WO2021217585A1 - 二次电池、其制备方法及含有该二次电池的装置 - Google Patents

二次电池、其制备方法及含有该二次电池的装置 Download PDF

Info

Publication number
WO2021217585A1
WO2021217585A1 PCT/CN2020/088299 CN2020088299W WO2021217585A1 WO 2021217585 A1 WO2021217585 A1 WO 2021217585A1 CN 2020088299 W CN2020088299 W CN 2020088299W WO 2021217585 A1 WO2021217585 A1 WO 2021217585A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
film layer
secondary battery
Prior art date
Application number
PCT/CN2020/088299
Other languages
English (en)
French (fr)
Inventor
马建军
沈睿
何立兵
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2022532138A priority Critical patent/JP7428800B2/ja
Priority to KR1020227018356A priority patent/KR20220092941A/ko
Priority to CN202080006127.8A priority patent/CN113875048B/zh
Priority to PCT/CN2020/088299 priority patent/WO2021217585A1/zh
Priority to EP20932863.2A priority patent/EP3958352B1/en
Publication of WO2021217585A1 publication Critical patent/WO2021217585A1/zh
Priority to US17/547,271 priority patent/US20220102710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application belongs to the field of electrochemical technology, and more specifically, relates to a secondary battery, a preparation method thereof, and a device containing the secondary battery.
  • Secondary batteries are widely used in various consumer electronic products and electric vehicles because of their outstanding characteristics such as light weight, no pollution, and no memory effect.
  • this application provides a secondary battery, a preparation method thereof, and a device containing the secondary battery, aiming to enable the secondary battery to have a higher energy density while taking into account better The low temperature rate performance and long high temperature cycle life.
  • a second aspect of the present application provides a method for manufacturing a secondary battery, which includes preparing the negative pole piece of the secondary battery through the following steps:
  • W 3R is the peak area of the 101 crystal plane in the X-ray diffraction spectrum of the first negative electrode active material at a diffraction angle of 43.3 ⁇ 0.05°
  • W 2H is the X-ray diffraction spectrum of the first negative electrode active material at the diffraction angle The peak area of the 101 crystal plane at 44.5 ⁇ 0.05°.
  • a third aspect of the present application provides a device, which includes the secondary battery described in the first aspect of the present application or a secondary battery prepared according to the method described in the second aspect of the present application.
  • the negative electrode sheet of the secondary battery of the present application includes a first negative electrode film layer and a second negative electrode film layer, and the first negative electrode active material of a specific composition is selected in the first negative electrode film layer, thereby enabling the secondary Under the premise of higher energy density, the battery takes into account both better low-temperature rate performance and longer high-temperature cycle life.
  • FIG. 1 is a schematic diagram of an embodiment of the secondary battery of the present application.
  • FIG. 2 is a schematic diagram of an embodiment of the negative pole piece in the secondary battery of the present application.
  • FIG. 3 is a schematic diagram of another embodiment of the negative pole piece in the secondary battery of the present application.
  • Fig. 4 is an exploded schematic view of an embodiment of the secondary battery of the present application.
  • Fig. 5 is a schematic diagram of an embodiment of a battery module.
  • Fig. 6 is a schematic diagram of an embodiment of a battery pack.
  • Fig. 7 is an exploded view of Fig. 6.
  • FIG. 8 is a schematic diagram of an embodiment of a device in which the secondary battery of the present application is used as a power source.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with other lower limits to form an unspecified range, and any upper limit can be combined with any other upper limit to form an unspecified range.
  • each individually disclosed point or single value can be used as a lower limit or upper limit in combination with any other point or single value or with other lower or upper limits to form an unspecified range.
  • the first aspect of the application provides a secondary battery.
  • the secondary battery includes a positive pole piece, a negative pole piece and an electrolyte.
  • active ions are inserted and extracted back and forth between the positive pole piece and the negative pole piece.
  • the electrolyte conducts ions between the positive pole piece and the negative pole piece.
  • the negative electrode piece of the present application includes a negative electrode current collector and a negative electrode film layer.
  • the negative electrode film layer includes a first negative electrode film layer and a second negative electrode film layer.
  • the first negative electrode film layer is disposed on at least one surface of the negative electrode current collector.
  • the second negative electrode film layer is disposed on the first negative electrode film layer and includes a second negative electrode active material;
  • the second negative electrode active material includes artificial graphite; wherein, W 3R is the X-ray diffraction spectrum of the first negative electrode active material in the The peak area of the 101 crystal plane at the diffraction angle of 43.3 ⁇ 0.05°, and W 2H is the peak area of the 101 crystal plane at the diffraction angle of 44.5 ⁇ 0.05° in the X-ray diffraction spectrum of the first negative electrode active material.
  • the battery can have a better low-temperature rate performance under the premise of a higher energy density.
  • the inventor’s research found that when the first negative electrode active material of the present application includes natural graphite and the second negative electrode active material includes artificial graphite, and the S1 of the first negative electrode active material is controlled within the given range, the upper and lower layers of the negative electrode The active sites are reasonably matched, which is conducive to improving the rate performance of the battery; at the same time, the porosity of the upper and lower layers is also reasonably optimized, which is conducive to electrolyte infiltration and improves the cycle life of the battery.
  • the first negative electrode active material satisfies 0.70 ⁇ S1 ⁇ 0.80.
  • the inventor found that the negative pole piece of the present application can further improve the performance of the battery if one or more of the following parameters are optionally satisfied on the basis of the above-mentioned design.
  • the graphitization degree of the first negative electrode active material is 95% to 98%, preferably 96% to 97%.
  • the graphitization degree of the second negative electrode active material is 90%-95%, preferably 91%-93%.
  • the powder compaction density of the first negative electrode active material under a force of 50,000 N is 1.85 g/cm 3 to 2.1 g/cm 3 , preferably 1.9 g/cm 3 to 2.0 g /cm 3 ;.
  • the second negative electrode active material has a powder compaction density of 1.7 g/cm 3 to 1.9 g/cm 3 under a force of 50,000 N, preferably 1.8 g/cm 3 to 1.9 g /cm 3 .
  • the specific surface area of the first anode active material is of 1.6m 2 /g ⁇ 2.4m 2 / g, preferably 1.8m 2 /g ⁇ 2.2m 2 / g.
  • the specific surface area of the second cathode active material (SSA) of 0.7m 2 /g ⁇ 1.5m 2 / g, preferably 0.9m 2 /g ⁇ 1.3m 2 / g.
  • the volume average particle diameter of the first anode active material V 50 D volume average particle diameter D V is greater than the second negative electrode active material 50.
  • the volume average particle diameter D V 50 of the first negative electrode active material is 15 ⁇ m to 19 ⁇ m, preferably 16 ⁇ m to 18 ⁇ m.
  • the volume average particle diameter D V 50 of the second negative electrode active material is 14 ⁇ m to 18 ⁇ m, preferably 15 ⁇ m to 17 ⁇ m.
  • the inventor’s research found that when the volume average particle size D V 50 of the first negative electrode active material and/or the second negative electrode active material is within the given range, it helps to further improve the dynamic performance of the battery; at the same time, the particle size is within the range Within the given range, the difference in capacity of the upper and lower active materials can also be reduced, and the risk of lithium evolution during the battery cycle can be reduced, thereby further improving the cycle performance of the battery.
  • the morphology of the natural graphite is one or more of spherical and quasi-spherical.
  • the morphology of the artificial graphite is one or more of a block shape and a sheet shape.
  • the mass ratio of the natural graphite in the first negative electrode active material is ⁇ 50%, more preferably 80%-100%.
  • the mass ratio of the artificial graphite in the second negative electrode active material is ⁇ 80%, more preferably 90%-100%.
  • W 2H and W 3R are well known in the art and can be tested by methods known in the art. For example, it can be tested by using an X-ray diffractometer (such as Bruker D8 Discover). Then, the value of S1 can be calculated by the formula of this application.
  • the degree of graphitization of the material has a well-known meaning in the art, and can be tested using methods known in the art.
  • an X-ray diffractometer (Bruker D8 Discover) can be used to test.
  • the D V 50 of the material has a well-known meaning in the art, and can be tested using methods known in the art.
  • a laser diffraction particle size distribution measuring instrument such as Mastersizer 3000
  • the particle size distribution laser diffraction method for details, please refer to GB/T19077-2016
  • Dv50 refers to the particle size when the cumulative volume percentage of the material reaches 50%.
  • the powder compaction density of the material has the meaning known in the art, and can be tested by methods known in the art.
  • an electronic pressure testing machine such as UTM7305
  • the pressure is set to 50000N.
  • the specific surface area (SSA) of the material has a well-known meaning in the art, and can be tested by methods known in the art, for example, it can be tested by the nitrogen adsorption specific surface area analysis test method, and the BET (Brunauer Emmett Calculated by Teller) method, wherein the nitrogen adsorption specific surface area analysis test can be performed by the NOVA 2000e specific surface area and pore size analyzer of Kanta Corporation of the United States.
  • the morphology of the negative electrode active material has a well-known meaning in the art, and can be tested by a method known in the art.
  • the extremely active material is glued to the conductive adhesive, and the morphology of the particles is tested using a scanning electron microscope (such as sigma300). The test can refer to JY/T010-1996.
  • test sample is taken from the negative electrode film after cold pressing, as an example, the sample can be taken as follows:
  • an optical microscope or a scanning electron microscope can be used to assist in determining the position of the boundary between the first negative electrode film layer and the second negative electrode film layer.
  • the thickness of the negative electrode film layer is preferably ⁇ 60 ⁇ m, more preferably 65 ⁇ m to 80 ⁇ m. It should be noted that the thickness of the negative electrode film layer refers to the total thickness of the negative electrode film layer (that is, the sum of the thicknesses of the first negative electrode film layer and the second negative electrode film layer).
