formed.
  • the transition layer material can be deposited on the surface of the substrate 110 and then etched back to form a transition layer with a certain thickness.
  • the thickness of the transition layer can be adjusted according to the size requirements of the source/drain regions of the transistor to be formed. In some embodiments, the thickness of the transition layer is consistent with the height of the active line 131 or the active pillar 132. In some embodiments, the transition layer may also cover the top of the active line 131 or the active pillar 132 to ensure that the entire active line 131 or all areas of the active pillar 132 are doped.
  • the material of the transition layer is different from the material of the active line, and may be a material that facilitates the diffusion of impurities, such as polysilicon, or other materials such as dielectric materials such as silicon oxide, silicon nitride, and silicon oxynitride.
  • the method for forming the transition layer with doping elements includes: after forming an undoped transition layer with a certain thickness on the surface of the semiconductor component 110, doping the transition layer by ion implantation. At this time, the top of the active line 131 or the active pillar 132 is covered with a patterned mask layer, and the energy of the ion implantation is controlled so that the ion implantation can only dope the transition layer.
  • N-type or P-type ions, or atomic clusters with N-type or P-type ions are implanted into the transition layer.
  • the doping elements in the transition layer may exist in the form of ions, atoms, compound molecules or clusters.
  • an in-situ doping process can be used to directly form a transition layer with a doping element by adding a doping gas with a doping element to the deposition process gas. .
  • the diffusion treatment may be a thermal annealing process. According to the diffusion efficiency of dopant atoms, an annealing process with appropriate parameters is selected so that the doping elements in the transition layer diffuse into the active line 131 or the active pillar 132, A first doped region 1311 is formed.
  • the doping concentration in the first doped region formed after the diffusion treatment can be adjusted by adjusting the concentration of the doping element in the transition layer, the diffusion treatment time, temperature and other parameters.
  • an in-situ doping process may also be used.
  • the active layer 130 is doped; After patterning, the first doped region 1311 is formed.
  • the method of diffusion or in-situ doping can reduce the damage to the surface of the active pillar 132 (the first doped region 1311).
  • a semiconductor pillar 133 is formed on the surface of the first doped region 1311.
  • a selective epitaxy process is used to epitaxial semiconductor material on the top surface of the active column to form a semiconductor column 133 on the top of the active column. Due to the selective epitaxial process, only the active pillar, that is, the semiconductor material is grown epitaxially on the top surface of the first doped region 1311, and the material of the semiconductor pillar 1311 is the same as the material of the active pillar , Is Si. In other embodiments, the material of the semiconductor pillar 1311 may also be other semiconductor materials such as SiGe. After the semiconductor material with a certain thickness is grown epitaxially, the semiconductor material can be further etched and trimmed to form a semiconductor pillar 133 with a flatter surface.
  • the method for forming the semiconductor pillar includes: forming a protective layer on the first isolation layer and the isolation dielectric layer; forming an epitaxial via in the protective layer; and the bottom of the epitaxial via Expose the top surface of the active column; epitaxially grow a semiconductor material on the top surface of the active column to form a semiconductor column located in the epitaxial via; remove the protective layer.
  • the epitaxial through hole Through the epitaxial through hole, the growth size and position of the semiconductor column are restricted, and no more morphology trimming is performed by etching. It is possible to avoid problems such as collapse of the semiconductor column during the growth process or the trimming process.
  • a conventional deposition process such as a CVD deposition process, may also be used to form a semiconductor material layer covering the surface of the structure shown in FIG. The semiconductor pillars on the surface of the doped region 1311.
  • a channel region located on the surface of the first doped region 1311 and a gate structure 1000 surrounding the channel region are formed in the semiconductor pillar 133.
  • the semiconductor pillar 133 may be implanted by channel ion implantation to form a channel region on the first doped region 1311, and the channel to be formed can be adjusted by the channel ion implantation.
  • channel doping may be performed at the corresponding position of the channel region through an in-situ doping process.
  • a gate dielectric layer and a gate layer are sequentially formed on the surface of the semiconductor pillar 133, the first isolation layer 500a, and the isolation dielectric layer 502; the gate dielectric layer and the gate layer are patterned to form a surrounding semiconductor pillar
  • the gate structure 1000 in the channel region 133 exposes the top area of the semiconductor pillar 133.
  • the gate dielectric layer may be a gate dielectric material such as silicon oxide, hafnium oxide, or aluminum oxide; the material of the gate layer may be a conductive material such as polysilicon, tungsten, copper, or aluminum.
  • the gate dielectric layer and the gate layer covering the surface of the structure of FIG. 9 may be sequentially formed through a deposition process; then, through an etching process, the gate dielectric layer and the gate layer are patterned to form the gate structure 1000 .
  • the gate structure 1000 surrounds the channel region of the active pillar 132.
  • the gate structure 1000 includes a gate dielectric layer and a gate electrode covering the gate dielectric layer. Only the gate electrode in the gate structure 1000 is shown in FIG. 9A.
  • the gate electrodes of the gate structures 1000 on the surface of the semiconductor pillars 133 on the same straight line arranged in the second direction (x direction) are connected to form a word line.
  • the gate structures 1000 on each semiconductor pillar 133 may also be independent of each other.
  • each gate structure 1000 After forming the gate structure 1000, it further includes filling an isolation dielectric layer 1001 between adjacent gate structures 1000.
  • the isolation dielectric layer 1001 may be formed first, and then the isolation dielectric layer 1001 may be patterned to form an opening, and then the gate structure 1000 may be formed in the opening.
  • ion implantation is performed on the top region of the semiconductor pillar 133 to form the second doped region 1321.
  • the doping type of the second doped region 1321 is the same as the doping type of the first doped region 1311, and the second doped region 1321 and the first doped region 1311 respectively serve as vertical transistors The source or drain.
  • the second doped region 1321 can also be formed in the aforementioned steps by using a suitable in-situ doping, diffusion or implantation method, which will not be repeated here.
  • FIGS. 11A to 11C Please refer to FIGS. 11A to 11C to form a second isolation layer 1200 covering the gate structure 1000 and the second doped region 1321.
  • the second isolation layer 1200 exposes the top surface of the second doped region 1321.
  • the material of the second isolation layer 1200 may be an insulating dielectric material such as silicon oxide, silicon oxynitride, etc., which forms the isolation between the vertical transistors with the first isolation layer 500a, the isolation dielectric layer 502, and the isolation dielectric layer 1001. And provide a flat surface for forming other semiconductor structures or material layers above the vertical transistor.
  • an insulating dielectric material such as silicon oxide, silicon oxynitride, etc.
  • an interconnection structure that penetrates the second isolation layer 1200 and is connected to the bit line connection line 702 may also be formed.
