WO2021214933A1 - Method for producing semiconductor device - Google Patents

Method for producing semiconductor device Download PDF

Info

Publication number
WO2021214933A1
WO2021214933A1 PCT/JP2020/017454 JP2020017454W WO2021214933A1 WO 2021214933 A1 WO2021214933 A1 WO 2021214933A1 JP 2020017454 W JP2020017454 W JP 2020017454W WO 2021214933 A1 WO2021214933 A1 WO 2021214933A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
forming
semiconductor layer
etching stop
gan
Prior art date
Application number
PCT/JP2020/017454
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 吉屋
拓也 星
杉山 弘樹
松崎 秀昭
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022516571A priority Critical patent/JP7388545B2/en
Priority to PCT/JP2020/017454 priority patent/WO2021214933A1/en
Publication of WO2021214933A1 publication Critical patent/WO2021214933A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device using GaN.
  • ICP-RIE inductively coupled plasma reactive ion etching
  • chlorine-based ICP-RIE is dry etching using plasma, and the plasma is guided to the sample surface by the bias voltage at the time of etching. After etching, this plasma forms a damaged layer with many defects on the surface of the GaN layer to be etched.
  • the thickness of the damage layer depends on the bias voltage, and the larger the bias voltage, the thicker the damage layer is formed, which deteriorates the characteristics of the device.
  • Non-Patent Document 1 Non-Patent Document 1
  • Non-Patent Document 2 A multi-stage bias etching technique has been reported as a technique for solving the above-mentioned problems (Non-Patent Document 2).
  • the bias voltage is gradually lowered during etching to remove the damaged layer generated by etching with a high bias voltage, and the etching proceeds while suppressing the formation of a new damaged layer.
  • the bias voltage is lowered, the etching rate decreases. Therefore, it is necessary to proceed with etching while adjusting a plurality of etching rates, which is technically difficult.
  • Another problem with this type of dry etching is that the controllability of the etching amount is not high.
  • the etching amount is controlled by time. This is because a high selectivity selective etching technique has not been established in ICP-RIE. Control by time has problems such as large variation in each etching process and difficulty in stopping etching at the heterojunction interface.
  • Non-Patent Document 3 a method has been reported in which a small amount of oxygen is added to a chlorine-based etching gas to increase the difference in etching rates between GaN and AlGaN and increase the selectivity.
  • AlGaN is more easily oxidized than GaN and AlGaN, and AlGaN is used as an etch stop layer for GaN etching by utilizing the fact that the etching rate of the oxide is small.
  • AlGaN with a high Al composition of 28%.
  • AlGaN having a high Al composition becomes a large barrier to electrons in the device using GaN, so that the structure of the device using this etch stop layer is greatly limited.
  • the AlGaN surface after etching stop is covered with an oxide as a layer for suppressing etching, and it is necessary to remove the oxide with hydrofluoric acid after etching.
  • the conventional technique has a problem that it is not easy to manufacture a GaN device by etching GaN with good controllability without limiting the structure of the device by dry etching processing.
  • the present invention has been made to solve the above problems, and enables a GaN device to be manufactured by etching GaN with good controllability by a dry etching process without limiting the structure of the device.
  • the purpose is.
  • the semiconductor device has a first step of forming a channel layer made of GaN on a substrate, a second step of forming a barrier layer made of AlGaN on the channel layer, and a barrier layer.
  • a source electrode and a drain electrode that make ohmic contact with the two-dimensional electron gas formed near the interface between the channel layer and the barrier layer are formed.
  • the seventh step is provided, and the thickness of the etching stop layer and the composition ratio of Al are within the range in which the void formed by the gate pattern acts on the two-dimensional electron gas.
  • the semiconductor device has a first step of forming a channel layer made of GaN on a substrate, a second step of forming a barrier layer made of AlGaN on the channel layer, and a barrier layer.
  • a seventh step of forming an electrode is provided, and the thickness of the etching stop layer and the composition ratio of Al are within the range in which the gate electric field generated by the gate electrode acts on the two-dimensional electron gas.
  • the semiconductor device has a first step of forming a first semiconductor layer made of a first conductive type GaN on a substrate, and an etching stop layer made of AlGaN on the first semiconductor layer. From the second step of forming the second semiconductor layer composed of the first conductive type GaN on the etching stop layer, and the second step of forming the second semiconductor layer composed of the first conductive type GaN on the second semiconductor layer.
  • the etching stop layer is formed by patterning the second semiconductor layer and the third semiconductor layer using the fourth step of forming the configured third semiconductor layer and the etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN.
  • a seventh step of forming a second electrode that makes ohmic contact with the third semiconductor layer is provided on the three semiconductor layers, and the thickness of the etching stop layer and the composition ratio of Al are the same as those of the first electrode and the first semiconductor layer. It is said that the range where the ohmic contact can be obtained.
  • the semiconductor device is composed of a first step of forming a first semiconductor layer which is composed of a first conductive type GaN and serves as a drain on a substrate, and an AlGaN on the first semiconductor layer.
  • the second semiconductor layer and the second semiconductor layer using the fourth step of forming the third semiconductor layer which is composed of the first conductive type GaN and the source, and the etching by thermal decomposition which selectively decomposes GaN with respect to AlGaN.
  • the eighth step of forming the electrode and the ninth step of forming the source electrode electrically connected to the third semiconductor layer are provided, and the thickness of the etching stop layer and the composition ratio of Al are the channel and the first semiconductor layer. It is said that it is within the range where the carrier can move between and.
  • the semiconductor device has a first step of forming a first semiconductor layer made of GaN on a substrate and a second step of forming an etching stop layer made of AlGaN on the first semiconductor layer.
  • a second semiconductor layer using a step a third step of forming a second semiconductor layer composed of GaN on an etching stop layer, and etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN.
  • the GaN device can be manufactured by etching GaN with good controllability by the dry etching process without limiting the structure of the device. ..
  • FIG. 1A is a cross-sectional view showing a state of a semiconductor device in an intermediate process for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 1C is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 1D is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 1A is a cross-sectional view showing a state of a semiconductor device in an intermediate process for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing a state of the semiconductor device in the intermediate
  • FIG. 1E is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 1F is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the method for manufacturing the semiconductor device according to the second embodiment of the present invention.
  • FIG. 2B is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 2C is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 3A is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the third embodiment of the present invention.
  • FIG. 3B is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the third embodiment of the present invention.
  • FIG. 4A is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 4B is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 4C is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 4D is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 4E is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 4C is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 4D is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method
  • FIG. 5A is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 5B is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 5C is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the method for manufacturing the semiconductor device according to the fifth embodiment of the present invention.
  • a channel layer 102 composed of GaN is formed on the substrate 101 (first step). Between the substrate 101 and the channel layer 102, for example, a buffer layer composed of one or more of GaN, AlGaN, AlN, and AlON as a nucleation layer, and a back barrier layer for confining carriers of the channel layer.
  • a buffer layer composed of one or more of GaN, AlGaN, AlN, and AlON as a nucleation layer
  • a back barrier layer for confining carriers of the channel layer.
  • a layer made of AlGaN or InGaN, a superlattice structure for reducing the dislocation density, and the like can be inserted.
  • a barrier layer 103 composed of AlGaN is formed on the channel layer 102 (second step). Therefore, as shown in FIG. 1C, an etching stop layer 104 composed of AlGaN is formed on the barrier layer 103 (third step). Next, as shown in FIG. 1D, a p-type semiconductor layer 105 composed of p-type GaN is formed on the etching stop layer 104 (fourth step). As is well known, GaN into which p-type impurities have been introduced becomes p-type GaN by being activated by heat treatment.
  • the substrate 101 is made of, for example, Al 2 O 3 (sapphire), and the plane orientation of the main surface is, for example, (0001).
  • the substrate 101 is made of a material capable of crystal growth of a nitride semiconductor such as GaN, AlGaN, and InGaN.
  • the barrier layer 103 is composed of, for example, AlGaN having an Al composition of about 25%, and is formed to have a layer thickness of about 20 nm.
  • the p-type semiconductor layer 105 is formed, for example, to have a layer thickness of about 100 nm.
  • the etching stop layer 104 has, for example, an Al composition of 5%.
  • the Al composition of the etching stop layer 104 can be 5% or more, or 5% or less. Since the influence on the device characteristics differs depending on the Al composition of the etching stop layer 104 and the thickness required for the function for stopping the etching also differs, care must be taken when designing the device.
  • the etching stop layer 104 made of AlGaN having a different composition is arranged on the barrier layer 103. Therefore, when increasing the Al composition of the etching stop layer 104, the overall thickness of the layer made of AlGaN in consideration of the thickness of the barrier layer 103 and the thickness of the etching stop layer 104 determines the device characteristics. Will be done. If the composition of Al in the etching stop layer 104 is small, such an effect can be ignored to some extent.
  • Each semiconductor layer described above is epitaxially grown in this order, for example, with the main surface having group III polarity (in the + c-axis direction).
  • Nitride semiconductors such as GaN have a hexagonal wurtzite structure as a stable phase, and polarization occurs in the c-axis direction. By utilizing this effect, a high-concentration two-dimensional electron gas serving as a channel can be formed in the vicinity of the interface between the channel layer 102 and the barrier layer 103.
  • Each of the above-mentioned layers can be formed by the well-known metalorganic vapor phase growth method.
  • Each layer can also be formed (epitaxially grown) by molecular beam epitaxy (which may be classified into gas source, RF plasma source, laser, etc.), hydride vapor phase growth method, etc., for each of the above-mentioned semiconductor layers. Is.
  • the gate pattern 106 is placed on the etching stop layer 104.
  • a mask pattern (not shown) is formed on the p-type semiconductor layer 105 by a known lithography technique, the formed mask pattern is used as a mask, and the p-type semiconductor layer 105 is etched by an etching process by thermal decomposition. The mask pattern is removed after forming the gate pattern 106.
