WO2021218814A1 - 电池、装置、及电池的制造方法和设备 - Google Patents

电池、装置、及电池的制造方法和设备 Download PDF

Info

Publication number
WO2021218814A1
WO2021218814A1 PCT/CN2021/089319 CN2021089319W WO2021218814A1 WO 2021218814 A1 WO2021218814 A1 WO 2021218814A1 CN 2021089319 W CN2021089319 W CN 2021089319W WO 2021218814 A1 WO2021218814 A1 WO 2021218814A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
battery
battery cell
cell group
capacity
Prior art date
Application number
PCT/CN2021/089319
Other languages
English (en)
French (fr)
Inventor
刘倩
叶永煌
梁成都
金海族
李全国
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21790065.3A priority Critical patent/EP3952001B1/en
Publication of WO2021218814A1 publication Critical patent/WO2021218814A1/zh
Priority to US17/556,991 priority patent/US20220115686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/267Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders having means for adapting to batteries or cells of different types or different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the technical field of energy storage devices, and in particular to a battery, a device, and a method and equipment for manufacturing the battery.
  • the secondary battery is a clean and renewable resource, which can be used as a driving energy or storage unit in automobiles, energy storage and other fields.
  • NCM nickel-cobalt Manganese oxide
  • LFP lithium iron phosphate
  • CN208674305U provides a battery module comprising at least two ternary battery cells connected in series and a safety battery cell connected in series with the ternary battery cell.
  • the safety battery cell includes a lithium manganate battery cell and/or a lithium iron phosphate battery cell.
  • the thermal diffusion of the safety cell is less than that of the ternary cell, so it can effectively block the overall thermal runaway diffusion of the battery module or delay the time of thermal diffusion, thereby improving the safety performance of the battery module.
  • the charging and discharging cycle of the ternary battery cell cannot fully release its energy, which affects the performance of the battery module.
  • the present application provides a battery, a device, and a method and equipment for manufacturing the battery, which can effectively increase the output energy of the battery while ensuring the safety performance of the battery.
  • the first aspect of the present application provides a battery, including:
  • the first type battery cell group and the second type battery cell group connected in series,
  • the first-type battery cell group is composed of multiple first-type battery cells connected in parallel
  • the second-type battery cell group is composed of at least one second-type battery cell connected in parallel
  • the first-type cell and the second-type cell are cells of different chemical systems, and the volumetric energy density of the first-type cell Less than the volumetric energy density of the second type of battery;
  • the capacity Cap1 of the first type battery cell group is greater than the capacity Cap2 of the second type battery cell group
  • the capacity Cap1 of the first type battery cell group is the sum of the corresponding capacity of the first type battery cell
  • the second type battery cell group The capacity Cap2 is the sum of the capacities of the corresponding second-type batteries.
  • cell refers to a battery cell that can be independently charged and discharged.
  • the cell structure includes a positive electrode, a negative electrode, a separator, an electrolyte, and an outer packaging used to encapsulate the positive electrode, negative electrode, separator, and electrolyte.
  • This application does not have any special restrictions on the type and shape of the battery cell, which can be a soft-packed battery cell, a cylindrical battery cell, or a square battery cell.
  • Battery refers to a single physical module that includes one or more cells to provide higher voltage and capacity.
  • the battery may include a battery module and a battery pack.
  • the battery module is formed by electrically connecting a certain number of electric cores together and putting them into a frame in order to protect the electric cores from external impact, heat, vibration, etc.
  • the battery pack is the final state of the battery system installed in electric vehicles and other electrical devices. Most current battery packs are made by assembling various control and protection systems such as battery management systems and thermal management components on one or more battery modules. With the development of technology, the level of battery modules can be omitted, that is, battery packs are directly formed by batteries. This improvement allows the weight energy density and volume energy density of the battery system to be improved while the number of parts is significantly reduced.
  • “Chemical system cells” are classified according to the types of cell cathode materials, and the doped or added auxiliary materials are not limited.
  • cells whose cathode material is lithium iron phosphate (including element-doped) can be defined as iron phosphate Lithium chemical system batteries
  • the positive electrode material is nickel cobalt manganese lithium (generally referred to as NCM) batteries
  • NCM chemical system batteries nickel cobalt lithium aluminate system batteries (generally referred to as NCA) for the positive electrode material is NCA Chemical system cells
  • NCA chemical system cells are all ternary material chemical system cells.
  • Capacity is the initial capacity of the cell, the specific value is: the first type of cell and the second type of cell at room temperature (25°C), within their specific charge and discharge termination voltage, with 0.33C as the discharge rate
  • the volumetric energy density of the second type of cell is greater than that of the first type of cell, so that under the same volume conditions, the second type of cell has more energy than the first type of cell; Under the same volume conditions, the second type of battery cell group has more energy than the first type of battery cell group.
  • the capacity Cap1 of the first type battery cell group is greater than the capacity Cap2 of the second type battery cell group, so that the series connection of the first type battery cell group and the second type battery cell group reduces the first type battery during the charging and discharging cycle.
  • the battery cell group limits the power release of the second-type battery cell group, thereby efficiently exerting the high-volume energy density characteristics of the second-type battery cell group, thereby ensuring the energy throughput and service life of the battery.
  • the first-type battery cell group is composed of a plurality of first-type battery cells in parallel, and the capacity Cap1 of the first-type battery cell group is determined by the plurality of first-type battery cells to which the first-type battery cell group belongs.
  • the sum of the capacity of the core Therefore, while ensuring the capacity of a first-type battery cell group, the capacity of a first-type battery cell group is allocated to a plurality of first-type battery cells.
  • the smaller-volume and large-capacity battery cell has a simpler and more relaxed manufacturing process and conditions, thereby reducing the difficulty of manufacturing the large-capacity first battery pack.
  • the first-type battery cell group and the second-type battery cell group are arranged in at least one row, and at least a part of the second-type battery cell is located between the two first-type battery cells.
  • the first and second types of batteries belonging to different chemical systems have different expansion and thermal conductivity.
  • the arrangement structure of the second type of batteries between the two first types of batteries makes the first type of batteries and the second type of batteries arranged alternately. This structure helps to alleviate the localized arrangement of the batteries based on the same chemical system. For the problem of stress concentration, the reasonable arrangement of the first type of battery cell and the second type of battery cell can effectively release the internal stress of the battery and improve the safety performance of the battery.
  • the capacity Cap1 of the first type cell group and the capacity Cap2 of the second type cell group satisfy the following condition: 0.01 ⁇ (Cap1/Cap2)-1 ⁇ 0.5.
  • the capacity Cap1 of the first type of battery cell group is greater than the capacity of the second type of battery Cap2, which can efficiently take advantage of the high volume energy density of the second type of battery cell group.
  • the first type of battery cell group Cap1 is different from the second type of battery cell group Cap2. The larger the value, the theoretically the smaller the limit on the energy release of the second type of cell group (Note: When the difference between Cap1 of the first type of cell group and Cap2 of the second type of cell group reaches an upper limit, the first type The battery cell group no longer affects the energy release of the second type battery cell group), thereby improving the overall energy release performance of the battery (energy unit: watt-hour, English abbreviation Wh).
  • the first type of battery cell needs a larger volume setting than the second type of battery. Therefore, if the capacity of the first type of battery cell group is The capacity difference of the core group is too large. Under the same battery capacity, the larger the volume ratio of the first type of battery cell, the lower the overall volume energy density of the battery, that is, the lower the battery energy under the same volume condition. For this reason, in the optional solution of this application, the value of (Cap1/Cap2) is controlled within the range of 0.01 ⁇ (Cap1/Cap2)-1 ⁇ 0.5, which guarantees the overall energy density of the battery and gives full play to the high energy of the second type of battery cell. Density characteristics, thereby improving the overall performance of the battery.
  • the capacity decay rate of the second type of cell is less than that of the first type of cell.
  • the capacity decay rate of the core that is, when the capacity retention rate of the first type of battery and the second type of battery decays to 80% of the capacity (initial capacity)
  • the number of cycles of the second type of battery is greater than that of the first type of battery Cycles.
  • the capacity of the first type of cell under working conditions decays faster, and the capacity of the second type of cell decays more slowly.
  • the initial capacity of the battery module improves the overall service life of the battery module, that is, the number of battery cycles before the overall attenuation rate of the battery module reaches 80%.
  • a first-type battery cell group includes a first-type battery cells; a second-type battery cell group includes b second-type battery cells; a and b are natural numbers, and a ⁇ 1, b ⁇ 1, 0.1 ⁇ a/b ⁇ 50, in some exemplary embodiments, 0.5 ⁇ a/b ⁇ 30, and in other exemplary embodiments, 1 ⁇ a/b ⁇ 10.
  • the first type of battery cell has a high capacity, low energy density, and high safety; the second type of battery has a low capacity, high energy density, and a slightly lower safety.
  • the first type of battery cell group can improve the overall safety performance of the battery, but the excessive number of the first type of battery cell group will affect the overall volume energy density of the battery.
  • the number is controlled within the range of 0.1 ⁇ a/b ⁇ 50, which can ensure the overall safety performance of the battery while increasing the overall volumetric energy density of the battery, thereby improving the overall performance of the battery module.
  • the capacity Cap1 of all the battery cell groups of the first type is the same; and/or when b>1, the capacity Cap2 of all the battery cell groups of the second type is the same.
  • the uniformity of the battery capacity of the same type can effectively improve the performance stability of the battery.
  • the same capacity means that the capacity of multiple battery cell groups is basically the same, and an error of less than 0.5% is an acceptable range.
  • the ratio of the capacity of the first type of cell to the capacity of the second type of cell is
  • the volume energy density of the first type of cell is less than the volume energy density of the second type of cell.
  • the capacity ratio of the first type of cell to the capacity of the second type of cell is 10% to 150%, it is beneficial for different types of cells.
  • the cell structure ratio is adjusted to improve the rationality of the overall battery design.
  • the first type of battery cell and the second type of battery satisfy at least one of the following conditions:
  • the ratio of the specific heat capacity C1 of the first type cell to the specific heat capacity C2 of the second type cell is 0.9 ⁇ C1/C2 ⁇ 10, in some exemplary embodiments it may be 1 ⁇ C1/C2 ⁇ 6, and in others In an exemplary embodiment, it may be 1.5 ⁇ C1/C2 ⁇ 3;
  • Specific heat capacity refers to the increase (or decrease) of a certain substance per unit mass absorbed (or released) per unit temperature
  • the heat The greater the specific heat capacity, the stronger the material's ability to absorb or dissipate heat.
  • the greater the specific heat capacity the smaller the temperature rise of the battery cell when the unit mass of the battery cell is heated with the same amount of heat.
  • the smaller the specific heat capacity the greater the temperature rise of the cell when the cell of unit mass is heated with the same amount of heat.
  • two cells with different specific heat capacities are connected, and the cell with a larger temperature rise can transfer heat to the cell with a smaller temperature rise, which is beneficial to the overall heat management of the module and the battery pack.
  • the ratio of the thermal conductivity ⁇ 1 of the first type cell to the thermal conductivity ⁇ 2 of the second type cell is 0.5 ⁇ 1/ ⁇ 2 ⁇ 3, and in some exemplary embodiments, it may be 0.7 ⁇ 1/ ⁇ 2 ⁇ 2. In other exemplary embodiments, it may be 0.9 ⁇ 1/ ⁇ 2 ⁇ 1.5.
  • the thermal conductivity of the cell refers to the thermal conductivity value from the direction perpendicular to the large surface of the pole piece. Refers to the direction perpendicular to the surface of the active material of the pole piece in the cell pole piece, that is, the normal direction of thermal conductivity measurement.
  • the thermal conductivity reflects the thermal conductivity of a substance. The higher the value, the stronger the thermal conductivity.
  • This application controls the thermal conductivity ratio ( ⁇ 1/ ⁇ 2) of the first type cell and the second type cell to control the heat transfer rate inside the first type cell and the second type cell and between the two types of cells And ability. Specifically, a cell with a larger thermal conductivity coefficient transfers heat faster, and a cell with a smaller thermal conductivity coefficient transfers heat slower. Two cells with different thermal conductivity are connected.
  • the cell with faster heat transfer can transfer heat to the adjacent cell with slower heat transfer; on the other hand, at high temperature or higher heat generation In a large environment, the cells with faster heat transfer will not accumulate heat; thereby ensuring better low-temperature performance and higher safety performance of the modules and battery packs.
  • the value of ⁇ 1/ ⁇ 2 is controlled within the range of 0.5 ⁇ 1/ ⁇ 2 ⁇ 3. It can effectively adjust the overall heat transfer rate and heat distribution of the module to optimize the operating performance of the module.
  • the high-temperature battery cell can transfer heat to the low-temperature battery cell in a timely manner to avoid the overall performance of the battery module caused by uneven heat distribution; in a low-temperature operating environment, the high-temperature battery cell will timely The heat is transferred to the low-temperature battery cell, so that the low-temperature battery cell heats up in a timely manner, thereby optimizing the overall heat distribution of the battery module, and thereby improving the operating state of the battery module.
  • the ratio of the density ⁇ 1 of the first type of cell to the density ⁇ 2 of the second type of cell is 0.6 ⁇ 1/ ⁇ 2 ⁇ 3, in some exemplary embodiments it may be 0.8 ⁇ 1/ ⁇ 2 ⁇ 2, in others In an exemplary embodiment, it may be 0.9 ⁇ 1/ ⁇ 2 ⁇ 1.5.
  • the density of the cell also affects the heat transfer capacity.
  • This application controls the rate of heat transfer between the first type of battery and the second type of battery and the rate of heat transfer between the first type of battery and the second type of battery by controlling the weight density ratio ( ⁇ 1/ ⁇ 2) of the first type of battery cell and the second type of battery cell. And ability.
  • ⁇ 1/ ⁇ 2 is controlled within the above range. It can effectively adjust the overall heat transfer rate and heat distribution of the module to optimize the operating performance of the module.
  • the high-temperature battery cell can transfer heat to the low-temperature battery cell in a timely manner to avoid the overall performance of the battery module caused by uneven heat distribution; in a low-temperature operating environment, the high-temperature battery cell will timely The heat is transferred to the low-temperature battery cell, so that the low-temperature battery cell heats up in a timely manner, thereby optimizing the overall heat distribution of the battery module, and thereby improving the operating state of the battery module.
  • the specific heat capacity ratio, conductivity ratio, and density ratio of the first type of cell and the second type of cell are based on the type of cell, the structure of the battery module, and the overall coordination and debugging of the application environment to optimize the battery model. Group overall performance.
  • the first type of batteries and the second type of batteries include but are not limited to lithium/sodium/magnesium ion batteries, lithium/sodium/magnesium metal batteries, lithium/sodium/magnesium-all solid/semi-solid/quasi Solid/polymer/gel electrolyte-cells, and other rechargeable secondary cells. This application does not limit specific battery cell types.
  • the platform voltage V1 of the first type cell is 3.15V ⁇ 0.05V ⁇ 4.75V ⁇ 0.05V; the platform voltage V2 of the second type cell is 3.60 ⁇ 3.80V ⁇ 0.05V .
  • platform voltage refers to: for a cell whose cathode material is a two-phase phase change material (such as LFP), its phase change voltage is its platform voltage; for a cell whose cathode material is a solid solution material (such as LCO or ternary material) battery, its discharge capacity to half of its initial capacity voltage.
  • Specific values such as: the platform voltage of the battery of the conventional lithium cobalt oxide chemical system is about 3.7V, the platform voltage of the battery of the lithium manganese oxide (LMO) chemical system is about 3.8V, and the battery of the NCM ternary material chemical system