  • the above forming method forms a vertical transistor on a substrate, and forms a buried bit line between the first doped region at the bottom of the vertical transistor and the substrate, so that the area of the transistor can be reduced, and At the same time, the problem of how to apply the bit line signal is solved.
  • the embodiment of the present application also provides a semiconductor structure.
  • FIGS. 11A to 11C are schematic diagrams of a semiconductor structure according to an embodiment of the application.
  • the semiconductor structure includes: a substrate 110; a vertical transistor located on the substrate 110, including a first doped region 1311, a channel region 1322, and a second doped region 1311, a channel region 1322, which are sequentially arranged on a square from the surface of the substrate 110.
  • the doped region 1321 and the gate structure 1000 arranged around the channel region 1322 are connected to the first doped region 1311 and located between the bottom of the first doped region 1311 and the substrate 110 Line 701.
  • a plurality of the vertical transistors are formed on the semiconductor structure, which are arranged in an array along a first direction (y direction) and a second direction (x direction), and the bottoms of the vertical transistors on the same straight line arranged in the first direction
  • the first doped region 1311 is connected to the same bit line 701; the gate structures 1000 of the vertical transistors on the same straight line arranged in the second direction are connected.
  • the semiconductor structure further includes an isolation layer formed between the vertical transistors on the substrate 110, and the isolation layer includes an isolation layer located between an adjacent bit line 701 and an adjacent first doped region 1311 A first isolation layer 500a, an isolation dielectric layer 502; and an isolation dielectric layer 1001 located between adjacent gate structures 1000 on the surface of the first isolation layer 500a, isolation dielectric layer 502, and an isolation dielectric layer 1001 On the surface, the second isolation layer 1200 between adjacent second doped regions 1321.
  • the semiconductor structure further includes: an opening penetrating the first isolation layer 500 a, a bit line connection line 702 is formed in the opening, and the bottom of the bit line connection line 702 is connected to the bit line 701.
  • the bit line connection line 702 is located at one side edge of the transistor array, and on one side of each row of transistors arranged in the y direction, a bit line connection line 702 is formed to connect to the bit line 701 under the row of transistors. .
  • the openings are formed on the ends of the same side of each of the active lines, or the openings are formed on the ends of the two sides of each of the active lines, and each of the active lines
  • the openings are formed on only one end, and the openings on the ends on the same side are distributed at intervals to reduce the density of the openings in a local area and increase the process window.
  • the channel region 1322 and the second doped region 1321 of the vertical transistor are formed in the semiconductor pillar on the surface of the first doped region 1311, and the channel region 1322 and the second doped region
  • the semiconductor layer where 1321 is located and the semiconductor pillar are not an integral structure, but are formed separately.
  • the first doped region 1311, the channel region 1322, and the second doped region 1321 of the vertical transistor are located in the same active column, and the active column is an integral structure formed by doping The first doped region 1311, the channel region 1322, and the second doped region 1321.
  • the doped ions in the first doped region 1311 and/or the second doped region 1321 are formed by diffusion or ion implantation.
  • the embodiment of the present application also provides a memory and a method of forming the same.
  • FIGS. 11A to 11C a semiconductor structure as shown in FIGS. 11A to 11C is provided.
  • the semiconductor structure please refer to the above-mentioned embodiment, which will not be repeated here.
  • a memory cell 1300 is formed above the vertical transistor, and the memory cell 1300 is connected to the second doped region 1321 of the vertical transistor.
  • the memory is a DRAM memory
  • the memory unit 1300 is a metal capacitor, which includes an upper electrode, a lower electrode, and a capacitor dielectric layer located between the upper and lower electrodes.
  • the structure of the capacitor may be a planar capacitor, a cylindrical capacitor, etc., and those skilled in the art can select a capacitor with a suitable structure as the storage unit according to requirements.
  • the storage unit 1300 is only an example, and does not represent the actual structure of the capacitor.
  • the second doped region 1321 of each transistor is connected to a memory cell to form a 1T1C memory structure.
  • the storage unit may include one capacitor, or two or more capacitors connected in parallel.
  • a metal contact layer may be formed on the surface of the second doped region 1321, and then a metal contact layer may be formed on the surface of the second doped region 1321.
  • the surface of the metal contact layer forms the memory cell.
  • the memory cell 1300 is formed in a dielectric layer (not shown in the figure), and an interconnection structure connecting the bit line connecting line 702 and the gate structure 1000 may also be formed in the dielectric layer to connect the The bit line and the word line are connected to an external circuit.
  • the storage unit may also be any one of a magnetic storage unit, a ferroelectric storage unit, a phase change storage unit, or a resistance storage unit.
  • FIG. 13 is a schematic structural diagram of a memory according to an embodiment of the application.
  • the memory is a FeRAM memory, and a ferroelectric memory cell 1400 is formed above the second doped region 1321 of the vertical transistor of the semiconductor structure shown in FIG. 11A.
  • the ferroelectric memory cell includes a lower electrode connected to the second doped region 1321, an upper electrode located above the lower electrode, and a layer of ferroelectric material between the upper and lower electrodes. Ferroelectric capacitors.
  • the material of the ferroelectric material layer may be PZT (lead zirconate titanate) or SBT (barium strontium titanate).
  • the ferroelectric memory cell 1400 in FIG. 13 is only for illustration, and does not represent the actual structure of the ferroelectric memory cell. Those skilled in the art should be able to combine as needed to form a ferroelectric memory cell 1400 with a corresponding structure, which is not limited here.
  • the ferroelectric memory cell 1400 it is also necessary to form a plate line 1401 connected to the upper electrode above the ferroelectric memory cell 1400.
  • the ferroelectric memory cells arranged in the second direction (x direction) and located on the same bottom are connected to the same plate line 1401. Through the plate line 1401 and the vertical transistors below, the pairing can be realized.
  • the bidirectional pressure of the ferroelectric storage unit 1400 can utilize the properties of the ferroelectric material layer for data storage.
  • a magnetic memory cell may be formed on the second doped region 1321 of the vertical transistor.
  • the magnetic memory cell includes a magnetic tunnel junction, and the magnetic tunnel junction includes a fixed layer, a free layer, and a magnetic tunnel junction.
  • the dielectric layer between the fixed layer and the free layer.
  • the fixed layer is connected to the second doped region 1321.
  • vertical transistors are used as the control transistors connected to the memory cell, and the buried bit lines connected to the control transistors can increase the storage density of the memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种半导体结构及其形成方法,一种存储器,半导体结构的形成方法包括:提供衬底(110),所述衬底(110)上形成有牺牲层(120)和位于牺牲层(120)上的有源层(130);刻蚀有源层(130)和牺牲层(120)至衬底(110)表面,形成若干平行排列的沿第一方向延伸的有源线(131);在相邻所述有源线(131)之间的开口内填充以形成第一隔离层(500);刻蚀有源线(131)端部,形成开孔(501);沿开孔(501)去除牺牲层(120),在有源线(131)底部与衬底(110)之间形成间隙(600);在间隙(600)内填充导电材料,形成沿第一方向延伸的位线(701);对有源线(131)进行图形化,形成分立的若干有源柱(132),若干有源柱(132)沿第一方向和第二方向阵列排列;在有源柱(132)表面形成半导体柱(133)。上述半导体结构的形成方法有利于提高晶体管的集成度及性能,提高存储器的存储密度。