  • the etching target (p-type semiconductor layer 105) is heated to a high temperature (for example, 1000 ° C.), and etching is performed by utilizing thermal decomposition of a GaN-based material. Proceed. Since the energy required for thermal decomposition of AlGaN is larger than the energy required for thermal decomposition of GaN, GaN can be etched with a high selectivity for AlGaN in the above-mentioned etching process. As shown in Non-Patent Document 4, if the Al composition of about 5% AlGaN, etching selectivity of the GaN exceeds 10 2, obtained a value close to 10 3.
  • the etching rate of GaN is selected to be 10 2 nm / min (5 ⁇ 10 2 nm / min or more in Non-Patent Document 4, and about 10 nm / min under the experimental conditions of the inventors)
  • the Al composition 5 The etching rate of% AlGaN is 1 nm / min or less. Therefore, if an etching stop layer 104 having a thickness of 1 nm made of AlGaN having an Al composition of 5% is provided under the p-type semiconductor layer 105 having a thickness of 100 nm, the overetching time of the etching stop layer 104 can be set to the p-type semiconductor layer. It is possible to take about the time (1 minute) required for etching the thickness of 105 of 100 nm, and it is possible to completely flatten the unevenness of the surface caused by the etching.
  • the thickness of the p-type semiconductor layer 105 is larger than 100 nm, the time required for etching increases and the unevenness generated during etching also increases. Therefore, in order to obtain a flat surface in the etching stop layer 104, it is necessary to increase the overetching time, and it is necessary to make the etching stop layer 104 thicker. However, it is not necessary to increase the layer thickness of the etching stop layer 104 in proportion to the layer thickness of the p-type semiconductor layer 105.
  • the overetching time required for flattening also changes depending on the conditions. Therefore, in order to etch the p-type semiconductor layer 105 at 500 nm, the thickness of the etching stop layer 104 having an Al composition of 5% is not required to be 5 nm. Similarly, if the p-type semiconductor layer 105 to be etched becomes thinner, the overetching time can be shortened, so that the etching stop layer 104 can be further thinned. However, it is not desirable to use the etching stop layer 104 with a layer thickness of 1 nm or less because it is difficult to control the composition and the layer thickness of the etching stop layer 104 having a thickness of less than 1 nm.
  • the composition and thickness of the etching stop layer 104 are determined by the thickness and etching conditions of the p-type semiconductor layer 105 to be etched. However, regarding the thickness of the etching stop layer 104 and the composition ratio of Al, the depletion formed by the gate pattern 106 via the etching stop layer 104 remaining after the gate pattern 106 is formed becomes the above-mentioned two-dimensional electron gas. It is important that it is within the range of action.
  • the gate electrode 107 arranged on the gate pattern 106 is formed (sixth step).
  • the gate electrode 107 can be formed after the gate pattern 106 is formed. It is also possible to form the gate electrode 107 on the p-type semiconductor layer 105 and use the gate electrode 107 as a mask to carry out the patterning of the p-type semiconductor layer 105 described above to form the gate pattern 106.
  • the gate electrode 107 is finally formed so as to be arranged on the gate pattern 106.
  • a source electrode 108 and a drain electrode 109 that make ohmic contact with the two-dimensional electron gas formed near the interface between the channel layer 102 and the barrier layer 103 are formed.
  • heat treatment is generally performed.
  • the gate pattern 106 can be formed, then the source electrode 108 and the drain electrode 109 can be formed and the above-mentioned heat treatment can be performed, and then the gate electrode 107 can be formed.
  • the gate electrode 107 By forming the gate electrode 107 after the heat treatment for ohmic contact, the influence of the heat treatment on the gate electrode 107 can be prevented.
  • a normally-off field effect transistor high electron mobility transistor
  • the etching stop layer composed of AlGaN is used, the GaN is etched with good controllability by the dry etching process without limiting the structure of the device, and the GaN device. (Field effect transistor) can be manufactured.
  • a channel layer 102 composed of GaN is formed on the substrate 101 (first step).
  • a barrier layer 103 composed of AlGaN is formed on the channel layer 102 (second step). Therefore, as shown in FIG. 1C, an etching stop layer 104 composed of AlGaN is formed on the barrier layer 103 (third step).
  • a two-dimensional electron gas is formed in the vicinity of the interface between the channel layer 102 and the barrier layer 103.
  • a cap layer 111 composed of GaN is formed on the etching stop layer 104 (fourth step).
  • the cap layer 111 is formed to have a thickness of, for example, about 3 nm.
  • the cap layer 111 is a layer for preventing natural oxidation of the surface of the layer of the nitride semiconductor containing Al.
  • the surface of the etching stop layer 104 penetrates the cap layer 111.
  • the exposed gate opening 112 is formed (fifth step).
  • a mask pattern is formed on the cap layer 111 by a known lithography technique, the formed mask pattern is used as a mask, and the cap layer 111 is etched by an etching process by thermal decomposition. The mask pattern is removed after forming the gate opening 112.
  • the etching by thermal decomposition described above is the same as that of the first embodiment described above.
  • the etching target (cap layer 111) is heated to a high temperature and the thermal decomposition of the GaN-based material is utilized. And proceed with etching.
  • the layer thickness of the cap layer 111 is as thin as 3 nm, it is desirable to adjust the etching conditions and reduce the etching rate of GaN. For example, the etching rate can be lowered by lowering the temperature during etching.
  • the etching stop layer 104 is preferably having a thickness of 1 nm or more because the controllability of the composition and the layer thickness is lowered when the thickness is made smaller than 1 nm.
  • the thickness of the etching stop layer 104 is determined from the viewpoint of reducing the influence of the etching stop layer 104 on the device characteristics. It is desirable that the content is equal to or less than that of the cap layer 111. Since the layer thicknesses of the etching stop layer 104 and the cap layer 111 are about the same, a sufficient overetching time can be taken and a flat surface morphology can be surely obtained.
  • the gate electric field by the gate electrode described later acts on the above-mentioned two-dimensional electron gas through the etching stop layer 104 remaining after the gate opening 112 is formed. It is important that the range is set.
  • the gate electrode 113 is formed on the etching stop layer 104 exposed to the gate opening 112 (sixth step). Further, the source electrode 114 and the drain electrode 115 are formed on the cap layer 111 on the side of the gate electrode 113. The source electrode 114 and the drain electrode 115 are formed so as to make ohmic contact with the two-dimensional electron gas formed in the vicinity of the interface between the channel layer 102 and the barrier layer 103 (7th step). Further, an opening penetrating the cap layer 111 may be formed to expose the etching stop layer 104, and the source electrode 114 may be formed therein. Similarly, an opening penetrating the cap layer 111 may be formed to expose the etching stop layer 104, and the drain electrode 115 may be formed therein. A field effect transistor (high electron mobility transistor) can be obtained by the above manufacturing method.
  • the etching stop layer composed of AlGaN is used, the GaN is etched with good controllability by the dry etching process without limiting the structure of the device, and the GaN device (the GaN device). Field effect transistor) can be manufactured.
  • the first semiconductor layer 202, the etching stop layer 203, the second semiconductor layer 204, and the third semiconductor layer 205 are formed on the substrate 201 in this order (first step, step 1. 2nd step, 3rd step, 4th step).
  • the first semiconductor layer 202 is composed of a first conductive type (n type) GaN and has a thickness of 300 nm.
  • the first semiconductor layer 202 can be made of GaN having a high concentration of n-type.
  • the etching stop layer 203 is made of AlGaN.
  • the second semiconductor layer 204 is composed of the first conductive type GaN.
  • the second semiconductor layer 204 is composed of GaN having a low concentration of n-type and has a thickness of 3 ⁇ m.
  • the third semiconductor layer 205 is made of a second conductive type (p type) GaN. Since the thickness of the second semiconductor layer 204 affects the withstand voltage characteristic of the diode, it can be made thicker.
  • the second semiconductor layer 204 and the third semiconductor layer 205 using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN, as shown in FIG. 3B, one of the etching stop layers 203.
  • the surface of the portion is exposed to form the electrode forming surface 206 (fifth step).
  • a mask pattern is formed on the third semiconductor layer 205 by a known lithography technique, the formed mask pattern is used as a mask, and the third semiconductor layer 205 and the second semiconductor layer 204 are etched by an etching process by thermal decomposition.
  • the mask pattern is removed after forming the electrode forming surface 206.
  • the first electrode 207 that makes ohmic contact with the first semiconductor layer 202 is formed on the electrode forming surface 206 of the etching stop layer 203 (sixth step). Further, a second electrode 208 that makes ohmic contact with the third semiconductor layer 205 is formed on the third semiconductor layer 205 (7th step).
  • the thickness of the etching stop layer 203 and the composition ratio of Al are within a range in which ohmic contact between the first electrode 207 and the first semiconductor layer 202 can be obtained after the electrode forming surface 206 is formed. is important.
  • the etching by thermal decomposition for forming the electrode forming surface 206 is the same as that of the first and second embodiments described above.
  • the etching stop layer 203 made of AlGaN is inserted in the place where it is originally composed of only GaN. Since it is difficult for AlGaN to function as a barrier against electrons when the Al composition is low, it is desirable that the etching stop layer 203 has a low Al composition.
  • the second semiconductor layer 204 on the etching stop layer 203 is as thick as 3 ⁇ m, and the etching process takes a long time, so that it is considered that the unevenness generated during the etching becomes large. Therefore, it is important to take a long overetching time in the etching stop layer 203 in order to obtain a flat surface.
  • the thickness of the etching stop layer 203 is designed.
  • the etching stop layer 203 having an Al composition of 5% is etched at 1 nm or more under these etching conditions. Therefore, it is desirable that the thickness of the etching stop layer 203 is 2 nm or more.
  • the thickness of the etching stop layer 203 should be as thick as several tens of nm in order to sufficiently reduce the influence of AlGaN. Is not desirable.
  • the etching stop layer 203 is exposed by an etching process in order to expose the surface of the first semiconductor layer 202 originally made of n + type GaN, and the first electrode 207 is formed therein. Therefore, it is desirable that the etching stop layer 203 is doped in the same degree as the first semiconductor layer 202. The effect of doping is considered to be small, and the above discussion is the same even when the etching stop layer 203 composed of n + type AlGaN is used.