  • the areal density of the negative electrode film layer is 10 mg/cm 2 ⁇ CW ⁇ 13 mg/cm 2 , preferably, 10.5 mg/cm 2 ⁇ CW ⁇ 11.5 mg/cm 2 . It should be noted that the areal density of the negative electrode film layer refers to the areal density of the entire negative electrode film layer (that is, the sum of the areal densities of the first negative electrode film layer and the second negative electrode film layer).
  • the thickness ratio of the first negative electrode film layer to the second negative electrode film layer is 1:1.01 to 1:1.1, preferably 1:1.02 to 1:1.06.
  • the thickness of the upper and lower layers is in the given range, it is beneficial to form a gradient pore distribution in the upper and lower layers, so that the liquid phase conduction resistance of the active ions from the positive electrode on the surface of the negative electrode film layer is reduced, and the accumulation of ions on the surface layer will not cause the problem of lithium evolution.
  • the uniform diffusion of active ions in the membrane layer is beneficial to reduce polarization and further improve the dynamic performance and cycle performance of the battery.
  • the thickness of the negative electrode film layer can be measured by a ten-meter ruler, for example, it can be measured by a ten-meter ruler with a model of Mitutoyo293-100 and an accuracy of 0.1 as t.
  • each of the first negative electrode film layer and the second negative electrode film layer can be tested by using a scanning electron microscope (such as ZEISS Sigma 300).
  • the sample preparation is as follows: firstly, the negative pole piece is cut into a sample to be tested of a certain size (for example, 2cm ⁇ 2cm), and the negative pole piece is fixed on the sample table by paraffin wax.
  • sample stage into the sample rack, lock and fix it, turn on the power of the argon ion cross-section polisher (such as IB-19500CP) and vacuum (such as 10 -4 Pa), set the argon flow (such as 0.15 MPa) and voltage (such as 8KV) and polishing time (for example, 2 hours), adjust the sample stage to swing mode to start polishing.
  • the power of the argon ion cross-section polisher such as IB-19500CP
  • vacuum such as 10 -4 Pa
  • argon flow such as 0.15 MPa
  • voltage such as 8KV
  • polishing time for example, 2 hours
  • the average value of the test results of a plurality of test areas is taken as the average value of the thickness of the first negative electrode film layer and the second negative electrode film layer.
  • the areal density of the negative electrode film layer has a well-known meaning in the art, and can be tested by a method known in the art. For example, take a negative electrode piece coated on one side and cold pressed (if it is a negative electrode piece coated on both sides, wipe off the negative electrode film on one side first), die cut into a small wafer with an area of S1, and weigh Its weight is recorded as M1. Then wipe off the negative electrode film of the above-mentioned weighed negative electrode sheet, weigh the weight of the negative electrode current collector, and record it as M0.
  • the area density of the negative electrode film layer (weight of the negative electrode sheet M1-weight of the negative electrode current collector M0 )/S1.
  • multiple groups for example, 10 groups) of samples to be tested can be tested, and the average value can be calculated as the test result.
  • the negative electrode current collector can be a metal foil or a composite current collector (a metal material can be arranged on a polymer substrate to form a composite current collector).
  • a metal material can be arranged on a polymer substrate to form a composite current collector.
  • copper foil may be used as the negative electrode current collector.
  • the first negative electrode film layer and/or the second negative electrode film layer usually include a negative electrode active material, an optional binder, an optional conductive agent, and other optional auxiliary agents, It is usually formed by coating and drying the negative electrode film slurry.
  • the negative electrode film slurry coating is usually formed by dispersing the negative electrode active material and optional conductive agent and binder in a solvent and stirring uniformly.
  • the solvent can be N-methylpyrrolidone (NMP) or deionized water, for example.
  • Other optional additives can be, for example, thickening and dispersing agents (such as sodium carboxymethyl cellulose CMC-Na), PTC thermistor materials, and the like.
  • the conductive agent may include one or more of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the binder may include styrene-butadiene rubber (SBR), water-based acrylic resin, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), ethylene-vinyl acetate copolymer One or more of (EVA), polyvinyl alcohol (PVA) and polyvinyl butyral (PVB).
  • SBR styrene-butadiene rubber
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • EVA ethylene-vinyl acetate copolymer
  • EVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • the first negative electrode active material and/or the second negative electrode active material may optionally include a certain amount of other commonly used negative electrode active materials in addition to the aforementioned negative electrode active material of the present application, For example, one or more of soft carbon, hard carbon, silicon-based materials, tin-based materials, and lithium titanate.
  • the silicon-based material can be selected from one or more of elemental silicon, silicon-oxygen compounds, silicon-carbon composites, and silicon alloys.
  • the tin-based material can be selected from one or more of elemental tin, tin oxide compounds, and tin alloys. The preparation methods of these materials are well known and can be obtained commercially. Those skilled in the art can make an appropriate choice according to the actual use environment.
  • the negative electrode film layer can be provided on one surface of the negative electrode current collector, or can be provided on both surfaces of the negative electrode current collector at the same time.
  • FIG. 2 shows a schematic diagram of an embodiment of the negative pole piece 10 of the present application.
  • the negative electrode piece 10 is composed of a negative electrode current collector 101, a first negative electrode film layer 103 respectively disposed on both surfaces of the negative electrode current collector, and a second negative electrode film layer 102 disposed on the first negative electrode film layer 103.
  • FIG. 3 shows a schematic diagram of another embodiment of the negative pole piece 10 of the present application.
  • the negative electrode piece 10 is composed of a negative electrode current collector 101, a first negative electrode film layer 103 disposed on one surface of the negative electrode current collector, and a second negative electrode film layer 102 disposed on the first negative electrode film layer 103.
  • each negative electrode film (such as film thickness, areal density, etc.) given in this application all refer to the parameter range of a single-sided film.
  • the film layer parameters on any one of the surfaces meet the requirements of the present application, which is considered to fall within the protection scope of the present application.
  • the ranges of film thickness, areal density and the like mentioned in this application all refer to the film parameters after being compacted by cold pressing and used for assembling the battery.
  • the negative electrode sheet does not exclude additional functional layers other than the negative electrode film layer.
  • the negative pole piece described in the present application further includes a conductive primer layer (for example, composed of a conductive agent and a binder) sandwiched between the current collector and the first film layer and arranged on the surface of the current collector. ).
  • the negative pole piece described in the present application further includes a protective covering layer covering the surface of the second film layer.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer provided on at least one surface of the positive electrode current collector and including a positive electrode active material.
  • the positive electrode current collector has two opposite surfaces in its thickness direction, and the positive electrode film layer may be laminated on either or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector can be a conventional metal foil or a composite current collector (a metal material can be arranged on a polymer substrate to form a composite current collector).
  • a metal material can be arranged on a polymer substrate to form a composite current collector.
  • aluminum foil may be used as the positive electrode current collector.
  • the positive electrode active material may include one or more of lithium transition metal oxides, lithium-containing phosphates with an olivine structure, and their respective modified compounds.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide One or more of the compounds, lithium nickel cobalt aluminum oxide and its modified compounds.
  • lithium-containing phosphates with an olivine structure may include, but are not limited to, lithium iron phosphate, lithium iron phosphate and carbon composite material, lithium manganese phosphate, lithium manganese phosphate and carbon composite material, lithium iron manganese phosphate, lithium iron manganese phosphate
  • One or more of the composite materials with carbon and its modified compounds may be used. The present application is not limited to these materials, and other conventionally known materials that can be used as positive electrode active materials for secondary batteries can also be used.
  • the positive electrode active material may include one or more of the lithium transition metal oxide and its modified compounds shown in Formula 1.
  • M is selected from Mn, Al, Zr
  • Zn is selected from Mn, Al, Zr
  • Zn is selected from Mn, Al, Zr
  • Zn is selected from Mn, Al, Zr
  • Zn is selected from Mn, Al, Zr
  • Zn is selected from Mn, Al, Zr
  • Zn is selected from Mn, Al, Zr
  • Zn is selected from Mn, Al, Zr
  • Zn 0.5 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, 0 ⁇ d ⁇ 1, 1 ⁇ e ⁇ 2, 0 ⁇ f ⁇ 1, M is selected from Mn, Al, Zr
  • Zn is selected from Mn, Al, Zr
  • Zn is selected from Cu, Cr, Mg, Fe, V, Ti and B
  • A is selected from one or more of N, F, S and Cl.
  • the modification compound of each of the above-mentioned materials may be doping modification and/or surface coating modification of the material.
  • the positive electrode film layer may optionally include a binder and/or a conductive agent.
  • the binder used for the positive electrode film layer may include one or more of polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the conductive agent used for the positive electrode film layer may include one or more of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the electrolyte conducts ions between the positive pole piece and the negative pole piece.
  • the type of electrolyte in this application can be selected according to requirements.
  • the electrolyte may be selected from at least one of solid electrolytes and liquid electrolytes (ie, electrolytes).
  • an electrolyte is used as the electrolyte.
  • the electrolyte includes electrolyte salt and solvent.
