WO2021218264A1 - 汽车中制动系统的液压调节单元、制动系统及控制方法 - Google Patents

汽车中制动系统的液压调节单元、制动系统及控制方法 Download PDF

Info

Publication number
WO2021218264A1
WO2021218264A1 PCT/CN2021/074810 CN2021074810W WO2021218264A1 WO 2021218264 A1 WO2021218264 A1 WO 2021218264A1 CN 2021074810 W CN2021074810 W CN 2021074810W WO 2021218264 A1 WO2021218264 A1 WO 2021218264A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
valve
pressure
pipeline
hydraulic chamber
Prior art date
Application number
PCT/CN2021/074810
Other languages
English (en)
French (fr)
Inventor
王广义
吴自贤
何强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021218264A1 publication Critical patent/WO2021218264A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force

Definitions

  • This application relates to the field of automobiles, and more specifically, to a hydraulic adjustment unit of a brake system in an automobile, a brake system in an automobile, an automobile, and a control method of the brake system in an automobile.
  • the braking system of a car is a system that applies a certain braking force to the wheels of the car to perform a certain degree of forced braking.
  • the function of the braking system is to force a driving car to decelerate or even stop according to the requirements of the driver or the controller, or to make a stopped car park stably under various road conditions (for example, on a ramp), or to make The speed of the car driving downhill remains stable.
  • the electro-hydraulic brake system Electro-Hydraulic Brake, EHB
  • EHB Electro-Hydraulic Brake
  • the motor can apply a certain braking force to the wheels of the car, so that the driving car can decelerate or even stop.
  • the wheels can drive the motor to rotate and generate electricity, and the mechanical energy of the wheels is converted into electrical energy by the motor to realize energy recovery and utilization.
  • the electro-hydraulic brake system can provide some braking force correspondingly.
  • the braking force determined by the pedal stroke sensor of the moving pedal is small. Therefore, it is necessary to decouple the brake pedal (master brake cylinder) from the brake wheel cylinder.
  • the existing electro-hydraulic brake system has a complex structure and requires a combination of multiple valves to achieve brake decoupling, which results in low brake decoupling efficiency of the system.
  • the present application provides a hydraulic adjustment unit of a brake system in an automobile, a brake system in an automobile, an automobile and a control method of the brake system in an automobile, so as to improve the braking decoupling efficiency of the brake system.
  • a hydraulic adjustment unit of a brake system in an automobile which includes a first booster device, a brake master cylinder, a first brake line, a second brake line, and a third brake line , Decoupling valve;
  • the first pressure-increasing device includes a first hydraulic chamber and a second hydraulic chamber connected in series, the first hydraulic chamber is connected with the first brake pipeline, the first brake pipeline is used to Group wheels apply braking force;
  • the second hydraulic chamber is connected to the second brake line, the second brake line is used to apply braking force to the second group of wheels of the car;
  • the master brake cylinder is used to connect with the car’s brake pedal Transmission connection,
  • the brake master cylinder includes a third hydraulic chamber, the third hydraulic chamber is connected to the first brake pipeline through a third brake pipeline;
  • the brake master cylinder is used to pass through the third hydraulic chamber and the third brake pipe Adjusts the pressure of the brake fluid in the first brake pipeline;
  • the brake master cylinder is also used to pass through the third hydraulic chamber, the third brake pipeline, the
  • the master brake cylinder can adjust the pressure of the brake fluid in the first brake line and the second brake line through the third brake line, and perform the brake in the third brake line.
  • the pipeline is equipped with a decoupling valve that can control the on and off of the pipeline. When the brake is decoupled, it can be realized by only closing the decoupling valve.
  • the hydraulic adjustment unit provided by the embodiment of the present application is simple to operate, and does not need to work in combination with multiple valves to achieve brake decoupling, and can improve the efficiency of brake decoupling.
  • the third hydraulic chamber can be isolated from the first brake line and the second brake line.
  • the brake fluid in the third hydraulic chamber will flow into the pedal feel simulator, but will not flow into the first brake line and the second brake line through the third brake line, and will not flow to the first brake
  • the pipeline and the second brake pipeline apply pressure.
  • the first booster device is controlled to not work, so that the first brake pipeline and the second brake pipeline have no hydraulic braking force, which can realize the dual-circuit braking force.
  • the 100% decoupling makes it easy to maximize energy recovery, which is beneficial to extend the car's cruising range.
  • the first pressurizing device includes a cylinder, and the cylinder is provided with a first piston and a second piston, and the first piston and the second piston are connected by an elastic connecting member (such as a spring), and the second piston is connected to the
  • the top cover of the cylinder is also connected by an elastic connecting piece, a first hydraulic chamber is formed between the first piston and the second piston, and a second hydraulic chamber is formed between the second piston and the top cover.
  • the first piston is drivingly connected to the booster motor through the first piston push rod, and under the drive of the booster motor, the first piston and the second piston can reciprocate in the cylinder to form the first hydraulic chamber and the booster motor.
  • the second hydraulic pressure chamber is pressurized or depressurized.
  • the first piston is drivingly connected to the booster motor through a power conversion element.
  • the power conversion element is used to convert the rotary motion of the supercharger motor into linear movement.
  • the power conversion element may be a worm gear assembly or a ball screw nut assembly, which is not limited in this application.
  • the decoupling valve is configured as a normally open solenoid valve, which is normally opened, and is activated to close the valve when receiving a closing signal;
  • the hydraulic regulating unit further includes a first check valve ,
  • the first check valve is arranged on the third brake line and is located between the decoupling valve and the first brake line, and the first check valve is configured to allow the brake fluid to flow from the third brake line.
  • the moving pipeline flows in the direction of the first brake pipeline while preventing the brake fluid from flowing in the opposite direction;
  • the first pressure-increasing device includes a first piston, a second piston, the first piston and the second piston The first hydraulic chamber is formed therebetween, and a pressure relief hole is opened on the first pressure boosting device.
  • the first piston is configured to open the pressure relief hole when the first piston is in the initial position.
  • the hydraulic adjustment unit also includes a third pressure relief pipe, one end of the third pressure relief pipe is connected to the pressure relief hole, and the other end of the third pressure relief pipe is connected to the pressure relief hole.
  • the third brake pipeline is connected to a pipe section between the first check valve and the decoupling valve.
  • the decoupling valve is configured as a normally open solenoid valve, which is normally open, and is activated to close the valve when a closing signal is received.
  • the decoupling valve can be de-energized, so that the decoupling valve can be restored to the default initial state (ie Open state), which can reduce the working time of the decoupling valve, reduce the working intensity of the decoupling valve, reduce the heat generation, and increase the working life of the decoupling valve.
  • the hydraulic pressure adjustment unit further includes a pedal feel simulator, a fourth brake pipeline, an activation valve, and a pressure limiting valve; the pedal feel simulator passes through the fourth brake pipeline and the third hydraulic pressure The cavities are connected to provide a reaction force corresponding to the pedal pressure of the brake pedal.
  • the start valve is arranged on the fourth brake pipeline to control the on and off of the fourth brake pipeline; the pressure limiting valve and the start valve Set in parallel, the pressure limiting valve is configured such that when the pressure in the third hydraulic chamber is greater than or equal to the set value, the pressure limiting valve is opened.
  • the service brake is used most frequently.
  • the start valve and the decoupling valve need to work. Compared with the decoupling valve, the start valve has a greater working intensity.
  • the start valve fails (that is, there is a malfunction)
  • the brake fluid cannot enter the pedal feel simulator through the start valve at this time, and the driver will not be able to step on the pedal normally.
  • This application sets a pressure limiting valve in parallel with the start valve to make When the pressure in the third hydraulic chamber is greater than the preset value, the pressure limiting valve can be opened.
  • the brake fluid can enter the pedal feel simulator through the pressure limiting valve, and the driver will be able to step on the brake pedal, thus the pedal
  • the stroke sensor can normally acquire the driver's braking intention, so that the first booster device can boost pressure according to the correct braking demand.
  • the hydraulic pressure adjusting unit further includes a second pressure boosting device, a first shut-off valve, and a second shut-off valve;
  • the second pressure boosting device is connected to the first brake pipeline for adjusting the The pressure of the brake fluid in the first brake line is used to control the braking force applied to the first group of wheels;
  • the second booster device is also connected to the second brake line for adjusting the second brake line
  • the pressure of the internal brake fluid is used to control the braking force applied to the second group of wheels;
  • the first shut-off valve is arranged on the first brake line, and is located at the second booster device and the first booster Between the devices to control the on-off of the first brake pipeline;
  • the second shut-off valve is arranged on the second brake pipeline and is located between the second booster device and the first booster device , To control the on-off of the second brake pipeline.
  • the second boosting device can be used to boost the braking system, which is beneficial to improving the redundancy performance of the braking system.
  • the structure of the second supercharging device and the first supercharging device may be the same or different, which is not limited in this application.
  • the second supercharging device has the same model as the first supercharging device.
  • the first supercharging device is the main supercharging device
  • the second supercharging device is the auxiliary supercharging device.
  • the braking capability of the first booster device is higher than the braking capability of the second booster device.
  • the second booster device may include an auxiliary booster motor and two booster pumps.
  • the auxiliary booster motor is used to provide power for the two booster pumps, and the two booster pumps are respectively used for the first system.
  • the driving pipeline and the second brake pipeline are pressurized.
  • the first shut-off valve and the second shut-off valve may be configured as normally open solenoid valves that are configured to be open in a normal state, and when receiving a closing signal from the controller At this time, the solenoid coil of the normally open solenoid valve can be energized to perform the closing operation. That is, the default initial state of the first shut-off valve and the second shut-off valve may be an open state.
  • the hydraulic adjustment unit further includes a first pressure relief pipeline, a second pressure relief pipeline, a first pressure relief valve, a second pressure relief valve, and a liquid storage device; the first pressure relief pipeline Connecting the liquid storage device and the first brake pipeline for delivering brake fluid to the liquid storage device to depressurize the first set of wheels, and the first pressure relief valve is provided on the first brake pipe.
  • the second pressure relief pipeline connects the liquid storage device with the second brake pipeline, and is used to deliver the brake fluid to the liquid storage device,
  • the second pressure relief valve is arranged on the second pressure relief pipeline to control the flow of brake fluid.
  • the first pressure relief valve and the second pressure relief valve control the flow of the brake fluid, which may include turning on or blocking the flow of the brake fluid, and controlling the opening of the valve to control the flow of the brake fluid.
  • the first pressure relief valve and the second pressure relief valve may be configured as normally closed solenoid valves, which are configured to be closed in a normal state, and after receiving a command from the controller When the signal is turned on, the solenoid coil of the normally closed solenoid valve can be energized to perform the opening operation. That is, the default initial state of the first pressure relief valve and the second pressure relief valve may be a closed state.
  • the liquid storage device is used for storing brake fluid, and is respectively connected with the first pressure increasing device and the brake master cylinder through the communication pipeline.
  • a valve for controlling the flow of brake fluid may also be provided on the communication pipeline.
  • liquid storage device may be one or multiple. When there are multiple liquid storage devices, two different liquid storage devices may be respectively used to communicate with the first pressure-increasing device and the brake master cylinder. , This application does not limit this.
  • the hydraulic adjustment unit further includes a second check valve and a third check valve; the second check valve is arranged in parallel with the decoupling valve, and the second check valve is configured as The brake fluid is allowed to flow in the direction from the first brake pipeline to the third hydraulic chamber while preventing the brake fluid from flowing in the opposite direction; the third check valve is arranged in parallel with the start valve, The third check valve is configured to allow the brake fluid to flow from the pedal feel simulator to the direction of the third hydraulic chamber while preventing the brake fluid from flowing in the opposite direction.
  • the pressure of the system can be quickly adjusted and the stability of the system operation can be improved. For example, since the brake fluid can be returned to the third hydraulic chamber through the third check valve when the brake pedal is released, the rapid return of the third piston (ie, the brake pedal) can be ensured.
  • a brake system for an automobile which includes a first booster device, a brake master cylinder, a first brake line, a second brake line, a third brake line, and a decoupling valve , Brake pedal and brake wheel cylinder;
  • the first pressure boosting device includes a first hydraulic chamber and a second hydraulic chamber connected in series, the first hydraulic chamber is connected with the first brake pipeline, the first brake The pipeline is connected with the brake wheel cylinder of the first set of wheels of the automobile;
  • the second hydraulic chamber is connected with the second brake pipeline, and the second brake pipeline is connected with the automobile
  • the brake wheel cylinders of the second set of wheels are connected;
  • the brake master cylinder is in transmission connection with the brake pedal, the brake master cylinder includes a third hydraulic chamber, and the third hydraulic chamber passes through the first Three brake pipelines are connected to the first brake pipeline;
  • the master brake cylinder is used to adjust the internal pressure of the first brake pipeline through the third hydraulic chamber and the third brake pipeline The pressure of the brake fluid;
  • the brake master cylinder is also used to
  • the brake system is provided.
  • the brake master cylinder can adjust the pressure of the brake fluid in the first brake pipe and the second brake pipe through the third brake pipe, and in the third brake pipe
  • a decoupling valve that can control the on and off of the pipeline is set on the road.
  • the brake When the brake is decoupled, it can be realized by only closing the decoupling valve.
  • the brake system provided by the embodiment of the present application is simple to operate, and does not need to work in combination with multiple valves to achieve brake decoupling, and can improve the efficiency of brake decoupling.
  • the third hydraulic chamber can be isolated from the first brake pipeline and the second brake pipeline.
  • the brake fluid in the third hydraulic chamber will flow into the pedal feel simulator, but will not flow into the first brake line and the second brake line through the third brake line, and will not flow to the first brake
  • the pipeline and the second brake pipeline apply pressure.
  • the first booster device is controlled to not work, so that the first brake pipeline and the second brake pipeline have no hydraulic braking force, which can realize the dual-circuit braking force.
  • the 100% decoupling makes it easy to maximize energy recovery, which is beneficial to extend the car's cruising range.
  • the decoupling valve is configured as a normally open solenoid valve, which is normally opened, and is activated to close the valve when receiving a closing signal;
  • the brake system also includes a first check valve , The first check valve is arranged on the third brake line and located between the decoupling valve and the first brake line, and the first check valve is configured to allow the brake The hydraulic fluid flows from the third brake line to the direction of the first brake line while preventing the brake fluid from flowing in the opposite direction;
  • the first pressure-increasing device includes a first piston and a second piston , The first hydraulic chamber is formed between the first piston and the second piston, a pressure relief hole is opened on the first pressure-increasing device, and the first piston is configured to When the piston is in the initial position, the pressure relief hole is opened, and when the first piston leaves the initial position, the pressure relief hole is closed;
  • the braking system also includes a third pressure relief pipeline, so One end of the third pressure relief pipeline is connected to the pressure relief hole, and the other end of the
  • the decoupling valve is configured as a normally open solenoid valve, which is normally open, and is activated to close the valve when a closing signal is received.
  • the decoupling valve can be de-energized, so that the decoupling valve can be restored to the default initial state (ie Open state), which can reduce the working time of the decoupling valve, reduce the working intensity of the decoupling valve, reduce the heat generation, and increase the working life of the decoupling valve.
  • the brake system further includes a pedal feel simulator, a fourth brake pipeline, an activation valve, and a pressure limiting valve;
  • the pedal feel simulator communicates with the pedal through the fourth brake pipeline.
  • the third hydraulic chamber is connected to provide a reaction force corresponding to the pedal pressure of the brake pedal, and the activation valve is arranged on the fourth brake pipeline to control the fourth brake pipeline.
  • the pressure limiting valve is arranged in parallel with the start valve, and the pressure limiting valve is configured such that when the pressure in the third hydraulic chamber is greater than or equal to a set value, the pressure limiting valve is Open.
  • the service brake is used most frequently.
  • the start valve and the decoupling valve need to work. Compared with the decoupling valve, the start valve has a greater working intensity.
  • the start valve fails (that is, there is a malfunction)
  • the brake fluid cannot enter the pedal feel simulator through the start valve at this time, and the driver will not be able to step on the pedal normally.
  • This application sets a pressure limiting valve in parallel with the start valve to make When the pressure in the third hydraulic chamber is greater than the preset value, the pressure limiting valve can be opened.
  • the brake fluid can enter the pedal feel simulator through the pressure limiting valve, and the driver will be able to step on the brake pedal, thus the pedal
  • the stroke sensor can normally acquire the driver's braking intention, so that the first booster device can boost pressure according to the correct braking demand.
  • the brake system further includes a second pressure boosting device, a first shut-off valve, and a second shut-off valve;
  • the second pressure boosting device is connected to the first brake pipeline for By adjusting the pressure of the brake fluid in the first brake pipe, the braking force applied to the first group of wheels is controlled;
  • the second pressure boosting device is also connected with the second brake pipe, Used to control the braking force applied to the second group of wheels by adjusting the pressure of the brake fluid in the second brake pipeline;
  • the first stop valve is arranged on the first brake pipeline, And is located between the second booster device and the first booster device to control the on-off of the first brake pipeline;
  • the second shut-off valve is arranged on the second brake pipeline , And located between the second pressure boosting device and the first pressure boosting device to control the on-off of the second brake pipeline.
  • the second boosting device can be used to boost the braking system, which is beneficial to improving the redundancy performance of the braking system.
  • the braking system further includes a first pressure relief pipeline, a second pressure relief pipeline, a first pressure relief valve, a second pressure relief valve, and a liquid storage device;
  • the first pressure relief pipeline The pipeline connects the liquid storage device with the first brake pipeline, and is used to deliver brake fluid to the liquid storage device to depressurize the first group of wheels.
  • the first pressure relief valve is provided On the first pressure relief pipeline to control the flow of brake fluid;
  • the second pressure relief pipeline connects the liquid storage device with the second brake pipeline and is used to deliver brake fluid to
  • the liquid storage device reduces pressure for the second set of wheels, and the second pressure relief valve is arranged on the second pressure relief pipeline to control the flow of brake fluid.
  • the brake system further includes a second check valve and a third check valve; the second check valve is arranged in parallel with the decoupling valve, and the second check valve The valve is configured to allow the brake fluid to flow in the direction from the first brake line to the third hydraulic chamber while preventing the brake fluid from flowing in the opposite direction; the third check valve and the activation The valves are arranged in parallel, and the third check valve is configured to allow the brake fluid to flow from the pedal feel simulator to the direction of the third hydraulic chamber while preventing the brake fluid from flowing in the opposite direction.
  • the pressure of the system can be quickly adjusted and the stability of the system operation can be improved. For example, since the brake fluid can be returned to the third hydraulic chamber through the third check valve when the brake pedal is released, the rapid return of the third piston (ie, the brake pedal) can be ensured.
  • the brake system further includes a pedal stroke sensor, which is used to detect the stroke of the brake pedal, and the pedal stroke sensor is also used to send stroke information indicating the stroke to the controller, so that the controller can determine based on the stroke The braking force applied to the wheels of a car.
  • a pedal stroke sensor which is used to detect the stroke of the brake pedal, and the pedal stroke sensor is also used to send stroke information indicating the stroke to the controller, so that the controller can determine based on the stroke The braking force applied to the wheels of a car.
  • the brake system further includes a pressure sensor located on the first brake pipeline between the pressure outlet port of the first hydraulic chamber and the first shut-off valve.
  • the pressure sensor is used to detect the pressure of the brake fluid in the first brake line, and is also used to send pressure information indicating the pressure to the controller, so that the controller can determine the braking force applied to the wheels of the automobile based on the pressure.
  • an automobile including wheels and a braking system in any one of the possible implementations of the second aspect described above, and the braking system is used to provide braking force for the wheels.
  • the wheels include the aforementioned first group of wheels and the second group of wheels.
  • the first group of wheels includes a right front wheel and a left front wheel
  • the second group of wheels includes a right rear wheel and a left rear wheel
  • the first group of wheels includes a right front wheel and a left rear wheel
  • the second group of wheels includes a left front wheel and a left rear wheel, which is not limited in the embodiment of the present application.
  • the car may be a smart car, a new energy car, a traditional car, or the like.
  • the car can be an electric car or a hybrid car.
  • a method for controlling a brake system in an automobile includes a first booster device, a master brake cylinder, a first brake pipeline, a second brake pipeline, and a third brake system.
  • the first booster device includes a first hydraulic chamber and a second hydraulic chamber connected in series, the first hydraulic chamber and the The first brake line is connected, and the first brake line is connected to the wheel brake cylinder of the first set of wheels of the automobile;
  • the second hydraulic chamber is connected to the second brake line Connected, the second brake pipeline is connected to the wheel brake cylinder of the second set of wheels of the automobile;
  • the brake master cylinder is in transmission connection with the brake pedal, and the brake master cylinder includes
  • the third hydraulic chamber, the third hydraulic chamber is connected to the first brake pipeline through the third brake pipeline;
  • the brake master cylinder is used to pass through the third hydraulic chamber, the first brake pipeline
  • the three brake lines adjust the pressure of the brake fluid in the first brake line;
  • a brake pipeline, the first hydraulic chamber, and the second hydraulic chamber adjust the pressure of the brake fluid in the second brake pipeline; the decoupling valve is arranged on the third brake pipeline , To control the on and off of the third brake pipeline; the method includes: the controller determines that the brake system needs to be brake decoupling; the controller controls the decoupling valve to close to The braking decoupling is achieved.
  • the controller obtains the braking intention of the driver, or the braking intention of the ADAS/automatic driving, and determines that the wheels need to be braked.
  • the controller can further determine that the motor of the car can provide braking force (that is, the actual braking force that the motor can perform is not 0), that is, the controller further determines that the braking force required by the braking system is determined relative to the pedal stroke.
  • the braking force should be small, that is, the controller determines that the control system needs braking decoupling.
  • the braking force that the driving motor can actually perform can be determined by comprehensively considering the braking capacity of the vehicle driving motor, the allowable charging capacity of the battery, and the vehicle speed based on the vehicle status information.
  • the actual braking force that the motor can actually perform can be zero because it cannot continue to charge the battery at this time.
  • the controller may determine the total braking force demand that needs to be provided for the automobile after determining the braking intention.
  • the controller detects the first stroke of the brake pedal in the car through the pedal stroke sensor in the car. Based on the first stroke of the brake pedal and the corresponding relationship between the stroke and the total braking force demand, the controller determines that the vehicle needs to be The total demand for braking force provided.
  • the controller can detect the pressure of the brake fluid in the first brake line according to the pressure sensor. In this way, the controller can be based on the pressure of the brake fluid in the first brake line, and the pressure of the brake fluid and Correspondence between the demanded braking force, determine the total demand for braking force.
  • the controller receives information sent by the advanced driving assistance system ADAS/automatic driving in the car, and the information is used to indicate the total braking force demand that needs to be provided for the car; the controller determines the braking force that needs to be provided for the car based on this information Total demand.
  • the controller determines the total braking force demand, it can be compared with the actual braking force that can be performed by the motor.
  • the controller determines that the actually executable braking force of the motor is greater than or equal to the total braking force demand.
  • the controller can also control the first and second booster devices without working to achieve the braking system. Complete (100%) decoupling. That is, at this time, the braking force can be completely provided by the motor, and the braking system does not need to provide braking force to the wheels.
  • the controller determines that the actual braking force that the motor can actually perform is less than the total braking force demand. At this time, the controller also needs to control the first supercharging device 40 and/or the second supercharging device 70 to perform supercharging to provide the wheels with Braking force.
  • the decoupling valve is configured as a normally open solenoid valve, the normally open solenoid valve is usually opened, and is activated to close the valve when a closing signal is received;
  • the brake system is also It includes a first check valve, the first check valve is arranged on the third brake line, and is located between the decoupling valve and the first brake line, the first check valve The valve is configured to allow the brake fluid to flow from the third brake line to the direction of the first brake line while preventing the brake fluid from flowing in the opposite direction;
  • the first pressurizing device includes a first A piston, a second piston, the first hydraulic chamber is formed between the first piston and the second piston, a pressure relief hole is opened on the first pressure-increasing device, and the first piston is configured as , When the first piston is in the initial position, the pressure relief hole is opened, when the first piston leaves the initial position, the pressure relief hole is closed;
  • the braking system further includes a third A pressure relief pipeline, one end of the third pressure relief pipeline is connected to the pressure relief
  • the brake system further includes a pedal feel simulator, a fourth brake pipeline, an activation valve, and a pressure limiting valve;
  • the pedal feel simulator communicates with the pedal through the fourth brake pipeline.
  • the third hydraulic chamber is connected to provide a reaction force corresponding to the pedal pressure of the brake pedal, and the activation valve is arranged on the fourth brake pipeline to control the fourth brake pipeline.
  • the pressure limiting valve is arranged in parallel with the start valve, and the pressure limiting valve is configured such that when the pressure in the third hydraulic chamber is greater than or equal to a set value, the pressure limiting valve is Open;
  • the method further includes: the controller determines that the startup valve is faulty; the controller controls the decoupling valve to be in an open state.
  • the brake system further includes a second pressure boosting device, a first shut-off valve, and a second shut-off valve;
  • the second pressure boosting device is connected to the first brake pipeline for By adjusting the pressure of the brake fluid in the first brake pipe, the braking force applied to the first group of wheels is controlled;
  • the second pressure boosting device is also connected with the second brake pipe, Used to control the braking force applied to the second group of wheels by adjusting the pressure of the brake fluid in the second brake pipeline;
  • the first stop valve is arranged on the first brake pipeline, And is located between the second booster device and the first booster device to control the on-off of the first brake pipeline;
  • the second shut-off valve is arranged on the second brake pipeline , And located between the second boosting device and the first boosting device to control the on-off of the second brake line;
  • the method further includes: the controller determines the first The booster device fails; the controller controls the first shut-off valve and the second shut-off valve to close, and controls the second booster device to work.
  • a control device in a fifth aspect, includes a processing unit and a storage unit, wherein the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the control device executes any one of the third aspect Possible method.
  • control device may be an independent controller in the automobile, or may be a chip with a control function in the automobile.
