WO2021215855A1 - 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 재조합 혈구응집소 단백질 및 이의 용도 - Google Patents

삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 재조합 혈구응집소 단백질 및 이의 용도 Download PDF

Info

Publication number
WO2021215855A1
WO2021215855A1 PCT/KR2021/005119 KR2021005119W WO2021215855A1 WO 2021215855 A1 WO2021215855 A1 WO 2021215855A1 KR 2021005119 W KR2021005119 W KR 2021005119W WO 2021215855 A1 WO2021215855 A1 WO 2021215855A1
Authority
WO
WIPO (PCT)
Prior art keywords
influenza virus
protein
recombinant
trimer
derived
Prior art date
Application number
PCT/KR2021/005119
Other languages
English (en)
French (fr)
Inventor
황인환
이준호
하이핑디아오
송시지엔
김외연
김민갑
류경렬
신경임
송창선
이지호
김덕환
Original Assignee
포항공과대학교 산학협력단
주식회사 바이오앱
경상국립대학교산학협력단
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200170828A external-priority patent/KR102571164B1/ko
Application filed by 포항공과대학교 산학협력단, 주식회사 바이오앱, 경상국립대학교산학협력단, 건국대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to JP2022562078A priority Critical patent/JP2023521183A/ja
Priority to EP21793579.0A priority patent/EP4141121A4/en
Priority to CN202180028258.0A priority patent/CN115715326A/zh
Priority to US17/995,872 priority patent/US20230173055A1/en
Publication of WO2021215855A1 publication Critical patent/WO2021215855A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • C12N15/8258Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon for the production of oral vaccines (antigens) or immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/521Bacterial cells; Fungal cells; Protozoal cells inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/523Bacterial cells; Fungal cells; Protozoal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55544Bacterial toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16151Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16171Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/46Streptococcus ; Enterococcus; Lactococcus