  • the electrolyte salt can be selected from LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate), LiClO 4 (lithium perchlorate), LiAsF 6 (lithium hexafluoroarsenate), LiFSI (bisfluorosulfonate) Lithium imide), LiTFSI (lithium bistrifluoromethanesulfonimide), LiTFS (lithium trifluoromethanesulfonate), LiDFOB (lithium difluorooxalate), LiBOB (lithium bisoxalate), LiPO 2 F 2 (Lithium difluorophosphate), LiDFOP (lithium difluorodioxalate phosphate) and LiTFOP (lithium tetrafluorooxalate phosphate) one or more.
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • the solvent may be selected from ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), Dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethylene propyl carbonate (EPC), butylene carbonate (BC), fluoroethylene carbonate (FEC), methyl formate (MF), methyl acetate Ester (MA), ethyl acetate (EA), propyl acetate (PA), methyl propionate (MP), ethyl propionate (EP), propyl propionate (PP), methyl butyrate (MB) , Ethyl butyrate (EB), 1,4-butyrolactone (GBL), sulfolane (SF), dimethyl sulfone (MSM), methyl ethyl sulfone (EMS) and diethyl sulfone (ESE) one
  • the electrolyte may also optionally include additives.
  • the additives can include negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain battery performance, such as additives that improve battery overcharge performance, additives that improve battery high-temperature performance, and battery low-temperature performance. Additives, etc.
  • the isolation film is arranged between the positive pole piece and the negative pole piece to play a role of isolation.
  • the type of isolation membrane in this application, and any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation membrane can be selected from one or more of glass fiber, non-woven fabric, polyethylene, polypropylene, and polyvinylidene fluoride.
  • the isolation film can be a single-layer film or a multilayer composite film. When the isolation film is a multilayer composite film, the materials of each layer can be the same or different.
  • the positive pole piece, the negative pole piece, and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer packaging can be used to encapsulate the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard case, such as a hard plastic case, aluminum case, steel case, or the like.
  • the outer packaging of the secondary battery may also be a soft bag, such as a pouch type soft bag.
  • the material of the soft bag can be plastic, such as one or more of polypropylene (PP), polybutylene terephthalate (PBT), polybutylene succinate (PBS), and the like.
  • FIG. 1 shows a secondary battery 5 of a square structure as an example.
  • the outer package may include a housing 51 and a cover 53.
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plate enclose a receiving cavity.
  • the housing 51 has an opening communicating with the accommodating cavity, and a cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece, and the separator may be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the accommodating cavity.
  • the electrolyte is infiltrated in the electrode assembly 52.
  • the number of electrode assemblies 52 included in the secondary battery 5 can be one or several, which can be adjusted according to requirements.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be multiple, and the specific number can be adjusted according to the application and capacity of the battery module.
  • Fig. 5 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4. Of course, it can also be arranged in any other manner. Furthermore, the plurality of secondary batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing having an accommodating space, and a plurality of secondary batteries 5 are accommodated in the accommodating space.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be adjusted according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 provided in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3.
  • the upper box body 2 can be covered on the lower box body 3 and forms a closed space for accommodating the battery module 4.
  • a plurality of battery modules 4 can be arranged in the battery box in any manner.
  • a method for preparing a secondary battery which includes preparing the negative pole piece of the secondary battery through the following steps:
  • W 3R is the peak area of the 101 crystal plane in the X-ray diffraction spectrum of the first negative electrode active material at a diffraction angle of 43.3 ⁇ 0.05°
  • W 2H is the X-ray diffraction spectrum of the first negative electrode active material at the diffraction angle The peak area of the 101 crystal plane at 44.5 ⁇ 0.05°.
  • the secondary battery of the present application can be made under the premise of higher energy density. , At the same time, good low temperature rate performance and long cycle life are taken into account.
  • the first negative electrode active material slurry and the second negative electrode active material slurry may be applied at the same time at one time, or may be applied in two separate steps.
  • the first negative active material slurry and the second negative active material slurry are simultaneously coated at one time. Coating at the same time can make the adhesion between the upper and lower negative film layers better, which helps to further improve the cycle performance of the battery.
  • the positive pole piece of the present application can be prepared as follows: the positive electrode active material, optional conductive agent (such as carbon black and other carbon materials), binder (such as PVDF), etc. are mixed and dispersed in a solvent (such as NMP) In the process, after stirring, it is coated on the positive electrode current collector, and the positive electrode piece is obtained after drying. Materials such as metal foil such as aluminum foil or porous metal plate can be used as the positive electrode current collector.
  • the positive electrode tab can be obtained by punching or laser die cutting in the uncoated area of the positive electrode current collector.
  • the third aspect of the present application provides a device.
  • the device includes the secondary battery of the first aspect of the present application or the secondary battery prepared according to the method of the second aspect of the present application.
  • the secondary battery can be used as a power source of the device, and can also be used as an energy storage unit of the device.
  • the device of the present application uses the secondary battery provided by the present application, and therefore has at least the same advantages as the secondary battery.
  • the device can be, but is not limited to, mobile devices (such as mobile phones, laptop computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf Vehicles, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • mobile devices such as mobile phones, laptop computers, etc.
  • electric vehicles such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf Vehicles, electric trucks, etc.
  • electric trains ships and satellites, energy storage systems, etc.
  • the device can select a secondary battery, a battery module, or a battery pack according to its usage requirements.
  • Fig. 8 is a device as an example.
  • the device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle, etc.
  • a battery pack or a battery module can be used.
  • the device may be a mobile phone, a tablet computer, a notebook computer, and the like.
  • the device is generally required to be thin and light, and a secondary battery can be used as a power source.
  • the first step is to prepare negative electrode slurry 1: the first negative electrode active material natural graphite, binder SBR, thickener sodium carboxymethyl cellulose (CMC-Na) and conductive carbon black (Super P) are weighed to The weight ratio of 96.2:1.8:1.2:0.8 and deionized water are added to the stirring tank in a certain order and mixed to prepare negative electrode slurry 1.
  • the first negative electrode active material natural graphite, binder SBR, thickener sodium carboxymethyl cellulose (CMC-Na) and conductive carbon black (Super P) are weighed to The weight ratio of 96.2:1.8:1.2:0.8 and deionized water are added to the stirring tank in a certain order and mixed to prepare negative electrode slurry 1.
  • the second step is to prepare negative electrode slurry 2: the second negative electrode active material artificial graphite, binder SBR, thickener sodium carboxymethyl cellulose (CMC-Na) and conductive carbon black (Super P) are weighed to The weight ratio of 96.2:1.8:1.2:0.8 and deionized water are added to the stirring tank in a certain order and mixed to prepare negative electrode slurry 2.
  • the second negative electrode active material artificial graphite, binder SBR, thickener sodium carboxymethyl cellulose (CMC-Na) and conductive carbon black (Super P) are weighed to The weight ratio of 96.2:1.8:1.2:0.8 and deionized water are added to the stirring tank in a certain order and mixed to prepare negative electrode slurry 2.
  • the negative electrode slurry 1 and the negative electrode slurry 2 are simultaneously extruded through a dual-cavity coating device.
  • the negative electrode slurry 1 is coated on the negative electrode current collector to form a first negative electrode film layer
  • the negative electrode slurry 2 is coated on the first negative electrode film layer to form a second negative electrode film layer;
  • the mass ratio is 1:1; the areal density of the negative electrode film layer is 11.5 mg/cm 2 ; the compacted density of the negative electrode film layer is 1.65 g/cm 3 .
  • the coated wet film is baked in an oven through different temperature zones to obtain dry pole pieces, and then cold-pressed to obtain the required negative electrode film layer, and then to obtain negative pole pieces through processes such as slitting and cutting.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the batteries of the examples and comparative examples were subjected to charge and discharge tests, and a discharge current of 1.0C (that is, the current value at which the theoretical capacity was completely discharged within 1h) was discharged at a constant current to a cut-off voltage of 2.8V . Then charge with a constant current of 1.0C until the charge cut-off voltage is 4.2V, and continue constant voltage charging until the current is 0.05C. At this time, the battery is in a fully charged state. After the fully charged battery is allowed to stand for 5 minutes, discharge at a constant current of 1.0C to the discharge cut-off voltage. The discharge capacity at this time is the actual capacity of the battery at 1.0C, denoted as C0.
  • the batteries of each embodiment and comparative example were prepared according to the above methods, and various performance parameters were measured. The results are shown in Table 1 to Table 2 below.
  • the volume average particle size D V 50 of natural graphite and artificial graphite also has a greater impact on battery performance.
  • the volume average particle size D V 50 of natural graphite is preferably in the range of 15 ⁇ m to 19 ⁇ m, more preferably 16 ⁇ m Within the range of ⁇ 18 ⁇ m; the volume average particle diameter D V 50 of the artificial graphite is preferably within the range of 14 ⁇ m to 18 ⁇ m, more preferably within the range of 15 ⁇ m to 17 ⁇ m.
  • the secondary battery in order to maintain the secondary battery with a higher energy density, while taking into account better low-temperature rate performance and longer cycle life, the secondary battery should meet 0.60 ⁇ S1 ⁇ 0.85.