Description

半导体结构及其形成方法、存储器
相关申请引用说明
本申请要求于2020年04月27日递交的中国专利申请号202010343487.9,申请名为“半导体结构及其形成方法、存储器及其形成方法”的优先权,其全部内容以引用的形式附录于此。
技术领域
本申请涉及半导体技术领域,尤其涉及一种半导体结构及其形成方法、存储器。
背景技术
存储器通常包括数据存储单元以及控制所述数据存储单元的控制晶体管。晶体管的集成度制约了存储器的存储密度。对于平面晶体管,通过缩小晶体管的沟道尺寸来减小晶体管的尺寸,从而提高存储器的存储密度。
但是随着晶体管沟道尺寸的减小,窄沟道效应以及短沟道效应所导致晶体管性能下降,使得存储器的性能受到影响,制约了晶体管尺寸以及存储器存储密度的进一步提高。
如何在不降低晶体管性能的前提下,减小晶体管的平面尺寸,提高存储器的存储密度是目前亟待解决的问题。
发明内容
本申请所要解决的技术问题是,提供一种半导体结构及其形成方法、存储器及其形成方法,进一步提高存储器的存储密度。
为了解决上述问题,本申请提供了一种半导体结构的形成方法,包括:提供衬底,所述衬底上形成有牺牲层和位于所述牺牲层表面的有源层;刻蚀所述有源层和所述牺牲层至所述衬底表面,形成若干平行排列的沿第一方向延伸的有源线;在相邻所述有源线之间的开口内填充以形成第一隔离层;刻蚀所述有源线端部,形成暴露所述衬底表面的开孔,且所述开孔侧壁暴露出所述牺牲层;沿所述开孔去除所述牺牲层,在所述有源线底部与所述衬底之间形成间隙;在所述间隙内填充导电材料,形成沿第一方向延伸的位线;对所述有源线进行图形化,形成分立的若干有源柱,所述若干有源柱沿第一方向和第二方向阵列排列;在所述有源柱表面形成半导体柱。
可选的,还包括:在所述开孔内填充导电材料,形成位于所述开孔内的位线连接线,所述位线连接线的底部与所述位线连接。
可选的,在同一工艺步骤中形成所述位线连接线与所述位线。
可选的,所述开孔形成在各所述有源线的两端,并且各所述有源线同一边的所述端部上的开孔间隔分布。
可选的,还包括:在所述有源柱内形成第一掺杂区;在所述半导体柱内形成位于所述第一掺杂区上方的沟道区以及位于所述沟道区上方的第二掺杂区;形成环绕所述沟道区的栅极结构。
可选的,所述第一掺杂区的形成方法包括:对所述有源柱进行离子注入,形成位于所 述有源柱内的所述第一掺杂区;所述第二掺杂区的形成方法包括:对所述半导体柱进行离子注入,形成位于所述半导体柱顶部的所述第二掺杂区。
可选的,所述第一掺杂区的形成方法包括:采用原位掺杂工艺,在采用外延生长工艺形成所述有源层的过程中,对所述有源层进行掺杂,形成第一掺杂层;在图形化所述有源层形成所述有源柱后,所述第一掺杂层被图形化为第一掺杂区。
可选的,所述沟道区、所述第二掺杂区的形成方法包括:采用原位掺杂工艺,在采用外延生长工艺形成所述半导体柱的过程中,进行原位掺杂,依次形成所述沟道区和所述第二掺杂区。
可选的,还包括:形成填充满所述有源柱之间开口的隔离介质层。
可选的,所述半导体柱的形成方法包括:在所述第一隔离层和所述隔离介质层上形成保护层;在所述保护层内形成外延通孔;所述外延通孔底部暴露出所述有源柱顶部表面;在所述有源柱顶部表面外延生长半导体材料,形成位于所述外延通孔内的半导体柱;去除所述保护层。
可选的,在所述有源柱顶部表面外延半导体材料;然后对所述半导体材料进行刻蚀修整,形成位于所述有源柱顶部的半导体柱。
可选的,所述栅极结构的形成方法包括:在所述半导体柱、第一隔离层以及隔离介质层上依次形成栅介质层以及栅极层;对所述栅介质层和所述栅极层进行图形化,形成位于所述第一隔离层以及隔离介质层表面,环绕部分高度的所述半导体柱的栅极结构,并暴露出所述半导体柱的顶部区域。
可选的,位于第二方向排列的同一直线上的半导体柱表面的栅电极相连。
可选的,形成覆盖所述栅极结构、第二掺杂区的第二隔离层,所述第二隔离层暴露出所述位线连接线和所述第二掺杂区的顶部表面。
本申请的技术方案还提供一种半导体结构,包括:衬底;分立的若干有源柱,位于所述衬底上,并沿第一方向和第二方向阵列排列,所述有源柱与所述衬底之间具有间隙;位线,位于所述间隙内;半导体柱,位于所述有源柱表面。
可选的,所述半导体结构还包括位线连接线,位于所述有源柱的侧面,且所述位线连接线的底部与所述位线连接。
可选的,所述半导体结构还包括:第一掺杂区,形成于所述有源柱内;沟道区,形成于所述半导体柱内,且位于所述第一掺杂区上方;第二掺杂区,形成于所述半导体柱内,且位于所述沟道区上方;栅极结构,环绕所述沟道区。
可选的,所述半导体结构还包括隔离介质层,填充满所述有源柱之间的开口。
本申请的技术方案还提供一种存储器,包括:上述方法所形成的半导体结构;位于所述半导体构上方的存储单元,所述存储单元连接至所述第二掺杂区的顶部表面。
可选的,所述存储单元包括电容存储单元、磁性存储单元、铁电存储单元、相变存储单元或者电阻存储单元。
本申请的半导体结构的形成方法,在衬底上形成牺牲层以及位于牺牲层表面的有源层, 利用位线替代牺牲层的位置,从而形成埋入式的位线,从而便于后续形成竖直型的晶体管,通过位线将竖直型的晶体管底部的源/漏极引出。并且,本申请的半导体结构的形成方法中,有源层的厚度较低,后续再通过对图形化有源层形成的有源柱顶部形成半导体柱,可以降低有源层被图形化后图形发生倒塌的风险。
进一步的,竖直型的晶体管占据的版图尺寸较小,且沟道宽度由有源层的厚度来决定,可以在不减小沟道宽度等情况下,减小晶体管的面积,从而提高半导体结构的集成度。
本申请的存储器包括具有竖直型晶体管阵列的半导体结构,在晶体管尺寸较小的情况下,能够提高存储器的存储密度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1至图11C为本申请一实施例的半导体结构的形成过程的结构示意图;
图12为本申请一实施例的存储器的结构示意图;
图13为本申请一实施例的存储器的结构示意图。
具体实施方式
为了使本申请的目的、技术手段及其效果更加清楚明确,以下将结合附图对本申请作进一步地阐述。应当理解,此处所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,并不用于限定本申请。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1至图11C,为本申请一实施例的半导体形成过程的结构示意图。
请参考图1,提供衬底110,所述衬底110表面形成有牺牲层120和位于所述牺牲层120表面的有源层130。