Definitions

  • the present invention relates to a recombinant hemagglutinin (HA) protein derived from an influenza virus surface protein that forms a trimer and uses thereof, and specifically, a recombinant vector for producing an HA protein derived from an influenza virus surface protein that forms a trimer , a transformant transformed with the recombinant vector, a method for producing an influenza virus surface protein-derived HA protein forming a trimer using the recombinant vector, and an influenza virus surface protein-derived HA protein forming a trimer produced by the method It relates to a protein and its use for preventing, ameliorating or treating influenza virus-infected diseases.
  • HA hemagglutinin
  • the first and most important technology is the development of an expression vector capable of inducing high gene expression in plants.
  • gene expression can be induced through various methods.
  • Various methods are possible, such as a method of integrating a recombinant gene into the genome of a plant, a method of fusion with the genome of a chloroplast, and a method of transiently expressing a gene using agrobacterium.
  • the method of fusing a recombinant gene with the nuclear genome or the chloroplast genome basically produces a protein in a plant through the process of securing a transformant.
  • Influenza virus is an RNA virus belonging to the family Orthomyxoviridae, which causes inflammation in the respiratory tract, is transmitted directly into the air through coughing and saliva of an infected person, or indirectly by contact with an influenza patient. It is a highly contagious virus that can be transmitted to others. The incubation period is about 24 to 30 hours, and the serotypes of the virus are divided into type A, type B and type C. Among them, type B and type C infection is confirmed only in humans, and type A infection has been confirmed in humans, horses, pigs, other mammals, and various kinds of poultry and wild birds. Therefore, it is necessary to develop a vaccine for preventing infection of the influenza virus having such a strong infectious power.
  • Recombinant protein antigens as vaccines have excellent safety in production and utilization, but have low immunogenicity and generally high production costs compared to live virus-based vaccines. Therefore, in order to increase the efficacy as a vaccine using this highly safe recombinant protein, it is essential to develop a delivery technology for a recombinant protein vaccine capable of inducing various immune responses and inducing a high immune response. In addition, if it can deliver not only one type of antigen but also multiple types of antigens at the same time, it may be a more effective vaccine. In fact, the recent trend is to develop several types of antigens as a single injection. The most effective way to increase the immunogenicity of an antigen is to use a strong adjuvant.
  • the efficacy of the adjuvant is high, it is possible to effectively induce an immune response even with a small amount of antigen, thereby lowering the price of the vaccine.
  • different types of adjuvants can induce different immune responses, it is very important to use an appropriate adjuvant depending on the type of antigen.
  • injection adjuvants such as aluminum hydroxide have been developed and used in the human body, and cholera toxin B subunit (CTB) is used for oral vaccines.
  • CTB cholera toxin B subunit
  • animals such as livestock
  • CTB cholera toxin B subunit
  • Freund's complete adjuvant for mice is widely used. However, it is not yet clear how they enhance the immunogenicity of antigens in humans, livestock and laboratory animals.
  • Lactococcus (Lactococcus) is considered to be safe for the human body as a bacterium that has secured 'generally recognized as safe (GRAS) status' by the US Food and Drug Administration (FDA). It is being developed as an oral adjuvant and antigen delivery agent. Since bacteria themselves are very antigenic, it has been reported that they show a very high immune response to the antigens delivered by the bacteria.
  • the full-length protein of hemagglutinin (HA) is a membrane-bound form having a transmembrane domain, and it is difficult to produce at a high level in cells.
  • HA hemagglutinin
  • ectodomain is expressed except for the transmembrane domain of HA, it is made in a soluble form in the cell and can be produced with high efficiency.
  • the trimeric form of the original full-length HA when it is present on the surface of the influenza virus is not well made.
  • HA ectodomain recombination so that the thus-produced protein has the ability to bind to peptidoglycan so that the antigen can be delivered in various ways by binding a gene capable of binding to the surface of lactococcus or chitosan particles, etc.
  • the protein was designed. A binary vector was constructed to allow high expression of the recombinant gene of HA produced in this way in plants.
  • the treatment effect was confirmed as a result of treating the influenza virus-infected mouse with the HA recombinant protein highly expressed in the plant, and furthermore, the HA recombinant protein antigen and Lactococcus having a GRAS state, which is known to significantly increase the immune response
  • the HA recombinant protein antigen and Lactococcus having a GRAS state which is known to significantly increase the immune response
  • the present invention has been devised to solve the above problems, and an object of the present invention is (i) a gene encoding a protein lacking a transmembrane protein portion in influenza virus-derived hemagglutinin (HA); And (ii) to provide a recombinant vector for producing a recombinant HA protein derived from influenza virus that forms a trimer comprising a gene encoding a protein of a trimeric motif region of Coronin 1.
  • HA hemagglutinin
  • Another object of the present invention is to provide a recombinant vector for producing a recombinant HA protein derived from influenza virus that forms a trimer, in which a gene encoding a protein of the LysM domain is further inserted into the aforementioned recombinant vector.
  • Another object of the present invention is to provide a method for producing a recombinant HA protein derived from an influenza virus that forms a trimer in a plant comprising the steps of:
  • Another object of the present invention is to provide a recombinant HA protein derived from influenza virus that forms a trimer produced by the method described above.
  • Another object of the present invention is to provide a vaccine composition for preventing or treating influenza virus infection disease with increased immunogenicity comprising a recombinant HA protein derived from influenza virus forming the above-mentioned trimer.
  • Another object of the present invention is to provide a vaccine composition for the prevention or treatment of influenza virus infection disease with increased immunogenicity comprising bacteria or chitosan coated with recombinant HA protein derived from influenza virus forming the above-mentioned trimer.
  • Another object of the present invention is to provide a vaccine composition for preventing or treating influenza virus-infected diseases with increased immunogenicity, in which the above-described vaccine composition further contains a cholera toxin B subunit.
  • Another object of the present invention is to provide a vaccine composition for preventing or treating influenza virus infection diseases of different genotypes with increased immunogenicity comprising two or more different influenza virus-derived recombinant HA proteins, which form the above-mentioned trimer.
  • Another object of the present invention is to provide a method for preventing or treating influenza virus infection, comprising administering the various types of vaccine compositions described above to an individual in need thereof.
  • the present invention provides (i) a gene encoding a protein lacking a transmembrane protein portion in influenza virus-derived HA; And (ii) it provides a recombinant vector for producing a recombinant hemagglutinin (HA) protein derived from influenza virus that forms a trimer comprising a gene encoding a protein of a trimeric motif region of Coronin 1.
  • HA hemagglutinin
  • influenza virus may be any one or more selected from the group consisting of influenza A viruses H5N6, H7N9 and H9N2.
  • the protein lacking the transmembrane protein portion in the influenza virus-derived HA may include the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence of SEQ ID NO: 18.
  • the gene encoding the protein lacking the transmembrane protein portion in the influenza virus-derived HA may include the nucleotide sequence of SEQ ID NO: 1 or the nucleotide sequence of SEQ ID NO: 17.
  • the protein of the trimeric motif region of Coronin 1 may include the amino acid sequence of SEQ ID NO: 4.
  • the gene encoding the protein of the trimeric motif region of Coronin 1 may include the nucleotide sequence of SEQ ID NO: 3.
  • a gene encoding a protein of the LysM domain may be further inserted into the aforementioned recombinant vector.
  • the protein of the LysM domain may include the amino acid sequence of SEQ ID NO: 14.
  • the gene encoding the protein of the LysM domain may include the nucleotide sequence of SEQ ID NO: 13.
  • the recombinant vector is a 35S promoter derived from cauliflower mosaic virus, a 19S RNA promoter derived from cauliflower mosaic virus, and a Mac promoter ( Mac promoter), may further include any one promoter selected from the group consisting of plant actin protein promoter and ubiquitin protein promoter.
  • the present invention also provides a transformant transformed with the aforementioned recombinant vector.
  • the transformant may be a prokaryote or a eukaryote.
  • the present invention provides a method for producing a recombinant HA protein derived from an influenza virus that forms a trimer in a plant, comprising the steps of: and a recombinant HA protein derived from an influenza virus that forms a trimer produced therefrom.
  • the present invention provides a vaccine composition for the prevention or treatment of influenza virus infection disease with increased immunogenicity, comprising the recombinant HA protein derived from influenza virus forming the above-mentioned trimer.
  • the recombinant HA protein derived from influenza virus forming the trimer may be coated on the surface of bacteria or chitosan containing peptidoglycan on the cell wall.
  • the bacterium including peptidoglycan in the cell wall may be a bacterium in a generally recognized as safe (GRAS) state.
  • GRAS generally recognized as safe
  • the vaccine composition may further include a cholera toxin B subunit.
  • the vaccine composition may be in the form of an injection.
  • the present invention provides a vaccine composition for preventing or treating influenza virus infection diseases of different genotypes with increased immunogenicity, comprising two or more different influenza virus-derived recombinant HA proteins that form the above-mentioned trimer. to provide.
  • the recombinant HA protein derived from two or more different influenza viruses forming the trimer is any one or more influenza virus-derived HA proteins selected from the group consisting of H5N6, H7N9 and H9N2.
  • two or more different recombinant HA proteins derived from influenza virus, which form the trimer may be coated on the surface of bacteria or chitosan containing peptidoglycan on the cell wall.
  • the bacterium including peptidoglycan in the cell wall may be a bacterium in a generally recognized as safe (GRAS) state.
  • GRAS generally recognized as safe
  • two or more different influenza virus-derived recombinant HA proteins which form the trimer, are added to the cell wall by any one of the following methods (i) to (iii).
  • the vaccine composition may further include a cholera toxin B subunit.
  • the present invention provides a method for preventing or treating influenza virus infection, comprising administering the above-described various types of vaccine compositions to an individual in need thereof.
  • Influenza virus-derived recombinant HA protein forming a trimer of the present invention is a protein of the ectodomain region lacking a transmembrane protein in HA derived from highly pathogenic influenza A virus H5N6, a trimeric motif of Coronin A in mice and LysM domain, which is a cell wall binding domain of a LysM peptidoglycan-binding domain-containing protein of Lactococcus lactis, can be prepared in large quantities in plants, and increases immunity by forming a trimer, and increases immunity with Lactococcus.
  • the antigen can be effectively delivered by binding to or coated with the same bacteria or chitosan particles.
  • mice infected with influenza virus with the HA recombinant protein highly expressed in the plant As a result of treating mice infected with influenza virus with the HA recombinant protein highly expressed in the plant, a therapeutic effect was shown, and the cholera toxin B subunit, which is known to significantly increase the antigen and immune response of the HA recombinant protein, was added to the GRAS state. Lactococcus with . Furthermore, the HA trimer of soluble H5N6, HA trimer of soluble H9N2, or the HA trimer of soluble H9N2 according to the present invention were coated on the surface of the Lactococcus dead cells and treated with an injectable vaccine to chickens infected with influenza virus, resulting in a high immune effect.
  • CTB cholera toxin B subunit
  • water-soluble H5N6 HA trimer and water-soluble H9N2 HA trimer were coated on Lactococcus dead cells, respectively, and the result of hemagglutination analysis using an immune composition prepared by mixing them included CTB It was confirmed that CTB had the effect of enhancing immunogenicity by increasing hemagglutination in the group.
  • a vaccine composition prepared by mixing the Lactococcus dead cells coated with the HA trimer of H5N6 and the Lactococcus cells coated with the HA trimer of H9N2 in a ratio of 1:1, the results of immunogenicity were showed an increasing effect.
  • the vaccine composition prepared by mixing the HA trimer of H5N6 and the HA trimer of H9N2 in a 1:1 ratio and then coating it on the Lactococcus dead cells also showed an effect of increasing immunogenicity as a result of immunization in mice. Accordingly, by coating several different types of antigens on dead Lactococcus cells and mixing them, or by simultaneously mixing several different types of antigens and then coating them on dead Lactococcus cells, or by using the above two methods together, Immunogenicity can be effectively enhanced by simultaneous delivery of multiple antigens.
  • FIGS. 1A and 1B are schematic diagrams showing the construction of a recombinant vector used to produce a recombinant HA protein derived from influenza virus forming a trimer according to the present invention.
  • Figure 2a shows the result of performing Western blot analysis using an anti-His antibody after separating the protein expressed in Nicotiana benthamiana (Nicotiana benthamiana) by SDS / PAGE.
  • Figure 2b shows the results of SDS/PAGE separation of the protein expressed in Nicotinia benthamiana and then staining with Coomassie brilliant blue.
  • FIG. 3a and 3b show the results of confirming that mH5N6 and tH5N6 form a monomer and a trimer, respectively, using gel filtration column chromatography.
  • FIG. 3a is a gel It shows the result of fractionation through filtration column chromatography
  • FIG. 3b shows the result of performing Western blot analysis using an anti-His antibody after developing the fraction corresponding to each peak by SDS/PAGE. .
  • FIG. 3c and 3d show the results of confirming that mH9N2 and tH9N2 form a monomer and a trimer, respectively, using gel filtration column chromatography. Specifically, FIG. 3c shows the gel The results of fractionation through filtration column chromatography are shown, and FIG. 3d shows the results of performing Western blot analysis using an anti-His antibody after developing the fraction corresponding to each peak by SDS/PAGE. .
  • FIG. 4a and 4b confirm the trimer effect of mCor1 on the binding of LysM to Lactococcus lactis.
  • FIG. 4a shows GFP-LysM and GFP-mCor-LysM after each binding to Lactococcus, This was developed by SDS/PAGE, showing the results of Western blot analysis and staining with Coomassie Brilliant Blue. shows the results of observation.
  • H5N6 a HA monomer
  • tH5N6 a trimer of H5N6 prepared in Nicotiana benthamiana leaf cells after binding to Lactococcus treated with TCA, which was developed by SDS/PAGE Shows the results of staining with Coomassie Brilliant Blue.
  • Figure 6a shows a dosing schedule for confirming the immunogenic response of mice to soluble tHA and tHA coated on the Lactococcus surface.
  • Figure 6b shows the results of measuring the immunogenic response of mice to soluble tHA and tHA coated on the Lactococcus surface by ELISA.
  • 7a and 7b show the results of analyzing the degree of inhibition of hemagglutination by soluble tHA and tHA coated on the surface of Lactococcus.
  • Figure 8a shows the results of an antibody induction experiment using PBS, Lactococcus dead cells, soluble H5N6 HA trimer, and H5N6 HA trimer coated on the surface of Lactococcus as an antigen for chickens.
  • Figure 8b shows the results of an antibody induction experiment using PBS, lactococcus dead cells, soluble H9N2 HA trimer, and H5N6 HA trimer coated on the surface of Lactococcus as antigens for chickens.
  • FIG. 9 shows the results of confirming immunogenicity by mixing Lactococcus coated with cholera toxin B subunit (CTB), HA trimer of soluble H5N6, and HA trimer of soluble H9N2, respectively.
  • CTB cholera toxin B subunit
  • 10 is a vaccine composition prepared by mixing Lactococcus coated with an HA trimer of H5N6 and Lactococcus coated with an HA trimer of H9N2 at a ratio of 1:1. Shows the results of confirming strong immunogenicity against the antigen.
  • FIG. 11 shows a vaccine composition prepared by mixing the HA trimer of H5N6 and the HA trimer of H9N2 in a 1:1 ratio and coating it on Lactococcus, and then immunizing mice with strong immunogenicity against two types of antigens. shows the results of checking .
  • the full-length protein of influenza virus-derived hemagglutinin (HA) is a membrane-bound form having a transmembrane domain, and it is difficult to produce at a high level in cells. have. Accordingly, in order to increase the production level, if only the ectodomain is expressed except for the transmembrane domain of HA and made into a soluble form in the cell, there is an advantage that it can be produced with high efficiency.
  • the trimeric form of the original full-length HA is not well made when it is present on the surface of the influenza virus.
  • the present inventors tried to develop a technique for inducing the formation of a trimer when expressing and producing a recombinant protein of the ectodomain of HA in plants for the purpose of use as a vaccine with increased immunogenicity.
  • the protein thus produced has the ability to bind to peptidoglycan, it binds to a gene capable of binding to the surface of lactococcus or chitosan particles, etc.
  • HA ecto capable of delivering antigens in various ways To develop a domain recombinant protein.
  • HA expressing only the ectodomain excluding the transmembrane domain of influenza virus-derived HA that can be mass-produced, the trimeric motif of Coronin A in mice forming a trimeric structure and Lactococcus or Influenza virus-derived recombinant HA that forms a trimer by designing a Lactococcus lactis LysM peptidoglycan-binding domain-containing protein that binds to the surface of chitosan particles and effectively delivers an antigen and expresses it in one vector A protein and a binary vector capable of expressing the protein in a large amount in plants were constructed.
  • the first aspect of the present invention is (i) a gene encoding a protein lacking a transmembrane protein portion in influenza virus-derived hemagglutinin (HA); And (ii) it relates to a recombinant vector for producing a recombinant hemagglutinin (HA) protein derived from an influenza virus that forms a trimer, comprising a gene encoding a protein of a trimeric motif region of Coronin 1.
  • influenza virus includes, without limitation, various types of influenza viruses that infect humans, dogs, pigs, horses, poultry, wild birds, seals, etc., and conventionally known influenza virus types A and B. , type C, Isavirus or Thogotovirus.
  • Influenza virus type A is the cause of seasonal flu and pandemic flu epidemics. Wild aquatic algae are natural hosts for a wide variety of influenza A. Occasionally, the virus can spread to other species, causing devastating outbreaks in poultry or human influenza pandemics. Type A virus is the most lethal human pathogen of the three influenza types and causes the most serious disease. Influenza A viruses can be subdivided into different serotypes based on antibody responses to these viruses.
  • H1N1 cause of the 1918 Spanish influenza
  • H2N2 the cause of the 1957 Asian influenza
  • H3N2 the cause of the 1968 Hong Kong flu
  • H5N1 pandemic threat during the 2007-2008 influenza season
  • H7N7 potential pandemic threat
  • H1N2 endemic in humans and pigs
  • H9N2, H7N2, H7N3 and H10N7 are: H1N1 (cause of the 1918 Spanish influenza), H2N2 (the cause of the 1957 Asian influenza), and H3N2 (the cause of the 1968 Hong Kong flu): cause
  • H5N1 pandemic threat during the 2007-2008 influenza season
  • H7N7 potential pandemic threat
  • H1N2 endemic in humans and pigs
  • H9N2, H7N2, H7N3 and H10N7 H9N2, H7N2, H7N3 and H10N7.
  • Influenza virus type B is the cause of seasonal flu and has one type of influenza B virus. Influenza B infects humans almost exclusively and is less common than influenza A. The only other animal known to be susceptible to infection with influenza virus type B is the seal. Because this type of influenza mutates at a rate that is two to three times slower than type A, it is less genetically diverse and has only one influenza B serotype. As a result of this lack of antigenic diversity, some degree of immunity to influenza B is usually acquired at an early age, but influenza B is mutated sufficiently to prevent sustained immunity.
  • Influenza virus type C infects humans and pigs and can cause serious illness and local infectious diseases, but is less common than other types and appears to usually cause mild illness in children.
  • influenza A virus for example, may be any one selected from the group consisting of H5N6, H7N9 and H9N2, but is not limited thereto.
  • a recombinant HA protein to form a trimer was prepared using HA proteins derived from influenza A viruses H5N6 and H9N2.
  • the amino acid sequence encoding only the ectodomain that is, the 17th to the 17th of H5N6 HA (GenBank: AJD09950.1)
  • the amino acid sequence containing the amino acid residue at position 531 and the amino acid sequence containing the amino acid residue at positions 19 to 524 of HA of H9N2 (GenBank: AFM47147.1) were each selectively used.
  • the recombinant vector according to the present invention selects various amino acid sequences in the region consisting of amino acid residues from positions 17 to 531 of HA of H5N6 (GenBank: AJD09950.1) in order to produce a recombinant HA protein that forms a trimer.
  • various amino acid sequences of the region consisting of amino acid residues from positions 19 to 524 of H9N2 HA can be selectively used.
  • the protein lacking the transmembrane protein portion in the influenza virus-derived hemagglutinin may include the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence of SEQ ID NO: 18, but is not limited thereto.
  • the gene encoding the protein lacking the transmembrane protein portion in the influenza virus-derived HA may include the nucleotide sequence of SEQ ID NO: 1 or the nucleotide sequence of SEQ ID NO: 17, specifically, the gene is the nucleotide sequence of SEQ ID NO: 1 or Each of the nucleotide sequence of SEQ ID NO: 17 and 70% or more, more preferably 80% or more, even more preferably 90% or more, and most preferably may include a nucleotide sequence having sequence homology of 95% or more.
  • the "% of sequence homology" for a polynucleotide is determined by comparing two optimally aligned sequences with a comparison region, and a portion of the polynucleotide sequence in the comparison region is a reference sequence (addition or deletion of additions or deletions) to the optimal alignment of the two sequences. may include additions or deletions (ie, gaps) compared to (not including).
  • the Coronin 1 may be mouse-derived Coronin 1 (mCor 1) (GenBank: EDL17419.1), and the protein of its trimeric motif region is the amino acid sequence of SEQ ID NO: 4 may include.
  • Coronin 1 (mCor 1) is linked to the C-terminus of the ectodomain of influenza virus-derived HA, so that a trimer can be formed even when only the ectodomain of HA is expressed.
  • the gene encoding the protein of the trimeric motif region of Coronin 1 may include the nucleotide sequence of SEQ ID NO: 3.
  • the gene includes a nucleotide sequence having a sequence homology of 70% or more, more preferably 80% or more, even more preferably 90% or more, and most preferably 95% or more to the nucleotide sequence of SEQ ID NO: 3.
  • the recombinant vector of the present invention may further include a gene encoding a protein of the LysM domain.
  • the protein of the LysM domain may include the amino acid sequence of SEQ ID NO: 14, and the gene encoding the protein of the LysM domain may include the nucleotide sequence of SEQ ID NO: 13, specifically
  • the gene may include a nucleotide sequence having at least 70%, more preferably at least 80%, even more preferably at least 90%, and most preferably at least 95% sequence homology to the nucleotide sequence of SEQ ID NO: 13, respectively. have.
  • a protein lacking a transmembrane protein portion and a recombinant HA protein comprising a protein of a trimeric motif portion of Coronin 1 promote various immune effects and for effective antigen delivery , from positions 220 to 320 of the LysM domain (GenBank: WP_011834353), which is a cell wall binding domain of a LysM peptidoglycan-binding domain-containing protein of Lactococcus lactis, capable of binding to bacteria such as Lactococcus or chitosan particles of amino acid residues (a total of 101 amino acid residues) were fused to the C-terminus of the trimeric motif of Coronin 1 (mCor1) using a linker having 6 amino acid residues.
  • LysM domain GenBank: WP_011834353
  • FIG. 1A a His tag having 6 His residues was fused for isolation and purification of the recombinant protein, and an HDEL motif was fused for ER accumulation to complete the construct tHA ( FIG. 1A ).
  • FIG. 1B a construct mHA without the trimer motif of mCor1 was constructed and compared ( FIG. 1B ).
  • the recombinant genes of HA thus constructed were introduced into a plant expression vector, pTEX1, to prepare a plant expression vector (pTEX-tHA and pTEX-mHA, respectively). Thereafter, the prepared expression vectors were introduced into Agrobacterium, and then infiltrated into plants to induce transient expression.
  • the expressed recombinant HA protein can be separated by a Ni 2+ -NTA affinity column using a His tag or by binding to Lactococcus using a LysM domain.
  • HA-LysM-His-HDEL was identified as a protein at a position of about 80 kDa. This is larger than the computational protein position, and is thought to be due to N-glycosylation of the HA protein.
  • tHA is slightly larger than mHA.
  • mHA in a monomer form and tHA in a trimeric form were mixed and gel filtration was performed.
  • FIG. 3a two peaks appeared, and a western blot was performed on the fraction corresponding to each of these peaks using an anti-His antibody, as shown in FIG. 3b .
  • the protein of the peak corresponding to the trimer was identified as tHA, and the peak corresponding to the monomer was identified as the mHA protein.
  • GFP-mCor1-LysM His-tagged GFP-mCor1-LysM (GFP-mCor1-LysM) using GFP as a control protein.
  • the construct and His-tagged GFP-LysM (GFP-LysM) construct were prepared and introduced into pRSET-A, an E. coli expression vector, to construct an expression vector capable of expression in E. coli.
  • the proteins GFP-mCor1-LysM and GFP-LysM were expressed in E. coli, separated and purified, and the degree of binding to Lactococcus was observed under a fluorescence microscope. As a result, as shown in FIG. 4 , it was confirmed that GFP-mCor1-LysM had higher GFP expression than GFP-LysM.
  • the trimerization effect by mCor1 was confirmed.
  • a total extract was obtained by grinding the leaf tissue of Nicotiana benthamiana expressing mHA (mH5N6) in the monomeric form and tHA (tH5N6) in the trimeric form to obtain a total extract, which was mixed with Lactococcus treated with TCA to achieve binding.
  • Lactococcus was pelleted and recovered therefrom, then developed by SDS/PAGE and stained with Coomassie Brilliant Blue. As a result, as shown in FIG.
  • the recombinant vector of the present invention comprises a 35S promoter derived from cauliflower mosaic virus, a 19S RNA promoter derived from cauliflower mosaic virus, a Mac promoter, a plant actin protein promoter, and It may further include any one promoter selected from the group consisting of ubiquitin protein promoter, preferably it may include a Mac promoter (Mac promoter), more preferably it may include a MacT promoter (MacT promoter). However, it is not limited thereto.
  • the MacT promoter may be a promoter in which A, which is the 3' terminal base of the Mac promoter base sequence, is substituted with T, and the MacT promoter may include the base sequence of SEQ ID NO: 15, and specifically, the gene is of SEQ ID NO: 15 It may include a nucleotide sequence having sequence homology of 70% or more, more preferably 80% or more, even more preferably 90% or more, and most preferably 95% or more to the nucleotide sequence.
  • the recombinant vector of the present invention may further include an RD29B-t termination site, and the RD29B-t termination site gene may include the nucleotide sequence of SEQ ID NO: 16, and specifically, the gene is the nucleotide sequence of SEQ ID NO: 16 and 70% or more, more preferably 80% or more, even more preferably 90% or more, and most preferably 95% or more.
  • the recombinant vector of the present invention by inserting the signal sequence (signal sequence) of BiP (chaperone binding protein) and HDEL, which is an ER retention signal, respectively at the N- and C-terminus of the gene encoding the recombinant protein. , may have the effect of inducing accumulation in the ER (endoplasmic reticulum) at high concentrations.
  • the recombinant vector of the present invention may further include a gene encoding a BiP and/or a gene encoding a HDEL (His-Asp-Glu-Leu) peptide, wherein the BiP-encoding gene is SEQ ID NO: 9 It may include a nucleotide sequence, and HDEL (His-Asp-Glu-Leu) may include the nucleotide sequence of SEQ ID NO: 10.
  • the term "recombinant” refers to a cell in which the cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a heterologous peptide, or a protein encoded by the heterologous nucleic acid.
  • Recombinant cells can express genes or gene segments that are not found in the native form of the cell in either the sense or antisense form.
  • Recombinant cells can also express genes found in cells in a natural state, but the genes are modified and re-introduced into cells by artificial means.
  • recombinant expression vector means a bacterial plasmid, phage, yeast plasmid, plant cell virus, mammalian cell virus or other vector. In general, any plasmid and vector can be used as long as they can be replicated and stabilized in the host. An important characteristic of the expression vector is that it has an origin of replication, a promoter, a marker gene and a translation control element.
  • the recombinant expression vector and the expression vector containing appropriate transcriptional/translational control signals can be constructed by methods well known to those skilled in the art. The method includes in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombination technology.
  • a preferred example of the recombinant vector of the present invention is a Ti-plasmid vector capable of transferring a part of itself, the so-called T-region, into a plant cell when present in a suitable host.
  • Another type of Ti-plasmid vector is currently being used to transfer hybrid DNA sequences into plant cells, or protoplasts from which new plants can be produced that properly insert the hybrid DNA into the genome of the plant.
  • a particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0 120 516 B1 and US Pat. No. 4,940,838.
  • Suitable vectors that can be used to introduce into a plant host a construct encoding a recombinant HA protein derived from an influenza virus to form a trimer designed in the present invention include double-stranded plant viruses (e.g., CaMV) and single-stranded. It may be selected from viral vectors such as those derived from viruses, gemini viruses, etc., for example, incomplete plant viral vectors. The use of such vectors can be advantageous, especially when it is difficult to adequately transform a plant host.
  • double-stranded plant viruses e.g., CaMV
  • viral vectors such as those derived from viruses, gemini viruses, etc., for example, incomplete plant viral vectors.
  • the use of such vectors can be advantageous, especially when it is difficult to adequately transform a plant host.
  • a second aspect of the present invention relates to a transformant transformed with the aforementioned recombinant vector.
  • the transformant of the present invention may be a prokaryote or a eukaryote, for example, yeast (Saccharomyce cerevisiae), fungi such as E. coli, insect cells, human cells (eg, CHO cell line (Chinese hamster ovary), W138, BHK) , COS-7, 293, HepG2, 3T3, RIN and MDCK cell lines) and plant cells may be used, preferably Agrobacterium.
  • yeast Sacharomyce cerevisiae
  • fungi such as E. coli
  • insect cells eg, human cells (eg, CHO cell line (Chinese hamster ovary), W138, BHK) , COS-7, 293, HepG2, 3T3, RIN and MDCK cell lines
  • human cells eg, CHO cell line (Chinese hamster ovary), W138, BHK) , COS-7, 293, HepG2, 3T3, RIN and MDCK cell lines
  • the method of delivering the recombinant vector of the present invention into a host cell when the host cell is a prokaryotic cell, can be carried out by CaCl 2 method, Hanhan method, electroporation method, and the like.
  • the vector when the host cell is a eukaryotic cell, the vector may be injected into the host cell by microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, DEAE-dextran treatment, and gene bombardment.
  • a third aspect of the present invention relates to a method for producing a recombinant HA protein from an influenza virus that forms a trimer in a plant, comprising the steps of:
  • step (c) is known in the art for producing a recombinant HA protein derived from an influenza virus forming a trimer of the present invention. Any method can be appropriately selected and used.
  • step (d) is, for example, a chemical cell method, vacuum or syringe infiltration method by culturing the transformant. It may be carried out by infiltrating the culture into the plant, and preferably by infiltrating it by a syringe infiltration method, but is not limited thereto.
  • the plant of step (d) includes rice, wheat, barley, corn, soybean, potato, wheat, red bean, oat, and sorghum.
  • vegetable crops including Arabidopsis thaliana, Chinese cabbage, radish, red pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion and carrot; special crops including ginseng, tobacco, cotton, sesame, sugar cane, sugar beet, perilla, peanut, and rapeseed; fruit trees including apple trees, pear trees, dates, peaches, grapes, tangerines, persimmons, plums, apricots and bananas; It may be selected from flowers including roses, carnations, chrysanthemums, lilies, and tulips.
  • a fourth aspect of the present invention relates to a recombinant HA protein derived from influenza virus that forms a trimer produced by the above-described production method and a vaccine composition for preventing, improving or treating influenza virus infection disease with increased immunogenicity comprising the same. .
  • the recombinant HA protein derived from influenza virus forming the trimer may be coated on the surface of bacteria or chitosan containing peptidoglycan on the cell wall.
  • the bacterium containing peptidoglycan in the cell wall may be a bacterium in a generally recognized as safe (GRAS) state, for example, Lactococcus, Lactobacillus, Streptococcus Cogus (Streptococcus) and the like, but is not limited thereto.
  • GRAS generally recognized as safe
  • one or two or more different recombinant HA proteins were coated on the surface of Lactococcus lactis in various ways to effectively deliver antigens.
  • the recombinant HA protein derived from two or more different kinds of influenza virus which forms the trimer of the present invention, comprises peptidoglycan in the cell wall by any one of the following methods (i) to (iii). It can be coated on the surface of bacteria or chitosan:
  • the vaccine composition of the present invention may be prepared by separately coating Lactococcus with two or more different influenza virus-derived recombinant HA proteins that form a trimer, and then using the same Lactococcus coated with different HA recombinant proteins.
  • a single vaccine composition may be prepared by mixing two or more different influenza virus-derived recombinant HA proteins in the same ratio or in any suitable ratio, and then coating the Lactococcus surface.
  • a Lactococcus bacterium coated with two or more different influenza virus-derived recombinant HA proteins is mixed with another Lactococcus bacterium coated with another two or more kinds of influenza virus-derived recombinant HA protein to deliver multiple antigens.
  • Vaccine compositions can be prepared.
  • the recombinant HA protein derived from two or more different influenza viruses included in the vaccine composition of the present invention is a known conventional influenza virus type A, type B, type C, isavirus (Isavirus) and togotovirus (Thogotovirus). ) may be derived from one or two or more selected from the group consisting of.
  • the influenza A virus for example, may be any one or more or two or more selected from the group consisting of H5N6, H7N9 and H9N2, but is not limited thereto.
  • the vaccine composition of the present invention may further comprise a cholera toxin B subunit.
  • the vaccine composition of the present invention may be in the form of an injection, but is not limited thereto.
  • influenza virus infection disease includes acute respiratory disease caused by influenza virus type A, B or C infection or clinical symptoms and complications thereof.
  • Clinical symptoms due to acute respiratory disease caused by influenza virus infection include, for example, respiratory symptoms such as high fever (about 38 to 40°C), dry cough, sore throat, and systemic symptoms such as headache, muscle pain, fatigue, weakness, and loss of appetite. There is this.
  • the most common complications are secondary respiratory diseases, such as upper respiratory tract infections such as sinusitis and otitis media, as well as neurological complications such as encephalitis, myelitis, Guillain-Barré syndrome, transverse myelitis, myocarditis, myositis, and pneumothorax.
  • prevention refers to any action that inhibits or delays the onset of a disease or condition, all actions that improve or beneficially change the disease or condition state, and the progression of the disease or condition means any action that delays, stops or reverses
  • the vaccine composition of the present invention may be composed of an antigen, a pharmaceutically acceptable carrier, an appropriate adjuvant, and other conventional substances, and is administered in an immunologically effective amount.
  • immunologically effective amount refers to an amount sufficient to induce an immune response, but not to cause side effects or serious or excessive immune response, and the exact dosage concentration is It depends on the particular immunogen and can be determined by one of ordinary skill in the art using known methods to test the development of an immune response. In addition, it may change depending on the dosage form and route, the age, health and weight of the recipient, the nature and severity of symptoms, the type of current treatment, and the number of treatments.
  • Carriers are known in the art and may include stabilizers, diluents, and buffers.
  • Suitable stabilizers include carbohydrates such as sorbitol, lactose, mannitol, starch, sugar, dextran and glucose; proteins such as albumin or casein.
  • Suitable diluents include salts, Hanks balanced salts, Ringer's solution, and the like.
  • Suitable buffers include alkali metal phosphates, alkali metal carbonates, alkaline earth metal carbonates, and the like.
  • the vaccine composition of the present invention may further include one or more selected from the group consisting of a solvent, an adjuvant and an excipient.
  • the solvent includes physiological saline or distilled water
  • the immune enhancer includes Freund's incomplete or complete adjuvant, aluminum hydroxide gel and vegetable and mineral oils
  • the excipient includes aluminum phosphate, aluminum hydroxide or aluminum potassium. Sulfate, but is not limited thereto, it may further include a substance used in the preparation of vaccines well known to those skilled in the art.
  • the vaccine composition of the present invention is administered through a known route of administration.
  • routes of administration may include, but are not limited to, oral, transdermal, intramuscular, peritoneal, intravenous, subcutaneous, and nasal routes, and may be administered by any device capable of transporting the active substance to a target cell.
  • the vaccine composition of the present invention is capable of inducing a humoral or optionally cell-mediated immune response and/or a combination of the two immune responses.
  • a fifth aspect of the present invention relates to a method for preventing, improving or treating an influenza virus infection disease, comprising administering the various types of the above-described vaccine composition to an individual in need thereof.
  • the term "individual” refers to any animal, including humans, already infected with or capable of being infected with an influenza virus. Examples include, but are not limited to, humans, dogs, cats, pigs, horses, chickens, ducks, geese, turkeys, seals, and the like.
  • the vaccine composition of the present invention can treat humans infected with influenza viruses of various influenza virus subtypes or variants.
  • composition of the present invention can treat chickens or pigs infected with avian influenza of various influenza virus subtypes or variants.
  • the composition of the present invention may be administered in combination with a conventional therapeutic agent for influenza virus infection and/or cholera toxin B subunit.
  • administered in combination means that the vaccine composition of the present invention is administered to a subject in need thereof together with an existing therapeutic agent for an influenza virus infection disease and/or cholera toxin B subunit.
  • Administering each component together means that each component may be administered simultaneously, separately, or sequentially to obtain a desired effect.
  • the vaccine composition is administered orally, parenterally, by inhalation spray, topically, rectally, nasally, bucally, vaginally or an implanted reservoir. It can be administered through
  • parenteral as used herein includes, but is not limited to, subcutaneous, intravenous, intramuscular, intraarticular, intrasynovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injections.
  • the composition may be administered orally, intraperitoneally or intravenously.
  • the administration of the vaccine composition is preferably performed twice or more.
  • booster injections may be performed about 1-4 times at intervals of 1-10 weeks. have.
  • a sixth aspect of the present invention relates to the use of a recombinant HA protein derived from an influenza virus forming a trimer of the present invention in the manufacture of a medicament for the prevention, amelioration or treatment of an influenza virus infectious disease.
  • H5N6 or H9N2 amino acid positions 17-531 of H5N6 (GenBank: AJD09950.1) and H9N2 without transmembrane domain and ER targeting leader sequence. of HA (GenBank: AFM47147.1) at amino acid positions 19-524).
  • the ER targeting signal obtained from BiP, an Arabidopsis protein was fused to the 5'-terminus of the HA to enable ER targeting.
  • the first repeat of the three repeat sequences of LysM, a lactococcus binding domain, from AcmA of Lactococcus lactis was fused to the C-terminus of HA using a linker.
  • mHA was constructed by sequentially fusion of Hisx6 tag and HDEL, which is an ER retention motif, to the C-terminus of LysM for HA purification and high accumulation in ER ( FIG. 1a ).
  • HDEL which is an ER retention motif
  • tHA was constructed by adding a motif inducing homotrimer formation between HA and LysM from a protein called mouse mCoronin1 (Fig. 1b).
  • Fig. 1b mouse mCoronin1
  • macT was used, and the end of Rd29b was used as a transcription terminator. They were confirmed to show high transcription efficiency.
  • the nucleotide sequences used in the experiment are shown in Table 1 below.
  • HA Hemagglutinin
  • mHA and tHA were induced through transient expression in 4-5 week old tobacco plant Nicotiana benthamiana plant leaves using vacuum infiltration. Infiltrated leaves were harvested 3, 5 and 7 days (dpi) after infiltration, respectively, thoroughly ground in liquid nitrogen and dissolved in 3 volumes of buffer. Total soluble protein from the infiltrated leaf extract was developed by SDS-PAGE and then subjected to western blot analysis. As shown in FIG. 2A , the HA recombinant protein showed clear bands at approximately 85 kDa (mH5N6) and 90 kDa (tH5N6), which are positions corresponding to the sizes predicted by the anti-His antibody. And as shown in FIG.
  • the HA protein on the surface of the virus exists as a homotrimer, exhibiting high stability and immunogenicity.
  • recombinant HA tends to be expressed as aggregates or monomers, depending on the expression system.
  • mouse coronin 1-1A mCor1, Genbank: EDL17419.1 32 amino acid
  • FIG. 1b mouse coronin 1-1A
  • mHA and tHA were quantified based on the BSA standard curve.
  • PBS was added to about 10 ⁇ g of mHA and 10 ⁇ g of tHA, mixed so that the total volume was 1 mL, and this was analyzed by size exclusion chromatography (SEC). 3a and 3c, the mHA and tHA mixture showed two peaks in the 280 nm absorption spectrum. Fractions containing these two peaks were analyzed by Western blotting using an anti-His antibody, and the results are shown in FIGS. 3B and 3D, respectively. As shown in the SEC analysis results of FIGS. 3A and 3C and the Western blotting results of FIGS.
  • tHA with mCor1 (ie, tH5N6 and tH9N2) was superior to mHA without mCor1 (ie, mH5N6 and mH9N2). was eluted before. Through this, it was confirmed that mCor1 induces HA trimer formation.
  • AcmA which is a major autolysin of MG1363, a phage of Lactococcus lactis, has a domain called LysM at the C-terminus in triplicate, and the triplicate part of LysM is the Lactococcus phage. It has the ability to bind to peptidoglycan, a component of the cell wall. Three repeats are required for optimal activity on peptidoglycan. However, since the length of the domain was too long when all three repeat sections were included, only one LysM was fused to the C-terminus of GFP and confirmed. As a result, as shown in FIGS. 4A and 4B , GFP-LysM did not bind well to Lactococcus.
  • Both mHA and tHA, recombinant proteins of HA were highly expressed in Nicotiana benthamiana. Infiltrated leaves were thoroughly triturated in liquid nitrogen and dissolved in 10-volume PBS buffer containing 0.5% Triton X-100, 1 mM EDTA and 25% glycerol. After obtaining the total soluble protein from the leaves, and incubating with L. lactics pretreated with TCA at 37° C. for 1 hour at an amount of total soluble protein corresponding to 200 mg to 2 g of the leaves, PBS Washed 3 times with buffer.
  • Lactococcus was precipitated from each sample, put it in an SDS buffer, heated, and then developed by SDS-PAGE with various amounts of BSA, and then stained with Coomassie Brilliant Blue to confirm HA.
  • the amount of tHA having the trimer motif mCor1 increased as the amount of HA increased, whereas the amount of mHA binding to Lactococcus increased, while mHA hardly bound to Lactococcus.
  • Lactococcus (Korea Microbial Conservation Center; KCCM No. 43146) from OD 600 to 1.0
  • the culture solution was recovered by pelleting the cells through centrifugation, and the same volume of 10% trichloroacetic acid ( TCA) and treated at 100° C. for 10 minutes.
  • TCA trichloroacetic acid
  • cells were pelleted through centrifugation, washed three times with PBS, and the pellet was resuspended to prepare Lactococcus dead cells.
  • Recombinant tH5N6 prepared in Examples 2 and 6, respectively, tH5N6, tH9N2 coated on dead cells of Lactococcus, and tH9N2 vaccine coated on dead cells of Lactococcus were administered to 6-week-old female C57BL/6 mice (Orient Bio, Korea). Intraperitoneal injection was performed twice weekly at intervals. As a control group, PBS and Lactococcus dead cells were administered.
  • a test vaccine was prepared by adding the recombinant vaccine with or without mixing an adjuvant in the composition shown in Table 2 below.
  • the antigen-specific antibody formation was analyzed by ELISA method by separating it from the serum of the mouse at the 4th week, the 2nd week after the administration of the secondary vaccine at 0 weeks before immunization.
  • the antibody titer was determined. Total IgG antibody titer was confirmed by the following method.
  • PBST buffer NaCl 137 mM, KCl 2.7
  • skim milk a concentration of 50 ng/well
  • serum diluted with PBST solution containing 3% skim milk was sequentially added to each well and reacted on a microplate shaker at room temperature for 1 hour.
  • the antibody titer was defined as the reciprocal of the antibody dilution factor representing an OD value corresponding to twice the OD value of the negative control group.
  • tHA coated on the surface of Lactococcus without an adjuvant exhibited the same antibody-inducing effect as that including the adjuvant. This suggests that the antigen coated on Lactococcus can strongly induce immunity without adjuvant, and Lactococcus bacterium can be a powerful adjuvant in intraperitoneal and intramuscular administration, which is cost-effective application of vaccination. this can be
  • HA hemagglutinin
  • PBS was used as a control, tH9N2 (HA trimer of H9N2), tH5N6 (HA trimer of H5N6), Lactococcus bacterium, Lact.-tH9N2 (HA trimer of H9N2 coated on the lactococcus surface), Lact. Hemagglutination inhibition assays were performed using -tH5N6 (HA trimer of H5N6 coated on the surface of lactococcus) using an antigen diluted by a factor of 2 to analyze hemagglutination. 25 ⁇ l of dilution buffer was added to the U-bottom microplate from the first to the last well.
  • the pretreated sample was binary diluted by passing 25 ⁇ l until the last well. At this time, 25 ⁇ l of the pre-treated sample was added to the last well to confirm the non-specific reaction of the sample.
  • Each antigen diluted to 8 HA Units was added in an amount of 25 ⁇ l from the first to the last well, sealed, and incubated at room temperature for 45 minutes. 25 ⁇ l of 1% chicken blood cells was added to each well and incubated at room temperature for 1 hour before reading.
  • antigen-coated Lactococcus that is, Lact.-tH9N2 and H5N6 HA trimer coated Lact. -tH5N6 was much more active.
  • H9N2 virus 1x10 7 EID50 was injected as a control to confirm the generation of the antibody.
  • the antibody titer was determined by ELISA for antigen-specific antibody formation after separating the chicken serum at the 2nd, 3rd, and 4th weeks of immunization, respectively. decided. Total IgG antibody titer was confirmed by the following method.
  • the purified recombinant antigen was coated on a 96-well microplate at a concentration of 100 ng/well, and then, 1% bovine serum albumin was added to prevent non-specific binding and reacted for 1 hour.
  • the microplate was washed, serially diluted serum was added to each well, and reacted at 37°C for 2 hours, and anti-mouse IgGHRP (horse radish heroxidase, KPL, USA) was added as a secondary antibody and the same conditions for 1 hour.
  • CTB cholera toxin B subunit
  • HA trimer of soluble H5N6, and HA trimer of soluble H9N2 on dead cell Lactococcus, respectively, it was coated on a mouse (strain name: BALB/c; animal specification: 5 weeks old, female, 20g; Animal purchase: Samtaco, Korea; Number of animals used: 3 animals/group)
  • the immunogenicity was confirmed by intraperitoneal injection of antigen.
  • CTB (1 ⁇ g) coated iLact as a control iLact-tH5N6 (0.1 ⁇ g) + iLact-tH9N2 (0.1 ⁇ g), iLact-tH5N6 (0.5 ⁇ g) + iLact-tH9N2 (0.5 ⁇ g), CTB (1 ⁇ g) + iLact-tH5N6 (0.1 ⁇ g) + iLact-tH9N2 (0.1 ⁇ g), or CTB (1 ⁇ g) + iLact-tH5N6 (0.5 ⁇ g) + iLact-tH9N2 (0.5 ⁇ g) were prepared as a vaccine composition and intraperitoneally twice at 2-week intervals After injection, blood was collected two weeks later and antibodies present in the blood were confirmed by ELISA.
  • iLact-tHA H5N6 is prepared by coating 0.1 ⁇ g, 0.5 ⁇ g or 1.0 ⁇ g of tHA of H5N6 on the lactococcus surface, and similarly, 0.1 ⁇ g, 0.5 ⁇ g or 1.0 ⁇ g of tHA of H9N2 is coated on the lactococcus surface to iLact- After preparing tHA H9N2 , the vaccine composition (iLact-tHA H5N6 + iLact-tHA H9N2 ) was prepared by mixing 1:1 for each concentration.
  • the prepared composition was intraperitoneally injected into mice at intervals of 2 weeks to induce an immune response, and blood was collected 2 weeks after the second injection to measure the amount of antibody.
  • 50 ng of tHA H5N6 and tHA H9N2 antigens were coated on an ELISA plate, the amount of antibody binding to each antigen was measured in the same manner as described in [Example 7]. As a result, strong immunogenicity was confirmed for both antigens as shown in FIG. 10 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Plant Pathology (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 재조합 혈구응집소 (hemagglutinin, HA) 단백질 및 이의 용도에 관한 것으로, 구체적으로, 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 HA 단백질을 생산하기 위한 재조합 벡터, 상기 재조합 벡터로 형질전환된 형질전환체, 상기 재조합 벡터를 이용한, 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 HA 단백질의 생산방법, 상기 방법으로 생산된 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 HA 단백질 및 이의 인플루엔자 바이러스 감염 질환의 예방, 개선 또는 치료 용도에 관한 것이다.