Abstract

本申请涉及一种二次电池、其制备方法及含有该二次电池的装置。本申请的二次电池的负极膜层包括第一负极膜层和第二负极膜层,所述第一负极膜层设置在负极集流体至少一个表面上且包括第一负极活性材料,所述第二负极膜层设置在第一负极膜层上且包括第二负极活性材料;所述第一负极活性材料包括天然石墨,且所述第一负极活性材料满足:0.6≤S1≤0.85,其中S1=W 2H/(W 3R+W 2H);所述第二负极活性材料包括人造石墨;其中,W 3R为第一负极活性材料的X射线衍射谱图中在衍射角43.3±0.05°时101晶面的峰面积,W 2H为第一负极活性材料的X射线衍射谱图中在衍射角44.5±0.05°时101晶面的峰面积。该二次电池在具有较高能量密度的前提下,同时兼顾较好的低温倍率性能以及较长的高温循环寿命。

Description

二次电池、其制备方法及含有该二次电池的装置 技术领域
本申请属于电化学技术领域,更具体地说,涉及一种二次电池、其制备方法及含有该二次电池的装置。
背景技术
二次电池因具有重量轻、无污染、无记忆效应等突出特点,被广泛应用于各类消费类电子产品和电动车辆中。
随着新能源行业的发展,人们对二次电池具有更高的能量密度。然而,二次电池的性能提出了更高的使用要求。因此,如何使二次电池在较高能量密度的前提下兼顾其它电化学性能是电池设计领域的关键挑战所在。
有鉴于此,有必要提供一种能够解决上述问题的二次电池。
发明内容
鉴于背景技术中存在的技术问题,本申请提供一种二次电池、其制备方法及含有该二次电池的装置,旨在使二次电池在具有较高能量密度的前提下,同时兼顾较好的低温倍率性能和较长的高温循环寿命。
为实现上述发明目的,本申请的第一方面提供一种二次电池,该二次电池包括负极极片,所述负极极片包括负极集流体及负极膜层,所述负极膜层包括第一负极膜层和第二负极膜层,所述第一负极膜层设置在负极集流体至少一个表面上且包括第一负极活性材料,所述第二负极膜层设置在第一负极膜层上且包括第二负极活性材料;所述第一负极活性材料包括天然石墨,且所述第一负极活性材料满足:0.60≤S1≤0.85,其中S1=W 2H/(W 3R+W 2H);所述第二负极活性材料包括人造石墨;其中,W 3R为第一负极活性材料的X射线衍射谱图中在衍射角43.3±0.05°时101晶面的峰面积,W 2H为第一负极活性材料的X射线衍射谱图中在衍射角44.5±0.05°时101晶面的峰面积。
本申请的第二方面提供一种二次电池的制造方法,包括通过如下步骤制备所述二次电池的负极极片:
1)在负极集流体至少一个表面上形成包括第一负极活性材料的第一负极膜层,所述第一负极活性材料包括天然石墨,所述第一负极活性材料满足0.60≤S1≤0.85的材料作为所述第一负极活性材料,其中S1=W 2H/(W 3R+W 2H);以及
2)在所述第一负极膜层上形成包括第二负极活性材料的第二负极膜层,所述第二负极活性材料包括人造石墨;
其中,W 3R为第一负极活性材料的X射线衍射谱图中在衍射角43.3±0.05°时101晶面的峰面积,W 2H为第一负极活性材料的X射线衍射谱图中在衍射角44.5±0.05°时101晶面的峰面积。
本申请的第三方面提供一种装置,其包括本申请第一方面所述的二次电池或按照本申请第二方面所述的方法制备的二次电池。
相对于现有技术,本申请至少包括如下所述的有益效果:
本申请的二次电池的负极极片包括第一负极膜层和第二负极膜层,且在第一负极膜层中选择特定组成的第一负极活性材料,由此可以使本申请的二次电池在具有较高能量密度的前提下,同时兼顾较好的低温倍率性能以及较长的高温循环寿命。
附图说明
图1是本申请的二次电池的一实施方式的示意图。
图2是本申请的二次电池中负极极片的一实施方式的示意图。
图3是本申请的二次电池中负极极片的另一实施方式的示意图。
图4是本申请的二次电池的一实施方式的分解示意图。
图5是电池模块的一实施方式的示意图。
图6是电池包的一实施方式的示意图。
图7是图6的分解图。
图8是本申请的二次电池用作电源的装置的一实施方式的示意图。
其中,附图标记说明如下:
1电池包
2上箱体
3下箱体
4电池模块
5二次电池
51壳体
52电极组件
53盖板
10负极极片
101负极集流体
102第二负极膜层
103第一负极膜层
具体实施方式
下面结合具体实施方式,进一步阐述本申请。应理解,这些具体实施方式仅用于说明本申请而不用于限制本申请的范围。
为了简明,本文仅具体地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,每个单独公开的点或单个数值自身可以作为下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”为包含本数,“一种或几种”中“几种”的含义是两种及两种以上。
除非另有说明,本申请中使用的术语具有本领域技术人员通常所理解的公知含义。除非另有说明,本申请中提到的各参数的数值可以用本领域常用的各种测量方法进行测量(例如,可以按照在本申请的实施例中给出的方法进行测试)。
二次电池
本申请的第一方面提供一种二次电池。该二次电池包括正极极片、负极极片及电解质。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。
[负极极片]
本申请的负极极片包括负极集流体及负极膜层,所述负极膜层包括第一负 极膜层和第二负极膜层,所述第一负极膜层设置在负极集流体至少一个表面上且包括第一负极活性材料,所述第二负极膜层设置在第一负极膜层上且包括第二负极活性材料;所述第一负极活性材料包括天然石墨,且所述第一负极活性材料满足:0.60≤S1≤0.85,其中S1=W 2H/(W 3R+W 2H);所述第二负极活性材料包括人造石墨;其中,W 3R为第一负极活性材料的X射线衍射谱图中在衍射角43.3±0.05°时101晶面的峰面积,W 2H为第一负极活性材料的X射线衍射谱图中在衍射角44.5±0.05°时101晶面的峰面积。
由于本申请使用了特定的双层结构的负极膜层,并且上下层采用了特定的负极活性材料,可以使电池在较高能量密度的前提下,兼具较好的低温倍率性能。发明人研究发现,当本申请的第一负极活性材料包括天然石墨,第二负极活性材料包括人造石墨,且将第一负极活性材料的S1控制所给范围内时,负极极片中上下层的活性位点得到合理匹配,有利于提升电池的倍率性能;同时上下层的孔隙率也得到合理优化,有利于电解液浸润,提升电池的循环寿命。
当S1小于0.6时,活性材料中缺陷过多,表面活性较高,恶化电池的高温循环性能。同时过多的缺陷造成的副反应产物堆积在负极极片上容易造成电芯膨胀力增长,从而导致电解液挤出,影响电池的循环寿命;当S1大于0.85时,活性材料的表面活性较低,恶化电池的低温倍率性能。
在优选的实施方式中,第一负极活性材料满足0.70≤S1≤0.80。
本发明人经深入研究发现,当本申请的负极极片在满足上述设计的基础上,如果还可选地满足下述参数中的一个或几个时,可以进一步改善电池的性能。
在本申请优选的实施方式中,所述第一负极活性材料的石墨化度为95%~98%,优选为96%~97%。
在本申请优选的实施方式中,所述第二负极活性材料的石墨化度为90%~95%,优选为91%~93%。
在本申请优选的实施方式中,所述第一负极活性材料在在50000N作用力下粉体压实密度为1.85g/cm 3~2.1g/cm 3,优选为1.9g/cm 3~2.0g/cm 3;。
在本申请优选的实施方式中,所述第二负极活性材料在在50000N作用力下粉体压实密度为1.7g/cm 3~1.9g/cm 3,优选为1.8g/cm 3~1.9g/cm 3
在本申请优选的实施方式中,所述第一负极活性材料的比表面积(SSA)为为1.6m 2/g~2.4m 2/g,优选为1.8m 2/g~2.2m 2/g。
在本申请优选的实施方式中,所述第二负极活性材料的比表面积(SSA)为0.7m 2/g~1.5m 2/g,优选为0.9m 2/g~1.3m 2/g。
在本申请优选的实施方式中,所述第一负极活性材料的体积平均粒径D V50大于第二负极活性材料的体积平均粒径D V50。
在本申请优选的实施方式中,所述第一负极活性材料的体积平均粒径D V50为15μm~19μm,优选为16μm~18μm。
在本申请优选的实施方式中,所述第二负极活性材料的体积平均粒径D V50为14μm~18μm,优选为15μm~17μm。
发明人研究发现,当第一负极活性材料和/或第二负极活性材料的体积平均粒径D V50在所给范围内时,有助于进一步提高电池的动力学性能;同时,粒径在所给范围内还可以减小上下层活性材料的容量差异,降低电池在循环过程中的析锂风险,从而进一步提升电池的循环性能。
在本申请优选的实施方式中,所述天然石墨的形貌为球形及类球形中的一种或几种。
在本申请优选的实施方式中,所述人造石墨的形貌为块状及片状中的一种或几种。
在本申请优选的实施方式中,所述天然石墨在所述第一负极活性材料中的质量占比≥50%,更优选为80%~100%。
在本申请优选的实施方式中,所述人造石墨在所述第二负极活性材料中的质量占比≥80%,更优选为90%~100%。
在本申请中,W 2H和W 3R所代表的含义是本领域公知的,可以采用本领域已知的方法测试。例如可以使用X射线衍射仪(如Bruker D8 Discover)测试得到。然后通过本申请的公式计算即可得出S1的数值。
在本申请中,材料的石墨化度具有本领域公知的含义,可以采用本领域已知的方法测试。例如可以使用X射线衍射仪(Bruker D8 Discover)测试,测试可参考JIS K 0131-1996、JB/T 4220-2011,测出d 002的大小,然后根据公式G=(0.344-d 002)/(0.344-0.3354)×100%计算得出石墨化度,其中d 002是以纳米(nm)表示的材料晶体结构中的层间距。
在本申请中,材料的D V50具有本领域公知的含义,可以采用本领域已知的方法测试。例如使用激光衍射粒度分布测量仪(如Mastersizer 3000),依据粒度 分布激光衍射法(具体可参照GB/T19077-2016)测量得到。其中,Dv50指材料累计体积百分数达到50%时所对应的粒径。
在本申请中,材料的粉体压实密度具有本领域公知的含义,可以采用本领域已知的方法测试。例如可参照GB/T 24533-2009,使用电子压力试验机(如UTM7305)测试:将一定量的粉末放于压实专用模具上,设置不同压力,在设备上可以读出不同压力下粉末的厚度,计算可得不同压力下的压实密度。在本申请中,将压力设置为50000N。
在本申请中,材料的比表面积(Specific surface area,SSA)具有本领域公知的含义,可以用本领域已知的方法测试,例如可以用氮气吸附比表面积分析测试方法测试,并用BET(Brunauer Emmett Teller)法计算得出,其中氮气吸附比表面积分析测试可以是通过美国康塔公司的NOVA 2000e型比表面积与孔径分析仪进行测试。