所述衬底110可以为单晶硅、锗、SiC等,各种半导体材料,可以为单层结构,也可以为复合结构,例如所述衬底110包括半导体基底以及形成于半导体基底表面的介质层等,在此不作限定。
可以通过沉积工艺在所述衬底110表面依次形成所述牺牲层120和所述有源层130。所述有源层130采用半导体材料,例如Si、Ge、SiC或SiG等,可以是其中的一种或多种半导体材料。所述牺牲层120的材料与所述衬底110、有源层120的材料不同,使得后续在去除所述牺牲层120的过程中,减少对所述衬底110、有源层130的影响。
该实施例中,所述衬底110为硅衬底,所述牺牲层120为SiGe层,所述有源层130为硅层。采用外延生长工艺,在所述衬底110表面外延形成所述牺牲层120之后,再通过外延工艺,在所述牺牲层120表面形成有源层130。
实际上,所述牺牲层120只要与所述衬底110以及有源层130采用不同的材料,在去除牺牲层120的过程中,牺牲层120与所述衬底110以及有源层130之间有较高的刻蚀选 择比即可。
在一些实施例中,所述衬底110、牺牲层120以及有源层130可以为SOI衬底,其中SOI衬底中的埋氧层作为牺牲层120。
在其他实施例中,可以通过对体硅衬底进行离子注入,在所述体硅衬底内部形成掺杂层作为所述牺牲层120。例如对体硅进行Ge注入,通过控制Ge的注入深度,在体硅内部形成SiGe层作为牺牲层120,掺杂层下方的硅层为衬底110,掺杂层下方的硅层作为有源层。在其他实施例中,也可以通过注入其他元素形成所述掺杂层,例如C、O、N等,使得所述掺杂层的刻蚀速率与其上方及下方的材料层均不同,从而形成所述牺牲层120。较佳的,所述牺牲层120的材料可以为氧化硅、氮化硅、氮氧化硅、碳氧化硅等。
所述有源层130用于形成竖直晶体管的底部掺杂区,即源/漏极。所述牺牲层120用于后续被替代形成位线。根据待形成的竖直晶体管的尺寸以及位线的尺寸,合理设置所述牺牲层120和所述有源层130的厚度。在一个实施例中,所述牺牲层120的厚度可以为35nm~50nm,所述有源层130的厚度可以为30nm~50nm。该实施例中,晶体管的底部掺杂区与上方的沟道区及顶部掺杂区分开形成,可以降低所述有源层130的厚度,从而可以降低后续对所述有源层130进行图形化后,形成的有源图形发生倒塌的几率。
请参考图2,刻蚀所述有源层130和所述牺牲层120至所述衬底110表面,形成若干平行排列的沿第一方向延伸的有源线131。
该实施例中,形成所述有源线131的方法进一步包括:在所述有源层130表面形成图形化掩膜层(图中未示出),所述图形化掩膜层内具有沿第一方向延伸的开口图形;以所述图形化掩膜层为掩膜,刻蚀所述有源层130和所述牺牲层120,形成长条状的有源线131以及长条状的牺牲层120a。
该实施例中,所述第一方向为y方向。采用干法刻蚀工艺刻蚀所述有源层130和所述牺牲层120,在相应的刻蚀阶段,选择对应的刻蚀气体,对所述有源层130和所述牺牲层120进行刻蚀。
请参考图3,在所述衬底110表面形成填充满各有源线131之间间距的第一隔离层500;刻蚀所述有源线131端部,形成暴露所述衬底110表面的开孔501,且所述开孔501侧壁暴露出所述牺牲层120a。
所述第一隔离层500的材料与所述牺牲层120a不同,且所述第一隔离层500的材料为介电材料,用于在各有源线131之间提供电学隔离。该实施例中,所述第一隔离层500的材料为氧化硅。该实施例中,形成所述第一隔离层500的方法为化学气相沉积工艺,在所述衬底100表面形成填充满相邻有源线131之间的间距以及覆盖所述有源线131顶部的隔离材料层之后,对隔离材料层进行平坦化,形成所述第一隔离层500。该实施例中,所述第一隔离层500的顶部与所述有源线131的顶部齐平;在其他实施例中,所述有源线131顶部还保留有用于对由于对有源层进行图形化形成有源线的图形化掩膜层,所述第一隔离层500与所述图形化掩膜层齐平;在其他实施例中,在形成所述第一隔离层500之前,所述图形化掩膜层已被去除,所述第一隔离层500还覆盖所述有源线的顶部,在后续工艺中,可 以对所述有源线131顶部进行保护。
在形成所述第一隔离层500之后,对有源线131的端部进行刻蚀,形成开孔501。所述开孔501的侧壁暴露出所述牺牲层120a。具体的,所述开孔501形成在各所述有源线的同一边的端部,或者所述开孔形成在各所述有源线两边的端部上,并且,每个所述有源线只有一个端部上形成所述开孔,同一边的所述端部上的开孔间隔分布,以减少局部区域上的所述开孔的密度,增大工艺窗口。
请参考图4,沿所述开孔501去除所述牺牲层120a,在所述有源线131底部与所述衬底110之间形成间隙600。
采用湿法刻蚀工艺去除所述牺牲层120a,本领域技术人员可以根据所述牺牲层120a的材料选择合适的刻蚀溶液,使得所述湿法刻蚀过程中,所述牺牲层120a和所述有源线131、第一隔离层500有较高的刻蚀选择比,以在去除所述牺牲层120a的过程中,减少对所述有源线131和所述第一隔离层500的影响。
在去除所述牺牲层120a之后,所述有源线131由所述第一隔离层500支撑,悬空于所述衬底110上方,与衬底110之间形成间隙600。
请参考图5A~5C,在所述间隙600内填充导电材料,形成沿第一方向延伸的位线701,图5B为沿图5A中割线A-A’的剖面示意图,图5C为沿图5A中割线B-B’的剖面示意图。
可以通过原子层沉积、化学气相沉积或物理气相沉积等方法在所述间隙600内形成导电材料,例如多晶硅或者W、Co、Ag或Al等金属材料。所述导电材料也可以为多层材料,例如TiN和W的组合等。
所述导电材料填充满所述间隙600,形成位于所述有源线131底部的位线701;所述导电材料还填充满所述开孔501,并覆盖所述第一隔离层500以及有源线131顶部,后续通过回刻蚀或者平坦化处理,去除所述第一隔离层500顶部以及有源线131顶部的导电材料。所述开孔501内填充满导电材料,形成位于所述开孔501内的位线连接线702,所述位线连接线702的底部与所述位线701连接,用于将埋入所述有源线131下方的位线701引出,便于向所述位线701施加控制信号。所述位线701位于所述有源线131下方,与所述有源线131之间形成电连接,沿所述有源线131的延伸方向延伸。该实施例中,在同一工艺步骤中同时形成所述位线701和所述位线连接线702,以节约工艺成本。
请参考图6A至图6C,对所述有源线131进行图形化,形成若干分立的有源柱132。
