WO2021217826A1 - 二杨梅素基二硒醚的药物应用 - Google Patents

二杨梅素基二硒醚的药物应用 Download PDF

Info

Publication number
WO2021217826A1
WO2021217826A1 PCT/CN2020/096837 CN2020096837W WO2021217826A1 WO 2021217826 A1 WO2021217826 A1 WO 2021217826A1 CN 2020096837 W CN2020096837 W CN 2020096837W WO 2021217826 A1 WO2021217826 A1 WO 2021217826A1
Authority
WO
WIPO (PCT)
Prior art keywords
diselenide
dimyricetin
cells
value
present
Prior art date
Application number
PCT/CN2020/096837
Other languages
English (en)
French (fr)
Inventor
宋昆元
陈伟伟
Original Assignee
上海爱启医药技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海爱启医药技术有限公司 filed Critical 上海爱启医药技术有限公司
Priority to US17/297,913 priority Critical patent/US20220071947A1/en
Publication of WO2021217826A1 publication Critical patent/WO2021217826A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention belongs to the technical field of medicine, and specifically relates to a medical application of dimyricetin-based diselenide.
  • Selenium is an essential trace element for the human body. It has various biological activities such as anti-oxidation, anti-cancer, anti-cancer, protection of bone marrow hematopoiesis, and anti-aging. It also has detoxification effects on some heavy metal elements (such as mercury, arsenic, silver, etc.).
  • Diselenide has an important antioxidant effect, and has the activity of simulating glutathione peroxidase (GSH-PX). Some diselenide also has anti-tumor, antibacterial, bactericidal, and disinfectant activities.
  • the present invention is based on the research of diselenide, and aims to provide a pharmaceutical application of diselenide based on diselenide with tumor treatment and antiviral effects.
  • the present invention provides an application of dimyricetin-based diselenide represented by molecular structural formula (1) in the treatment of tumors and anti-new coronavirus (2019-nCoV)
  • the tumor includes liver cancer, lung cancer, primary colorectal cancer, cervical squamous cell carcinoma, gastric cancer, prostate cancer, and lung adenocarcinoma.
  • Figure 1 is a calculation diagram of the IC50 value of dimyricetin-based diselenide on human gastric cancer cells in an experimental example of the present invention
  • Figure 2 is a calculation diagram of the IC50 value of dimyricetin-based diselenide on human liver cancer cells in an embodiment of the present invention
  • Figure 3 is a calculation diagram of the IC50 value of bismyricetin-based diselenide on primary colorectal cancer cells in an embodiment of the present invention
  • Figure 4 is a calculation diagram of the IC50 value of dimyricetin-based diselenide on human cervical squamous carcinoma cells in an embodiment of the present invention
  • Figure 5 is a calculation diagram of the IC50 value of dimyricetin-based diselenide on human lung cancer cells in an embodiment of the present invention
  • Figure 6 is a calculation diagram of the IC50 value of dimyricetin-based diselenide on human prostate cancer cells in an embodiment of the present invention.
  • Figure 7 is a calculation diagram of the IC50 value of dimyricetin-based diselenide on human lung adenocarcinoma cells in an embodiment of the present invention.
  • Figure 8 is a calculation diagram of the IC50 value of cisplatin on human gastric cancer cells in an experimental example of the present invention.
  • Figure 9 is a calculation diagram of the IC50 value of cisplatin on human liver cancer cells in an embodiment of the present invention.
  • Figure 10 is a calculation diagram of the IC50 value of cisplatin against primary colorectal cancer cells in an embodiment of the present invention.
  • Figure 11 is a calculation diagram of the IC50 value of cisplatin against human cervical squamous cell carcinoma cells in an embodiment of the present invention.
  • Figure 12 is a calculation diagram of the IC50 value of cisplatin on human lung cancer cells in an embodiment of the present invention.
  • Figure 13 is a calculation diagram of the IC50 value of cisplatin on human prostate cancer cells in an embodiment of the present invention.
  • Figure 14 is a calculation diagram of the IC50 value of cisplatin on human lung adenocarcinoma cells in an embodiment of the present invention.