在本申请中,负极活性材料的形貌具有本领域公知的含义,可以采用本领域已知的方法测试。例如,将极活性材料粘于导电胶上,使用扫描电子显微镜(如sigma300型),对颗粒的形貌进行测试。测试可参考JY/T010-1996。
需要说明的是,上述针对负极活性材料的各种参数测试,可以在涂布前取样测试,也可以从冷压后的负极膜层中取样测试。
当上述测试样品是从经冷压后的负极膜层中取样时,作为示例,可以按如下步骤进行取样:
(1)首先,任意选取一冷压后的负极膜层,对第二负极活性材料取样(可以选用刀片刮粉取样),刮粉深度不超过第一负极膜层与第二负极膜层的分界区;
(2)其次,对第一负极活性材料取样,因在负极膜层冷压过程中,第一负极膜层和第二负极膜层之间的分界区可能存在互融层(即互融层中同时存在第一活性材料和第二活性材料),为了测试的准确性,在对第一负极活性材料取样时,可以先将互融层刮掉,然后再对第一负极活性材料刮粉取样;
(3)将上述收集到的第一负极活性材料和第二负极活性材料分别置于去离子水中,并将第一负极活性材料和第二负极活性材料进行抽滤,烘干,再将烘干后的各负极活性材料在一定温度及时间下烧结(例如400℃,2h),去除粘结剂和导电碳,即得到第一负极活性材料和第二负极活性材料的测试样品。
在上述取样过程中,可以用光学显微镜或扫描电子显微镜辅助判断第一负极膜层与第二负极膜层之间的分界区位置。
本申请所使用的天然石墨和人造石墨均可以通过商业途径获得。
在本申请优选的实施方式中,负极膜层的厚度优选≥60μm,更优选为65μm~80μm。需要说明的是,所述负极膜层的厚度是指负极膜层的总厚度(即第一负极膜层和第二负极膜层的厚度总和)。
在本申请优选的实施方式中,所述负极膜层的面密度为10mg/cm 2≤CW≤13mg/cm 2,优选地,10.5mg/cm 2≤CW≤11.5mg/cm 2。需要说明的是,所述负极膜层的面密度是指负极膜层整体的面密度(即第一负极膜层和第二负极膜层的面密度总和)。
在本申请优选的实施方式中,所述第一负极膜层与所述第二负极膜层的厚度比为1:1.01~1:1.1,优选为1:1.02~1:1.06。
上、下层的厚度在所给范围时,有利于上下层形成梯度孔隙分布,使得正极脱出活性离子在负极膜层表面的液相传导阻力减小,不会导致离子在表层堆积引起析锂问题,同时活性离子在膜层中的均匀扩散有利于减小极化,进一步提升电池的动力学性能和循环性能。
在本申请中,负极膜层的厚度可采用万分尺测量得到,例如可使用型号为Mitutoyo293-100、精度为0.1为t的万分尺测量得到。
在本申请中,第一负极膜层和第二负极膜层各自的厚度可以通过使用扫描电子显微镜(如ZEISS Sigma 300)进行测试。样品制备如下:首先将负极极片裁成一定尺寸的待测样品(例如2cm×2cm),通过石蜡将负极极片固定在样品台上。然后将样品台装进样品架上锁好固定,打开氩离子截面抛光仪(例如IB-19500CP)电源和抽真空(例如10 -4Pa),设置氩气流量(例如0.15MPa)和电压(例如8KV)以及抛光时间(例如2小时),调整样品台为摇摆模式开始抛光。样品测试可参考JY/T010-1996。为了确保测试结果的准确性,可以在待测样品中随机选取多个(例如10个)不同区域进行扫描测试,并在一定放大倍率(例如500倍)下,读取标尺测试区域中第一负极膜层和第二负极膜层各自的厚度,取多个测试区域的测试结果的平均值作为第一负极膜层和第二负极膜层的厚度均值。
在本申请中,负极膜层的面密度具有本领域公知的含义,可采用本领域已知的方法测试。例如取单面涂布且经冷压后的负极极片(若是双面涂布的负极极片, 可先擦拭掉其中一面的负极膜层),冲切成面积为S1的小圆片,称其重量,记录为M1。然后将上述称重后的负极极片的负极膜层擦拭掉,称量负极集流体的重量,记录为M0,负极膜层的面密度=(负极极片的重量M1-负极集流体的重量M0)/S1。为了确保测试结果的准确性,可以测试多组(例如10组)待测样品,并计算平均值作为测试结果。
负极膜层的压实密度具有本领域公知的含义,可采用本领域已知的方法测试。例如先按照上述的测试方法得出负极膜层的面密度和厚度,负极膜层的压实密度=负极膜层的面密度/负极膜层的厚度。
本申请的二次电池中,所述负极集流体可以采用金属箔片或复合集流体(可以将金属材料设置在高分子基材上形成复合集流体)。作为示例,负极集流体可以采用铜箔。
本申请的二次电池中,所述第一负极膜层和/或所述第二负极膜层通常包含负极活性材料以及可选的粘结剂、可选的导电剂和其他可选助剂,通常是由负极膜层浆料涂布干燥而成的。负极膜层浆料涂通常是将负极活性材料以及可选的导电剂和粘结剂等分散于溶剂中并搅拌均匀而形成的,溶剂例如可以是N-甲基吡咯烷酮(NMP)或去离子水。其他可选助剂例如可以是增稠及分散剂(例如羧甲基纤维素钠CMC-Na)、PTC热敏电阻材料等。
作为示例,导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中一种或几种。
作为示例,粘结剂可以包括丁苯橡胶(SBR)、水性丙烯酸树脂(water-based acrylic resin)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、乙烯-醋酸乙烯酯共聚物(EVA)、聚乙烯醇(PVA)及聚乙烯醇缩丁醛(PVB)中的一种或多种。
本申请的二次电池中,所述第一负极活性材料和/或所述第二负极活性材料除了包括本申请上述的负极活性材料外,还可选地包括一定量的其他常用负极活性材料,例如软炭、硬炭、硅基材料、锡基材料、钛酸锂中的一种或几种。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅合金中的一种或几种。所述锡基材料可选自单质锡、锡氧化合物、锡合金中的一种或几种。这些材料的制备方法是公知的,且可以通过商业途径获得。本领域技术人员可以根据实际使用环境做出恰当选择。
本申请的二次电池中,所述负极膜层可以设置在负极集流体的一个表面上, 也可以同时设置在负极集流体的两个表面上。
图2示出了本申请的负极极片10的一种实施方式的示意图。负极极片10由负极集流体101、分别设置在负极集流体两个表面上的第一负极膜层103和设置在第一负极膜层103上的第二负极膜层102构成。
图3示出了本申请的负极极片10的另一种实施方式的示意图。负极极片10由负极集流体101、设置在负极集流体一个表面上的第一负极膜层103和设置在第一负极膜层103上的第二负极膜层102构成。
需要说明的是,本申请所给的各负极膜层参数(例如膜层厚度、面密度等)均指单面膜层的参数范围。当负极膜层设置在负极集流体的两个表面上时,其中任意一个表面上的膜层参数满足本申请,即认为落入本申请的保护范围内。且本申请所述的膜层厚度、面密度等范围均是指经冷压压实后并用于组装电池的膜层参数。
另外,本申请的二次电池中,负极极片并不排除除了负极膜层之外的其他附加功能层。例如在某些实施方式中,本申请所述的负极极片还包括夹在集流体和第一膜层之间、设置于集流体表面的导电底涂层(例如由导电剂和粘结剂组成)。在另外一些实施方式中,本申请所述的负极极片还包括覆盖在第二膜层表面的覆盖保护层。
[正极极片]
本申请的二次电池中,所述正极极片包括正极集流体以及设置在正极集流体至少一个表面上且包括正极活性材料的正极膜层。
可以理解的是,正极集流体具有在自身厚度方向相对的两个表面,正极膜层可以是层合设置于正极集流体的两个相对表面中的任意一者或两者上。
本申请的二次电池中,所述正极集流体可以采用常规金属箔片或复合集流体(可以将金属材料设置在高分子基材上形成复合集流体)。作为示例,正极集流体可以采用铝箔。
本申请的二次电池中,所述正极活性材料可以包括锂过渡金属氧化物,橄榄石结构的含锂磷酸盐及其各自的改性化合物中的一种或几种。锂过渡金属氧化物的示例可包括但不限于锂钴氧化物、锂镍氧化物、锂锰氧化物、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物、锂镍钴铝氧化物及其改性化合物中的一种或几种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂、 磷酸铁锂与碳的复合材料、磷酸锰锂、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料及其改性化合物中的一种或几种。本申请并不限定于这些材料,还可以使用其他可被用作二次电池正极活性材料的传统公知的材料。
在一些优选的实施方式中,为了进一步提高电池的能量密度,正极活性材料可以包括式1所示的锂过渡金属氧化物及其改性化合物中的一种或几种,
Li aNi bCo cM dO eA f     式1,
所述式1中,0.8≤a≤1.2,0.5≤b<1,0<c<1,0<d<1,1≤e≤2,0≤f≤1,M选自Mn、Al、Zr、Zn、Cu、Cr、Mg、Fe、V、Ti及B中的一种或几种,A选自N、F、S及Cl中的一种或几种。
在本申请中,上述各材料的改性化合物可以是对材料进行掺杂改性和/或表面包覆改性。
本申请的二次电池中,所述正极膜层中还可选的包括粘结剂和/或导电剂。
作为示例,用于正极膜层的粘结剂可以包括聚偏氟乙烯(PVDF)和聚四氟乙烯(PTFE)中的一种或几种。
作为示例,用于正极膜层的导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或几种。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以选自固态电解质及液态电解质(即电解液)中的至少一种。
在一些实施方式中,电解质采用电解液。电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自LiPF 6(六氟磷酸锂)、LiBF 4(四氟硼酸锂)、LiClO 4(高氯酸锂)、LiAsF 6(六氟砷酸锂)、LiFSI(双氟磺酰亚胺锂)、LiTFSI(双三氟甲磺酰亚胺锂)、LiTFS(三氟甲磺酸锂)、LiDFOB(二氟草酸硼酸锂)、LiBOB(二草酸硼酸锂)、LiPO 2F 2(二氟磷酸锂)、LiDFOP(二氟二草酸磷酸锂)及LiTFOP(四氟草酸磷酸锂)中的一种或几种。
在一些实施方式中,溶剂可选自碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸亚丁酯(BC)、氟代碳酸亚乙酯 (FEC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)中的一种或几种。
在一些实施方式中,电解液中还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂,也可以包括正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温性能的添加剂、改善电池低温性能的添加剂等。