  • the platform voltage of the battery is between 3.5V and 3.85V, and the platform voltage of the lithium iron phosphate chemical system cell is about 3.22V.
  • the first type of cells can be LFP chemical system cells or LMO chemical system cells, etc.
  • the second type of cells can be ternary material chemical system cells (such as NCM chemical system cells or NCA chemical system cells). System batteries) and so on.
  • the voltage and capacity of the battery cell are the key factors for the energy released by the battery cell, and a reasonable platform voltage helps to improve the battery performance.
  • the specific selection is determined according to the battery cell capacity and the actual needs of the battery.
  • the first type of cell is a lithium iron phosphate chemical system cell; the second type of cell is a ternary material chemical system cell.
  • the second aspect of the present application provides a battery pack, which includes the above-mentioned battery.
  • the third aspect of the present application provides a device including the above-mentioned battery and using the battery as a power source.
  • the device includes, but is not limited to: vehicles, ships, airplanes, and various energy storage devices. This application does not limit the type and scope of the device.
  • the manufacturing method of the battery provided in the fourth aspect of the present application includes:
  • first-type batteries and at least one second-type batteries are batteries of different chemical systems; the volumetric energy density of the first-type batteries is lower than that of the second-type batteries The volumetric energy density;
  • the capacity Cap1 of the first type battery cell group is greater than the capacity Cap2 of the second type battery cell group, the capacity Cap1 of the first type battery cell group is the sum of the corresponding capacity of the first type battery cell, and the second type battery cell group
  • the capacity Cap2 is the sum of the capacities of the corresponding second-type batteries
  • the first-type battery cell group and the second-type battery cell group are connected in series.
  • connecting a plurality of first-type battery cells in parallel to form a first-type battery cell group includes: connecting a plurality of first-type battery cells in parallel to form a first-type battery cell group, a is a natural number, and a ⁇ 1;
  • Connecting at least one second-type battery cell in parallel to form a second-type battery cell group includes: connecting at least one second-type battery cell in parallel to form b second-type battery cell groups, b is a natural number, and b ⁇ 1,
  • the manufacturing method further includes:
  • a plurality of first-type battery cells and at least one second-type battery core are arranged in at least one column, and at least part of the second-type battery cores are located between the two first-type battery cores.
  • the fifth aspect of the present application provides a battery manufacturing equipment, including a processor,
  • the processor is used to control the clamp arm to obtain a plurality of first-type batteries and at least one second-type batteries, the first-type batteries and the second-type batteries are batteries of different chemical systems; and the volume of the first-type batteries The energy density is less than the volumetric energy density of the second type of battery cell;
  • the processor is also used to control the assembly parts for:
  • the capacity Cap1 of the first type battery cell group is greater than the capacity Cap2 of the second type battery cell group, the capacity Cap1 of the first type battery cell group is the sum of the corresponding capacity of the first type battery cell, and the second type battery cell group
  • the capacity Cap2 is the sum of the capacities of the corresponding second-type batteries
  • the first-type battery cell group and the second-type battery cell group are connected in series.
  • the specific structures and requirements of the first-type battery cell group and the second-type battery cell group are the same as the specific description of the battery provided in this application above, and will not be repeated.
  • the batteries and devices provided in the embodiments of the present application can solve other The technical problems, other technical features included in the technical solutions, and the beneficial effects brought about by these technical features will be further described in detail in the specific implementation.
  • FIG. 1 is a schematic diagram of the relationship between the capacity retention and the life of an embodiment of a lithium iron phosphate chemical system battery cell in some situations;
  • FIG. 2 is a schematic diagram of the relationship between the capacity retention and the life of an embodiment of the NCM chemical system cell under some circumstances;
  • FIG. 3 is a schematic diagram of the relationship between battery cell capacity retention and service life in an embodiment of the battery module of an embodiment of a lithium iron phosphate chemical system battery cell and an NCM chemical system battery module connected in series in some cases;
  • FIG. 4 is a schematic diagram of the structure of an embodiment of the battery of the present application.
  • FIG. 5 is a schematic diagram of the relationship between the capacity retention of the battery cell and the life of the battery in an embodiment of the battery of the present application;
  • FIG. 6 is a schematic structural diagram of another embodiment of the battery of the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of the battery of the present application.
  • FIG. 8 is a schematic structural diagram of an embodiment of the device of the present application.
  • FIG. 9 is a schematic flowchart of an embodiment of a method for manufacturing a battery according to the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of the battery manufacturing equipment of the present application.
  • the energy of the secondary battery is often increased by increasing the number of cells of the secondary battery or developing high-volume energy density cells such as NCM chemical system cells.
  • increasing the number of batteries will increase the quality and volume of the secondary battery, and the safety performance of the batteries of the NCM chemical system is poor.
  • the LFP chemical system cell with a higher safety factor and the NCM chemical system cell are used in series, the high volume energy density characteristics of the NCM chemical system cell cannot be used. How to take into account the safety of the secondary battery while improving the output energy of the secondary battery is still an urgent problem in the industry.
  • the capacity of the cell directly determines the energy output of the cell.
  • Cells of different chemical system types have different life decay modes. As shown in FIG. 1, a schematic diagram of the relationship between the capacity retention and the life of the cell in an embodiment of the LFP system cell, the X axis represents the working time of the cell, that is, its life, and the Y axis represents the capacity of the cell (in Ah).
  • L1 is the capacity decay curve of the LFP chemical system cell. The life of the LFP chemical system cell decays faster in the early stage, then gradually slows down and approaches the linear decay mode, and the linear slope of the later flattening linearity changes from large to small.
  • E L V L *Cap. L
  • VL the platform voltage of the LPF cell
  • Cap. L the cell capacity of the LFP chemical system.
  • E Lt the cumulative energy output during the theoretical life cycle of the LFP
  • x the total number of cycles
  • S1 is the area from below L1 to the X-axis area, which represents the cumulative capacity of the LFP chemical system cell throughout the life cycle, and S1 determines the total energy output of the LFP chemical system cell during the entire life cycle quantity.
  • FIG. 2 is a schematic diagram of the relationship between the capacity retention and the lifespan of the cell in an embodiment of the NCM system cell.
  • L2 is the capacity decay curve of the NCM chemical system cell.
  • the NCM chemical system cell decays slowly in the early stage, and the later decay becomes faster and approaches a linear decay mode.
  • the cumulative energy output during the theoretical life cycle is E Nt , y is the total number of cycles.
  • S2 is the area from the bottom of L2 to the X-axis area, which represents the cumulative capacity of the NCM chemical system cell throughout the life cycle.
  • S2 determines the total energy output of the NCM chemical system cell during the entire life cycle, and S2 determines the NCM The total energy output of the battery cell of the chemical system throughout its life cycle.
  • the LFP chemical system cell in Figure 1 and the NCM chemical system cell in Figure 2 are connected in series to form a battery (wherein, the LFP chemical system cell and the NCM chemical system cell have the same capacity value ), the battery output energy is the sum of the energy corresponding to the capacity of the overlapping part of S1 in Figure 1 and Figure 2 Energy (which originally belonged to the energy contained in the cells of the NCM chemical system) did not perform its function and was wasted (wherein, when the battery is discharged, the cells of the LFP chemical system and the cells of the NCM chemical system take the normal platform voltage of the two For example, the cell platform voltage of the LFP chemical system is 3.22v, and the cell platform voltage of the NCM chemical system is 3.68v).
  • this application provides a battery including:
  • the first-type battery cell group and the second-type battery cell group are connected in series, and the battery includes at least one first-type battery cell group and one second-type battery cell group.
  • a first-type battery cell group is composed of multiple first-type battery cells connected in parallel
  • a second-type battery cell group is composed of at least one or more second-type battery cells connected in parallel.
  • the core and the second type of batteries are batteries of different chemical systems, and the volume energy density of the first type of batteries is less than the volume energy density of the second type of batteries;
  • the capacity Cap1 of a first type battery cell group is greater than the capacity Cap2 of a second type battery cell group, and the capacity Cap1 of a first type battery cell group is the sum of the capacities of the corresponding first type battery cells (that is, the All the first-type batteries in the first-type battery cell group)
  • the capacity of the second-type battery cell group Cap2 is the corresponding second-type battery cell (that is, all the second-type batteries in the second-type battery cell group) The sum of capacity.
  • the volumetric energy density of the second type of cell is greater than that of the first type of cell, so that under the same volume conditions, the second type of cell has more energy than the first type of cell; Under the same volume conditions, the second type of battery cell group has more energy than the first type of battery cell group.
  • the capacity Cap1 of the first type of battery cell group is greater than the capacity of the second type of battery cell group (Cap2, so that the series connection of the first type of battery cell group and the second type of battery cell group in the battery charge and discharge cycle process, reduce the first
  • the class cell group limits the power release of the second class cell group, thereby efficiently exerting the high volume energy density characteristics of the second class cell group, thereby improving the overall energy throughput and service life of the battery.
  • FIG. 4 is a schematic structural diagram of an embodiment of the application.
  • the battery provided in this embodiment includes one LFP chemical system cell group 110 (as the first type cell group) and one NCM chemical system cell group (as the second type cell group) 210.
  • the LFP chemical system cell group 110 and the NCM chemical system cell group 210 are connected in series.
  • the LFP chemical system cell group 110 is composed of the LFP chemical system cell 111 and the LFP chemical system cell 112 connected in parallel.
  • the capacity of the LFP chemical system cell group 110 is the capacity of the LFP chemical system cell 111 and the LFP chemical system cell 112. ⁇ The combination.
  • the capacity of the cell group 110 of the LFP chemical system is greater than the capacity of the cell group 210 of the NCM chemical system.
  • the NCM chemical system cell group 210 has only one NCM chemical system cell.
  • the volume energy density of the cells of the NCM chemical system is greater than that of the cells 111 and 112 of the LFP chemical system.
  • the cells 111 and 112 of the LFP chemical system have the same structure, and have the same volumetric energy density and capacity. It is worth noting that in other embodiments, the cells 111 and 112 may have different capacities, which does not affect the realization of the objectives of the technical solution of the present application.
  • FIG. 5 is a schematic diagram of accumulated energy output and life of the battery embodiment shown in FIG. 4 during operation;
  • the platform voltage of the LFP chemical system cell group is about 3.22V
  • the platform voltage of the NCM chemical system cell group is about 3.68V
  • the line L11 is the capacity retention rate curve of the LFP system cell group 110
  • the line L21 is the capacity retention rate curve of the NCM chemical system cell group 210.
  • the capacity (initial capacity) of the cell group 110 of the LFP chemical system is greater than the capacity (initial capacity) of the cell group 210 of the NCM chemical system.
  • the initial capacity of the LFP chemical system cell group 110 decays faster, and the NCM chemical system cell group 210 has a slower initial capacity decay.
  • the two types of chemical system battery cell groups have the same capacity value for the first time in the period of point A. ; During this period, based on the LFP chemical system cell group 110 capacity is greater than the NCM chemical system cell group 210 capacity, the total energy output of the LFP chemical system cell group 110 and the NCM chemical system cell group 210 depends on the NCM chemical system cell Capacity of group 210.
  • the capacity decay of the LFP chemical system cell group 110 gradually slowed down and approached the linear decay mode, and the linear slope of the later flattening linearity changed from large to small.
  • the NCM chemical system cell group 210 capacity decayed faster in the later period and approached Linear decay mode.
  • the capacity values of the two types of batteries appear to be the same at point B for the second time.
  • the overall energy throughput of the battery depends on the capacity of the LFP chemical system cell group 110, even if the total theoretical capacity of the NCM chemical system cell group 210 is greater than the theoretical capacity of the LFP chemical system cell group 110 Total capacity
  • the overall energy throughput of the battery depends on the capacity of the NCM chemical system cell group 210, even if the total theoretical capacity of the LFP chemical system cell group 110 is greater than the theoretical total capacity of the NCM chemical system cell group 210.
  • the energy corresponding to the capacity represented by the area S41 formed between the two points A and B of the curves L11 and L21 is the unreleased energy of the cell group 210 of the NCM chemical system.
  • the area of S41 in Figure 5 is significantly smaller than that of S4 in Figure 3 The area, which effectively reduces the energy waste of the NCM chemical system cell group 210.
  • the battery module provided in this embodiment more efficiently releases the energy of the NCM chemical system cell group 210 with high energy density, and gives full play to the large volume energy density of the NCM chemical system cell group 210 (ie, high-density capacity cells).
  • the characteristics of the characteristics are described in detail below.
  • the capacity of the LFP chemical system cell group 110 is adjusted so that the initial capacity of the LFP chemical system cell group 110 is greater than the initial capacity of the NCM chemical system cell group 210 .
  • the capacity of the first type battery cell group with a lower volumetric energy density it is greater than the capacity of the second type battery cell group with a higher volumetric energy density, namely The output energy efficiency of the second type of batteries can be improved, thereby improving the overall energy output efficiency of the battery provided in the present application.
  • the capacity Cap1 of the LFP chemical system cell group and the capacity Cap1 of the NCM chemical system cell group meet the following conditions: 0.01 ⁇ (Cap1/Cap2)-1 ⁇ 0.5. In this way, the energy of the NCM chemical system cell group can be effectively and fully released while reducing the energy waste of the LFP chemical system cell group. In some examples, 0.02 ⁇ (Cap1/Cap2)-1 ⁇ 0.25, in other examples, 0.04 ⁇ (Cap1/Cap2)-1 ⁇ 0.15, and the specific value is determined according to actual needs.
  • the capacity decay rate of the second type cell is less than that of the first type cell.
  • the capacity decay rate of the core that is, when the capacity retention rate of the first type of battery and the second type of battery decays to 80% of the capacity (initial capacity)
  • the number of cycles of the second type of battery is greater than that of the first type of battery Cycles.
  • the battery In the automotive application of secondary batteries, during the recycling process of batteries (referring to all the cells or battery packs in the car), when the battery ages to a certain extent (for example, its capacity decays to less than 80% of its initial capacity) , May not meet the requirements of car operation. For this reason, in this application, the capacity of the first type of cell under working conditions decays faster, and the capacity of the second type of cell decays more slowly. Through the capacity matching design of the two types of cells, the faster decay of the cell is improved.
  • the initial capacity of the battery module improves the overall service life of the battery module, that is, the number of battery cycles before the overall attenuation rate of the battery module reaches 80%.
  • platform voltages of the first type of battery cell and the second type of battery cell will also affect the overall energy release efficiency of the battery.
  • this embodiment the platform voltages of the first type of battery cell and the second type of battery cell will also affect the overall energy release efficiency of the battery.
  • the platform voltage V1 of the first type cell is 3.15V ⁇ 0.05V ⁇ 4.75V ⁇ 0.05V; the platform voltage V2 of the second type cell is 3.60 ⁇ 3.80V ⁇ 0.05V.
  • the LFP chemical system cell 111, the NCM chemical system cell 210 (ie, the NCM chemical system cell group 210), the LFP chemical system cell 112 are arranged in a row, and the NCM chemical system cell 210 is located in the LFP chemical system cell. Between the core 111 and the LFP chemical system cell 112, the LFP chemical system cell and the NCM chemical system cell are arranged alternately.