  • the GaN device is etched with good controllability by the dry etching process without limiting the structure of the device.
  • a diode can be manufactured.
  • the first semiconductor layer 302, the etching stop layer 303, the second semiconductor layer 304, and the third semiconductor layer 305 are formed in this order on the substrate 301 (first step, step 1. 2nd step, 3rd step, 4th step).
  • the first semiconductor layer 302 is made of a first conductive type (n type) GaN and has a thickness of about 300 nm.
  • the first semiconductor layer 302 serves as a drain for the MOS transistor.
  • the etching stop layer 303 is made of AlGaN.
  • the second semiconductor layer 304 is made of a second conductive type (p type) GaN and has a thickness of about 500 nm.
  • the second semiconductor layer 304 is a region where a channel of a MOS transistor is formed.
  • the third semiconductor layer 305 is composed of a first conductive type (n type) GaN and has a thickness of about 300 nm.
  • the third semiconductor layer 305 serves as a source for the MOS transistor.
  • the second semiconductor layer 304 and the third semiconductor layer 305 using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN, as shown in FIG. 4B, the second semiconductor layer 304 and An opening 306 that penetrates the third semiconductor layer 305 and reaches the etching stop layer 303 is formed (fifth step).
  • a mask pattern is formed on the third semiconductor layer 305 by a known lithography technique, the formed mask pattern is used as a mask, and the third semiconductor layer 305 and the second semiconductor layer 304 are etched by an etching process by thermal decomposition. The mask pattern is removed after forming the opening 306.
  • an insulating layer 307 covering the bottom surface and the side surface of the opening 306 is formed (sixth step).
  • the insulating layer 307 can be formed by depositing an insulating material to form an insulating film by a well-known deposition technique and then patterning the insulating film by a known lithography technique and etching technique.
  • a gate electrode 308 for applying a gate electric field to the channel is formed inside the opening 306 whose bottom surface and side surfaces are covered with the insulating layer 307 (7th step).
  • a mask pattern having an opening is formed in the gate electrode forming region, and the gate electrode material is deposited on the mask pattern.
  • the gate electrode 308 can be formed by leaving the gate electrode material in the gate forming region.
  • a drain electrode (not shown) electrically connected to the first semiconductor layer 302 is formed (step 8) and a source electrode (not shown) electrically connected to the third semiconductor layer 305 is formed (not shown).
  • a so-called trench type MOS transistor is obtained.
  • the substrate 301 is made of a conductive material (for example, conductive GaN)
  • the above-mentioned drain electrode can be formed on the back surface of the substrate 301.
  • each electrode can also be formed via a contact layer in which a predetermined impurity is introduced to a higher concentration to form a predetermined conductive type.
  • the thickness of the etching stop layer 303 and the composition ratio of Al are set within a range in which carriers can be moved between the channel and the first semiconductor layer 302 after the opening 306 is formed. is important.
  • the etching by thermal decomposition for forming the opening 306 is the same as that of the first and second embodiments described above.
  • the etching stop layer 303 made of AlGaN is inserted in the place where it is originally composed of only GaN. Since it is difficult for AlGaN to function as a barrier against electrons (carriers) when the Al composition is low, it is desirable that the etching stop layer 303 has a low Al composition.
  • the thickness of the GaN layer to be etched (the second semiconductor layer 304 and the third semiconductor layer 305) is 1 ⁇ m or less, and the unevenness generated during the etching of GaN is considered to be about several tens of nm.
  • the unevenness generated during the etching of GaN is considered to be about several tens of nm.
  • the etching stop layer 303 having a thickness of about 2 nm as in the above-described third embodiment. ..
  • the etching stop layer 303 is located above the first semiconductor layer 302 made of n-type GaN, the etching stop layer 303 is doped to etch the first semiconductor layer 302. The influence of using the stop layer 303 can be reduced.
  • the trench-type MOSFET may have a structure in which an etching stop layer 303a made of AlGaN is inserted in the middle of the source first semiconductor layer 302 in the thickness direction.
  • an etching stop layer 303a made of AlGaN is inserted in the middle of the source first semiconductor layer 302 in the thickness direction.
  • the first semiconductor layer 402, the etching stop layer 403, and the second semiconductor layer 404 are formed in this order on the substrate 401 (first step, second step, third step). Process).
  • the first semiconductor layer 402 is made of, for example, an n-type GaN and has a thickness of about 300 nm.
  • the etching stop layer 403 is made of AlGaN.
  • the second semiconductor layer 404 is composed of, for example, an n-type GaN and has a thickness of about 300 nm.
  • the etching stop layer penetrates the second semiconductor layer 404.
  • the opening 405 that reaches 403 is formed (fourth step).
  • a mask pattern is formed on the second semiconductor layer 404 by a known lithography technique, the formed mask pattern is used as a mask, and the second semiconductor layer 404 is etched by an etching process by thermal decomposition. The mask pattern is removed after forming the opening 405.
  • p-type GaN is re-grown on the etching stop layer 403 exposed to the opening 405 to form the third semiconductor layer 406 as shown in FIG. 5C.
  • the layer thickness for regrowth is 300 nm.
  • the layer thickness of the second semiconductor layer 404 to be etched is 300 nm, and the unevenness generated during etching by thermal decomposition of GaN is considered to be about several tens of nm.
  • the unevenness of about 50 nm is flattened by over-etching the etching stop layer 403, it is desirable that the thickness of the etching stop layer 403 is about 2 nm.
  • the etching stop layer 403 is arranged in the layer made of GaN, the influence of the insertion of the AlGaN layer into the layer made of GaN is reduced by doping the etching stop layer 403. can do.
  • etching by thermal decomposition can be carried out by the above-mentioned apparatus for growing the nitride semiconductor.
  • a growth apparatus that carries out metalorganic vapor phase growth
  • the third semiconductor layer 406 can be continuously regrown without being exposed to the atmosphere.
  • the GaN device is manufactured by etching GaN with good controllability by the dry etching process without limiting the structure of the device. become able to.

Abstract

According to the present invention, a gate pattern (106) is formed on top of an etching stop layer (104) by patterning a p-type semiconductor layer (105) by means of thermal decomposition etching wherein GaN is selectively decomposed over AlGaN. In the thermal decomposition etching, etching is carried out, for example, by utilizing thermal decomposition of a GaN-based material by heating the p-type semiconductor layer (105) to a high temperature in an NH3/H2 atmosphere. Since the energy required for thermal decomposition of AlGaN is larger than the energy required for thermal decomposition of GaN, GaN is able to be selectively etched over AlGaN with a high selectivity in the above-described etching process.

Description

半導体装置の製造方法Manufacturing method of semiconductor devices
 本発明は、GaNを用いた半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device using GaN.
 現在のGaNデバイスの作製において、エッチングのプロセスでは、一般的に、塩素系のエッチングガスを用いた誘導結合型プラズマ反応性イオンエッチング(Inductively Coupled Plasma Reactive Ion Etching:ICP-RIE)が用いられている。しかしながら、塩素系のICP-RIEでは、プラズマを使用したドライエッチングであり、エッチングの際にはバイアス電圧によってプラズマを試料表面へと導くこととなる。このプラズマによって、エッチング後に、エッチング対象のGaN層の表面に欠陥の多いダメージ層が形成される。ダメージ層の厚さはバイアス電圧によって異なり、バイアス電圧が大きいほど厚いダメージ層が形成され、デバイスの特性を劣化させる。 In the current fabrication of GaN devices, inductively coupled plasma reactive ion etching (ICP-RIE) using a chlorine-based etching gas is generally used in the etching process. .. However, the chlorine-based ICP-RIE is dry etching using plasma, and the plasma is guided to the sample surface by the bias voltage at the time of etching. After etching, this plasma forms a damaged layer with many defects on the surface of the GaN layer to be etched. The thickness of the damage layer depends on the bias voltage, and the larger the bias voltage, the thicker the damage layer is formed, which deteriorates the characteristics of the device.
 また、このようなドライエッチングでは、エッチング対象のGaN層の表面粗さが、GaN層の成長後の表面に比べて大きくなるという問題もある。このエッチング後の表面粗さは、成長直後のGaN層の表面に比べて大きくなり、表面平坦性も劣化していることも分かっている(非特許文献1)。 Further, in such dry etching, there is also a problem that the surface roughness of the GaN layer to be etched becomes larger than the surface after the growth of the GaN layer. It is also known that the surface roughness after this etching is larger than that of the surface of the GaN layer immediately after growth, and the surface flatness is also deteriorated (Non-Patent Document 1).
 上述した問題を解決する技術として、多段バイアスエッチング技術が報告されている(非特許文献2)。この技術では、エッチング中にバイアス電圧を少しずつ下げていくことによって、高いバイアス電圧のエッチングで発生したダメージ層を除去し、かつ新たなダメージ層の形成を抑制しながらエッチングを進める。しかし、バイアス電圧を下げていくとエッチングレートが下がっていく。このため、複数のエッチングレートを調整しながらエッチングを進めることが必要となり、技術的な難しさを有している。 A multi-stage bias etching technique has been reported as a technique for solving the above-mentioned problems (Non-Patent Document 2). In this technique, the bias voltage is gradually lowered during etching to remove the damaged layer generated by etching with a high bias voltage, and the etching proceeds while suppressing the formation of a new damaged layer. However, as the bias voltage is lowered, the etching rate decreases. Therefore, it is necessary to proceed with etching while adjusting a plurality of etching rates, which is technically difficult.
 また、この種のドライエッチングでは、エッチング量の制御性が高くないことも問題となる。現在一般的なICP-RIEのエッチングでは、エッチング量の制御を時間で行っている。これは、ICP-RIEにおいて高選択比の選択エッチング技術が確立していないことによる。時間による制御では、エッチング処理ごとのバラつきが大きくなったり、ヘテロ接合界面でエッチングを止めることが難しかったりといった課題がある。 Another problem with this type of dry etching is that the controllability of the etching amount is not high. In the current general ICP-RIE etching, the etching amount is controlled by time. This is because a high selectivity selective etching technique has not been established in ICP-RIE. Control by time has problems such as large variation in each etching process and difficulty in stopping etching at the heterojunction interface.