[隔离膜]
采用电解液的二次电池、以及一些采用固态电解质的二次电池中,还包括隔离膜。隔离膜设置在正极极片和负极极片之间,起到隔离的作用。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。在一些实施方式中,隔离膜的材质可以选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的一种或几种。隔离膜可以是单层薄膜,也可以是多层复合薄膜。隔离膜为多层复合薄膜时,各层的材料可以相同或不同。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,如聚丙烯(PP)、聚对苯二甲酸丁二醇酯(PBT)、聚丁二酸丁二醇酯(PBS)等中的一种或几种。
本申请对所述二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。如图1示出了作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图4,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极 组件52封装于所述容纳腔。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或几个,可根据需求来调节。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为多个,具体数量可根据电池模块的应用和容量来调节。
图5是作为一个示例的电池模块4。参照图5,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以根据电池包的应用和容量进行调节。
图6和图7是作为一个示例的电池包1。参照图6和图7,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
二次电池的制备方法
在本申请的第二方面,提供一种二次电池的制备方法,包括通过如下步骤制备所述二次电池的负极极片:
1)在负极集流体至少一个表面上形成包括第一负极活性材料的第一负极膜层,所述第一负极活性材料包括天然石墨,且所述第一负极活性材料满足:0.60≤S1≤0.85,其中S1=W 2H/(W 3R+W 2H);
2)在所述第一负极膜层上形成包括第二负极活性材料的第二负极膜层,所述第二负极活性材料包括人造石墨;
其中,W 3R为第一负极活性材料的X射线衍射谱图中在衍射角43.3±0.05°时101晶面的峰面积,W 2H为第一负极活性材料的X射线衍射谱图中在衍射角44.5±0.05°时101晶面的峰面积。
在二次电池的制备的过程中,通过控制和调整负极极片的第一负极活性材料、第二负极活性材料各自的组成,可以使本申请的二次电池在具有较高能量密度的前提下,同时兼顾较好的低温倍率性能和较长的循环寿命。
本申请二次电池的制备方法中,第一负极活性材料浆料和第二负极活性材料浆料可以一次同时涂布,也可以分两次涂布。
在一些优选的实施方式中,第一负极活性材料浆料和第二负极活性材料浆料一次同时涂布。一次同时涂布可以使上下负极膜层之间的粘结性更好,有助于进一步改善电池的循环性能。
除了本申请负极极片的制备方法外,本申请的二次电池的其它构造和制备方法本身是公知的。例如本申请的正极极片可以按如下制备方法:将正极活性材料以及可选的导电剂(例如碳黑等碳素材料)、粘结剂(例如PVDF)等混合后分散于溶剂(例如NMP)中,搅拌均匀后涂覆在正极集流体上,烘干后即得到正极极片。可以使用铝箔等金属箔或多孔金属板等材料作为正极集流体。在制作正极极片时,可以在正极集流体的未涂覆区域,通过冲切或激光模切等方式得到正极极耳。
最后,将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正负极极片之间起到隔离的作用,然后通过卷绕(或叠片)工艺得到电极组件;将电极组件置于外包装中,干燥后注入电解液,经过真空封装、静置、化成、整形等工序,获得二次电池。
装置
本申请的第三方面提供一种装置。该装置包括本申请第一方面的二次电池或包括根据本申请第二方面的方法制备所得的二次电池。所述二次电池可以用作所述装置的电源,也可以用作所述装置的能量存储单元。本申请的装置采用了本申请所提供的二次电池,因此至少具有与所述二次电池相同的优势。
所述装置可以但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
所述装置可以根据其使用需求来选择二次电池、电池模块或电池包。
图8是作为一个示例的装置。该装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该装置对二次电池的高倍率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常 要求轻薄化,可以采用二次电池作为电源。
以下结合实施例进一步说明本申请的有益效果。
实施例
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例进一步详细描述本申请。但是,应当理解的是,本申请的实施例仅仅是为了解释本申请,并非为了限制本申请,且本申请的实施例并不局限于说明书中给出的实施例。实施例中未注明具体实验条件或操作条件的按常规条件制作,或按材料供应商推荐的条件制作。
一、二次电池的制备
实施例1
1)正极极片的制备
将锂镍钴锰三元活性物质LiNi 0.8Co 0.1Mn 0.1O 2(NCM811)与导电炭黑Super-P、粘结剂聚偏二氟乙烯(PVDF)按重量比94:3:3在N-甲基吡咯烷酮溶剂中充分搅拌混合均匀后,将浆料涂覆于铝箔基材上,通过烘干、冷压、分条、裁切等工序得到正极极片。其中,正极膜层的面密度为17.5mg/cm 2,压实密度为3.4g/cm 3
2)负极极片的制备
第一步,制备负极浆料1:将第一负极活性材料天然石墨、粘结剂SBR、增稠剂羧甲基纤维素钠(CMC-Na)以及导电炭黑(Super P)进行称重以96.2:1.8:1.2:0.8的重量比和去离子水,按一定顺序加入搅拌罐中进行混合,制备成负极浆料1。
第二步,制备负极浆料2:将第二负极活性材料人造石墨、粘结剂SBR、增稠剂羧甲基纤维素钠(CMC-Na)以及导电炭黑(Super P)进行称重以96.2:1.8:1.2:0.8的重量比和去离子水,按一定顺序加入搅拌罐中进行混合,制备成负极浆料2。
第三步,通过双腔涂布设备,将负极浆料1和负极浆料2同时挤出。负极浆料1涂覆在负极集流体上形成第一负极膜层,负极浆料2涂覆在第一负极膜层上形成第二负极膜层;第一负极膜层与第二负极膜层的质量比为1:1;负极膜层 的面密度为11.5mg/cm 2;负极膜层的压实密度为1.65g/cm 3
第四步,涂覆出的湿膜经过烘箱通过不同温区进行烘烤得到干燥极片,再经过冷压得到需要的负极膜层,再经分条、裁切等工序得到负极极片。
3)隔离膜
选用PE薄膜作为隔离膜。
4)电解液的制备
将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按照体积比1:1:1进行混合,接着将充分干燥的锂盐LiPF 6按照1mol/L的比例溶解于混合有机溶剂中,配制成电解液。
5)电池的制备
将上述正极极片、隔离膜、负极极片按顺序叠好,经卷绕后得到电极组件,将电极组件装入外包装中,加入上述电解液,经封装、静置、化成、老化等工序后,得到二次电池。
实施例2~17和对比例1~2的二次电池与实施例1的二次电池的制备方法相似,但是调整了电池极片的组成和产品参数,不同的产品参数详见表1至表2。
二、性能参数测试方法
1)低温析锂性能测试
在25℃的环境中,将各实施例和对比例的电池进行充放电测试,以1.0C(即1h内完全放掉理论容量的电流值)的放电电流进行恒流放电至截止电压为2.8V。然后以1.0C的充电电流恒流充电至充电截止电压为4.2V,继续恒压充电至电流为0.05C,此时电池为满充状态。将满充的电池静置5min后,以1.0C的放电电流恒流放电至放电截止电压,此时的放电容量为电池的1.0C下的实际容量,记为C0。而后将电池置于-10℃的环境中,静置30min,再以x C0恒流充电直到截止电压上限,再恒压充电至电流为0.05C0,静置5min,拆解电池观察界面析锂情况。如果负极表面未析锂,则增大充电倍率再次进行测试,直至负极表面析锂。记录负极表面未析锂的最大充电倍率,用以表征电池的低温析锂性能。
2)电池的高温循环性能测试
在60℃的环境中,进行第一次充电和放电,在1.0C(即1h内完全放掉理论容量的电流值)的充电电流下进行恒流和恒压充电,直到充电截止电压为4.2V, 然后在1.0C的放电电流下进行恒流放电,直到放电截止电压为2.8V,此为一个充放电循环,此次的放电容量即为第1次循环的放电容量。随后,进行不断的充电和放电循环,记录每次循环的放电容量值,并根据第N次循环的容量保持率=(第N次循环的放电容量/第1次循环的放电容量)×100%,计算每次循环的容量保持率。当循环容量保持率下降到80%时,记录电池的循环次数。
三、各实施例、对比例测试结果
按照上述方法分别制备各实施例和对比例的电池,并测量各项性能参数,结果见下表1至表2。
首先,从表1中实施例1~5和对比例1~2的数据可知:只有第一负极活性材料满足0.60≤S1≤0.85时,二次电池才能同时具有较好的低温倍率性能和较长的循环寿命。S1太小时,循环性能较差;S1太大时,低温倍率性能较差。尤其是,当0.70≤S1≤0.80时,二次电池的综合性能最优。
另外,从表2中实施例6~17的对比可以看出,天然石墨和人造石墨的体积平均粒径D V50对于电池性能也有较大影响。在满足0.60≤S1≤0.85的前提下,为了同时具有较好的低温倍率性能和较长的循环寿命,天然石墨的体积平均粒径D V50优选在15μm~19μm的范围内,更优选在16μm~18μm的范围内;人造石墨的体积平均粒径D V50优选在14μm~18μm的范围内,更优选在15μm~17μm的范围内。
综合表1、表2中数据可知:为了在保持二次电池在具有较高能量密度的前提下,同时兼顾较好的低温倍率性能和较长的循环寿命,二次电池应满足0.60≤S1≤0.85。
还需补充说明的是,根据上述说明书的揭示和指导,本申请所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本申请并不局限于上面揭示和描述的具体实方式,对本申请的一些修改和变更也落入本申请的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本申请构成任何限制。
Figure PCTCN2020088299-appb-000001
Figure PCTCN2020088299-appb-000002