该实施例中,对所述有源线131和所述第一隔离层500均进行图形化,形成沿x方向延伸的长条形开口,将所述有源线131进行图形化,形成有源柱132,所述有源柱132沿所述第一方向(y方向)和第二方向(x方向)阵列排布。对所述有源线131图形化时,仅刻蚀所述有源线131至位线701表面,使得沿y方向排列的位于同一直线上的所述有源柱132底部的位线701连续。
在其他实施例中,也可以通过选择性刻蚀工艺,仅对所述有源线131进行图形化,形成若干有源柱132,而保持所述第一隔离层500不被图形化。
该实施例中,所述第一方向和第二方向之间夹角成90°;在其他实施例中,所述第一 方向和第二方向之间的夹角成60°~90°。
请参考图7A至图7C,在相邻有源柱132以及相邻的第一隔离层500a之间的开口内填充隔离介质层502;对所述有源柱132进行离子注入,形成第一掺杂区1311。
在其他实施例中,还可以通过扩散处理,形成所述第一掺杂区1311。具体的,在相邻有源线131(请参考图2)之间的衬底110表面形成具有掺杂元素的过渡层;通过扩散处理,将具有掺杂原子的过渡层310内的至少部分掺杂元素扩散进入有源线131内,形成掺杂的有源线,被图形化后形成第一掺杂区1311。在其他实施例中,还可以在有源柱132(请参考图6A)之间的衬底表面形成具有掺杂元素的过渡层,再通过扩散处理,将掺杂元素扩散进入有源柱132内,形成所述第一掺杂区1311。
可以通过在衬底110表面沉积过渡层材料后,进行回刻蚀,形成一定厚度的过渡层,述过渡层,的厚度可以根据待形成的晶体管的源/漏区的尺寸要求调整。在一些实施例中,所述过渡层的厚度与所述有源线131或有源柱132的高度一致。在一些实施例中,所述过渡层还可以覆盖所述有源线131或有源柱132的顶部,以确保将整个有源线131或有源柱132所有区域均实现掺杂。
所述过渡层的材料与所述有源线的材料不同,可以为利于杂质扩散的材料,例如多晶硅,还可以为其他材料例如氧化硅、氮化硅、氮氧化硅等介质材料。形成具有掺杂元素的所述过渡层的形成方法包括:在所述半导体成110表面形成一定厚度未被掺杂的过渡层之后,通过离子注入,对所述过渡层进行掺杂。此时,在所述有源线131或有源柱132顶部覆盖有图形化掩膜层,通过控制所述离子注入的能量,使得所述离子注入仅能对所述过渡层进行掺杂。根据待形成的晶体管的类型,向所述过渡层内注入N型或P型离子,或者具有N型或P型离子的原子团簇。所述过渡层内的掺杂元素可以以离子、原子、化合物分子或者团簇形式存在。在其他实施例中,也可以在形成所述过渡层的过程中,通过原位掺杂工艺,通过在沉积工艺气体中加入具有掺杂元素的掺杂气体,直接形成具有掺杂元素的过渡层。
所述扩散处理可以为热退火工艺,根据掺杂原子的扩散效率,选择合适参数的退火工艺,使得所述过渡层内的掺杂元素扩散进入所述有源线131或有源柱132内,形成第一掺杂区1311。可以通过调整所述过渡层内的掺杂元素的浓度,扩散处理时间、温度等参数,调整扩散处理后形成的第一掺杂区内的掺杂浓度。
在其他实施例中,还可以采用原位掺杂工艺,在通过外延工艺沉积形成所述有源层130的过程中,对所述有源层130进行掺杂;在对所述有源层130进行图形化后,形成所述第一掺杂区1311。
与采用离子注入形成所述第一掺杂区1311相比,采用扩散或者原位掺杂的方式,能够减少对有源柱132(第一掺杂区1311)表面的损伤。
请参考图8,在所述第一掺杂区1311表面形成半导体柱133。
该实施例中,采用选择性外延工艺,在所述有源柱顶部表面外延半导体材料,形成位于所述有源柱顶部的半导体柱133。由于采用选择性外延工艺,仅会在所述有源柱,即在所 述第一掺杂区1311的顶部表面外延生长半导体材料,所述半导体柱1311的材料与所述有源柱的材料相同,为Si。在其他实施例中,所述半导体柱1311的材料还可以为SiGe等其他半导体材料。在外延生长一定厚度的半导体材料后,还可以进一步对所述半导体材料进行刻蚀修整,以形成表面形貌更为平整的半导体柱133。
在其他实施例中,所述半导体柱的形成方法包括:在所述第一隔离层和所述隔离介质层上形成保护层;在所述保护层内形成外延通孔;所述外延通孔底部暴露出所述有源柱顶部表面;在所述有源柱顶部表面外延生长半导体材料,形成位于所述外延通孔内的半导体柱;去除所述保护层。通过所述外延通孔,限制半导体柱的生长尺寸和位置,无需再通过刻蚀进行形貌的修整。可以避免所述半导体柱在生长过程或修整过程中发生倒塌等问题。
在其他实施例中,也可以通过常规的沉积工艺,例如CVD沉积工艺,形成覆盖图7A所示的结构表面的半导体材料层,然后对所述半导体材料层进行图形化,形成位于所述第一掺杂区1311表面的半导体柱。
请参考图9A至图9C,在所述半导体柱133内形成位于所述第一掺杂区1311表面的沟道区,以及环绕所述沟道区的栅极结构1000。
本申请的实施例中,可以通过离子注入,对所述半导体柱133进行沟道离子注入,在所述第一掺杂区1311上形成沟道区,通过所述沟道离子注入,调整待形成的晶体管的阈值电压等参数。
在其他实施例中,可以在形成所述半导体柱133的过程中,通过原位掺杂工艺在沟道区对应位置处进行沟道掺杂。
在所述半导体柱133、第一隔离层500a以及隔离介质层502表面依次形成栅介质层以及栅极层;对所述栅介质层和所述栅极层进行图形化,形成环绕所述半导体柱133的沟道区的栅极结构1000,并暴露出所述半导体柱133的顶部区域。
所述栅介质层可以为氧化硅、氧化铪、氧化铝等栅介质材料;所述栅极层的材料可以为多晶硅、钨、铜或铝等导电材料。可以通过沉积工艺,依次形成覆盖所述图9结构表面的栅介质层以及栅极层;然后通过刻蚀工艺,随所述栅介质层和栅极层进行图形化,形成所述栅极结构1000。所述栅极结构1000环绕有源柱132的沟道区。所述栅极结构1000包括栅介质层以及覆盖所述栅介质层的栅电极,图9A中仅示出了所述栅极结构1000内的栅电极。
该实施例中,沿第二方向(x方向)排列的同一直线上的半导体柱133表面的栅极结构1000的栅电极相连,构成字线。
在其他实施例中,各个半导体柱133上的栅极结构1000之间也可以是相互独立的。
为了使得各栅极结构1000之间进行电学隔离,在形成所述栅极结构1000之后,还包括在相邻栅极结构1000之间填充隔离介质层1001。在其他实施例中,也可以先形成所述隔离介质层1001,然后对所述隔离介质层1001进行图形化,形成开口,再在所述开口内形成所述栅极结构1000。
请参考图10A至图10C,形成所述栅极结构1000之后,对所述半导体柱133的顶部区 域进行离子注入,形成所述第二掺杂区1321。