  • each battery cell (including the LFP chemical system battery cell 111, 112 and the NCM chemical system battery cell 210, etc.) will produce gas, swell, and generate heat.
  • the LFP chemical system cells and the NCM chemical system cells belonging to different chemical systems have different cell density, specific heat capacity, and thermal conductivity, so they will have different degrees of expansion and thermal diffusion, and form stress differences in different areas of the battery. If the stress difference is too large, the safety performance and electrical performance of the battery will be affected.
  • the interphase arrangement structure of the cells of the LFP chemical system and the NCM chemical system helps to alleviate the problem of local stress concentration caused by the concentrated arrangement of the cells based on the same chemical system, effectively release the internal stress of the battery, and promote the internal difference of the battery.
  • the regional stress is balanced, thereby improving battery safety performance and electrical performance.
  • the battery performance can be optimized by further setting the cell density, specific heat capacity, and thermal conductivity of the LFP chemical system cell and the NCM chemical system cell.
  • the ratio of the specific heat capacity C1 of the LFP chemical system cell to the specific heat capacity C2 of the NCM chemical system cell is 0.9 ⁇ C1/C2 ⁇ 10, in some examples it can be 1 ⁇ C1/C2 ⁇ 6, in other examples it can be 1.5 ⁇ C1/C2 ⁇ 3;
  • the ratio of the thermal conductivity ⁇ 1 of the LFP chemical system cell to the thermal conductivity ⁇ 2 of the NCM chemical system cell is 0.5 ⁇ 1/ ⁇ 2 ⁇ 3, in some examples it can be 0.7 ⁇ 1/ ⁇ 2 ⁇ 2, in other examples it can be 0.9 ⁇ 1/ ⁇ 2 ⁇ 1.5;
  • the ratio of the cell density ⁇ 1 of the LFP chemical system to the density ⁇ 2 of the NCM chemical system cell is 0.6 ⁇ 1/ ⁇ 2 ⁇ 3, in some examples it can be 0.8 ⁇ 1/ ⁇ 2 ⁇ 2, in other examples it can be 0.9 ⁇ ⁇ 1/ ⁇ 2 ⁇ 1.5.
  • FIG. 6 is a schematic structural diagram of another embodiment of the battery provided by this application.
  • the battery provided in this embodiment includes one LFP chemical system cell group 120 and two NCM chemical system cell groups 220 and 230.
  • the LFP chemical system cell group 120 is connected in series with the NCM chemical system cell groups 220 and 230.
  • the capacity of the LFP chemical system cell group 120 is greater than the capacities of the NCM chemical system cell groups 220 and 230, respectively.
  • the LFP chemical system cell group 110 is composed of LFP chemical system cells 121, LFP chemical system cells 122 and LFP chemical system cells 123 connected in parallel.
  • the capacity of the LFP chemical system cell group 120 is LFP chemical system cells.
  • the capacities of the NCM chemical system cell groups 220 and 230 are equal.
  • the NCM chemical system cell group 220 is composed of NCM chemical system cells 221 and 222 connected in parallel, and the capacity of the NCM chemical system cell group 220 is the sum of the capacities of the NCM chemical system cells 221 and 222.
  • the NCM chemical system cell group 230 has a single cell structure.
  • the capacity of the NCM chemical system cell groups 220 and 230 are equal, but compared to the single cell structure of the NCM chemical system cell group 230, the NCM chemical system cell group consists of two NCM chemical system cells 221 and 222. Core composition.
  • the volume of a single cell in the NCM chemical system cell group 220 is smaller than that of the NCM chemical system cell group 230.
  • the small-volume cell has a more concise and relaxed manufacturing process and conditions, thereby reducing the number of large-capacity cells.
  • the manufacturing of battery packs is difficult; in addition, compared with large-volume cells, small-volume cells can have a higher charge and discharge rate, and the flexibility of cell arrangement to improve cell performance and design flexibility.
  • the NCM chemical system cell 221, the LFP chemical system cell 121, the NCM chemical system cell 222, the LFP chemical system cell 122, the NCM chemical system cell 230, and the LFP chemical system cell 123 are arranged in sequence.
  • the capacities of the NCM chemical system cell groups 220 and 230 are equal, but in other embodiments, if there are multiple NCM chemical system cell groups, the capacity of each NCM chemical system cell group can be All are the same, some of them are the same, or all are different, which are designed according to the overall needs of the battery, which do not limit the scope of protection of the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of the battery provided by this application.
  • the battery provided in this embodiment includes two LFP chemical system cell groups 130 and 140, and four NCM chemical system cell groups 240, 250, 260, and 270.
  • the above-mentioned multiple battery cell groups are connected in series.
  • the capacity of the two LFP chemical system cell groups is greater than the capacity of the four NCM chemical system cell groups.
  • the capacities of the two LFP chemical system cell groups are the same or different, and the capacities of the four NCM chemical system cell groups are the same or different, which does not limit the protection scope of the present application.
  • the LFP chemical system cell group 130 is composed of the LFP chemical system cell 131 and the LFP chemical system cell 132 connected in parallel.
  • the capacity of the cell group 130 of the LFP chemical system is the combination of the capacities of the cells 131 and 132 of the LFP chemical system.
  • the LFP chemical system cell group 140 has a single cell structure.
  • the capacities of the four NCM chemical system cell groups are equal, and all have a single cell structure.
  • the LFP chemical system cell 131, the NCM chemical system cell 240 (ie, the NCM chemical system cell group 240), and the LFP chemical system cell 132 are arranged in a row.
  • NCM chemical system cell 250 i.e. NCM chemical system cell group 250
  • LFP chemical system cell 140 i.e. NCM chemical system cell 140
  • NCM chemical system cell 260 i.e. NCM chemical system cell group 260
  • NCM chemical system cell 270 i.e. NCM The chemical system battery cell group 270
  • the first type of cell can be an LFP chemical system cell
  • the second type of cell can be an NCM chemical system cell, an NCA chemical system cell, a lithium cobalt oxide chemical system cell, or a lithium manganate chemical system cell. Cells and so on.
  • the first type of cell can be a LFP chemical system cell, a lithium cobalt oxide chemical system cell, or a manganese acid cell Lithium chemical system batteries and so on.
  • first type of batteries and the second type of batteries include but are not limited to lithium/sodium/magnesium ion batteries, lithium/sodium/magnesium metal batteries, lithium/sodium/magnesium-all solid/semi-solid/ Quasi-solid/polymer/gel electrolyte-cells, and other rechargeable secondary cells.
  • the preparation methods of the batteries in each embodiment and comparative example are as follows.
  • the positive electrode material, the conductive carbon Super P, and the binder polyvinylidene fluoride (PVDF) are mixed in an appropriate amount of N-methylpyrrolidone (abbreviated as NMP) solvent at a weight ratio of 95:3:2 to make it form Uniform, stable slurry with a viscosity of 3000mPa ⁇ s to 20000mPa ⁇ s.
  • NMP N-methylpyrrolidone
  • the positive electrode material slurry is uniformly coated on the positive electrode current collector A1 foil, and after drying, the pole pieces are cold pressed to the designed compaction, and the pole pieces are divided into strips for later use to obtain the positive pole pieces.
  • An equal volume of ethylene carbonate is dissolved in propylene carbonate, and then an appropriate amount of lithium hexafluorophosphate is uniformly dissolved in the mixed solvent for later use to obtain an electrolyte.
  • the negative electrode active material such as graphite and conductive carbon, the binder polystyrene butadiene copolymer (SBR), and the thickener sodium carboxymethyl cellulose (CMC) are mixed in an appropriate amount at a weight ratio of 95:2:2:1. Stir and mix thoroughly in the water solvent to form a uniform negative electrode stable slurry; evenly coat the slurry on the negative electrode current collector Cu foil, dry the pole pieces and cold press them to the design compaction, and divide them into strips for later use.
  • SBR polystyrene butadiene copolymer
  • CMC thickener sodium carboxymethyl cellulose
  • the positive pole piece, the separator and the negative pole piece are wound together to form a bare cell, and then placed in the battery case, the electrolyte is injected, and then the process of forming and sealing is carried out to obtain the final product.
  • Rechargeable power cell Rechargeable power cell.
  • the discharge capacity is the nominal capacity value of the battery.
  • the charge and discharge rate is 0.33C (C represents the rated capacity of the battery cell.
  • the charge/discharge current is the rate multiplied by the rated capacity of the battery cell.
  • the battery cell capacity identified in the GBT certification document of the battery pack shall prevail).
  • the test procedure for the capacity of the cell is as follows: 1) Let stand for 30 minutes at 25°C; 2) Discharge at a constant current of 0.33C to the discharge termination voltage (for example, the cell of the NCM chemical system is set to 2.8V, and the LFP chemical system Set the battery cell to 2.5V), and then let it stand for 30 minutes; 3) 0.33C constant current charge to the end-of-charge voltage (for example, NCM chemical system cell is 4.35V, LFP chemical system cell is 3.65V), constant voltage charge To the current ⁇ 0.05C, then let it stand for 5 minutes; 4) 0.33C constant current discharge to the discharge termination voltage.
  • the measured discharge capacity is the nominal capacity value of the battery cell.
  • Test method for cell capacity retention rate refer to GB/T 31484-2015 "Requirements and Test Methods for Cycle Life of Power Batteries for Electric Vehicles”.
  • the charge/discharge current is the ratio multiplied by the rated capacity of the battery cell, and the rated capacity is based on the battery cell , Or the battery cell capacity recognized in the GBT certification document of the battery module to which the battery cell belongs or the battery pack to the battery pack shall be subject to constant current discharge to the cell discharge termination voltage, and then let it stand for 30 minutes; 3) 0.33C Charge with constant current to the end voltage of the cell, and charge with constant voltage until the current is ⁇ 0.05C, and then stand for 5 minutes; 4) Discharge at a constant current of 0.33C to the end of cell discharge voltage, and then stand for 5 minutes. The discharge capacity measured from step 3) to step 4) is counted as Cap0.
  • Step 1) ⁇ Step 4) is a charge and discharge cycle of the battery cell.
  • Test 1 Module heating triggers thermal runaway test, refer to the document of the Ministry of Industry and Information Technology [2016] No. 377 of the safety technical conditions for electric buses.
  • a test module composed of two or more cells to be tested depending on the specific scenario, it is necessary to determine whether a heat insulation pad is added between the cells and the thickness of the heat insulation pad, and whether to turn on the water circulation.
  • Select the trigger method for heating out of control such as the heating plate/heating plate heating method, the battery is fully charged, the simple module is fixed with a fixture, the heating plate is placed close to the large surface of the first cell, and the simple mold is fixed with two steel plate fixtures Group.
  • the heating plate Connect the heating plate to the power supply, turn on the heating plate power supply device and start heating until the first cell has thermal runaway, turn off the heating plate, observe and record the time when the second/N cell has thermal runaway; if thermal runaway is triggered If the cell does not cause fire or explosion of adjacent cells, it is judged that the heat spread barrier is realized, otherwise, it is judged that heat spread has occurred.
  • Test 2 Using module acupuncture to trigger thermal runaway test, refer to GB/T 31485-2015. Specific test method:
  • test whether a cell in the module will spread to adjacent cells after thermal runaway due to acupuncture A test module composed of cells to be tested. To test specific scenarios, it is necessary to determine whether to add heat insulation pads and the thickness of the insulation pads between the cells, and to determine whether to turn on the water cycle. If the battery is fully charged, choose two steel plate fixtures with holes to fix the simple module. Use ⁇ 3 ⁇ 8mm high temperature resistant stainless steel needle (the needle angle is 20° ⁇ 60°, the needle surface is smooth, no rust, oxide layer and oil stain), and the speed is 0.1 ⁇ 40mm/s from perpendicular to the battery core The direction of the pole plate penetrates to the first cell to trigger thermal runaway. Observe and record the time when the adjacent second/N cells have thermal runaway; the cell that triggers thermal runaway does not cause the adjacent cells to catch fire or explode. The heat spread barrier is realized, otherwise it is judged that heat spread has occurred.
  • test process reference is as follows:
  • the current I measured at this time is the maximum discharge current.
  • the present application also provides a device including the above-mentioned battery module, and the battery module is used as a power source.
  • the device is an automobile, and the battery 10 provided by the present application is installed in the automobile as its power source.
  • the device includes, but is not limited to: vehicles, ships, airplanes, and various energy storage devices. This application does not limit the type and scope of the device.
  • the present application also provides a method for manufacturing a battery module, which includes the steps:
  • Step S1 Obtain a plurality of first-type batteries and at least one second-type batteries, where the first-type batteries and the second-type batteries are batteries of different chemical systems;
  • the volume energy density of the first type of battery is less than the volume energy density of the second type of battery
  • Step S2 connecting a plurality of first-type battery cells in parallel to form a first-type battery cell group, and connecting at least one second-type battery cell in parallel to form a second-type battery cell group;
  • the capacity Cap1 of the first type battery cell group is greater than the capacity Cap2 of the second type battery cell group.
  • the capacity Cap1 of the first type battery cell group is the sum of the corresponding capacity of the first type battery cell group, and the capacity of the second type battery cell group Cap2 is the sum of the capacities of the corresponding second type batteries;
  • Step S3 connecting the first type battery cell group and the second type battery cell group in series.
  • Connecting a plurality of first-type battery cells in parallel to form a first-type battery cell group includes: connecting a plurality of first-type battery cells in parallel to form a first-type battery cell group, a is a natural number, and a ⁇ 1;
  • Connecting at least one second-type battery cell in parallel to form a second-type battery cell group includes: connecting at least one second-type battery cell in parallel to form b second-type battery cell groups, b is a natural number, and b ⁇ 1,
  • a and b are not limited, for example, a is 1, 2, 3...10...100...1000...10000, b is 1, 2, 3...10...100...1000...10000, the first type of cell And the arrangement of the second type of batteries is not restricted.
  • a plurality of first-type battery cells and at least one second-type battery cell are arranged in at least one column, and at least part of the second-type battery cells are located between the two first-type battery cells.
  • the spaced arrangement of the first type of batteries and the second type of batteries can strengthen the heat conduction between the first type of batteries and the second type of batteries, and reduce the expansion based on the first type of batteries and the second type of batteries. The stress, thereby improving the overall performance of the battery.
  • the manufacturing equipment of the battery module provided in this embodiment, referring to FIG. 10, the manufacturing equipment of the battery module includes a processor 20.
  • the processor 20 is used to control the clamp arm 21 to obtain a plurality of first-type batteries 31, 32, 34 and at least one second-type battery 33.
  • the first-type batteries 31 and the second-type batteries 33 have different chemical systems. Cells; and, the volume energy density of the first type of electricity 31, 32, and 34 is less than the volume energy density of the second type of battery 33;
  • the processor 20 is also used to control the assembling part 22, which is used to connect the first type of batteries 31, 32, 34 and the second type of batteries 33 in series to form a battery module;
  • each first-type battery cell group includes a plurality of first-type battery cells
  • each second-type battery cell group includes a plurality of second-type battery cells.
  • Class batteries. The processor connects the first-type battery cells that belong to the same first-type battery cell group in parallel, and connects the second-type battery cells that belong to the same second-type battery cell group in parallel; and connects multiple first-type battery cell groups and A plurality of battery cell groups of the second type are connected in series.
  • the assembling component 22 arranges a plurality of first-type batteries and at least one second-type battery in at least one row, and at least part of the second-type batteries is located between the two first-type batteries .
  • the capacity Cap1 of a first type battery cell group is greater than the capacity Cap2 of a second type battery cell group, and the capacity Cap1 of the first type battery cell group is the sum of the corresponding capacity of the first type battery cell, and the second type battery cell group
  • the capacity Cap2 of the group is the sum of the capacities of the corresponding second-type batteries.
  • the processor 20, the clamping arm 21 and the assembling part 22, and the method for the processor 20 to control the clamping arm 21 and the assembling part 22 are related technologies in the art, which do not limit the protection scope of the present application, and will not be repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供一种电池、装置、及电池的制造方法和设备。电池包括串联连接的第一类电芯组和第二类电芯组。第一类电芯组由并联连接的多个第一类电芯组成,第二类电芯组由至少一个并联连接的第二类电芯组成,第一类电芯和第二类电芯为不同化学体系的电芯,且第一类电芯的体积能量密度小于第二类电芯的体积能量密度;第一类电芯组的容量Cap1大于第二类电芯组的容量Cap2,第一类电芯组的容量Cap1为对应的第一类电芯的容量之和,第二类电芯组的容量Cap2为对应的第二类电芯的容量之和。在确保电池安全性能同时,有效提升电池的使用寿命和能量吞吐量。