Claims (14)

  1. 一种二次电池,包括负极极片,所述负极极片包括负极集流体及负极膜层,所述负极膜层包括第一负极膜层和第二负极膜层,所述第一负极膜层设置在负极集流体至少一个表面上且包括第一负极活性材料,所述第二负极膜层设置在第一负极膜层上且包括第二负极活性材料;
    所述第一负极活性材料包括天然石墨,且所述第一负极活性材料满足:
    0.60≤S1≤0.85,其中S1=W 2H/(W 3R+W 2H);
    所述第二负极活性材料包括人造石墨;
    其中,W 3R为第一负极活性材料的X射线衍射谱图中在衍射角43.3±0.05°时101晶面的峰面积,W 2H为第一负极活性材料的X射线衍射谱图中在衍射角44.5±0.05°时101晶面的峰面积。
  2. 根据权利要求1所述的二次电池,其特征在于:0.70≤S1≤0.80。
  3. 根据权利要求1至2任一项所述的二次电池,其特征在于:所述第一负极活性材料的体积平均粒径D V50大于所述第二负极活性材料的体积平均粒径D V50。
  4. 根据权利要求1至3任一项所述的二次电池,其特征在于:所述第一负极活性材料的体积平均粒径D V50为15μm~19μm,优选为16μm~18μm;
    和/或,所述第二负极活性材料的体积平均粒径D V50为14μm~18μm,优选为15μm~17μm。
  5. 根据权利要求1至4任一项所述的二次电池,其特征在于:所述第一负极活性材料的石墨化度为95%~98%,优选为96%~97%;和/或,
    所述第二负极活性材料的石墨化度为90%~95%,优选为91%~93%。
  6. 根据权利要求1至5任一项所述的二次电池,其中,所述第一负极活性材料在50000N压力下的粉体压实密度为1.85g/cm 3~2.1g/cm 3,优选为1.9g/cm 3~2.0g/cm 3;和/或,
    所述第二负极活性材料在50000N压力下的粉体压实密度为1.7g/cm 3~1.9g/cm 3,优选为1.8g/cm 3~1.9g/cm 3
  7. 根据权利要求1至6任一项所述的二次电池,其中,所述第一负极活性 材料的比表面积(SSA)为1.6m 2/g~2.4m 2/g,优选为1.8m 2/g~2.2m 2/g;和/或,
    所述第二负极活性材料的比表面积(SSA)为0.7m 2/g~1.5m 2/g,优选为0.9m 2/g~1.3m 2/g。
  8. 根据权利要求1至7任一项所述的二次电池,其特征在于:所述天然石墨的形貌为球形及类球形中的一种或几种;和/或,
    所述人造石墨的形貌为块状及片状中的一种或几种。
  9. 根据权利要求1至8任一项所述的二次电池,其特征在于:所述天然石墨在所述第一负极活性材料中的质量占比≥50%,优选为80%~100%;和/或,
    所述人造石墨在所述第二负极活性材料中的质量占比≥80%,优选为90%~100%。
  10. 根据权利要求1至9任一项所述的二次电池,其特征在于:所述第一负极膜层与所述第二负极膜层的厚度比为1:1.01~1:1.1,优选为1:1.02~1:1.06。
  11. 根据权利要求1至10任一项所述的二次电池,其特征在于:所述负极膜层的面密度CW满足:10mg/cm 2≤CW≤13mg/cm 2,优选地,10.5mg/cm 2≤CW≤11.5mg/cm 2
  12. 根据权利要求1至11任一项所述的二次电池,其中,所述二次电池包括正极极片,所述正极极片包括正极集流体以及设置在正极集流体至少一个表面上且包括正极活性材料的正极膜层,所述正极活性材料包括锂过渡金属氧化物、橄榄石结构的含锂磷酸盐及其各自改性化合物中的一种或几种;
    优选地,所述正极活性材料包括式1所示的锂过渡金属氧化物及其改性化合物中的一种或几种,
    Li aNi bCo cM dO eA f  式1,
    所述式1中,0.8≤a≤1.2,0.5≤b<1,0<c<1,0<d<1,1≤e≤2,0≤f≤1,M选自Mn、Al、Zr、Zn、Cu、Cr、Mg、Fe、V、Ti及B中的一种或几种,A选自N、F、S及Cl中的一种或几种。
  13. 一种二次电池的制造方法,包括通过如下步骤制备所述二次电池的负极极片:
    1)在负极集流体至少一个表面上形成包括第一负极活性材料的第一负极膜层,所述第一负极活性材料包括天然石墨,且所述第一负极活性材料满足:0.60 ≤S1≤0.85,其中S1=W 2H/(W 3R+W 2H);以及
    2)在所述第一负极膜层上形成包括第二负极活性材料的第二负极膜层,所述第二负极活性材料包括人造石墨;
    其中,W 3R为第一负极活性材料的X射线衍射谱图中在衍射角43.3±0.05°时101晶面的峰面积,W 2H为第一负极活性材料的X射线衍射谱图中在衍射角44.5±0.05°时101晶面的峰面积。
  14. 一种装置,其特征在于:包括权利要求1至12中任一项所述的二次电池或根据权利要求13所述方法制备的二次电池。
PCT/CN2020/088299 2020-04-30 2020-04-30 二次电池、其制备方法及含有该二次电池的装置 WO2021217585A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022532138A JP7428800B2 (ja) 2020-04-30 2020-04-30 二次電池及びその製造方法、当該二次電池を含む装置
KR1020227018356A KR20220092941A (ko) 2020-04-30 2020-04-30 이차 전지, 이의 제조 방법 및 이차 전지를 포함하는 장치
CN202080006127.8A CN113875048B (zh) 2020-04-30 2020-04-30 二次电池、其制备方法及含有该二次电池的装置
PCT/CN2020/088299 WO2021217585A1 (zh) 2020-04-30 2020-04-30 二次电池、其制备方法及含有该二次电池的装置
EP20932863.2A EP3958352B1 (en) 2020-04-30 2020-04-30 Secondary battery, process for preparing the same and apparatus containing the secondary battery
US17/547,271 US20220102710A1 (en) 2020-04-30 2021-12-10 Secondary battery, process for preparing the same and apparatus containing the secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088299 WO2021217585A1 (zh) 2020-04-30 2020-04-30 二次电池、其制备方法及含有该二次电池的装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/547,271 Continuation US20220102710A1 (en) 2020-04-30 2021-12-10 Secondary battery, process for preparing the same and apparatus containing the secondary battery