所述第二掺杂区1321的掺杂类型与所述第一掺杂区1311的掺杂类型一致,所述第二掺杂区1321和所述第一掺杂区1311分别作为竖直型晶体管的源极或漏极。在其他实施例中,所述第二掺杂区1321还可以在前述的步骤中,采用合适的原位掺杂、扩散或者注入方式形成,在此不再赘述。
请参考图11A至图11C,形成覆盖所述栅极结构1000、第二掺杂区1321的第二隔离层1200。所述第二隔离层1200暴露出所述第二掺杂区1321的顶部表面。
所述第二隔离层1200的材料可以为氧化硅、氮氧化硅等绝缘介质材料,与所述第一隔离层500a、隔离介质层502以及隔离介质层1001形成各竖直型晶体管之间的隔离层,并且为在所述竖直型晶体管上方形成其他半导体结构或材料层提供平坦表面。
在其他实施例中,还可以形成贯穿所述第二隔离层1200与所述位线连接线702连接的互连结构。
上述形成方法在衬底上形成竖直型晶体管,且在所述竖直型晶体管底部的第一掺杂区下方与衬底之间形成埋入式的位线,从而可以减少晶体管的面积,并同时解决了如何施加位线信号的问题。
本申请的实施例还提供一种半导体结构。
请参考图11A至图11C,为本申请一实施例的半导体结构的结构示意图。
所述半导体结构包括:衬底110;位于所述衬底110上的竖直型晶体管,包括自衬底110表面向上的方形上依次设置的第一掺杂区1311、沟道区1322、第二掺杂区1321以及环绕所述沟道区1322设置的栅极结构1000;与所述第一掺杂区1311连接,位于所述第一掺杂区1311底部与所述衬底110之间的位线701。
所述半导体结构上形成有多个所述竖直型晶体管,沿第一方向(y方向)和第二方向(x方向)阵列分布,沿第一方向排列的同一直线上的竖直型晶体管底部的第一掺杂区1311连接至同一位线701;沿第二方向排列的同一直线上的竖直型晶体管的栅极结构1000相连接。
所述半导体结构还包括:位于所述衬底110上形成于各竖直型晶体管之间的隔离层,所述隔离层包括位于相邻位线701与相邻第一掺杂区1311之间的第一隔离层500a、隔离介质层502;以及位于所述第一隔离层500a、隔离介质层502表面的位于相邻栅极结构1000之间的隔离介质层1001,以及位于所述隔离介质层1001表面,相邻第二掺杂区1321之间的第二隔离层1200。
所述半导体结构还包括:贯穿所述第一隔离层500a的开孔,所述开孔内形成有位线连接线702,所述位线连接线702底部连接至所述位线701。该实施例中,所述位线连接线702位于晶体管阵列的一侧边缘,沿y方向排列的每一行晶体管的一侧,均形成有一位线连接线702与该行晶体管下方的位线701连接。具体的,所述开孔形成在各所述有源线的同一边的端部,或者所述开孔形成在各所述有源线两边的端部上,并且,每个所述有源线只有一个端部上形成所述开孔,同一边的所述端部上的开孔间隔分布,以减少局部区域上的所述开孔的密度,增大工艺窗口。
该实施例中,所述竖直晶体管的沟道区1322和第二掺杂区1321形成于所述第一掺杂区1311表面的半导体柱内,所述沟道区1322和第二掺杂区1321所在的半导体层和所述半导体柱非一体结构,而是分开形成的。在其他实施例中,所述竖直晶体管的第一掺杂区1311、沟道区1322、第二掺杂区1321位于同一有源柱内,所述有源柱为一体结构,通过掺杂形成了所述第一掺杂区1311、沟道区1322、第二掺杂区1321。
所述第一掺杂区1311和/或所述第二掺杂区1321内的掺杂离子通过扩散或离子注入方式形成。
本申请的实施例还提供一种存储器及其形成方法。
首先提供如图11A至11C所示的半导体结构,所述半导体结构的具体描述请见上述实施例,在此不再赘述。
请参考图12,在所述竖直型晶体管上方形成存储单元1300,所述存储单元1300连接至所述竖直型晶体管的第二掺杂区1321。
在一个实施例中,所述存储器为DRAM存储器,所述存储单元1300为金属电容器,包括上电极、下电极以及位于上、下电极之间的电容介质层。所述电容器的结构可以为平面电容器、柱形电容器等,本领域技术人员可以根据需求,选择合适结构的电容器作为存储单元。图12中,所述存储单元1300仅为示例,并不代表电容器的实际结构。该实施例中,每个晶体管的第二掺杂区1321连接至一个存储单元,构成1T1C的存储结构。所述存储单元可以包括一个电容器,或两个以上并联的电容器。
在其他实施例中,为了降低所述第二掺杂区1321与所述存储单元1300之间的连接电阻,还可以在所述第二掺杂区1321表面形成金属接触层,然后再在所述金属接触层表面形成所述存储单元。
所述存储单元1300形成与介质层(图中未示出)内,还可以在所述介质层内形成连接所述位线连接线702以及栅极结构1000的互连结构,用于将所述位线以及字线连接至外部电路。
在本申请的其他实施例中,所述存储单元还可以为磁性存储单元或铁电存储单元、相变存储单元或者电阻存储单元中的任意一种。
请参考图13,为本申请一实施例的存储器的结构示意图。
所述存储器为FeRAM存储器,在图11A所示的半导体结构的竖直型晶体管的第二掺杂区1321上方形成铁电存储单元1400。
所述铁电存储单元包括与所述的第二掺杂区1321连接的下电极、位于所述下电极上方的上电极、以及位于所述上、下电极之间的铁电材料层所构成的铁电电容。所述铁电材料层的材料可以为PZT(锆钛酸铅)或SBT(钛酸钡锶)。图13中的铁电存储单元1400仅为示意,并不代表实际的铁电存储单元的结构。本领域技术人员,应当能够根据需要结合,形成相应结构的铁电存储单元1400,在此不作限制。
对于铁电存储单元1400,还需要在所述铁电存储单元1400上方,形成与上电极连接的板线1401。该实施例中,沿第二方向(x方向)上排列的位于同一之下上的铁电存储单元 连接至同一根板线1401,通过所述板线1401和下方的竖直晶体管,可以实现对所述铁电存储单元1400的双向加压,从而利用铁电材料层的性质进行数据存储。
在其他实施例中,还可以在所述竖直晶体管的第二掺杂区1321上形成磁性存储单元,所述磁性存储单元包括磁性隧道结,所述磁性隧道结包括固定层、自由层以及位于所述固定层和自由层之间的介质层。所述固定层连接至所述第二掺杂区1321。
在其他实施例中,还可以形成其他结构或类型的存储单元,以形成对应的存储器。
上述存储器及其形成方法,采用竖直型晶体管作为与存储单元连接的控制晶体管,以及与所述控制晶体管连接的埋入型的位线,可以提高存储器的存储密度。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (20)