Description

电池、装置、及电池的制造方法和设备
相关申请的交叉引用
本申请要求享有于2020年04月30日提交的名称为“电池模组、装置、电池包以及电池模组的制造方法和设备”的中国专利申请202010367231.1的优先权,以及于2020年08月07日提交的名称为“电池、装置、及电池的制造方法和设备”的中国专利申请202010786523.9的优先权,上述申请的内容通过引用并入本文中。
技术领域
本申请涉及储能器件技术领域,尤其涉及一种电池、装置,及电池的制造方法和设备。
背景技术
二次电池是一种清洁、可再生资源,其可作为驱动能源或存储单元被应用于汽车、储能等领域。
随着对能源环保要求提升,二次电池应用日益普及和广泛。而为了适应不同的环境和应用场景需要,业内对二次电池的性能提出新的要求。诸如,二次电池作为新能源汽车的驱动能源,为了满足汽车的日益提升的续航能力需求,对二次能量要求不断提高。
二次电池往往由多个电芯组合而成,业界常通过增加电芯个数以提升二次电池整体能量;抑或是开发新的化学体系电芯以提升二次电池能量,比如,开发镍钴锰氧化物(简称,NCM)化学体系电芯。NCM化学体系电芯以镍钴锰氧化物为电芯正极材料,其相比于常用的磷酸铁锂(以下简称LFP)化学体系电芯正极所采用的LFP材料具有更高的体积能量密度,因而可在相同的体积条件下获取更高的能量。
然而,增加电芯的数量固然可以起到提升二次电池能量的效果,但二次电池的重量和体积也会相应增加,使得二次电池使用受限;而诸如NCM化学体系电芯, 其NCM材料在电芯使用过程中,出现产气严重、内阻增加,致使出现电芯发热严重、膨胀率高等不良现象,其严重影响了电池寿命周期和安全性能。
CN208674305U提供了一种电池模块,包括至少两个串联的三元电芯以及与三元电芯串联的安全电芯,所述安全电芯包括锰酸锂电池电芯和/或磷酸铁锂电池电芯;所述安全电芯热扩散小于三元电芯,因而能够有效地阻断电池模块整体热失控的扩散或延缓热扩散的时间,从而提升电池模块的安全性能。然而使用过程中发现,三元电芯充放电循环过程无法充分释放其能量,影响电池模块性能。
为此,如何确保二次电池安全性能同时,进一步提升二次电池性能是本领域技术人员亟需解决的问题。
发明内容
为解决上述问题,本申请提供一种电池、装置,及电池的制造方法和设备,在确保电池安全性能同时,有效提升电池的输出能量。
为了实现上述目的,本申请第一方面提供了一种电池,包括:
串联连接的第一类电芯组和第二类电芯组,
其中,第一类电芯组由并联连接的多个第一类电芯组成,第二类电芯组由至少一个并联连接的第二类电芯组成(即,第二类电芯组可仅包括一个第二类电芯,可以由多个第二类电芯并联组成),第一类电芯和第二类电芯为不同化学体系的电芯,且第一类电芯的体积能量密度小于第二类电芯的体积能量密度;
其中,第一类电芯组的容量Cap1大于第二类电芯组的容量Cap2,第一类电芯组的容量Cap1为对应的第一类电芯的容量之和,第二类电芯组的容量Cap2为对应的第二类电芯的容量之和。
本申请中,“电芯”是指能够独立进行充放电的电池单体。电芯结构包括正极、负极、隔膜、电解质以及用于封装正极极片、负极极片、隔膜和电解质的外包装等。本申请对电芯的类型、形状没有特别的限制,其可以是软包电芯,也可以是柱形电芯、或是方形电芯等各类电芯。
“电池”指包括一个或多个电芯以提供更高的电压和容量的单一的物理模块。电池可包括电池模块和电池包。电池模块是为了从外部冲击、热、振动等中保护电芯,将一定数目的电芯电连接在一起并放入一个框架中而形成的。电池包则是装入 电动汽车等用电装置的电池系统的最终状态。目前的大部分电池包是在一个或多个电池模块上装配电池管理系统、热管理部件等各种控制和保护系统而制成的。随着技术的发展,电池模块这个层次可以被省略,也即,直接由电芯形成电池包。这一改进使得电池系统的重量能量密度、体积能量密度得到提升的同时零部件数量显著下降。
“化学体系电芯”是按照电芯正极材料种类划分,对其掺杂或添加的辅料不作限定,例如,正极材料为磷酸铁锂(包括经元素掺杂的)的电芯可以定义为磷酸铁锂化学体系电芯,正极材料为镍钴锰酸锂(一般简称NCM)的电芯可以定义为NCM化学体系电芯,镍钴铝酸锂体系电芯(一般称NCA)为正极材料为NCA的化学体系电芯,且NCM和NCA化学体系电芯均属于三元材料化学体系电芯。
“容量”为电芯的初始容量,具体数值为:第一类电芯和第二类电芯在室温条件(25℃)下,在其特定的充放电终止电压内,以0.33C为放电倍率所测得的容量,单位:安时(英文简称:Ah)。
第二类电芯的体积能量密度大于第一类电芯的体积能量密度,使得在相同的体积条件下,第二类电芯相比于第一类电芯拥有更大的能量;同理,在相同的体积条件下,第二类电芯组相比于第一类电芯组拥有更大的能量。第一类电芯组的容量Cap1大于第二类电芯组的容量Cap2,使得由第一类电芯组和第二类电芯组串联的在电池在充放电循环过程中,降低第一类电芯组对第二类电芯组的电量释放的限制,从而高效发挥第二类电芯组高体积能量密度的特性,从而确保电池能量吞吐量和使用寿命。
在一些可能的实施例中,第一类电芯组由多个第一类电芯并联组成,第一类电芯组的容量Cap1由该第一类电芯组所属的多个第一类电芯的容量之和。从而在确保一个第一类电芯组容量的同时,将一个第一类电芯组的容量分配至多个第一类电芯。相比于大体积和大容量的电芯,较小体积的和容量的电芯具有更为简洁,宽松的制造工艺和条件,从而降低大容量的第一电池组的制造难度。
在一些可能的实施例中,第一类电芯组和第二类电芯组排列成至少一列,至少部分第二类电芯位于两个第一类电芯之间。
电芯充放电循环过程中会出现产气、膨胀、发热等现象,该现象在电池内形成应力,过大的应力会影响电池性能和寿命。分属不同化学体系的第一类电芯和第二类电芯具有不同的膨胀度和热传导能力。第二类电芯位于两个第一类电芯之间的排 列结构使得第一类电芯和第二类电芯相间排列,该结构有助于缓解基于同一化学体系电芯集中排列而造成局部应力集中的问题,第一类电芯和第二类电芯合理排列可以有效释放电池内部的应力,提升电池安全性能。
在一些可能的实施例中,第一类电芯组的容量Cap1和第二类电芯组的容量Cap2满足以下条件:0.01≤(Cap1/Cap2)-1≤0.5。
第一类电芯组的容量Cap1大于第二类电芯组的容量Cap2可高效发挥第二类电芯高体积能量密度的特点,第一类电芯组Cap1与第二类电芯组Cap2差值越大,理论上对于第二类电芯组能量释放的限制越小(注:当第一类电芯组Cap1与第二类电芯组Cap2差值达到一个上限值时,第一类电芯组不再影响第二类电芯组的能量释放),从而提升电池整体释放能量(能量单位:瓦时,英文简称Wh)性能。但就相同的容量设置,第一类电芯与第二类电芯相比,第一类电芯需要更大的体积设置,为此,若第一类电芯组的容量与第二类电芯组的容量差值过大,相同的电池容量下,第一类电芯的体积比例越大,使得电池整体的体积能量密度越低,即相同的体积条件下,电池能量越低。为此,本申请可选方案中,将(Cap1/Cap2)数值控制在0.01≤(Cap1/Cap2)-1≤0.5范围内,即保证电池整体能量密度,又充分发挥第二类电芯高能量密度特性,从而提升电池整体性能。具体设置需根据不同化学体系类型电池选择以及电池实际需要确定。在一些示例性实施例中,0.02≤(Cap1/Cap2)-1≤0.25,在另一些示例性实施例中,0.04≤(Cap1/Cap2)-1≤0.15。
在一些可能的实施例中,当第一类电芯和第二类电芯的容量保持率衰减至容量(初始容量)的80%前,第二类电芯的容量衰减速率小于第一类电芯的容量衰减速率,即当第一类电芯和第二类电芯地容量保持率衰减至容量(初始容量)的80%时,第二类电芯的循环次数大于第一类电芯的循环次数。在二次电池的汽车运用等领域,电池(指代汽车上所有电芯或电池包的整体)循环使用过程中,当电池老化至一定程度后(如其容量衰减至小于其初始容量的80%),可能无法满足汽车运行的要求。为此,本申请中,在工况条件下的第一类电芯容量衰减较快,第二类电芯容量衰减较慢,通过两类电芯的容量匹配设计,提高衰减较快的电芯的初始容量,改善电池模组整体使用寿命,即提升电池模组整体的衰减率达到80%前的电池循环次数。
在一些可能的实施例中,1个第一类电芯组包括a个第一类电芯;1个第二类电芯组包括b个第二类电芯;a和b为自然数,且a≥1,b≥1,0.1≤a/b≤50,在一些示例性实施例中,0.5≤a/b≤30,在另一些示例性实施例中,1≤a/b≤10。
本申请中,第一类电芯容量高,能量密度低,安全性高;第二类电芯容量低,能量密度高,安全性稍差。第一类电芯组可提升电池整体安全性能,但第一类电芯组数量过多,会影响电池整体体积能量密度,将第一类电芯组和b个第二类电芯组的个数控制在0.1≤a/b≤50范围内,可确保电池整体安全性能同时,提升电池整体的体积能量密度,进而提升电池模组整体性能。
在一些可能的实施例中,当a>1时,所有第一类电芯组的容量Cap1相同;和/或,当b>1时,所有第二类电芯组的容量Cap2相同。相同类型的电芯容量一致化,可有效提升电池的性能稳定性。
容量相同指多个电芯组容量基本一致,误差在0.5%以下都是可接受范围。
在一些可能的实施例中,第一类电芯的容量与第二类电芯的容量比为
10%~150%。
第一类电芯的体积能量密度小于第二类电芯的体积能量密度,当第一类电芯的容量与第二类电芯的容量比为10%~150%时,有利于不同类电芯结构比例调整,从而提升电池整体设计合理性。
在一些可能的实施例中,本申请中,第一类电芯和第二类电芯满足如下至少一个条件:
条件一、第一类电芯比热容C1与第二类电芯的比热容C2的比值为0.9≤C1/C2≤10,在一些示例性实施例中可为1≤C1/C2≤6,在另一些示例性实施例中可为1.5≤C1/C2≤3;
比热容指单位质量的某种物质升高(或下降)单位温度所吸收(或放出)
的热量。比热容越大,物质的吸热或散热能力越强。比热容越大,用相同的热量把单位质量的电芯加热时,电芯的温升越小。相反地,比热容越小,用相同的热量把单位质量的电芯加热时,电芯的温升越大。本申请中,比热容不同的两个电芯连接,温升较大的电芯可以把热量传递给温升较小的电芯,有利于模组和电池包整体的热量管理。具体地,在C1/C2控制在0.9≤C1/C2≤10范围内,通过控制第一类电芯和第二类电芯的热量吸收能力,调整模组运行过程中整体的热量分配,优化模组运行性能, 比如,在高温运行环境下,使得比热容高的电芯适当吸收比热容低的电芯散发的热量;在低温运行环境下,比热容低的电芯适时将热量传递至比热容高的电芯,从而优化电池模组整体的热量分布,进而提升电池模组运行状态。
条件二、第一类电芯导热系数λ1与第二类电芯的导热系数λ2的比值为0.5≤λ1/λ2≤3,在一些示例性实施例中可为0.7≤λ1/λ2≤2,在另一些示例性实施例中可为0.9≤λ1/λ2≤1.5。本申请中,所说电芯导热系数指的由垂直于极片大面方向的导热系数值。指在电芯极片中,垂直于极片活性物质表面的方向,也即是导热系数测量的法向。
导热系数反应物质导热能力,数值越高导热能力越强。本申请通过控制第一类电芯和第二类电芯的导热系数比值(λ1/λ2)从而控制第一类电芯和第二类电芯内部,以及两类电芯间的热量传递的速率和能力。具体地,导热系数较大的电芯传热较快,导热系数较小的电芯传热较慢。两种导热系数不同的电芯连接,一方面在低温运行环境下,传热较快的电芯可以将热量传递给相邻的传热较慢电芯;另一方面,在高温或者产热较大的环境下,传热较快的电芯不会发生热量的积聚;从而确保了模组以及电池包较好的低温性能以及较高的安全性能。本实施例中,将λ1/λ2数值控制在0.5≤λ1/λ2≤3范围内。可有效调整模组整体的热量传递速率,以及热量分配,优化模组运行性能。比如,在高温运行环境下,使得温度高的电芯适时将热量传递温度低的电芯,避免热量分布不均导致的电池模组整体性能下降;在低温运行环境下,温度高电芯适时将热量传递至温度低的电芯,使得低温电芯适时升温,从而优化电池模组整体的热量分布,进而提升电池模组运行状态。
条件三、第一类电芯密度ρ1与第二类电芯的密度ρ2的比值为0.6≤ρ1/ρ2≤3,在一些示例性实施例中可为0.8≤ρ1/ρ2≤2,在另一些示例性实施例中可为0.9≤ρ1/ρ2≤1.5。