Publications (1)

Publication Number Publication Date
WO2021217585A1 true WO2021217585A1 (zh) 2021-11-04

Family

ID=78331675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088299 WO2021217585A1 (zh) 2020-04-30 2020-04-30 二次电池、其制备方法及含有该二次电池的装置

Country Status (6)

Country Link
US (1) US20220102710A1 (zh)
EP (1) EP3958352B1 (zh)
JP (1) JP7428800B2 (zh)
KR (1) KR20220092941A (zh)
CN (1) CN113875048B (zh)
WO (1) WO2021217585A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102224623A (zh) * 2009-08-05 2011-10-19 松下电器产业株式会社 非水电解质二次电池
CN103518279A (zh) * 2011-05-13 2014-01-15 三菱化学株式会社 非水系二次电池用碳材料、使用该碳材料的负极及非水系二次电池
CN107785535A (zh) * 2016-08-26 2018-03-09 株式会社Lg 化学 用于锂二次电池的负极和包含它的锂二次电池
CN108701816A (zh) * 2016-09-29 2018-10-23 株式会社Lg化学 包括天然石墨和人造石墨的多层负极以及包括该多层负极的锂二次电池
CN109704323A (zh) * 2017-10-26 2019-05-03 宁德时代新能源科技股份有限公司 一种电极材料及二次电池
KR20190090497A (ko) * 2018-01-25 2019-08-02 주식회사 엘지화학 음극 및 상기 음극을 포함하는 이차 전지

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069509B2 (ja) * 1995-04-10 2000-07-24 株式会社日立製作所 非水系二次電池および黒鉛粉末製造方法
WO2010050595A1 (ja) * 2008-10-31 2010-05-06 三菱化学株式会社 非水系二次電池用負極材料
WO2010095716A1 (ja) * 2009-02-20 2010-08-26 三菱化学株式会社 リチウムイオン二次電池用炭素材料
JP2012033376A (ja) 2010-07-30 2012-02-16 Mitsubishi Chemicals Corp 非水系二次電池用負極活物質材料
US9281513B2 (en) * 2011-07-29 2016-03-08 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
JP2014086221A (ja) 2012-10-22 2014-05-12 Mitsubishi Chemicals Corp 非水系電解液二次電池
KR102324310B1 (ko) * 2013-12-18 2021-11-09 미쯔비시 케미컬 주식회사 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
KR102439850B1 (ko) 2015-08-27 2022-09-01 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 리튬 이차 전지
KR101995373B1 (ko) * 2016-07-04 2019-09-24 주식회사 엘지화학 이차 전지용 음극
JP7241287B2 (ja) * 2017-07-27 2023-03-17 パナソニックIpマネジメント株式会社 正極活物質、および、電池
CN109461964B (zh) * 2017-09-06 2021-06-08 宁德时代新能源科技股份有限公司 一种锂离子二次电池
KR102557446B1 (ko) * 2017-11-07 2023-07-18 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
JPWO2020105196A1 (ja) * 2018-11-22 2021-10-07 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
KR102657553B1 (ko) * 2019-06-27 2024-04-12 주식회사 엘지에너지솔루션 특정한 조성 조건을 가지는 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
KR20210123480A (ko) * 2020-04-03 2021-10-14 주식회사 엘지에너지솔루션 이차전지용 음극 및 이를 포함하는 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102224623A (zh) * 2009-08-05 2011-10-19 松下电器产业株式会社 非水电解质二次电池
CN103518279A (zh) * 2011-05-13 2014-01-15 三菱化学株式会社 非水系二次电池用碳材料、使用该碳材料的负极及非水系二次电池
CN107785535A (zh) * 2016-08-26 2018-03-09 株式会社Lg 化学 用于锂二次电池的负极和包含它的锂二次电池
CN108701816A (zh) * 2016-09-29 2018-10-23 株式会社Lg化学 包括天然石墨和人造石墨的多层负极以及包括该多层负极的锂二次电池
CN109704323A (zh) * 2017-10-26 2019-05-03 宁德时代新能源科技股份有限公司 一种电极材料及二次电池
KR20190090497A (ko) * 2018-01-25 2019-08-02 주식회사 엘지화학 음극 및 상기 음극을 포함하는 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3958352A4 *

Also Published As

Publication number Publication date
JP2023504472A (ja) 2023-02-03
KR20220092941A (ko) 2022-07-04
CN113875048B (zh) 2024-01-23
US20220102710A1 (en) 2022-03-31
EP3958352B1 (en) 2023-01-25
EP3958352A1 (en) 2022-02-23
CN113875048A (zh) 2021-12-31
JP7428800B2 (ja) 2024-02-06
EP3958352A4 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
WO2021217576A1 (zh) 二次电池、其制备方法及含有该二次电池的装置
WO2021217587A1 (zh) 二次电池、其制备方法及含有该二次电池的装置
WO2021217635A1 (zh) 二次电池、其制备方法及含有该二次电池的装置
WO2022077371A1 (zh) 二次电池、其制备方法、及其相关的电池模块、电池包和装置
US11322739B2 (en) Secondary battery, method for manufacturing the same, and apparatus containing the same
WO2021196141A1 (zh) 二次电池及含有该二次电池的装置
WO2021217585A1 (zh) 二次电池、其制备方法及含有该二次电池的装置
WO2024020964A1 (zh) 二次电池、其制备方法及含有该二次电池的装置
WO2021217586A1 (zh) 二次电池及其制备方法、含有该二次电池的装置
WO2023122958A1 (zh) 二次电池及含有其的用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020932863

Country of ref document: EP

Effective date: 20211116

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532138

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227018356

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE