WO2021215094A1 - ベルト緩み検知装置 - Google Patents
ベルト緩み検知装置 Download PDFInfo
- Publication number
- WO2021215094A1 WO2021215094A1 PCT/JP2021/005859 JP2021005859W WO2021215094A1 WO 2021215094 A1 WO2021215094 A1 WO 2021215094A1 JP 2021005859 W JP2021005859 W JP 2021005859W WO 2021215094 A1 WO2021215094 A1 WO 2021215094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- belt
- detection device
- wire
- loosening detection
- rotation speed
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/24—Means for preventing unwanted cargo movement, e.g. dunnage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D63/00—Flexible elongated elements, e.g. straps, for bundling or supporting articles
- B65D63/10—Non-metallic straps, tapes, or bands; Filamentary elements, e.g. strings, threads or wires; Joints between ends thereof
Definitions
- An embodiment of the present invention relates to a belt loosening detection device that detects looseness of a belt that fixes a vehicle or the like, for example.
- a device for detecting distortion of a tension transmission portion provided between both ends of a belt with a strain gauge see, for example, Patent Document 1
- a device for detecting looseness of a belt with a plurality of switches see, for example, Patent Document 1).
- Patent Document 2 a device for detecting looseness of a belt with a plurality of switches
- a car carrier is an environment in which various vibrations are generated, and it is desired to detect looseness of a belt with high accuracy in an environment in which vibrations are generated.
- the present embodiment provides a belt loosening detection device that is attached to a belt and can detect looseness of the belt with high accuracy.
- the belt loosening detection device of the present embodiment is provided at the first end of the belt, and the fourth end of the wire to which the third end is attached is attached to the second end of the belt, and the wire is wound up. It includes a winder and a sensor unit provided on the winder and detecting the rotation speed of the winder.
- the perspective view which shows the belt loosening detection device which concerns on this embodiment The perspective view which shows the part A of FIG. 1 enlarged. The perspective view which shows the different operation state of FIG.
- the flowchart which shows the operation of the sensor part of FIG. The flowchart which shows the operation of the monitor part of FIG.
- FIG. 1 shows the belt loosening detection device 10 according to the present embodiment.
- FIG. 1 shows a case where the present embodiment is applied to a ratchet buckle type lashing belt 20 capable of adjusting the length of the belt.
- the belt whose length can be adjusted is not limited to the lashing belt, and may be another belt.
- the lashing belt is not limited to the ratchet buckle type, but it is also possible to apply an overcenter buckle type or a cam buckle type.
- the length of the belt does not necessarily have to be adjustable, and the present embodiment can be applied to a technical field where the expansion and contraction of the belt needs to be detected with high accuracy.
- the lashing belt 20 includes a first belt 23, a second belt 24, a first hook 25, and a second hook 26 constituting the ratchet buckle 21 and the belt 22.
- the ratchet buckle 21 includes a main body 21a, a first shaft 21b, a second shaft 21c, a handle 21d, a pair of gears 21e constituting the ratchet mechanism, and a release lever 21f constituting the ratchet mechanism and releasing the latch. ..
- the main body 21a is, for example, substantially H-shaped, and both ends of the first shaft 21b are fixed to the main body 21a.
- the second shaft 21c is rotatably provided on the main body 21a via the gear 21e.
- gears 21e are provided at both ends of the second shaft 21c, and the second shaft 21c is attached to the main body 21a via these gears 21e.
- One end of the handle 21d is rotatably connected to the second shaft 21c.
- the release lever 21f is movable on the handle 21d in the longitudinal direction of the handle, and one end thereof is made meshable with the gear 21e as a gear stopper of the ratchet mechanism.
- the configuration of the ratchet buckle 21 is not limited to this, and other configurations can be applied.
- a first hook 25 is provided at the first end of the first belt 23, and the second end is attached to the first shaft 21b of the ratchet buckle 21.
- the first end of the second belt 24 is provided on the second shaft 21c of the ratchet buckle 21, and the second hook 26 is provided on the second end.
- the second belt 24 can be wound around the second shaft 21c when the handle 21d is operated as described above, and can be pulled out from the second shaft 21c when the release lever 21f is operated.
- the length of the second belt 24 of the lashing belt 20 is adjusted by operating the ratchet buckle 21, and the overall length of the belt 22 is changed.
- the first belt 23 and the second belt 24 are not distinguished and are simply referred to as the belt 22.
- the belt loosening detection device 10 is provided at the first end of the belt 22 in the vicinity of the first hook 25.
- the belt loosening detection device 10 includes a case 11, and the case 11 is fixed to one end of the belt 22.
- the case 11 can be divided into two cases 11a, 11b, and the belt 22 is arranged between the two cases 11a, 11b.
- the two cases 11a and 11b are connected by, for example, a plurality of bolts (not shown) or an adhesive and fixed to the belt 22.
- the configuration of the case 11 and the means for fixing the case 11 to the belt 22 are not limited to this, and can be deformed.
- a pulley 12, a spring 13, a rotation sensor 14, a wire 15, a first support 16, a second support 17, a shaft 18, and the like are arranged inside the case 11a.
- the pulley 12 and the spring 13 form a winder that winds the wire 15.
- the first support 16 and the second support 17 are fixed to the bottom of the case 11a at a predetermined distance in a direction intersecting the longitudinal direction of the belt 22.
- the shaft 18 is rotatably provided between the first support 16 and the second support 17.
- the pulley 12 is fixed to the shaft 18 and can rotate together with the shaft 18.
- the spring 13 is, for example, a coil spring and is provided around the shaft 18. Specifically, one end of the spring 13 is fixed to the first support 16, and the other end is fixed to the side surface of the pulley 12.
- An opening 11c is provided on the side surface of the case 11a facing the ratchet buckle 21.
- the first end of the wire 15 is guided to the inside of the case 11a through the opening 11c and wound around the pulley 12.
- the wire 15 is completely wound around the pulley 12, and the hook 19 described later is in contact with the periphery of the opening 11c.
- the rotation sensor 14 is, for example, a multi-rotation rotary encoder, and a shaft (not shown) of the rotation sensor 14 is connected to the shaft 18. Therefore, when the shaft 18 is rotated together with the pulley 12, the rotation sensor 14 outputs, for example, a pulse signal according to the rotation angle.
- the rotation sensor 14 can rotate 360 ° or more, and can output a number of pulse signals according to the rotation angle of the pulley 12.
- the rotation angle of the pulley 12 is referred to as a rotation speed.
- This rotation speed includes one rotation speed or less, for example, 1/2 rotation, 1/4 rotation, and the like.
- a hook 19 is provided at the second end of the wire 15, and the hook 19 is hung on the second end of the belt 22.
- the wire 15 is pulled out from the case 11 and the hook 19 is hung on the second end of the belt 22.
- the wire 15 is pulled by the urging force of the spring 13, and tension is applied to the wire 15. Therefore, the slack of the wire 15 is removed.
- FIG. 4 shows the electrical configuration of the belt loosening detection device 10 according to the present embodiment.
- FIG. 4 shows a case where a plurality of automobiles are fixed by using, for example, a plurality of lashing belts 20.
- Each lashing belt 20 includes the belt loosening detection device 10 shown in FIG. 1, and the sensor units 30-1 to 30-n correspond to the belt loosening detection device 10 of each lashing belt 20.
- the configuration shown in FIG. 4 is an example, and various modifications can be made depending on the application.
- Each of the sensor units 30-1 to 30-n may be provided in the first case 11a or the second case 11b of the belt loosening detection device 10.
- Each of the sensor units 30-1 to 30-n may have, for example, a unique identifier (ID).
- ID unique identifier
- the sensor unit 30-1 includes a rotation sensor 14, a control unit 30a, and a transmitter 30b.
- the control unit 30a includes, for example, a microcomputer and a memory (not shown).
- the control unit 30a counts the pulse signal supplied from the rotation sensor 14, adds the ID of the sensor unit 30-1 to the count value, and generates transmission data.
- the transmitter 30b transmits the transmission data supplied from the control unit 30a, for example, wirelessly.
- the transmitter 30b is composed of a wireless transmission module such as a specific low power wireless module or a Bluetooth (registered trademark) module, depending on the distance from the monitor unit 40 described later.
- the monitor unit 40 receives transmission data transmitted from the sensor units 30-1 to 30-n of each belt loosening detection device 10 and monitors the looseness of each belt.
- the monitor unit 40 includes, for example, a receiver 40a, a control unit 40b, and a display unit 40c.
- the receiver 40a is composed of a wireless reception module corresponding to the transmitter 30b, and receives transmission data transmitted from the sensor units 30-1 to 30-n.
- the receiver 40a is in a state where it can always receive the transmission data transmitted from the transmitter 30b, for example, but like the sensor unit 30-1, the receiver 40a receives the transmission data transmitted from the transmitter 30b at regular intervals. You may receive it.
- the control unit 40b includes, for example, a microcomputer and a memory (not shown).
- the control unit 40b accumulates the count values included in the received data (data obtained by demodulating the transmission data) supplied from the receiver 40a for each ID, and causes the display unit 40c to display the accumulated values corresponding to the IDs.
- the display unit 40c is composed of, for example, a general display.
- control unit 40b changes the display state of the display unit 40c, for example, and notifies the abnormality.
- FIG. 5 shows an example of the operation of the control unit 30a of the sensor unit 30-1.
- the control unit 30a detects the number of rotations supplied from the rotation sensor 14 every time a certain period of time elapses (S11, S12), for example.
- the transmission data is sent to the transmitter 30b, and the transmission data is transmitted by the transmitter 30b (S14).
- the above operation is repeated at regular intervals.
- FIG. 6 shows an example of the operation of the control unit 40b of the monitor unit 40.
- the control unit 40b acquires the rotation speed from the transmission data supplied from the receiver 40a, and accumulates the rotation speed for each ID (S21).
- the accumulated rotation speed is displayed on the display unit 40c together with the ID (S22).
- the IDs corresponding to the sensor units 30-1 to 30-n and the accumulated rotation speeds may be displayed on the display unit 40c as a listable table.
- the accumulated rotation speed and the reference value are compared, and it is determined whether or not the rotation speed exceeds the reference value (S24). As a result, when the accumulated rotation speed is equal to or less than the reference value, the control is shifted to S21.
- the display state of the display unit 40c is changed, and the display unit 40c is notified of the abnormality (S25).
- the abnormality is notified by changing the number of rotations exceeding the reference value and, for example, the color of the ID and blinking.
- the monitoring control by the monitor unit 40 is not limited to the above, and can be changed according to, for example, the operation route of the carrier.
- the ratchet buckle 21 of the lashing belt 20 since the ratchet buckle 21 of the lashing belt 20 has a large weight, it is conceivable that the belt expands and contracts due to the vibration of the carrier. Since the magnitude of vibration with respect to the belt 22 differs depending on the sea area through which the carrier passes, the criteria for determining looseness of the belt 22 also differ. Therefore, the reference value for determining the abnormality may be changed according to, for example, the sea area.
- a criterion for determining an abnormality for example, the number of rotations included in a plurality of transmission data transmitted from the plurality of belt loosening detection devices 10 is averaged, and the belt loosening detection device 10 having a rotation speed significantly deviating from the average value is regarded as abnormal. You may judge.
- the rotation speed caused by the actual loosening of the belt is calculated.
- An abnormality may be determined from the calculated rotation speed and the reference value.
- the belt loosening detection device 10 is provided at the first end of the belt 22 whose length can be adjusted, and the wire 15 drawn from the belt loosening detection device 10 is connected to the second end of the belt 22.
- the looseness of the belt 22 is detected as the number of rotations (rotation angle) of the pulley 12 on which the wire 15 is wound. Therefore, it is possible to detect the looseness of the belt with high accuracy.
- loosening of the belt 22 is not completely unacceptable, and for example, loosening to the extent that the automobile does not come into contact with the side wall of an adjacent automobile or ship is allowed. Therefore, it is possible to perform high-precision management such as notifying an abnormality when a looseness of several centimeters occurs in the belt 22 based on the rotation speed detected by the rotation sensor 14.
- the belt 22 expands and contracts due to the vibration of the carrier, for example.
- the loose belt 22 is stretched due to the vibration of the carrier, the wire 15 is pulled out and the rotation sensor 14 outputs a negative rotation speed.
- the stretched belt 22 is loosened again, the wire 15 is wound up, and the rotation sensor 14 detects the number of rotations corresponding to the wound wire 15. Therefore, even when the belt 22 expands and contracts, it is possible to detect the essential looseness of the belt 22 with high accuracy.
- the belt loosening detection device 10 of the present embodiment detects the number of rotations corresponding to the length of the wire 15 wound by the rotation sensor 14, and the wire 15 is not in direct contact with the belt 22. Therefore, the vibration does not cause friction between the belt 22 and the wire 15, and it is possible to prevent the belt 22 from being deformed.
- FIG. 7 shows a first modification of the present embodiment.
- the wire 15 passes above the belt 22 and the ratchet buckle 21, and the hook 19 is hung on the second end of the belt 22.
- the wire 15 is passed through the lower side of the ratchet buckle 21 and the hook 19 is hung on the second end of the belt 22.
- the wire 15 penetrates the bottom of the first case 11a of the belt loosening detection device 10, passes through the second case 11b, and is pulled out from the opening 11d provided on the side surface of the second case 11b. Further, the wire 15 passes under the belt 22 and the ratchet buckle 21 and the hook 19 is hung on the second end of the belt 22.
- the wire 15 is arranged under the ratchet buckle 21, the wire 15 is not in contact with the ratchet buckle 21. Therefore, no friction is generated between the wire 15 and the ratchet buckle 21. Therefore, when the belt 22 is loosened, the wire 15 is smoothly wound by the pulley 12, so that the looseness of the belt 22 can be detected with higher accuracy.
- the wire 15 is arranged under the ratchet buckle 21, for example, when the belt 22 is loosened, the hook 19 of the wire 15 is removed from the second end portion of the belt 22. Instead, the handle 21d of the ratchet buckle 21 can be operated. Therefore, it is possible to easily improve the looseness of the belt 22.
- FIG. 8 shows a second modification.
- the wire 15 is arranged on the upper side of the belt 22 as in the above embodiment. However, the wire 15 passes between the handle 21d and the release lever 21f of the ratchet buckle 21 and the main body 21a, and the hook 19 is hung on the second end of the belt 22.
- the handle 21d of the ratchet buckle 21 can be operated without removing the hook 19 of the wire 15 from the second end portion of the belt 22. Therefore, it is possible to easily improve the looseness of the belt 22.
- FIG. 9 shows a third modification.
- the wire 15 is arranged above the belt 22 and the ratchet buckle 21 as in the above embodiment.
- the handle 21d and the frame 21g of the ratchet buckle 21 are each provided with grooves 21h for guiding the wires 15, and the wires 15 are arranged through these grooves 21h.
- the portion where the groove 21h is provided is not limited to the handle 21d and the frame 21g, and may be a portion of the ratchet buckle 21 that is in contact with the wire 15.
- the groove 21h is provided at the portion of the ratchet buckle 21 in contact with the wire 15. Therefore, the friction between the wire 15 and the ratchet buckle 21 in contact with each other can be reduced, and the wire 15 can be moved smoothly. Therefore, when the belt 22 is loosened, the wire 15 can be reliably wound by the pulley 12, and the looseness of the belt 22 can be accurately detected by the rotation sensor 14.
- FIG. 10 shows a fourth modification.
- the fourth modification is a further modification of the second modification. That is, in the fourth modification, the belt 29 is used instead of the wire 15.
- a mainspring or a motor may be used instead of the spring 13 for driving the pulley 12.
- Each of the sensor units 30-1 to 30-n is driven by, for example, a battery. Batteries have a limited capacity.
- the voyage period of the car carrier may extend to 3 months or more. During this period, the sensor units 30-1 to 30-n need to be continuously operated by the battery. Therefore, it is necessary to suppress the power consumption of the sensor units 30-1 to 30-n to extend the life of the battery. Therefore, in the fifth modification, each of the sensor units 30-1 to 30-n is intermittently driven in order to suppress battery consumption.
- FIG. 11 shows a fifth modified example, and typically shows the sensor unit 30-1.
- Each sensor unit 30-1 has a battery 30c, the control unit 30a and the transmitter 30b are supplied with power from the battery 30c, and the rotation sensor 14 is supplied with power via the control unit 30a.
- the battery 30c a rechargeable secondary battery such as a lithium ion battery or a primary battery such as an alkaline battery can be applied.
- FIG. 12 shows a specific example of the sensor unit 30-1.
- the rotation sensor 14a is, for example, a magnetic encoder and includes a permanent magnet 14a and two Hall elements 14b and 14c.
- the permanent magnet 14a is attached to, for example, the shaft 18 shown in FIG. 2 and rotates together with the shaft 18.
- the Hall sensors 14b and 14c are arranged in the vicinity of the permanent magnet 14a at positions of, for example, 0 ° and 90 ° with respect to the surface on which the permanent magnet 14a rotates.
- Each of the Hall sensors 14b and 14c is an existing product, for example, a Hall element (not shown), an amplifier or CMOS output circuit that converts the output signal of the Hall element into a pulse signal, a sleep / awake circuit, a power-down circuit, etc. including.
- the Hall sensor 14b detects a change in magnetic flux density with rotation of the permanent magnet 14a by a Hall element, and outputs a phase A pulse signal by an amplifier or a CMOS output circuit.
- the Hall sensor 14c detects a change in magnetic flux density with the rotation of the permanent magnet 14a by the Hall element, and outputs a B-phase pulse signal 90 ° out of phase with the A-phase pulse signal by an amplifier or a CMOS output circuit.
- the A-phase and B-phase signals are supplied to the control unit 30a.
- the sleep / awake circuit controls the power supply to the Hall element and the amplifier, and controls the Hall sensors 14b and 14c to the sleep state or the awake state.
- the power-down circuit sets the hall sensors 14b and 14c into a low power consumption power-down mode according to the power-down signal PWD supplied from the control unit 30a.
- the configurations of the Hall sensors 14b and 14c are not limited to the above, and can be deformed.
- the control unit 30a includes the microcomputer 30a-1, and the microcomputer 30a-1 rotates the shaft 18 based on the signals of the A-phase and B-phase signals supplied from the Hall sensors 14b and 14c (rotation angle).
- the signal NR indicating the direction of rotation and the signal DR indicating the direction of rotation are output.
- the microcomputer 30a-1 is operated intermittently by the built-in sleeve function. Specifically, the microcomputer 30a-1 has a startup time of 10% and a sleep time of 90%.
- the power-down signal PWD is output from the microcomputer 30a-1, and the hall sensors 14b and 14c enter the power-down mode when they receive, for example, a low-level power-down signal PWD. .. Therefore, the power consumption of the battery 30c is reduced.
- the operation cycle of the microcomputer 30a-1 and the hall sensors 14b and 14c is determined by the lower limit of the rotation frequency of the permanent magnet 14a.
- the monitoring time of the permanent magnet 14a required for the wake-up trigger of the microcomputer 30a-1 is 1.0 second, to be exact 1.0 + ⁇ , for example. It is 1.1 seconds.
- the 0.5 Hz square wave output from the Hall sensors 14b and 14c has a high level period of 1 second and a low level period of 1 second when the duty ratio is 1. In this case, 0.5 Hz can be monitored by continuously monitoring the high level or the low level for 1 second or longer. Therefore, assuming that the operation time is 1.0 second and the sleep time is 9.0 seconds, the circuit operation is every 10 seconds.
- the monitoring time of the permanent magnet 14a required for the wake-up trigger of the microcomputer 30a-1 is 0.25 seconds. Therefore, assuming that the operation time is 0.25 seconds and the sleep time is 2.25 seconds, the circuit operation is every 2.5 seconds.
- the hall sensors 14b and 14c and the microcomputer 30a-1 are operated intermittently to reduce the operating time and power consumption to 1/10, so that the increase in battery capacity is suppressed. Therefore, long-term operation is possible.
- 936mAh x 6 5616mAh
- the battery capacity required for one month is, for example, as shown in the following equation.
- 24mAh x 30 720mAh Is. Therefore, the battery capacity required for 6 months is as shown in the following equation.
- the hall sensors 14b and 14c and the microcomputer 30a-1 are operated intermittently to reduce the operating time and power consumption to 1/10, thereby increasing the battery capacity.
- the hall sensors 14b and 14c and the microcomputer 30a-1 can be operated for a long period of time. Therefore, it is possible to extend the life of the battery, and it is possible to reliably operate the device in an environment such as a car carrier that requires long-term operation.
- the control of the power consumption of the transmitter 30b is omitted in the fifth modification, the power consumption of the transmitter 30b is further reduced by controlling the transmitter 30b by the control unit 30a in the same manner as the hall sensors 14b and 14c. It is possible to do.
- the present invention is not limited to each of the above embodiments as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof.
- various inventions can be formed by an appropriate combination of the plurality of components disclosed in each of the above embodiments. For example, some components may be removed from all the components shown in the embodiments. In addition, components across different embodiments may be combined as appropriate.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
ベルトに取り付けられ、ベルトの緩みを高精度に検知することが可能なベルト緩み検知装置を提供する。巻き取り器(12、13)は、ベルト22の第1端部に設けられ、ベルトの第2端部に第3端部が取り付けられるワイヤ15の第4端部が取り付けられ、ワイヤを巻き取る。センサ14は、巻き取り器に設けられ、巻き取り器の回転数を検知する。
Description
本発明の実施形態は、例えば車両等を固定するベルトの緩みを検出するベルト緩み検知装置に関する。
例えば自動車運搬船により自動車を運搬する場合、自動車は、1台当たり3乃至4本のラッシングベルト(登録商標)を用いて船床に固定される。運搬途中でベルトが緩んだ場合、自動車同士が接触し、自動車に損傷を与える可能性がある。このため、ベルトの緩みをチェックする必要がある。しかし、このチェックは人により行われており、数千台の自動車に対してこのチェックを行うことは、多大な工数を要している。
ベルトの緩みを検知する技術として、ベルトの両端間に設けられた張力伝達部の歪を歪ゲージにより検出する装置(例えば特許文献1参照)や、ベルトの緩みを複数のスイッチにより検知する装置(例えば特許文献2参照)がある。
自動車運搬船は、様々な振動が発生する環境であり、振動が発生する環境において、ベルトの緩みを高精度に検知することが望まれている。
本実施形態は、ベルトに取り付けられ、ベルトの緩みを高精度に検知することが可能なベルト緩み検知装置を提供する。
本実施形態のベルト緩み検知装置は、ベルトの第1端部に設けられ、前記ベルトの第2端部に第3端部が取り付けられるワイヤの第4端部が取り付けられ、前記ワイヤを巻き取る巻き取り器と、前記巻き取り器に設けられ、前記巻き取り器の回転数を検知するセンサ部と、を具備する。
以下、実施の形態について、図面を参照して説明する。図面において、同一部分には、同一符号を付している。
図1は、本実施形態に係るベルト緩み検知装置10を示している。図1は、ベルトの長さを調節することが可能なラチェットバックル式のラッシングベルト20に本実施形態を適用した場合を示している。しかし、ベルトの長さを調節することが可能なベルトは、ラッシングベルトに限定されるものではなく、他のベルトであってもよい。
また、ラッシングベルトは、ラチェットバックル式に限定されるものではなく、オーバーセンターバックル式やカムバックル式などを適用することも可能である。
或いは、ベルトは、必ずしも長さを調節できる必要はなく、ベルトの伸縮を高精度に検知する必要がある技術分野に本実施形態を適用することも可能である。
図1において、ラッシングベルト20は、ラチェットバックル21とベルト22を構成する第1ベルト23、第2ベルト24、第1フック25、及び第2フック26を具備している。
ラチェットバックル21は、本体21a、第1シャフト21b、第2シャフト21c、ハンドル21d、ラチェット機構を構成する一対の歯車21e、及びラチェット機構を構成し、ラッチを解除する解除レバー21fを具備している。
本体21aは、例えばほぼH型であり、第1シャフト21bの両端部は、本体21aに固定されている。第2シャフト21cは、歯車21eを介して本体21aに回転可能に設けられている。具体的には、第2シャフト21cの両端部に歯車21eがそれぞれ設けられ、これら歯車21eを介して第2シャフト21cが本体21aに取り付けられる。ハンドル21dの一端部は、第2シャフト21cに回転可能に連結されている。解除レバー21fは、ハンドル21dにハンドルの長手方向に移動可能とされ、一端部がラチェット機構の歯車止めとして、歯車21eに歯合可能とされている。
解除レバー21fが歯車21eに歯合された状態において、ハンドル21dの他端部を持ってハンドル21dを図示矢印B、C方向に繰り返し操作すると、ハンドル21dの一端部に設けられたラチェット機構を介して第2シャフト21cが図示矢印B方向に回転される。
一方、解除レバー21fがハンドル21dの方向に操作されると、歯車21eと解除レバー21fとの歯合状態が解除され、第2シャフト21cは自由に回転可能となる。
ラチェットバックル21の構成は、これに限定されるものではなく、他の構成を適用することも可能である。
第1ベルト23の第1端部には、第1フック25が設けられ、第2端部は、ラチェットバックル21の第1シャフト21bに取り付けられる。
第2ベルト24の第1端部は、ラチェットバックル21の第2シャフト21cに設けられ、第2端部には、第2フック26が設けられている。第2ベルト24は、ハンドル21dが上記のように操作されると、第2シャフト21cに巻き取られ、解除レバー21fが操作されると、第2シャフト21cから引き出すことができる。
このように、ラッシングベルト20は、ラチェットバックル21を操作することにより、第2ベルト24の長さが調節され、ベルト22の全体の長さが変化される。
以下の説明において、第1ベルト23と第2ベルト24は、区別せず、単にベルト22とも呼ぶ。
本実施形態に係るベルト緩み検知装置10は、ベルト22の第1端部で、第1フック25の近傍に設けられる。ベルト緩み検知装置10は、ケース11を具備し、ケース11がベルト22の一端部に固定される。一例において、ケース11は、2つのケース11a、11bに分割可能であり、ベルト22は、2つのケース11a、11bの間に配置される。2つのケース11a、11bは、例えば図示せぬ複数のボルト、又は接着剤により連結され、ベルト22に固定される。ケース11の構成、及びケース11をベルト22に固定する手段は、これに限定されるものではなく、変形可能である。
図2に示すように、ケース11aの内部には、例えばプーリ12、ばね13、回転センサ14、ワイヤ15、第1支持体16、第2支持体17、及び軸18などが配置される。プーリ12とばね13は、ワイヤ15を巻き取る巻き取り器を構成する。
第1支持体16と第2支持体17は、ケース11aの底部に、ベルト22の長手方向と交差する方向に所定距離離間して固定される。軸18は、第1支持体16と第2支持体17の間に回転可能に設けられる。
プーリ12は、軸18に固定され、軸18とともに回転可能とされている。ばね13は、例えばコイルばねであり、軸18の周りに設けられる。具体的には、ばね13の一端部は第1支持体16に固定され、他端部はプーリ12の側面に固定される。
ケース11aのラチェットバックル21と対向する側面には、開口部11cが設けられている。
ワイヤ15の第1端部は、開口部11cを通ってケース11aの内部に導かれ、プーリ12に巻回されている。ラッシングベルト20が自動車などを固定するために使用されていない状態において、ワイヤ15は、プーリ12に全て巻き取られ、後述するフック19が開口部11cの周囲に接触されている。
ワイヤ15が開口部11cから引き出されると、プーリ12は、ばね13の付勢力に抗して回転される。このため、プーリ12は、ばね13によりワイヤ15を巻き取る方向に付勢される。
回転センサ14は、例えば多回転のロータリーエンコーダであり、回転センサ14の図示せぬ軸は、軸18に連結されている。このため、回転センサ14は、プーリ12と共に軸18が回転されると、回転角に従って例えばパルス信号を出力する。回転センサ14は、360°以上回転可能であり、プーリ12の回転角に従った数のパルス信号を出力することができる。以下、プーリ12の回転角を回転数と呼ぶ。この回転数は、1回転以下の回転数、例えば1/2回転、1/4回転などを含む。
図1に示すように、ワイヤ15の第2端部には、フック19が設けられており、フック19は、ベルト22の第2端部に掛けられる。
図3に示すように、ラッシングベルト20により、例えば図示せぬ自動車を運搬船の船底に固定した後、ワイヤ15がケース11から引き出され、フック19がベルト22の第2端部に掛けられる。ワイヤ15は、ばね13の付勢力により引っ張られ、張力がワイヤ15に印加される。このため、ワイヤ15の弛みが除去される。
図3に示す状態において、ベルト22が緩むと、ワイヤ15は、ばね13の付勢力によりプーリ12に巻き取られる。このとき、プーリ12の回転角に従って回転センサ14からパルス信号が出力される。このため、回転センサ14から出力されるパルス信号は、ワイヤ15を巻き取った長さに比例し、これは、ベルト22が緩んだ長さに比例する。
図4は、本実施形態に係るベルト緩み検知装置10の電気的な構成を示している。図4は、例えば複数のラッシングベルト20を用いて、複数の自動車を固定するような場合を示している。各ラッシングベルト20は、図1に示すベルト緩み検知装置10を具備し、センサ部30-1~30-nは、各ラッシングベルト20のベルト緩み検知装置10に対応している。図4に示す構成は一例であり、用途に応じて種々変形可能である。
センサ部30-1~30-nのそれぞれは、ベルト緩み検知装置10の第1ケース11a又は第2ケース11b内に設けられてもよい。
センサ部30-1~30-nのそれぞれは、例えば固有の識別子(ID)を有してもよい。
センサ部30-1~30-nは、同一の構成であるため、センサ部30-1を用いて、その構成について説明する。
センサ部30-1は、回転センサ14、制御部30a、送信器30bを具備している。制御部30aは、例えば図示せぬマイクロコンピュータやメモリを含んでいる。制御部30aは、回転センサ14から供給されるパルス信号を計数し、計数値にセンサ部30-1のIDを付加して送信データを生成する。
送信器30bは、制御部30aから供給された送信データを、例えば無線で送信する。送信器30bは、後述するモニタ部40との距離に応じて、例えば特定小電力無線モジュールやBluetooth(登録商標)モジュールなど無線送信モジュールにより構成される。
モニタ部40は、各ベルト緩み検知装置10のセンサ部30-1~30-nから送信される送信データを受け、各ベルトの緩み具合を監視する。
モニタ部40は、例えば受信器40a、制御部40b、表示部40cを具備している。
受信器40aは、送信器30bに対応する無線受信モジュールにより構成され、センサ部30-1~30-nから送信された送信データを受信する。
受信器40aは、送信器30bに対応する無線受信モジュールにより構成され、センサ部30-1~30-nから送信された送信データを受信する。
受信器40aは、例えば常時、送信器30bから送信される送信データを受信できる状態とされているが、センサ部30-1と同様に、一定時間毎に送信器30bから送信される送信データを受信してもよい。
制御部40bは、例えば図示せぬマイクロコンピュータやメモリを含んでいる。制御部40bは、受信器40aから供給される受信データ(送信データが復調されたデータ)に含まれる計数値をID毎に累積し、IDに対応して累積値を表示部40cに表示させる。表示部40cは、例えば一般的なディスプレイにより構成される。
さらに、制御部40bは、累積値が所定の基準値を超えた場合、例えば表示部40cの表示状態を変化させ、異常を報知する。
図5は、センサ部30-1の制御部30aの動作の一例を示している。
制御部30aは、例えば一定時間が経過する毎に回転センサ14から供給される回転数検知する(S11、S12)。
制御部30aは、例えば一定時間が経過する毎に回転センサ14から供給される回転数検知する(S11、S12)。
この後、検知した回転数にセンサ部30-1に固有のIDが付加され送信データが生成される(S13)。
次いで、送信データが送信器30bに送られ、送信器30bにより送信データが送信される(S14)。
上記動作が一定時間毎に繰り返される。
上記動作が一定時間毎に繰り返される。
図6は、モニタ部40の制御部40bの動作の一例を示している。
制御部40bは、受信器40aから供給された送信データより回転数を取得し、ID毎に回転数を累積する(S21)。
制御部40bは、受信器40aから供給された送信データより回転数を取得し、ID毎に回転数を累積する(S21)。
次いで、累積された回転数がIDと共に表示部40cに表示される(S22)。センサ部30-1~30-nに対応するIDと累積された回転数は、一覧できる表として表示部40cに表示されてもよい。
この後、累積された回転数と基準値が比較され、回転数が基準値を超えたかどうかが判断される(S24)。この結果、累積された回転数が基準値以下である場合、制御がS21に移行される。
一方、累積された回転数が基準値を超えた場合、表示部40cの表示状態が変化され、表示部40cに異常が報知される(S25)。具体的には、基準値を超えた回転数とそのIDの例えば色を変えたり、点滅させたりすることにより、異常が報知される。
モニタ部40による監視制御は、上記に限定されるものではなく、例えば運搬船の運行経路などに応じて変更することが可能である。
具体的には、ラッシングベルト20のラチェットバックル21は、大きな重量を有するため、運搬船の振動によりベルトが伸縮することが考えられる。運搬船が通る海域によって、ベルト22に対する振動の大きさが異なるため、ベルト22の緩みの判断基準も相違する。このため、異常を判断する基準値を例えば海域に従って変えてもよい。
また、異常を判断する基準は、例えば複数のベルト緩み検知装置10から送信される複数の送信データに含まれる回転数を平均し、平均値から大きく外れる回転数のベルト緩み検知装置10を異常と判断してもよい。
さらに、実際に測定した運搬船の振動や、振動のモデルを適用し、検知された回転数から振動により生じた回転数を除去することにより、実際のベルトの緩みにより生じた回転数を算出し、算出された回転数と基準値とから異常を判断してもよい。
(実施形態の効果)
上記本実施形態によれば、ベルト緩み検知装置10は、長さが調節可能なベルト22の第1端部に設けられ、ベルト緩み検知装置10から引き出されたワイヤ15をベルト22の第2端部に取り付け、ベルト22の緩みをワイヤ15が巻き取られるプーリ12の回転数(回転角)として検出している。このため、ベルトの緩みを高精度に検知することが可能である。
上記本実施形態によれば、ベルト緩み検知装置10は、長さが調節可能なベルト22の第1端部に設けられ、ベルト緩み検知装置10から引き出されたワイヤ15をベルト22の第2端部に取り付け、ベルト22の緩みをワイヤ15が巻き取られるプーリ12の回転数(回転角)として検出している。このため、ベルトの緩みを高精度に検知することが可能である。
具体的には、ベルト22の緩みは、全く許容されなという訳ではなく、例えば自動車が隣接する自動車や船の側壁に接触しない程度の緩みは許容される。このため、ベルト22に何センチの緩みが生じた場合に異常を報知するというような高精度の管理を、回転センサ14により検知された回転数に基づき行うことが可能である。
また、ラッシングベルト20のラチェットバックル21は、大きな重量を有するため、例えば運搬船の振動によりベルト22が伸縮することが考えられる。具体的には、運搬船の振動により緩んでいたベルト22が伸びた場合、ワイヤ15が引き出され、回転センサ14は、負の回転数を出力する。しかし、伸びたベルト22が再び弛んだ場合、ワイヤ15が巻き取られ、回転センサ14により巻き取ったワイヤ15に対応する回転数が検知される。このため、ベルト22が伸縮した場合においても、ベルト22の本質的な緩みを高精度に検知することが可能である。
また、本実施形態のベルト緩み検知装置10は、回転センサ14により巻き取られたワイヤ15の長さに対応する回転数を検知しており、ワイヤ15は、ベルト22に直接接触していない。このため、振動によりベルト22とワイヤ15との摩擦が生じず、ベルト22の変形を防止することが可能である。
(第1変形例)
図7は、本実施形態の第1変形例を示している。上記実施形態において、ワイヤ15は、ベルト22及びラチェットバックル21の上側を通り、フック19がベルト22の第2端部に掛けられた。
図7は、本実施形態の第1変形例を示している。上記実施形態において、ワイヤ15は、ベルト22及びラチェットバックル21の上側を通り、フック19がベルト22の第2端部に掛けられた。
これに対して、図7に示す第1変形例において、ワイヤ15は、ラチェットバックル21の下側を通して、フック19がベルト22の第2端部に掛けられる。
具体的には、ワイヤ15は、ベルト緩み検知装置10の第1ケース11aの底部を貫通して第2ケース11b内を通り、第2ケース11bの側面に設けられた開口部11dから引き出される。さらに、ワイヤ15は、ベルト22及びラチェットバックル21の下側を通り、フック19がベルト22の第2端部に掛けられる。
第1変形例によっても、上記実施形態と同様の効果を得ることが可能である。しかも、第1変形例の場合、ワイヤ15がラチェットバックル21の下側に配置されているため、ワイヤ15は、ラチェットバックル21と接触していない。このため、ワイヤ15とラチェットバックル21との間に摩擦が生じることがない。したがって、ベルト22が緩んだ場合、ワイヤ15がプーリ12によりスムースに巻き取られるため、ベルト22の緩みをより高精度に検知することができる。
さらに、第1変形例の場合、ワイヤ15がラチェットバックル21の下側に配置されているため、例えばベルト22が緩んだ場合において、ワイヤ15のフック19をベルト22の第2端部から外すことなく、ラチェットバックル21のハンドル21dを操作することができる。したがって、ベルト22の緩みを容易に改善することが可能である。
(第2変形例)
図8は、第2変形例を示している。第2変形例において、ワイヤ15は、上記実施形態と同様にベルト22の上側に配置されている。しかし、ワイヤ15は、ラチェットバックル21のハンドル21d及び解除レバー21fと、本体21aとの間を通り、フック19がベルト22の第2端部に掛けられる。
図8は、第2変形例を示している。第2変形例において、ワイヤ15は、上記実施形態と同様にベルト22の上側に配置されている。しかし、ワイヤ15は、ラチェットバックル21のハンドル21d及び解除レバー21fと、本体21aとの間を通り、フック19がベルト22の第2端部に掛けられる。
第2変形例によっても、例えばベルト22が緩んだ場合において、ワイヤ15のフック19をベルト22の第2端部から外すことなく、ラチェットバックル21のハンドル21dを操作することができる。したがって、ベルト22の緩みを容易に改善することが可能である。
(第3変形例)
図9は、第3変形例を示している。第2変形例において、ワイヤ15は、上記実施形態と同様にベルト22とラチェットバックル21の上側に配置されている。しかし、ラチェットバックル21のハンドル21dとフレーム21gには、ワイヤ15を案内するための溝21hがそれぞれ設けられ、ワイヤ15は、これらの溝21h内を通って配置される。
図9は、第3変形例を示している。第2変形例において、ワイヤ15は、上記実施形態と同様にベルト22とラチェットバックル21の上側に配置されている。しかし、ラチェットバックル21のハンドル21dとフレーム21gには、ワイヤ15を案内するための溝21hがそれぞれ設けられ、ワイヤ15は、これらの溝21h内を通って配置される。
溝21hを設ける部分は、ハンドル21dとフレーム21gに限定されるものではなく、ラチェットバックル21において、ワイヤ15と接する部分であればよい。
第3変形例によれば、ラチェットバックル21のワイヤ15と接する部分に溝21hを設けている。このため、ワイヤ15とラチェットバックル21の接する部分の摩擦を低減でき、ワイヤ15の移動をスムースとすることができる。したがって、ベルト22が緩んだ場合、プーリ12によりワイヤ15を確実に巻き取ることができ、回転センサ14によりベルト22の緩みを正確に検知することが可能である。
(第4変形例)
図10は、第4変形例を示している。第4変形例は、第2変形例をさらに変形したものである。すなわち、第4変形例では、ワイヤ15に代えてベルト29が用いられている。この場合、ベルトの緩み検知装置10において、プーリ12を駆動するばね13に代えて、例えばゼンマイ又はモータが使用されてもよい。
図10は、第4変形例を示している。第4変形例は、第2変形例をさらに変形したものである。すなわち、第4変形例では、ワイヤ15に代えてベルト29が用いられている。この場合、ベルトの緩み検知装置10において、プーリ12を駆動するばね13に代えて、例えばゼンマイ又はモータが使用されてもよい。
ベルト29を用いることにより、ワイヤ15に比べて耐久性を向上させることが可能である。
(第5変形例)
センサ部30-1~30-nのそれぞれは、例えば電池により駆動される。電池は、容量に限度がある。本実施形態を自動車運搬船に適用する場合、自動車運搬船の航海期間は、3カ月以上に及ぶ場合がある。この期間、センサ部30-1~30-nは、電池により継続して動作される必要がある。このため、センサ部30-1~30-nの消費電力を抑えて電池の寿命を延ばす必要がある。
そこで、第5変形例において、センサ部30-1~30-nのそれぞれは、電池の消耗を抑えるため間欠的に駆動される。
センサ部30-1~30-nのそれぞれは、例えば電池により駆動される。電池は、容量に限度がある。本実施形態を自動車運搬船に適用する場合、自動車運搬船の航海期間は、3カ月以上に及ぶ場合がある。この期間、センサ部30-1~30-nは、電池により継続して動作される必要がある。このため、センサ部30-1~30-nの消費電力を抑えて電池の寿命を延ばす必要がある。
そこで、第5変形例において、センサ部30-1~30-nのそれぞれは、電池の消耗を抑えるため間欠的に駆動される。
図11は、第5変形例を示すものであり、代表的にセンサ部30-1を示している。各センサ部30-1は、電池30cを有し、制御部30a、送信器30bは、電池30cから電源が供給され、回転センサ14は、制御部30aを介して電源が供給される。電池30cは、再充電が可能な二次電池、例えばリチュウムイオン電池や、一次電池、例えばアルカリ電池などを適用することが可能である。
図12は、センサ部30-1の具体例を示している。回転センサ14aは、例えば磁気式エンコーダであり、永久磁石14aと2つのホール素子14b、14cを含んでいる。永久磁石14aは、例えば図2に示す軸18に取り付けられ、軸18と共に回転する。ホールセンサ14b、14cは、永久磁石14aの近傍で、永久磁石14aが回転する面に対して互いに例えば0°と90°の位置に配置される。
ホールセンサ14b、14cのそれぞれは、既存の製品であり、例えば図示せぬホール素子と、ホール素子の出力信号をパルス信号に変換する増幅器やCMOS出力回路と、スリープ/アウェイク回路、パワーダウン回路などを含む。ホールセンサ14bは、ホール素子により永久磁石14aの回転に伴う磁束密度の変化を検出し、増幅器やCMOS出力回路によりA相のパルス信号を出力する。ホールセンサ14cは、ホール素子により永久磁石14aの回転に伴う磁束密度の変化を検出し、増幅器やCMOS出力回路によりA相のパルス信号と90°位相がずれたB相のパルス信号を出力する。A相、B相の信号は、制御部30aに供給される。
スリープ/アウェイク回路は、ホール素子及び増幅器への電源供給を制御し、ホールセンサ14b、14cをスリープ状態又はアウェイク状態に制御する。パワーダウン回路は、制御部30aから供給されるパワーダウン信号PWDに従って、ホールセンサ14b、14cを低消費電力のパワーダウンモードとする。
ホールセンサ14b、14cの構成は、上記に限定されるものではなく、変形可能である。
制御部30aは、マイクロコンピュータ30a-1を含み、マイクロコンピュータ30a-1は、ホールセンサ14b、14cから供給されたA相、B相の信号の信号に基づき、軸18の回転数(回転角度)を示す信号NRと回転方向を示す信号DRを出力する。
さらに、マイクロコンピュータ30a-1は、内蔵されているスリーブ機能により間欠的に動作される。具体的には、マイクロコンピュータ30a-1は、起動している時間が10%、スリープ時間が90%の割合とされる。
マイクロコンピュータ30a-1がスリープモードになるとき、マイクロコンピュータ30a-1からパワーダウン信号PWDが出力され、ホールセンサ14b、14cは、例えばローレベルのパワーダウン信号PWDを受けると、パワーダウンモードとなる。このため、電池30cの消費電力が低減される。
一方、マイクロコンピュータ30a-1がスリープモードから復帰すると、パワーダウン信号PWDがハイレベルとなり、ホールセンサ14b、14cもパワーダウンモードが解除される。
マイクロコンピュータ30a-1及びホールセンサ14b、14cの動作サイクルは、永久磁石14aの回転周波数の下限により決定される。永久磁石14aの回転周波数の下限が、例えば0.5Hzである場合、マイクロコンピュータ30a-1のウェイクアップトリガに必要な永久磁石14aの監視時間は1.0秒、正確には1.0+α、例えば1.1秒である。具体的には、ホールセンサ14b、14cから出力される0.5Hzの矩形波は、デューティ比が1の場合、ハイレベルの期間が1秒でローレベルの期間が1秒である。この場合、ハイレベルかローレベルを継続して1秒以上監視すれば、0.5Hzを監視することができる。したがって、動作時間が1.0秒でスリープ時間が9.0秒とすると、回路動作は、10秒毎となる。
永久磁石14aの回転周波数の下限が、例えば2.0Hzである場合、マイクロコンピュータ30a-1のウェイクアップトリガに必要な永久磁石14aの監視時間は0.25秒である。したがって、動作時間が0.25秒でスリープ時間が2.25秒とすると、回路動作は、2.5秒毎となる。
上記第5変形例によれば、ホールセンサ14b、14cとマイクロコンピュータ30a-1を間欠的に動作させ、動作時間及び消費電力を1/10に低減させているため、電池容量の増加を抑制して、長期間の動作が可能である。
具体的には、上記のように、ホールセンサ14b、14cとマイクロコンピュータ30a-1を間欠的に動作させない場合、2つのホールセンサ14b、14cが1日に必要とする電池容量は、例えば次式に示す通り、
1.3mA×24h=31.2mAh
であり、1か月に必要とする電池容量は、例えば次式に示す通り、
31.2mAh×30=936mAh
である。したがって、6か月に必要とする電池容量は、次式に示す通りである。
1.3mA×24h=31.2mAh
であり、1か月に必要とする電池容量は、例えば次式に示す通り、
31.2mAh×30=936mAh
である。したがって、6か月に必要とする電池容量は、次式に示す通りである。
936mAh×6=5616mAh
マイクロコンピュータ30a-1が1日に必要とする電池容量は、例えば次式に示す通り、
1mA×24h=24mAh
であり、1か月に必要とする電池容量は、例えば次式に示す通り、
24mAh×30=720mAh
である。したがって、6か月に必要とする電池容量は、次式に示す通りである。
マイクロコンピュータ30a-1が1日に必要とする電池容量は、例えば次式に示す通り、
1mA×24h=24mAh
であり、1か月に必要とする電池容量は、例えば次式に示す通り、
24mAh×30=720mAh
である。したがって、6か月に必要とする電池容量は、次式に示す通りである。
720mAh×6=4320mAh
2つのホールセンサ14b、14cとマイクロコンピュータ30a-1が6か月間に必要な電池容量は、5616mAh+4320mAh=9936mAhであり、電池30cの容量が1000mAhであるとすると、10倍の電池容量が必要となる。
2つのホールセンサ14b、14cとマイクロコンピュータ30a-1が6か月間に必要な電池容量は、5616mAh+4320mAh=9936mAhであり、電池30cの容量が1000mAhであるとすると、10倍の電池容量が必要となる。
しかし、上記第5変形例によれば、ホールセンサ14b、14cとマイクロコンピュータ30a-1を間欠的に動作させ、動作時間及び消費電力を1/10に低減させることにより、電池容量を増加させることなく、ホールセンサ14b、14cとマイクロコンピュータ30a-1を長期間の動作が可能である。したがって、電池の寿命を延ばすことが可能であり、自動車運搬船のように、長期間の動作が必要な環境において、装置を確実に動作させることが可能である。
尚、第5変形例において、送信器30bの消費電力の制御は省略しているが、送信器30bもホールセンサ14b、14cと同様に制御部30aによって制御することにより、さらに、消費電力を低減することが可能である。
その他、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
Claims (10)
- ベルトの第1端部に設けられ、前記ベルトの第2端部に第3端部が取り付けられるワイヤの第4端部が取り付けられ、前記ワイヤを巻き取る巻き取り器と、
前記巻き取り器に設けられ、前記巻き取り器の回転数を検知するセンサ部と、
を具備することを特徴とするベルト緩み検知装置。 - 前記巻き取り器は、前記巻き取り器を一方向に回転させる駆動源を具備することを特徴とする請求項1記載のベルト緩み検知装置。
- 前記駆動源は、ばねであることを特徴とする請求項2記載のベルト緩み検知装置。
- 前記センサ部は、
前記巻き取り器に設けられたロータリーエンコーダと、
前記ロータリーエンコーダから供給される信号から回転数を求める制御部と、
前記制御部から供給される前記回転数を送信する送信器と、
をさらに具備することを特徴とする請求項1記載のベルト緩み検知装置。 - 前記送信器は、無線送信器であることを特徴とする請求項4記載のベルト緩み検知装置。
- 前記送信器は、前記センサ部に対応する識別子とともに前記回転数を送信することを特徴とする請求項5記載のベルト緩み検知装置。
- 前記送信器から送信された前記回転数を受信し、前記回転数を監視するモニタをさらに具備することを特徴とする請求項6記載のベルト緩み検知装置。
- 前記モニタは、前記回転数が基準値を超えた場合、異常を報知することを特徴とする請求項7記載のベルト緩み検知装置。
- 前記センサ部は、前記ロータリーエンコーダ、前記制御部、前記送信器に電源を供給する電池をさらに具備することを特徴とする請求項8記載のベルト緩み検知装置。
- 前記制御部及び前記ロータリーエンコーダは、前記電池により間欠的に動作されることを特徴とする請求項9記載のベルト緩み検知装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022516860A JPWO2021215094A1 (ja) | 2020-04-24 | 2021-02-17 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020077283 | 2020-04-24 | ||
JP2020-077283 | 2020-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021215094A1 true WO2021215094A1 (ja) | 2021-10-28 |
Family
ID=78270545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/005859 WO2021215094A1 (ja) | 2020-04-24 | 2021-02-17 | ベルト緩み検知装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021215094A1 (ja) |
WO (1) | WO2021215094A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01162123A (ja) * | 1987-12-18 | 1989-06-26 | Tokico Ltd | 荷掛けロープの張力検出装置 |
JPH01123993U (ja) * | 1988-02-16 | 1989-08-23 | ||
JP6469306B2 (ja) * | 2016-02-23 | 2019-02-13 | 株式会社阿智精機 | 荷締部材の緩み検出装置、及び荷締部材の緩み検出システム |
-
2021
- 2021-02-17 WO PCT/JP2021/005859 patent/WO2021215094A1/ja active Application Filing
- 2021-02-17 JP JP2022516860A patent/JPWO2021215094A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01162123A (ja) * | 1987-12-18 | 1989-06-26 | Tokico Ltd | 荷掛けロープの張力検出装置 |
JPH01123993U (ja) * | 1988-02-16 | 1989-08-23 | ||
JP6469306B2 (ja) * | 2016-02-23 | 2019-02-13 | 株式会社阿智精機 | 荷締部材の緩み検出装置、及び荷締部材の緩み検出システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021215094A1 (ja) | 2021-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109621330B (zh) | 一种力量训练系统及电控方法 | |
US11853037B2 (en) | Electric hoisting machine and control device and control method therefor | |
AU2009336996B2 (en) | Strap coiling and releasing device for winch | |
EP3425323B1 (en) | Tape rule | |
JP5450131B2 (ja) | シートベルトリトラクタおよびこれを備えたシートベルト装置 | |
KR20140085474A (ko) | 건축물 개구부 덮개 조립체를 제어하는 방법 및 장치 | |
KR101685599B1 (ko) | 전동 자전거의 베터리 일체형 드라이브 구동장치 | |
JP4489122B2 (ja) | 車両用シートベルト装置 | |
AU2008292056A1 (en) | Method for controlling a crane | |
JP4048222B2 (ja) | 多軸仮締め工具 | |
WO2021215094A1 (ja) | ベルト緩み検知装置 | |
JP4238079B2 (ja) | ウエビング巻取装置 | |
KR101831125B1 (ko) | 윈치통합형 모바일 엔드 이펙터를 포함하는 케이블 로봇 및 이 케이블 로봇의 케이블 자동 장착방법 | |
US8528938B2 (en) | Restraining device | |
CN101654076B (zh) | 一种智能捆绑器 | |
EP3248847B1 (en) | Webbing take-up device | |
JP2022546367A (ja) | 張力印加方法及び装置 | |
JP2007212148A (ja) | シャシダイナモメータの車両固定装置 | |
JP2013043586A (ja) | 拘束装置 | |
CN201511869U (zh) | 一种智能捆绑器 | |
KR101361662B1 (ko) | 시트 벨트 리트랙터 및 이를 구비한 스마트 시트 벨트 장치 | |
JP5198943B2 (ja) | 雷撃表示装置 | |
JP2006143154A (ja) | ウエビング巻取装置 | |
US10018256B1 (en) | Low cost block and tackle robot transmission | |
JP2020070185A (ja) | 巻き取り装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21792018 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022516860 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21792018 Country of ref document: EP Kind code of ref document: A1 |