  • the foregoing processing unit may be a processor
  • the foregoing storage unit may be a memory, where the memory may be a storage unit in a chip (for example, a register, a cache, etc.), or a storage unit (for example, a read-only Memory, random access memory, etc.).
  • the memory and the processor are coupled in the above-mentioned controller.
  • the memory is coupled to the processor, it can be understood that the memory is located inside the processor, or the memory is located outside the processor, thereby being independent of the processor.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the methods in the foregoing aspects.
  • the above-mentioned computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor, or may be packaged separately with the processor. Specific restrictions.
  • a computer-readable medium stores program code, and when the computer program code runs on a computer, the computer executes the methods in the above-mentioned aspects.
  • FIG. 1 is a schematic diagram of a hydraulic pressure adjusting unit 100 in a braking system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a hydraulic pressure adjusting unit 200 of a brake system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a braking system 300 provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the flow path of the brake fluid in the brake system 300 provided by the embodiment of the present application in the full brake decoupling mode.
  • FIG. 5 is a schematic diagram of the flow path of the brake fluid of the brake system 300 provided by the embodiment of the present application in the service brake mode of the main booster device.
  • FIG. 6 is a schematic diagram of the flow path of the brake fluid when the activation valve 2 fails in the brake system 300 provided by the embodiment of the present application in the service brake mode of the main booster device.
  • FIG. 7 is a schematic diagram of the flow path of the brake fluid of the brake system 300 according to an embodiment of the present application in the service brake mode of the auxiliary booster device.
  • FIG. 8 is a schematic diagram of the flow path of the brake fluid when the brake system 300 according to an embodiment of the present application releases pressure in the service brake mode of the auxiliary booster device.
  • FIG. 9 is a schematic diagram of the flow path of the brake fluid when the activation valve 2 fails in the brake system 300 provided by the embodiment of the present application in the service brake mode of the auxiliary booster device.
  • FIG. 10 is a schematic diagram of the flow path of the brake fluid when the main boosting device realizes single-wheel boosting of the brake system 300 according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the flow path of the brake fluid when the auxiliary booster device realizes single-wheel boost of the brake system 300 according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the flow path of brake fluid in the emergency braking mode of the braking system 300 provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the flow path of the brake fluid in the pure mechanical braking mode of the braking system 300 provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the flow path of the brake fluid when the brake system 300 according to an embodiment of the present application is decompressed in a purely mechanical brake mode.
  • Fig. 15 is a flowchart of a control method according to an embodiment of the present application.
  • Fig. 16 is a schematic diagram of a control device according to an embodiment of the present application.
  • Fig. 17 is a schematic block diagram of a controller according to an embodiment of the present application.
  • Electric vehicles use motors to drive the wheels, which convert the electrical energy in the battery into mechanical energy of the wheels. Due to the limited battery capacity of electric vehicles, in order to increase the range of electric vehicles, the motors of electric vehicles are usually bidirectional. In addition to converting electrical energy into mechanical energy, they can also convert mechanical energy into electrical energy.
  • the motor can also be used to generate electricity. For example, the motor of an electric vehicle can perform "brake energy recovery". When the vehicle needs to decelerate or brake, the motor can convert the kinetic energy generated by the inertial rotation of the wheels into electrical energy, and at the same time generate braking torque to provide braking force to the wheels.
  • EHB as a popular braking system, usually includes a two-stage braking subsystem.
  • the first-stage braking system is controlled by the controller in a wire-controlled manner to control the booster device to provide braking force for the wheels.
  • the second-level brake subsystem is used by the driver to step on the brake pedal to provide braking force to the wheels through the master cylinder.
  • the motor can apply a certain braking force to the wheels of the car, so that the driving car can decelerate or even stop.
  • the wheels can drive the motor to rotate and generate electricity, and the mechanical energy of the wheels is converted into electrical energy through the motor to realize energy recovery and utilization.
  • the electro-hydraulic brake system can provide some braking force correspondingly.
  • the braking force determined by the pedal stroke of the moving pedal is small. Therefore, it is necessary to decouple the brake pedal (master brake cylinder) and the wheel brake cylinder for braking.
  • brake decoupling can be understood as the braking force provided by the electro-hydraulic braking system to the brake wheel cylinders can be different from the braking force that needs to be applied determined based on the stroke of the brake pedal.
  • the controller determines that the actual braking force that the motor can perform can meet the braking demand.
  • the controller can control the boost The device does not work, and the master cylinder is controlled not to provide braking force to the wheels, so as to achieve complete (100%) braking decoupling between the electro-hydraulic braking system and the wheels.
  • the existing electro-hydraulic brake system has a complex structure, and requires multiple valves to work in combination to achieve brake decoupling.
  • the control logic of the controller is highly complex, and the work intensity of the multiple valves is relatively high. The failure of any one of the valves will It may cause the brake decoupling to be impossible, and the brake decoupling efficiency of the system is not high.
  • the embodiments of the present application provide a hydraulic adjustment unit of a brake system, a brake system in an automobile, and a control method for an automobile and a brake system in an automobile.
  • a hydraulic adjustment unit of a brake system By improving the existing brake system, To improve the braking decoupling efficiency of the braking system.
  • the hydraulic adjustment unit provided by the embodiment of the present application will be first introduced with reference to the accompanying drawings.
  • pressure outlet port can be understood as the port through which the brake fluid flows out
  • pressure inlet port can be understood as the port through which the brake fluid flows in.
  • pressure outlet port and “pressure inlet port” can be understood as the function of limiting the role of the port.
  • the above-mentioned “pressure outlet port” and “pressure inlet port” can be used to define a physical port to work in different ways.
  • the above-mentioned “pressure outlet port” and “pressure inlet port” may also correspond to two different physical ports, which are not limited in the embodiment of the present application.
  • the pressure inlet port of the device A when connected to the pressure outlet port of the device B described below, it can be understood as corresponding to two physical ports and used to describe the connection relationship between the device A and the device B.
  • FIG. 1 is a schematic diagram of a hydraulic adjustment unit 100 provided by an embodiment of the present application.
  • the hydraulic pressure adjusting unit 100 shown in FIG. 1 is the first pressure booster 40, the master brake cylinder 50, the pedal feel simulator 60, the first brake line 110, the second brake line 120, and the third brake line 130.
  • the first pressure boosting device 40 includes a first hydraulic chamber 41 and a second hydraulic chamber 42 connected in series.
  • the first hydraulic chamber 41 is connected to a first brake line 110, and the first brake line 110 is used to
  • the first set of wheels (not shown in FIG. 1) of the automobile provide braking force, for example, to control the braking force applied to the first set of wheels of the automobile by adjusting the pressure of the brake fluid in the first brake pipe 110 .
  • the second hydraulic chamber 42 is connected to the second brake line 120, and the second brake line 120 is used to provide braking force to the second set of wheels (not shown in FIG. 1) of the automobile, for example, for passing through
  • the pressure of the brake fluid in the second brake pipe 120 is adjusted to control the braking force applied to the second set of wheels of the automobile.
  • the first pressurizing device 40 includes a cylinder 45, in which a first piston 43 and a second piston 44 are arranged, and the first piston 43 and the second piston 44 are elastic
  • the connecting piece (such as a spring) is connected, and the second piston 44 is also connected to the top cover of the cylinder by an elastic connecting piece.
  • a first hydraulic chamber 41 is formed between the first piston 43 and the second piston 44, and the second piston 44 and A second hydraulic chamber 42 is formed between the top cover.
  • the first piston 43 is in transmission connection with the booster motor 48 through the first piston push rod 46. Driven by the booster motor 48, the first piston 43 and the second piston 44 can reciprocate in the cylinder 45, which is the first The hydraulic chamber 41 and the second hydraulic chamber 42 are pressurized or depressurized.
  • the first piston 43 is drivingly connected to the booster motor 48 through a power conversion element 47.
  • the power conversion element 47 is used to convert the rotary motion of the supercharger motor 48 into linear motion.
  • the power conversion element 47 may be a worm gear assembly or a ball screw nut assembly, which is not limited in this application.
  • the pressure outlet port of the first hydraulic chamber 41 is connected to the pressure inlet port of the first brake pipe 110.
  • the first hydraulic chamber 41 can pump the brake hydraulic pressure into the first brake pipe 110, so that the first brake pipe can be added.
  • the pressure of the brake fluid in the driving pipe 110 is used to control the braking force applied to the first set of wheels of the automobile.
  • the first brake line 110 may include two branches, that is, the first branch 111 and the second branch 112, that is, the first brake line 110 may include two pressures.
  • the two pressure outlet ports can be respectively used to control the braking force applied to two different wheels of the first group of wheels.
  • the pressure outlet port of the second hydraulic chamber 42 is connected to the pressure inlet port of the second brake line 120.
  • the second hydraulic chamber 42 can pump the brake hydraulic pressure into the second brake line 120, so that the second brake line can be added.
  • the pressure of the brake fluid in the driving pipe 120 is used to control the braking force applied to the second set of wheels of the automobile.
  • the second brake line 120 may include two branches, that is, the third branch 121 and the fourth branch 122, that is, the second brake line 120 may include two pressures.
  • the two pressure outlet ports can be respectively used to control the braking force applied to two different wheels of the second group of wheels.
  • the pressure outlet ends of the first brake line 110 and the second brake line 120 may be respectively connected to the wheel brake cylinders (or caliper brakes, etc.) of the wheels, so that braking force can be applied to the wheels.
  • first branch 111, the second branch 112, the third branch 121, and the fourth branch 122 may be respectively provided with an inlet valve 14 which can control the brake fluid on the respective branch.
  • the flow is controlled so that individual control of the braking of each wheel can be achieved.
  • the inlet valve 14 may be set as a normally open solenoid valve configured to be opened in a normal state and operated to be closed when receiving a closing signal from the controller. That is, the default initial state of the inlet valve 14 is the open state.
  • the first group of wheels is different from the second group of wheels.
  • the first group of wheels includes a right front wheel and a left front wheel
  • the second group of wheels includes a right rear wheel and a left rear wheel.
  • the first group of wheels includes a right front wheel and a left rear wheel
  • the second group of wheels includes a left front wheel and a left rear wheel, which is not limited in the embodiment of the present application.
  • the master brake cylinder 50 is used for transmission connection with the brake pedal (not shown in FIG. 1) of the automobile.
  • the master brake cylinder 50 includes a third hydraulic chamber 53 which is connected to the third hydraulic chamber 53 through the third brake pipeline 130.
  • the first brake pipe 110 is connected, and the master brake cylinder 50 is used to adjust the pressure of the brake fluid in the first brake pipe 110 through the third hydraulic chamber 53 and the third brake pipe 130.
  • the brake master cylinder 50 is also used to adjust the second brake line 120 through the third hydraulic chamber 53, the third brake line 130, the first brake line 110, the first hydraulic chamber 41, and the second hydraulic chamber 42.
  • the pressure of the internal brake fluid is arranged on the third brake pipe 130 to control the on and off of the third brake pipe 130.
  • a third piston 51 is provided in the cylinder body of the brake master cylinder 50, and one side of the third piston 51 is connected to the top cover of the cylinder body through an elastic connecting member.
  • the other side of the vehicle is connected to the brake pedal of the automobile through the second piston push rod 52.
  • the third hydraulic chamber 53 is formed between the third piston 51 and the top cover of the cylinder, and the driver can apply pressure to the third hydraulic chamber 53 by stepping on the brake pedal.
  • the pressure outlet port of the third hydraulic chamber 53 is connected to the pressure inlet port of the third brake pipe 130, and the pressure outlet port of the third brake pipe 130 is connected to the pressure inlet port of the first brake pipe 110, so that The brake hydraulic pressure is injected into the first brake line 110 through the third brake line 130.
  • the brake fluid in the first brake pipe 110 can be divided into two paths, one path flows to the brake wheel cylinders of the first group of wheels, so as to provide braking force to the first group of wheels; the other path flows to the first group of wheels.
  • a hydraulic pressure chamber 41 so that the second piston 44 moves toward the top cover, exerts pressure on the second hydraulic pressure chamber 42, and the second hydraulic pressure chamber 42 further pumps the brake hydraulic pressure into the second brake pipe 120, so that it can be adjusted
  • the pressure of the brake fluid in the second brake line 120 that is, the master brake cylinder 50 can also control the braking force applied to the second set of wheels of the automobile through the second brake line 120.
  • the decoupling valve 1 is arranged on the third brake line 130 to control the on and off of the third brake line 130.
  • the decoupling valve 1 can be opened, so that the third brake line 130 is connected.
  • the decoupling valve 1 can be closed, so that the third brake line 130 is blocked.
  • the decoupling valve 1 may be set as a normally open solenoid valve, which is configured to be open in a normal state, and when receiving a closing signal from the controller, the The solenoid coil of the normally open solenoid valve is energized to perform the closing operation.
  • the default initial state of the decoupling valve 1 may be an open state.
  • the pedal feel simulator 60 is connected to the third hydraulic chamber 53 through the fourth brake pipe 140 to provide a reaction force corresponding to the pedal pressure of the brake pedal.
  • the reaction force is provided to compensate the driver's pedal force as much as possible, so that the driver can accurately adjust the braking force as expected.
  • the fourth brake pipeline 140 may be connected to the third hydraulic chamber 53 through the third brake pipeline 130. In other embodiments, the fourth brake pipeline 140 may also be directly connected to the third hydraulic chamber 53, which is not limited in this application.
  • the start valve 2 is arranged on the fourth brake pipe 140 to control the on and off of the fourth brake pipe 140.
  • the start valve 2 can be opened, so that the fourth brake line 140 is connected.
  • the start valve 2 can be closed, so that the fourth brake line 140 is blocked.
  • the start valve 2 is configured as a normally closed solenoid valve that is normally kept closed, and is opened when the driver steps on the brake pedal to deliver the brake fluid to the pedal feel simulator 60.
  • the default initial state of the start valve 2 may be the closed state.
  • the master brake cylinder 50 can adjust the pressure of the brake fluid in the first brake line 110 and the second brake line 120 through the third brake line 130, and
  • the third brake pipeline 130 is provided with a decoupling valve 1 capable of controlling the on and off of the pipeline.
  • a decoupling valve 1 capable of controlling the on and off of the pipeline.
  • the hydraulic adjustment unit 100 provided by the embodiment of the present application is simple to operate, and does not need to work in combination with multiple valves to achieve brake decoupling, and can improve the efficiency of brake decoupling.
  • the third hydraulic chamber 53 can be isolated from the first brake line 110 and the second brake line 120.
  • the brake fluid in the third hydraulic chamber 53 will flow into the pedal feel simulator 60, but will not flow into the first brake pipe 110 and the second brake pipe through the third brake pipe 130
  • the circuit 120 does not apply pressure to the first brake pipe 110 and the second brake pipe 120.
  • the first pressure boosting device 40 is controlled to not work, so that the first brake pipe 110 and the second brake pipe There is no hydraulic braking force in the pipeline 120, which can realize 100% decoupling of the dual-circuit braking force, which is easy to realize the maximization of energy recovery, and is beneficial to extend the cruising range of the vehicle.
  • the hydraulic pressure regulating unit 100 further includes a liquid storage device 80, which is used to store brake fluid and is connected to the first pressure boosting device 40 and the brake master cylinder 50 through a communication pipeline. Pass.
  • a valve for controlling the flow of brake fluid may also be provided on the communication pipeline.
  • liquid storage device 80 there may be one or more than one liquid storage device 80.
  • two different liquid storage devices 80 The device 80 can be respectively used to communicate with the first supercharging device 40 and the master brake cylinder 50, which is not limited in this application.
  • the hydraulic pressure regulating unit 100 further includes a first check valve 4, which is arranged on the third brake pipeline 130, and is located on the decoupling valve 1 and the first brake pipeline. Between 110, the first check valve 4 is configured to allow the brake fluid to flow from the third brake line 130 to the first brake line 110 while preventing the brake fluid from flowing in the opposite direction.
  • the check valve can also be called a one-way valve, which only allows the brake fluid to flow in one direction, and prevents the flow from the opposite direction.
  • a pressure relief hole is opened on the first pressure-increasing device 40, and the first piston 43 is configured such that when the first piston 43 is at the initial position, the pressure relief hole is opened, and when the first piston 43 leaves the initial position, the pressure is relieved. The hole is closed.
  • the first piston 43 can be configured like an "L" shape, that is, the lower side wall of the first piston 43 is longer than other parts.
  • the leakage The pressure hole is not covered by the lower side wall of the first piston 43 and is therefore in a conducting state.
  • the lower side wall of the first piston 43 will Cover the pressure relief hole so that the pressure relief hole is closed until the first piston 43 returns to the initial position again, the pressure relief hole will always be in a closed state.
  • the length of the lower side wall of the first piston 43 should match its stroke, so that the first piston 43 can always be in a closed state after leaving the initial position.
  • the lower portion of the first piston 43 has a chamfer, so that the pressure relief hole is conducted when the first piston 43 is in the initial position.
  • first piston 43 may also be configured in other shapes, such as “"” shape, “[" shape, “]” shape, etc., which is not limited in the present application.
  • the hydraulic adjustment unit 100 further includes a third pressure relief pipeline 230, one end of the third pressure relief pipeline 230 (for example, the pressure inlet port) is connected to the pressure relief hole, and the other end of the third pressure relief pipeline 230 (for example, the pressure The outlet port) is connected to the pipe section of the third brake pipeline 130 between the first check valve 4 and the decoupling valve 1.
  • the decoupling valve 1 is configured as a normally open solenoid valve, which is normally open, and is activated to close the valve when a closing signal is received.
  • the initial state that is, the open state
  • the initial state which can reduce the working time of the decoupling valve 1, reduce the working intensity of the decoupling valve 1, reduce heat generation, increase the working life of the decoupling valve 1, and also help improve the entire braking system Safe use performance.
  • the hydraulic regulating unit 100 further includes a pressure limiting valve 5 arranged in parallel with the start valve 2.
  • the pressure limiting valve 5 is configured to limit the pressure when the pressure in the third hydraulic chamber 53 is greater than or equal to a set value.
  • the pressure valve 5 is opened.
  • the service brake is used most frequently.
  • the start valve 2 and the decoupling valve 1 need to work.
  • the start valve 2 has a greater working intensity.
  • the brake fluid cannot enter the pedal feel simulator 60 through the start valve 2 at this time, and the driver will not be able to step on the pedal normally.
  • This application sets a limit in parallel with the start valve 2
  • the pressure valve 5 enables the pressure limiting valve 5 to be opened when the pressure in the third hydraulic chamber 53 is greater than the preset value.
  • the brake fluid can enter the pedal feel simulator 60 through the pressure limiting valve 5, and the driver will
  • the brake pedal can be stepped on, so that the pedal stroke sensor (not shown in FIG. 1) can normally acquire the driver's braking intention, so that the first boosting device 40 can boost pressure according to the correct braking demand.
  • the hydraulic adjustment unit 100 further includes a third check valve 11 provided in parallel with the start valve 2.
  • the third check valve 11 is configured to allow the brake fluid to flow from the pedal feel simulator 60 to the third hydraulic chamber. While flowing in the direction of 53, the brake fluid is prevented from flowing in the opposite direction. Since the brake fluid can be returned to the third hydraulic chamber 53 through the third check valve 11 when the brake pedal is released, the rapid return of the third piston 51 (ie, the brake pedal) can be ensured.
  • the hydraulic pressure regulating unit 100 further includes a second check valve 10 arranged in parallel with the decoupling valve 1, and the second check valve 10 is configured to allow the direction of the brake fluid from the first brake line 110 to the third hydraulic chamber 53 While flowing, the brake fluid is prevented from flowing in the opposite direction.
  • the pressure of the first brake line 110 or the first hydraulic chamber 41 can be quickly released by setting the second check valve 10.
  • FIG. 2 is a schematic diagram of a hydraulic pressure adjusting unit 200 of a brake system according to an embodiment of the present application.
  • the hydraulic adjustment unit 200 shown in FIG. 2 is another brake system architecture to which the brake decoupling solution provided in the present application can be applied. It should be noted that the brake components that perform the same function in the hydraulic adjustment unit 200 and the hydraulic adjustment unit 100 use the same reference numerals.
  • the main difference from the hydraulic adjustment unit 100 provided in FIG. 1 is that the hydraulic adjustment unit 200 provided in FIG. 2 further includes a second booster device 70.
  • the hydraulic pressure adjusting unit 200 further includes a second pressure increasing device 70, a first shut-off valve 8, and a second shut-off valve 9.
  • the second pressure boosting device 70 is connected to the first brake pipe 110, and is used to control the braking force applied to the first group of wheels by adjusting the pressure of the brake fluid in the first brake pipe 110.
  • the pressure outlet port of the second booster device 70 is connected to the pressure inlet port of the first brake line 110, so that the brake hydraulic pressure can be injected into the first brake line 110, and then the first brake can be passed through.
  • the pipeline 110 provides braking force to the first set of wheels.
  • the second pressure-increasing device 70 is also connected to the second brake line 120, and is used to control the braking force applied to the second group of wheels by adjusting the pressure of the brake fluid in the second brake line 120.
  • the pressure outlet port of the second booster device 70 is also connected to the pressure inlet port of the second brake line 120, so that the brake hydraulic pressure can be pumped into the second brake line 120, so as to pass the second brake line.
  • the driving pipe 120 provides braking force to the second set of wheels.
  • the structure of the second supercharging device 70 and the first supercharging device 40 may be the same or different, which is not limited in this application.
  • the second supercharging device 70 has the same model as the first supercharging device 40.
  • the first supercharging device 40 is a main supercharging device
  • the second supercharging device 70 is an auxiliary supercharging device.
  • the braking capability of the first booster device 40 is higher than the braking capability of the second booster device 70.
  • the second booster device 70 may include an auxiliary booster motor and two booster pumps.
  • the auxiliary booster motor is used to provide power for the two booster pumps.
  • the brake line 110 and the second brake line 120 are pressurized.
  • the second pressurizing device 70 may be connected to the liquid storage device 80 through a connecting pipeline, and a valve for controlling the flow of brake fluid may be provided on the connecting pipeline.
  • the second boosting device 70 can be used to boost the braking system, thereby helping to improve the redundancy performance of the braking system. .
  • the hydraulic adjustment unit 200 further includes a first shut-off valve 8 and a second shut-off valve 9.
  • the first shut-off valve 8 is arranged on the first brake pipeline 110 and is located between the second booster device 70 and the first booster device 40 to control the on and off of the first brake pipeline 110.
  • the second shut-off valve 9 is arranged on the second brake pipeline 120 and is located between the second booster device 70 and the first booster device 40 to control the on and off of the second brake pipeline 120.
  • the first shut-off valve 8 and the second shut-off valve 9 can be closed, so that the brake fluid cannot enter the first booster device 40 and is compressed. Into the wheel brake cylinder.
  • the first shut-off valve 8 and the second shut-off valve 9 may be set as normally open solenoid valves that are configured to be open in a normal state, and after receiving a command from the controller When the signal is closed, the solenoid coil of the normally open solenoid valve can be energized to perform the closing operation. That is, the default initial state of the first shut-off valve 8 and the second shut-off valve 9 may be an open state.
  • the hydraulic adjustment unit 200 further includes a first pressure relief pipeline 210 and a second pressure relief pipeline 220, a first pressure relief valve 6, a second pressure relief valve 6, and a second pressure relief pipeline.
  • the first pressure relief pipeline 210 connects the liquid storage device 80 with the first brake pipeline 110, and is used to deliver the brake fluid to the liquid storage device 80 to depressurize the first group of wheels.
  • the first pressure relief valve 6 It is arranged on the first pressure relief pipeline 210 to control the flow of brake fluid.
  • the second pressure relief pipeline 220 connects the liquid storage device 80 and the second brake pipeline 120, and is used to deliver the brake fluid to the liquid storage device 80 to depressurize the second set of wheels.
  • the second pressure relief valve 7 is arranged at The second pressure relief pipeline 220 is used to control the flow of brake fluid.
  • the pressure outlet port of the first brake pipe 110 may be connected to the pressure inlet port of the first pressure relief pipe 210, and the brake fluid in the first brake pipe 110 may flow through the first pressure relief pipe 210. Return to the liquid storage device 80.
  • the pressure outlet port of the second brake line 120 can be connected to the pressure inlet port of the second pressure relief line 220, and the brake fluid in the second brake line 120 can flow back to the reservoir through the second pressure relief line 220. ⁇ 80 ⁇ In the liquid device 80.
  • first pressure relief valve 6 and the second pressure relief valve 7 control the flow of the brake fluid, which may include turning on or blocking the flow of the brake fluid, and controlling the opening of the valve to control the flow of the brake fluid.
  • the first pressure relief valve 6 and the second pressure relief valve 7 may be configured as normally closed solenoid valves, which are configured to be closed in a normal state, and when receiving from the control When the opening signal of the device is activated, the solenoid coil of the normally closed solenoid valve can be energized to perform the opening operation. That is, the default initial state of the first pressure relief valve 6 and the second pressure relief valve 7 may be a closed state.
  • the hydraulic adjustment unit of the embodiment of the present application is described above in conjunction with Figures 1 and 2, and the braking system of the embodiment of the present application is described below in conjunction with Figures 3 to 14. It should be understood that the braking system may include any of the above-described Hydraulic adjustment unit.
  • the brake system including the hydraulic adjustment unit 200 is taken as an example for introduction.
  • FIG. 3 is a schematic diagram of a braking system 300 provided by an embodiment of the present application.
  • the brake system 300 includes a hydraulic adjustment unit 200, a brake pedal 3 of an automobile, a plurality of wheel brake cylinders 15 of a wheel, a controller (not shown in FIG. 3), and the like. It should be understood that the components in the braking system 300 and the components with the same function in the hydraulic adjustment unit 200 use the same numbers. For the sake of brevity, I won't repeat them in the following.
  • the third piston 53 is in transmission connection with the brake pedal 3 of the automobile through the second piston push rod 52, and the driver can apply pressure to the third hydraulic chamber 53 by stepping on the brake pedal 3.
  • the first brake line 110 is used to provide braking force for the first set of wheels 310 of the automobile.
  • the first branch 111 and the second branch 112 of the first brake pipeline 110 are respectively connected with the wheel brake cylinders 15 of the first wheel 311 and the second wheel 312, and the brake hydraulic pressure is applied to the brake.
  • the brake wheel cylinder 15 provides braking force to the wheels.
  • the second brake line 120 is used to provide braking force for the second set of wheels 320 of the automobile.
  • the third branch 121 and the fourth branch 122 of the second brake pipe 120 are respectively connected to the wheel brake cylinders 15 of the third wheel 321 and the fourth wheel 322, and the brake hydraulic pressure is applied to the brake.
  • the brake wheel cylinder 15 provides braking force to the wheels.
  • the controller is used to receive the measurement information of the various sensors in the brake system, and based on the measurement information, to control the electronic control components such as the first booster device 40, the second booster device 70, the decoupling valve 1, the start valve 2 in the system Take control.
  • the brake system 300 further includes a pedal stroke sensor 12, which is used to detect the stroke of the brake pedal 3, and the pedal stroke sensor 12 is also used to send stroke information indicating the stroke to the controller. So that the controller determines the braking force applied to the wheels of the car based on the stroke.
  • the pressure sensor 13 is used to detect the pressure of the brake fluid in the first brake pipe 110, and is also used to send pressure information indicating the pressure to the controller, so that the controller can determine the brake applied to the wheels of the car based on the pressure. power.
  • the brake system 300 adopts the hydraulic adjustment unit 200 provided in the above embodiment, the brake system 300 also has the technical effect corresponding to the hydraulic adjustment unit 200, which will not be repeated here.
  • the braking system 300 provided by the embodiment of the present application supports multiple working modes, and the multiple working modes are described below with reference to the accompanying drawings.
  • the controller can control the first booster device 40 and the second booster device 70 not to work at this time , And control the brake master cylinder 50 not to provide braking force to the wheels, so as to realize the complete braking decoupling of the braking system 300 and the wheels.
  • FIG. 4 is a schematic diagram of the flow path of the brake fluid in the brake system 300 provided by the embodiment of the present application in the full brake decoupling mode.
  • the driver steps on the brake pedal 3, and the controller determines the braking demand of the driver according to the pedal stroke sensor 12, and determines that the braking force actually executable by the motor can meet the braking demand.
  • the controller can control the first booster device 40 and the second booster device 70 not to work, and control the decoupling valve 1 to be in the closed state, the start valve 2 to be in the open state, and the other valves to be in the open state.
  • the braking force that the motor can actually perform can be determined by comprehensively considering the braking capacity of the vehicle motor, the allowable charging capacity of the battery, and the vehicle speed based on the vehicle status information.
  • the third piston 51 will provide pressure to the third hydraulic chamber 53, and the brake fluid in the third hydraulic chamber 53 is discharged and enters the fourth brake pipeline.
  • the pedal feel simulator 60 After passing through the activation valve 2 and entering the pedal feel simulator 60, the pedal feel simulator 60 generates a reaction force, which is finally fed back to the driver's foot.
  • the decoupling valve 1 since the decoupling valve 1 is closed, and the first booster device 40 and the second booster device 70 do not work, neither the first brake line 110 nor the second brake line 120 has hydraulic braking force, It can realize 100% decoupling of the dual-circuit braking force, which is easy to realize the maximization of energy recovery, and is beneficial to extend the cruising range of the car.
  • Working mode two service brake mode of the main booster device
  • the first supercharging device 40 can be used as a main supercharging device, and the second supercharging device 70 can be used as a secondary supercharging device.
  • the main boosting device that is, the first boosting device 40
  • the main boosting device 40 may first provide the braking force to perform service braking.
  • FIG. 5 is a schematic diagram of the flow path of the brake fluid of the brake system 300 provided by the embodiment of the present application in the service brake mode of the main booster device.
  • the controller determines the driver’s braking demand according to the pedal stroke sensor 12, and determines that the braking force that the motor can actually perform cannot meet the braking demand.
  • the controller The first pressurizing device 40 can be controlled to work, and the decoupling valve 1 can be controlled to be in the closed state, the start valve 2 is in the open state, and the other valves are in the default initial state.
  • the second piston push rod 52 pushes the third piston 53, compresses the brake fluid in the third hydraulic chamber 53, as the start valve 2 is opened, the decoupling valve 1 is closed, and the third hydraulic chamber 53
  • the brake fluid inside flows into the pedal feel simulator 60, and the pedal feel simulator 60 generates a reaction force, which is finally fed back to the driver's foot.
  • the controller comprehensively considers the braking force that the motor can provide, and finally determines the size of the hydraulic braking force.
  • the booster motor 48 is controlled to rotate, and the first piston push rod 46 and the first piston 43 are pushed through the power conversion element 47 to move. Compress the brake fluid in the first hydraulic chamber 41 and the second hydraulic chamber 42. Since all other valves are in the default initial state, the brake fluid in the first booster device 40 passes through the first brake pipe 110 and the second brake pipe.
  • the moving pipe 120 flows into the four wheel brake cylinders 15 to generate braking force on the wheels.
  • the decoupling valve 1 can restore the default initial state, that is, the decoupling valve 1 can be opened .
  • the decoupling valve 1 is open by default, which can reduce the working time of the decoupling valve 1, reduce the working intensity of the decoupling valve 1, reduce heat generation, increase the working life of the decoupling valve 1, and also help improve the entire system. The safe use performance of the dynamic system. On the other hand, it can be ensured that the third hydraulic chamber 53 is isolated from the brake circuit, thereby ensuring that the pedal feels consistent.
  • the driver can release the brake pedal 3, and the third piston 51 moves back under the action of the pressure in the third hydraulic chamber 53 and the return spring, and controls the booster motor 48 to reverse. Turning, the first piston 43 moves back, thereby achieving pressure reduction.
  • the braking force demand can be sent to the controller in the form of instructions by the advanced driving assistance system (ADAS).
  • ADAS advanced driving assistance system
  • both the start valve 1 and the decoupling valve 11 are in the default initial state.
  • the controller realizes the increase or decrease adjustment of the brake pressure by controlling the forward and reverse rotation of the booster motor 48.
  • the service brake is used most frequently.
  • the start valve 2 and the decoupling valve 1 need to work. Compared with the decoupling valve 1, the work intensity of the start valve 2 is greater. It is more prone to failure and failure.
  • the braking system 300 provided by the embodiment of the present application can also work normally when the start valve 2 fails to provide braking force to the wheels.
  • FIG. 6 is a schematic diagram of the flow path of the brake fluid when the activation valve 2 fails in the brake system 300 provided by the embodiment of the present application in the service brake mode of the main booster device.
  • the controller controls the decoupling valve 1 to be in the default initial state, and the brake fluid in the third hydraulic chamber 53 enters the first brake pipeline 110 through the first check valve 4 As a result, braking force is generated. Because the brake fluid in the third hydraulic chamber 53 flows into the first brake pipe 110, the third piston 51 will move forward, and the pedal stroke sensor 12 will generate a pedal stroke signal, which can normally obtain driving In accordance with the braking intention, the booster motor 48 will control the first booster device 40 to build up the pressure according to the stroke signal.
  • the first piston 43 moves forward to isolate the third pressure relief pipeline 230 from the first hydraulic chamber 41, and the first check valve 4 ensures that the brake fluid in the first hydraulic chamber 41 will not flow into the third hydraulic chamber.
  • the pressure in the first hydraulic chamber 41 is not less than the pressure in the third hydraulic chamber 53, so as to ensure the braking efficiency.
  • the pressure in the third hydraulic chamber 53 continues to increase. If it is greater than the pressure in the first hydraulic chamber 41, the first check valve 4 will open, allowing the liquid in the third hydraulic chamber 53 to flow into the first hydraulic chamber.
  • the stroke signal increases, so that the booster motor 48 continues to work, so that the pressure in the first hydraulic chamber 41 continues to boost, and the pressure and the driving intention present a positive correlation trend.
  • the pressure limiting valve 5 opens, and the brake fluid in the third hydraulic chamber 53 flows into the pedal feel simulator 60 through the pressure limiting valve 5, and the pedal stroke sensor 12 detects The pedal stroke reached continues to increase, and the braking intention can be accurately obtained according to the pedal stroke signal, thereby improving the braking efficiency.
  • the auxiliary boosting device can realize service braking.
  • the second supercharging device 70 can provide braking force to the wheels at this time.
  • FIG. 7 is a schematic diagram of the flow path of the brake fluid of the brake system 300 according to an embodiment of the present application in the service brake mode of the auxiliary booster device.
  • the controller determines the driver’s braking demand according to the pedal stroke sensor 12, and determines that the braking force that the motor can actually perform cannot meet the braking demand, and determines the first The booster device 40 fails to work.
  • the controller can control the second booster device 70 to work, and control the decoupling valve 1 to be in the closed state, the start valve 2 to be in the open state, the first stop valve 8 and the second stop valve The valve 9 is in a closed state.
  • the second piston push rod 52 pushes the third piston 53, compresses the brake fluid in the third hydraulic chamber 53, as the start valve 2 is opened, the decoupling valve 1 is closed, and the third hydraulic chamber 53
  • the brake fluid inside flows into the pedal feel simulator 60, and the pedal feel simulator 60 generates a reaction force, which is finally fed back to the driver's foot.
  • the controller obtains the driver's braking intention according to the pedal stroke sensor 12, closes the first shut-off valve 8 and the second shut-off valve 9, and controls the second pressure-increasing device 70 to work.
  • the brake fluid in the second pressure-increasing device 70 passes through the first A brake pipe 110 and a second brake pipe 120 flow into the four brake wheel cylinders 15 to generate braking force on the wheels.
  • the second booster device 70 includes an auxiliary booster motor and two booster pumps.
  • the auxiliary booster motor is used to provide power for the two booster pumps, and the two booster pumps are used to provide power to the two booster pumps.
  • the first brake line 110 and the second brake line 120 are pressurized. Since the booster pump can only play the role of providing a pressure source and does not have a pressure regulating function, it needs to cooperate with the first pressure relief valve 6 on the first pressure relief pipeline 210 and the first pressure relief valve 6 on the second pressure relief pipeline 220.
  • the second pressure relief valve 7 works.
  • the pressure in the second brake pipe 120 exceeds the target pressure
  • the pressure can be reduced by controlling the opening degree and opening time of the second pressure relief valve 7 on the second pressure relief pipe 220;
  • the second pressure relief valve 7 can be closed, and the booster pump can be controlled to continue to work and boost pressure, and finally achieve dynamic balance and achieve target pressure adjustment.
  • FIG. 8 is a schematic diagram of the flow path of the brake fluid when the brake system 300 according to an embodiment of the present application releases pressure in the service brake mode of the auxiliary booster device.
  • the driver can release the brake pedal 3.
  • the third piston 51 moves back under the action of the pressure in the third hydraulic chamber 53 and the return spring, and the controller controls the first release.
  • the pressure valve 6 and the second pressure relief valve 7 are opened, and the brake fluid in the wheel brake cylinders 15 of the first group of wheels 310 returns to the reservoir 80 through the first brake circuit 110 and the first pressure relief pipeline 210 ,
  • the brake fluid in the wheel brake cylinder 15 of the second set of wheels 320 returns to the liquid storage device 80 through the second brake circuit 120 and the second pressure relief pipeline 220, thereby realizing the decompression of the entire system.
  • the braking system 300 provided by the embodiment of the present application can also work normally when the start valve 2 fails, and can provide braking force to the wheels through the second booster device 70.
  • FIG. 9 is a schematic diagram of the flow path of the brake fluid when the activation valve 2 fails in the brake system 300 provided by the embodiment of the present application in the service brake mode of the auxiliary booster device.
  • the first stop valve 8 on the first brake pipeline 110 and the second stop valve 9 on the second brake pipeline 120 need to be closed when the second pressure boosting device 70 is used for pressure boosting.
  • the brake pedal 3 is depressed, the brake fluid in the third hydraulic chamber 53 cannot flow out, the second piston push rod 52 does not move, and the pedal stroke sensor 12 cannot detect the stroke signal, so the stroke signal cannot be passed. Get the driver's braking intention.
  • the brake pedal 3 is stepped on. Although there is no pedal stroke signal, the third hydraulic chamber 53 and the first brake pipe 110 are actually in a communication state. The pressures at the two places are equal, which can be arranged in the first brake pipe 110.
  • the upper pressure sensor 13 detects the pressure, and the controller recognizes the driver's braking intention according to the pressure, so as to control the second booster device 70 to increase or decrease the pressure.
  • the manner in which the second pressure-increasing device 70 is used to increase and decrease the pressure is similar to the related introduction of the aforementioned FIGS. 7 and 8, and will not be repeated here.
  • Working mode 4 The main booster device realizes ESC/ABS/TCS functions
  • ESC electronic stability system
  • ABS antilock brake system
  • TCS traction control system
  • the sensor collects vehicle information and judges the instability of the vehicle.
  • the ESC system applies braking force to a single or part of the wheels to obtain the yaw moment that stabilizes the vehicle, thereby achieving the purpose of stabilizing the vehicle.
  • ABS Generally, when a vehicle is braking in an emergency or braking on an icy and snowy road, the wheels will tend to lock up. Locking the wheels will increase the braking distance and lose the steering intention.
  • the ABS system appropriately reduces the braking force at the wheel that tends to lock in order to achieve the anti-lock function according to the locking situation of the wheels.
  • TCS The vehicle is driving on icy and snowy roads, or a wheel is stuck on a muddy road. The wheel slips seriously and cannot drive normally. According to the wheel slip condition, the TCS system appropriately reduces the driving force or applies braking force to the slipping wheel to weaken the wheel slip condition and ensure the normal driving of the vehicle.
  • ESC and TCS require that the braking system needs to have the function of applying braking force to a single wheel, even if the driver or ADAS/automatic driving has no braking request at this time; ABS generally requires a driver or ADAS/autonomous driving system.
  • ABS mainly focuses on decompression, and there are also situations that need to be pressurized, but the wheel cylinder pressure will not exceed the master cylinder pressure. Therefore, when the system can realize the independent increase and decrease of the pressure of a single wheel cylinder, the ESC/ABS/TCS function can be satisfied.
  • FIG. 10 is a schematic diagram of the flow path of the brake fluid when the main boosting device realizes single-wheel boosting of the brake system 300 according to an embodiment of the present application.
  • the third wheel 321 (for example, the third wheel 321 may be the left front wheel of a car) as an example, when pressure is needed, in order not to affect the pressure in the brake wheel cylinder 15 of the other three wheels At this time, the inlet valves 14 on the first branch 111, the second branch 112, and the fourth branch 122 need to be closed, and the other valves are in the default initial state.
  • the pressure increase is achieved by controlling the rotation of the booster motor 48 to push the first piston 43 to move.
  • it is necessary to adjust the pressure of the wheel brake cylinders 15 of other wheels it can be realized in a similar manner, which will not be repeated here.
  • FIG. 11 is a schematic diagram of the flow path of the brake fluid when the auxiliary booster device realizes single-wheel boost of the brake system 300 according to an embodiment of the present application.
  • the auxiliary supercharging device can also realize the ESC/ABS/TCS function. Take the pressure adjustment of the third wheel 321 as an example.
  • the pressure in the wheel brake cylinder 15 of each wheel needs to close the inlet valves 14 on the first branch 111, the second branch 112, and the fourth branch 122 at this time.
  • the auxiliary booster motor of the second booster device 70 Control the auxiliary booster motor of the second booster device 70 to work to drive the two booster pumps. Since the booster pump can only provide a pressure source and does not have a pressure regulating function, it needs to cooperate with the second pressure relief.
  • the second pressure relief valve 7 on the pipeline 220 works,
  • the opening degree and opening time of the second pressure relief valve 7 should also be controlled. To prevent the pressure of the first brake line 110 from being too high.
  • FIG. 12 is a schematic diagram of the flow path of brake fluid in the emergency braking mode of the braking system 300 provided by an embodiment of the present application.
  • the emergency braking command is issued by ADAS/automatic driving.
  • all valves are in the default state, and the first booster device 40 and the second booster device 70 are controlled to work at the same time.
  • the two sets of pressure boosting devices work together to speed up the system's response speed and ensure that the brakes are decelerated as soon as possible.
  • FIG. 13 is a schematic diagram of the flow path of the brake fluid in the pure mechanical braking mode of the braking system 300 provided by an embodiment of the present application.
  • the other path enters the first hydraulic chamber 41 through the third brake pipe 130, the decoupling valve 1, the third pressure relief pipe 230 and/or the first brake pipe 110, and squeezes the second hydraulic chamber 42,
  • the brake fluid in the second hydraulic chamber 42 is discharged into the second brake pipeline 120, and then flows into the wheel brake cylinder 15 of the second set of wheels 320 to achieve pure mechanical braking.
  • the brake fluid may enter the first hydraulic chamber 41 after passing through the third brake pipeline 130 and the third pressure relief pipeline 230. And/or, the brake fluid may enter the first hydraulic chamber 41 after passing through the third brake pipeline 130 and the first brake circuit 110.
  • FIG. 14 is a schematic diagram of the flow path of the brake fluid when the brake system 300 according to an embodiment of the present application is decompressed in a purely mechanical brake mode.
  • the driver can release the brake pedal 3, and the third piston 51 moves back under the action of the pressure in the third hydraulic chamber 53 and the return spring.
  • the four brakes The brake fluid in the wheel cylinder 15 enters the first hydraulic chamber 41 and the second hydraulic chamber 42 through the first brake pipe 110 and the second brake pipe 120, respectively.
  • the brake fluid in the first hydraulic chamber 41 It flows into the third brake pipe 130 through the third pressure relief pipe 230 and finally flows into the third hydraulic chamber 53.
  • the device of the embodiment of the present application is described above with reference to FIGS. 1 to 14.
  • the control method of the embodiment of the present application is described below in conjunction with FIG. 15.
  • the control method of the embodiment of the present application can be applied to any of the above-described A device, for example, is applied to the hydraulic adjustment unit 100 shown in FIG. 1, the hydraulic adjustment unit 200 shown in FIG. 2, or the braking system 300 shown in FIG. 3, which is not limited in the embodiment of the present application.
  • the control method will be described below by taking the control method applied to the braking system 300 as an example.
  • FIG. 15 is a flowchart of a control method 1500 according to an embodiment of the present application.
  • the method shown in FIG. 15 can be executed by the controller in the braking system.
  • the method shown in FIG. 15 may include steps 1510 and 1520.
  • step 1510 the controller determines that the brake system needs to be brake decoupled.
  • step 1520 the controller controls the decoupling valve 1 to close to realize the brake decoupling.
  • the controller obtains the braking intention of the driver, or the braking intention of ADAS/automatic driving, and determines that the wheels need to be braked.
  • the controller can further determine that the motor of the car can provide braking force (that is, the actual braking force that the motor can perform is not 0), that is, the controller further determines that the braking force required by the braking system is determined relative to the pedal stroke.
  • the braking force should be small, that is, the controller determines that the control system needs braking decoupling.
  • the actual braking force that the motor can actually perform can be zero because it cannot continue to charge the battery at this time.
  • the controller may control the decoupling valve 1 to close to isolate the brake pedal 3 (brake master cylinder 50) and the wheel brake cylinder 15 from each other, thereby realizing brake decoupling.
  • the controller may determine the total braking force demand that needs to be provided for the automobile after determining the braking intention.
  • the controller detects the first stroke of the brake pedal 3 in the automobile through the pedal stroke sensor 12 in the automobile.
  • the controller determines the first stroke of the brake pedal 3 based on the first stroke of the brake pedal 3 and the corresponding relationship between the stroke and the total braking force demand. The total demand for braking force that needs to be provided for the car.
  • the controller may detect the pressure of the brake fluid in the first brake line 110 according to the pressure sensor 13, so that the controller may be based on the pressure of the brake fluid in the first brake line 110 and the brake fluid pressure.
  • the corresponding relationship between the pressure and the required braking force determines the total braking force demand.
  • the controller receives information sent by the advanced driving assistance system ADAS in the car, the information is used to indicate the total braking force demand that needs to be provided for the car; the controller determines the total braking force demand that needs to be provided for the car based on this information.
  • the controller determines the total braking force demand, it can be compared with the actual braking force that can be performed by the motor.
  • the controller determines that the actually executable braking force of the motor is greater than or equal to the total braking force demand.
  • the controller may also control the first booster device 40 and the second booster device 70 without working , In order to realize the complete (100%) decoupling of the braking system. That is, at this time, the braking force can be completely provided by the motor, and the braking system does not need to provide braking force to the wheels.
  • the controller determines that the actually executable braking force of the motor is less than the total braking force demand. At this time, in step 1520, the controller also needs to control the first boosting device 40 and/or the second boosting device 70 to perform boosting. , To provide braking force to the wheels.
  • the controller controls the first pressurizing device 40 to work, and controls the second pressurizing device 70 to not work. At this time, if the controller determines that the pressure of the first hydraulic chamber 41 is greater than the pressure of the third hydraulic chamber 53, and the pressure relief hole is closed,
  • the controller can control the decoupling valve 1 to be in an open state (that is, to return to the default initial state), thereby reducing the working time of the decoupling valve 1, reducing the working intensity of the decoupling valve 1, reducing heat generation, and improving the decoupling valve 1.
  • the working life is also conducive to improving the safe use performance of the entire braking system.
  • the controller may control the first shut-off valve 8 and the second shut-off valve 9 to close, and control the second pressure-increasing device 70 to perform pressure increase, so as to Provide braking force to the wheels.
  • the controller can remind the driver to use the mechanical braking mode to brake.
  • the controller can control the decoupling valve 1 to be in an open state, so that the brake fluid can be discharged into the first brake pipeline 110 through the decoupling valve 1 , So that the brake pedal 3 can be depressed, and the controller can learn the driver's braking intention and the required braking force.
  • control method of the embodiment of the present application is described above with reference to FIG. 15, and the device of the embodiment of the present application is described below with reference to FIGS. 16 and 17. It should be noted that the device of the embodiment of the present application can be applied to any hydraulic adjustment unit or braking system introduced above to implement any one of the control methods introduced above. For the sake of brevity, details are not repeated here.
  • FIG. 16 is a schematic diagram of a control device according to an embodiment of the present application.
  • the control device 1600 shown in FIG. 16 includes a processing unit 1610 and a storage unit 1620.
  • the storage unit 1620 is used to store instructions, and the processing unit 1610 is used to read instructions from the storage unit 1620 to implement any of the above control methods.
  • the processing unit 1610 determines that the braking system needs to perform brake decoupling, and the processing unit 1610 controls the decoupling valve 1 to close to realize the brake decoupling.
  • the processing unit 1610 may determine the actual braking force that the drive motor can actually perform based on the vehicle status information, comprehensively considering the braking capacity of the vehicle drive motor, the allowable battery charging capacity, and the vehicle speed.
  • the processing unit 1610 can determine that the braking force that the motor can actually perform can be zero because it cannot continue to charge the battery at this time.
  • the processing unit 1610 may determine the total braking force required for the automobile after determining the braking intention.
  • the processing unit 1610 detects the first stroke of the brake pedal 3 in the car through the pedal stroke sensor 12 in the car.
  • the processing unit 1610 is based on the first stroke of the brake pedal 3 and the corresponding relationship between the stroke and the total braking force demand. , To determine the total demand for braking force that needs to be provided for the car.
  • the processing unit 1610 may detect the pressure of the brake fluid in the first brake line 110 according to the pressure sensor 13, so that the processing unit 1610 may be based on the pressure of the brake fluid in the first brake line 110, and The corresponding relationship between the pressure of the hydraulic fluid and the required braking force determines the total braking force demand.
  • the processing unit 1610 receives information sent by the advanced driving assistance system ADAS in the car, and the information is used to indicate the total braking force demand that needs to be provided for the car; the processing unit 1610 determines the total braking force that needs to be provided for the car based on the information. need.
  • the processing unit 1610 determines the total braking force demand, it can be compared with the actual braking force executable by the motor.
  • the processing unit 1610 determines that the actual braking force that the motor can actually perform is greater than or equal to the total braking force demand. At this time, the processing unit 1610 can also control the first boosting device 40 and the second boosting device 70 to not need to work to achieve Complete (100%) decoupling of the braking system. That is, at this time, the braking force can be completely provided by the motor, and the braking system does not need to provide braking force to the wheels.
  • the processing unit 1610 determines that the braking force actually executable by the motor is less than the total braking force demand. At this time, the processing unit 1610 may also control the first boosting device 40 and/or the second boosting device 70 to perform boosting, so as to The wheels provide braking force.
  • the processing unit 1610 controls the first pressurizing device 40 to work, and controls the second pressurizing device 70 to not work. At this time, if the processing unit 1610 determines that the pressure of the first hydraulic chamber 41 is greater than the pressure of the third hydraulic chamber 53, and the pressure relief hole is closed,
  • the processing unit 1610 can control the decoupling valve 1 to be in an open state (that is, to return to the default initial state), so as to reduce the working time of the decoupling valve 1, reduce the working intensity of the decoupling valve 1, reduce heat generation, and increase the decoupling valve 1.
  • the long working life is also conducive to improving the safe use performance of the entire braking system.
  • the processing unit 1610 may control the first shut-off valve 8 and the second shut-off valve 9 to close, and control the second pressurizing device 70 to perform pressurization , To provide braking force to the wheels.
  • the processing unit 1610 may remind the driver to use the mechanical braking mode to brake.
  • the processing unit 1610 can control the decoupling valve 1 to be in an open state, so that the brake fluid can be discharged into the first brake pipeline through the decoupling valve 1 Within 110, the brake pedal 3 can be depressed, and the processing unit 1610 can learn the driver's braking intention and the required braking force.
  • control device 1600 may be an independent controller in an automobile, or may be a chip with a control function in an automobile.
  • the processing unit 1610 may be a processor, and the storage unit may be a memory, where the memory may be a storage unit in a chip (for example, a register, a cache, etc.), or a storage unit (for example, only Read memory, random access memory, etc.).
  • the memory and the processor are coupled in the above-mentioned controller.
  • the memory is coupled to the processor, it can be understood that the memory is located inside the processor, or the memory is located outside the processor, thereby being independent of the processor.
  • processing unit 1610 may be a processor 1720
  • storage unit 1620 may be a memory 1710, as specifically shown in FIG. 17.
  • Fig. 17 is a schematic block diagram of a controller according to an embodiment of the present application.
  • the controller 1700 shown in FIG. 17 may include a memory 1710, a processor 1720, and a communication interface 1730.
  • the memory 1710, the processor 1720, and the communication interface 1730 are connected by an internal connection path.
  • the memory 1710 is used to store instructions
  • the processor 1720 is used to execute the instructions stored in the memory 1720 to control the communication interface 1730 to receive/send information.
  • the memory 1710 may be coupled with the processor 1720 through an interface, or may be integrated with the processor 1720.
  • the aforementioned communication interface 1730 uses a transceiving device such as but not limited to a transceiver to implement communication between the controller 1700 and other devices or communication networks.
  • the aforementioned communication interface 1730 may also include an input/output interface.
  • the steps of the foregoing method may be completed by hardware integrated logic circuits in the processor 1720 or instructions in the form of software.
  • the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1710, and the processor 1720 reads the information in the memory 1710, and completes the steps of the foregoing method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • a part of the processor may also include a non-volatile random access memory.
  • the processor may also store device type information.
  • An embodiment of the present application also provides an automobile, which includes wheels, and the brake system 300 provided in any of the foregoing embodiments, and the brake system 300 can be used to provide braking force to the wheels.
  • the wheels include the aforementioned first group of wheels 310 and the second group of wheels 320.
  • the first set of wheels 310 includes a right front wheel and a left front wheel
  • the second set of wheels 320 includes a right rear wheel and a left rear wheel
  • the first set of wheels 310 includes a right front wheel and a left rear wheel
  • the second set of wheels 320 includes a left front wheel and a left rear wheel, which is not limited in the embodiment of the present application.
  • the car may be a smart car, a new energy car, a traditional car, or the like.
  • the car can be an electric car or a hybrid car.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the control method 1500 described above.
  • the above-mentioned computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor, or may be packaged separately with the processor. Specific restrictions.
  • the embodiment of the present application also provides a computer-readable medium, and the computer-readable medium stores program code, and when the computer program code runs on a computer, the computer executes the control method 1500 described above.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