  1. 一种半导体结构的形成方法,其中,包括:
    提供衬底,所述衬底上形成有牺牲层和位于所述牺牲层表面的有源层;
    刻蚀所述有源层和所述牺牲层至所述衬底表面,形成若干平行排列的沿第一方向延伸的有源线;
    在相邻所述有源线之间的开口内填充以形成第一隔离层;
    刻蚀所述有源线端部,形成暴露所述衬底表面的开孔,且所述开孔侧壁暴露出所述牺牲层;
    沿所述开孔去除所述牺牲层,在所述有源线底部与所述衬底之间形成间隙;
    在所述间隙内填充导电材料,形成沿第一方向延伸的位线;
    对所述有源线进行图形化,形成分立的若干有源柱,所述若干有源柱沿第一方向和第二方向阵列排列;
    在所述有源柱表面形成半导体柱。
  2. 根据权利要求1所述的半导体结构的形成方法,其中,还包括:在所述开孔内填充导电材料,形成位于所述开孔内的位线连接线,所述位线连接线的底部与所述位线连接。
  3. 根据权利要求2所述的半导体结构的形成方法,其中,在同一工艺步骤中形成所述位线连接线与所述位线。
  4. 根据权利要求2所述的半导体结构的形成方法,其中,所述开孔形成在各所述有源线的两端,并且各所述有源线同一边的所述端部上的开孔间隔分布。
  5. 根据权利要求1所述的半导体结构的形成方法,其中,还包括:在所述有源柱内形成第一掺杂区;在所述半导体柱内形成位于所述第一掺杂区上方的沟道区以及位于所述沟道区上方的第二掺杂区;形成环绕所述沟道区的栅极结构。
  6. 根据权利要求5所述的半导体结构的形成方法,其中,所述第一掺杂区的形成方法包括:对所述有源柱进行离子注入,形成位于所述有源柱内的所述第一掺杂区;所述第二掺杂区的形成方法包括:对所述半导体柱进行离子注入,形成位于所述半导体柱顶部的所述第二掺杂区。
  7. 根据权利要求5所述的半导体结构的形成方法,其中,所述第一掺杂区的形成方法包括:采用原位掺杂工艺,在采用外延生长工艺形成所述有源层的过程中,对所述有源层进行掺杂,形成第一掺杂层;在图形化所述有源层形成所述有源柱后,所述第一掺杂层被图形化为第一掺杂区。
  8. 根据权利要求5所述的半导体结构的形成方法,其中,所述沟道区、所述第二掺杂区的形成方法包括:采用原位掺杂工艺,在采用外延生长工艺形成所述半导体柱的过程中,进行原位掺杂,依次形成所述沟道区和所述第二掺杂区。
  9. 根据权利要求5所述的半导体结构的形成方法,其中,还包括:形成填充满所述有源柱之间开口的隔离介质层。
  10. 根据权利要求9所述的半导体结构的形成方法,其中,所述半导体柱的形成方法包括:在所述第一隔离层和所述隔离介质层上形成保护层;在所述保护层内形成外延通孔;所 述外延通孔底部暴露出所述有源柱顶部表面;在所述有源柱顶部表面外延生长半导体材料,形成位于所述外延通孔内的半导体柱;去除所述保护层。
  11. 根据权利要求9所述的半导体结构的形成方法,其中,在所述有源柱顶部表面外延半导体材料;然后对所述半导体材料进行刻蚀修整,形成位于所述有源柱顶部的半导体柱。
  12. 根据权利要求9所述的半导体结构的形成方法,其中,所述栅极结构的形成方法包括:在所述半导体柱、第一隔离层以及隔离介质层表面依次形成栅介质层以及栅极层;对所述栅介质层和所述栅极层进行图形化,形成位于所述第一隔离层以及隔离介质层表面,环绕部分高度的所述半导体柱的栅极结构,并暴露出所述半导体柱的顶部区域。
  13. 根据权利要求12所述的半导体结构的形成方法,其中,位于第二方向排列的同一直线上的半导体柱表面的栅极结构相连。
  14. 根据权利要求12所述的半导体结构的形成方法,其中,形成覆盖所述栅极结构和所述第二掺杂区的第二隔离层,所述第二隔离层暴露出所述第二掺杂区的顶部表面。
  15. 一种半导体结构,其中,包括:
    衬底;
    分立的若干有源柱,位于所述衬底上,并沿第一方向和第二方向阵列排列,所述有源柱与所述衬底之间具有间隙;
    位线,位于所述间隙内;
    半导体柱,位于所述有源柱表面。
  16. 根据权利要求15所述的半导体结构,其中,所述半导体结构还包括位线连接线,位于所述有源柱的侧面,且所述位线连接线的底部与所述位线连接。
  17. 根据权利要求15所述的半导体结构,其中,所述半导体结构还包括:
    第一掺杂区,形成于所述有源柱内;沟道区,形成于所述半导体柱内,且位于所述第一掺杂区上方;
    第二掺杂区,形成于所述半导体柱内,且位于所述沟道区上方;
    栅极结构,环绕所述沟道区。
  18. 根据权利要求17所述的半导体结构,其中,所述半导体结构还包括隔离介质层,填充满所述有源柱之间的开口。
  19. 一种存储器,其中,包括:
    如权利要求17所述的半导体结构;
    位于所述半导体结构上方的存储单元,所述存储单元连接至所述第二掺杂区的顶部表面。
  20. 根据权利要求19所述的存储器,其中,所述存储单元包括电容存储单元、磁性存储单元、铁电存储单元、相变存储单元或者电阻存储单元。
PCT/CN2021/089781 2020-04-27 2021-04-26 半导体结构及其形成方法、存储器 WO2021218882A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21765539.8A EP3933922A4 (en) 2020-04-27 2021-04-26 Semiconductor structure, forming method therefor and memory
US17/460,414 US11895852B2 (en) 2020-04-27 2021-08-30 Method for forming semiconductor structure by using sacrificial layer configured to be replaced subsequently to form bit line, semiconductor structure, and memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010343487.9 2020-04-27
CN202010343487.9A CN113644061B (zh) 2020-04-27 2020-04-27 半导体结构及其形成方法、存储器及其形成方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/460,414 Continuation US11895852B2 (en) 2020-04-27 2021-08-30 Method for forming semiconductor structure by using sacrificial layer configured to be replaced subsequently to form bit line, semiconductor structure, and memory