 この課題を解決する技術として塩素系のエッチングガスに少量の酸素を加えることでGaNとAlGaNのエッチングレートの差を大きくし、選択比を上げる手法が報告されている(非特許文献3)。この技術では、GaNとAlGaNとではAlGaNの方が酸化しやすく、またその酸化物のエッチングレートが小さいことを利用して、GaNエッチングに対してAlGaNをエッチストップ層としている。 As a technique for solving this problem, a method has been reported in which a small amount of oxygen is added to a chlorine-based etching gas to increase the difference in etching rates between GaN and AlGaN and increase the selectivity (Non-Patent Document 3). In this technique, AlGaN is more easily oxidized than GaN and AlGaN, and AlGaN is used as an etch stop layer for GaN etching by utilizing the fact that the etching rate of the oxide is small.
 しかし、この技術は現在28%と高いAl組成のAlGaNを用いた報告しかない。Al組成の高いAlGaNは、GaNを用いたデバイスの中で電子に対する大きなバリアとなってしまうため、このエッチストップ層を用いるデバイスの構造は大きく制限されてしまう。また、エッチストップ後のAlGaN表面は、エッチングを抑制する層として酸化物で覆われており、エッチング後にフッ酸によって酸化物を除去することが必要である。 However, this technology is currently only reported using AlGaN with a high Al composition of 28%. AlGaN having a high Al composition becomes a large barrier to electrons in the device using GaN, so that the structure of the device using this etch stop layer is greatly limited. Further, the AlGaN surface after etching stop is covered with an oxide as a layer for suppressing etching, and it is necessary to remove the oxide with hydrofluoric acid after etching.
 上述したように、従来の技術では、ドライエッチング処理により、デバイスの構造を制限することなく、GaNを制御性よくエッチングしてGaNデバイスを作製することが容易ではないという問題があった。 As described above, the conventional technique has a problem that it is not easy to manufacture a GaN device by etching GaN with good controllability without limiting the structure of the device by dry etching processing.
 本発明は、以上のような問題点を解消するためになされたものであり、デバイスの構造を制限することなく、ドライエッチング処理によりGaNを制御性よくエッチングしてGaNデバイスが作製できるようにすることを目的とする。 The present invention has been made to solve the above problems, and enables a GaN device to be manufactured by etching GaN with good controllability by a dry etching process without limiting the structure of the device. The purpose is.
 本発明に係る半導体装置は、基板の上にGaNから構成されたチャネル層を形成する第1工程と、チャネル層の上に、AlGaNから構成された障壁層を形成する第2工程と、障壁層の上に、AlGaNから構成されたエッチングストップ層を形成する第3工程と、エッチングストップ層の上にp型のGaNから構成されたp型半導体層を形成する第4工程と、AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、p型半導体層のパターニングにより、エッチングストップ層の上に、ゲートパターンを形成する第5工程と、ゲートパターンの上に配置されるゲート電極を形成する第6工程と、エッチングストップ層の上のゲートパターンの側方に、チャネル層と障壁層との界面近傍に形成される2次元電子ガスにオーミックコンタクトするソース電極およびドレイン電極を形成する第7工程とを備え、エッチングストップ層の厚さおよびAlの組成比は、ゲートパターンにより形成される空乏が2次元電子ガスに作用する範囲とされている。 The semiconductor device according to the present invention has a first step of forming a channel layer made of GaN on a substrate, a second step of forming a barrier layer made of AlGaN on the channel layer, and a barrier layer. A third step of forming an etching stop layer made of AlGaN on the top, a fourth step of forming a p-type semiconductor layer made of p-type GaN on the etching stop layer, and the case of AlGaN. A fifth step of forming a gate pattern on the etching stop layer by patterning a p-type semiconductor layer using etching by thermal decomposition that selectively decomposes GaN, and a gate electrode arranged on the gate pattern. On the side of the gate pattern on the etching stop layer, a source electrode and a drain electrode that make ohmic contact with the two-dimensional electron gas formed near the interface between the channel layer and the barrier layer are formed. The seventh step is provided, and the thickness of the etching stop layer and the composition ratio of Al are within the range in which the void formed by the gate pattern acts on the two-dimensional electron gas.
 本発明に係る半導体装置は、基板の上にGaNから構成されたチャネル層を形成する第1工程と、チャネル層の上に、AlGaNから構成された障壁層を形成する第2工程と、障壁層の上に、AlGaNから構成されたエッチングストップ層を形成する第3工程と、エッチングストップ層の上にGaNから構成されたキャップ層を形成する第4工程と、AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、キャップ層のパターニングにより、キャップ層を貫通してエッチングストップ層の表面が露出するゲート開口を形成する第5工程と、ゲート開口に露出するエッチングストップ層の上に、ゲート電極を形成する第6工程と、エッチングストップ層の上のゲート電極の側方に、チャネル層と障壁層との界面近傍に形成される2次元電子ガスにオーミックコンタクトするソース電極およびドレイン電極を形成する第7工程とを備え、エッチングストップ層の厚さおよびAlの組成比は、ゲート電極によるゲート電界が2次元電子ガスに作用する範囲とされている。 The semiconductor device according to the present invention has a first step of forming a channel layer made of GaN on a substrate, a second step of forming a barrier layer made of AlGaN on the channel layer, and a barrier layer. A third step of forming an etching stop layer composed of AlGaN on the top, a fourth step of forming a cap layer composed of GaN on the etching stop layer, and selectively selecting GaN with respect to AlGaN. A fifth step of forming a gate opening that penetrates the cap layer and exposes the surface of the etching stop layer by patterning the cap layer using etching by thermal decomposition that decomposes, and above the etching stop layer that is exposed to the gate opening. In addition, the sixth step of forming the gate electrode, and the source electrode and drain that ohmically contact the two-dimensional electron gas formed near the interface between the channel layer and the barrier layer on the side of the gate electrode on the etching stop layer. A seventh step of forming an electrode is provided, and the thickness of the etching stop layer and the composition ratio of Al are within the range in which the gate electric field generated by the gate electrode acts on the two-dimensional electron gas.
 本発明に係る半導体装置は、基板の上に第1導電型のGaNから構成された第1半導体層を形成する第1工程と、第1半導体層の上に、AlGaNから構成されたエッチングストップ層を形成する第2工程と、エッチングストップ層の上に第1導電型のGaNから構成された第2半導体層を形成する第3工程と、第2半導体層の上に第2導電型のGaNから構成された第3半導体層を形成する第4工程と、AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、第2半導体層および第3半導体層のパターニングによりエッチングストップ層の一部の表面を露出させて電極形成面を形成する第5工程と、エッチングストップ層の電極形成面の上に、第1半導体層にオーミックコンタクトする第1電極を形成する第6工程と、第3半導体層の上に、第3半導体層にオーミックコンタクトする第2電極を形成する第7工程とを備え、エッチングストップ層の厚さおよびAlの組成比は、第1電極と第1半導体層とのオーミックコンタクトが得られる範囲とされている。 The semiconductor device according to the present invention has a first step of forming a first semiconductor layer made of a first conductive type GaN on a substrate, and an etching stop layer made of AlGaN on the first semiconductor layer. From the second step of forming the second semiconductor layer composed of the first conductive type GaN on the etching stop layer, and the second step of forming the second semiconductor layer composed of the first conductive type GaN on the second semiconductor layer. The etching stop layer is formed by patterning the second semiconductor layer and the third semiconductor layer using the fourth step of forming the configured third semiconductor layer and the etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN. A fifth step of exposing a part of the surface to form an electrode forming surface, a sixth step of forming a first electrode in ohmic contact with the first semiconductor layer on the electrode forming surface of the etching stop layer, and a third step. A seventh step of forming a second electrode that makes ohmic contact with the third semiconductor layer is provided on the three semiconductor layers, and the thickness of the etching stop layer and the composition ratio of Al are the same as those of the first electrode and the first semiconductor layer. It is said that the range where the ohmic contact can be obtained.
 本発明に係る半導体装置は、基板の上に第1導電型のGaNから構成されてドレインとなる第1半導体層を形成する第1工程と、第1半導体層の上に、AlGaNから構成されたエッチングストップ層を形成する第2工程と、エッチングストップ層の上に第2導電型のGaNから構成されてチャネルが形成される第2半導体層を形成する第3工程と、第2半導体層の上に第1導電型のGaNから構成されてソースとなる第3半導体層を形成する第4工程と、AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、第2半導体層および第3半導体層のパターニングにより、第2半導体層および第3半導体層を貫通してエッチングストップ層に到達する開口を形成する第5工程と、開口の底面および側面を覆う絶縁層を形成する第6工程と、絶縁層で底面および側面が覆われた開口の内部に、チャネルに対してゲート電界を作用させるためのゲート電極を形成する第7工程と、第1半導体層に電気的に接続するドレイン電極を形成する第8工程と、第3半導体層に電気的に接続するソース電極を形成する第9工程とを備え、エッチングストップ層の厚さおよびAlの組成比は、チャネルと第1半導体層との間のキャリアの移動が可能となる範囲とされている。 The semiconductor device according to the present invention is composed of a first step of forming a first semiconductor layer which is composed of a first conductive type GaN and serves as a drain on a substrate, and an AlGaN on the first semiconductor layer. The second step of forming the etching stop layer, the third step of forming the second semiconductor layer composed of the second conductive type GaN and forming the channel on the etching stop layer, and the upper part of the second semiconductor layer. The second semiconductor layer and the second semiconductor layer using the fourth step of forming the third semiconductor layer which is composed of the first conductive type GaN and the source, and the etching by thermal decomposition which selectively decomposes GaN with respect to AlGaN. A fifth step of forming an opening that penetrates the second semiconductor layer and the third semiconductor layer and reaches the etching stop layer by patterning the third semiconductor layer, and a sixth step of forming an insulating layer that covers the bottom surface and the side surface of the opening. The process, the seventh step of forming a gate electrode for applying a gate electric field to the channel inside the opening whose bottom surface and side surfaces are covered with an insulating layer, and the drain electrically connected to the first semiconductor layer. The eighth step of forming the electrode and the ninth step of forming the source electrode electrically connected to the third semiconductor layer are provided, and the thickness of the etching stop layer and the composition ratio of Al are the channel and the first semiconductor layer. It is said that it is within the range where the carrier can move between and.