Description

삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 재조합 혈구응집소 단백질 및 이의 용도
본 발명은 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 재조합 혈구응집소 (hemagglutinin, HA) 단백질 및 이의 용도에 관한 것으로, 구체적으로, 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 HA 단백질을 생산하기 위한 재조합 벡터, 상기 재조합 벡터로 형질전환된 형질전환체, 상기 재조합 벡터를 이용한, 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 HA 단백질의 생산방법, 상기 방법으로 생산된 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 HA 단백질 및 이의 인플루엔자 바이러스 감염 질환의 예방, 개선 또는 치료 용도에 관한 것이다.
최근에 식물에서 재조합 단백질을 저비용을 생산할 수 있는 가능성들이 제안되었으며, 이로 인하여 다양한 시도들이 진행되고 있다. 특히, 다양한 의료용 단백질의 생산 가능성 등을 확인하는 연구들이 진행되고 있다. 식물에서 재조합 단백질을 생산하는 경우에 다양한 장점들이 있을 수 있는데, 그 중에 하나는 대장균 등 미생물에 존재하는 내독소와 같이 독소가 거의 존재하지 않는다는 것과 인체에 감염될 수 있는 병원체들이 없다는 것이다. 또한, 프리온과 같은 유해한 단백질도 없는 것으로 알려져 있어서 동물 세포나 미생물에 비해서 안전한 재조합 단백질을 생산할 수 있다. 제조 단가에서도 동물 세포보다는 대단히 저렴하며, 식물을 재배하는 방법에 따라서 대규모 생산에 있어서는 대장균 등과 같은 미생물보다 더 경제적이다. 이러한 가능성을 실현하기 위해서는 몇 가지의 필수적인 기술들의 개발이 필요하다. 그 중에 가장 중요한 첫 번째 기술이 식물에서 유전자의 고발현을 유도할 수 있는 발현 벡터의 개발이다. 식물에서는 다양한 방법을 통해서 유전자의 발현을 유도할 수 있다. 재조합 유전자를 식물체의 게놈에 융합(integration)시키는 방법, 엽록체의 게놈에 융합시키는 방법, 아그로박테리움(agrobacterium)을 이용하여 일과성 있게 유전자를 발현시키는 방법 등 다양한 방법들이 가능하다. 세포핵 게놈(nuclear genome)이나 엽록체 게놈에 재조합 유전자를 융합시키는 방법은 기본적으로 형질전환체를 확보하는 과정을 통해서 식물에서 단백질을 생산하게 된다. 반면에 아그로박테리움을 식물 조직에 침투시켜 유전자의 일과성 발현을 유도하여 단백질을 생산하는 경우에는 형질전환체의 제조 과정이 포함되지 않으므로 단백질 생산 기간이 짧으며, 대체로 형질전환체를 통한 단백질 생산에 비해서 단백질 생산 수준이 현저하게 높은 장점이 있다. 또한, 식물이 가지고 있는 다른 유전자의 발현 억제 기작을, 유전자 침묵 억제 인자를 공동 침투(co-infiltration)시켜 억제할 수 있으므로, 단백질의 발현 수준을 더욱 높게 유도할 수 있다. 그러나 일과성 발현을 하고자 할 때마다 목적 유전자를 포함하는 바이너리 벡터를 도입한 아그로박테리움 배양과 p38 유전자 침묵 억제 인자를 발현하는 바이너리 벡터를 도입한 아그로박테리움 배양을 따로 만들어서 이를 적절한 비율로 섞어 공동 침투시키는 과정을 수행해야 하는 단점이 있다. 특히, 두 종류의 아그로박테리움을 배양하는 경우에는 시간 및 경제적인 면에서 한계가 있다.
인플루엔자 바이러스(influenza virus)는 오르토믹소비리대과(Family Orthomyxoviridae)에 속하는 RNA 바이러스로서, 호흡기에 염증을 유발하며, 감염자의 기침 및 타액을 통해 공기 중으로 직접 전달되거나, 독감 환자의 접촉물 등에 의해 간접적으로도 타인에게 전염될 수 있는 전염력이 강한 바이러스이다. 잠복기는 24~30시간 정도이며, 바이러스의 혈청형은 A형, B형 및 C형으로 구분된다. 그 중 B형과 C형은 인간에서만 감염이 확인되고 있으며, A형은 인간, 말, 돼지, 기타 포유류 그리고 다양한 종류의 가금과 야생 조류에서 감염이 확인되고 있다. 따라서, 이와 같은 강력한 전염력을 가진 인플루엔자 바이러스의 감염 예방을 위한 백신이 개발이 필요하다.
백신으로서의 재조합 단백질 항원은 생산 및 활용에 있어서 안전성이 우수하지만, 살아있는 바이러스에 기반한 백신에 비해서는 면역원성이 낮고 대체로 생산 단가가 높은 것이 단점이다. 따라서, 이 안전성이 탁월한 재조합 단백질을 이용하여 백신으로서 효능을 높이기 위해서는, 다양한 면역반응을 유도할 수 있으며, 높은 면역반응을 유도할 수 있는 재조합 단백질 백신의 전달 기술을 개발하는 것이 필수적이다. 또한, 한 종류의 항원뿐만 아니라 여러 종류의 항원을 동시에 전달할 수 있다면, 이는 더욱 효과적인 백신이 될 수 있을 것이다. 실제로 최근의 경향은 여러 종류의 항원을 하나의 주사제로 개발하는 것이다. 항원의 면역원성을 높이기 위해서 가장 효과적으로 활용되는 방법이 강력한 보조제(adjuvant)를 사용하는 것이다. 보조제의 효능이 높으면 적은 양의 항원으로도 효과적으로 면역 반응을 유도할 수 있고, 이를 통해 백신의 가격을 낮출 수 있으므로, 강력한 보조제의 개발이 단백질 기반의 백신 개발에 있어서 대단히 중요하다. 또한, 보조제의 종류에 따라서 서로 다른 면역반응을 유도할 수 있으므로, 항원의 종류에 따라서 적절한 보조제의 사용이 대단히 중요하다. 현재 수산화 알루미늄(alumminium hydroxide)과 같은 주사용 보조제들이 개발되어 인체에 사용되고 있으며, 경구 백신용으로 콜레라 독소 B 서브유닛 (cholera toxin B subunit, CTB) 등이 활용되고 있다. 가축 등 동물용으로는 더 많은 종류의 보조제들이 개발되어 활용되고 있다. 실험용으로는 마우스에 완전 프로인드 보조제(Freund complete adjuvant)가 많이 활용되고 있다. 하지만 이들이 어떻게 인간과 가축 및 실험동물에서 항원의 면역원성을 높이는지 아직 명확하게 알려져 있지 않다.
다양한 종류의 보조제들이 개발되고 있으며, 백신의 전달 방법도 다양하므로 이러한 다양한 전달 방법에 따라서 다른 종류의 보조제들이 필요로 하다. 최근에 박테라아를 경구용 백신 전달체 및 보조제로 활용하는 연구들이 많이 진행되고 있다. 특히 락토코커스(Lactococcus)의 경우 미국식품의약품국 (Food and Drug Administration, FDA)에서 '일반적으로 안전하다고 인정되는(generally recognized as safe, GRAS) 상태'를 확보한 박테리아로 인체에 안전하다고 생각되며, 이를 경구 보조제 및 항원 전달제로 개발하고 있다. 박테리아는 그 자체로 대단히 항원성이 높으므로, 박테리아가 전달하는 항원에 대해서 대단히 높은 면역반응을 보이는 것으로 보고가 되었다.
혈구응집소(hemagglutinin, HA)의 전장(full length) 단백질은 막관통 도메인(transmembrane domain)을 갖는 막결합 형태(membrane-bound form)로 세포에서 높은 수준으로 생산하는 것이 어렵다. 반면, HA의 막관통 도메인(transmembrane domain)을 제외하고, 엑토도메인(ectodomain)만을 발현하면 이는 세포에 가용성 형태(soluble form)로 만들어져서 높은 효율로 생산할 수 있다. 하지만 HA의 엑토도메인만을 가용성 형태로 제작하면 원래의 전장 HA가 인플루엔자 바이러스 표면에 존재할 때 갖는 삼량체 형태(trimeric form)가 잘 만들어지지 않는다. 백신 목적으로 사용하기 위해서 HA의 엑토도메인의 재조합 단백질을 식물에서 발현 및 생산할 때 삼량체(trimer)를 형성하도록 유도하는 기술을 개발하고자 하였다. 또한, 이렇게 생산된 단백질을 펩티도글리칸(peptidoglycan)에 결합하는 능력을 갖게 하여 락토코커스 또는 키토산 입자 등의 표면에 결합할 수 있는 유전자를 결합하여 다양한 방법으로 항원을 전달할 수 있도록 HA 엑토도메인 재조합 단백질을 고안하였다. 이렇게 제작된 HA의 재조합 유전자를 식물에서 고발현하도록 하는 바이너리 벡터(binary vector)를 구축하였다. 상기 식물에서 고발현된 HA 재조합 단백질을 인플루엔자 바이러스에 감염된 마우스에 처리한 결과 치료 효과를 확인하였고, 나아가 상기 HA 재조합 단백질 항원 및 면역 반응을 크게 높여 주는 것으로 알려진 CTB를 GRAS 상태를 가지고 있는 락토코커스를 가열하고 트라이클로로아세트산(trichloroacetic acid)을 처리하여 박테리아의 수용성 단백질과 핵산을 제거한 후, 상기 락토코커스 사균체에 코팅하여 주사용 백신으로 인플루엔자 바이러스 감염 마우스에 처리한 결과, 치료 효과가 상승하는 것을 확인하였다. 나아가, 수용성 H5N6의 HA 삼량체 또는 락토코커스 사균체의 표면에 코팅된 H5N6의 HA 삼량체를 주사용 백신으로 인플루엔자 바이러스 감염 닭에 처리한 결과, 높은 면역 효과를 확인하였다. CTB, 가용성 H5N6의 HA 삼량체, 가용성 H9N2의 HA 삼량체를 각각 락토코커스 사균체에 코팅한 뒤, 이를 혼합하여 면역 조성물을 제조하여 혈구 응집을 분석한 결과, CTB를 포함하는 군이 혈구 응집이 증가하여, CTB가 면역원성을 증가시키는 것을 확인하였다. H5N6의 HA 삼량체를 코팅한 락토코커스와 H9N2의 HA 삼량체를 코팅한 락토코커스를 1:1의 비율로 섞어서 이를 백신 조성물로 제조한 후, 이를 이용하여 마우스에 면역 주사한 결과, 면역원성이 증가하는 것을 확인하였다. H5N6의 HA 삼량체와 H9N2의 HA 삼량체를 1:1로 섞은 후, 이를 락토코커스에 코팅하고, 이를 백신 조성물로 제조하여 마우스에 면역 주사한 결과, 면역원성이 증가하는 것을 확인하였다.
본 발명은 상기의 문제를 해결하기 위해 안출된 것으로, 본 발명의 목적은 (i) 인플루엔자 바이러스 유래 HA(hemagglutinin)에서 막관통 단백질 부분이 결여된 단백질을 코딩하는 유전자; 및 (ii) Coronin 1의 삼량체 모티프 (trimeric motif) 부위의 단백질을 코딩하는 유전자를 포함하는 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위한 재조합 벡터를 제공하는 것이다.
본 발명의 다른 목적은 전술한 재조합 벡터에 LysM 도메인의 단백질을 코딩하는 유전자가 추가로 삽입된, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위한 재조합 벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 다음의 단계를 포함하는 식물에서 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하는 방법을 제공하는 것이다:
(a) 전술한 재조합 벡터를 제작하는 단계;
(b) 상기 재조합 벡터를 세포에 도입하여 형질전환체를 제조하는 단계;
(c) 상기 형질전환체를 배양하는 단계; 및
(d) 상기 형질전환체를 배양한 배양물을 식물에 침윤시키는 단계; 및
(e) 상기 식물을 분쇄하여 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 수득하는 단계.
본 발명의 다른 목적은 전술한 방법으로 생산된 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 제공하는 것이다.
본 발명의 또 다른 목적은 전술한 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 포함하는 면역원성이 증가된 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물을 제공하는 것이다.
본 발명의 다른 목적은 전술한 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질이 코팅된 박테리아 또는 키토산을 포함하는 면역원성이 증가된 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 전술한 백신 조성물에 콜레라 독소 B 서브유닛(cholera toxin B subunit)이 추가로 포함된, 면역원성이 증가된 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물를 제공하는 것이다.
본 발명의 다른 목적은 전술한 삼량체를 형성하는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 포함하는 면역원성이 증가된 서로 다른 유전형의 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 전술한 다양한 형태의 백신 조성물을 이를 필요로 하는 개체에게 투여하는 것을 포함하는, 인플루엔자 바이러스 감염 질환의 예방 또는 치료방법을 제공하는 것이다.
상술한 과제를 해결하기 위해, 본 발명은 (i) 인플루엔자 바이러스 유래 HA에서 막관통 단백질 부분이 결여된 단백질을 코딩하는 유전자; 및 (ii) Coronin 1의 삼량체 모티프(trimeric motif) 부위의 단백질을 코딩하는 유전자를 포함하는 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA(hemagglutinin) 단백질을 생산하기 위한 재조합 벡터를 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 인플루엔자 바이러스는 인플루엔자 A 바이러스 H5N6, H7N9 및 H9N2으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 인플루엔자 바이러스 유래 HA에서 막관통 단백질 부분이 결여된 단백질은 서열번호 2의 아미노산 서열 또는 서열번호 18의 아미노산 서열을 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 인플루엔자 바이러스 유래 HA에서 막관통 단백질 부분이 결여된 단백질을 코딩하는 유전자는 서열번호 1의 염기서열 또는 서열번호 17의 염기서열을 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 Coronin 1의 삼량체 모티프 부위의 단백질은 서열번호 4의 아미노산 서열을 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 Coronin 1의 삼량체 모티프 부위의 단백질을 코딩하는 유전자는 서열번호 3의 염기서열을 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 전술한 재조합 벡터에 LysM 도메인의 단백질을 코딩하는 유전자가 추가로 삽입될 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 LysM 도메인의 단백질은 서열번호 14의 아미노산 서열을 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 LysM 도메인의 단백질을 코딩하는 유전자는 서열번호 13의 염기서열을 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 재조합 벡터는 꽃양배추 모자이크 바이러스 (cauliflower mosaic virus)에서 유래한 35S 프로모터, 꽃양배추 모자이크 바이러스 (cauliflower mosaic virus)에서 유래한 19S RNA 프로모터, Mac 프로모터 (Mac promoter), 식물의 액틴 단백질 프로모터 및 유비퀴틴 단백질 프로모터로 이루어진 군으로부터 선택되는 어느 하나의 프로모터를 추가로 포함할 수 있다.
본 발명은 또한, 전술한 재조합 벡터로 형질전환된 형질전환체를 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 형질전환체는 원핵생물 또는 진핵생물일 수 있다.
추가로, 본 발명은 다음의 단계를 포함하는 식물에서 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하는 방법 및 이로부터 생산된 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 제공한다.
나아가, 본 발명은 전술한 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 포함하는, 면역원성이 증가된 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질은 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅될 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 세포벽에 펩티도글리칸을 포함하는 박테리아는 일반적으로 안전하다고 인정되는 (generally recognized as safe, GRAS) 상태의 박테리아일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 백신 조성물은 콜레라 독소 B 서브유닛 (cholera toxin B subunit)을 추가로 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 백신 조성물은 주사제 형태일 수 있다.
추가로, 본 발명은 전술한 삼량체를 형성하는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 포함하는, 면역원성이 증가된 서로 다른 유전형의 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 삼량체를 형성하는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질은 H5N6, H7N9 및 H9N2으로 이루어진 군으로부터 선택되는 어느 하나 이상의 인플루엔자 바이러스 유래의 HA 단백질일 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 삼량체를 형성하는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질은 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅될 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 세포벽에 펩티도글리칸을 포함하는 박테리아는 일반적으로 안전하다고 인정되는 (generally recognized as safe, GRAS) 상태의 박테리아일 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 삼량체를 형성하는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질은 다음의 (i) 내지 (iii) 중 어느 하나의 방법으로 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅될 수 있다:
(i) 상기 삼량체를 형성하는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 혼합한 후, 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅하거나,
(ii) 상기 삼량체를 형성하는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 각각 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅한 후 혼합하거나; 또는
(iii) 상기 (i) 및 (ii)의 2 가지 방법으로 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅함.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 백신 조성물은 콜레라 독소 B 서브유닛 (cholera toxin B subunit)을 추가로 포함할 수 있다.
나아가, 본 발명은 전술한 다양한 형태의 백신 조성물을 이를 필요로 하는 개체에게 투여하는 것을 포함하는, 인플루엔자 바이러스 감염 질환의 예방 또는 치료방법을 제공한다.
본 발명의 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질은 고병원성 인플루엔자 A 바이러스 H5N6 유래 HA에서 막관통 단백질이 결여된 엑토도메인(ecotodomain) 부분의 단백질, 마우스의 Coronin A의 삼량체 모티프 (trimeric motif) 및 락토코커스 락티스의 LysM 펩티도글리칸-결합 도메인-포함 단백질의 세포벽 결합 도메인인 LysM 도메인을 포함하여, 식물에서 대량으로 제조할 수 있고, 삼량체를 형성하여 면역성이 증가하며, 락토코커스와 같은 박테리아나 키토산 입자에 결합 또는 코팅되어 효과적으로 항원을 전달할 수 있다. 상기 식물에서 고발현된 HA 재조합 단백질을 인플루엔자 바이러스에 감염된 마우스에 처리한 결과 치료 효과가 나타났고, 또한, 상기 HA 재조합 단백질 항원 및 면역 반응을 크게 높여 주는 것으로 알려진 콜레라 독소 B 서브유닛을, GRAS 상태를 가지는 락토코커스를 가열 및 트리클로로아세트산(trichloroacetic acid)으로 처리하여 박테리아의 수용성 단백질과 핵산을 제거하여 제조된 사균체에 코팅하여 주사용 백신으로 인플루엔자 바이러스 감염 마우스에 처리한 결과 우수한 치료 효과를 나타냈다. 나아가, 본 발명에 따른 가용성 H5N6의 HA 삼량체, 가용성 H9N2의 HA 삼량체 또는 이들을 락토코커스 사균체의 표면에 코팅하여 주사용 백신으로 인플루엔자 바이러스 감염 닭에 처리한 결과, 높은 면역 효과를 나타냈다. CTB (cholera toxin B subunit), 수용성 H5N6의 HA 삼량체 및 수용성 H9N2의 HA 삼량체를 각각 락토코커스 사균체에 코팅한 뒤 이를 혼합하여 제조된 면역 조성물을 이용하여 혈구 응집을 분석한 결과 CTB를 포함하는 그룹의 혈구 응집이 증가하여, CTB가 면역원성을 증진시키는 효과가 있음을 확인하였다. H5N6의 HA 삼량체를 코팅한 락토코커스 사균체와 H9N2의 HA 삼량체를 코팅한 락토코커스 사균체를 1:1의 비율로 혼합하여 제조된 백신 조성물을 이용하여 마우스에 면역 주사한 결과 면역원성이 증가하는 효과를 나타냈다. H5N6의 HA 삼량체와 H9N2의 HA 삼량체 1:1로 섞은 후 이를 락토코커스 사균체에 코팅하여 제조된 백신 조성물도 마우스에서 면역 주사한 결과 마찬가지로 면역원성이 증가하는 효과를 나타냈다. 이에 따라, 서로 다른 여러 종류의 항원을 락토코커스 사균체에 각각 코팅한 후 혼합하거나, 서로 다른 여러 종류의 항원을 동시에 혼합 뒤에 락토코커스 사균체에 코팅하거나, 또는 상기 두 가지 방법을 함께 사용함으로써, 다중의 항원을 동시에 전달하여 면역원성을 효과적으로 증진시킬 수 있다.
도 1a 및 도 1b는 본 발명에 따른 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위해 사용한 재조합 벡터의 구성을 모식도로 나타낸 것이다.
도 2a는 니코티니아 벤타미아나 (Nicotiana benthamiana)에서 발현시킨 단백질을 SDS/PAGE로 분리한 후, 항-His 항체를 이용하여 웨스턴 블롯 분석을 수행한 결과를 나타낸 것이다.
도 2b는 니코티니아 벤타미아나에서 발현시킨 단백질을 SDS/PAGE로 분리한 후, 쿠마시 브릴리언트 블루(Coomassie brilliant blue)로 염색한 결과를 나타낸 것이다.
도 3a 및 도 3b는 겔 여과(Gel filtration) 컬럼 크로마토그래피를 이용하여 mH5N6와 tH5N6가 각각 단량체(monomer) 및 삼량체(trimer)를 형성한다는 것을 확인한 결과를 나타낸 것으로, 구체적으로, 도 3a는 겔 여과 컬럼 크로마토그래피를 통해 분획(fraction)한 결과를 나타낸 것이고, 도 3b는 각 피크에 해당하는 분획을 SDS/PAGE로 전개한 후 항-His 항체를 이용하여 웨스턴 블롯 분석을 수행한 결과를 나타낸 것이다.
도 3c 및 도 3d는 겔 여과(Gel filtration) 컬럼 크로마토그래피를 이용하여 mH9N2와 tH9N2가 각각 단량체(monomer) 및 삼량체(trimer)를 형성한다는 것을 확인한 결과를 나타낸 것으로, 구체적으로, 도 3c는 겔 여과 컬럼 크로마토그래피를 통해 분획(fraction)한 결과를 나타낸 것이고, 도 3d는 각 피크에 해당하는 분획을 SDS/PAGE로 전개한 후 항-His 항체를 이용하여 웨스턴 블롯 분석을 수행한 결과를 나타낸 것이다.
도 4a 및 도 4b는 LysM의 락토코커스 락티스에 대한 결합에 있어서 mCor1에 의한 삼량체 효과를 확인한 것으로, 구체적으로 도 4a는 GFP-LysM과 GFP-mCor-LysM을 각각 락토코커스에 결합시킨 후, 이를 SDS/PAGE로 전개하여 웨스턴 블롯 분석 및 쿠마시 브릴리언트 블루로 염색한 결과를 나타낸 것이고, 도 4b는 형광현미경 하에서 GFP-LysM 및 GFP-mCor-LysM이 각각 TCA를 처리한 락토코커스에 결합하는 정도를 관찰한 결과를 나타낸 것이다.
도 5는 니코티니아 벤타미아나 (Nicotiana benthamiana) 잎 세포에서 제조된 H5N6의 HA의 단량체(mH5N6)와 삼량체(tH5N6)를 TCA를 처리한 락토코커스에 결합시킨 후 이를 SDS/PAGE로 전개하여 쿠마시 브릴리언트 블루로 염색한 결과를 나타낸 것이다.
도 6a는 가용성 tHA 및 락토코커스 표면에 코팅된 tHA에 대한 마우스의 면역원성 반응을 확인하기 위한 투여 스케줄을 나타낸 것이다.
도 6b는 가용성 tHA 및 락토코커스 표면에 코팅된 tHA에 대한 마우스의 면역원성 반응을 ELISA로 측정한 결과를 나타낸 것이다.
도 7a 및 도 7b는 가용성 tHA 및 락토코커스 표면에 코팅된 tHA가 혈구 응집을 저해하는 정도를 분석한 결과를 나타낸 것이다.
도 8a는 닭을 대상으로 PBS, 락토코커스 사균체, 가용성 H5N6의 HA 삼량체, 락토코커스의 표면에 코팅된 H5N6의 HA 삼량체를 항원으로 하여 항체 유도 실험을 한 결과를 나타낸 것이다.
도 8b는 닭을 대상으로 PBS, 락토코커스 사균체, 가용성 H9N2의 HA 삼량체, 락토코커스의 표면에 코팅된 H5N6의 HA 삼량체를 항원으로 하여 항체 유도 실험을 한 결과를 나타낸 것이다.
도 9는 CTB(cholera toxin B subunit), 가용성 H5N6의 HA 삼량체, 가용성 H9N2의 HA 삼량체를 각각 코팅한 락토코커스를 혼합하여 면역원성을 확인한 결과를 나타낸 것이다.
도 10은 H5N6의 HA 삼량체를 코팅한 락토코커스와 H9N2의 HA 삼량체를 코팅한 락토코커스를 1:1의 비율로 혼합하여 제조된 백신 조성물을 이용하여 마우스에 면역 주사한 후 두 종류의 두 항원에 대해서 강력한 면역원성을 확인한 결과를 나타낸 것이다.
도 11은 H5N6의 HA 삼량체와 H9N2의 HA 삼량체를 1:1로 혼합한 후 이를 락토코커스에 코팅하여 제조된 백신 조성물을 마우스에 면역 주사한 한 후 두 종류의 두 항원에 대해서 강력한 면역원성을 확인한 결과를 나타낸 것이다.
이하, 본 발명을 자세히 설명한다.
상술한 바와 같이, 인플루엔자 바이러스 유래 HA(hemagglutinin)의 전장(full length) 단백질은 막관통 영역 (transmembrane domain)을 갖는 막 결합 형태 (membrane-bound form)로 세포에서 높은 수준으로 생산하는 것이 어렵다는 한계가 있다. 이에 따라, 생산 수준을 증가시키기 위해, HA의 막관통 영역 (transmembrane domain)을 제외하고 엑토도메인(ectodomain)만을 발현시켜 세포에서 가용성 형태(soluble form)로 만들면 높은 효율로 생산할 수 있다는 장점이 있다. 그러나, HA의 엑토도메인만을 가용성 형태로 제조하는 경우 원래의 전장 HA가 인플루엔자 바이러스 표면에 존재할 때 갖는 삼량체 형태(trimeric form)가 잘 만들어지지 않는다는 한계가 있다. 이에, 본 발명자들은 면역원성이 증가된 백신으로 사용하기 위한 목적으로 HA의 엑토도메인의 재조합 단백질을 식물에서 발현 및 생산할 때 삼량체(trimer)를 형성하도록 유도하는 기술을 개발하고자 하였다. 또한, 이렇게 생산된 단백질이 펩티도글리칸(peptidoglycan)에 결합하는 능력을 가질 수 있도록, 락토코커스 또는 키토산 입자 등의 표면에 결합할 수 있는 유전자와 결합하여 다양한 방법으로 항원을 전달할 수 있는 HA 엑토도메인 재조합 단백질을 개발하고자 하였다. 이에 따라, 대량 생산할 수 있는 인플루엔자 바이러스 유래 HA의 막관통 영역 (transmembrane domain)을 제외한 엑토도메인만을 발현하는 HA, 삼량체 구조를 형성하는 마우스의 Coronin A의 삼량체 모티프 (trimeric motif) 및 락토코커스 또는 키토산 입자 등의 표면에 결합하여 효과적으로 항원을 전달하는 락토코커스 락티스의 LysM 펩티도글리칸-결합 도메인-포함 단백질을 디자인하여, 하나의 벡터에 발현시킴으로써, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질 및 상기 단백질을 식물에서 대량 발현 할 수 있는 바이너리 벡터(binary vector)를 구축하였다.
따라서, 본 발명의 제1 측면은 (i) 인플루엔자 바이러스 유래 HA(hemagglutinin)에서 막관통 단백질 부분이 결여된 단백질을 코딩하는 유전자; 및 (ii) Coronin 1의 삼량체 모티프(trimeric motif) 부위의 단백질을 코딩하는 유전자를 포함하는, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA(hemagglutinin) 단백질을 생산하기 위한 재조합 벡터에 관한 것이다.
본 발명의 재조합 벡터에 있어서, 상기 인플루엔자 바이러스는 인간, 개, 돼지, 말, 가금류, 야생 조류, 물개 등에 감염되는 다양한 종류의 인플루엔자 바이러스를 제한 없이 포함하며, 종래의 알려진 인플루엔자 바이러스 A형, B형, C형, 이사바이러스(Isavirus) 또는 토고토바이러스(Thogotovirus)를 포함할 수 있다.
인플루엔자 바이러스 A형은 계절성 독감 및 범유행성 독감 전염병의 원인이다. 야생의 수생 조류는 매우 다양한 인플루엔자 A의 천연 숙주이다. 때때로, 바이러스는 다른 종으로 전염되어, 가금류에서 파괴적인 집단발병을 유발하거나, 인간 인플루엔자 범유행을 일으킬 수 있다. A형 바이러스는 3가지 인플루엔자 유형 중에서 가장 치명적인 인간 병원균으로, 가장 심각한 질환을 유발한다. 인플루엔자 A 바이러스는 이러한 바이러스에 대한 항체 반응을 기반으로 상이한 혈청형으로 세분될 수 있다. 인간에서 확인된 혈청형은 (공지된 인간 범유행병 사망자 수의 순으로) 다음과 같다: H1N1(1918년 스페인 인플루엔자의 원인), H2N2(1957년 아시아 인플루엔자의 원인), H3N2(1968년 홍콩 독감의 원인), H5N1(2007-2008년 인플루엔자 시즌의 범유행병 위협), H7N7(잠재적인 범유행병 위협), H1N2(인간 및 돼지에서의 풍토병), H9N2, H7N2, H7N3 및 H10N7.
인플루엔자바이러스 B형은 계절 독감의 원인이며, 한 종류의 인플루엔자 B 바이러스를 갖는다. 인플루엔자 B는 거의 독점적으로 인간을 감염시키며, 인플루엔자 A보다는 덜 흔하다. 인플루엔자 바이러스 B형의 감염에 민감한 것으로 공지된 유일한 다른 동물은 물개이다. 이러한 유형의 인플루엔자는 A형보다 2배 내지 3배 느린 속도로 변이되기 때문에, 유전적으로 덜 다양하며, 단 하나의 인플루엔자 B 혈청형을 갖는다. 이러한 항원 다양성 부족의 결과로서, 인플루엔자 B에 대한 어느 정도의 면역력은 통상적으로 어린 나이에 획득되지만, 인플루엔자 B는 지속적인 면역이 불가능할 정도로 충분히 변이된다.
인플루엔자 바이러스 C형은 인간 및 돼지를 감염시키고, 심각한 질병 및 국소 전염병을 유발할 수 있으나, 다른 유형보다 덜 흔하며, 통상적으로 아동에서 가벼운 질환을 유발하는 것으로 보인다.
본 발명에서 인플루엔자 A 바이러스는, 예를 들어, H5N6, H7N9 및 H9N2으로 이루어진 군으로부터 선택되는 어느 하나일 수 있으나, 이로 한정되지 않는다.
본 발명의 구체적인 일실시예에서는, 인플루엔자 A 바이러스 H5N6 및 H9N2 유래의 HA 단백질을 이용하여 삼량체를 형성하는 재조합 HA 단백질을 제조하였다. 구체적으로, HA의 생산성을 높이기 위해, H5N6 또는 H9N2의 HA에서 막관통 영역 (transmembrane domain)을 제외하고, 엑토도메인만을 코딩하는 아미노산 서열, 즉 H5N6의 HA (GenBank: AJD09950.1)의 17번째 내지 531번째 위치의 아미노산 잔기를 포함하는 아미노산 서열 및 H9N2의 HA (GenBank: AFM47147.1)의 19번째 내지 524번째 위치의 아미노산 잔기를 포함하는 아미노산 서열을 각각 선택적으로 사용하였다. 본 발명에 따른 재조합 벡터는 삼량체를 형성하는 재조합 HA 단백질을 제조하기 위해, H5N6의 HA (GenBank: AJD09950.1)의 17번째부터 531번째 위치까지의 아미노산 잔기로 이루어진 영역의 다양한 아미노산 서열을 선택적으로 사용할 수 있으며, 마찬가지로 H9N2의 HA (GenBank: AFM47147.1)의 19번째부터 524번째 위치까지의 아미노산 잔기로 이루어진 영역의 다양한 아미노산 서열을 선택적으로 사용할 수 있다.
본 발명의 재조합 벡터에 있어서, 상기 인플루엔자 바이러스 유래 HA(hemagglutinin)에서 막 통과 단백질 부분이 결여된 단백질은 서열번호 2의 아미노산 서열 또는 서열번호 18의 아미노산 서열을 포함할 수 있으나, 이로 한정되지 않는다.
상기 인플루엔자 바이러스 유래 HA에서 막관통 단백질 부분이 결여된 단백질을 코딩하는 유전자는 서열번호 1의 염기서열 또는 서열번호 17의 염기서열을 포함할 수 있으며, 구체적으로 상기 유전자는 서열번호 1의 염기서열 또는 서열번호 17의 염기서열과 각각 70% 이상, 보다 바람직하게는 80% 이상, 보다 더 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다.
폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.
본 발명의 재조합 벡터에 있어서, 상기 Coronin 1은 마우스 유래의 Coronin 1 (mCor 1) (GenBank: EDL17419.1)일 수 있고, 이의 삼량체 모티프(trimeric motif) 부위의 단백질은 서열번호 4의 아미노산 서열을 포함할 수 있다. 본 발명의 재조합 벡터에서 상기 Coronin 1 (mCor 1)은 인플루엔자 바이러스 유래 HA의 엑토도메인의 C-말단에 연결되어, HA의 엑토도메인만 발현시키더라도 삼량체를 형성할 수 있도록 한다.
상기 Coronin 1 (mCor 1)의 삼량체 모티프 부위의 단백질을 코딩하는 유전자는 서열번호 3의 염기서열을 포함할 수 있으며. 구체적으로 상기 유전자는 서열번호 3의 염기서열과 70% 이상, 보다 바람직하게는 80% 이상, 보다 더 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다.
본 발명의 재조합 벡터는 LysM 도메인의 단백질을 코딩하는 유전자를 추가로 포함할 수 있다.
본 발명의 재조합 벡터에 있어서, 상기 LysM 도메인의 단백질은 서열번호 14의 아미노산 서열을 포함할 수 있고, 상기 LysM 도메인의 단백질을 코딩하는 유전자는 서열번호 13의 염기서열을 포함할 수 있으며, 구체적으로 상기 유전자는 서열 번호 13의 염기서열과 각각 70% 이상, 보다 바람직하게는 80% 이상, 보다 더 바람직하게는 90% 이상, 가장 바람직하게는 95%이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다.
본 발명에 따른 인플루엔자 바이러스 유래 HA에서 막관통 단백질 부분이 결여된 단백질 및 Coronin 1 (mCor 1)의 삼량체 모티프 부위의 단백질을 포함하는 재조합 HA 단백질에 다양한 면역 효과를 촉진하고 항원의 효과적인 전달을 위해, 락토코커스와 같은 박테리아나 키토산 입자에 결합할 수 있는, 락토코커스 락티스의 LysM 펩티도글리칸-결합 도메인-포함 단백질의 세포벽 결합 도메인인 LysM 도메인 (GenBank: WP_011834353)의 220번째부터 320번째까지의 아미노산 잔기 (총 101개의 아미노산 잔기)를 6개의 아미노산 잔기를 갖는 링커를 이용하여 Coronin 1 (mCor1)의 삼량체 모티프의 C-말단에 융합하였다. 이어서, 재조합 단백질의 분리 정제를 위해서 6개의 His 잔기를 갖는 His 태그를 융합하고, ER 축적을 위해서 HDEL 모티프를 융합하여 컨스트럭트 tHA를 완성하였다 (도 1a). 대조군으로 mCor1의 삼량체 모티프가 없는 컨스트럭트 mHA를 구축하여 비교하였다 (도 1b).
이렇게 구축된 HA의 재조합 유전자들을 식물체 발현 벡터인 pTEX1에 도입하여 식물 발현 벡터(각각 pTEX-tHA 및 pTEX-mHA)를 제작하였다. 이후 제작된 발현 벡터들을 아그로박테리움 (Agrobacterium)에 도입한 후, 식물체에 침윤시켜 일과성 발현을 유도하였다. 발현된 재조합 HA 단백질은 His 태그를 이용한 Ni2+-NTA 친화 컬럼으로 분리하거나, 또는 LysM 도메인을 이용하여 락토코커스와의 결합을 통해 분리할 수 있다.
이들 유전자를 도입한 니코티아나 벤타미아나 (Nicotiana benthamiana)의 잎 추출물에서의 단백질 발현을 확인하기 위해, 항-His 항체를 이용하여 웨스턴 블롯 분석을 수행하였다. 도 2a에 나타난 바와 같이 HA-LysM-His-HDEL은 약 80kDa의 위치에서 단백질 확인되었다. 이는 계산상의 단백질 위치보다 큰 것으로, HA 단백질의 N-글리코실화(N-glycosylation) 때문으로 생각된다. 또한, tHA은 mHA 보다 약간 더 크게 나온 것을 도 2b를 통해 확인할 수 있다.
이어서, 상기 단백질의 삼량체 형성을 확인하고자 단량체 형태인 mHA와 삼량체 형태인 tHA를 혼합하여 겔 여과를 수행하였다. 그 결과, 도 3a에서 확인되는 바와 같이 두 개의 피크(peak)가 나타났으며, 이들 각 피크에 해당하는 분획(fraction)을 항-His 항체를 이용하여 웨스턴 블롯을 수행한 결과, 도 3b에 나타난 바와 같이, 삼량체에 해당하는 피크의 단백질은 tHA로 확인되었으며, 단량체에 해당하는 피크에서는 mHA 단백질이 확인되었다.
본 발명의 구체적인 일실시예에서는, 상기 재조합 단백질의 LysM의 락토코커스에 대한 결합을 확인하기 위해, 대조군 단백질로 GFP를 이용하여 His 태그(tagging)된 GFP-mCor1-LysM (GFP-mCor1-LysM) 컨스트럭트와 His 태그된 GFP-LysM (GFP-LysM) 컨스트럭트를 제조하고 이를 대장균의 발현 벡터인 pRSET-A에 도입하여, 대장균에서 발현할 수 있는 발현 벡터를 구축하였다. 상기 단백질 GFP-mCor1-LysM과 GFP-LysM을 대장균에서 발현시키고, 분리 및 정제하여 락토코커스에 결합하는 정도를 형광현미경 하에 관찰하였다. 그 결과, 도 4에 나타난 바와 같이 GFP-mCor1-LysM이 GFP-LysM보다 GFP 발현이 더 높은 것으로 확인되었다.
본 발명의 구체적인 다른 일실시예에서는, LysM에 의한 HA의 락토코커스 표면 결합에 있어서, mCor1에 의한 삼량체화 (trimerization) 효과를 확인하였다. 이를 위해, 단량체 형태의 mHA(mH5N6)와 삼량체 형태의 tHA(tH5N6)를 발현하는 니코티아나 벤타미아나의 잎 조직을 분쇄하여 총 추출물을 수득하고, 이를 TCA로 처리한 락토코커스와 혼합하여 결합을 유도한 뒤, 이로부터 락토코커스를 펠릿화하여 회수한 다음, SDS/PAGE로 전개하고, 쿠마시 브릴리언트 블루로 염색하였다. 그 결과, 도 5에서 확인되는 바와 같이 tHA(tH5N6)은 삼량체 구조의 HA를 형성하는 반면에 mHA(mH5N6)은 삼량체 구조의 HA를 형성하지 않았으며, 삼량체 구조를 형성한 tHA(tH5N6)는 HA의 양이 증가함에 따라 락토코커스에 결합하는 양이 증가한 반면, mHA는 락토코커스에 거의 결합하지 않았다.
본 발명의 재조합 벡터는 꽃양배추 모자이크 바이러스 (cauliflower mosaic virus)에서 유래한 35S 프로모터, 꽃양배추 모자이크 바이러스 (cauliflower mosaic virus)에서 유래한 19S RNA 프로모터, Mac 프로모터 (Mac promoter), 식물의 액틴 단백질 프로모터 및 유비퀴틴 단백질 프로모터로 이루어진 군으로부터 선택되는 어느 하나의 프로모터를 추가로 포함할 수 있으며, 바람직하게는 Mac 프로모터 (Mac promoter)를 포함할 수 있으며, 더 바람직하게는 MacT 프로모터(MacT promoter)를 포함할 수 있으나, 이로 한정되지 않는다.
상기 MacT 프로모터는 Mac 프로모터 염기서열의 3'말단 염기인 A를 T로 치환한 프로모터일 수 있고, 상기 MacT 프로모터는 서열번호 15의 염기서열을 포함할 수 있으며, 구체적으로 상기 유전자는 서열번호 15의 염기서열과 70% 이상, 보다 바람직하게는 80% 이상, 보다 더 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다.
본 발명의 재조합 벡터는 RD29B-t 종결 부위를 추가로 포함할 수 있고, 상기 RD29B-t 종결 부위 유전자는 서열번호 16의 염기서열을 포함할 수 있으며, 구체적으로 상기 유전자는 서열번호 16의 염기서열과 70% 이상, 보다 바람직하게는 80% 이상, 보다 더 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다.
본 발명의 재조합 벡터에 있어서, 재조합 단백질을 코딩하는 유전자의 N- 및 C-말단에 각각 BiP(chaperone binding protein)의 신호 서열(signal sequence)과 소포체 보유 신호(ER retention signal)인 HDEL를 삽입함으로써, ER(소포체)에 고농도로 축적을 유도하는 효과를 가질 수 있다. 따라서, 본 발명의 재조합 벡터는 BiP를 코딩하는 유전자 및/또는 HDEL(His-Asp-Glu-Leu) 펩타이드를 코딩하는 유전자를 추가로 포함할 수 있고, 상기 BiP를 코딩하는 유전자는 서열번호 9의 염기서열을 포함할 수 있고, HDEL(His-Asp-Glu-Leu)는 서열번호 10의 염기서열을 포함할 수 있다.
본 발명에서 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호화된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.
용어 "재조합 발현 벡터"는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화시킬 수 있다면 사용 가능하다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소(translation control element)를 가지는 것이다. 상기 재조합 발현 벡터 및 적당한 전사/번역 조절 신호를 포함하는 발현 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다.
본 발명의 재조합 벡터의 바람직한 예는 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에서 디자인된 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 코딩하는 컨스트럭트를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.
본 발명의 제2 측면은 전술한 재조합 벡터로 형질전환된 형질전환체에 관한 것이다.
본 발명의 형질전환체는 원핵생물 또는 진핵생물일 수 있으며, 그 예로서, 효모(Saccharomyce cerevisiae), 대장균 등의 곰팡이, 곤충세포, 사람세포 (예컨대, CHO 세포주 (Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2, 3T3, RIN 및 MDCK 세포주) 및 식물세포 등이 이용될 수 있으며, 바람직하게는 아그로박테리움(Agrobacterium)될 수 있다. 곤충세포, 사람세포 등의 경우에는 삼량체를 형성하는 재조합 HA 단백질을 코딩하는 유전자를 각 종류의 세포 발현에 필요한 발현 벡터를 사용하여 발현할 수 있다.
본 발명의 재조합 벡터를 숙주세포 내로 운반하는 방법은, 숙주세포가 원핵세포인 경우, CaCl2 방법, 하나한 방법 및 전기천공 방법 등에 의해 실시될 수 있다. 또한, 숙주세포가 진핵세포인 경우에는, 미세주입법, 칼슘포스페이트 침전법, 전기천공법, 리포좀-매개 형질감염법, DEAE-덱스트란 처리법, 및 유전자 밤바드먼트 등에 의해 벡터를 숙주세포 내로 주입할 수 있다.
본 발명의 제3 측면은 다음의 단계를 포함하는, 식물에서 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하는 방법에 관한 것이다:
(a) 전술한 재조합 벡터를 제작하는 단계;
(b) 상기 재조합 벡터를 세포에 도입하여 형질전환체를 제조하는 단계;
(c) 상기 형질전환체를 배양하는 단계;
(d) 상기 형질전환체를 배양한 배양물을 식물에 침윤시키는 단계; 및
(e) 상기 식물을 분쇄하여 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA(hemagglutinin) 단백질을 수득하는 단계.
본 발명의 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하는 방법에 있어서, 상기 (a) 및 (b)는 전술한 바와 동일하므로, 그 기재를 생략한다.
본 발명의 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하는 방법에 있어서, 상기 (c) 단계는 본 발명의 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위해 당업계에 공지된 임의의 방법을 적절하게 선택하여 이용할 수 있다.
본 발명의 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하는 방법에 있어서, 상기 (d) 단계는, 예를 들어, 화학 전지법, 진공 또는 주사기 침윤 방법을 이용하여 형질전환체를 배양한 배양물을 식물에 침윤시키는 방식으로 수행될 수 있고, 바람직하게는 주사기 침윤 방법으로 침윤시킬 수 있으나, 이에 제한되는 것이 아니다.
본 발명의 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하는 방법에 있어서, 상기 (d) 단계의 식물은 벼, 밀, 보리, 옥수수, 콩, 감자, 밀, 팥, 귀리, 수수를 포함하는 식량 작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파, 당근을 포함하는 채소 작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무, 들깨, 땅콩, 유채를 포함하는 특용 작물류; 사과나무, 배 나무, 대추나무, 복숭아, 포도, 감귤, 감, 자두, 살구, 바나나를 포함하는 과수류; 장미, 카네이션, 국화, 백합, 튤립을 포함하는 화훼류로부터 선택되는 것일 수 있다.
본 발명의 제4 측면은 전술한 생산방법으로 생산된 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질 및 이를 포함하는 면역원성이 증가된 인플루엔자 바이러스 감염 질환의 예방, 개선 또는 치료용 백신 조성물에 관한 것이다.
본 발명의 백신 조성물에 있어서, 상기 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질은 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅될 수 있다. 상기 세포벽에 펩티도글리칸을 포함하는 박테리아는 일반적으로 안전하다고 인정되는 (generally recognized as safe, GRAS) 상태의 박테리아일 수 있으며, 예를 들어, 락토코커스(Lactococcus), 락토바실러스 (Lactobacillus), 스트렙토코거스 (Streptococcus) 등이 있으나, 이로 제한되지 않는다.
본 발명의 구체적인 일실시예에서는 락토코커스 락티스의 표면에 하나 또는 서로 다른 2종 이상의 재조합 HA 단백질을 다양한 방식으로 코팅함으로써, 항원을 효과적으로 전달하고자 하였다.
이를 위해, 본 발명의 삼량체를 형성하는, 서로 다른 2개 이상의 종류의 인플루엔자 바이러스 유래 재조합 HA 단백질은 다음의 (i) 내지 (iii) 중 어느 하나의 방법으로 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅될 수 있다:
(i) 상기 삼량체를 형성하는, 서로 다른 2개 이상의 종류의 인플루엔자 바이러스 유래 재조합 HA 단백질을 혼합한 후, 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅하거나,
(ii) 상기 삼량체를 형성하는, 서로 다른 2개 이상의 종류의 인플루엔자 바이러스 유래 재조합 HA 단백질을 각각 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅한 후 혼합하거나; 또는
(iii) 상기 (i) 및 (ii)의 2 가지 방법으로 서로 다른 2개 이상의 종류의 인플루엔자 바이러스 유래 재조합 HA 단백질을 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅함.
예를 들어, 본 발명의 백신 조성물은 삼량체를 형성하는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 락토코커스에 각각 개별적으로 코팅한 후, 각기 다른 HA 재조합 단백질이 코팅된 락토코커스를 동일한 비율로 혼합하거나 (예를 들어, 2종의 상이한 HA 재조합 단백질이 코팅된 락토코커스를 혼합하는 경우 1:1로 혼합될 수 있음), 임의의 적절한 비율로 혼합하여 하나의 단일 백신 조성물로 제조할 수 있다. 다르게는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 동일한 비율 또는 임의의 적절한 비율로 혼합한 후, 락토코커스 표면에 코팅하여 하나의 단일 백신 조성물로 제조할 수 있다. 이를 통해, 2종 이상의 항원을 동시에 효과적으로 전달할 수 있는 단일 백신 조성물을 제조하는 것이 가능하다. 또한, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 코팅한 락토코커스 사균체에 또 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 코팅한 락토코커스 사균체를 추가로 혼합하여 다중의 항원을 전달하는 백신 조성물을 제조할 수 있다.
따라서, 본 발명의 백신 조성물에 포함되는 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질은 종래의 알려진 종래의 알려진 인플루엔자 바이러스 A형, B형, C형, 이사바이러스(Isavirus) 및 토고토바이러스(Thogotovirus)로 이루어진 군에서 선택되는 1종 또는 2종 이상으로부터 유래된 것일 수 있다. 상기 인플루엔자 A 바이러스는, 예를 들어, H5N6, H7N9 및 H9N2으로 이루어진 군으로부터 선택되는 어느 하나 이상 또는 둘 이상일 수 있으나, 이로 한정되지 않는다.
본 발명의 백신 조성물은 콜레라 독소 B 서브유닛 (cholera toxin B subunit)을 추가로 포함할 수 있다. 이를 통해, 본 발명의 재조합 HA 단백질의 면역원성을 증가시켜 보다 효과적으로 면역 반응을 유도할 수 있다.
본 발명의 백신 조성물은 주사제 형태일 수 있으나, 이에 한정되지 않는다.
본 발명의 백신 조성물에 있어서, 인플루엔자 바이러스 감염 질환은 인플루엔자 바이러스 A형, B형 또는 C형 감염에 의한 급성 호흡기 질환 또는 이로 인한 임상증상 및 합병증을 포함한다. 인플루엔자 바이러스 감염에 의한 급성 호흡기 질환으로 인한 임상 증상은, 예를 들어, 고열 (약 38~40℃), 마른 기침, 인후통과 같은 호흡기 증상 및 두통, 근육통, 피로감, 쇠약감, 식욕 부진과 같은 전신 증상이 있다. 가장 흔한 합병증은 2차 호흡기 질환으로 부비동염 및 중이염과 같은 상부 호흡기 감염증이고, 그 밖에도 뇌염, 척수염, 길랑-바레 증후군과 같은 신경계 합병증, 횡단성 척수염, 심근염, 근육염 및 기흉 등이 있다.
본 발명에서 용어 "예방", "개선" 및/또는 "치료"는 질병 또는 병증의 발병을 억제하거나 지연시키는 모든 행위, 질병 또는 병증 상태를 호전 또는 이롭게 변경하는 모든 행위, 및 질병 또는 병증의 진행을 지연, 중단 또는 역전시키는 모든 행위를 의미한다.
본 발명의 백신 조성물은 항원, 약제학적 허용가능한 담체, 적절한 보조제, 기타 통상적인 물질들로 구성될 수 있고, 면역학적 효과량으로 투여한다. 본 발명에서 용어, "면역학적 효과량"이란, 면역 반응을 유도할 수 있을 정도의 충분한 양이되, 부작용이나 심각한 또는 과도한 면역 반응을 일으키지 않을 정도의 양을 의미하며, 정확한 투여 농도는 투여될 특정 면역원에 따라 달라지며 면역 반응의 발생을 검사하기 위하여 당업자가 공지의 방법을 이용하여 이를 결정할 수 있다. 또한, 투여형태 및 경로, 수용자의 연령, 건강 및 체중, 증상의 특성 및 정도, 현재 치료법의 종류, 및 치료 횟수에 따라 변화될 수 있다.
담체는 당 분야에 공지의 것으로 안정화제, 희석제, 완충액을 포함할 수 있다. 적절한 안정화제는 솔비톨, 락토즈, 만니톨, 전분, 당, 덱스트란 및 포도당 같은 탄수화물; 알부민 또는 카제인 같은 단백질 등을 포함할 수 있다. 적절한 희석제에는 염, 행크스 균형 염 (Hanks balanced salt), 링거액 등을 포함한다. 적절한 완충액에는 알칼리 금속 인산염, 알칼리 금속 탄산염, 알칼리 토금속 탄산염 등을 포함한다. 또한, 본 발명의 백신 조성물은 추가적으로 용매, 아쥬반트(adjuvant) 및 부형제로 이루어진 군으로부터 선택된 1종 이상을 더 포함할 수 있다. 상기 용매로는 생리식염수 또는 증류수가 있으며, 면역 증강제로는 프로인드 불완전 또는 완전 아쥬반트, 알루미늄 하이드록사이드 겔과 식물성 및 광물성 오일 등이 있으며, 부형제로는 알루미늄 포스페이트, 알루미늄 하이드록사이드 또는 알루미늄 포타슘 설페이트가 있으나, 이에 한정되는 것은 아니며, 당해 분야의 통상의 지식을 가진 자가 기술자에게 잘 알려진 백신 제조에 사용되는 물질을 더 포함할 수 있다.
본 발명의 백신 조성물은 공지의 투여 경로를 통하여 투여된다. 이와 같은 방법에는 경구, 경피, 근육, 복막, 정맥, 피하, 비강 경로를 이용할 수 있지만 이에 국한되지는 않으며, 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.
본 발명의 백신 조성물은 체액성 또는 선택적으로 세포-매개성 면역 반응 및/또는 상기 두 면역반응의 조합을 유도할 수 있다.
본 발명의 제5 측면은 전술한 다양한 형태의 백신 조성물을 이를 필요로 하는 개체에게 투여하는 단계를 포함하는 인플루엔자 바이러스 감염 질환의 예방, 개선 또는 치료 방법에 관한 것이다.
본 발명의 인플루엔자 바이러스 감염 질환의 예방, 개선 또는 치료방법에 있어서, "개체"란 인플루엔자 바이러스에 이미 감염되었거나 감염될 수 있는 인간을 포함한 모든 동물을 의미한다. 예를 들어, 인간, 개, 고양이, 돼지, 말, 닭, 오리, 거위, 칠면조, 물개 등을 포함하나, 이로 한정되지 않는다. 본 발명의 백신 조성물을 이를 필요로 하는 개체에 투여함으로써, 인플루엔자 바이러스 A형, B형 또는 C형 감염에 의한 급성 호흡기 질환 또는 이로 인한 임상증상 및 합병증을 효과적으로 예방 또는 치료할 수 있다. 예를 들어, 본 발명의 백신 조성물로 다양한 인플루엔자 바이러스 아형 또는 변이형의 인플루엔자 바이러스로 감염된 인간을 치료할 수 있다. 또한, 본 발명의 조성물로 다양한 인플루엔자 바이러스 아형 또는 변이형의 조류 인플루엔자로 감염된 닭 또는 돼지를 치료할 수 있다. 본 발명의 조성물은 기존의 인플루엔자 바이러스 감염 질환 치료제 및/또는 콜레라 독소 B 서브유닛 (cholera toxin B subunit)과와 병용 투여할 수 있다.
용어 "병용 투여(administered in combination)"는 본 발명의 백신 조성물이 기존의 인플루엔자 바이러스 감염 질환 치료제 및/또는 콜레라 독소 B 서브유닛과 함께 이를 필요로 하는 개체에게 투여되는 것을 의미한다. 각각의 성분이 함께 투여된다는 것은 원하는 효과를 얻기 위해서, 각 성분을 동시에(simultaneous), 별도로(separate) 또는 순차적(sequential)으로 투여될 수 있음을 의미한다.
본 발명의 인플루엔자 바이러스 감염 질환의 예방, 개선 또는 치료 방법에 있어서, 상기 백신 조성물은 경구로, 비경구로, 흡입 스프레이에 의해, 국소적으로, 직장으로, 비강으로, 협측으로, 질로 또는 이식된 저장소를 통해 투여될 수 있다. 본원에 사용된 용어 "비경구"는, 비제한적으로, 피하, 정맥내, 근육내, 관절내, 활액내, 흉골내, 척수강내, 간내, 병변내 및 두개내 주사가 포함된다. 특히, 상기 조성물은 경구로, 복강내로 또는 정맥내로 투여될 수 있다.
본 발명의 인플루엔자 바이러스 감염 질환의 예방, 개선 또는 치료 방법에 있어서, 상기 백신 조성물의 투여는 2 회 이상 실시하는 것이 바람직하다. 예컨대, 1차 예방접종(initial vaccination) 후에 추가접종(booster injections)을 1-10 주 간격으로 1-4 회 정도 실시할 수 있으나, 이는 해당 동물의 종류에 따라 당업자가 적절하게 변형하여 실시할 수 있다.
본 발명의 제6 측면은 인플루엔자 바이러스 감염 질환의 예방, 개선 또는 치료를 위한 약제의 제조 시 본 발명의 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질의 용도에 관한 것이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예 1]
삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 혈구응집소(HA)재조합 유전자의 설계
H5N6 또는 H9N2의 HA를 ER 루멘(lumen)에 가용성 형태로 발현하도록 유도하기 위해, 막관통 도메인과 ER 표적화 선도 서열이 없는 H5N6의 HA (GenBank: AJD09950.1)의 아미노산 위치 17-531) 및 H9N2의 HA (GenBank: AFM47147.1)의 아미노산 위치 19-524)를 확보하였다. 상기 HA의 5'-말단에 애기장대 단백질인 BiP로부터 확보한 ER 표적화 신호를 융합하여 ER 표적화 되도록 하였다. 또한, 락토코커스 락티스(Lactococcus lactis)의 AcmA로부터 락토코커스 결합 도메인인 LysM의 삼 반복 서열 중 첫 번째 반복 서열을 HA의 C-말단에 링커를 이용하여 융합시켰다. 그리고 Hisx6 태그 및 ER 보유 모티프 (retention motif)인 HDEL을 HA 정제 및 ER에서의 고축적을 위해서 LysM의 C-말단에 순차적으로 융합하여 mHA를 구축하였다 (도 1a). 이렇게 만들어진 HA 재조합 단백질의 삼량체 형성을 유도하기 위해, 추가적으로 마우스 mCoronin1이라는 단백질로부터 동종 삼량체의 형성을 유도하는 모티프를 HA와 LysM 사이에 첨가하여 tHA를 구축 하였다 (도 1b). 발현을 위해 macT를 사용하였으며 Rd29b의 말단을 전사 종결자로 사용하였다. 이들은 높은 전사 효율을 보이는 것으로 확인되었다. 실험에 사용되는 염기서열은 하기 표 1과 같다.
명칭 서열(5'→3') 서열번호
H5N6의 HA 염기서열 gtggatggcaaggtatggtggatggctggtacggatatcatcattcgaatgaacaggggtctggttatgcagcggatcgggagagtacacaaaaggccatagatggagttaccaacaaggtaaactctattattgataaaatgaacacacagtttgaggctgtggggagggagttcaacaaccttgaaaggcgtatcgaaaacctcaacaaaaagatggaagacggctttctggacgtttggacttacaacgcagaattgctcgttcttatggaaaacgaacgtactttggatttccatgattctaacgtcaagaatctctacgataaagtgaggctgcaacttagggacaatgcaaaagaactaggtaacggttgctttgaattttatcacaagtgtgataatgagtgtatggagagtgtaagaaacgggacttatgactaccctcagtatagtgaggaagctagactcaagcgcgaggagatttccggagttaagcttgaatcaattggaacataccagatt 1
H5N6의 HA아미노산 서열 dqicigyhannsteqvdtimeknvtvthaqdilekthngrlcdlngvkplilkdcsvagwllgnpmcdefirvpewsyiveranpandlcypgnlndyeelkhllsrinhfektliipksswpnhetslgvsaacpyqgmpsffrnvvwltkkndayptikmsynntnredllilwgihhsnnaaeqtnlyknpttyvsvgtstlnqrlvpkiatrsqvngqrgrmdffwtilkpndaihfesngnfiapeyaykivkkgdstimksemeyghcntkcqtpigainssmpfhnihpltigecpkyvksnklvlatglrnsplrerrrkrglfgaiagfieggwqgmvdgwygyhhsneqgsgyaadrestqkaidgvtnkvnsiidkmntqfeavgrefnnlerrienlnkkmedgfldvwtynaellvlmenertldfhdsnvknlydkvrlqlrdnakelgngcfefyhkcdnecmesvrngtydypqyseearlkreeisgvklesigtyqi 2
mCor1염기서열 gtgtctaggcttgaggaagatgttagaaatctcaacgcaattgtccagaaacttcaggaaaggttggataggctggaggaaactgttcaagctaag 3
mCor1아미노산 서열 vsrleedvrnlnaivqklqerldrleetvqak 4
링커1염기서열 gaggcagccgc taaggaagct gcagcgaaa 5
링커 1아미노산 서열 sggsgg 6
링커 2염기서열 tcaggaggatcaggagga 7
링커 2아미노산 서열 sggsgg 8
BiP 염기 서열 atggctcgct cgtttggagc taacagtacc gttgtgttgg cgatcatctt cttcggtgag tgattttccg atcttcttct ccgatttaga tctcctctac attgttgctt aatctcagaa ccttttttcg ttgttcctgg atctgaatgt gtttgtttgc aatttcacga tcttaaaagg ttagatctcg attggtattg acgattggaa tctttacgat ttcaggatgt ttatttgcgt tgtcctctgc aatagaagag gctacgaagt ta 9
HDEL 염기서열 cacgatgagctc 10
HDEL 아미노산서열 His-Asp-Glu-Leu 11
M17 염기서열 ggcgtgtgtgtgtgttaaaga 12
LysM 염기서열 ggtaatactaactctgggggttcaacgaccaccattacaaacaacaacagtggaacaaattcatcttcaaccacctacaccgtgaagagtggcgatacgttgtggggaatcagtcaacgttatggtattagcgttgctcagatccagtctgcaaataaccttaagtctactataatttatattgggcaaaagctagttctgactggctcggctagtagcaccaattccggaggtagcaataactcagcttctactacccctacaacctctgtaactccagctaagcctacatcacagactaca 13
LysM아미노산 서열 gntnsggstttitnnnsgtnsssttytvksgdtlwgisqrygisvaqiqsannlkstiiyigqklvltgsasstnsggsnnsasttpttsvtpakptsqtt 14
MacT 염기서열 acacgccaagcctcgctagtcaaaagtgtaccaaacaacgctttacagcaagaacggaatgcgcgtgacgctcgcggtgacgccatttcgccttttcagaaatggataaatagccttgcttcctattatatcttcccaaattaccaatacattacactagcatctgaatttcataaccaatctcgatacaccaaatcgt 15
RD29B 종결자염기서열 aattttactcaaaatgttttggttgctatggtagggactatggggttttcggattccggtggaagtgagtggggaggcagtggcggaggtaagggagttcaagattctggaactgaagatttggggttttgcttttgaatgtttgcgtttttgtatgatgcctctgtttgtgaactttgatgtattttatctttgtgtgaaaaagagattgggttaataaaatatttgcttttttggataagaaactcttttagcggcccattaataaaggttacaaatgcaaaatcatgttagcgtcagatatttaattattcgaagatgattgtgatagatttaaaattatcctagtcaaaaagaaagagtaggttgagcagaaacagtgacatctgttgtttgtaccatacaaattagtttagattattggttaacatgttaaatggctatgcatgtgacatttagaccttatcggaattaatttgtagaattattaattaagatgttgattagttcaaacaaaaat 16
H9N2의 HA염기서열 ggtacgggtttcagcactcaaatgatcaaggggttggaatagccgcagacaaagaatcaactcaagaagcagttgataaaataacatccaaagtaaataatataatcgacaaaatgaacaagcagtatgaaatcattgatcatgagttcagtgagattgaagccagactcaatatgatcaacaataagattgatgaccaaatacaggacatctgggcgtacaatgcagaattactagtactgcttgaaaaccagaaaacactcgatgatcatgatgcaaatgtgaacaatctgtataataaggtgaagagagcattgggttcaaatgcaatagaggatgggaagggatgcttcgagttgtatcacaaatgtgatgatcaatgcatggaaacaattagaaacgggacttatgacaggctaaagtataaagaagaatcaaaactagaaaggcagaaaatagaaggggtaaaactggagtctgaagaaacatacaagatt 17
H9N2의 HA아미노산 서열 dkicigyqstnstetvdtlvennvpvthtkellhtehngmlcatnlghplildtctieglvygnpscdlllggkewsyiverssavngmcypgrvenleelrsffssarsykrlllfpdrtwnvtfngtskacsgsfyrsmrwlthknnsypiqdaqytndwgknilfmwgihhpptdteqmnlykkadtttsittedinrtfkpgigprplvngqqgridyywsvlkpgqtlrirsngnliapwyghilsgeshgrilktdlnsgnciiqcqtekgglnttlpfqnvskyafgncpkyvgvkslklavglrnvpatsgrglfgaiagfieggwpglvagwygfqhsndqgvgiaadkestqeavdkitskvnniidkmnkqyeiidhefseiearlnminnkiddqiqdiwaynaellvllenqktlddhdanvnnlynkvkralgsnaiedgkgcfelyhkcddqcmetirngtydrlkykeesklerqkiegvkleseetyki 18
[실시예 2]
삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 혈구응집소 (HA)재조합 유전자의 발현 및 확인
mHA와 tHA를 진공 침윤법(vacuum infiltration)을 사용하여 4-5 주령의 담배 식물 니코티아나 벤타미아나 (Nicotiana benthamiana) 식물 잎에서 일과성 발현을 통하여 발현을 유도하였다. 침윤된 잎을 침윤 후 3 일, 5 일 및 7 일 (dpi)에 각각 수확하고, 액체 질소에서 완전히 분쇄하고 3 부피의 완충액에 용해시켰다. 침윤된 잎 추출물로부터의 총 가용성 단백질을 SDS-PAGE로 전개한 후 이를 웨스턴 블롯(western blot) 분석을 수행하였다. 도 2a에서 확인되는 바와 같이 HA 재조합 단백질은 항-His 항체에 의해서 예측된 크기에 상응하는 위치인 대략 85kDa (mH5N6) 및 90kDa (tH5N6)의 지점에 선명하게 밴드를 나타냈다. 그리고 도 2b에서 확인되는 바와 같이, 같은 멤브레인을 쿠마시 브릴리언트 블루(Coomassie Brilliant Blue, CBB)로 염색하여 밴드를 확인하였을 때에도 동일하게 관찰되었다. 이들 재조합 단백질의 발현 수준을 밴드 강도로부터 판단하건대 침윤된 잎에서 100μg/g 생 중량 (fresh weight) 정도인 것으로 추정되었다.
[실시예 3]
삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 혈구응집소 (HA)재조합 유전자의 삼량체 구조 형성의 확인
바이러스 표면상의 HA 단백질은 동종 삼량체로서 존재하여 높은 안정성 및 면역원성을 나타낸다. 반면 재조합 HA는 발현 시스템에 따라 응집체 또는 단량체로서 발현되는 경향이 있다. 바이러스 표면에 존재하는 것과 같이 HA의 삼량체를 모방하기 위해, 코일드 코일(coiled coil) 구조를 이루며 동종 삼량체를 형성하는 모티프인 마우스 코로닌1-1A (mCor1, Genbank: EDL17419.1 32개의 아미노산)를 도 1b와 같이 HA의 C-말단에 첨가하였다. 이들 유전자를 니코티아나 벤타미아나(N. benthamiana)에 도입하여 발현을 유도하고 각각 5dpi 잎 조직으로부터의 총 가용성 단백질(total soluble protein)을 확보하여 Ni2+-NTA 친화성 컬럼 크로마토그래피로 정제하였다. 분리 정제된 mHA와 tHA를 BSA 표준 곡선에 기초하여 정량화하였다. mCor1에 의해 HA가 삼량체를 형성하는지를 확인하고자, 약 10μg의 mHA 및 10μg의 tHA에 PBS를 추가하여 전체 부피가 1mL이 되도록 혼합하고 이를 크기 배제 크로마토그래피 (size exclusion chromatography, SEC)로 분석하였다. 도 3a 및 도 3c에서 확인되는 바와 같이 mHA 및 tHA 혼합물은 280nm 흡수 스펙트럼에서 2개의 피크를 나타내었다. 이들 2개의 피크를 포함하는 분획을 항-His 항체를 사용하여 웨스턴 블롯팅으로 분석하였고, 그 결과를 각각 도 3b 및 도 3d에 나타내었다. 도 3a 및 도 3c의 SEC 분석 결과와 도 3b 및 도 3d의 웨스턴 블롯팅 결과에 나타난 바와 같이, mCor1를 포함하는 tHA(즉, tH5N6 및 tH9N2)는 mCor1이 없는 mHA (즉, mH5N6 및 mH9N2) 보다 앞에서 용출되었다. 이를 통해 mCor1가 HA의 삼량체 형성을 유도함을 확인할 수 있었다.
[실시예 4]
삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 혈구응집소 (HA)재조합 유전자의 펩티도글리칸 결합 능력의 확인
락토코커스 락티스(Lactococcus lactis)의 파지(phage)인 MG1363의 주요 자가분해효소(autolysin)인 AcmA는 C-말단에 LysM이라 불리는 도메인이 삼반복으로 나타나며, 이 LysM의 삼반복 부분이 락토코커스의 세포벽 성분인 펩티도글리칸에 결합하는 능력을 가지고 있다. 펩티도글리칸에 대한 최적의 활성을 위해서는 3개의 반복이 필요하다. 하지만 3개의 반복 구간을 다 포함하는 경우에는 도메인의 길이가 너무 길어지므로, 1개의 LysM 만을 GFP의 C-말단에 융합하여 확인하였다. 그 결과, 도 4a 및 4b에서 확인되는 바와 같이 GFP-LysM은 락토코커스에 잘 결합하지 않았다. 여기에 HA의 삼량체 형성을 위해서 사용하였던 마우스 코로닌 1A (mCor-1A)의 삼량체 형성 모티프를 추가하여 GFP-mCOr1-LysM을 구축하여 HA에서의 삼량체와 같은 삼량체를 형성하도록 유도한 후 락토코커스에 결합하는지를 확인하였다. 그 결과, 도 4a 및 4b에 나타난 바와 같이 GFP-LysM에 비해서 현저하게 증가된 GFP 신호를 락토코커스에서 확인할 수 있었다. 이를 통해서 mCor1A의 삼량체 형성 모티프가 GFP의 삼량체 형성을 유도하고, 이와 같이 형성된 GFP 삼량체는 LysM 모티프 3개를 갖게 되므로, 이에 따라 GFP가 락토코커스에 잘 결합하는 것으로 해석할 수 있었다. 이러한 결과는 tHA가 락토코커스에 잘 결합할 것이라는 것을 제시하는 것으로 판단된다.
[실시예 5]
삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 혈구응집소 (HA)재조합 유전자의 최대 결합량의 확인
HA의 재조합 단백질인 mHA와 tHA 모두 니코티아나 벤타미아나에서 높게 발현되었다. 침윤된 잎을 액체 질소에서 완전히 분쇄하고 0.5% 트리톤 X-100, 1 mM EDTA 및 25% 글리세롤을 함유하는 10배 부피 PBS 버퍼에 용해시켰다. 잎으로부터 총 가용성 단백질을 확보하고, 잎의 200 mg에서 2 g에 해당하는 총 가용성 단백질의 양을 37℃에서 1시간 동안 TCA 전처리한 락토코커스 락티스(L. lactics)와 함께 인큐베이션 한 후, PBS 완충액으로 3회 세척하였다. 각각의 시료로부터 락토코커스를 침전하여 이를 SDS 버퍼에 넣고 가열한 후 다양한 양의 BSA와 함께 SDS-PAGE로 전개한 다음 쿠마시 브릴리언트 블루로 염색하여 HA를 확인하였다. 그 결과, 도 5에서 확인되는 바와 같이 삼량체 모티프인 mCor1을 갖는 tHA는 HA의 양이 증가함에 따라 락토코커스 락티스에 결합하는 양이 증가한 반면, mHA는 락토코커스에 거의 결합하지 않았다. 삼량체인 tHA의 최대 결합량은 약 1.7μg/1 ml L. lactics (OD = 1)로 추정되었다 (도 5).
[실시예 6]
락토코커스 사균체의 제조 및 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 혈구응집소(HA) 재조합 단백질을 상기 사균체에 코팅하는 방법
락토코커스(한국미생물보존센터; KCCM No. 43146)를 OD600에서 1.0까지 배양한 후 배양액을 원심분리를 통해서 세포를 펠릿화(pelleting)하여 회수한 후, 이를 같은 부피의 10% 트리클로로 아세트산 (TCA)으로 재현탁하여 100℃에서 10분 동안 처리하였다. TCA를 제거하기 위해 세포를 원심분리를 통해서 펠릿화한 후 이를 PBS로 3회 세척하고 펠릿을 재현탁하여 락토코커스 사균체를 제조하였다. 완충액 (PBS pH = 7.5, 1 mM EDTA, Triton X-100, 칵테일 및 25 % 글리세롤)을 이용하여 만든 총 가용성 단백질 추출액의 다양한 양을 첨가하여 1시간 동안 37℃에서 배양하였다. 12,000 rpm에서 5분 동안 원심분리하여 락토코커스 사균체를 펠릿화 하였으며, 이를 단백질 추출액용 PBS 완충액으로 3회 세척하였다.
[실시예 7]
마우스를 이용한 삼량체를 형성하는 항원들의 면역원성 확인
실시예 2 및 실시예 6에서 각각 제조된 재조합 tH5N6, 락토코커스 사균체에 코팅한 tH5N6, tH9N2 및 락토코커스 사균체에 코팅한 tH9N2 백신을 6주령 C57BL/6 마우스 암컷(오리엔트 바이오, 한국)에 2주 간격으로 2회에 걸쳐서 복강내 주사하였다. 대조군으로는 PBS와 락토코커스 사균체를 투여하였다. 하기 표 2와 같은 조성으로 아쥬반트를 혼합하거나 또는 혼합하지 않고, 상기 재조합 백신을 첨가하여 시험 백신을 제조하였다.
시험군 (+아쥬반트) 조성
PBS PBS + 프로인드 완전 보조제
락토코커스 사균체 109개의 락토코커스 세포 + 25% 글리세롤 + PBS + 프로인드 완전 보조제
tH5N6 H5N6의 tHA 1 μg + 프로인드 완전 보조제 + PBS
락토코커스 사균체에 코팅한 tH5N6 H5N6의 tHA 1 μg + 109개의 락토코커스 세포 + 25% 글리세롤 + PBS + 프로인드 완전 보조제
tH9N2 H9N2의 tHA 1 μg + PBS
락토코커스 사균체에 코팅한 tH9N2 H9N2의 tHA 1 μg + 109개의 락토코커스 세포 + 25% 글리세롤 + PBS + 프로인드 완전 보조제 + PBS
시험군 (-아쥬반트) 조성
PBS PBS
락토코커스 사균체 109개의 락토코커스 세포 + 25% 글리세롤 + PBS
tH5N6 H5N6의 tHA 1 μg + PBS
락토코커스 사균체에 코팅한 tH5N6 H5N6의 tHA 1 μg + 109개의 락토코커스 세포 +25% 글리세롤 + PBS
tH9N2 H9N2의 tHA 1 μg + PBS
락토코커스 사균체에 코팅한 tH9N2 H9N2의 tHA 1 μg + 109개의 락토코커스 세포 +25% 글리세롤 + PBS
상기 투여된 시험 백신에 의해 유도된 체액성 면역반응을 분석하기 위하여, 면역 전인 0주차 2차 백신 투여 후 2 주째인 4주차에 마우스의 혈청에 분리하여 항원 특이적인 항체 형성을 ELISA법으로 분석하여 항체가를 결정하였다. 전체 IgG 항체가는 다음과 같은 방법으로 확인하였다.
구체적으로, 정제된 상기 재조합 항원을 96웰 마이크로플레이트에 50 ng/웰의 농도로 코팅한 뒤, 비특이적 결합을 막기 위하여 3%의 스킴 밀크(skim milk)를 포함하는 PBST 버퍼 (NaCl 137mM, KCl 2.7mM, Na2HPO4 10mM, KH2PO4 1.8mM, Tween 20 1%) 200μl를 첨가하여 2시간 동안 반응시켰다. 상기 마이크로 플레이트를 세척하고 각 웰에 순차적으로 3% 스킴 밀크를 포함한 PBST 용액으로 희석한 혈청을 넣고 실온에서 1시간 동안 마이크로 플레이트 진탕기(microplate shaker) 위에서 반응시켰다. 이어서 200μl PBST 버퍼로 3회 세척 후, 2차 항체로 항-마우스 IgGHRP(horse radish heroxidase, KPL, 미국, Bethyl.)를 넣고 2시간 동안 동일한 조건에서 반응시켰다. 상기 반응시킨 마이크로 플레이트를 세척하고 발색 시약 TMB(3,3',5,5'-tetramethyl benzidine)와 페록시다아제 기질(peroxidase substrate, KPL, 미국)을 첨가하고, 10분간 상온에서 반응시킨 후 0.18M H2SO4 정지 용액을 이용해 발색 반응을 멈추고, ELISA 리더기를 이용하여 450 nm에서 OD를 측정하였다. 항체가는 음성대조군 OD 값의 2배에 해당하는 OD 값을 나타내는 항체 희석 배수의 역수로 정의하였다. 그 결과, 도 6b에서 확인되는 바와 같이 보조제 없이 락토코커스 표면에 코팅된 tHA가 아쥬반트를 포함한 것과 동일한 항체 유도 효과를 나타내었다. 이를 통해서 락토코커스에 코팅된 항원은 아쥬반트 없이 강력하게 면역을 유도할 수 있으며, 락토코커스 사균체는 복강 내 및 근육 내 투여에서 강력한 보조제가 될 수 있음을 암시하며, 이는 예방 접종의 비용 효율성 적용이 될 수 있다.
[실시예 8]
인플루엔자 바이러스 표면 단백질 유래 혈구응집소 (HA) 재조합 단백질이 락토코커스 표면에 코팅된 형태와 수용성 삼량체의 혈구 응집 저해 정도 비교 분석
PBS를 대조군으로 사용하였으며, tH9N2 (H9N2의 HA 삼량체), tH5N6 (H5N6의 HA 삼량체), 락토코커스 사균체, Lact.-tH9N2 (락토코커스 표면에 코팅된 H9N2의 HA 삼량체), Lact.-tH5N6 (락토코커스 표면에 코팅된 H5N6의 HA 삼량체)를 2의 배수로 희석된 항원을 이용하여 혈구 응집 억제 실험(Hemagglutination inhibition assays)을 진행하여 혈구 응집을 분석하였다. U자형 바닥의 마이크로플레이트(U-bottom microplate)에 첫 번째부터 마지막 웰 전까지 희석 버퍼 25 ㎕를 첨가하였다. 전처리된 시료를 첫 번째 웰에 희석 버퍼를 25 ㎕ 첨가한 후 마지막 웰 전까지 25 ㎕씩 넘기면서 2진 희석하였다. 이때 시료의 비특이 반응을 확인하기 위하여 마지막 웰에 전 처리된 시료 25 ㎕를 첨가하였다. 8 HA 유닛(Unit)으로 희석된 각각의 항원을 첫 번째부터 마지막 웰 전까지 25 ㎕씩 첨가하고 밀봉하여 실온에서 45분 동안 배양하였다. 1% 닭 혈구 25 ㎕를 각 웰에 첨가하고 실온에서 1시간 동안 반응시킨 후 판독하였다. 도 7a 및 7b에서 확인되는 바와 같이, 혈구 응집 억제 실험에 있어서도 항원이 코팅된 락토코커스, 즉, 락토코커스 표면에 H9N2의 HA 삼량체가 코팅된 Lact.-tH9N2와 H5N6의 HA 삼량체가 코팅된 Lact.-tH5N6가 훨씬 더 활성이 높았다.
[실시예 9]
가금류를 대상으로 락토코커스 표면에 코팅된 삼량체의 항원성 확인
6주령의 닭 (남덕 SPF, 대한민국)을 그룹 당 5마리씩 나누고, PBS, 락토코커스 사균체, 가용성 H5N6의 HA 삼량체 및 락토코커스의 표면에 코팅된 H5N6의 HA 삼량체를 각각 항원으로 하여 1번의 근육 주사로 투여한 후 항체의 생성을 확인하였다.
마찬가지로, H9N2의 HA를 항원으로 이용하여 상기와 동일한 방법으로 닭의 근육에 주사한 후 항체의 생성을 확인하였다. 본 실시예에서 사용한 백신의 조성은 하기 표 3과 같다. 이때, 대조군으로 H9N2 바이러스 1x107 EID50을 주사하여 항체의 생성을 확인하였다.
시험군 조성
PBS PBS
락토코커스 사균체 락토코커스 사균체 109개 세포 + 25% 글리세롤 + PBS
tH5N6 H5N6의 tHA 2 μg + PBS
락토코커스 사균체에 코팅한 tH5N6 H5N6의 tHA 2 μg + 락토코커스 사균체 109개 세포 +25% 글리세롤 + PBS
시험군 조성
PBS PBS
락토코커스 사균체 락토코커스 사균체 109개 세포 + 25% 글리세롤 + PBS
tH9N2 H9N2의 tHA 2 μg + PBS
락토코커스 사균체에 코팅한 tH9N2 H9N2의 tHA 2 μg + 락토코커스 사균체 109개 세포 +25% 글리세롤 + PBS
포르말린 불활성화 H9N2 포르말린 불활성화 H9N2 107개의 바이러스 입자
상기 투여된 시험 백신에 의해 유도된 체액성 면역반응을 분석하기 위하여, 면역 2주차, 3주차, 4주차에 각각 닭의 혈청을 분리한 후 항원 특이적인 항체 형성을 ELISA법으로 분석하여 항체가를 결정하였다. 전체 IgG 항체가는 다음과 같은 방법으로 확인하였다.
구체적으로, 정제된 상기 재조합 항원을 96웰 마이크로 플레이트에 100 ng/웰의 농도로 코팅한 뒤, 비특이적 결합을 막기 위해 1%의 소혈청 알부민(bovine serum albumin)을 첨가하여 1시간 동안 반응시켰다. 상기 마이크로 플레이트를 세척하고 각 웰에 순차적으로 희석된 혈청을 넣고 37℃에서 2시간 동안 반응시켰으며, 2차 항체로 항-마우스 IgGHRP(horse radish heroxidase, KPL, 미국)를 넣고 1시간 동안 동일한 조건에서 반응시켰다. 상기 반응시킨 마이크로 플레이트를 세척하고 발색 시약 TMB(3,3',5,5'-tetramethyl benzidine)와 페록시다아제 기질(peroxidase substrate, KPL, 미국)을 첨가하고, 10분간 상온에서 반응시킨 다음 정지 용액을 이용해 발색 반응을 멈추고, ELISA 리더기를 이용하여 450 nm에서 OD를 측정하였다. 항체가는 음성대조군 OD 값의 2배에 해당하는 OD 값을 나타내는 항체 희석 배수의 역수로 정의하였다. 도 8a 및 8b에서 확인되는 바와 같이, 닭에 있어서도, 락토코커스 표면에 코팅한 항원이 가용성 형태로 주사한 것 보다 훨씬 강력한 면역반응을 유도하였다. 특히, 락토코커스의 표면에 코팅된 H9N2의 HA 삼량체 2 μg이 H9N2 바이러스 1x107 EID50을 주사한 것보다 훨씬 강력한 면역효과를 가지는 것을 확인하였다.
[실시예 10]
CTB (cholera toxin B subunit), 가용성 H5N6의 HA 삼량체 및 가용성 H9N2의 HA 삼량체를 각각 사균체 락토코커스에 코팅한 후 면역 유도 확인
CTB (cholera toxin B subunit), 가용성 H5N6의 HA 삼량체, 가용성 H9N2의 HA 삼량체를 각각 사균체 락토코커스에 코팅한 후, 이를 마우스 (계통명: BALB/c; 동물 규격: 5주령, 암컷, 20g; 동물구입처: 샘타코, 대한민국; 사용 개체수: 3마리/그룹) 항원 복강 주사를 통해서 면역원성을 확인하였다. CTB (1μg)가 코팅된 iLact을 대조군으로 하고, iLact-tH5N6 (0.1 μg) + iLact-tH9N2 (0.1 μg), iLact-tH5N6 (0.5 μg) + iLact-tH9N2 (0.5 μg), CTB (1μg) + iLact-tH5N6 (0.1 μg) + iLact-tH9N2 (0.1 μg), 또는 CTB (1μg) + iLact-tH5N6 (0.5 μg) + iLact-tH9N2 (0.5 μg)을 백신 조성물로 제조하여 2주 간격으로 2번 복강 주사한 후, 2주 후에 혈액을 채취하여 혈액에 존재하는 항체를 ELISA를 통해 확인하였다. 이때, ELISA 플레이트에는 H5N6과 H9N2 항원을 각각 20 ng씩 코팅하였다. 그 결과, 도 9에 나타난 바와 같이 CTB를 tHA 항원들과 동시에 복강 주사하였을 때 HA의 면역원성을 증진시키는 효과를 나타낸다는 것을 확인하였다.
[실시예 11]
락토코커스에 H5N6의 HA와 H9N2의 HA를 개별적으로 각각 코팅하고 락토코커스를 혼합한 후 면역 유도 능력 확인
락토코커스 표면에 각기 다른 두 종류의 HA를 코팅한 후 이들을 섞어서 마우스에 주사하였을 때 각각의 항원에 대한 면역원성의 효능을 확인하였다. 이를 위해서, H5N6의 tHA 0.1 μg, 0.5 μg 또는 1.0 μg을 락토코커스 표면에 코팅하여 iLact-tHAH5N6를 준비하고, 마찬가지로 H9N2의 tHA 0.1 μg, 0.5 μg 또는 1.0 μg을 락토코커스 표면에 코팅하여 iLact-tHAH9N2를 준비한 후, 각 농도별로 1:1로 혼합하여 백신 조성물(iLact-tHAH5N6 + iLact-tHAH9N2)을 제조하였다. 제조된 조성물을 마우스에 2 주 간격으로 복강 주사하여 면역 반응을 유도하고, 두 번째 주사한 뒤 2 주 후에 혈액을 채취하여 항체의 양을 측정하였다. ELISA 플레이트에 tHAH5N6 및 tHAH9N2 두 종류의 항원을 50 ng 코팅한 후 각각의 항원에 결합하는 항체의 양을 [실시예 7]에 기재된 것과 동일한 방법으로 측정하였다. 그 결과, 도 10에 나타난 바와 같이 두 항원에 대해서 강력한 면원원성을 확인하였다.
[실시예 12]
락토코커스에 H5N6의 HA와 H9N2의 HA 두 종류를 동시에 코팅한 후 이를 통한 면역 유도 능력 확인
각각 0.1 μg, 0.5 μg 또는 1.0 μg 농도를 갖는 두 종류의 항원 H5N6의 tHA (tHAH5N6)와 H9N2의 tHA (tHAH9N2)을 1:1로 혼합하여 락토코커스 표면을 코팅한 후 [iLact(tHAH5N6 + tHAH9N2)], 이를 마우스에 2주 간격으로 복강 주사하고, 2차 면역 주사한 후 2주 후에 혈액을 채취하여 항체의 형성을 ELISA를 통해 확인하였다. ELISA에는 사용한 항원을 50 ng 코팅한 후 혈액을 적절한 비율로 희석하여 혈액에 존재하는 항체의 양을 [실시예 7]에 기재된 것과 동일한 방법으로 측정하였다. 도 11에 나타난 바와 같이 본 실시예의 방법으로 제조된 백신 조성물은 2개의 항원 모두에 대해서 강력한 면역반응을 유도한다는 것을 확인하였다. 따라서, 락토코커스가 두 종류의 항원(tHAH5N6 및 tHAH9N2)을 동시에 전달할 수 있음을 확인하였다.

Claims (20)

  1. (i) 인플루엔자 바이러스 유래 HA(hemagglutinin)에서 막관통 단백질 부분이 결여된 단백질을 코딩하는 유전자; 및
    (ii) Coronin 1의 삼량체 모티프(trimeric motif) 부위의 단백질을 코딩하는 유전자;
    를 포함하는, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA(hemagglutinin) 단백질을 생산하기 위한 재조합 벡터.
  2. 제1항에 있어서, 상기 인플루엔자 바이러스는 인플루엔자 A 바이러스 H5N6, H7N9 및 H9N2으로 이루어진 군으로부터 선택되는 어느 하나인, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위한 재조합 벡터.
  3. 제1항에 있어서, 상기 인플루엔자 바이러스 유래 HA에서 막관통 단백질 부분이 결여된 단백질은 서열번호 2의 아미노산 서열 또는 서열번호 18의 아미노산 서열을 포함하는, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위한 재조합 벡터.
  4. 제1항에 있어서, 상기 인플루엔자 바이러스 유래 HA에서 막관통 단백질 부분이 결여된 단백질을 코딩하는 유전자는 서열번호 1의 염기서열 또는 서열번호 17의 염기서열을 포함하는, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위한 재조합 벡터.
  5. 제1항에 있어서, 상기 Coronin 1의 삼량체 모티프 부위의 단백질은 서열번호 4의 아미노산 서열을 포함하는, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위한 재조합 벡터.
  6. 제1항에 있어서, 상기 Coronin 1의 삼량체 모티프 부위의 단백질을 코딩하는 유전자는 서열번호 3의 염기서열을 포함하는, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위한 재조합 벡터.
  7. 제1항에 있어서, 상기 재조합 벡터에 LysM 도메인의 단백질을 코딩하는 유전자를 추가로 포함하는, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위한 재조합 벡터.
  8. 제7항에 있어서, 상기 LysM 도메인의 단백질은 서열번호 14의 아미노산 서열을 포함하는, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위한 재조합 벡터.
  9. 제7항에 있어서, 상기 LysM 도메인의 단백질을 코딩하는 유전자는 서열번호 13의 염기서열을 포함하는, 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하기 위한 재조합 벡터.
  10. 제1항 내지 제9항 중 어느 한 항의 재조합 벡터로 형질전환된 형질전환체.
  11. (a) 제1항에 따른 재조합 벡터를 제작하는 단계;
    (b) 상기 재조합 벡터를 세포에 도입하여 형질전환체를 제조하는 단계;
    (c) 상기 형질전환체를 배양하는 단계;
    (d) 상기 형질전환체를 배양한 배양물을 식물에 침윤시키는 단계; 및
    (e) 상기 식물을 분쇄하여 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA(hemagglutinin) 단백질을 수득하는 단계;
    를 포함하는 식물에서 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 생산하는 방법.
  12. 제11항의 생산방법으로 생산된 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질.
  13. 제12항의 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질을 포함하는, 면역원성이 증가된 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물.
  14. 제13항에 있어서, 상기 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질은 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 포함하는, 면역원성이 증가된 서로 다른 유전형의 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물.
  15. 제13항 또는 제14항에 있어서, 상기 삼량체를 형성하는 인플루엔자 바이러스 유래 재조합 HA 단백질은 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅되는, 면역원성이 증가된 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물.
  16. 제15항에 있어서, 상기 세포벽에 펩티도글리칸을 포함하는 박테리아는 일반적으로 안전하다고 인정되는 (generally recognized as safe, GRAS) 상태의 박테리아인 것인, 면역원성이 증가된 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물.
  17. 제13항 또는 제14항에 있어서, 콜레라 독소 B 서브유닛 (cholera toxin B subunit)을 추가로 포함하는, 면역원성이 증가된 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물.
  18. 제13항 또는 제14항에 있어서, 상기 백신 조성물은 주사제 형태인, 면역원성이 증가된 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물.
  19. 제14항에 있어서, 상기 삼량체를 형성하는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질은 다음의 i) 내지 iii) 중 어느 하나의 방법으로 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅되는, 면역원성이 증가된 서로 다른 유전형의 인플루엔자 바이러스 감염 질환의 예방 또는 치료용 백신 조성물:
    (i) 상기 삼량체를 형성하는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 혼합한 후, 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅하거나,
    (ii) 상기 삼량체를 형성하는, 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 각각 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅한 후 혼합하거나; 또는
    (iii) 상기 (i) 및 (ii)의 2 가지 방법으로 서로 다른 2종 이상의 인플루엔자 바이러스 유래 재조합 HA 단백질을 세포벽에 펩티도글리칸을 포함하는 박테리아 또는 키토산의 표면에 코팅함.
  20. 제13항 내지 제19항 중 어느 한 항의백신 조성물을 이를 필요로 하는 개체에게 투여하는 것을 포함하는, 인플루엔자 바이러스 감염 질환의 예방 또는 치료방법.
PCT/KR2021/005119 2020-04-22 2021-04-22 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 재조합 혈구응집소 단백질 및 이의 용도 WO2021215855A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022562078A JP2023521183A (ja) 2020-04-22 2021-04-22 三量体を形成するインフルエンザウイルス表面タンパク質由来組換え赤血球凝集素タンパク質およびその用途
EP21793579.0A EP4141121A4 (en) 2020-04-22 2021-04-22 RECOMBINANT HEMAGGLUTININ PROTEIN DERIVED FROM TRIMER-FORMING INFLUENZA VIRUS SURFACE PROTEIN AND USE THEREOF
CN202180028258.0A CN115715326A (zh) 2020-04-22 2021-04-22 可形成三聚体的源自于流感病毒表面蛋白的重组血球凝集素蛋白及其用途
US17/995,872 US20230173055A1 (en) 2020-04-22 2021-04-22 Influenza virus surface protein-derived recombinant hemagglutinin protein forming trimer, and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0048979 2020-04-22
KR20200048979 2020-04-22
KR1020200170828A KR102571164B1 (ko) 2020-04-22 2020-12-08 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 재조합 혈구응집소 (ha)의 단백질 유전자 디자인, 식물에서의 상기 ha 재조합 단백질을 대량 생산하는 방법 및 이를 포함하는 인플루엔자 바이러스 감염 질환의 예방 및 치료용 약학적 조성물
KR10-2020-0170828 2020-12-08

Publications (1)

Publication Number Publication Date
WO2021215855A1 true WO2021215855A1 (ko) 2021-10-28

Family

ID=78269820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005119 WO2021215855A1 (ko) 2020-04-22 2021-04-22 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 재조합 혈구응집소 단백질 및 이의 용도

Country Status (5)

Country Link
US (1) US20230173055A1 (ko)
EP (1) EP4141121A4 (ko)
JP (1) JP2023521183A (ko)
CN (1) CN115715326A (ko)
WO (1) WO2021215855A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120516A2 (en) 1983-02-24 1984-10-03 Rijksuniversiteit Leiden A process for the incorporation of foreign DNA into the genome of dicotyledonous plants; Agrobacterium tumefaciens bacteria and a process for the production thereof
WO2012128628A1 (en) * 2011-03-22 2012-09-27 Mucosis B.V. Immunogenic compositions in particulate form and methods for producing the same
US20130004547A1 (en) * 2009-07-13 2013-01-03 Vaxgene Corporation Oral vaccines produced and administered using edible micro-organisms including lactic acid bacterial strains

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610345B1 (en) * 2007-11-27 2015-08-19 Medicago Inc. Recombinant influenza virus-like particles (VLPS) produced in transgenic plants expressing hemagglutinin
SG187500A1 (en) * 2008-01-21 2013-02-28 Medicago Inc Recombinant influenza virus-like particles (vlps) produced in transgenic plants expressing hemagglutinin
WO2009112542A1 (en) * 2008-03-14 2009-09-17 University Of Basel Screening for compounds having immunosuppressant activity by testing impact on leukocyte-specific calcium fluxes
EP2168987A1 (en) * 2008-09-22 2010-03-31 Mucosis B.V. Multifunctional linker protein containing an antibody against hemagglutinin, a conserved influenza antigen and an immunostimulating carrier binding domain
KR101415836B1 (ko) * 2012-07-13 2014-07-09 대한민국(관리부서 : 농림축산식품부 농림축산검역본부) 면역원성이 향상된 인플루엔자 바이러스의 ha2 공통 에피톱의 제조 방법
US9060975B2 (en) * 2013-03-14 2015-06-23 Mucosis Bv Heat-stable respiratory syncytial virus F protein oligomers and their use in immunological compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120516A2 (en) 1983-02-24 1984-10-03 Rijksuniversiteit Leiden A process for the incorporation of foreign DNA into the genome of dicotyledonous plants; Agrobacterium tumefaciens bacteria and a process for the production thereof
US4940838A (en) 1983-02-24 1990-07-10 Schilperoort Robbert A Process for the incorporation of foreign dna into the genome of dicotyledonous plants
US20130004547A1 (en) * 2009-07-13 2013-01-03 Vaxgene Corporation Oral vaccines produced and administered using edible micro-organisms including lactic acid bacterial strains
WO2012128628A1 (en) * 2011-03-22 2012-09-27 Mucosis B.V. Immunogenic compositions in particulate form and methods for producing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. AFM47147.1
DATABASE PROTEIN 26 January 2015 (2015-01-26), ANONYMOUS : "hemagglutinin [Influenza A virus (A/chicken/Shenzhen/433/2013(H5N6))] ", XP055859546, retrieved from NCBI Database accession no. AJD09950 *
JEE PUI-FONG, CHEN FEZ-SHIN, SHU MENG-HOOI, WONG WON FEN, ABDUL RAHIM RAHA, ABUBAKAR SAZALY, CHANG LI-YEN: "Insertion of single-chain variable fragment (scFv) peptide linker improves surface display of influenza hemagglutinin (HA1) on non-recombinant Lactococcus lactis", BIOTECHNOLOGY PROGRESS, AMERICAN CHEMICAL SOCIETY, vol. 33, no. 1, 1 January 2017 (2017-01-01), pages 154 - 162, XP055859545, ISSN: 8756-7938, DOI: 10.1002/btpr.2400 *
See also references of EP4141121A4
YOKO SHOJI, R. MARK JONES, VADIM METT, JESSICA A. CHICHESTER, KONSTANTIN MUSIYCHUK, XIANGJIE SUN, TERRENCE M. TUMPEY, BRIAN J. GRE: "A plant-produced H1N1 trimeric hemagglutinin protects mice from a lethal influenza virus challenge", HUMAN VACCINES & IMMUNOTHERAPEUTICS, TAYLOR & FRANCIS, US, vol. 9, no. 3, 18 March 2013 (2013-03-18), US , pages 553 - 560, XP055283062, ISSN: 2164-5515, DOI: 10.4161/hv.23234 *

Also Published As

Publication number Publication date
US20230173055A1 (en) 2023-06-08
CN115715326A (zh) 2023-02-24
EP4141121A1 (en) 2023-03-01
JP2023521183A (ja) 2023-05-23
EP4141121A4 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
ES2534332T3 (es) Composiciones que incluyen hemaglutinina, métodos de preparación y métodos de uso de las mismas
EP2170382B1 (en) Live vaccine comprising an attenuated influenza virus
CA2642054C (en) Influenza antigens, vaccine compositions, and related methods
AU2005319141B8 (en) Compositions of influenza viral proteins and methods of use thereof
US20110059130A1 (en) Prophylactic and therapeutic influenza vaccines, antigens, compositions and methods
US20120034253A1 (en) Influenza Vaccines, Antigens, Compositions, and Methods
US20090162400A1 (en) Compositions of influenza viral proteins and methods of use thereof
Shoji et al. Immunogenicity of hemagglutinin from A/Bar-headed Goose/Qinghai/1A/05 and A/Anhui/1/05 strains of H5N1 influenza viruses produced in Nicotiana benthamiana plants
KR102027758B1 (ko) 약독화된 돼지 인플루엔자 백신 및 이의 제조 방법 및 용도
WO2020213898A1 (ko) 돼지 유행성 설사병 바이러스 백신 조성물 및 이의 제조 방법
WO2021215855A1 (ko) 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 재조합 혈구응집소 단백질 및 이의 용도
WO2021215857A1 (ko) 삼량체를 형성하는 코로나-19 바이러스 (covid-19, coronavirus disease 2019)의 재조합 스파이크 단백질 및 식물에서의 상기 재조합 스파이크 단백질의 대량 생산 방법과 이를 기반으로하는 백신조성물 제조 방법
KR102091281B1 (ko) 재조합 인플루엔자 a 바이러스 h5n6주 및 이를 포함하는 고병원성 인플루엔자 a 바이러스 백신 조성물
WO2016056681A1 (ko) 인플루엔자 바이러스 항원의 세포표면 발현벡터 및 이에 의해 형질전환된 미생물
WO2018066948A2 (ko) 다수의 에피토프로 구성된 재조합 항원 단백질 및 이의 제조방법
WO2020256374A1 (ko) 아프리카 돼지열병의 예방을 위한 항원 생산용 재조합 벡터 및 이의 용도
KR20120066555A (ko) 돼지 유행성 설사병 바이러스의 에피토프 단백질을 발현하는 형질전환체 및 이를 포함하는 pedv 백신 조성물
KR102182987B1 (ko) 재조합 인플루엔자 a 바이러스 h5n1주 및 이를 포함하는 고병원성 인플루엔자 a 바이러스 백신 조성물
KR101299753B1 (ko) 소 코로나바이러스 항원 결정기를 포함하는 스파이크 재조합 단백질 및 이에 대한 항체
KR102571164B1 (ko) 삼량체를 형성하는 인플루엔자 바이러스 표면 단백질 유래 재조합 혈구응집소 (ha)의 단백질 유전자 디자인, 식물에서의 상기 ha 재조합 단백질을 대량 생산하는 방법 및 이를 포함하는 인플루엔자 바이러스 감염 질환의 예방 및 치료용 약학적 조성물
KR101671528B1 (ko) 돼지 유행성 설사병 바이러스의 에피토프와 점막면역보조제를 발현하는 형질전환체 및 이를 포함하는 백신 조성물
WO2023003332A1 (ko) 식물 기반 covid-19 변이 재조합 스파이크 단백질 발현 벡터 및 상기 발현 벡터를 이용한 재조합 단백질
KR100812637B1 (ko) 항원 결정기를 포함하는 재조합 개 로타바이러스 vp4단백질 및 이에 대한 항체
KR102556305B1 (ko) Y280 계열에 속하는 저병원성 h9n2 조류 인플루엔자 바이러스를 이용한 h9n2형 유전자 재조합 저병원성 조류 인플루엔자 a 바이러스, 이의 제조 방법 및 백신 조성물
EP4375290A1 (en) Plant-based covid-19 variant recombinant spike protein expression vector and recombinant protein using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202217057718

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022562078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021793579

Country of ref document: EP

Effective date: 20221122