电芯的密度也会影响热量传递能力。本申请通过控制第一类电芯和第二类电芯重的密度比值(ρ1/ρ2)从而控制第一类电芯和第二类电芯内部,以及两类电芯间的热量传递的速率和能力。将ρ1/ρ2数值控制在上述范围内。可有效调整模组整体的热量传递速率,以及热量分配,优化模组运行性能。比如,在高温运行环境下,使得温度高的电芯适时将热量传递温度低的电芯,避免热量分布不均导致的电池模组整体性 能下降;在低温运行环境下,温度高电芯适时将热量传递至温度低的电芯,使得低温电芯适时升温,从而优化电池模组整体的热量分布,进而提升电池模组运行状态。
值得注意的是,第一类电芯和第二类电芯的比热容比值、导电系数比值、以及密度比值根据电芯种类、电池模组结构、以及应用环境整体配合、协调调试,以优化电池模组整体性能。
本申请中,第一类电芯和第二类电芯包括但不限于锂/钠/镁离子电芯、锂/钠/镁金属电芯、锂/钠/镁-全固态/半固态/准固态/聚合物/凝胶电解质-电芯,以及其他可充电的二次电芯。本申请不限定具体的电芯类型。
在一些可能的实施例中,本申请中,第一类电芯的平台电压V1为3.15V±0.05V~4.75V±0.05V;第二类电芯平台电压V2为3.60~3.80V±0.05V。
本申请中,“平台电压”指:对于电芯的正极材料为两相相变材料(如LFP)的电芯,其相变电压即为其平台电压;对于电芯的正极材料为固溶体材料(如LCO或三元材料)的电芯,为其放电容量至其初始容量一半时的电压。具体数值如:常规的钴酸锂化学体系的电芯的平台电压为3.7V左右、锰酸锂(简称LMO)化学体系的电芯的平台电压为3.8V左右、NCM三元材料化学体系电芯的平台电压为3.5V~3.85V之间,磷酸铁锂化学体系电芯的平台电压为3.22V左右。
本申请中,具体列举第一类电芯可以为LFP化学体系电芯或者LMO化学体系电芯等,第二类电芯可以为三元材料化学体系电芯(如NCM化学体系电芯或NCA化学体系电芯)等。
电芯运行中,电芯的电压与容量为电芯释放能量关键因素,合理的平台电压有助于提升电池性能。其具体选择根据电芯容量以及电池实际需要确定。
在一些可能的实施例中,第一类电芯为磷酸锂铁化学体系电芯;第二类电芯为三元材料化学体系电芯。
本申请第二方面提供了一种电池包,其包括上述电池。
本申请第三方面提供了一种装置包括,上述电池,且以电池为电源,该装置包括但不限于:车辆、船舶、飞机,以及各类储能设备。本申请并不限定该装置的类型和范围。
本申请第四方面提供的电池的制造方法,包括:
获取多个第一类电芯和至少一个第二类电芯,第一类电芯和第二类电芯为不同化学体系电芯;第一类电芯的体积能量密度小于第二类电芯的体积能量密度;
并联连接多个第一类电芯形成第一类电芯组,并联连接至少一个第二类电芯形成第二类电芯组;
其中,第一类电芯组的容量Cap1大于第二类电芯组的容量Cap2,第一类电芯组的容量Cap1为对应的第一类电芯的容量之和,第二类电芯组的容量Cap2为对应的第二类电芯的容量之和;
串联连接第一类电芯组和第二类电芯组。
在一些可能的实施例中,上述制造方法中,并联连接多个第一类电芯形成第一类电芯组包括:并联连接多个第一类电芯形成a个第一类电芯组,a为自然数,且a≥1;
并联连接至少一个第二类电芯形成第二类电芯组包括:并联连接至少一个第二类电芯形成b个第二类电芯组,b为自然数,且b≥1,
其中,0.1≤a/b≤3,在一些示例性实施例中,0.3≤a/b≤2。
在一些可能的实施例中,制造方法还包括:
将多个第一类电芯和至少一个第二类电芯排列成至少一个列,且使至少部分第二类电芯位于两个第一类电芯之间。
第一类电芯组与第二类电芯组地具体结构与要求如上本申请提供地电池地具体描述,不再赘述。
本申请第五方面提供了一种电池的制造设备,包括一个处理器,
处理器用于控制夹臂,获取多个第一类电芯和至少一个第二类电芯,第一类电芯和第二类电芯为不同化学体系电芯;且第一类电芯的体积能量密度小于第二类电芯的体积能量密度;
处理器还用于控制组装部件,用于:
并联连接多个第一类电芯形成第一类电芯组,并联连接至少一个第二类电芯形成第二类电芯组;
其中,第一类电芯组的容量Cap1大于第二类电芯组的容量Cap2,第一类电芯组的容量Cap1为对应的第一类电芯的容量之和,第二类电芯组的容量Cap2为对应的第二类电芯的容量之和;
串联连接第一类电芯组和第二类电芯组。
上述制造设备中,第一类电芯组与第二类电芯组具体结构与要求如上本申请提供地电池的具体描述,不再赘述。
除了上面所描述的本申请实施例解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本申请实施例提供的电池及装置所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作出进一步详细的说明。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一些情形下的磷酸铁锂化学体系电芯一实施例电芯容量保持量与寿命的关系示意图;
图2是一些情形下的NCM化学体系电芯一实施例电芯容量保持量与寿命的关系示意图;
图3是一些情形下串联磷酸铁锂化学体系电芯和NCM化学体系电池模组一实施例的电池模组中电芯容量保持量与寿命的关系示意图;;
图4是本申请电池一实施例的结构示意图;
图5是本申请电池一实施例电池中电芯容量保持量与寿命的关系示意图;
图6是本申请电池另一实施例的结构示意图;
图7是本申请电池又一实施例的结构示意图;
图8是本申请装置一实施例的结构示意图;
图9是本申请电池的制造方法一实施例的流程示意图;
图10是本申请电池的制造设备一实施例的结构示意图。
具体实施方式
如背景技术所述,在一些情形下,常通过增加二次电池的电芯数量或是开发诸如NCM化学体系电芯等高体积能量密度电芯以提高二次电池的能量。然而增加电芯的数量会导致二次电池质量和体积增加,而NCM化学体系电芯安全性能差。若将安全系数较高的LFP化学体系电芯和NCM化学体系电芯串联使用,无法发挥NCM化学体系电芯的高体积能量密度地特性。如何兼顾二次电池安全性同时,提升二次电池输出能量依然是业界亟需解决的问题。
发明人针对上述问题展开深入研究,研究结果发现:
电芯的能量数值为:能量=容量*平台电压。电芯的容量直接决定了电芯的能量输出。不同的化学体系类型的电芯具有不同的寿命衰减模式。如图1所示的LFP体系电芯一实施例电芯容量保持量与寿命的关系示意图,X轴代表了电芯工作时间,即代表其寿命,Y轴代表电芯的容量(单位Ah)。L1为该LFP化学体系电芯的容量衰减曲线,LFP化学体系电芯前期寿命衰减较快,之后逐渐变缓并接近线性衰减模式,后期走平线性的斜率从大变小。当该电芯循环到第L圈时的能量为EL,E L=V L*Cap. L,其中,VL为该LPF电芯的平台电压,Cap. L为该LFP化学体系电芯容量。如此,该LFP的理论生命周期内的累积能量输出为E Lt
Figure PCTCN2021089319-appb-000001
x为总循环圈数;S1为L1下方至X轴区域部分面积,其代表了该LFP化学体系电芯全生命周期的累计容量,S1决定了该LFP化学体系电芯全生命周期的能量输出总量。
结合参考图2,图2为NCM体系电芯一实施例电芯容量保持量与寿命的关系示意图。L2为该NCM化学体系电芯的容量衰减曲线,NCM化学体系电芯前期衰减较缓慢,后期衰减变快并趋近于线性衰减模式。该电芯循环到第n圈时的能量为E N,E N=V N*Cap. N,其中,V N为该NCM化学体系电芯的平台电压,Cap. N为该NCM化学体系电芯容量。理论生命周期内的累积能量输出为E Nt
Figure PCTCN2021089319-appb-000002
y为总循环圈数。S2为L2下方至X轴区域部分面积,其代表了该NCM化学体系电芯全生命周期的累计容量,S2决定了该NCM化学体系电芯全生命周期的能量输出总量,S2决定了该NCM化学体系电芯全生命周期的能量输出总量。
理论上,当混合串联a个上述LFP化学体系电芯和b个NCM化学体系电芯的二次电芯后理论生命周期内的累积能量输出为E T,E T=aE Lt+b E Nt
然而,发明人进一步研究发现:当二次电池由不同化学体系类型的电芯串联后,二次电池在实际使用过程中循环到第k圈时的能量为E k,E k=(a*V L+b*V N)*min.Cap.(L,N),实际生命周期内的累积能量输出为E Kt
Figure PCTCN2021089319-appb-000003
z为总循环圈数,min.Cap.(L,N)代表串联电芯中,最小容量电芯的容量。
结合参考图1至3所示,如图1中LFP化学体系电芯和图2中NCM化学体系电芯串联形成电池后(其中,LFP化学体系电芯和NCM化学体系电芯具有相同的容量值),电池输出能量为图1中S1和图2中S2的重叠部分容量对应的能量的总和,即图3中,填充部分S3代表的容量所对应的能量,而S4部分指代的容量所对应能量(其原先属于NCM化学体系电芯所含能量)未发挥其功效,即被浪费了(其中,电池放电时,LFP化学体系电芯和NCM化学体系的电芯取两者常规使用的平台电压,如,LFP化学体系电芯平台电压取3.22v,NCM化学体系电芯平台电压取3.68v)。
由此可知,在二次电芯实际运行过程中,串联的每一个电芯都会影响二次电池的性能,电池的理论累积能量输出无法实现,而且二次电池释放能量的总量,取决于最小容量的电芯。图3中,即使NCM化学体系电芯在其生命周期中具有更高的容量总量(即,相比于LFP化学体系电芯具有更大的理论输出能量),但实际输出量严重受限于LFP化学体系电芯生命周期中的容量衰减趋势,无法实现高效能量输出,从而影响二次电池整体能量输出效率。
为此,本申请提供了一种电池,包括:
串联连接的第一类电芯组和第二类电芯组,电池至少包括一个第一类电芯组和一个第二类电芯组。
其中,一个第一类电芯组由并联连接的多个第一类电芯组成,一个第二类电芯组由至少一个或是多个并联连接的第二类电芯组成,第一类电芯和第二类电芯为不同化学体系的电芯,且第一类电芯的体积能量密度小于第二类电芯的体积能量密度;
其中,一个第一类电芯组的容量Cap1大于一个第二类电芯组的容量Cap2,一个第一类电芯组的容量Cap1为对应的第一类电芯的容量之和(即,该第一类电芯组所有的第一类电芯)第二类电芯组的容量Cap2为对应的第二类电芯(即,该第二类电芯组所有的第二类电芯)的容量之和。
第二类电芯的体积能量密度大于第一类电芯的体积能量密度,使得在相同的体积条件下,第二类电芯相比于第一类电芯拥有更大的能量;同理,在相同的体积条件下,第二类电芯组相比于第一类电芯组拥有更大的能量。第一类电芯组的容量Cap1大于第二类电芯组(的容量Cap2,使得由第一类电芯组和第二类电芯组串联的在电池在充放电循环过程中,降低第一类电芯组对第二类电芯组的电量释放的限制,从而高效发挥第二类电芯组高体积能量密度的特性,从而提高电池整体的能量吞吐量和使用寿命。
实施例
参考图4,图4为本申请一实施例结构示意图。
本实施例提供的电池包括1个LFP化学体系电芯组110(作为第一类电芯组),以及1个NCM化学体系电芯组(作为第二类电芯组)210。LFP化学体系电芯组110与NCM化学体系电芯组210串联连接。
LFP化学体系电芯组110由并联连接的LFP化学体系电芯111和LFP化学体系电芯112组成,LFP化学体系电芯组110的容量为LFP化学体系电芯111和LFP化学体系电芯112容量之合。
LFP化学体系电芯组110的容量大于NCM化学体系电芯组210容量。
继续参考图4,NCM化学体系电芯组210仅有1个NCM化学体系电芯。
NCM化学体系电芯的体积能量密度大于LFP化学体系电芯111和112。
本实施例中,LFP化学体系电芯111和112为相同结构,且具有相同的体积能量密度及容量。值得注意的是,在其他实施例中,电芯111和112可具有不同容量,其并不影响本申请技术方案的目的实现。
参考图5,图5为如图4所示的电池实施例运行过程中,累计能量输出与寿命的示意图;
本实施例中,LFP化学体系电芯组平台电压3.22V左右,NCM化学体系电芯组平台电压为3.68V左右。
图5中,线L11为LFP体系电芯组110的容量保持率曲线,线L21为NCM化学体系电芯组210的容量保持率曲线。
对比参考图3和图5,本实施中,LFP化学体系电芯组110的容量(初始容量)大于NCM化学体系电芯组210容量(初始容量)。在电池运行前半段,LFP化学 体系电芯组110前期容量衰减较快,NCM化学体系电芯组210前期容量衰减较缓慢,两类化学体系电芯组在A点时段出现第一次容量值相同;在此期间,基于LFP化学体系电芯组110容量大于NCM化学体系电芯组210容量,LFP化学体系电芯组110和NCM化学体系电芯组210能量输出总量取决于NCM化学体系电芯组210的容量。