 本発明に係る半導体装置は、基板の上にGaNから構成された第1半導体層を形成する第1工程と、第1半導体層の上に、AlGaNから構成されたエッチングストップ層を形成する第2工程と、エッチングストップ層の上にGaNから構成された第2半導体層を形成する第3工程と、AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、第2半導体層のパターニングにより、第2半導体層を貫通してエッチングストップ層に到達する開口を形成する第4工程と、開口に露出するエッチングストップ層の上に、GaNを再成長させて第3半導体層を形成する第5工程とを備える。 The semiconductor device according to the present invention has a first step of forming a first semiconductor layer made of GaN on a substrate and a second step of forming an etching stop layer made of AlGaN on the first semiconductor layer. A second semiconductor layer using a step, a third step of forming a second semiconductor layer composed of GaN on an etching stop layer, and etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN. A fourth step of forming an opening that penetrates the second semiconductor layer and reaches the etching stop layer by patterning, and a third semiconductor layer is formed by regrowth of GaN on the etching stop layer exposed to the opening. It includes a fifth step.
 以上説明したように、本発明によれば、AlGaNから構成されたエッチングストップ層を用いるので、デバイスの構造を制限することなく、ドライエッチング処理によりGaNを制御性よくエッチングしてGaNデバイスが作製できる。 As described above, according to the present invention, since the etching stop layer composed of AlGaN is used, the GaN device can be manufactured by etching GaN with good controllability by the dry etching process without limiting the structure of the device. ..
図1Aは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 1A is a cross-sectional view showing a state of a semiconductor device in an intermediate process for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention. 図1Bは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 1B is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the method for manufacturing the semiconductor device according to the first embodiment of the present invention. 図1Cは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 1C is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the first embodiment of the present invention. 図1Dは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 1D is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the first embodiment of the present invention. 図1Eは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 1E is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the first embodiment of the present invention. 図1Fは、本発明の実施の形態1に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 1F is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the first embodiment of the present invention. 図2Aは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 2A is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the method for manufacturing the semiconductor device according to the second embodiment of the present invention. 図2Bは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 2B is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the second embodiment of the present invention. 図2Cは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 2C is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the second embodiment of the present invention. 図3Aは、本発明の実施の形態3に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3A is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the third embodiment of the present invention. 図3Bは、本発明の実施の形態3に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 3B is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the third embodiment of the present invention. 図4Aは、本発明の実施の形態4に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 4A is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fourth embodiment of the present invention. 図4Bは、本発明の実施の形態4に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 4B is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fourth embodiment of the present invention. 図4Cは、本発明の実施の形態4に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 4C is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fourth embodiment of the present invention. 図4Dは、本発明の実施の形態4に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 4D is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fourth embodiment of the present invention. 図4Eは、本発明の実施の形態4に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 4E is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fourth embodiment of the present invention. 図5Aは、本発明の実施の形態5に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 5A is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fifth embodiment of the present invention. 図5Bは、本発明の実施の形態5に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 5B is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the manufacturing method of the semiconductor device according to the fifth embodiment of the present invention. 図5Cは、本発明の実施の形態5に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。FIG. 5C is a cross-sectional view showing a state of the semiconductor device in the intermediate process for explaining the method for manufacturing the semiconductor device according to the fifth embodiment of the present invention.
 以下、本発明の実施の形態に係る半導体装置の製造方法について説明する。 Hereinafter, a method for manufacturing a semiconductor device according to the embodiment of the present invention will be described.
[実施の形態1]
 はじめに、本発明の実施の形態1に係る半導体装置の製造方法について、図1A~図1Fを参照して説明する。
[Embodiment 1]
First, a method of manufacturing a semiconductor device according to the first embodiment of the present invention will be described with reference to FIGS. 1A to 1F.
 まず、図1Aに示すように、基板101の上にGaNから構成されたチャネル層102を形成する(第1工程)。なお、基板101とチャネル層102との間には、例えば核形成層となるGaNやAlGaN、AlN、AlONのうち1つ以上からなるバッファー層や、チャネル層のキャリアを閉じ込めるためのバックバリア層となるAlGaNやInGaNからなる層、転位密度を低減するための超格子構造などを挿入することができる。 First, as shown in FIG. 1A, a channel layer 102 composed of GaN is formed on the substrate 101 (first step). Between the substrate 101 and the channel layer 102, for example, a buffer layer composed of one or more of GaN, AlGaN, AlN, and AlON as a nucleation layer, and a back barrier layer for confining carriers of the channel layer. A layer made of AlGaN or InGaN, a superlattice structure for reducing the dislocation density, and the like can be inserted.
 次いで、図1Bに示すように、チャネル層102の上に、AlGaNから構成された障壁層103を形成する(第2工程)。ついて、図1Cに示すように、障壁層103の上に、AlGaNから構成されたエッチングストップ層104を形成する(第3工程)。次いで、図1Dに示すように、エッチングストップ層104の上にp型のGaNから構成されたp型半導体層105を形成する(第4工程)。なお、よく知られているように、p型不純物が導入されたGaNは、加熱処理により活性化することで、p型のGaNとなる。 Next, as shown in FIG. 1B, a barrier layer 103 composed of AlGaN is formed on the channel layer 102 (second step). Therefore, as shown in FIG. 1C, an etching stop layer 104 composed of AlGaN is formed on the barrier layer 103 (third step). Next, as shown in FIG. 1D, a p-type semiconductor layer 105 composed of p-type GaN is formed on the etching stop layer 104 (fourth step). As is well known, GaN into which p-type impurities have been introduced becomes p-type GaN by being activated by heat treatment.
 基板101は、例えば、Al23(サファイア)から構成し、例えば、主表面の面方位を(0001)とする。基板101は、GaN、AlGaN、およびInGaNなどの窒化物半導体の結晶成長が実施できる材料から構成する。障壁層103は、例えば、Al組成は25%程度としたAlGaNから構成し、層厚20nm程度に形成する。p型半導体層105は、例えば、層厚100nm程度に形成する。 The substrate 101 is made of, for example, Al 2 O 3 (sapphire), and the plane orientation of the main surface is, for example, (0001). The substrate 101 is made of a material capable of crystal growth of a nitride semiconductor such as GaN, AlGaN, and InGaN. The barrier layer 103 is composed of, for example, AlGaN having an Al composition of about 25%, and is formed to have a layer thickness of about 20 nm. The p-type semiconductor layer 105 is formed, for example, to have a layer thickness of about 100 nm.
 エッチングストップ層104は、例えばAl組成を5%とする。なお、エッチングストップ層104のAl組成は、5%以上、あるいは5%以下とすることもできる。エッチングストップ層104のAl組成によって、デバイス特性に与える影響が異なり、またエッチングの停止のための機能に必要な厚さも異なるため、デバイス設計時の注意を必要とする。 The etching stop layer 104 has, for example, an Al composition of 5%. The Al composition of the etching stop layer 104 can be 5% or more, or 5% or less. Since the influence on the device characteristics differs depending on the Al composition of the etching stop layer 104 and the thickness required for the function for stopping the etching also differs, care must be taken when designing the device.
 実施の形態1では、障壁層103の上に、組成の異なるAlGaNからなるエッチングストップ層104を配置している。このため、エッチングストップ層104のAl組成を大きくする場合には、障壁層103の厚さにエッチングストップ層104の厚さを考慮した、AlGaNからなる層の全体の厚さが、デバイス特性を決定することになる。エッチングストップ層104におけるAlの組成が小さければ、こうした影響をある程度無視することも可能である。 In the first embodiment, the etching stop layer 104 made of AlGaN having a different composition is arranged on the barrier layer 103. Therefore, when increasing the Al composition of the etching stop layer 104, the overall thickness of the layer made of AlGaN in consideration of the thickness of the barrier layer 103 and the thickness of the etching stop layer 104 determines the device characteristics. Will be done. If the composition of Al in the etching stop layer 104 is small, such an effect can be ignored to some extent.
 上述した各半導体層は、例えば、主表面をIII族極性とした状態で(+c軸方向に)、これらの順にエピタキシャル成長する。GaNなどの窒化物半導体は、安定相として六方晶ウルツ鉱構造となり、c軸方向に分極が発生する。この効果を利用することで、チャネルとなる高濃度の2次元電子ガスを、チャネル層102と障壁層103との界面近傍に形成することができる。 Each semiconductor layer described above is epitaxially grown in this order, for example, with the main surface having group III polarity (in the + c-axis direction). Nitride semiconductors such as GaN have a hexagonal wurtzite structure as a stable phase, and polarization occurs in the c-axis direction. By utilizing this effect, a high-concentration two-dimensional electron gas serving as a channel can be formed in the vicinity of the interface between the channel layer 102 and the barrier layer 103.
 上述した各層は、よく知られた有機金属気相成長法により形成することができる。各層は、また、上述した各半導体層は、分子線エピタキシ(ガスソース、RFプラズマソース、レーザなどの分類があるがいずれでもよい)、ハイドライド気相成長方法などによって形成(エピタキシャル成長)することも可能である。 Each of the above-mentioned layers can be formed by the well-known metalorganic vapor phase growth method. Each layer can also be formed (epitaxially grown) by molecular beam epitaxy (which may be classified into gas source, RF plasma source, laser, etc.), hydride vapor phase growth method, etc., for each of the above-mentioned semiconductor layers. Is.
 次に、AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用い、p型半導体層105をパターニングすることで、図1Eに示すように、エッチングストップ層104の上に、ゲートパターン106を形成する(第5工程)。例えば、公知のリソグラフィー技術によりp型半導体層105の上にマスクパターン(不図示)を形成し、形成したマスクパターンをマスクとし、p型半導体層105を熱分解によるエッチング処理によりエッチングする。マスクパターンは、ゲートパターン106を形成した後で除去する。 Next, by patterning the p-type semiconductor layer 105 using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN, as shown in FIG. 1E, the gate pattern 106 is placed on the etching stop layer 104. (Fifth step). For example, a mask pattern (not shown) is formed on the p-type semiconductor layer 105 by a known lithography technique, the formed mask pattern is used as a mask, and the p-type semiconductor layer 105 is etched by an etching process by thermal decomposition. The mask pattern is removed after forming the gate pattern 106.
 上述した熱分解によるエッチングは、例えば、NH3/H2雰囲気において、エッチング対象(p型半導体層105)を高温(例えば1000℃)に加熱し、GaN系材料の熱分解を利用してエッチングを進める。GaNの熱分解に要するエネルギーに対し、AlGaNの熱分解に要するエネルギーが大きいため、上述したエッチング処理では、AlGaNに対して高い選択比でGaNがエッチングできる。非特許文献4に示されるように、AlGaNのAl組成が5%程度あれば、GaNとのエッチング選択比は102を超え、103に近い値が得られる。 In the above-mentioned etching by thermal decomposition, for example, in an NH 3 / H 2 atmosphere, the etching target (p-type semiconductor layer 105) is heated to a high temperature (for example, 1000 ° C.), and etching is performed by utilizing thermal decomposition of a GaN-based material. Proceed. Since the energy required for thermal decomposition of AlGaN is larger than the energy required for thermal decomposition of GaN, GaN can be etched with a high selectivity for AlGaN in the above-mentioned etching process. As shown in Non-Patent Document 4, if the Al composition of about 5% AlGaN, etching selectivity of the GaN exceeds 10 2, obtained a value close to 10 3.
 例えばGaNのエッチングレートを102nm/min(非特許文献4では5×102nm/min以上、発明者らの実験条件では10nm/min程度)とするような条件を選べば、Al組成5%のAlGaNのエッチングレートは1nm/min以下になる。このため、厚さ100nmあるp型半導体層105の下に、Al組成5%のAlGaNからなる厚さ1nmのエッチングストップ層104を設けると、エッチングストップ層104のオーバーエッチング時間を、p型半導体層105の厚さ100nmをエッチングするのに要する時間(1分)程度取ることが可能になり、エッチングで生じる表面の凹凸を完全に平坦化することができる。 For example, if the etching rate of GaN is selected to be 10 2 nm / min (5 × 10 2 nm / min or more in Non-Patent Document 4, and about 10 nm / min under the experimental conditions of the inventors), the Al composition 5 The etching rate of% AlGaN is 1 nm / min or less. Therefore, if an etching stop layer 104 having a thickness of 1 nm made of AlGaN having an Al composition of 5% is provided under the p-type semiconductor layer 105 having a thickness of 100 nm, the overetching time of the etching stop layer 104 can be set to the p-type semiconductor layer. It is possible to take about the time (1 minute) required for etching the thickness of 105 of 100 nm, and it is possible to completely flatten the unevenness of the surface caused by the etching.
 p型半導体層105の厚さが100nmより大きい場合には、エッチングに要する時間が増え、かつエッチング中に生じる凹凸も大きくなる。このため、エッチングストップ層104で平坦な表面を得るためには、オーバーエッチング時間を増やす必要があり、エッチングストップ層104を厚くする必要がある。ただし、p型半導体層105の層厚に比例してエッチングストップ層104の層厚を増やす必要はない。 When the thickness of the p-type semiconductor layer 105 is larger than 100 nm, the time required for etching increases and the unevenness generated during etching also increases. Therefore, in order to obtain a flat surface in the etching stop layer 104, it is necessary to increase the overetching time, and it is necessary to make the etching stop layer 104 thicker. However, it is not necessary to increase the layer thickness of the etching stop layer 104 in proportion to the layer thickness of the p-type semiconductor layer 105.
 エッチング中に生じる凹凸は、エッチング条件によってサイズが大きく異なるため、平坦化に要するオーバーエッチング時間は条件によっても変化する。このため、p型半導体層105を500nmエッチングするために、Al組成5%としたエッチングストップ層104の厚さが5nm必要となるわけではない。同様に、エッチングされるp型半導体層105が薄くなれば、オーバーエッチング時間が短くて済むため、エッチングストップ層104を更に薄くすることが可能である。しかしながら、1nmを下回るエッチングストップ層104は組成や層厚の制御が困難になることから、1nm以下の層厚でエッチングストップ層104を用いることは望ましくない。 Since the size of the unevenness generated during etching varies greatly depending on the etching conditions, the overetching time required for flattening also changes depending on the conditions. Therefore, in order to etch the p-type semiconductor layer 105 at 500 nm, the thickness of the etching stop layer 104 having an Al composition of 5% is not required to be 5 nm. Similarly, if the p-type semiconductor layer 105 to be etched becomes thinner, the overetching time can be shortened, so that the etching stop layer 104 can be further thinned. However, it is not desirable to use the etching stop layer 104 with a layer thickness of 1 nm or less because it is difficult to control the composition and the layer thickness of the etching stop layer 104 having a thickness of less than 1 nm.
 なお、エッチングストップ層104の組成や厚さは、エッチングされるp型半導体層105の厚さやエッチング条件によって決定されるものである。ただし、エッチングストップ層104の厚さおよびAlの組成比は、ゲートパターン106が形成された後に残るエッチングストップ層104を介して、ゲートパターン106により形成される空乏が、上述した2次元電子ガスに作用する範囲とされていることが重要となる。 The composition and thickness of the etching stop layer 104 are determined by the thickness and etching conditions of the p-type semiconductor layer 105 to be etched. However, regarding the thickness of the etching stop layer 104 and the composition ratio of Al, the depletion formed by the gate pattern 106 via the etching stop layer 104 remaining after the gate pattern 106 is formed becomes the above-mentioned two-dimensional electron gas. It is important that it is within the range of action.
 次に、図1Fに示すように、ゲートパターン106の上に配置されるゲート電極107を形成する(第6工程)。ゲート電極107は、ゲートパターン106を形成した後に形成することができる。なお、p型半導体層105の上にゲート電極107を形成し、ゲート電極107をマスクとして、上述したp型半導体層105のパターニングを実施し、ゲートパターン106を形成することもできる。ゲート電極107は、最終的にゲートパターン106の上に配置される状態に形成されるものである。 Next, as shown in FIG. 1F, the gate electrode 107 arranged on the gate pattern 106 is formed (sixth step). The gate electrode 107 can be formed after the gate pattern 106 is formed. It is also possible to form the gate electrode 107 on the p-type semiconductor layer 105 and use the gate electrode 107 as a mask to carry out the patterning of the p-type semiconductor layer 105 described above to form the gate pattern 106. The gate electrode 107 is finally formed so as to be arranged on the gate pattern 106.
 また、エッチングストップ層104の上のゲートパターン106の側方に、チャネル層102と障壁層103との界面近傍に形成される2次元電子ガスにオーミックコンタクトするソース電極108およびドレイン電極109を形成する(第7工程)。なお、ソース電極108およびドレイン電極109を、2次元電子ガスにオーミックコンタクトさせるために、一般に加熱処理が実施される。この場合、ゲートパターン106を形成し、次いで、ソース電極108およびドレイン電極109を形成して上述した加熱処理を実施し、この後、ゲート電極107を形成することができる。オーミックコンタクトのための加熱処理の後にゲート電極107を形成することで、加熱処理によるゲート電極107への影響が防げる。以上の製造方法により、ノーマリーオフの電界効果トランジスタ(高電子移動度トランジスタ)が得られる。 Further, on the side of the gate pattern 106 on the etching stop layer 104, a source electrode 108 and a drain electrode 109 that make ohmic contact with the two-dimensional electron gas formed near the interface between the channel layer 102 and the barrier layer 103 are formed. (7th step). In order to make the source electrode 108 and the drain electrode 109 ohmic contact with the two-dimensional electron gas, heat treatment is generally performed. In this case, the gate pattern 106 can be formed, then the source electrode 108 and the drain electrode 109 can be formed and the above-mentioned heat treatment can be performed, and then the gate electrode 107 can be formed. By forming the gate electrode 107 after the heat treatment for ohmic contact, the influence of the heat treatment on the gate electrode 107 can be prevented. By the above manufacturing method, a normally-off field effect transistor (high electron mobility transistor) can be obtained.
 以上に説明したように、実施の形態1によれば、AlGaNから構成されたエッチングストップ層を用いるので、デバイスの構造を制限することなく、ドライエッチング処理によりGaNを制御性よくエッチングしてGaNデバイス(電界効果トランジスタ)が作製できる。 As described above, according to the first embodiment, since the etching stop layer composed of AlGaN is used, the GaN is etched with good controllability by the dry etching process without limiting the structure of the device, and the GaN device. (Field effect transistor) can be manufactured.
[実施の形態2]
 次に、本発明の実施の形態1に係る半導体装置の製造方法について、図1A~図1C,図2A~図2Bを参照して説明する。
[Embodiment 2]
Next, a method of manufacturing the semiconductor device according to the first embodiment of the present invention will be described with reference to FIGS. 1A to 1C and FIGS. 2A to 2B.
 まず、図1Aに示すように、基板101の上にGaNから構成されたチャネル層102を形成する(第1工程)。次いで、図1Bに示すように、チャネル層102の上に、AlGaNから構成された障壁層103を形成する(第2工程)。ついて、図1Cに示すように、障壁層103の上に、AlGaNから構成されたエッチングストップ層104を形成する(第3工程)。これらの工程は、前述した実施の形態1と同様である。チャネル層102と障壁層103との界面近傍には、2次元電子ガスが形成される。 First, as shown in FIG. 1A, a channel layer 102 composed of GaN is formed on the substrate 101 (first step). Next, as shown in FIG. 1B, a barrier layer 103 composed of AlGaN is formed on the channel layer 102 (second step). Therefore, as shown in FIG. 1C, an etching stop layer 104 composed of AlGaN is formed on the barrier layer 103 (third step). These steps are the same as those in the first embodiment described above. A two-dimensional electron gas is formed in the vicinity of the interface between the channel layer 102 and the barrier layer 103.