  • Fig. 15 is a calculation diagram of the IC50 value of dimyricetin-based diselenide against the new coronavirus (2019-nCoV) in the embodiment of the present invention.
  • the dimyricetin-based diselenide involved in the present invention has the effects of treating tumors and anti-new coronaviruses.
  • human tumor cells namely human liver cancer cells, human lung cancer cells (large cell lung cancer), primary colorectal cancer cells, human cervical squamous cancer cells, human gastric cancer cells, human prostate cancer cells, and human lung glands Cancer cells (pleural effusion) have a significant inhibitory effect.
  • the IC50 value of M pro the target of the new coronavirus (2019-nCoV), is 0.807 ⁇ 0.0830 ⁇ M, which has a significant effect.
  • Dimyricetin-based diselenide molecular formula: C 30 H 18 O 16 Se 2 , molecular weight: 792.37, properties: yellow powder, Chinese name: dimyricetin-based diselenide, English name: Dimyricetin-yl-diselenide, Chinese chemistry Name: 8,8'-diselenide (3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-1-benzofuran-4-one), English Chemical name: 8,8'-diselanediylbis(3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-1-benzopyran-4-one), CAS accession number: N/A, molecule The structure is as follows:
  • Dimyricetin-based diselenide has the effect of treating tumors and anti-new coronavirus (2019-nCoV).
  • This example is a study on the efficacy of dimyricetin-based diselenide products in the in vitro screening of anti-tumor drugs.
  • the experimental cells used are shown in Table 3.
  • Dimyricetin-based diselenide drug concentration gradient design 0 (ie vehicle control group), 1 ⁇ g/ml, 5 ⁇ g/ml, 25 ⁇ g/ml, 50 ⁇ g/ml, 75 ⁇ g/ml, 100 ⁇ g/ml, 125 ⁇ g/ml, 150 ⁇ g/ ml, 200 ⁇ g/ml.
  • Step 1 Cell culture.
  • Step 1-1 observe the cell status under a microscope, the cells are free from contamination, and the cell confluence is about 90%;
  • Step 1-2 discard the supernatant, add 5mL PBS to each dish and wash, add 3mL trypsin, digest for 3min; or change Solution 5mL.
  • Step 1-3 gently blow the cells, collect the cells in the centrifuge tube, centrifuge at 1000 rpm for 5 min;
  • Step 1-4 discard the supernatant, resuspend part of the cells in fresh medium, transfer to a new cell culture dish for expansion, passage ratio 3 :8.
  • Steps 1-5 according to the experimental plan, continue to pass down and further expand the culture, the confluence is about 90%.
  • Step 2 Drug preparation. Weigh 30.28 mg of dimyricetin-based diselenide and dissolve it with DMSO. When adding DMSO, add it from 100ul. If it is not completely dissolved, add 100ul again until it is completely dissolved to obtain the mother liquor, which is diluted to the working concentration. Weigh 50mg of cisplatin and dissolve it with DMF. When adding DMF, start adding it from 100ul. If it is not completely dissolved, add 100ul again until it is completely dissolved to obtain the mother liquor, which is diluted to the working concentration. The working concentration is the concentration of multiple drugs designed in advance. As the method of drug sterilization, filtration sterilization is generally the first choice. Alternative sterilization methods include autoclaving and ultraviolet irradiation.
  • Step 3 Adding medicine and testing for CCK-8 plating.
  • Step 3-1 cell seeding plate: trypsinize the logarithmic growth phase cells to prepare a cell suspension, inoculate 3000-5000 cells per well in a 96-well plate, add 100 ⁇ l per well, and place it in CO 2 (5 %) Incubate overnight at 37°C in an incubator to adhere to the wall, and fill the edge holes with sterile PBS.
  • Step 3-2 the different concentrations (vehicle control group, 1ug/ml, 5ug/ml, 25ug/ml, 50ug/ml, 75ug/ml, 100ug/ml, 125ug/ml, 150ug/ml, 200ug/ml) Dimyricetin-based diselenide was added to a 96-well plate, and each sample concentration was set to 3 replicates; different concentrations (vehicle control group, 1uM, 5uM, 10uM, 20uM, 40uM, 60uM, 80uM, 100uM, 135uM) of cisplatin Add a 96-well plate and set 3 replicates for each sample concentration.
  • Step 3-3 CCK-8 reaction: add 10 ⁇ l of CCK-8 solution to all wells, tap the culture plate gently to mix, and incubate in the incubator for 2 hours.