在A时段过后,LFP化学体系电芯组110容量衰减逐渐变缓并接近线性衰减模式,后期走平线性的斜率从大变小,NCM化学体系电芯组210容量后期衰减变快并趋近于线性衰减模式。在此期间,两类电芯的容量值于B点出现第二次相同。在A时段和B时段之间,电池整体的能量吞吐量取决于LFP化学体系电芯组110的容量,即使NCM化学体系电芯组210的理论容量总量大于LFP化学体系电芯组110的理论容量总量;
在B时段之后,电池整体的能量吞吐量取决于NCM化学体系电芯组210的容量,即使LFP化学体系电芯组110的理论容量总量大于NCM化学体系电芯组210的理论容量总量。
其中,曲线L11和L21于A、B两点间形成的面积S41代表的容量对应的能量为NCM化学体系电芯组210未释放的能量。但对比图3和图5,本实施例中,通过调整LFP化学体系电芯组110的容量值大于NCM化学体系电芯组210的容量值,图5中S41的面积明显小于图3中S4的面积,即有效降低了NCM化学体系电芯组210的能量浪费。本实施例提供的电池模组更高效地释放了具有高能量密度的NCM化学体系电芯组210的能量,充分发挥NCM化学体系电芯组210(即高密度容量电芯)的体积能量密度大的特性的特性。
本实施例中,为了更清晰地说明本申请技术方案及其有益效果,调整LFP化学体系电芯组110容量从而使得LFP化学体系电芯组110初始容量大于NCM化学体系电芯组210的初始容量。
但其并不限定本申请技术方案保护范围,通过调整具有较低体积能量密度的第一类电芯组的容量,使其大于具有较高体积能量密度的第二类电芯组的容量,即可提升第二类电芯的输出能量效率,从而提升本申请提供的电池的整体能量输出效率。
但如图5所示,本实施例提供的电池中,也会存在LFP化学体系电芯(第一类电芯)和NCM化学体系电芯(第二类电芯)能量无法充分释放的情况,若第一类 电芯与第二类电芯的容量值差距过大,会造成浪费。在一些实施例中,LFP化学体系电芯组的容量Cap1和NCM化学体系电芯组的容量Cap1满足以下条件:0.01≤(Cap1/Cap2)-1≤0.5。从而即可有效充分释放NCM化学体系电芯组能量同时,降低LFP化学体系电芯组的能量浪费。在一些示例中,0.02≤(Cap1/Cap2)-1≤0.25,在另一些示例中,0.04≤(Cap1/Cap2)-1≤0.15,其具体数值根据实际需要确定。
在本申请一些实施例中,当第一类电芯和第二类电芯的容量保持率衰减至容量(初始容量)的80%前,第二类电芯的容量衰减速率小于第一类电芯的容量衰减速率,即当第一类电芯和第二类电芯地容量保持率衰减至容量(初始容量)的80%时,第二类电芯的循环次数大于第一类电芯的循环次数。
在二次电池的汽车运用等领域,电池(指代汽车上所有电芯或电池包的整体)循环使用过程中,当电池老化至一定程度后(如其容量衰减至小于其初始容量的80%),可能无法满足汽车运行的要求。为此,本申请中,在工况条件下的第一类电芯容量衰减较快,第二类电芯容量衰减较慢,通过两类电芯的容量匹配设计,提高衰减较快的电芯的初始容量,改善电池模组整体使用寿命,即提升电池模组整体的衰减率达到80%前的电池循环次数。
此外,第一类电芯和第二类电芯的平台电压同样会影响电池整体的能量释放效率,本实施例中:
第一类电芯的平台电压V1为3.15V±0.05V~4.75V±0.05V;第二类电芯平台电压V2为3.60~3.80V±0.05V。
继续参考图4,LFP化学体系电芯111、NCM化学体系电芯210(即NCM化学体系电芯组210)LFP化学体系电芯112排成一列,且NCM化学体系电芯210位于LFP化学体系电芯111和LFP化学体系电芯112之间,即使得LFP化学体系电芯和NCM化学体系电芯相间排列。
在电池充放电循环过程中,各电芯(包括LFP化学体系电芯111、112以及NCM化学体系电芯210等)均会出现产气、膨胀、发热等现象。分属不同化学体系的LFP化学体系电芯和NCM化学体系电芯具有不同的电芯密度、比热容、导热系数,因而会出现不同程度的膨胀和热扩散,并在电池不同区域形成应力差异。若应力差异过大会影响电池的安全性能和电性能。
本实施例中,LFP化学体系电芯和NCM化学体系电芯相间排列结构有助于缓解基于同一化学体系电芯集中排列而造成局部应力集中的问题,有效释放电池内部的应力,促使电池内部不同区域应力达到均衡,从而提升电池安全性能和电性能。
在一些实施例中,可通过进一步设置LFP化学体系电芯和NCM化学体系电芯的电芯密度、比热容、导热系数以优化电池性能。
LFP化学体系电芯比热容C1与NCM化学体系电芯的比热容C2的比值为0.9≤C1/C2≤10,在一些示例中可为1≤C1/C2≤6,在另一些示例中可为1.5≤C1/C2≤3;
LFP化学体系电芯导热系数λ1与NCM化学体系电芯的导热系数λ2的比值为0.5≤λ1/λ2≤3,在一些示例中可为0.7≤λ1/λ2≤2,在另一些示例中可为0.9≤λ1/λ2≤1.5;
LFP化学体系电芯密度ρ1与NCM化学体系电芯的密度ρ2的比值为0.6≤ρ1/ρ2≤3,在一些示例中可为0.8≤ρ1/ρ2≤2,在另一些示例中可为0.9≤ρ1/ρ2≤≤1.5。
参考图6,图6为本申请提供的电池的另一实施例结构示意图。
本实施例提供的电池中,包括1个LFP化学体系电芯组120和2个NCM化学体系电芯组220和230。LFP化学体系电芯组120与NCM化学体系电芯组220、230串联连接。LFP化学体系电芯组120的容量分别大于NCM化学体系电芯组220和230的容量。
其中,LFP化学体系电芯组110由并联连接的LFP化学体系电芯121、LFP化学体系电芯122和LFP化学体系电芯123组成,LFP化学体系电芯组120的容量为LFP化学体系电芯121、122和123的容量之合。
本实施例中,NCM化学体系电芯组220和230的容量相等。NCM化学体系电芯组220由并联连接的NCM化学体系电芯221和222组成,NCM化学体系电芯组220的容量为NCM化学体系电芯221和222容量之和。NCM化学体系电芯组230为单电芯结构。
NCM化学体系电芯组220和230的容量相等,但相比于NCM化学体系电芯组230单电芯结构,NCM化学体系电芯组由NCM化学体系电芯221和222两个NCM化学体系电芯组成。NCM化学体系电芯组220在单个电芯的体积小于NCM化学体系电芯组230单个电芯体积,小体积的电芯具有更为简洁,宽松的制造工艺和条 件,从而降低大容量的第一电池组的制造难度;此外,相比于大体积电芯,小体积电芯可具备更高的充放电倍率,以及电芯排布灵活度,以提高电芯性能和设计灵活度。
NCM化学体系电芯221、LFP化学体系电芯121、NCM化学体系电芯222、LFP化学体系电芯122和NCM化学体系电芯230、LFP化学体系电芯123依次排布。
需要注意的是,本实施例中,NCM化学体系电芯组220和230的容量相等,但在其他实施例中,若存在多个NCM化学体系电芯组,各NCM化学体系电芯组容量可以全部相同,也可部分相同,亦或是均不同,其根据电池总体需要设计,其并不限定本申请的保护范围。
参考图7,图7为本申请提供的电池的又一实施例结构示意图。
本实施例提供的电池中,包括2个LFP化学体系电芯组130和140,以及4个NCM化学体系电芯组240、250、260和270。上述多个电芯组串联连接。
2个LFP化学体系电芯组的容量均大于4个NCM化学体系电芯组的容量。本实施例中,2个LFP化学体系电芯组的容量相同或不同,4个NCM化学体系电芯组的容量相同或是不同,其并不限定本申请的保护范围。
其中,LFP化学体系电芯组130由并联连接的LFP化学体系电芯131、LFP化学体系电芯132组成。LFP化学体系电芯组130的容量为LFP化学体系电芯131、132的容量之合。LFP化学体系电芯组140为单电芯结构。
本实施例中,4个NCM化学体系电芯组的容量相等,且都为单电芯结构。
LFP化学体系电芯131、NCM化学体系电芯240(即,NCM化学体系电芯组240)、LFP化学体系电芯132,为一列依次排布。
NCM化学体系电芯250(即NCM化学体系电芯组250)、LFP化学体系电芯140、NCM化学体系电芯260(即NCM化学体系电芯组260)和NCM化学体系电芯270(即NCM化学体系电芯组270)成一列依次排布。
值得注意的是,上述本实施例以LFP化学体系电芯作为第一类电芯,NCM化学体系电芯作为第二类电芯,但其并不限定本申请其他实施例中,第一类电芯和第二类电芯的选择。
比如,若第一类电芯可以是LFP化学体系电芯,第二类电芯可以是NCM化学体系电芯、NCA化学体系电芯、钴酸锂化学体系电芯,或是锰酸锂化学体系电芯等等。
若第二类电芯为三元材料化学体系电芯(如NCA、NCM化学体系电芯),第一类电芯可以是LFP化学体系电芯、钴酸锂化学体系电芯,或是锰酸锂化学体系电芯等等。
除此之外,第一类电芯和第二类电芯包括但不限于锂/钠/镁离子电芯、锂/钠/镁金属电芯、锂/钠/镁-全固态/半固态/准固态/聚合物/凝胶电解质-电芯,以及其他可充电的二次电芯。
下面通过具体实施例详细描述本申请技术方案及其优势:
电池制备:
各实施例和对比例中的电芯的制备方法如下。
1、正极浆料的制备
将正极材料与导电炭Super P、粘结剂聚偏二氟乙烯(PVDF)按95∶3∶2重量比在适量的N-甲基吡咯烷酮(简写为NMP)溶剂中充分搅拌混合,使其形成均匀的、粘度为3000mPa·s~20000mPa·s的稳定浆料,浆料静置24~48小时内,不发生凝胶、分层或者沉降等现象。
2、正极极片的制备
将正极材料浆料均匀涂覆于正极集流体A1箔上,干燥后把极片冷压到设计压密,分条备用,得到正极极片。
3、电解液的制备
将等量体积的碳酸乙烯酯溶解在碳酸丙烯酯中,然后将适量的六氟磷酸锂盐均匀溶解在该混合溶剂中备用,得到电解液。
4、负极极片的制备
将负极活性材料例如石墨与导电炭、粘结剂聚苯乙烯丁二烯共聚物(SBR)、增稠剂羧甲基纤维素钠(CMC)按95∶2∶2∶1重量比在适量的水溶剂中充分搅拌混合,使其形成均匀的负极稳定浆料;将此浆料均匀涂覆于负极集流体Cu箔上,干燥后把极片冷压到设计压密,分条备用。
5、隔离膜
选用PE或者PP等作为隔离膜。
6、电芯的制备
采用常规的电芯制作工艺,将正极极片、隔离膜和负极极片一起卷绕成裸电芯,然后置入电池壳体中,注入电解液,随之进行化成、密封等工序,最终得到可充电动力电芯。
测试方法:
1、电芯的容量的测试方法:
挑选待测电芯,使用电芯充放电机+高低温箱,测试电芯在25℃下的标准倍率满充充电容量和放电容量,该放电容量即是电芯的标称容量值。其中,充放电倍率为0.33C(C代表电芯额定容量。其中,充/放电电流为倍率乘以电芯额定容量,额定容量以该电芯、或该电芯所属电池模组或该电芯所属电池包的GBT认证文件中所认定的电芯容量为准)。
具体的:电芯的容量的测试流程如下:1)在25℃下静置30分钟;2)0.33C恒流放电至放电终止电压(如,NCM化学体系电芯设为2.8V,LFP化学体系电芯设为2.5V),之后静置30分钟;3)0.33C恒流充电至充电终止电压(如,NCM化学体系电芯为4.35V,LFP化学体系电芯为3.65V),恒压充电至电流≤0.05C,之后静置5分钟;4)0.33C恒流放电至放电终止电压。此时,测得的放电容量即电芯的标称容量值。相关术语和测试方法参考GB/T 19596、GB/T 31484-2015、GB/T 31485-2015、GB/T 31486-2015以及《电动汽车用动力蓄电池安全要求》。
2、电芯容量保持率测试方法:参考GB/T 31484-2015《电动汽车用动力蓄电池循环寿命要求及试验方法》。
1000圈容量保持率(/25℃)测试方法:
电芯初始容量(计为:Cap0)测试步骤:
1)将新出厂的电芯在25℃下静置30分钟;2)0.33C(C代表电芯额定容量。其中,充/放电电流为倍率乘以电芯额定容量,额定容量以该电芯、或该电芯所属电池模组或该电芯所属电池包的GBT认证文件中所认定的电芯容量为准)恒流放电至电芯放电终止电压,之后静置30分钟;3)0.33C恒流充电至电芯充电终止电压,恒压充电至电流≤0.05C,静置5分钟;4)0.33C恒流放电至电芯放电终止电压,之后静置5分钟。由步骤3)至步骤4)测得的放电容量计为Cap0。
步骤1)~步骤4)为电芯一个充放电循环。
重复上述步骤1)~步骤4)1000次,第1000次测得的放电容量计为Capn,第1000次的容量保持率为:Capn/Cap0*100%。
3、安全性能测试
测试一:模组加热触发热失控测试,参考电动客车安全技术条件工信部装[2016]377号文件。
测试模组中某一电芯由于加热发生热失控后是否会蔓延至相邻电芯。将两个或以上待测电芯组成的测试模组,视具体场景需确定电芯之间是否加隔热垫以及隔热垫厚度,并确定是否开启水循环。选定加热热失控触发方法,比如加热板/加热片加热法,电池满充,用夹具固定简易模组,将加热片紧贴第一个电芯大面放置,使用两片钢板夹具固定简易模组。
将加热片连接电源,开启加热片供电装置后开始加热,直至第一个电芯发生热失控后,关闭加热片,观察并记录第二/N个电芯发生热失控的时间;如果触发热失控的电芯不引起相邻电芯起火或者爆炸判定为热蔓延阻隔实现,否则则判定为发生热蔓延。
测试二:采用模组针刺触发热失控测试,参考GB/T 31485-2015。具体测试方法:
测试模组中某一电芯由于针刺发生热失控后是否会蔓延至相邻电芯。将待测电芯组成的测试模组,试具体场景需确定电芯之间是否加隔热垫以及隔热垫厚度,并确定是否开启水循环。电芯满充,选择带孔两片钢板夹具固定简易模组。用Φ3~Φ8mm的耐高温不锈钢钢针(针角圆锥角度为20°~60°,针的表面光洁,无锈蚀、氧化层及油污),以0.1~40mm/s的速度,从垂直于电芯极板的方向贯穿至第一个电芯触发热失控,观察并记录相邻第二/N个电芯发生热失控的时间;触发热失控的电芯不引起相邻电芯起火或者爆炸判定为热蔓延阻隔实现,否则则判定为发生热蔓延。
4、放电功率测试方法
本申请采用选试电流法。测试流程参考如下:
(1)测试电芯的最大放电电流(采用试电流法),步骤如下:
在室温下,测试电芯的放电容量Cap10;之后,在调整电芯至目标荷电状态(英文全称:State of charge,简称SOC)(例如5%Cap10、10%Cap10、20% Cap10、50%Cap10或90%Cap10等)后,调整电芯温度至目标测试温度(例如25℃、10℃、0℃、-10℃、-20℃,控制测试温度精度控制在±2℃),并静置2小时;
再调试电芯放电电流I,进而达到在特定时间(例如5秒、10秒、30秒、180秒)内放电,至电芯的下限截止电压的目的(放电终止电压的控制精度需保证在±5mV),此时测得的电流I即是最大放电电流。
(2)根据公式P=I*Vend(Vend为放电终止电压)得到最大放电功率。
相关标准可参考:GB/T 19596电动汽车术语;GB/T 31486电动汽车用动力蓄电池电性能要求及试验方法。
Figure PCTCN2021089319-appb-000004
本申请还提供的一种装置包括,上述电池模组,且以电池模组为电源。
参考图9,本实施例中,该装置为汽车,在汽车内安装有本申请提供的电池10,作为其动力源。
值得注意的是,在本实施例中的其他实施例中,该装置包括但不限于:车辆、船舶、飞机,以及各类储能设备。本申请并不限定装置的类型和范围。
参考图10,本申请还提供了一种电池模组的制造方法,其包括步骤:
步骤S1,获取多个第一类电芯和至少一个第二类电芯,第一类电芯和第二类电芯为不同化学体系电芯;
第一类电芯的体积能量密度小于第二类电芯的体积能量密度;
步骤S2,并联连接多个第一类电芯形成第一类电芯组,并联连接至少一个第二类电芯形成第二类电芯组;
第一类电芯组的容量Cap1大于第二类电芯组的容量Cap2,第一类电芯组的容量Cap1为对应的第一类电芯的容量之和,第二类电芯组的容量Cap2为对应的第二类电芯的容量之和;
步骤S3,串联连接第一类电芯组和第二类电芯组。
并联连接多个第一类电芯形成第一类电芯组包括:并联连接多个第一类电芯形成a个第一类电芯组,a为自然数,且a≥1;
并联连接至少一个第二类电芯形成第二类电芯组包括:并联连接至少一个第二类电芯形成b个第二类电芯组,b为自然数,且b≥1,
其中,0.1≤a/b≤3,在一些示例中,0.3≤a/b≤2。
其中a和b的数值不受限定,比如a为1、2、3…10…100…1000…10000个,b为1、2、3…10…100…1000…10000个,第一类电芯和第二类电芯的排列不受限制。
在一些实施例中,将多个第一类电芯和至少一个第二类电芯排列成至少一个列,且使至少部分第二类电芯位于两个第一类电芯之间。第一类电芯和第二类电芯的间隔排列,可以加强第一类电芯和第二类电芯间热传导,并降低基于第一类电芯和第二类电芯间基于膨胀而产生的应力,从而提升电芯整体性能。
本实施例又提供的电池模组的制造设备,参考图10,电池模组的制造设备包括一个处理器20。
处理器20用于控制夹臂21,获取多个第一类电芯31、32、34和至少一个第二类电芯33,第一类电芯31和第二类电芯33为不同化学体系电芯;且,第一类电31、32和34的体积能量密度小于第二类电芯33的体积能量密度;
处理器20还用于控制组装部件22,用于将第一类电芯31、32、34和第二类电芯33串联连接形成电池模组;
若电池包括多个第一类电芯组和多个第二类电芯组,而各第一类电芯组包括多个第一类电芯,各第二类电芯组包括多个第二类电芯。处理器将同属于一个第一类电芯组的第一类电芯并联,将同属于一个第二类电芯组的第二类电芯并联;且,将多个第一类电芯组和多个第二类电芯组串联。
在一些实施例中,组装部件22将多个第一类电芯和至少一个第二类电芯排列成至少一个列,且使至少部分第二类电芯位于两个第一类电芯之间。
一个第一类电芯组的容量Cap1大于一个第二类电芯组的容量Cap2,且第一类电芯组的容量Cap1为对应的第一类电芯的容量之和,第二类电芯组的容量Cap2为对应的第二类电芯的容量之和。
处理器20、夹臂21和组装部件22,以及处理器20控制夹臂21和组装部件22的方法为本领域的相关技术,其并不限制本申请的保护范围,在此不再赘述。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种电池,包括:
    串联连接的第一类电芯组和第二类电芯组,
    其中,所述第一类电芯组由并联连接的多个第一类电芯组成,所述第二类电芯组由至少一个并联连接的第二类电芯组成,所述第一类电芯和第二类电芯为不同化学体系的电芯,且所述第一类电芯的体积能量密度小于所述第二类电芯的体积能量密度;
    其中,所述第一类电芯组的容量Cap1大于所述第二类电芯组的容量Cap2,所述第一类电芯组的容量Cap1为对应的第一类电芯的容量之和,所述第二类电芯组的容量Cap2为对应的第二类电芯的容量之和。
  2. 根据权利要求1所述的电池,其中,所述第一类电芯组和所述第二类电芯组排列成至少一列,至少部分所述第二类电芯位于两个所述第一类电芯之间。
  3. 根据权利要求1或2所述的电池,其中,所述第一类电芯组的容量Cap1和所述第二类电芯组的容量Cap2满足以下条件:
    0.01≤(Cap1/Cap2)-1≤0.5,可选地,0.02≤(Cap1/Cap2)-1≤0.25,进一步可选地,0.04≤(Cap1/Cap2)-1≤0.15。
  4. 根据权利要求1或3所述的电池,其中,所述第一类电芯的容量与所述第二类电芯的容量比为10%~150%。
  5. 根据权利要求1至4任一项所述的电池,其中,所述第一类电芯组包括a个所述第一类电芯;所述第二类电芯组包括b个所述第二类电芯;a和b为自然数,且a≥1,b≥1,0.1≤a/b≤50,可选地,0.5≤a/b≤30;进一步可选地,1≤a/b≤10。
  6. 根据权利要求5所述的电池,其中,当a>1时,所有所述第一类电芯组的容量Cap1相同;和/或,当b>1时,所有所述第二类电芯组的容量Cap2相同。
  7. 根据权利要求1至6任一项所述的电池,其中,所述第一类电芯和所述第二类电芯满足如下至少一个条件:
    所述第一类电芯比热容C1与所述第二类电芯的比热容C2的比值为0.9≤C1/C2≤10,可选为1≤C1/C2≤6,进一步可选为1.5≤C1/C2≤3;
    所述第一类电芯导热系数λ1与所述第二类电芯的导热系数λ2的比值为0.5≤λ1/λ2≤3,可选为0.7≤λ1/λ2≤2,进一步可选为0.9≤λ1/λ2≤1.5;
    所述第一类电芯的平台电压V1为3.15V±0.05V~4.75V±0.05V;第二类电芯平台电压V2为3.60~3.80V±0.05V;和
    所述第一类电芯密度ρ1与所述第二类电芯的密度ρ2的比值为0.6≤ρ1/ρ2≤3,可选为0.8≤ρ1/ρ2≤2,进一步可选为0.9≤ρ1/ρ2≤1.5。
  8. 根据权利要求1至7任一项所述的电池,其中,所述第一类电芯为磷酸锂铁化学体系电芯。
  9. 根据权利要求1至8任一项所述的电池,其中,所述第二类电芯为三元材料化学体系电芯。
  10. 一种装置,包括权利要求1至9中任一项所述的电池,且以所述电池为电源。
  11. 一种电池的制造方法,包括:
    获取多个第一类电芯和至少一个第二类电芯,所述第一类电芯和第二类电芯为不同化学体系电芯;所述第一类电芯的体积能量密度小于所述第二类电芯的体积能量密度;
    并联连接所述多个第一类电芯形成第一类电芯组,并联连接所述至少一个第二类电芯形成第二类电芯组;
    其中,所述第一类电芯组的容量Cap1大于所述第二类电芯组的容量Cap2,所述第一类电芯组的容量Cap1为对应的第一类电芯的容量之和,所述第二类电芯组的容量Cap2为对应的第二类电芯的容量之和;
    串联连接所述第一类电芯组和所述第二类电芯组。
  12. 根据权利要求11所述的制造方法,其中,所述并联连接所述多个第一类电芯形成第一类电芯组包括:并联连接多个第一类电芯形成a个所述第一类电芯组,a为自然数,且a≥1;
    并联连接至少一个第二类电芯形成第二类电芯组包括:并联连接所述至少一个第二类电芯形成b个所述第二类电芯组,b为自然数,且b≥1,
    其中,0.1≤a/b≤50,可选地,0.5≤a/b≤30;进一步可选地,1≤a/b≤10。
  13. 根据权利要求11或12所述的制造方法,其中,还包括:
    将所述多个第一类电芯和所述至少一个第二类电芯排列成至少一个列,且使至少部分所述第二类电芯位于两个所述第一类电芯之间。
  14. 一种电池的制造设备,所述电池的制造设备包括一个处理器,
    所述处理器用于控制夹臂,获取多个第一类电芯和至少一个第二类电芯,所述第一类电芯和第二类电芯为不同化学体系电芯;且所述第一类电芯的体积能量密度小于所述第二类电芯的体积能量密度;
    所述处理器还用于控制组装部件,用于:
    并联连接所述多个第一类电芯形成第一类电芯组,并联连接所述至少一个第二类电芯形成第二类电芯组;
    其中,所述第一类电芯组的容量Cap1大于所述第二类电芯组的容量Cap2,所述第一类电芯组的容量Cap1为对应的第一类电芯的容量之和,所述第二类电芯组的容量Cap2为对应的第二类电芯的容量之和;
    串联连接所述第一类电芯组和所述第二类电芯组。
PCT/CN2021/089319 2020-04-30 2021-04-23 电池、装置、及电池的制造方法和设备 WO2021218814A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21790065.3A EP3952001B1 (en) 2020-04-30 2021-04-23 Battery, apparatus, method and device for manufacturing battery
US17/556,991 US20220115686A1 (en) 2020-04-30 2021-12-20 Battery, apparatus, and method and device for manufacturing battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010367231 2020-04-30
CN202010367231.1 2020-04-30
CN202010786523.9 2020-08-07
CN202010786523.9A CN113594636A (zh) 2020-04-30 2020-08-07 电池、装置、及电池的制造方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/556,991 Continuation US20220115686A1 (en) 2020-04-30 2021-12-20 Battery, apparatus, and method and device for manufacturing battery