Publications (1)

Publication Number Publication Date
WO2021218882A1 true WO2021218882A1 (zh) 2021-11-04

Family

ID=78331769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089781 WO2021218882A1 (zh) 2020-04-27 2021-04-26 半导体结构及其形成方法、存储器

Country Status (4)

Country Link
US (1) US11895852B2 (zh)
EP (1) EP3933922A4 (zh)
CN (1) CN113644061B (zh)
WO (1) WO2021218882A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117295327A (zh) * 2022-06-15 2023-12-26 北京超弦存储器研究院 一种半导体结构及其制造方法、dram和电子设备
CN117545270A (zh) * 2022-07-27 2024-02-09 长鑫存储技术有限公司 半导体结构及其形成方法
CN117525110A (zh) * 2022-07-28 2024-02-06 长鑫存储技术有限公司 半导体结构及其制作方法
CN117558677A (zh) * 2022-08-02 2024-02-13 长鑫存储技术有限公司 半导体结构的制备方法及半导体结构
CN116471837B (zh) * 2023-03-16 2024-03-12 北京超弦存储器研究院 半导体结构、存储器结构及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100059837A1 (en) * 2008-09-09 2010-03-11 Hynix Semiconductor Inc. Spin Transfer Torque Memory Device Having Common Source Line and Method for Manufacturing the Same
US20130210211A1 (en) * 2011-08-15 2013-08-15 Lidia Vereen Vertical Cross-Point Memory Arrays
CN109285836A (zh) * 2018-08-28 2019-01-29 中国科学院微电子研究所 半导体存储设备及其制造方法及包括存储设备的电子设备
CN109461756A (zh) * 2017-09-06 2019-03-12 中国科学院微电子研究所 Mram及其制造方法及包括mram的电子设备
CN208923136U (zh) * 2018-09-27 2019-05-31 长鑫存储技术有限公司 集成电路存储器及半导体集成电路器件

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268173A (ja) * 1993-03-15 1994-09-22 Toshiba Corp 半導体記憶装置
US6331459B1 (en) * 1999-02-18 2001-12-18 Infineon Technologies Ag Use of dummy poly spacers and divot fill techniques for DT-aligned processing after STI formation for advanced deep trench capacitor DRAM
JP2002289815A (ja) * 2001-03-23 2002-10-04 Hitachi Ltd 半導体記憶装置
TWI222180B (en) * 2003-04-29 2004-10-11 Nanya Technology Corp Method for forming vertical transistor and trench capacitor
KR100956601B1 (ko) * 2008-03-25 2010-05-11 주식회사 하이닉스반도체 반도체 소자의 수직 채널 트랜지스터 및 그 형성 방법
KR101585215B1 (ko) * 2009-09-14 2016-01-22 삼성전자주식회사 사이즈가 구별되는 2종의 콘택 홀을 1회 포토 공정으로 형성하는 반도체 소자의 제조방법
US8507966B2 (en) * 2010-03-02 2013-08-13 Micron Technology, Inc. Semiconductor cells, arrays, devices and systems having a buried conductive line and methods for forming the same
KR101168336B1 (ko) * 2010-07-07 2012-07-24 에스케이하이닉스 주식회사 수직형 트랜지스터와 매몰된 비트라인을 갖는 반도체 메모리소자 및 그 제조방법
KR101154006B1 (ko) 2010-11-08 2012-06-07 에스케이하이닉스 주식회사 매몰 정션을 포함하는 수직형 트랜지스터 및 형성 방법
KR101811308B1 (ko) * 2010-11-10 2017-12-27 삼성전자주식회사 저항 변화 체를 갖는 비 휘발성 메모리 소자 및 그 제조방법
KR101077411B1 (ko) * 2010-12-14 2011-10-26 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법
CN102522407B (zh) * 2011-12-23 2014-04-09 清华大学 具有垂直晶体管的存储器阵列结构及其形成方法
KR20130074237A (ko) * 2011-12-26 2013-07-04 에스케이하이닉스 주식회사 매립비트라인을 구비한 반도체 장치 및 그 제조방법
CN110383476B (zh) 2017-03-31 2024-06-11 英特尔公司 垂直1t-1c dram阵列
CN109148376B (zh) * 2017-06-28 2020-07-31 长鑫存储技术有限公司 存储器及其形成方法、半导体器件
US10134739B1 (en) * 2017-07-27 2018-11-20 Globalfoundries Inc. Memory array with buried bitlines below vertical field effect transistors of memory cells and a method of forming the memory array
CN109461738B (zh) * 2017-09-06 2021-03-26 中国科学院微电子研究所 半导体存储设备及其制造方法及包括存储设备的电子设备
CN207868200U (zh) * 2017-12-06 2018-09-14 睿力集成电路有限公司 半导体存储器
CN208127209U (zh) * 2018-05-09 2018-11-20 长鑫存储技术有限公司 集成电路存储器及半导体集成电路器件
CN108777253B (zh) * 2018-08-10 2023-10-27 长鑫存储技术有限公司 一种动态随机存储器结构及其形成方法
CN109285838B (zh) * 2018-08-28 2023-05-02 中国科学院微电子研究所 半导体存储设备及其制造方法及包括存储设备的电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100059837A1 (en) * 2008-09-09 2010-03-11 Hynix Semiconductor Inc. Spin Transfer Torque Memory Device Having Common Source Line and Method for Manufacturing the Same
US20130210211A1 (en) * 2011-08-15 2013-08-15 Lidia Vereen Vertical Cross-Point Memory Arrays
CN109461756A (zh) * 2017-09-06 2019-03-12 中国科学院微电子研究所 Mram及其制造方法及包括mram的电子设备
CN109285836A (zh) * 2018-08-28 2019-01-29 中国科学院微电子研究所 半导体存储设备及其制造方法及包括存储设备的电子设备
CN208923136U (zh) * 2018-09-27 2019-05-31 长鑫存储技术有限公司 集成电路存储器及半导体集成电路器件

Also Published As

Publication number Publication date
CN113644061B (zh) 2023-08-22
US11895852B2 (en) 2024-02-06
EP3933922A4 (en) 2023-06-28
EP3933922A1 (en) 2022-01-05
CN113644061A (zh) 2021-11-12
US20210391330A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
CN211719592U (zh) 半导体结构和存储器
WO2021218882A1 (zh) 半导体结构及其形成方法、存储器
US9520406B2 (en) Method of making a vertical NAND device using sequential etching of multilayer stacks
WO2021218606A1 (zh) 半导体结构及其形成方法、存储器及其形成方法
WO2021218881A1 (zh) 半导体结构及其形成方法、存储器
WO2021218607A1 (zh) 半导体结构及其形成方法、存储器及其形成方法
US11404436B2 (en) Memory arrays comprising strings of memory cells and methods used in forming a memory array comprising strings of memory cells
WO2021218059A1 (zh) 半导体结构及其形成方法、存储器及其形成方法
WO2021218112A1 (zh) 半导体结构及其形成方法、存储器及其形成方法
US11856764B2 (en) Memory arrays comprising strings of memory cells and methods used in forming a memory array comprising strings of memory cells
US20230397420A1 (en) Memory Arrays Comprising Strings Of Memory Cells And Methods Used In Forming A Memory Array Comprising Strings Of Memory Cells
US11120852B2 (en) Memory arrays and methods used in forming a memory array
US20230262978A1 (en) Memory Arrays Comprising Strings Of Memory Cells And Methods Used In Forming A Memory Array Comprising Strings Of Memory Cells

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021765539

Country of ref document: EP

Effective date: 20210913

NENP Non-entry into the national phase

Ref country code: DE