  • Step 3-4 measure the absorbance value: use a microplate reader to measure the 450nm absorbance value, and calculate the inhibitory rate of the drug on the cells according to the formula. Calculated as follows:
  • Proliferation rate (experimental group-blank control) / (negative control-blank control) ⁇ 100%
  • Inhibition rate 1-(experimental group-blank control) / (negative control-blank control) ⁇ 100%
  • Step 4 Data analysis. Drawing with Graghpad-prism5.0, as shown in Figure 1 to Figure 14. Calculate the IC50 values corresponding to the time points of the 7 kinds of cells dimyricetin-based diselenide and the positive drug cisplatin.
  • the IC50 values of all cells of dimyricetin-based diselenide are within the set drug concentration range, and the IC50 values obtained are more reliable. Except for calu-3 cells, the IC50 values of cisplatin cells are within the set drug concentration range, and the IC50 values obtained are more reliable. The IC50 value of cisplatin calu-3 cells exceeds the set drug concentration range, and the IC50 value obtained cannot be trusted.
  • dimyricetin-based diselenide has effects on human liver cancer cells, human lung cancer cells (large cell lung cancer), primary colorectal cancer cells, human cervical squamous cells, human gastric cancer cells, and human prostate cancer cells. Cancer cells and human lung adenocarcinoma cells (pleural effusion) have obvious inhibitory effects.
  • This example is the detection of the protease activity inhibition of the M pro protease of the targeted 2019-nCoV virus.
  • 3-chymotrypsin-like protease 3-chymotrypsin-like protease
  • M pro the main protease
  • ORF1 located in nsp5
  • ORF1 located in the central region of the replicase gene
  • the mechanism of action is: after the new coronavirus invades the cell, it will use the host cell to synthesize two ultra-long replicase polypeptides (pp1a and pp1ab) necessary for self-replication.
  • the replicase polypeptide needs to be further cut into multiple proteins (such as RdRp, helicase, etc.), and then assembled into the replication and transcription machinery required for the virus to initiate the replication of its own genetic material.
  • M pro has at least 11 cleavage sites on the replicase polypeptide. Only when these sites on the replicase polypeptide are normally cut, they are assembled into a replication transcription machine to initiate virus replication. Given that the M pro protease is very important in the virus replication process, and there is no similar protein in the human body, the main protease M pro has become a potential key drug target against the new coronavirus.
  • the fluorescence resonance energy transfer method was used to evaluate the inhibitory activity of dimyricetin-based diselenide on 2019-nCoV-M pro protease.
  • the volume of the entire enzymatic reaction system is 120 ⁇ L, the final concentration of protease is 30nM, and the final concentration of substrate is 20 ⁇ M.
  • the buffer of the reaction system includes 50mM Tris pH7.3, 1mM EDTA.
  • Add 2019-nCoV-M pro protease and different concentrations of dimyricetin-based diselenide to a 96-well plate, incubate at 30°C for 10 minutes, add the substrate and quickly place it in the microplate reader for reading.
  • the excitation light and emission light are 340nm and 405nm, respectively.
  • the test time is 10min, and the fluorescence value is read every 30s.
  • the final result takes the reading of the first 2 minutes to fit the reaction rate, and compares it with the control group (DMSO) to calculate the inhibition rate.
  • DMSO control group
  • IC50( ⁇ g/ml) Dimyricetin-based diselenide 0.639 ⁇ 0.0657 ⁇ g/ml 0.807 ⁇ 0.0830 ⁇ M
  • the pharmaceutical application of the dimyricetin-based diselenide involved in the present invention is not limited to the scope of the specific embodiments.
  • the above content is only a basic description of the present invention, and any equivalent changes made according to the technical solution of the present invention should belong to the protection scope of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

一种二杨梅素基二硒醚的药物应用,二杨梅素基二硒醚有治疗肿瘤、抗新型冠状病毒的效果,对7种不同人源肿瘤细胞有明显的抑制作用,其针对新型冠状病毒(2019-nCoV)的靶点M pro的IC50值为0.807±0.0830μM,具有显著效果。

Description

二杨梅素基二硒醚的药物应用 技术领域
本发明属于医药技术领域,具体涉及一种二杨梅素基二硒醚的药物应用。
背景技术
硒是人体必需的一种微量元素,具有抗氧化、抗癌、防癌、保护骨髓造血、延缓衰老等多种生物活性,同时对一些重金属元素(如汞、砷、银等)具有解毒作用。
二硒醚具有重要的抗氧化的作用,具有模拟谷胱甘肽过氧化酶(GSH-PX)的活性,有的二硒醚还具有抗肿瘤、抗菌、杀菌、消毒的活性。
发明内容
本发明基于对二硒醚的研究,目的是提供一种具有治疗肿瘤、抗病毒效果的二杨梅素基二硒醚的药物应用。
本发明提供了一种分子结构式(1)所示的二杨梅素基二硒醚在治疗肿瘤、抗新型冠状病毒(2019-nCoV)方面的应用
Figure PCTCN2020096837-appb-000001
进一步,在本发明提供的应用中,还可以具有这样的特征:所述肿瘤包括肝癌、肺癌、原发性结直肠癌、子宫颈鳞癌、胃癌、前列腺癌、肺腺癌。
附图说明
图1是本发明的实验例中二杨梅素基二硒醚对人胃癌细胞的IC50值的计算图;
图2是本发明的实施例中二杨梅素基二硒醚对人肝癌细胞的IC50值的计算图;
图3是本发明的实施例中二杨梅素基二硒醚对原发性结直肠癌细胞的IC50值的计算图;
图4是本发明的实施例中二杨梅素基二硒醚对人子宫颈鳞癌细胞的IC50值的计算图;
图5是本发明的实施例中二杨梅素基二硒醚对人肺癌细胞的IC50值的计算图;
图6是本发明的实施例中二杨梅素基二硒醚对人前列腺癌细胞的IC50值的计算图;
图7是本发明的实施例中二杨梅素基二硒醚对人肺腺癌细胞的IC50值的计算图;
图8是本发明的实验例中顺铂对人胃癌细胞的IC50值的计算图;
图9是本发明的实施例中顺铂对人肝癌细胞的IC50值的计算图;
图10是本发明的实施例中顺铂对原发性结直肠癌细胞的IC50值的计算图;
图11是本发明的实施例中顺铂对人子宫颈鳞癌细胞的IC50值的计算图;
图12是本发明的实施例中顺铂对人肺癌细胞的IC50值的计算图;
图13是本发明的实施例中顺铂对人前列腺癌细胞的IC50值的计算图;
图14是本发明的实施例中顺铂对人肺腺癌细胞的IC50值的计算图;
图15时本发明的实施例中二杨梅素基二硒醚对新型冠状病毒(2019-nCoV)的IC50值的计算图。
本发明提供了如下优点:
本发明所涉及的二杨梅素基二硒醚有治疗肿瘤、抗新型冠状病毒的效果。对7种不同人源肿瘤细胞,即人肝癌细胞、人肺癌细胞(大细胞肺癌)、原发性结直肠癌细胞、人子宫颈鳞癌细胞、人胃癌细胞、人前列腺癌细胞、人肺腺癌细胞(胸水)有明显的抑制作用,其针对新型冠状病毒(2019-nCoV)的靶点M pro的IC50值为0.807±0.0830 μM,具有显著效果。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,以下结合实施例对本发明的二杨梅素基二硒醚的药物应用作具体阐述。
二杨梅素基二硒醚,分子式:C 30H 18O 16Se 2,分子量:792.37,性状:黄色粉末,中文名:二杨梅素基二硒醚,英文名:Dimyricetin-yl-diselenide,中文化学名:8,8’-二硒二联(3,5,7-三羟基-2-(3,4,5-三羟基苯基)-4H-1-苯并呋喃-4-酮),英文化学名:8,8'-diselanediylbis(3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-1-benzopyran-4-one),CAS登录号:N/A,分子结构如下:
Figure PCTCN2020096837-appb-000002
二杨梅素基二硒醚具有治疗肿瘤、抗新型冠状病毒(2019-nCoV)的效果。
<实验实施例一>
本实施例为二杨梅素基二硒醚产物在抗肿瘤药物体外筛选药效 研究。
所需实验器材如表1所示。
表1.实验器材
Figure PCTCN2020096837-appb-000003
所需试剂如表2所示。
表2.主要试剂
Figure PCTCN2020096837-appb-000004
所用实验细胞如表3所示。
表3.实验细胞
Figure PCTCN2020096837-appb-000005
实验方法
体外水平筛选二杨梅素基二硒醚对于7种不同人源肿瘤细胞(HEP3B2.1.7、NCI-H460、CALU-3、SW480、SIHA、PC-3、MGC80-3)的药效。采用CCK-8检测方法,设计10个药物浓度,每个浓度3个复孔,24h、48h、72h根据动态镜检选去1个检测时间点,阳性药为顺铂。顺铂浓度梯度设计:0(即溶媒对照组),1μM,5μM,10μM,20μM,40μM,60μM,80μM,100μM,135μM。二杨梅素基二硒醚药物浓度梯度设计:0(即溶媒对照组),1μg/ml,5μg/ml,25μg/ml,50μg/ml,75μg/ml,100μg/ml,125μg/ml,150μg/ml,200μg/ml。
具体步骤如下:
步骤1,细胞培养。步骤1-1,显微镜下观察细胞状态,细胞无污染,细胞汇合度约90%左右;步骤1-2,弃上清,每皿加入5mL PBS洗一遍,加3mL胰酶,消化3min;或换液5mL。步骤1-3,轻轻吹打细胞,离心管收集细胞,离心1000rpm,5min;步骤1-4,弃上清,部分细胞新鲜培养基重悬,传至新的细胞培养皿扩大培养,传代比例3:8。步骤1-5,根据实验计划继续传代并进一步扩大培养,汇合度约90%左右。
步骤2,药物配制。称取30.28mg二杨梅素基二硒醚,用DMSO溶解,加入DMSO时从100ul开始加,如果没有完全溶解,再次加100ul,直至完全溶解,得母液,在稀释至工作浓度。称取50mg顺铂,用DMF溶解,加入DMF时从100ul开始加,如果没有完全溶解,再次加100ul,直至完全溶解,得母液,在稀释至工作浓度。工作浓度即预先设计的多个药物浓度。药物除菌方式,一般首选过滤除菌,备选除菌方式有高压灭菌及紫外照射。
步骤3,CCK-8铺板加药及检测。步骤3-1,细胞种板:将对数生长期细胞用胰蛋白酶消化,配制成细胞悬液,按3000-5000细胞每孔接种于96孔板,每孔加100μl,置于CO 2(5%)培养箱中37℃下培养过夜贴壁,边缘孔用无菌PBS填充。步骤3-2,将不同浓度(溶媒对照组、1ug/ml、5ug/ml、25ug/ml、50ug/ml、75ug/ml、100ug/ml、125ug/ml、150ug/ml、200ug/ml)的二杨梅素基二硒醚加入96孔板,每个样本浓度设3个重复;将不同浓度(溶媒对照组、1uM、5uM、10uM、20uM、40uM、60uM、80uM、100uM、135uM)的顺铂加入96孔板,每个样 本浓度设3个重复。步骤3-3,CCK-8反应:所有孔中分别加入10μl CCK-8溶液,轻轻敲击培养板混匀,培养箱中孵育2小时。步骤3-4,测吸光度值:使用酶标仪测定450nm光吸收值,按公式计算药物对细胞的抑制率。计算公式如下:
实验组:实验组细胞和CCK-8溶液的吸光度值
阴性对照:对照细胞和CCK-8溶液的吸光度值
空白对照:培养基和CCK-8溶液的吸光度值
增殖率=(实验组-空白对照)/(阴性对照-空白对照)×100%
抑制率=1-(实验组-空白对照)/(阴性对照-空白对照)×100%
步骤4,数据分析。以Graghpad-prism5.0作图,如图1-图14。计算7种细胞二杨梅素基二硒醚及阳性药顺铂对应时间点IC50值。
实验结果如表4所示。
表4. 7种细胞二杨梅素基二硒醚及阳性药顺铂对应时间点IC50值
Figure PCTCN2020096837-appb-000006
本次试验中:二杨梅素基二硒醚所有细胞的IC50值均在设定的药物浓度范围内,得出的IC50值较为可信。顺铂除calu-3细胞外,其余细胞的IC50值在设定的药物浓度范围内,得出的IC50值较为可信。顺铂的calu-3细胞的IC50值超出设定的药物浓度范围内,得出 的IC50值不可可信。
从表4中可以看出,二杨梅素基二硒醚对人肝癌细胞、人肺癌细胞(大细胞肺癌)、原发性结直肠癌细胞、人子宫颈鳞癌细胞、人胃癌细胞、人前列腺癌细胞、人肺腺癌细胞(胸水)有明显的抑制作用。
<实验实施例二>
本实施例为靶向2019-nCoV病毒M pro蛋白酶活性抑制检测。
检测原理:3-胰凝乳蛋白酶样蛋白酶(3-chymotrypsin-like protease),即主要蛋白酶(M pro,也称为3CLpro),由ORF1编码(定位于nsp5),位于复制酶基因中心区域,是新型冠状病毒RNA复制时的一个关键蛋白质。其作用机制为:新冠病毒入侵细胞后,会利用宿主细胞合成自身复制必需的两条超长复制酶多肽(pp1a和pp1ab)。复制酶多肽需进一步被剪切成多个蛋白(如RdRp、helicase等),进一步组装成用于病毒启动自身遗传物质复制所需的复制转录机器。M pro在复制酶多肽上存在至少11个切割位点,只有当复制酶多肽上这些位点被正常切割后,组装成复制转录机器,启动病毒复制。鉴于M pro蛋白酶在病毒复制过程中至关重要,且人体中并无类似的蛋白质,因此主蛋白酶M pro成为一个抗新冠病毒的潜在关键药靶。
利用荧光共振能量转移方法评价二杨梅素基二硒醚对2019-nCoV-M pro蛋白酶的抑制活性。
具体检测方法:整个酶促反应体系的体积为120μL,蛋白酶的终浓度为30nM,底物终浓度为20μM。反应体系的缓冲液包括50mM  Tris pH7.3、1mM EDTA。在96孔板中加入2019-nCoV-M pro蛋白酶和不同浓度的二杨梅素基二硒醚,30℃孵育10min,加入底物并迅速放入酶标仪中读数。激发光和发射光分别为340nm和405nm。测试时间为10min,每隔30s读一次荧光值。最终结果取前2min的读值拟合反应速率,并与对照组(DMSO)比较,计算抑制率。以Graghpad-prism5.0作图,如图15,计算2019-nCoV病毒二杨梅素基二硒醚对应时间点IC50值。
检测结果如表5所示:
表5. 2019-nCoV病毒二杨梅素基二硒醚的IC50值
  IC50(μg/ml) IC50(μM)
二杨梅素基二硒醚 0.639±0.0657μg/ml 0.807±0.0830μM
从表5中可以看出二杨梅素基二硒醚针对新型冠状病毒(2019-nCoV)的靶点M pro的IC50值为0.807±0.0830μM,具有显著效果。
本发明所涉及的二杨梅素基二硒醚的药物应用并不限于具体实施例的范围。以上内容仅为本发明的基本说明,而依据本发明的技术方案所作的任何等效变换,均应属于本发明的保护范围。

Claims (2)

  1. 一种分子结构式(1)所示的二杨梅素基二硒醚在治疗肿瘤、抗新型冠状病毒(2019-nCoV)方面的应用
    Figure PCTCN2020096837-appb-100001
  2. 根据权利要求1所述的应用,其特征在于:所述肿瘤包括肝癌、肺癌、原发性结直肠癌、子宫颈鳞癌、胃癌、前列腺癌、肺腺癌。
PCT/CN2020/096837 2020-04-30 2020-06-18 二杨梅素基二硒醚的药物应用 WO2021217826A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/297,913 US20220071947A1 (en) 2020-04-30 2020-06-18 Pharmaceutical application of dimyricetin-based diselenide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010362352.7A CN111450088B (zh) 2020-04-30 2020-04-30 二杨梅素基二硒醚的药物应用
CN202010362352.7 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021217826A1 true WO2021217826A1 (zh) 2021-11-04

Family

ID=71670580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096837 WO2021217826A1 (zh) 2020-04-30 2020-06-18 二杨梅素基二硒醚的药物应用

Country Status (3)

Country Link
US (1) US20220071947A1 (zh)
CN (1) CN111450088B (zh)
WO (1) WO2021217826A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL296152A (en) * 2020-03-23 2022-11-01 John M H Gregg Antiviral compounds and methods of their administration
CN112137991A (zh) * 2020-09-27 2020-12-29 山东大学 二硒类化合物作为冠状病毒3c样蛋白酶抑制剂的应用及抑制剂、药物
CN112546038A (zh) * 2020-11-19 2021-03-26 澳门科技大学 杨梅素在制备预防或治疗冠状病毒、流感病毒的药物中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102698275A (zh) * 2012-06-19 2012-10-03 中国人民解放军第二军医大学 一类杨梅素类似黄酮醇类化合物在制备抗肿瘤药物中的用途
CN109942532A (zh) * 2019-03-19 2019-06-28 上海大学 一种多核黄酮类配合物及其制备方法和用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140194500A1 (en) * 2013-01-08 2014-07-10 Kookmin University Industry Academic Cooperation Foundation Methods For Treating of SARS
CN103191121B (zh) * 2013-04-22 2015-09-23 鲁东大学 二(喹唑啉-4-基)二硒醚化合物在制备抗癌药物中的用途
CN108409621A (zh) * 2017-02-10 2018-08-17 上海爱启生态科技有限公司 一种治疗肝癌及相关肝脏疾病的二氢杨梅素硒化合物
CN109180625B (zh) * 2018-08-14 2020-05-08 温州医科大学 一种硒代黄酮类化合物的制备方法
CN111588715A (zh) * 2020-06-03 2020-08-28 上海爱启医药技术有限公司 杨梅素抑制新型冠状病毒的药物应用
CN112546038A (zh) * 2020-11-19 2021-03-26 澳门科技大学 杨梅素在制备预防或治疗冠状病毒、流感病毒的药物中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102698275A (zh) * 2012-06-19 2012-10-03 中国人民解放军第二军医大学 一类杨梅素类似黄酮醇类化合物在制备抗肿瘤药物中的用途
CN109942532A (zh) * 2019-03-19 2019-06-28 上海大学 一种多核黄酮类配合物及其制备方法和用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KEUM YOUNG-SAM, JEONG YONG-JOO: "Development of chemical inhibitors of the SARS coronavirus: Viral helicase as a potential target", BIOCHEMICAL PHARMACOLOGY, ELSEVIER, US, vol. 84, no. 10, 1 November 2012 (2012-11-01), US , pages 1351 - 1358, XP055863305, ISSN: 0006-2952, DOI: 10.1016/j.bcp.2012.08.012 *
LIU HONGBO, YE FEI, SUN QI, LIANG HAO, LI CHUNMEI, LU ROUJIAN, HUANG BAOYING, TAN WENJIE, LAI LUHUA: "Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro", BIORXIV, 11 April 2020 (2020-04-11), XP055804122, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.04.10.035824v1.full.pdf> [retrieved on 20210512], DOI: 10.1101/2020.04.10.035824 *
SHAABAN SAAD INT J, GAFFER HATEM E, ALSHAHD MOHANNAD, ELMORSY SAAD : " CYTOTOXIC SYMMETRICAL THIAZOLEDISELENIDES WITH INCREASED SELECTIVITY AGAINST MCF-7 BREAST CANCER CELLS", INTERNATIONAL JOURNAL OF RESEARCH AND DEVELOPMENT IN PHARMACY AND LIFE SCIENCES -JULY, vol. 4, 1 June 2015 (2015-06-01), pages 1654 - 1668, XP055863299, ISSN: 2393-932X *
陈翔等 (CHEN, XIANG ET AL.): "两种黄酮与硒配合物的合成及其结构分析 (Non-official translation: Synthesis and Structural Analysis of two Complexes of Flavonoids and Selenium)", 温州医学院学报 (JOURNAL OF WENZHOU MEDICAL COLLEGE), vol. 39, no. 1, 31 January 2009 (2009-01-31) *

Also Published As

Publication number Publication date
CN111450088A (zh) 2020-07-28
CN111450088B (zh) 2021-08-03
US20220071947A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2021217826A1 (zh) 二杨梅素基二硒醚的药物应用
Li et al. Anticancer activities of harmine by inducing a pro-death autophagy and apoptosis in human gastric cancer cells
Shang et al. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells
Rice et al. Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts
Zhang et al. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis
Zhang et al. Flavones and flavonols exert cytotoxic effects on a human oesophageal adenocarcinoma cell line (OE33) by causing G2/M arrest and inducing apoptosis
Lee et al. Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells
Siu et al. Proteomic and transcriptomic study on the action of a cytotoxic saponin (Polyphyllin D): induction of endoplasmic reticulum stress and mitochondria‐mediated apoptotic pathways
WO2021243756A1 (zh) 杨梅素抑制新型冠状病毒的药物应用
Lin et al. The ethanol extraction of prepared Psoralea corylifolia induces apoptosis and autophagy and alteres genes expression assayed by cDNA microarray in human prostate cancer PC‐3 cells
Guo et al. Effect of daidzein on cell growth, cell cycle, and telomerase activity of human cervical cancer in vitro
Yunlan et al. Antitumor activity of di-n-butyl-(2, 6-difluorobenzohydroxamato) tin (IV) against human gastric carcinoma SGC-7901 cells via G2/M cell cycle arrest and cell apoptosis
Li et al. Inhibition of neuroblastoma proliferation by PF-3758309, a small-molecule inhibitor that targets p21-activated kinase 4
Zhang et al. Perfluorooctanoic acid induces migration and invasion and inhibits apoptosis through the PI3K/AKT signaling pathway in human rhabdomyosarcoma cells
Asadzadeh et al. Identification of druggable hub genes and key pathways associated with cervical cancer by protein-protein interaction analysis: An in silico study
Zhou et al. The milk-derived fusion peptide, ACFP, suppresses the growth of primary human ovarian cancer cells by regulating apoptotic gene expression and signaling pathways
WO2021243757A1 (zh) 没食子酸的药物应用
Greco et al. Gene expression analysis in SV-40 immortalized human corneal epithelial cells cultured with an air-liquid interface
Jeong et al. N-benzyl-N-methyldecan-1-amine, a phenylamine derivative isolated from garlic cloves, induces G2/M phase arrest and apoptosis in U937 human leukemia cells
CN108998495B (zh) 一种抗乳腺癌药物的高通量筛选方法
Qian et al. Radiosensitizing effect of celastrol by inhibiting G2/M phase arrest induced by the c-myc gene of human SW1353 chondrosarcoma cells: Network and experimental analyses
Sun et al. To explore the inhibitory mechanism of quercetin in thyroid papillary carcinoma through network pharmacology and experiments
Tan et al. Antiproliferative and microtubule-stabilizing activities of two iboga-vobasine bisindoles alkaloids from tabernaemontana corymbosa in colorectal adenocarcinoma HT-29 cells
Malki et al. Quinuclidinone derivative 6 induced apoptosis in human breast cancer cells via sphingomyelinase and JNK signaling
Prajapati et al. Piper chaba, an Indian spice plant extract, inhibits cell cycle G1/S phase transition and induces intrinsic apoptotic pathway in luminal breast cancer cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933993

Country of ref document: EP

Kind code of ref document: A1