一种汽车制动系统的液压调节单元,包括第一增压装置(40)、制动主缸(50)、第一制动管路(110)、第二制动管路(120)、第三制动管路(130)和解耦阀(1),第一增压装置包括相互串联的第一液压腔(41)和第二液压腔(42),第一液压腔与第一制动管路相连,第二液压腔与第二制动管路相连,制动主缸通过第三制动管路与第一制动管路相连,解耦阀设置于第三制动管路上。一种汽车制动系统、汽车及控制方法也被公开。

Description

汽车中制动系统的液压调节单元、制动系统及控制方法
本申请要求于2020年04月29日提交中国专利局、申请号为202010352926.2、申请名称为“汽车中制动系统的液压调节单元、制动系统及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车领域,并且更具体地,涉及汽车中制动系统的液压调节单元、汽车中的制动系统、汽车及汽车中制动系统的控制方法。
背景技术
汽车的制动系统是通过对汽车的车轮施加一定的制动力,从而对其进行一定程度的强制制动的系统。制动系统作用是使行驶中的汽车按照驾驶员或者控制器的要求进行强制减速甚至停车,或者使已停驶的汽车在各种道路条件下(例如,在坡道上)稳定驻车,或者使下坡行驶的汽车速度保持稳定。为了提高制动系统的冗余性能,电液制动系统(Electro-Hydraulic Brake,EHB)作为流行的制动系统,通常包含两级制动子系统,第一级制动系统由控制器以线控的方式控制液压缸为车轮提供制动力,第二级制动子系统由驾驶员踩踏制动踏板以此来通过制动主缸为车轮提供制动力。
对于电动汽车而言,还可以通过电机回馈制动,以此来进行“制动能量回收”。具体地,电机可以对汽车的车轮施加一定的制动力,使得行驶中的汽车能够减速甚至停车。反过来,车轮可以带动电机进行旋转发电,通过电机将车轮的机械能转变成电能,以实现能量的回收利用。
此时,由于电机能够提供一定的制动力,电液制动系统可以相对应的少提供一些制动力,也就是说,此时控制器控制电液制动系统所提供的制动力相对于根据制动踏板的踏板行程传感器所确定的制动力要小,因此,需要将制动踏板(制动主缸)与制动轮缸进行制动解耦。现有的电液制动系统结构复杂,需要多个阀门组合工作才能实现制动解耦,由此造成系统的制动解耦效率不高。
发明内容
本申请提供一种汽车中制动系统的液压调节单元、汽车中的制动系统、汽车及汽车中制动系统的控制方法,以提高制动系统的制动解耦效率。
第一方面,提供了一种汽车中制动系统的液压调节单元,包括第一增压装置、制动主缸、第一制动管路、第二制动管路、第三制动管路、解耦阀;第一增压装置包括相互串联的第一液压腔和第二液压腔,第一液压腔与第一制动管路相连,第一制动管路用于向汽车的第一组车轮施加制动力;第二液压腔与第二制动管路相连,第二制动管路用于向汽车的第二组车轮施加制动力;制动主缸用于与汽车的制动踏板传动连接,制动主缸包括第三液 压腔,第三液压腔通过第三制动管路与第一制动管路相连;制动主缸用于通过第三液压腔、第三制动管路调节第一制动管路内制动液的压力;制动主缸还用于通过第三液压腔、所述第三制动管路、所述第一制动管路、所述第一液压腔、所述第二液压腔调节所述第二制动管路内制动液的压力;解耦阀设置于第三制动管路上,以控制第三制动管路的通断。
根据本申请实施例提供的液压调节单元,制动主缸可以通过第三制动管路调节第一制动管路和第二制动管路内制动液的压力,并且在第三制动管路上设置能够控制管路通断的解耦阀,在进行制动解耦时,仅需要关闭解耦阀即可实现。相对于现有的液压调节单元,本申请实施例提供的液压调节单元操控简单,无需通过多个阀门组合工作以实现制动解耦,能够提高制动解耦的效率。
根据本申请实施例提供的液压调节单元,通过关闭解耦阀,即可实现第三液压腔和第一制动管路以及第二制动管路的隔离,当驾驶员踩下制动踏板时,第三液压腔内的制动液将流入踏板感觉模拟器中,而不会通过第三制动管路流入第一制动管路以及第二制动管路,不会向第一制动管路以及第二制动管路施加压力,此时控制第一增压装置不工作,从而使得第一制动管路和第二制动管路均无液压制动力,能够实现双回路制动力的100%解耦,易于实现能量回收最大化,有利于延长汽车的续航里程。
可选地,第一增压装置包括缸体,缸体内设置有第一活塞和第二活塞,并且第一活塞和第二活塞之间通过弹性连接件(例如弹簧)相连,第二活塞和缸体的顶盖之间也通过弹性连接件相连,第一活塞和第二活塞之间形成第一液压腔,第二活塞和顶盖之间形成第二液压腔。
可选地,第一活塞通过第一活塞推杆与增压电机传动连接,在增压电机的带动下,第一活塞和第二活塞能够在缸体内做往复运动,以为第一液压腔和第二液压腔增压或者减压。
可选地,第一活塞通过动力转换元件与增压电机传动连接。该动力转换元件用于将增压电机的旋转运动转换为线性移动,例如,该动力转换元件可以是涡轮蜗杆组件或者滚珠丝杠螺母组件,本申请对此不做限定。
在一种可能的实现方式中,解耦阀被配置为常开型电磁阀,常开型电磁阀平时打开,在接收到关闭信号时启动而关闭阀;液压调节单元还包括第一止回阀,第一止回阀设置于所述第三制动管路上,并且位于解耦阀和所述第一制动管路之间,第一止回阀被配置为允许制动液从第三制动管路向第一制动管路的方向流动的同时阻止制动液在相反的方向上流动;第一增压装置包括第一活塞、第二活塞,所述第一活塞和所述第二活塞之间形成所述第一液压腔,所述第一增压装置上开设有泄压孔,第一活塞被配置为,当第一活塞位于初始位置时,泄压孔被打开,当第一活塞离开初始位置时,泄压孔被封闭;液压调节单元还包括第三泄压管路,第三泄压管路的一端与所述泄压孔相连,第三泄压管路的另一端与所述第三制动管路位于所述第一止回阀和所述解耦阀之间的管段相连。
在本申请实施例中,解耦阀被配置为常开型电磁阀,该常开型电磁阀平时打开,在接收到关闭信号时启动而关闭阀。通过以上设置,使得当第一液压腔内的压力大于第三液压腔内的压力,并且该泄压孔被封闭时,可以给解耦阀断电,使得解耦阀恢复到默认初始状态(即打开状态),从而能够减少解耦阀的工作时间,降低解耦阀的工作强度,减少发热量,提高解耦阀的工作寿命,同时也有利于提高整个制动系统的安全使用性能。
在一种可能的实现方式中,液压调节单元还包括踏板感觉模拟器、第四制动管路、启动阀以及限压阀;踏板感觉模拟器通过所述第四制动管路与第三液压腔相连,以提供与所述制动踏板的脚踏压力相对应的反作用力,启动阀设置于第四制动管路上,以控制第四制动管路的通断;限压阀与启动阀并联设置,限压阀被配置为,当第三液压腔内的压力大于或者等于设定值时,限压阀被打开。
在制动系统的整个生命周期内,行车制动使用最频繁,人工驾驶情况下,启动阀和解耦阀需要工作,与解耦阀相比,启动阀的工作强度较大。当启动阀失效(即出现故障)时,此时制动液无法通过启动阀进入踏板感觉模拟器内,驾驶员将无法正常踩下踏板,本申请通过设置与启动阀并联的限压阀,使得在第三液压腔内的压力大于预设值时,限压阀能够被打开,此时制动液能够通过限压阀进入踏板感觉模拟器内,驾驶员将能够踩下制动踏板,从而踏板行程传感器能够正常获取驾驶员的制动意图,使得第一增压装置能够根据正确的制动需求进行增压。
在一种可能的实现方式中,液压调节单元还包括第二增压装置、第一截止阀、第二截止阀;第二增压装置与第一制动管路相连,用于通过调节所述第一制动管路内制动液的压力,以控制施加在第一组车轮的制动力;第二增压装置还与第二制动管路相连,用于通过调节第二制动管路内制动液的压力,以控制施加在第二组车轮的制动力;所述第一截止阀设置于所述第一制动管路上,并且位于第二增压装置和所述第一增压装置之间,以控制所述第一制动管路的通断;第二截止阀设置于所述第二制动管路上,并且位于所述第二增压装置和第一增压装置之间,以控制所述第二制动管路的通断。
通过以上设置,在第一增压装置出现故障时,可以使用第二增压装置对制动系统进行增压,从而有利于提高制动系统的冗余性能。
可选地,第二增压装置和第一增压装置的结构可以相同,也可以不同,本申请对此不做限定。
可选地,第二增压装置与第一增压装置的型号相同。
可选地,第一增压装为主增压装置,第二增压装置为辅增压装置。
可选地,第一增压装置的制动能力高于第二增压装置的制动能力。
可选地,第二增压装置可以包括副增压电机以及两个增压泵,副增压电机用于为两个增压泵提供动力,该两个增压泵分别用于为第一制动管路和第二制动管路进行增压。
可选地,第一截止阀和第二截止阀可以被设置为常开型电磁阀,该常开型电磁阀被配置为在正常状态下是打开的,并且在接收到来自控制器的关闭信号时,可以向该常开型电磁阀的电磁线圈通电,以进行关闭操作。也就是说,第一截止阀和第二截止阀的默认初始状态可以为打开状态。
在一种可能的实现方式中,液压调节单元还包括第一泄压管路、第二泄压管路、第一泄压阀、第二泄压阀、储液装置;第一泄压管路连通所述储液装置与所述第一制动管路,用于将制动液输送至储液装置,为所述第一组车轮减压,所述第一泄压阀设置于所述第一泄压管路上,以控制制动液的流动;所述第二泄压管路连通所述储液装置与所述第二制动管路,用于将制动液输送至储液装置,为第二组车轮减压,第二泄压阀设置于第二泄压管路上,以控制制动液的流动。
通过以上设置,能够实现快速泄压,且在使用第二增压装置进行增压时,可以通过泄 压阀进行压力调节。
在这里,第一泄压阀和第二泄压阀控制制动液的流动,可以包括接通或者阻断制动液的流动,以及控制阀门的开度从而控制制动液的流量。
可选地,第一泄压阀和第二泄压阀可以被设置为常闭型电磁阀,该常闭型电磁阀被配置为在正常状态下是关闭的,并且在接收到来自控制器的打开信号时,可以向该常闭型电磁阀的电磁线圈通电,以进行打开操作。也就是说,第一泄压阀和第二泄压阀的默认初始状态可以为关闭状态。
储液装置用于储存制动液,并且通过连通管路分别与第一增压装置以及制动主缸相连通。可选地,该连通管路上还可以设置有控制制动液流动的阀门。
应理解,该储液装置可以为一个,也可以为多个,当储液装置为多个时,不同的两个储液装置可以分别用于与第一增压装置以及制动主缸相连通,本申请对此不做限定。
在一种可能的实现方式中,液压调节单元还包括第二止回阀和第三止回阀;第二止回阀与所述解耦阀并联设置,所述第二止回阀被配置为允许制动液从所述第一制动管路向所述第三液压腔的方向流动的同时阻止制动液在相反的方向上流动;所述第三止回阀与所述启动阀并联设置,所述第三止回阀被配置为允许制动液从所述踏板感觉模拟器向所述第三液压腔的方向流动的同时阻止制动液在相反的方向上流动。
通过设置第二止回阀和第三止回阀,能够快速调节系统的压力,提高系统运行的稳定性。例如,由于在释放制动踏板时可以通过该第三止回阀将制动液返回到第三液压腔中,从而能够确保第三活塞(即制动踏板)的快速返回。
第二方面,提供了一种汽车的制动系统,包括第一增压装置、制动主缸、第一制动管路、第二制动管路、第三制动管路、解耦阀、制动踏板以及制动轮缸;第一增压装置包括相互串联的第一液压腔和第二液压腔,第一液压腔与所述第一制动管路相连,所述第一制动管路与所述汽车的第一组车轮的所述制动轮缸相连;所述第二液压腔与所述第二制动管路相连,所述第二制动管路与所述汽车的第二组车轮的所述制动轮缸相连;所述制动主缸与所述制动踏板传动连接,所述制动主缸包括第三液压腔,所述第三液压腔通过所述第三制动管路与所述第一制动管路相连;所述制动主缸用于通过所述第三液压腔、所述第三制动管路调节所述第一制动管路内制动液的压力;所述制动主缸还用于通过所述第三液压腔、所述第三制动管路、所述第一制动管路、所述第一液压腔、第二液压腔调节所述第二制动管路内制动液的压力;所述解耦阀设置于所述第三制动管路上,以控制所述第三制动管路的通断。
根据本申请实施例提供制动系统,制动主缸可以通过第三制动管路调节第一制动管路和第二制动管路内制动液的压力,并且在第三制动管路上设置能够控制管路通断的解耦阀,在进行制动解耦时,仅需要关闭解耦阀即可实现。相对于现有的液压调节单元,本申请实施例提供的制动系统操控简单,无需通过多个阀门组合工作以实现制动解耦,能够提高制动解耦的效率。
根据本申请实施例提供的制动系统,通过关闭解耦阀,即可实现第三液压腔和第一制动管路以及第二制动管路的隔离,当驾驶员踩下制动踏板时,第三液压腔内的制动液将流入踏板感觉模拟器中,而不会通过第三制动管路流入第一制动管路以及第二制动管路,不会向第一制动管路以及第二制动管路施加压力,此时控制第一增压装置不工作,从而使得 第一制动管路和第二制动管路均无液压制动力,能够实现双回路制动力的100%解耦,易于实现能量回收最大化,有利于延长汽车的续航里程。
在一种可能的实现方式中,解耦阀被配置为常开型电磁阀,常开型电磁阀平时打开,在接收到关闭信号时启动而关闭阀;制动系统还包括第一止回阀,所述第一止回阀设置于所述第三制动管路上,并且位于所述解耦阀和所述第一制动管路之间,所述第一止回阀被配置为允许制动液从所述第三制动管路向所述第一制动管路的方向流动的同时阻止制动液在相反的方向上流动;所述第一增压装置包括第一活塞、第二活塞,所述第一活塞和所述第二活塞之间形成所述第一液压腔,所述第一增压装置上开设有泄压孔,所述第一活塞被配置为,当所述第一活塞位于初始位置时,所述泄压孔被打开,当所述第一活塞离开所述初始位置时,所述泄压孔被封闭;所述制动系统还包括第三泄压管路,所述第三泄压管路的一端与所述泄压孔相连,所述第三泄压管路的另一端与所述第三制动管路位于所述第一止回阀和所述解耦阀之间的管段相连。
在本申请实施例中,解耦阀被配置为常开型电磁阀,该常开型电磁阀平时打开,在接收到关闭信号时启动而关闭阀。通过以上设置,使得当第一液压腔内的压力大于第三液压腔内的压力,并且该泄压孔被封闭时,可以给解耦阀断电,使得解耦阀恢复到默认初始状态(即打开状态),从而能够减少解耦阀的工作时间,降低解耦阀的工作强度,减少发热量,提高解耦阀的工作寿命,同时也有利于提高整个制动系统的安全使用性能。
在一种可能的实现方式中,制动系统还包括踏板感觉模拟器、第四制动管路、启动阀以及限压阀;所述踏板感觉模拟器通过所述第四制动管路与所述第三液压腔相连,以提供与所述制动踏板的脚踏压力相对应的反作用力,所述启动阀设置于所述第四制动管路上,以控制所述第四制动管路的通断;所述限压阀与所述启动阀并联设置,所述限压阀被配置为,当所述第三液压腔内的压力大于或者等于设定值时,所述限压阀被打开。
在制动系统的整个生命周期内,行车制动使用最频繁,人工驾驶情况下,启动阀和解耦阀需要工作,与解耦阀相比,启动阀的工作强度较大。当启动阀失效(即出现故障)时,此时制动液无法通过启动阀进入踏板感觉模拟器内,驾驶员将无法正常踩下踏板,本申请通过设置与启动阀并联的限压阀,使得在第三液压腔内的压力大于预设值时,限压阀能够被打开,此时制动液能够通过限压阀进入踏板感觉模拟器内,驾驶员将能够踩下制动踏板,从而踏板行程传感器能够正常获取驾驶员的制动意图,使得第一增压装置能够根据正确的制动需求进行增压。
在一种可能的实现方式中,制动系统还包括第二增压装置、第一截止阀、第二截止阀;所述第二增压装置与所述第一制动管路相连,用于通过调节所述第一制动管路内制动液的压力,以控制施加在所述第一组车轮的制动力;所述第二增压装置还与所述第二制动管路相连,用于通过调节所述第二制动管路内制动液的压力,以控制施加在所述第二组车轮的制动力;所述第一截止阀设置于所述第一制动管路上,并且位于所述第二增压装置和所述第一增压装置之间,以控制所述第一制动管路的通断;所述第二截止阀设置于所述第二制动管路上,并且位于所述第二增压装置和所述第一增压装置之间,以控制所述第二制动管路的通断。
通过以上设置,在第一增压装置出现故障时,可以使用第二增压装置对制动系统进行增压,从而有利于提高制动系统的冗余性能。
在一种可能的实现方式中,制动系统还包括第一泄压管路、第二泄压管路、第一泄压阀、第二泄压阀、储液装置;所述第一泄压管路连通所述储液装置与所述第一制动管路,用于将制动液输送至所述储液装置,为所述第一组车轮减压,所述第一泄压阀设置于所述第一泄压管路上,以控制制动液的流动;所述第二泄压管路连通所述储液装置与所述第二制动管路,用于将制动液输送至所述储液装置,为所述第二组车轮减压,所述第二泄压阀设置于所述第二泄压管路上,以控制制动液的流动。
通过以上设置,能够实现快速泄压,且在使用第二增压装置进行增压时,可以通过泄压阀进行压力调节。
在一种可能的实现方式中,所述制动系统还包括第二止回阀和第三止回阀;所述第二止回阀与所述解耦阀并联设置,所述第二止回阀被配置为允许制动液从所述第一制动管路向所述第三液压腔的方向流动的同时阻止制动液在相反的方向上流动;所述第三止回阀与所述启动阀并联设置,所述第三止回阀被配置为允许制动液从所述踏板感觉模拟器向所述第三液压腔的方向流动的同时阻止制动液在相反的方向上流动。
通过设置第二止回阀和第三止回阀,能够快速调节系统的压力,提高系统运行的稳定性。例如,由于在释放制动踏板时可以通过该第三止回阀将制动液返回到第三液压腔中,从而能够确保第三活塞(即制动踏板)的快速返回。
可选地,制动系统还包括踏板行程传感器,踏板行程传感器用于检测制动踏板的行程,踏板行程传感器还用于将指示该行程的行程信息发送至控制器,以便控制器基于该行程确定施加于汽车的车轮上的制动力。
可选地,制动系统还包括压力传感器,该压力传感器位于第一液压腔的压力出端口与第一截止阀之间的第一制动管路上。压力传感器用于检测第一制动管路中制动液的压力,还用于将指示该压力的压力信息发送至控制器,以便控制器基于该压力确定施加于汽车的车轮上的制动力。
第三方面,提供了一种汽车,包括车轮和前述第二方面中任一种可能实现方式中的制动系统,该制动系统用于为车轮提供制动力。
可选地,该车轮包括前述的第一组车轮和第二组车轮。
可选地,第一组车轮包括右前轮和左前轮,且第二组车轮包括右后轮和左后轮。或者,第一组车轮包括右前轮和左后轮,第二组车轮包括左前轮和左后轮,本申请实施例对此不做限定。
可选地,该汽车可以是智能汽车、新能源汽车或者传统汽车等。
例如,该汽车可以是电动车或者油电混合汽车。
第四方面,提供了一种汽车中制动系统的控制方法,所述制动系统包括第一增压装置、制动主缸、第一制动管路、第二制动管路、第三制动管路、解耦阀、制动踏板、制动轮缸以及控制器;所述第一增压装置包括相互串联的第一液压腔和第二液压腔,所述第一液压腔与所述第一制动管路相连,所述第一制动管路与所述汽车的第一组车轮的所述制动轮缸相连;所述第二液压腔与所述第二制动管路相连,所述第二制动管路与所述汽车的第二组车轮的所述制动轮缸相连;所述制动主缸与所述制动踏板传动连接,所述制动主缸包括第三液压腔,所述第三液压腔通过所述第三制动管路与所述第一制动管路相连;所述制动主缸用于通过所述第三液压腔、所述第三制动管路调节所述第一制动管路内制动液的压力; 所述制动主缸还用于通过所述第三液压腔、所述第三制动管路、所述第一制动管路、所述第一液压腔、所述第二液压腔调节所述第二制动管路内制动液的压力;所述解耦阀设置于所述第三制动管路上,以控制所述第三制动管路的通断;所述方法包括:所述控制器确定所述制动系统需要进行制动解耦;所述控制器控制所述解耦阀关闭,以实现所述制动解耦。
具体地,控制器获取驾驶员的制动意图,或者高级驾驶辅助系统ADAS/自动驾驶的制动意图,确定需要对车轮进行制动。此时,控制器可以进一步确定汽车的电机能够提供制动力(即,电机实际可执行的制动力不为0),即控制器进一步确定制动系统所需提供的制动力相对于踏板行程所确定的制动力要小,即控制器确定控制系统需要进行制动解耦。
可选地,可以依据整车状态信息,综合考虑车辆驱动电机制动能力、电池允许充电能力、车速等信息,确定驱动电机实际可执行的制动力。
例如,当电池电量已满时,此时由于无法继续向电池充电,电机实际可执行的制动力可以为0。
可选地,控制器可以在确定了制动意图以后,确定需要为汽车提供的制动力总需求。
可选地,控制器通过汽车中踏板行程传感器,检测汽车中制动踏板的第一行程,控制器基于制动踏板的第一行程,以及行程与制动力总需求的对应关系,确定需要为汽车提供的制动力总需求。
可选地,控制器可以根据压力传感器检测第一制动管路内制动液的压力,这样,控制器可以基于第一制动管路内制动液的压力,以及制动液的压力与需求制动力之间的对应关系,确定制动力总需求。
可选地,控制器接收汽车中高级驾驶辅助系统ADAS/自动驾驶发送的信息,所述信息用于指示需要为汽车提供的制动力总需求;控制器基于该信息确定需要为汽车提供的制动力总需求。
控制器确定了制动力总需求以后,可以同电机实际可执行的制动力进行比较。
可选地,控制器确定电机实际可执行的制动力大于或者等于制动力总需求,此时控制器还可以控制第一增压装置和第二增压装置无需进行工作,以实现制动系统的完全(100%)解耦。即,此时制动力可以完全由电机提供,制动系统无需向车轮提供制动力。
可选地,控制器确定电机实际可执行的制动力小于制动力总需求,此时控制器还需要控制第一增压装置40和/或第二增压装置70进行增压,以向车轮提供制动力。
在一种可能的实现方式中,所述解耦阀被配置为常开型电磁阀,所述常开型电磁阀平时打开,在接收到关闭信号时启动而关闭阀;所述制动系统还包括第一止回阀,所述第一止回阀设置于所述第三制动管路上,并且位于所述解耦阀和所述第一制动管路之间,所述第一止回阀被配置为允许制动液从所述第三制动管路向所述第一制动管路的方向流动的同时阻止制动液在相反的方向上流动;所述第一增压装置包括第一活塞、第二活塞,所述第一活塞和所述第二活塞之间形成所述第一液压腔,所述第一增压装置上开设有泄压孔,所述第一活塞被配置为,当所述第一活塞位于初始位置时,所述泄压孔被打开,当所述第一活塞离开所述初始位置时,所述泄压孔被封闭;所述制动系统还包括第三泄压管路,所述第三泄压管路的一端与所述泄压孔相连,所述第三泄压管路的另一端与所述第三制动管路位于所述第一止回阀和所述解耦阀之间的管段相连;所述方法还包括:所述控制器确定 所述第一液压腔的压力大于所述第三液压腔的压力,并且所述泄压孔被封闭;所述控制器控制解耦阀处于打开状态。
在一种可能的实现方式中,制动系统还包括踏板感觉模拟器、第四制动管路、启动阀以及限压阀;所述踏板感觉模拟器通过所述第四制动管路与所述第三液压腔相连,以提供与所述制动踏板的脚踏压力相对应的反作用力,所述启动阀设置于所述第四制动管路上,以控制所述第四制动管路的通断;所述限压阀与所述启动阀并联设置,所述限压阀被配置为,当所述第三液压腔内的压力大于或者等于设定值时,所述限压阀被打开;所述方法还包括:所述控制器确定所述启动阀出现故障;所述控制器控制所述解耦阀处于打开状态。
在一种可能的实现方式中,制动系统还包括第二增压装置、第一截止阀、第二截止阀;所述第二增压装置与所述第一制动管路相连,用于通过调节所述第一制动管路内制动液的压力,以控制施加在所述第一组车轮的制动力;所述第二增压装置还与所述第二制动管路相连,用于通过调节所述第二制动管路内制动液的压力,以控制施加在所述第二组车轮的制动力;所述第一截止阀设置于所述第一制动管路上,并且位于所述第二增压装置和所述第一增压装置之间,以控制所述第一制动管路的通断;所述第二截止阀设置于所述第二制动管路上,并且位于所述第二增压装置和所述第一增压装置之间,以控制所述第二制动管路的通断;所述方法还包括:所述控制器确定所述第一增压装置出现故障;所述控制器控制所述第一截止阀和所述第二截止阀关闭,并且控制所述第二增压装置工作。
第五方面,提供一种控制装置,该控制装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使控制装置执行第三方面中任一种可能的方法。
可选地,上述控制装置可以是汽车中独立的控制器,也可以是汽车中具有控制功能的芯片。上述处理单元可以是处理器,上述存储单元可以是存储器,其中存储器可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是汽车内位于上述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
需要说明的是,上述控制器中存储器与处理器耦合。存储器与处理器耦合,可以理解为,存储器位于处理器内部,或者存储器位于处理器外部,从而独立于处理器。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第七方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
附图说明
图1是本申请实施例的制动系统中液压调节单元100的示意图。
图2是本申请实施例的制动系统的液压调节单元200的示意图。
图3是本申请实施例提供的制动系统300的示意图。
图4是本申请实施例提供的制动系统300在完全制动解耦模式下制动液的流动路径示 意图。
图5是本申请实施例提供的制动系统300在主增压装置行车制动模式下制动液的流动路径示意图。
图6是本申请实施例提供的制动系统300在主增压装置行车制动模式下启动阀2故障时制动液的流动路径示意图。
图7是本申请实施例提供的制动系统300在副增压装置行车制动模式下制动液的流动路径示意图。
图8是本申请实施例提供的制动系统300在副增压装置行车制动模式下泄压时制动液的流动路径示意图。
图9是本申请实施例提供的制动系统300在副增压装置行车制动模式下启动阀2故障时制动液的流动路径示意图。
图10是本申请实施例提供的制动系统300在主增压装置实现单轮增压时制动液的流动路径示意图。
图11是本申请实施例提供的制动系统300在副增压装置实现单轮增压时制动液的流动路径示意图。
图12是本申请实施例提供的制动系统300在紧急制动模式下制动液的流动路径示意图。
图13是本申请实施例提供的制动系统300在纯机械制动模式下制动液的流动路径示意图。
图14是本申请实施例提供的制动系统300在纯机械制动模式下减压时制动液的流动路径示意图。
图15是本申请实施例的控制方法的流程图。
图16是本申请实施例的控制装置的示意图。
图17是本申请实施例的控制器的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
随着地球环境的持续恶劣,人们对电动汽车的渴望越来越强烈。电动汽车通过电机来驱动车轮行驶,将蓄电池中的电能转换成车轮的机械能。由于电动汽车的蓄电池容量有限,为了提高电动汽车的续航里程,电动汽车的电机通常是双向的,除了能够将电能转换成机械能之外,还能够将机械能转变成电能,也就是说,电动汽车中的电机还能够用于发电。例如,电动汽车的电机可以进行“制动能量回收”,在车辆需要减速或者制动时,电机可以将车轮的惯性转动产生的动能转化成电能,同时产生制动力矩,对车轮提供制动力。
在现有的制动系统中,EHB作为流行的制动系统,通常包含两级制动子系统,第一级制动系统由控制器以线控的方式控制增压装置来为车轮提供制动力,第二级制动子系统由驾驶员踩踏制动踏板以此来通过制动主缸为车轮提供制动力。
对于电动汽车而言,还可以通过电机回馈制动,以此来进行“制动能量回收”。具体地,电机可以对汽车的车轮施加一定的制动力,使得行驶中的汽车能够减速甚至停车。反过来,车轮可以带动电机进行旋转发电,通过电机将车轮的机械能转变成电能,以实现能 量的回收利用。
此时,由于电机能够提供一定的制动力,电液制动系统可以相对应的少提供一些制动力,也就是说,此时控制器控制电液制动系统所提供的制动力相对于根据制动踏板的踏板行程所确定的制动力要小,因此,需要将制动踏板(制动主缸)与制动轮缸进行制动解耦。
在这里,制动解耦可以理解为,电液制动系统向制动轮缸所提供的制动力可以和基于制动踏板的行程所确定的需要施加的制动力可以不同。
为了便于理解,作为一个特殊的示例,当驾驶员轻踩踏板,控制器确定电机实际可执行的制动力能够满足制动需求时,为了实现能量回收的最大化,此时控制器可以控制增压装置不工作,并且控制制动主缸不向车轮提供制动力,以此实现将电液制动系统与车轮实现完全(100%)制动解耦。
现有的电液制动系统结构复杂,需要多个阀门组合工作才能实现制动解耦,控制器的控制逻辑复杂度高,该多个阀门的工作强度较大,其中任意一个阀门出现故障将可能造成无法进行制动解耦,由此造成系统的制动解耦效率不高。
基于上述问题,本申请实施例提供一种制动系统的液压调节单元、汽车中的制动系统、汽车及汽车中制动系统的控制方法,通过对现有的制动系统进行改进,以此来提高制动系统的制动解耦效率。下文将结合附图首先介绍本申请实施例提供的液压调节单元。
需要说明的是,为了便于描述制动系统中各个制动元件之间的连接关系,会使用“压力出端口”以及“压力入端口”等术语。其中,“压力出端口”可以理解为制动液流出的端口,“压力入端口”可以理解为制动液流入的端口。也就是说,“压力出端口”以及“压力入端口”可以理解为是从功能上限定端口的作用,上述“压力出端口”以及“压力入端口”可以用于限定一个物理端口在不同的工作模式下的作用,上述“压力出端口”以及“压力入端口”还可以对应两个不同的物理端口,本申请实施例对此不做限定。
通常,下文中介绍设备A的压力入端口与设备B的压力出端口相连时,可以理解为对应两个物理端口,并且用于描述设备A与设备B之间的连接关系。
另外,下文在结合附图介绍液压调节单元、制动系统等架构时,附图中会示意性地示出每个控制阀可以实现的两种工作状态(断开或连通),并不限定控制阀当前的工作状态如图所示。
第一方面,本申请实施例首先提供一种液压调节单元。图1是本申请实施例提供的液压调节单元100的示意图。图1所示的液压调节单元100第一增压装置40、制动主缸50、踏板感觉模拟器60、第一制动管路110、第二制动管路120、第三制动管路130、第四制动管路140、解耦阀1以及启动阀2。
其中,第一增压装置40包括相互串联的第一液压腔41和第二液压腔42,第一液压腔41与第一制动管路110相连,该第一制动管路110用于向汽车的第一组车轮(图1中未示出)提供制动力,例如用于通过调节第一制动管路110内制动液的压力,以控制施加在汽车的第一组车轮的制动力。
第二液压腔42与所述第二制动管路120相连,该第二制动管路120用于向汽车的第二组车轮(图1中未示出)提供制动力,例如用于通过调节第二制动管路120内制动液的压力,以控制施加在汽车的第二组车轮的制动力。
具体地,如图1所示,第一增压装置40包括缸体45,缸体45内设置有第一活塞43 和第二活塞44,并且第一活塞43和第二活塞44之间通过弹性连接件(例如弹簧)相连,第二活塞44和缸体的顶盖之间也通过弹性连接件相连,第一活塞43和第二活塞44之间形成第一液压腔41,第二活塞44和顶盖之间形成第二液压腔42。
第一活塞43通过第一活塞推杆46与增压电机48传动连接,在增压电机48的带动下,第一活塞43和第二活塞44能够在缸体45内做往复运动,以为第一液压腔41和第二液压腔42增压或者减压。
可选地,第一活塞43通过动力转换元件47与增压电机48传动连接。该动力转换元件47用于将增压电机48的旋转运动转换为线性移动,例如,该动力转换元件47可以是涡轮蜗杆组件或者滚珠丝杠螺母组件,本申请对此不做限定。
第一液压腔41的压力出端口与第一制动管路110的压力入端口相连,第一液压腔41能够将制动液压入第一制动管路110内,从而能够通过增加第一制动管路110内制动液的压力,以控制施加在汽车的第一组车轮上的制动力。
如图1所示,第一制动管路110可以包括两个支路,即第一支路111和第二支路112,也就是说,该第一制动管路110可以包括两个压力出端口,该两个压力出口端可以分别用于控制施加到第一组车轮的两个不同车轮上的制动力。
第二液压腔42的压力出端口与第二制动管路120的压力入端口相连,第二液压腔42能够将制动液压入第二制动管路120内,从而能够通过增加第二制动管路120内制动液的压力,以控制施加在汽车的第二组车轮上的制动力。
如图1所示,第二制动管路120可以包括两个支路,即第三支路121和第四支路122,也就是说,该第二制动管路120可以包括两个压力出端口,该两个压力出口端可以分别用于控制施加到第二组车轮的两个不同车轮上的制动力。
该第一制动管路110和第二制动管路120的压力出口端可以分别与车轮的制动轮缸(或者卡钳制动器等)相连,从而能够向车轮施加制动力。
可选地,该第一支路111、第二支路112、第三支路121、第四支路122上可以分别设置有入口阀14,入口阀14能够对各自支路上的制动液的流动进行控制,从而能够实现对各个车轮的制动的单独控制。
可选地,入口阀14可以被设置为常开型电磁阀,该常开型电磁阀被配置为在正常状态下是打开的,并且在接收到来自控制器的关闭信号时进行操作以关闭。也就是说,入口阀14的默认初始状态为打开状态。
上述第一组车轮与第二组车轮不同,可选地,第一组车轮包括右前轮和左前轮,且第二组车轮包括右后轮和左后轮。或者,第一组车轮包括右前轮和左后轮,第二组车轮包括左前轮和左后轮,本申请实施例对此不做限定。
制动主缸50用于与汽车的制动踏板(图1中未示出)传动连接,制动主缸50包括第三液压腔53,第三液压腔53通过第三制动管路130与第一制动管路110相连,制动主缸50用于通过第三液压腔53、第三制动管路130调节第一制动管路110内制动液的压力。制动主缸50还用于通过第三液压腔53、第三制动管路130、第一制动管路110、第一液压腔41、第二液压腔42调节第二制动管路120内制动液的压力。解耦阀1设置于第三制动管路130上,以控制第三制动管路130的通断。
具体地,如图1所示,制动主缸50的缸体内设置有第三活塞51,该第三活塞51的 一侧通过弹性连接件与缸体的顶盖连接,该第三活塞51的另一侧通过第二活塞推杆52与汽车的制动踏板传动连接。第三活塞51与缸体的顶盖之间形成该第三液压腔53,驾驶员可以通过踩踏制动踏板以向第三液压腔53施加压力。
第三液压腔53的压力出端口与第三制动管路130的压力入端口相连,第三制动管路130的压力出端口与第一制动管路110的压力入端口相连,从而能够通过第三制动管路130将制动液压入第一制动管路110内。
进一步地,第一制动管路110内的制动液可以分为两路,一路流至第一组车轮的制动轮缸,以此向第一组车轮提供制动力;另一路流至第一液压腔41,以此使得第二活塞44向顶盖方向移动,对第二液压腔42施加压力,第二液压腔42进一步将制动液压入第二制动管路120内,从而能够调节第二制动管路120内制动液的压力,也就是说,制动主缸50还可以通过第二制动管路120控制施加在汽车的第二组车轮上的制动力。
解耦阀1被设置于第三制动管路130上,以控制第三制动管路130的通断。例如,该解耦阀1能够被打开,从而使得第三制动管路130被接通。再例如,该解耦阀1能够被关闭,从而使得第三制动管路130被阻断。
可选地,解耦阀1可以被设置为常开型电磁阀,该常开型电磁阀被配置为在正常状态下是打开的,并且在接收到来自控制器的关闭信号时,可以向该常开型电磁阀的电磁线圈通电,以进行关闭操作。也就是说,解耦阀1的默认初始状态可以为打开状态。
踏板感觉模拟器60通过第四制动管路140与第三液压腔53相连,以提供与制动踏板的脚踏压力相对应的反作用力。提供反作用力以尽可能多的补偿驾驶员的踏板力,使得驾驶员可以按照预期来精确地调节制动力。
如图1所示,在本申请实施例中,第四制动管路140可以通过第三制动管路130与第三液压腔53相连。在其他实施方式中,第四制动管路140也可以直接与第三液压腔53相连,本申请对此不做限定。
启动阀2设置于第四制动管路140上,以控制第四制动管路140的通断。例如,该启动阀2能够被打开,从而使得第四制动管路140被接通。再例如,该启动阀2能够被关闭,从而使得第四制动管路140被阻断。
可选地,该启动阀2被构成为平时保持关闭状态的常闭型电磁阀,在驾驶员踩下制动踏板的情况下被打开而将制动液传输至踏板感觉模拟器60。也就是说,启动阀2的默认初始状态可以为关闭状态。
根据本申请实施例提供的液压调节单元100,制动主缸50可以通过第三制动管路130调节第一制动管路110和第二制动管路120内制动液的压力,并且在第三制动管路130上设置能够控制管路通断的解耦阀1,在进行制动解耦时,仅需要关闭解耦阀1即可实现。相对于现有的液压调节单元,本申请实施例提供的液压调节单元100操控简单,无需通过多个阀门组合工作以实现制动解耦,能够提高制动解耦的效率。
根据本申请实施例提供的液压调节单元100,通过关闭解耦阀1,即可实现第三液压腔53和第一制动管路110以及第二制动管路120的隔离,当驾驶员踩下制动踏板时,第三液压腔53内的制动液将流入踏板感觉模拟器60中,而不会通过第三制动管路130流入第一制动管路110以及第二制动管路120,不会向第一制动管路110以及第二制动管路120施加压力,此时控制第一增压装置40不工作,从而使得第一制动管路110和第二制动管 路120均无液压制动力,能够实现双回路制动力的100%解耦,易于实现能量回收最大化,有利于延长汽车的续航里程。
如图1所示,液压调节单元100还包括有储液装置80,该储液装置80用于储存制动液,并且通过连通管路分别与第一增压装置40以及制动主缸50相连通。
可选地,该连通管路上还可以设置有控制制动液流动的阀门。
应理解,虽然图1中仅示出了一个储液装置80,但是,该储液装置80可以为一个,也可以为多个,当储液装置80为多个时,不同的两个储液装置80可以分别用于与第一增压装置40以及制动主缸50相连通,本申请对此不做限定。
如图1所示,液压调节单元100还包括第一止回阀4,该第一止回阀4设置于第三制动管路130上,并且位于解耦阀1和第一制动管路110之间,第一止回阀4被配置为允许制动液从第三制动管路130向第一制动管路110的方向流动的同时阻止制动液在相反的方向上流动。
在这里,止回阀也可以被称为单向阀,仅允许制动液从一个方向进行流动,而阻止从相反的方向进行流动。
第一增压装置40上开设有泄压孔,第一活塞43被配置为,当第一活塞43位于初始位置时,该泄压孔被打开,当第一活塞43离开初始位置时,泄压孔被封闭。
如图1所示,该第一活塞43可以被配置成类似“L”形,即该第一活塞43的下部侧壁相对于其他部位更长,在第一活塞43位于初始位置时,该泄压孔未被第一活塞43的下部侧壁所覆盖,因此处于导通状态,而当第一活塞43向远离初始位置的方向开始移动并且离开初始位置以后,第一活塞43的下部侧壁将覆盖该泄压孔,以使得该泄压孔被封闭,直至第一活塞43再次回到初始位置之前,该泄压孔将始终处于被封闭的状态。
应理解,该第一活塞43的下部侧壁的长度应当与自身的行程相匹配,从而使得该第一活塞43离开初始位置以后,能够始终处于被封闭的状态。
可选地,如图1所示,该第一活塞43的下部具有倒角,以使得第一活塞43位于初始位置时该泄压孔被导通。
应理解,该第一活塞43也可以被配置成其他形状,例如“」”形、“[”形、“]”形等,本申请对此不作限定。
液压调节单元100还包括第三泄压管路230,第三泄压管路230的一端(例如,压力入端口)与泄压孔相连,第三泄压管路230的另一端(例如,压力出端口)与第三制动管路130位于第一止回阀4和解耦阀1之间的管段相连。通过以上设置,使得当泄压孔被打开时,第一液压腔41能够将制动液通过第三泄压管路230压入第三制动管路130内。
在本申请实施例中,解耦阀1被配置为常开型电磁阀,该常开型电磁阀平时打开,在接收到关闭信号时启动而关闭阀。通过以上设置,使得当第一液压腔41内的压力大于第三液压腔53内的压力,并且该泄压孔被封闭时,可以给解耦阀1断电,使得解耦阀1恢复到默认初始状态(即打开状态),从而能够减少解耦阀1的工作时间,降低解耦阀1的工作强度,减少发热量,提高解耦阀1的工作寿命,同时也有利于提高整个制动系统的安全使用性能。
如图1所示,液压调节单元100还包括与启动阀2并联设置的限压阀5,限压阀5被配置为,当第三液压腔53内的压力大于或者等于设定值时,限压阀5被打开。
在制动系统的整个生命周期内,行车制动使用最频繁,人工驾驶情况下,启动阀2和解耦阀1需要工作,与解耦阀1相比,启动阀2的工作强度较大。当启动阀2失效(即出现故障)时,此时制动液无法通过启动阀2进入踏板感觉模拟器60内,驾驶员将无法正常踩下踏板,本申请通过设置与启动阀2并联的限压阀5,使得在第三液压腔53内的压力大于预设值时,限压阀5能够被打开,此时制动液能够通过限压阀5进入踏板感觉模拟器60内,驾驶员将能够踩下制动踏板,从而踏板行程传感器(图1中未示出)能够正常获取驾驶员的制动意图,使得第一增压装置40能够根据正确的制动需求进行增压。
如图1所示,液压调节单元100还包括与启动阀2并联设置的第三止回阀11,第三止回阀11被配置为允许制动液从踏板感觉模拟器60向第三液压腔53的方向流动的同时阻止制动液在相反的方向上流动。由于在释放制动踏板时可以通过该第三止回阀11将制动液返回到第三液压腔53中,从而能够确保第三活塞51(即制动踏板)的快速返回。
液压调节单元100还包括与解耦阀1并联设置的第二止回阀10,第二止回阀10被配置为允许制动液从第一制动管路110向第三液压腔53的方向流动的同时阻止制动液在相反的方向上流动。通过设置第二止回阀10能够快速的释放第一制动管路110或第一液压腔41的压力。
图2是本申请实施例的制动系统的液压调节单元200的示意图。图2所示的液压调节单元200是另一种可以应用本申请提供的制动解耦方案的制动系统架构。需要说明的是,液压调节单元200与液压调节单元100中实现相同功能的制动元件采用相同的附图标记。
与图1所提供的液压调节单元100的区别点主要在于,图2所提供的液压调节单元200还包括第二增压装置70。
如图2所示,液压调节单元200还包括第二增压装置70、第一截止阀8、第二截止阀9。
其中,第二增压装置70与第一制动管路110相连,用于通过调节第一制动管路110内制动液的压力,以控制施加在第一组车轮的制动力。
也就是说,第二增压装置70的压力出端口与第一制动管路110的压力入端口相连,能够将制动液压入第一制动管路110内,进而能够通过第一制动管路110对第一组车轮提供制动力。
第二增压装置70还与第二制动管路120相连,用于通过调节第二制动管路120内制动液的压力,以控制施加在第二组车轮的制动力。
也就是说,第二增压装置70的压力出端口还与第二制动管路120的压力入端口相连,能够将制动液压入第二制动管路120内,进而能够通过第二制动管路120对第二组车轮提供制动力。
该第二增压装置70和第一增压装置40的结构可以相同,也可以不同,本申请对此不做限定。
可选地,第二增压装置70与第一增压装置40的型号相同。
可选地,第一增压装置40为主增压装置,第二增压装置70为辅增压装置。
可选地,第一增压装置40的制动能力高于第二增压装置70的制动能力。
可选地,第二增压装置70可以包括副增压电机以及两个增压泵,副增压电机用于为两个增压泵提供动力,该两个增压泵分别用于为第一制动管路110和第二制动管路120进 行增压。
如图2所示,第二增压装置70可以通过连通管路与储液装置80相连通,该连通管路上可以设置控制制动液流动的阀门。
根据本申请实施例提供的液压调节单元200,在第一增压装置40出现故障时,可以使用第二增压装置70对制动系统进行增压,从而有利于提高制动系统的冗余性能。
在通过第二增压装置70进行增压制动时,为了保证制动液被压入车轮的制动轮缸中,而不是被压入第一增压装置40中,本申请实施例提供的液压调节单元200还包括第一截止阀8、第二截止阀9。
其中,第一截止阀8设置于第一制动管路110上,并且位于第二增压装置70和第一增压装置40之间,以控制第一制动管路110的通断。
第二截止阀9设置于第二制动管路120上,并且位于第二增压装置70和第一增压装置40之间,以控制第二制动管路120的通断。
通过以上设置,在使用第二增压装置70进行增压制动时,可以关闭第一截止阀8和第二截止阀9,使得制动液无法进入第一增压装置40内,而被压入车轮的制动轮缸内。
可选地,第一截止阀8和第二截止阀9可以被设置为常开型电磁阀,该常开型电磁阀被配置为在正常状态下是打开的,并且在接收到来自控制器的关闭信号时,可以向该常开型电磁阀的电磁线圈通电,以进行关闭操作。也就是说,第一截止阀8和第二截止阀9的默认初始状态可以为打开状态。
如图2所示,为了能够对车轮的制动轮缸进行减压,液压调节单元200还包括第一泄压管路210和第二泄压管路220、第一泄压阀6、第二泄压阀7。
其中,第一泄压管路210连通储液装置80与第一制动管路110,用于将制动液输送至储液装置80,为第一组车轮减压,第一泄压阀6设置于所述第一泄压管路210上,以控制制动液的流动。
第二泄压管路220连通储液装置80与第二制动管路120,用于将制动液输送至储液装置80,为第二组车轮减压,第二泄压阀7设置于所述第二泄压管路220上,以控制制动液的流动。
具体地,第一制动管路110压力出端口可以与第一泄压管路210的压力入端口相连,第一制动管路110内的制动液可以通过第一泄压管路210流回至储液装置80内。
第二制动管路120压力出端口可以与第二泄压管路220的压力入端口相连,第二制动管路120内的制动液可以通过第二泄压管路220流回至储液装置80内。
在这里,第一泄压阀6和第二泄压阀7控制制动液的流动,可以包括接通或者阻断制动液的流动,以及控制阀门的开度从而控制制动液的流量。
可选地,第一泄压阀6和第二泄压阀7可以被设置为常闭型电磁阀,该常闭型电磁阀被配置为在正常状态下是关闭的,并且在接收到来自控制器的打开信号时,可以向该常闭型电磁阀的电磁线圈通电,以进行打开操作。也就是说,第一泄压阀6和第二泄压阀7的默认初始状态可以为关闭状态。
上文结合图1、2介绍了本申请实施例的液压调节单元,下文结合图3至图14介绍本本申请实施例的制动系统,应理解,制动系统可以包括上文中介绍的任何一种液压调节单元。为了便于理解,下文以包含液压调节单元200的制动系统为例进行介绍。
另一方面,本申请实施例还提供了一种制动系统。图3是本申请实施例提供的制动系统300的示意图。制动系统300包括液压调节单元200,以及汽车的制动踏板3、车轮的多个制动轮缸15、控制器(图3中未示出)等。应理解,制动系统300中的元件与液压调节单元200中功能相同的元件使用的编号相同。为了简洁,下文不再赘述。
如图3所示,第三活塞53通过第二活塞推杆52与汽车的制动踏板3传动连接,驾驶员可以通过踩踏制动踏板3以向第三液压腔53施加压力。
第一制动管路110用于为汽车的第一组车轮310提供制动力。具体地,第一制动管路110的第一支路111、第二支路112分别与第一车轮311、第二车轮312的制动轮缸15相连接,通过将制动液压入制动轮缸15内,使得制动轮缸15向车轮提供制动力。
第二制动管路120用于为汽车的第二组车轮320提供制动力。具体地,第二制动管路120的第三支路121、第四支路122分别与第三车轮321、第四车轮322的制动轮缸15相连接,通过将制动液压入制动轮缸15内,使得制动轮缸15向车轮提供制动力。
控制器用于接收制动系统中各个传感器的测量信息,并且基于该测量信息,对系统中的第一增压装置40、第二增压装置70、解耦阀1、启动阀2等电控元件进行控制。
如图3所示,制动系统300还包括踏板行程传感器12,踏板行程传感器12用于检测制动踏板3的行程,踏板行程传感器12还用于将指示该行程的行程信息发送至控制器,以便控制器基于该行程确定施加于汽车的车轮上的制动力。
还包括压力传感器13,该压力传感器13位于第一液压腔41的压力出端口与第一截止阀8之间的第一制动管路110上。压力传感器13用于检测第一制动管路110中制动液的压力,还用于将指示该压力的压力信息发送至控制器,以便控制器基于该压力确定施加于汽车的车轮上的制动力。
由于该制动系统300采用了上述实施例提供的液压调节单元200,因此使得该制动系统300也具有与液压调节单元200相应的技术效果,在此不再赘述。
本申请实施例提供的制动系统300支持多种工作模式,下面结合附图对该多种工作模式分别进行阐述。
工作模式一:完全制动解耦模式
当控制器根据踏板行程确定电机实际可执行的制动力能够满足制动需求时,为了实现能量回收的最大化,此时控制器可以控制第一增压装置40、第二增压装置70不工作,并且控制制动主缸50不向车轮提供制动力,以此实现将制动系统300与车轮实现完全制动解耦。
图4是本申请实施例提供的制动系统300在完全制动解耦模式下制动液的流动路径示意图。如图4所示,驾驶员踩下制动踏板3,控制器根据踏板行程传感器12确定驾驶员的制动需求,并且确定电机实际可执行的制动力能够满足该制动需求。此时为了实现完全制动解耦,控制器可以控制第一增压装置40、第二增压装置70不工作,并且控制解耦阀1处于关闭状态,启动阀2处于打开状态,其他阀门处于默认初始状态。
在这里,可以依据整车状态信息,综合考虑车辆电机制动能力、电池允许充电能力、车速等信息,确定电机实际可执行的制动力。
此时,在第二活塞推杆52的推动下,第三活塞51将向第三液压腔53提供压力,第三液压腔53内的制动液被排出,并且进入第四制动管路,通过启动阀2后,进入踏板感 觉模拟器60内,踏板感觉模拟器60产生反作用力,最终反馈到驾驶员脚上。
在这里,由于解耦阀1被关闭,并且第一增压装置40、第二增压装置70不工作,使得第一制动管路110和第二制动管路120均无液压制动力,能够实现双回路制动力的100%解耦,易于实现能量回收最大化,有利于延长汽车的续航里程。
工作模式二:主增压装置行车制动模式
在本申请实施例中,第一增压装置40可以作为主增压装置,第二增压装置70可以作为副增压装置。当控制器根据踏板行程确定电机实际可执行的制动力无法满足制动需求时,可以首先由主增压装置(即第一增压装置40)提供制动力来进行行车制动。
图5是本申请实施例提供的制动系统300在主增压装置行车制动模式下制动液的流动路径示意图。如图5所示,驾驶员踩下制动踏板3,控制器根据踏板行程传感器12确定驾驶员的制动需求,并且确定电机实际可执行的制动力无法满足该制动需求,此时控制器可以控制第一增压装置40进行工作,并且控制解耦阀1处于关闭状态,启动阀2处于打开状态,其他阀门处于默认初始状态。
驾驶员踩下制动踏板3,第二活塞推杆52推动第三活塞53,压缩第三液压腔53内的制动液,由于启动阀2打开,解耦阀1关闭,第三液压腔53内的制动液流入踏板感觉模拟器60内,踏板感觉模拟器60产生反作用力,最终反馈到驾驶员脚上。
制动踏板3被踩下,根据踏板行程传感器12确定驾驶员的总制动力需求,由控制器综合考虑电机能够提供的制动力,最终确定液压制动力的大小。根据得到的液压制动力大小,控制增压电机48进行旋转,经过动力转换元件47推动第一活塞推杆46和第一活塞43移动。压缩第一液压腔41和第二液压腔42内的制动液,因其他所有阀处于默认初始状态,第一增压装置40内的制动液经过第一制动管路110和第二制动管路120流入四个制动轮缸15内,对车轮产生制动力。
随着驾驶员继续深踩制动踏板3,制动需求较大,第一活塞43会被增压电机48继续往前推,第一活塞43将封闭泄压孔,进而将第一液压腔41与第三泄压管路230隔离。制动需求大,第一液压腔41内的制动压力也较大,当压力大于第三液压腔53内的压力时,解耦阀1即可恢复默认初始状态,即解耦阀1可以打开。
因为第一液压腔41压力大于第三液压腔53内的压力,第一止回阀4不会打开,第三液压腔53内的制动液不会流入第一制动管路110内。解耦阀1默认即为打开状态,从而能够减少解耦阀1的工作时间,降低解耦阀1的工作强度,减少发热量,提高解耦阀1的工作寿命,同时也有利于提高整个制动系统的安全使用性能。另一方面,可以保证第三液压腔53与制动回路隔离,从而保证踏板感觉一致。
当制动结束,需要进行减压时,驾驶员可以松开制动踏板3,第三活塞51在第三液压腔53内压力和回位弹簧的作用下往回移动,控制增压电机48反转,第一活塞43往回移动,从而实现减压。
在自动驾驶模式下,由于制动系统的工作不再需要驾驶员参与,制动力需求可以由高级驾驶辅助系统(advanced driving assistant system,ADAS)以指令的方式发送给控制器。此时启动阀1和解耦阀11均处于默认初始状态。控制器通过控制增压电机48的正反转,来实现制动压力的增减调节。
在制动系统的整个生命周期内,行车制动使用最频繁,人工驾驶情况下,启动阀2和 解耦阀1需要工作,与解耦阀1相比,启动阀2的工作强度较大,比较容易出现故障而失效。本申请实施例提供的制动系统300在启动阀2出现故障时同样能够正常工作,以向车轮提供制动力。
图6是本申请实施例提供的制动系统300在主增压装置行车制动模式下启动阀2故障时制动液的流动路径示意图。
当启动阀2失效(即出现故障)时,制动液无法通过启动阀2进入踏板感觉模拟器60内。此时,驾驶员踩下制动踏板3,控制器控制解耦阀1处于默认初始状态,第三液压腔53内的制动液会经过第一止回阀4进入第一制动管路110从而产生制动力,因为第三液压腔53内的制动液流入第一制动管路110内,所以第三活塞51会往前移动,踏板行程传感器12会产生踏板行程信号,能够正常获取驾驶与制动意图,从而增压电机48会根据行程信号控制第一增压装置40建立压力。
此时,第一活塞43往前移动,将第三泄压管路230与第一液压腔41隔离,第一止回阀4保证第一液压腔41内制动液不会流入第三液压腔53内,保证第一液压腔41内压力不小于第三液压腔53内压力,从而保证制动效率。
当驾驶员继续用力踩制动踏板3,第三液压腔53内压力继续增加,若大于第一液压腔41内压力,第一止回阀4会打开,使第三液压腔53内液体流入第一制动管路110,行程信号增加,使增压电机48继续工作,使第一液压腔41内压力继续增压,压力与驾驶意图呈现正相关趋势。
当第三液压腔53内压力达到限压阀5的设定值,限压阀5打开,第三液压腔53内制动液经过限压阀5流入踏板感觉模拟器60,踏板行程传感器12检测到的踏板行程继续增加,能够根据踏板行程信号准确获取制动意图,从而提高制动效率。
工作模式三:副增压装置行车制动模式
当主增压装置失效,可以由副增压装置实现行车制动。也就是说,当第一增压装置40出现故障而失效时,此时可以通过第二增压装置70向车轮提供制动力。
图7是本申请实施例提供的制动系统300在副增压装置行车制动模式下制动液的流动路径示意图。
如图7所示,驾驶员踩下制动踏板3,控制器根据踏板行程传感器12确定驾驶员的制动需求,并且确定电机实际可执行的制动力无法满足该制动需求,并且确定第一增压装置40出现故障无法工作,此时控制器可以控制第二增压装置70进行工作,并且控制解耦阀1处于关闭状态,启动阀2处于打开状态,第一截止阀8和第二截止阀9处于关闭状态。
驾驶员踩下制动踏板3,第二活塞推杆52推动第三活塞53,压缩第三液压腔53内的制动液,由于启动阀2打开,解耦阀1关闭,第三液压腔53内的制动液流入踏板感觉模拟器60内,踏板感觉模拟器60产生反作用力,最终反馈到驾驶员脚上。
控制器根据踏板行程传感器12获取驾驶员制动意图,关闭第一截止阀8和第二截止阀9,控制第二增压装置70进行工作,第二增压装置70内的制动液经过第一制动管路110和第二制动管路120流入四个制动轮缸15内,对车轮产生制动力。
在本申请实施例中,第二增压装置70包括副增压电机,以及两个增压泵,副增压电机用于为两个增压泵提供动力,两个增压泵分别用于为第一制动管路110和第二制动管路120进行增压。由于增压泵只能起到提供压力源的作用,自身不具备压力调节功能,因此 需要配合第一泄压管路210上的第一泄压阀6、第二泄压管路220上的第二泄压阀7进行工作。
例如,当第二制动管路120内的压力超过目标压力时,可以通过控制第二泄压管路220上的第二泄压阀7的开度和开启时间来减小压力;当第二制动管路120内的压力小于目标压力时,可以关闭第二泄压阀7,并且控制增压泵继续工作增压,最终达到动态平衡,实现目标压力调节。
图8是本申请实施例提供的制动系统300在副增压装置行车制动模式下泄压时制动液的流动路径示意图。
当制动结束,需要进行减压时,驾驶员可以松开制动踏板3,第三活塞51在第三液压腔53内压力和回位弹簧的作用下往回移动,控制器控制第一泄压阀6和第二泄压阀7打开,第一组车轮310的制动轮缸15内的制动液经过第一制动回路110、第一泄压管路210回到储液装置80内,第二组车轮320的制动轮缸15内的制动液经过第二制动回路120、第二泄压管路220回到储液装置80内,从而实现整个系统的减压。
在ADAS/自动驾驶情况下,参考图7和图8,由于无驾驶员参与,制动力需求由ADAS/自动驾驶直接发出指令,此时无需解耦阀1和启动阀2的动作,压力实现部分与人工驾驶情况下相同,不再赘述。
类似地,本申请实施例提供的制动系统300在启动阀2出现故障时同样能够正常工作,并且可以通过第二增压装置70以向车轮提供制动力。
图9是本申请实施例提供的制动系统300在副增压装置行车制动模式下启动阀2故障时制动液的流动路径示意图。
因为启动阀2失效,采用第二增压装置70进行增压时,第一制动管路110上的第一截止阀8以及第二制动管路120上的第二截止阀9需要关闭,此时即使制动踏板3被踩下,第三液压腔53内的制动液也流不出去,第二活塞推杆52不移动,踏板行程传感器12检测不到行程信号,因此无法通过行程信号获取驾驶员的制动意图。制动踏板3被踩下,虽然无踏板行程信号,但是第三液压腔53与第一制动管路110实际为连通状态,两处的压力相等,可通过布置在第一制动管路110上的压力传感器13检测压力,控制器根据该压力大小识别驾驶员的制动意图,从而控制第二增压装置70实现增减压。采用第二增压装置70实现增减压的方式与前述图7和8的相关介绍相类似,此处不再赘述。
如图9所示,当驾驶员的制动需求较大时,驾驶员继续踩制动踏板3,当第三液压腔53内压力超过限压阀5的设定值时,第三液压腔53内制动液经过该限压阀5便会流入踏板感觉模拟器60内,踏板行程传感器12检测到踏板行程信号,此时综合踏板行程传感器12的信号与压力传感器13的信号,识别驾驶员制动意图,由第二增压装置70实现增减压。
工作模式四:主增压装置实现ESC/ABS/TCS功能
为了提高车辆行驶的安全性能,当前的车辆通常配置有电子稳定系统(electronic stability system,ESC)、制动防抱死系统(antilock brake system,ABS)和牵引力控制系统(traction control system,TCS)等动力学功能。下面对上述三种功能分别进行介绍。
ESC:传感器收集车辆信息,判断车辆失稳情况,当车辆趋于失稳,ESC系统通过对单个或部分车轮施加制动力,以获取使车辆稳定的横摆力矩,从而实现稳定车辆的目的。
ABS:一般车辆在紧急制动或在冰雪路面制动,车轮会趋于抱死。车轮抱死,会使制动距离增加,失去转向意图等。ABS系统根据车轮的抱死情况,适当的减小趋于抱死车轮处的制动力,以实现防抱死功能。
TCS:车辆在冰雪路面行驶,或某一车轮陷入泥泞路面等,车轮打滑严重,无法正常行驶。TCS系统根据车轮打滑情况,适当减小驱动力或对打滑车轮施加制动力,减弱车轮打滑情况,保证车辆正常行驶。
其中,ESC和TCS要求制动系统需要具备对单个车轮施加制动力的功能,即使此时驾驶员或ADAS/自动驾驶无制动请求;ABS工作时一般需要有驾驶员或ADAS/自动驾驶有制动请求,ABS以减压为主,也存在需要增压的情况,但轮缸压力不会超过主缸压力。因此当系统能实现单个轮缸压力独立增减时,即可满足ESC/ABS/TCS功能。
实现ESC、ABS和TCS等动力学控制功能,需要对单个制动轮缸进行控制,此时可以在第一增压装40和第二增压装置70的辅助下,通过控制单个入口阀14实现单个制动轮缸的增压、保压和减压操作。
图10是本申请实施例提供的制动系统300在主增压装置实现单轮增压时制动液的流动路径示意图。
以对第三车轮321(例如,该第三车轮321可以为汽车的左前轮)进行压力调节为例,当需要增压时,为了不影响其他三个车轮的制动轮缸15内的压力,此时需要关闭第一支路111、第二支路112、第四支路122上的入口阀14,其他阀均处于默认初始状态。
通过控制增压电机48旋转推动第一活塞43移动,实现压力增加。当需要减压时,只需要控制增压电机48进行反转即可。当需要对其他车轮的制动轮缸15进行压力调节时,可通过类似方式实现,这里不再赘述。
工作模式五:副增压装置实现ESC/ABS/TCS功能
图11是本申请实施例提供的制动系统300在副增压装置实现单轮增压时制动液的流动路径示意图。
如图11所示,当主增压装置失效时,副增压装置同样可以实现ESC/ABS/TCS功能,以对第三车轮321进行压力调节为例,当需要增压时,为了不影响其他三个车轮的制动轮缸15内的压力,此时需要关闭第一支路111、第二支路112、第四支路122上的入口阀14。同时,为了实现通过第二增压装置70来进行增压,需要控制第一截止阀8和第二截止阀9处于关闭状态。
控制第二增压装置70的副增压电机进行工作以带动两个增压泵,由于增压泵只能起到提供压力源的作用,自身不具备压力调节功能,因此需要配合第二泄压管路220上的第二泄压阀7进行工作,
此时通过控制第二泄压阀7的开度和开启时间,使压力达到目标设定值,还要控制第一泄压管路210上的第一泄压阀6的开度和开启时间来防止第一制动管路110的压力过大。
当制动结束需要进行减压时,只需要控制第二增压装置70停止工作,关闭第二截止阀9并且打开第二泄压阀7即可。当需要对其他车轮的制动轮缸15进行压力调节时,可通过类似方式实现,这里不再赘述。
工作模式六:紧急制动
当驾驶员未注意到车辆前方车辆或行人等情况下,车辆需要紧急制动。图12是本申请实施例提供的制动系统300在紧急制动模式下制动液的流动路径示意图。
如图12所示,由ADAS/自动驾驶发出紧急制动指令,此时所有阀均处于默认状态,控制第一增压装置40和第二增压装置70同时工作。两套增压装置联合工作,可以加快系统响应速度,保证尽快制动减速。
工作模式七:纯机械制动
在所有增压装置均失效时,驾驶员踩下制动踏板,仍然可以实现机械制动,保证车辆可靠减速。图13是本申请实施例提供的制动系统300在纯机械制动模式下制动液的流动路径示意图。
此时,所有阀门均处于默认状态,驾驶员踩下制动踏板3,第二活塞推杆52往前移动,第三活塞51挤压第三液压腔53,第三液压腔53内制动液一路经过第三制动管路130、解耦阀1、第一止回阀4进入第一制动回路110内,进而流入第一组车轮310的制动轮缸15内。另一路经过第三制动管路130、解耦阀1、第三泄压管路230和/或第一制动管路110进入第一液压腔41内,并且挤压第二液压腔42,第二液压腔42内的制动液被排入第二制动管路120内,进而流入第二组车轮320的制动轮缸15内,实现纯机械制动。
可选地,制动液可以经过第三制动管路130、第三泄压管路230之后进入第一液压腔41内。和/或,制动液可以经过第三制动管路130、第一制动回路110之后进入第一液压腔41内。
图14是本申请实施例提供的制动系统300在纯机械制动模式下减压时制动液的流动路径示意图。
当制动结束,需要进行减压时,驾驶员可以松开制动踏板3,第三活塞51在第三液压腔53内压力和回位弹簧的作用下往回移动,此时,四个制动轮缸15内的制动液通过第一制动管路110和第二制动管路120分别进入第一液压腔41和第二液压腔42内,第一液压腔41内的制动液通过第三泄压管路230流入第三制动管路130,最终流入第三液压腔53内。
上文结合图1至图14介绍了本申请实施例的装置,下文结合图15介绍本申请实施例的控制方法,需要说明的是,本申请实施例的控制方法可以应用于上文介绍的任意一种装置,例如,应用于图1所示的液压调节单元100、图2所示的液压调节单元200或者图3所示的制动系统300,本申请实施例对此不作限定。为便于理解,下面将以该控制方法应用于制动系统300为例,对该控制方法进行说明。
图15是本申请实施例的控制方法1500的流程图。图15所示的方法可以由制动系统中的控制器执行。图15所示的方法可以包括步骤1510和1520。
步骤1510,控制器确定制动系统需要进行制动解耦。
步骤1520,控制器控制解耦阀1关闭,以实现该制动解耦。
具体地,在步骤1510中,控制器获取驾驶员的制动意图,或者ADAS/自动驾驶的制动意图,确定需要对车轮进行制动。此时,控制器可以进一步确定汽车的电机能够提供制动力(即,电机实际可执行的制动力不为0),即控制器进一步确定制动系统所需提供的制动力相对于踏板行程所确定的制动力要小,即控制器确定控制系统需要进行制动解耦。
可选地,可以依据整车状态信息,综合考虑车辆驱动电机制动能力、电池允许充电能 力、车速等信息,确定驱动电机实际可执行的制动力。
例如,当电池电量已满时,此时由于无法继续向电池充电,电机实际可执行的制动力可以为0。
在步骤1520中,控制器可以控制解耦阀1关闭,将制动踏板3(制动主缸50)与制动轮缸15相互隔离,从而实现制动解耦。
进一步地,在步骤1510中,控制器可以在确定了制动意图以后,确定需要为汽车提供的制动力总需求。
可选地,控制器通过汽车中踏板行程传感器12,检测汽车中制动踏板3的第一行程,控制器基于制动踏板3的第一行程,以及行程与制动力总需求的对应关系,确定需要为汽车提供的制动力总需求。
可选地,控制器可以根据压力传感器13检测第一制动管路110内制动液的压力,这样,控制器可以基于第一制动管路110内制动液的压力,以及制动液的压力与需求制动力之间的对应关系,确定制动力总需求。
可选地,控制器接收汽车中高级驾驶辅助系统ADAS发送的信息,所述信息用于指示需要为汽车提供的制动力总需求;控制器基于该信息确定需要为汽车提供的制动力总需求。
控制器确定了制动力总需求以后,可以同电机实际可执行的制动力进行比较。
可选地,控制器确定电机实际可执行的制动力大于或者等于制动力总需求,此时在步骤1520中,控制器还可以控制第一增压装置40和第二增压装置70无需进行工作,以实现制动系统的完全(100%)解耦。即,此时制动力可以完全由电机提供,制动系统无需向车轮提供制动力。
可选地,控制器确定电机实际可执行的制动力小于制动力总需求,此时在步骤1520中,控制器还需要控制第一增压装置40和/或第二增压装置70进行增压,以向车轮提供制动力。
可选地,控制器控制第一增压装置40工作,并且控制第二增压装置70不工作。此时,如果控制器确定第一液压腔41的压力大于第三液压腔53的压力,并且泄压孔被封闭时,
控制器可以控制解耦阀1处于打开状态(即恢复到默认初始状态),从而能够减少解耦阀1的工作时间,降低解耦阀1的工作强度,减少发热量,提高解耦阀1的工作寿命,同时也有利于提高整个制动系统的安全使用性能。
可选地,如果控制器确定第一增压装置40出现故障而无法工作,控制器可以控制第一截止阀8和第二截止阀9关闭,并且控制第二增压装置70进行增压,以向车轮提供制动力。
可选地,如果控制器确定第一增压装置40和第二增压装置70均出现故障而无法进行工作,此时控制器可以提醒驾驶员采用机械制动模式进行制动。
可选地,如果控制器确定启动阀2出现故障,此时控制器可以控制解耦阀1处于打开状态,从而使得制动液能够通过解耦阀1被排入第一制动管路110内,使得制动踏板3能够被踩下,控制器能够获知驾驶员的制动意图以及需求制动力。
上文结合图15介绍了本申请实施例的控制方法,下文结合图16、17介绍本申请实施例的装置。需要说明的是,本申请实施例的装置可以应用于上文介绍的任意一种液压调节 单元或者制动系统中,实现上文介绍的任意一种控制方法,为了简洁,在此不再赘述。
图16是本申请实施例的控制装置的示意图,图16所示的控制装置1600包括处理单元1610和存储单元1620。其中存储单元1620用于存储指令,处理单元1610用于从存储单元1620中读取指令以实现上述任一种控制方法。
即,处理单元1610确定制动系统需要进行制动解耦,处理单元1610控制解耦阀1关闭,以实现该制动解耦。
可选地,处理单元1610可以依据整车状态信息,综合考虑车辆驱动电机制动能力、电池允许充电能力、车速等信息,确定驱动电机实际可执行的制动力。
例如,当电池电量已满时,此时由于无法继续向电池充电,处理单元1610可以确定电机实际可执行的制动力可以为0。
可选地,处理单元1610可以在确定了制动意图以后,确定需要为汽车提供的制动力总需求。
可选地,处理单元1610通过汽车中踏板行程传感器12,检测汽车中制动踏板3的第一行程,处理单元1610基于制动踏板3的第一行程,以及行程与制动力总需求的对应关系,确定需要为汽车提供的制动力总需求。
可选地,处理单元1610可以根据压力传感器13检测第一制动管路110内制动液的压力,这样,处理单元1610可以基于第一制动管路110内制动液的压力,以及制动液的压力与需求制动力之间的对应关系,确定制动力总需求。
可选地,处理单元1610接收汽车中高级驾驶辅助系统ADAS发送的信息,所述信息用于指示需要为汽车提供的制动力总需求;处理单元1610基于该信息确定需要为汽车提供的制动力总需求。
处理单元1610确定了制动力总需求以后,可以同电机实际可执行的制动力进行比较。
可选地,处理单元1610确定电机实际可执行的制动力大于或者等于制动力总需求,此时处理单元1610还可以控制第一增压装置40和第二增压装置70无需进行工作,以实现制动系统的完全(100%)解耦。即,此时制动力可以完全由电机提供,制动系统无需向车轮提供制动力。
可选地,处理单元1610确定电机实际可执行的制动力小于制动力总需求,此时处理单元1610还可以控制第一增压装置40和/或第二增压装置70进行增压,以向车轮提供制动力。
可选地,处理单元1610控制第一增压装置40工作,并且控制第二增压装置70不工作。此时,如果处理单元1610确定第一液压腔41的压力大于第三液压腔53的压力,并且泄压孔被封闭时,
处理单元1610可以控制解耦阀1处于打开状态(即恢复到默认初始状态),从而能够减少解耦阀1的工作时间,降低解耦阀1的工作强度,减少发热量,提高解耦阀1的工作寿命,同时也有利于提高整个制动系统的安全使用性能。
可选地,如果处理单元1610确定第一增压装置40出现故障而无法工作,处理单元1610可以控制第一截止阀8和第二截止阀9关闭,并且控制第二增压装置70进行增压,以向车轮提供制动力。
可选地,如果处理单元1610确定第一增压装置40和第二增压装置70均出现故障而 无法进行工作,此时处理单元1610可以提醒驾驶员采用机械制动模式进行制动。
可选地,如果处理单元1610确定启动阀2出现故障,此时处理单元1610可以控制解耦阀1处于打开状态,从而使得制动液能够通过解耦阀1被排入第一制动管路110内,使得制动踏板3能够被踩下,处理单元1610能够获知驾驶员的制动意图以及需求制动力。
可选地,上述控制装置1600可以是汽车中独立的控制器,也可以是汽车中具有控制功能的芯片。上述处理单元1610可以是处理器,上述存储单元可以是存储器,其中存储器可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是汽车内位于上述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
需要说明的是,上述控制器中存储器与处理器耦合。存储器与处理器耦合,可以理解为,存储器位于处理器内部,或者存储器位于处理器外部,从而独立于处理器。
在可选的实施例中,所述处理单元1610可以为处理器1720,所述存储单元1620可以为存储器1710,具体如图17所示。
图17是本申请实施例的控制器的示意性框图。图17所示的控制器1700可以包括:存储器1710、处理器1720、以及通信接口1730。其中,存储器1710、处理器1720,通信接口1730通过内部连接通路相连,该存储器1710用于存储指令,该处理器1720用于执行该存储器1720存储的指令,以控制通信接口1730接收/发送信息。可选地,存储器1710既可以和处理器1720通过接口耦合,也可以和处理器1720集成在一起。
需要说明的是,上述通信接口1730使用例如但不限于收发器一类的收发装置,来实现控制器1700与其他设备或通信网络之间的通信。上述通信接口1730还可以包括输入/输出接口(input/output interface)。
在实现过程中,上述方法的各步骤可以通过处理器1720中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1710,处理器1720读取存储器1710中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
本申请实施例还提供了一种汽车,该汽车包括车轮,和前述任一实施例提供的制动系统300,该制动系统300能够用于向所述车轮提供制动力。
可选地,该车轮包括前述的第一组车轮310和第二组车轮320。
可选地,第一组车轮310包括右前轮和左前轮,且第二组车轮320包括右后轮和左后 轮。或者,第一组车轮310包括右前轮和左后轮,第二组车轮320包括左前轮和左后轮,本申请实施例对此不做限定。
可选地,该汽车可以是智能汽车、新能源汽车或者传统汽车等。
例如,该汽车可以是电动车或者油电混合汽车。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述控制方法1500。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
本申请实施例还提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述控制方法1500。
在本申请实施例中,“第一”、“第二”以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的制动管路、阀门等。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现 有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种汽车中制动系统的液压调节单元,其特征在于,包括第一增压装置(40)、制动主缸(50)、第一制动管路(110)、第二制动管路(120)、第三制动管路(130)、解耦阀(1);
    所述第一增压装置(40)包括相互串联的第一液压腔(41)和第二液压腔(42),所述第一液压腔(41)与所述第一制动管路(110)相连,所述第一制动管路(110)用于向所述汽车的第一组车轮(310)施加制动力;所述第二液压腔(42)与所述第二制动管路(120)相连,所述第二制动管路(120)用于向所述汽车的第二组车轮(320)施加制动力;
    所述制动主缸(50)用于与所述汽车的制动踏板(3)传动连接,所述制动主缸(50)包括第三液压腔(53),所述第三液压腔(53)通过所述第三制动管路(130)与所述第一制动管路(110)相连;所述制动主缸(50)用于通过所述第三液压腔(53)、所述第三制动管路(130)调节所述第一制动管路(110)内制动液的压力;所述制动主缸(50)还用于通过所述第三液压腔(53)、所述第三制动管路(130)、所述第一制动管路(110)、所述第一液压腔(41)、所述第二液压腔(42)调节所述第二制动管路(120)内制动液的压力;
    所述解耦阀(1)设置于所述第三制动管路(130)上,以控制所述第三制动管路(130)的通断。
  2. 根据权利要求1所述的液压调节单元,其特征在于,所述解耦阀(1)被配置为常开型电磁阀,所述常开型电磁阀平时打开,在接收到关闭信号时启动而关闭阀;
    所述液压调节单元还包括第一止回阀(4),所述第一止回阀(4)设置于所述第三制动管路(130)上,并且位于所述解耦阀(1)和所述第一制动管路(110)之间,所述第一止回阀(4)被配置为允许制动液从所述第三制动管路(130)向所述第一制动管路(110)的方向流动的同时阻止制动液在相反的方向上流动;
    所述第一增压装置(40)包括第一活塞(43)、第二活塞(44),所述第一活塞(43)和所述第二活塞(44)之间形成所述第一液压腔(41),所述第一增压装置(40)上开设有泄压孔,所述第一活塞(43)被配置为,当所述第一活塞(43)位于初始位置时,所述泄压孔被打开,当所述第一活塞(43)离开所述初始位置时,所述泄压孔被封闭;
    所述液压调节单元还包括第三泄压管路(230),所述第三泄压管路(230)的一端与所述泄压孔相连,所述第三泄压管路(230)的另一端与所述第三制动管路(130)位于所述第一止回阀(4)和所述解耦阀(1)之间的管段相连。
  3. 根据权利要求1或2所述的液压调节单元,其特征在于,所述液压调节单元还包括踏板感觉模拟器(60)、第四制动管路(140)、启动阀(2)以及限压阀(5);
    所述踏板感觉模拟器(60)通过所述第四制动管路(140)与所述第三液压腔(53)相连,以提供与所述制动踏板(3)的脚踏压力相对应的反作用力,所述启动阀(2)设置于所述第四制动管路(140)上,以控制所述第四制动管路(140)的通断;
    所述限压阀(5)与所述启动阀(2)并联设置,所述限压阀(5)被配置为,当所述 第三液压腔(53)内的压力大于或者等于设定值时,所述限压阀(5)被打开。
  4. 根据权利要求1-3中任一项所述的液压调节单元,其特征在于,所述液压调节单元还包括第二增压装置(70)、第一截止阀(8)、第二截止阀(9);
    所述第二增压装置(70)与所述第一制动管路(110)相连,用于通过调节所述第一制动管路(110)内制动液的压力,以控制施加在所述第一组车轮(310)的制动力;所述第二增压装置(70)还与所述第二制动管路(120)相连,用于通过调节所述第二制动管路(120)内制动液的压力,以控制施加在所述第二组车轮(320)的制动力;
    所述第一截止阀(8)设置于所述第一制动管路(110)上,并且位于所述第二增压装置(70)和所述第一增压装置(40)之间,以控制所述第一制动管路(110)的通断;
    所述第二截止阀(9)设置于所述第二制动管路(120)上,并且位于所述第二增压装置(70)和所述第一增压装置(40)之间,以控制所述第二制动管路(120)的通断。
  5. 根据权利要求4所述的液压调节单元,其特征在于,所述液压调节单元还包括第一泄压管路(210)、第二泄压管路(220)、第一泄压阀(6)、第二泄压阀(7)、储液装置(80);
    所述第一泄压管路(210)连通所述储液装置(80)与所述第一制动管路(110),用于将制动液输送至所述储液装置(80),为所述第一组车轮(310)减压,所述第一泄压阀(6)设置于所述第一泄压管路(210)上,以控制制动液的流动;
    所述第二泄压管路(220)连通所述储液装置(80)与所述第二制动管路(120),用于将制动液输送至所述储液装置(80),为所述第二组车轮(320)减压,所述第二泄压阀(7)设置于所述第二泄压管路(220)上,以控制制动液的流动。
  6. 根据权利要求1-5中任一项所述的液压调节单元,其特征在于,所述液压调节单元还包括第二止回阀(10)和第三止回阀(11);
    所述第二止回阀(10)与所述解耦阀(1)并联设置,所述第二止回阀(10)被配置为允许制动液从所述第一制动管路(110)向所述第三液压腔(53)的方向流动的同时阻止制动液在相反的方向上流动;
    所述第三止回阀(11)与所述启动阀(2)并联设置,所述第三止回阀(11)被配置为允许制动液从所述踏板感觉模拟器(60)向所述第三液压腔(53)的方向流动的同时阻止制动液在相反的方向上流动。
  7. 一种汽车的制动系统,其特征在于,包括第一增压装置(40)、制动主缸(50)、第一制动管路(110)、第二制动管路(120)、第三制动管路(130)、解耦阀(1)、制动踏板(3)以及制动轮缸(15);
    所述第一增压装置(40)包括相互串联的第一液压腔(41)和第二液压腔(42),所述第一液压腔(41)与所述第一制动管路(110)相连,所述第一制动管路(110)与所述汽车的第一组车轮(310)的所述制动轮缸(15)相连;所述第二液压腔(42)与所述第二制动管路(120)相连,所述第二制动管路(120)与所述汽车的第二组车轮(320)的所述制动轮缸(15)相连;
    所述制动主缸(50)与所述制动踏板(3)传动连接,所述制动主缸(50)包括第三液压腔(53),所述第三液压腔(53)通过所述第三制动管路(130)与所述第一制动管路(110)相连;所述制动主缸(50)用于通过所述第三液压腔(53)、所述第三制动管 路(130)调节所述第一制动管路(110)内制动液的压力;所述制动主缸(50)还用于通过所述第三液压腔(53)、所述第三制动管路(130)、所述第一制动管路(110)、所述第一液压腔(41)、所述第二液压腔(42)调节所述第二制动管路(120)内制动液的压力;
    所述解耦阀(1)设置于所述第三制动管路(130)上,以控制所述第三制动管路(130)的通断。
  8. 根据权利要求7所述的制动系统,其特征在于,所述解耦阀(1)被配置为常开型电磁阀,所述常开型电磁阀平时打开,在接收到关闭信号时启动而关闭阀;
    所述制动系统还包括第一止回阀(4),所述第一止回阀(4)设置于所述第三制动管路(130)上,并且位于所述解耦阀(1)和所述第一制动管路(110)之间,所述第一止回阀(4)被配置为允许制动液从所述第三制动管路(130)向所述第一制动管路(110)的方向流动的同时阻止制动液在相反的方向上流动;
    所述第一增压装置(40)包括第一活塞(43)、第二活塞(44),所述第一活塞(43)和所述第二活塞(44)之间形成所述第一液压腔(41),所述第一增压装置(40)上开设有泄压孔,所述第一活塞(43)被配置为,当所述第一活塞(43)位于初始位置时,所述泄压孔被打开,当所述第一活塞(43)离开所述初始位置时,所述泄压孔被封闭;
    所述制动系统还包括第三泄压管路(230),所述第三泄压管路(230)的一端与所述泄压孔相连,所述第三泄压管路(230)的另一端与所述第三制动管路(130)位于所述第一止回阀(4)和所述解耦阀(1)之间的管段相连。
  9. 根据权利要求7或8所述的制动系统,其特征在于,所述制动系统还包括踏板感觉模拟器(60)、第四制动管路(140)、启动阀(2)以及限压阀(5);
    所述踏板感觉模拟器(60)通过所述第四制动管路(140)与所述第三液压腔(53)相连,以提供与所述制动踏板(3)的脚踏压力相对应的反作用力,所述启动阀(2)设置于所述第四制动管路(140)上,以控制所述第四制动管路(140)的通断;
    所述限压阀(5)与所述启动阀(2)并联设置,所述限压阀(5)被配置为,当所述第三液压腔(53)内的压力大于或者等于设定值时,所述限压阀(5)被打开。
  10. 根据权利要求7-9中任一项所述的制动系统,其特征在于,所述制动系统还包括第二增压装置(70)、第一截止阀(8)、第二截止阀(9);
    所述第二增压装置(70)与所述第一制动管路(110)相连,用于通过调节所述第一制动管路(110)内制动液的压力,以控制施加在所述第一组车轮(310)的制动力;所述第二增压装置(70)还与所述第二制动管路(120)相连,用于通过调节所述第二制动管路(120)内制动液的压力,以控制施加在所述第二组车轮(320)的制动力;
    所述第一截止阀(8)设置于所述第一制动管路(110)上,并且位于所述第二增压装置(70)和所述第一增压装置(40)之间,以控制所述第一制动管路(110)的通断;
    所述第二截止阀(9)设置于所述第二制动管路(120)上,并且位于所述第二增压装置(70)和所述第一增压装置(40)之间,以控制所述第二制动管路(120)的通断。
  11. 根据权利要求10所述的制动系统,其特征在于,所述制动系统还包括第一泄压管路(210)、第二泄压管路(220)、第一泄压阀(6)、第二泄压阀(7)、储液装置(80);
    所述第一泄压管路(210)连通所述储液装置(80)与所述第一制动管路(110),用 于将制动液输送至所述储液装置(80),为所述第一组车轮(310)减压,所述第一泄压阀(6)设置于所述第一泄压管路(210)上,以控制制动液的流动;
    所述第二泄压管路(220)连通所述储液装置(80)与所述第二制动管路(120),用于将制动液输送至所述储液装置(80),为所述第二组车轮(320)减压,所述第二泄压阀(7)设置于所述第二泄压管路(220)上,以控制制动液的流动。
  12. 根据权利要求7-11中任一项所述的制动系统,其特征在于,所述制动系统还包括第二止回阀(10)和第三止回阀(11);
    所述第二止回阀(10)与所述解耦阀(1)并联设置,所述第二止回阀(10)被配置为允许制动液从所述第一制动管路(110)向所述第三液压腔(53)的方向流动的同时阻止制动液在相反的方向上流动;
    所述第三止回阀(11)与所述启动阀(2)并联设置,所述第三止回阀(11)被配置为允许制动液从所述踏板感觉模拟器(60)向所述第三液压腔(53)的方向流动的同时阻止制动液在相反的方向上流动。
  13. 一种汽车,其特征在于,包括车轮和如权利要求7-12中任一项所述的制动系统,所述制动系统用于为所述车轮提供制动力。
  14. 一种汽车中制动系统的控制方法,其特征在于,所述制动系统包括第一增压装置(40)、制动主缸(50)、第一制动管路(110)、第二制动管路(120)、第三制动管路(130)、解耦阀(1)、制动踏板(3)、制动轮缸(15)以及控制器;
    所述第一增压装置(40)包括相互串联的第一液压腔(41)和第二液压腔(42),所述第一液压腔(41)与所述第一制动管路(110)相连,所述第一制动管路(110)与所述汽车的第一组车轮(310)的所述制动轮缸(15)相连;所述第二液压腔(42)与所述第二制动管路(120)相连,所述第二制动管路(120)与所述汽车的第二组车轮(320)的所述制动轮缸(15)相连;
    所述制动主缸(50)与所述制动踏板(3)传动连接,所述制动主缸(50)包括第三液压腔(53),所述第三液压腔(53)通过所述第三制动管路(130)与所述第一制动管路(110)相连;所述制动主缸(50)用于通过所述第三液压腔(53)、所述第三制动管路(130)调节所述第一制动管路(110)内制动液的压力;所述制动主缸(50)还用于通过所述第三液压腔(53)、所述第三制动管路(130)、所述第一制动管路(110)、所述第一液压腔(41)、所述第二液压腔(42)调节所述第二制动管路(120)内制动液的压力;
    所述解耦阀(1)设置于所述第三制动管路(130)上,以控制所述第三制动管路(130)的通断;
    所述方法包括:
    所述控制器确定所述制动系统需要进行制动解耦;
    所述控制器控制所述解耦阀(1)关闭,以实现所述制动解耦。
  15. 根据权利要求14所述的控制方法,其特征在于,所述解耦阀(1)被配置为常开型电磁阀,所述常开型电磁阀平时打开,在接收到关闭信号时启动而关闭阀;
    所述制动系统还包括第一止回阀(4),所述第一止回阀(4)设置于所述第三制动管路(130)上,并且位于所述解耦阀(1)和所述第一制动管路(110)之间,所述第一止 回阀(4)被配置为允许制动液从所述第三制动管路(130)向所述第一制动管路(110)的方向流动的同时阻止制动液在相反的方向上流动;
    所述第一增压装置(40)包括第一活塞(43)、第二活塞(44),所述第一活塞(43)和所述第二活塞(44)之间形成所述第一液压腔(41),所述第一增压装置(40)上开设有泄压孔,所述第一活塞(43)被配置为,当所述第一活塞(43)位于初始位置时,所述泄压孔被打开,当所述第一活塞(43)离开所述初始位置时,所述泄压孔被封闭;
    所述制动系统还包括第三泄压管路(230),所述第三泄压管路(230)的一端与所述泄压孔相连,所述第三泄压管路(230)的另一端与所述第三制动管路(130)位于所述第一止回阀(4)和所述解耦阀(1)之间的管段相连;
    所述方法还包括:
    所述控制器确定所述第一液压腔(41)的压力大于所述第三液压腔(53)的压力,并且所述泄压孔被封闭;
    所述控制器控制解耦阀(1)处于打开状态。
  16. 根据权利要求14或15所述的控制方法,其特征在于,所述制动系统还包括踏板感觉模拟器(60)、第四制动管路(140)、启动阀(2)以及限压阀(5);
    所述踏板感觉模拟器(60)通过所述第四制动管路(140)与所述第三液压腔(53)相连,以提供与所述制动踏板(3)的脚踏压力相对应的反作用力,所述启动阀(2)设置于所述第四制动管路(140)上,以控制所述第四制动管路(140)的通断;
    所述限压阀(5)与所述启动阀(2)并联设置,所述限压阀(5)被配置为,当所述第三液压腔(53)内的压力大于或者等于设定值时,所述限压阀(5)被打开;
    所述方法还包括:
    所述控制器确定所述启动阀(2)出现故障;
    所述控制器控制所述解耦阀(1)处于打开状态。
  17. 根据权利要求14-16中任一项所述的控制方法,其特征在于,所述制动系统还包括第二增压装置(70)、第一截止阀(8)、第二截止阀(9);
    所述第二增压装置(70)与所述第一制动管路(110)相连,用于通过调节所述第一制动管路(110)内制动液的压力,以控制施加在所述第一组车轮(310)的制动力;所述第二增压装置(70)还与所述第二制动管路(120)相连,用于通过调节所述第二制动管路(120)内制动液的压力,以控制施加在所述第二组车轮(320)的制动力;
    所述第一截止阀(8)设置于所述第一制动管路(110)上,并且位于所述第二增压装置(70)和所述第一增压装置(40)之间,以控制所述第一制动管路(110)的通断;
    所述第二截止阀(9)设置于所述第二制动管路(120)上,并且位于所述第二增压装置(70)和所述第一增压装置(40)之间,以控制所述第二制动管路(120)的通断;
    所述方法还包括:
    所述控制器确定所述第一增压装置(40)出现故障;
    所述控制器控制所述第一截止阀(8)和所述第二截止阀(9)关闭,并且控制所述第二增压装置(70)工作。
PCT/CN2021/074810 2020-04-29 2021-02-02 汽车中制动系统的液压调节单元、制动系统及控制方法 WO2021218264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010352926.2 2020-04-29
CN202010352926.2A CN113561954B (zh) 2020-04-29 2020-04-29 汽车中制动系统的液压调节单元、制动系统及控制方法