Publications (1)

Publication Number Publication Date
WO2021218814A1 true WO2021218814A1 (zh) 2021-11-04

Family

ID=78237900

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/089319 WO2021218814A1 (zh) 2020-04-30 2021-04-23 电池、装置、及电池的制造方法和设备
PCT/CN2021/089665 WO2021218865A1 (zh) 2020-04-30 2021-04-25 电池模组、装置、电池包以及电池模组的制造方法和设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089665 WO2021218865A1 (zh) 2020-04-30 2021-04-25 电池模组、装置、电池包以及电池模组的制造方法和设备

Country Status (4)

Country Link
US (2) US20220115686A1 (zh)
EP (2) EP3952001B1 (zh)
CN (2) CN113594637A (zh)
WO (2) WO2021218814A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022104547A1 (zh) 2020-11-17 2022-05-27 宁德时代新能源科技股份有限公司 电池、使用电池的装置、电池的制备方法和制备设备
WO2022226748A1 (zh) * 2021-04-26 2022-11-03 宁德时代新能源科技股份有限公司 电池组、电池包、用电装置以及电池组的制造方法及制造设备
CN116918132A (zh) * 2021-11-18 2023-10-20 宁德时代新能源科技股份有限公司 一种电池包及其用电装置
CN114335837A (zh) * 2021-12-31 2022-04-12 远景动力技术(江苏)有限公司 电池包
CN117941115A (zh) * 2022-06-02 2024-04-26 宁德时代新能源科技股份有限公司 电池包和用电装置
WO2023245657A1 (zh) * 2022-06-24 2023-12-28 宁德时代新能源科技股份有限公司 电池包和用电装置
US20240170789A1 (en) * 2022-11-16 2024-05-23 Yu-Hung LI Battery System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174734A (ja) * 2001-12-06 2003-06-20 Shin Kobe Electric Mach Co Ltd ハイブリッド二次電池
CN102027617A (zh) * 2008-06-04 2011-04-20 松下电器产业株式会社 组电池
JP2012234696A (ja) * 2011-04-28 2012-11-29 Toyota Motor Corp 電池システム
CN208674305U (zh) 2018-09-04 2019-03-29 东莞塔菲尔新能源科技有限公司 一种电池模组

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738730B2 (ja) * 2003-04-21 2011-08-03 株式会社マキタ 組電池及び電池パック
US20100304206A1 (en) * 2007-05-18 2010-12-02 Takuya Nakashima Battery pack, and battery system
CN201749897U (zh) * 2010-05-27 2011-02-16 方正强 电池组装置
CN103311562B (zh) * 2012-03-12 2015-06-03 联想(北京)有限公司 一种充电电池及其充电控制方法和放电控制方法
DE102012215495A1 (de) * 2012-08-31 2014-03-06 Robert Bosch Gmbh Vorrichtung für eine Reihenschaltung mit einer Batteriezelle, Batterie, Kraftfahrzeug und Verfahren zum Ersetzen einer Batteriezelle eines Batteriemoduls durch eine andere Batteriezelle
DE102015203003A1 (de) * 2015-02-19 2016-08-25 Robert Bosch Gmbh Batteriespeichersystem mit unterschiedlichen Zelltypen
US9960458B2 (en) * 2015-06-23 2018-05-01 Quantumscape Corporation Battery systems having multiple independently controlled sets of battery cells
JP6130053B1 (ja) * 2015-09-16 2017-05-17 株式会社東芝 組電池及び電池パック
US10573859B2 (en) * 2018-07-03 2020-02-25 Daniel Francis Roddy Portable modular energy storage
CN109659465A (zh) * 2019-01-30 2019-04-19 哈尔滨格瑞赛科新能源有限公司 一种电动汽车动力电池系统用的电池串模块
CN110380144B (zh) * 2019-06-12 2020-06-23 长沙理工大学 一种退役磷酸铁锂和三元锂电池混合协调控制方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174734A (ja) * 2001-12-06 2003-06-20 Shin Kobe Electric Mach Co Ltd ハイブリッド二次電池
CN102027617A (zh) * 2008-06-04 2011-04-20 松下电器产业株式会社 组电池
JP2012234696A (ja) * 2011-04-28 2012-11-29 Toyota Motor Corp 電池システム
CN208674305U (zh) 2018-09-04 2019-03-29 东莞塔菲尔新能源科技有限公司 一种电池模组

Also Published As

Publication number Publication date
EP3952000B1 (en) 2023-08-02
EP3952000A1 (en) 2022-02-09
EP3952000A4 (en) 2022-12-14
CN113594637A (zh) 2021-11-02
CN113594636A (zh) 2021-11-02
EP3952001A1 (en) 2022-02-09
US20220123375A1 (en) 2022-04-21
WO2021218865A1 (zh) 2021-11-04
US20220115686A1 (en) 2022-04-14
EP3952000B8 (en) 2023-09-27
EP3952001B1 (en) 2023-09-06
EP3952001A4 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2021218814A1 (zh) 电池、装置、及电池的制造方法和设备
CN108258236B (zh) 一种高比容量高循环寿命18650圆柱锂电池及其制备方法
CN114937814A (zh) 一种降低电池内阻的锂二次电池电解液及锂二次电池
CN110061222B (zh) 一种锂电池浆料制备方法及其应用
WO2020177624A1 (zh) 负极片、二次电池及其装置
WO2022161070A1 (zh) 一种安全型锂离子电池及其制备方法
CN113066962B (zh) 含硅负极片和高能量密度电池
CN105742695A (zh) 一种锂离子电池及其制备方法
CN110931871A (zh) 一种适配硅碳负极材料的锂离子电池耐高温电解液
Zhu et al. Experimental study on long cycling performance of NCM523 lithium-ion batteries and optimization of charge-discharge strategy
CN101834325A (zh) 二次电池组
CN102201605A (zh) 具有双极性结构的电化学储能与能量转换装置
CN108987705B (zh) 一种电极材料组合物、锂离子电池正极片和锂离子电池
CN109119637B (zh) 集流体涂层、极片、锂离子电池及其制备方法
CN110993953A (zh) 正极片、固态化学电源及制备方法
CN111261962A (zh) 功率型磷酸铁锂电池的运维方法
CN114976249A (zh) 一种电解液及钠离子电池
CN114883531A (zh) 一种三电极锂离子电池及其预锂和补锂方法
Yu et al. The influence of coupling of charge/discharge rate and short term cycle on the battery capacity of Li-ion batteries
CN114242934B (zh) 一种电极组件及其应用
CN114023952B (zh) 一种正极活性材料、正极片及锂离子电池
JP7476419B2 (ja) 正極ペースト、正極シート、リチウムイオン電池、電池モジュール、電池パックおよび電力使用装置
WO2023206140A1 (zh) 二次电池、电池模块、电池包和用电装置
Ma et al. Study on the performance of anode binder for lithium iron phosphate battery
CN117254094A (zh) 锂离子电池及判断锂离子电池功率性能的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021790065

Country of ref document: EP

Effective date: 20211026

NENP Non-entry into the national phase

Ref country code: DE