Publications (1)

Publication Number Publication Date
WO2021218264A1 true WO2021218264A1 (zh) 2021-11-04

Family

ID=78158352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074810 WO2021218264A1 (zh) 2020-04-29 2021-02-02 汽车中制动系统的液压调节单元、制动系统及控制方法

Country Status (2)

Country Link
CN (1) CN113561954B (zh)
WO (1) WO2021218264A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070635A1 (zh) * 2021-10-31 2023-05-04 华为技术有限公司 一种制动系统、车辆及制动系统的控制方法
CN114620017A (zh) * 2022-03-14 2022-06-14 菲格智能科技有限公司 车辆及其制动系统的控制方法与装置、控制器、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284007A (ja) * 2006-04-20 2007-11-01 Hitachi Ltd ブレーキ制御装置
KR20120045597A (ko) * 2010-10-29 2012-05-09 현대모비스 주식회사 전동부스터 방식 제동장치
CN103552557A (zh) * 2013-11-18 2014-02-05 扬州泰博汽车电子智能科技有限公司 具有电动制动助力和线控制动功能的电液复合制动系统
CN104709263A (zh) * 2015-03-27 2015-06-17 吉林大学 具有人力放大作用的线控及助力复合功能的制动系统
CN109177945A (zh) * 2018-11-02 2019-01-11 吉林大学 一种完全解耦的电子液压制动系统
CN208897044U (zh) * 2018-11-02 2019-05-24 吉林大学 一种完全解耦的电子液压制动系统
CN110799392A (zh) * 2017-06-20 2020-02-14 爱皮加特股份公司 制动系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123972B2 (ja) * 2010-04-05 2013-01-23 本田技研工業株式会社 車両用ブレーキ装置および車両用ブレーキ装置の制御方法
CN105189219B (zh) * 2013-05-08 2017-09-12 丰田自动车株式会社 车辆的制动装置
KR101566705B1 (ko) * 2013-05-29 2015-11-06 현대모비스 주식회사 전자식 유압 브레이크 장치
CN204605776U (zh) * 2015-03-27 2015-09-02 吉林大学 具有人力放大作用的线控及助力复合功能的制动系统
CN107985292B (zh) * 2017-12-29 2023-10-20 吉林大学 制动踏板与助力机构完全分离式电动助力制动系统
CN109927698A (zh) * 2018-01-18 2019-06-25 万向钱潮股份有限公司 一种线控电液制动系统及制动方法
KR102492486B1 (ko) * 2018-07-11 2023-01-27 현대모비스 주식회사 차량의 제동 장치
CN109177944B (zh) * 2018-11-02 2022-02-22 吉林大学 一种液压耦合的电子液压制动系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284007A (ja) * 2006-04-20 2007-11-01 Hitachi Ltd ブレーキ制御装置
KR20120045597A (ko) * 2010-10-29 2012-05-09 현대모비스 주식회사 전동부스터 방식 제동장치
CN103552557A (zh) * 2013-11-18 2014-02-05 扬州泰博汽车电子智能科技有限公司 具有电动制动助力和线控制动功能的电液复合制动系统
CN104709263A (zh) * 2015-03-27 2015-06-17 吉林大学 具有人力放大作用的线控及助力复合功能的制动系统
CN110799392A (zh) * 2017-06-20 2020-02-14 爱皮加特股份公司 制动系统
CN109177945A (zh) * 2018-11-02 2019-01-11 吉林大学 一种完全解耦的电子液压制动系统
CN208897044U (zh) * 2018-11-02 2019-05-24 吉林大学 一种完全解耦的电子液压制动系统

Also Published As

Publication number Publication date
CN113561954A (zh) 2021-10-29
CN113561954B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
CN110944889B (zh) 制动系统
CN106891878B (zh) 一种改进主缸的电机驱动电子液压制动系统
RU2448006C2 (ru) Устройство и способ для управления поведением транспортного средства
CN108501921B (zh) 一种具有双压力源的液压线控制动系统及其制动控制方法
CN103253146B (zh) 集成踏板位移测量的踏板解耦式电液复合制动系统
CN102556031B (zh) 车辆用制动装置
WO2021218264A1 (zh) 汽车中制动系统的液压调节单元、制动系统及控制方法
US20110024242A1 (en) Electro-hydraulic brake system
CN105799679A (zh) 油压助力制动系统及其控制方法
CN102398582B (zh) 用于车辆的制动系统
WO2021063159A1 (zh) 汽车的制动系统、汽车及制动系统的控制方法
WO2021248396A1 (zh) 踏板感觉模拟系统、液压调节单元及控制方法
CN113147704B (zh) 一种车辆线控制动系统及其制动方法
CN113525317A (zh) 一种适用于自动驾驶的制动系统及控制方法
CN109572659A (zh) 电制动系统及其控制方法
US20130127236A1 (en) Vehicle brake device and method of controlling the same
CN110712635A (zh) 用于车辆的制动设备
WO2021098345A1 (zh) 汽车制动系统中的液压调节单元、汽车及控制方法
CN109159776A (zh) 一种基于双动力源的车辆轮缸液压力控制系统及方法
CN211107378U (zh) 一种新能源车用混合制动备份系统
CN111873969B (zh) 一种具有独立双回路的电子液压线控制动系统
WO2021226889A1 (zh) 液压调节装置、液压调节系统、制动系统及控制方法
WO2022021106A1 (zh) 液压调节单元、制动系统、车辆及控制方法
CN212861417U (zh) 一种用于车辆的液压制动系统
CN208978834U (zh) 一种基于双动力源的车辆轮缸液压力控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795489

Country of ref document: EP

Kind code of ref document: A1