 次に、図2Aに示すように、エッチングストップ層104の上にGaNから構成されたキャップ層111を形成する(第4工程)。キャップ層111は、例えば、厚さ3nm程度に形成する。キャップ層111は、Alを含む窒化物半導体の層の表面の自然酸化などを防止するための層である。 Next, as shown in FIG. 2A, a cap layer 111 composed of GaN is formed on the etching stop layer 104 (fourth step). The cap layer 111 is formed to have a thickness of, for example, about 3 nm. The cap layer 111 is a layer for preventing natural oxidation of the surface of the layer of the nitride semiconductor containing Al.
 次に、AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、キャップ層111のパターニングにより、図2Bに示すように、キャップ層111を貫通してエッチングストップ層104の表面が露出するゲート開口112を形成する(第5工程)。例えば、公知のリソグラフィー技術によりキャップ層111の上にマスクパターンを形成し、形成したマスクパターンをマスクとし、キャップ層111を熱分解によるエッチング処理によりエッチングする。マスクパターンは、ゲート開口112を形成した後で除去する。 Next, by patterning the cap layer 111 using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN, as shown in FIG. 2B, the surface of the etching stop layer 104 penetrates the cap layer 111. The exposed gate opening 112 is formed (fifth step). For example, a mask pattern is formed on the cap layer 111 by a known lithography technique, the formed mask pattern is used as a mask, and the cap layer 111 is etched by an etching process by thermal decomposition. The mask pattern is removed after forming the gate opening 112.
 上述した熱分解によるエッチングは、前述した実施の形態1と同様であり、例えば、NH3/H2雰囲気において、エッチング対象(キャップ層111)を高温に加熱し、GaN系材料の熱分解を利用してエッチングを進める。 The etching by thermal decomposition described above is the same as that of the first embodiment described above. For example, in an NH 3 / H 2 atmosphere, the etching target (cap layer 111) is heated to a high temperature and the thermal decomposition of the GaN-based material is utilized. And proceed with etching.
 ただし、実施の形態2では、キャップ層111の層厚が3nmと薄いため、エッチング条件を調整し、GaNのエッチングレートを下げることが望ましい。例えば、エッチング中の温度を下げることで、エッチングレートを下げることができる。エッチングストップ層104は、実施の形態1の説明でも示したように、厚さを1nmより薄くすると組成や層厚の制御性が低下することから、厚さ1nm以上であることが望ましい。 However, in the second embodiment, since the layer thickness of the cap layer 111 is as thin as 3 nm, it is desirable to adjust the etching conditions and reduce the etching rate of GaN. For example, the etching rate can be lowered by lowering the temperature during etching. As shown in the description of the first embodiment, the etching stop layer 104 is preferably having a thickness of 1 nm or more because the controllability of the composition and the layer thickness is lowered when the thickness is made smaller than 1 nm.
 実施の形態2では、エッチング対象のキャップ層111の厚さが3nm程度と薄いことから、デバイス特性へのエッチングストップ層104の影響を小さくするという観点からも、エッチングストップ層104の厚さは、キャップ層111と同程度かそれ以下とすることが望ましい。エッチングストップ層104とキャップ層111の層厚が同程度になるため、オーバーエッチング時間を十分に取り、確実に平坦な表面モフォロジーを得ることができる。 In the second embodiment, since the thickness of the cap layer 111 to be etched is as thin as about 3 nm, the thickness of the etching stop layer 104 is determined from the viewpoint of reducing the influence of the etching stop layer 104 on the device characteristics. It is desirable that the content is equal to or less than that of the cap layer 111. Since the layer thicknesses of the etching stop layer 104 and the cap layer 111 are about the same, a sufficient overetching time can be taken and a flat surface morphology can be surely obtained.
 なお、エッチングストップ層104の厚さおよびAlの組成比は、ゲート開口112が形成された後に残るエッチングストップ層104を介して、後述するゲート電極によるゲート電界が、上述した2次元電子ガスに作用する範囲とされていることが重要となる。 Regarding the thickness of the etching stop layer 104 and the composition ratio of Al, the gate electric field by the gate electrode described later acts on the above-mentioned two-dimensional electron gas through the etching stop layer 104 remaining after the gate opening 112 is formed. It is important that the range is set.
 次に、図2Cに示すように、ゲート開口112に露出するエッチングストップ層104の上に、ゲート電極113を形成する(第6工程)。また、ゲート電極113の側方のキャップ層111の上に、ソース電極114およびドレイン電極115を形成する。ソース電極114およびドレイン電極115は、チャネル層102と障壁層103との界面近傍に形成される2次元電子ガスにオーミックコンタクトするように形成する(第7工程)。また、キャップ層111を貫通する開口を形成してエッチングストップ層104を露出させ、ここにソース電極114を形成することもできる。同様に、キャップ層111を貫通する開口を形成してエッチングストップ層104を露出させ、ここにドレイン電極115を形成することもできる。以上の製造方法により、電界効果トランジスタ(高電子移動度トランジスタ)が得られる。 Next, as shown in FIG. 2C, the gate electrode 113 is formed on the etching stop layer 104 exposed to the gate opening 112 (sixth step). Further, the source electrode 114 and the drain electrode 115 are formed on the cap layer 111 on the side of the gate electrode 113. The source electrode 114 and the drain electrode 115 are formed so as to make ohmic contact with the two-dimensional electron gas formed in the vicinity of the interface between the channel layer 102 and the barrier layer 103 (7th step). Further, an opening penetrating the cap layer 111 may be formed to expose the etching stop layer 104, and the source electrode 114 may be formed therein. Similarly, an opening penetrating the cap layer 111 may be formed to expose the etching stop layer 104, and the drain electrode 115 may be formed therein. A field effect transistor (high electron mobility transistor) can be obtained by the above manufacturing method.
 以上に説明したように、実施の形態2においても、AlGaNから構成されたエッチングストップ層を用いるので、デバイスの構造を制限することなく、ドライエッチング処理によりGaNを制御性よくエッチングしてGaNデバイス(電界効果トランジスタ)が作製できる。 As described above, also in the second embodiment, since the etching stop layer composed of AlGaN is used, the GaN is etched with good controllability by the dry etching process without limiting the structure of the device, and the GaN device (the GaN device). Field effect transistor) can be manufactured.
[実施の形態3]
 次に、本発明の実施の形態3に係る半導体装置の製造方法について、図3A,図3Bを参照して説明する。以下では、半導体装置して、ダイオードを例に説明する。
[Embodiment 3]
Next, a method of manufacturing the semiconductor device according to the third embodiment of the present invention will be described with reference to FIGS. 3A and 3B. In the following, a semiconductor device will be described using a diode as an example.
 まず、図3Aに示すように、基板201の上に、第1半導体層202、エッチングストップ層203、第2半導体層204、および第3半導体層205を、これらの順に形成する(第1工程、第2工程、第3工程、第4工程)。第1半導体層202は、第1導電型(n型)のGaNから構成され、厚さ300nmである。第1半導体層202は、高濃度にn型とされたGaNから構成することができる。 First, as shown in FIG. 3A, the first semiconductor layer 202, the etching stop layer 203, the second semiconductor layer 204, and the third semiconductor layer 205 are formed on the substrate 201 in this order (first step, step 1. 2nd step, 3rd step, 4th step). The first semiconductor layer 202 is composed of a first conductive type (n type) GaN and has a thickness of 300 nm. The first semiconductor layer 202 can be made of GaN having a high concentration of n-type.
 エッチングストップ層203は、AlGaNから構成されている。第2半導体層204は、第1導電型のGaNから構成されている。第2半導体層204は、低濃度にn型とされたGaNから構成され、厚さ3μmである。第3半導体層205は、第2導電型(p型)のGaNから構成されている。第2半導体層204の厚さは、ダイオードの耐圧特性に影響するため、より厚くすることもできる。 The etching stop layer 203 is made of AlGaN. The second semiconductor layer 204 is composed of the first conductive type GaN. The second semiconductor layer 204 is composed of GaN having a low concentration of n-type and has a thickness of 3 μm. The third semiconductor layer 205 is made of a second conductive type (p type) GaN. Since the thickness of the second semiconductor layer 204 affects the withstand voltage characteristic of the diode, it can be made thicker.
 次に、AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、第2半導体層204および第3半導体層205のパターニングにより、図3Bに示すように、エッチングストップ層203の一部の表面を露出させて、電極形成面206を形成する(第5工程)。例えば、公知のリソグラフィー技術により第3半導体層205の上にマスクパターンを形成し、形成したマスクパターンをマスクとし、第3半導体層205および第2半導体層204を熱分解によるエッチング処理によりエッチングする。マスクパターンは、電極形成面206を形成した後で除去する。 Next, by patterning the second semiconductor layer 204 and the third semiconductor layer 205 using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN, as shown in FIG. 3B, one of the etching stop layers 203. The surface of the portion is exposed to form the electrode forming surface 206 (fifth step). For example, a mask pattern is formed on the third semiconductor layer 205 by a known lithography technique, the formed mask pattern is used as a mask, and the third semiconductor layer 205 and the second semiconductor layer 204 are etched by an etching process by thermal decomposition. The mask pattern is removed after forming the electrode forming surface 206.
 次いで、エッチングストップ層203の電極形成面206の上に、第1半導体層202にオーミックコンタクトする第1電極207を形成する(第6工程)。また、第3半導体層205の上に、第3半導体層205にオーミックコンタクトする第2電極208を形成する(第7工程)。 Next, the first electrode 207 that makes ohmic contact with the first semiconductor layer 202 is formed on the electrode forming surface 206 of the etching stop layer 203 (sixth step). Further, a second electrode 208 that makes ohmic contact with the third semiconductor layer 205 is formed on the third semiconductor layer 205 (7th step).
 ここで、エッチングストップ層203の厚さおよびAlの組成比は、電極形成面206を形成した後において、第1電極207と第1半導体層202とのオーミックコンタクトが得られる範囲とされていることが重要である。 Here, the thickness of the etching stop layer 203 and the composition ratio of Al are within a range in which ohmic contact between the first electrode 207 and the first semiconductor layer 202 can be obtained after the electrode forming surface 206 is formed. is important.
 実施の形態3において、電極形成面206の形成のための熱分解によるエッチングは、前述した実施の形態1,2と同様である。ただし、この例で示す半導体装置(ダイオード)では、本来、GaNのみで構成されるところに、AlGaNからなるエッチングストップ層203を挿入している。AlGaNは、Al組成が低い方が電子に対してバリアとして機能しにくいことから、エッチングストップ層203は、低Al組成である方が望ましい。 In the third embodiment, the etching by thermal decomposition for forming the electrode forming surface 206 is the same as that of the first and second embodiments described above. However, in the semiconductor device (diode) shown in this example, the etching stop layer 203 made of AlGaN is inserted in the place where it is originally composed of only GaN. Since it is difficult for AlGaN to function as a barrier against electrons when the Al composition is low, it is desirable that the etching stop layer 203 has a low Al composition.
 また、実施の形態3では、エッチングストップ層203の上の第2半導体層204が、厚さ3μmと厚く、エッチング処理の時間が長くなるため、エッチング中に生じる凹凸が大きくなると考えられる。このため、エッチングストップ層203でのオーバーエッチング時間を長めに取ることが平坦な表面を得るために重要となる。発明者らの実験では、厚さ1μm程度のGaNの層をエッチングした際に、数十nm程度の凹凸が観察されており、厚さ3μmのエッチングでは、100nm程度の凹凸が生じると推定される。これらのことを考慮して、エッチングストップ層203の厚さを設計する。 Further, in the third embodiment, the second semiconductor layer 204 on the etching stop layer 203 is as thick as 3 μm, and the etching process takes a long time, so that it is considered that the unevenness generated during the etching becomes large. Therefore, it is important to take a long overetching time in the etching stop layer 203 in order to obtain a flat surface. In the experiments of the inventors, when a GaN layer having a thickness of about 1 μm was etched, unevenness of about several tens of nm was observed, and it is estimated that etching of a thickness of 3 μm causes unevenness of about 100 nm. .. Taking these things into consideration, the thickness of the etching stop layer 203 is designed.
 GaNのエッチングレートを102nm/minとした場合には、GaNの凹凸を消すためには1分以上のオーバーエッチングが必要である。1分以上のオーバーエッチングを実施した場合、このエッチング条件ではAl組成5%のエッチングストップ層203が1nm以上はエッチングされるため、エッチングストップ層203の厚さは2nm以上としておくことが望ましい。一方で、GaNで構成されるデバイスに、AlGaNの層を挿入する形を取ることから、AlGaNの影響を十分に小さくするためにもエッチングストップ層203の厚さは、数十nmと厚くすることは望ましくない。 When the GaN etching rate and 10 2 nm / min, the to erase GaN of irregularities it is required more than one minute over-etching. When over-etching is performed for 1 minute or more, the etching stop layer 203 having an Al composition of 5% is etched at 1 nm or more under these etching conditions. Therefore, it is desirable that the thickness of the etching stop layer 203 is 2 nm or more. On the other hand, since the AlGaN layer is inserted into the device composed of GaN, the thickness of the etching stop layer 203 should be as thick as several tens of nm in order to sufficiently reduce the influence of AlGaN. Is not desirable.
 実施の形態3では、本来、n+型のGaNによる第1半導体層202の表面を露出させるためエッチング処理で、エッチングストップ層203を露出させ、ここに第1電極207を形成している。このため、エッチングストップ層203に、第1半導体層202と同程度のドーピングを実施することが望ましい。ドーピングによる影響は小さいと考えられ、上記の議論は、n+型AlGaNから構成したエッチングストップ層203を用いても同様である。 In the third embodiment, the etching stop layer 203 is exposed by an etching process in order to expose the surface of the first semiconductor layer 202 originally made of n + type GaN, and the first electrode 207 is formed therein. Therefore, it is desirable that the etching stop layer 203 is doped in the same degree as the first semiconductor layer 202. The effect of doping is considered to be small, and the above discussion is the same even when the etching stop layer 203 composed of n + type AlGaN is used.
 以上に説明したように、実施の形態3においても、AlGaNから構成されたエッチングストップ層を用いるので、デバイスの構造を制限することなく、ドライエッチング処理によりGaNを制御性よくエッチングしてGaNデバイス(ダイオード)が作製できる。 As described above, also in the third embodiment, since the etching stop layer composed of AlGaN is used, the GaN device is etched with good controllability by the dry etching process without limiting the structure of the device. A diode) can be manufactured.
[実施の形態4]
 次に、本発明の実施の形態4に係る半導体装置の製造方法について、図4A~図4Eを参照して説明する。以下では、半導体装置して、MOSトランジスタを例に説明する。
[Embodiment 4]
Next, a method of manufacturing the semiconductor device according to the fourth embodiment of the present invention will be described with reference to FIGS. 4A to 4E. Hereinafter, a MOS transistor will be described as an example of a semiconductor device.
 まず、図4Aに示すように、基板301の上に、第1半導体層302、エッチングストップ層303、第2半導体層304、および第3半導体層305を、これらの順に形成する(第1工程、第2工程、第3工程、第4工程)。第1半導体層302は、第1導電型(n型)のGaNから構成され、厚さ300nm程度である。第1半導体層302は、MOSトランジスタのドレインとなる。 First, as shown in FIG. 4A, the first semiconductor layer 302, the etching stop layer 303, the second semiconductor layer 304, and the third semiconductor layer 305 are formed in this order on the substrate 301 (first step, step 1. 2nd step, 3rd step, 4th step). The first semiconductor layer 302 is made of a first conductive type (n type) GaN and has a thickness of about 300 nm. The first semiconductor layer 302 serves as a drain for the MOS transistor.
 エッチングストップ層303は、AlGaNから構成されている。第2半導体層304は、第2導電型(p型)のGaNから構成され、厚さ500nm程度である。第2半導体層304は、MOSトランジスタのチャネルが形成される領域となる。第3半導体層305は、第1導電型(n型)のGaNから構成され、厚さ300nm程度である。第3半導体層305は、MOSトランジスタのソースとなる。 The etching stop layer 303 is made of AlGaN. The second semiconductor layer 304 is made of a second conductive type (p type) GaN and has a thickness of about 500 nm. The second semiconductor layer 304 is a region where a channel of a MOS transistor is formed. The third semiconductor layer 305 is composed of a first conductive type (n type) GaN and has a thickness of about 300 nm. The third semiconductor layer 305 serves as a source for the MOS transistor.
 次に、AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、第2半導体層304および第3半導体層305のパターニングにより、図4Bに示すように、第2半導体層304および第3半導体層305を貫通してエッチングストップ層303に到達する開口306を形成する(第5工程)。 Next, by patterning the second semiconductor layer 304 and the third semiconductor layer 305 using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN, as shown in FIG. 4B, the second semiconductor layer 304 and An opening 306 that penetrates the third semiconductor layer 305 and reaches the etching stop layer 303 is formed (fifth step).
 例えば、公知のリソグラフィー技術により第3半導体層305の上にマスクパターンを形成し、形成したマスクパターンをマスクとし、第3半導体層305および第2半導体層304を熱分解によるエッチング処理によりエッチングする。マスクパターンは、開口306を形成した後で除去する。 For example, a mask pattern is formed on the third semiconductor layer 305 by a known lithography technique, the formed mask pattern is used as a mask, and the third semiconductor layer 305 and the second semiconductor layer 304 are etched by an etching process by thermal decomposition. The mask pattern is removed after forming the opening 306.
 次に、図4Cに示すように、開口306の底面および側面を覆う絶縁層307を形成する(第6工程)。例えば、よく知られた堆積技術により、絶縁材料を堆積して絶縁膜を形成した後、この絶縁膜を、公知のリソグラフィー技術およびエッチング技術によりパターニングすることで、絶縁層307が形成できる。 Next, as shown in FIG. 4C, an insulating layer 307 covering the bottom surface and the side surface of the opening 306 is formed (sixth step). For example, the insulating layer 307 can be formed by depositing an insulating material to form an insulating film by a well-known deposition technique and then patterning the insulating film by a known lithography technique and etching technique.
 次に、図4Dに示すように、絶縁層307で底面および側面が覆われた開口306の内部に、チャネルに対してゲート電界を作用させるためのゲート電極308を形成する(第7工程)。例えば、ゲート電極形成領域に開口を備えるマスクパターンを形成し、この上からゲート電極材料を堆積する。この後、マスクパターンを除去(リフトオフ)することで、ゲート形成領域にゲート電極材料を残せば、ゲート電極308が形成できる。また、第1半導体層302に電気的に接続するドレイン電極(不図示)を形成し(第8工程)、第3半導体層305に電気的に接続するソース電極(不図示)を形成すれば(第9工程)、いわゆるトレンチ型のMOSトランジスタが得られる。例えば、基板301を導電性材料(例えば導電性のGaN)から構成すれば、基板301の裏面に上述したドレイン電極を形成することができる。また、各電極は、より高濃度に所定の不純物が導入されて所定の導電型とされたコンタクト層を介して形成することもできる。 Next, as shown in FIG. 4D, a gate electrode 308 for applying a gate electric field to the channel is formed inside the opening 306 whose bottom surface and side surfaces are covered with the insulating layer 307 (7th step). For example, a mask pattern having an opening is formed in the gate electrode forming region, and the gate electrode material is deposited on the mask pattern. After that, by removing (lifting off) the mask pattern, the gate electrode 308 can be formed by leaving the gate electrode material in the gate forming region. Further, if a drain electrode (not shown) electrically connected to the first semiconductor layer 302 is formed (step 8) and a source electrode (not shown) electrically connected to the third semiconductor layer 305 is formed (not shown). 9th step), a so-called trench type MOS transistor is obtained. For example, if the substrate 301 is made of a conductive material (for example, conductive GaN), the above-mentioned drain electrode can be formed on the back surface of the substrate 301. Further, each electrode can also be formed via a contact layer in which a predetermined impurity is introduced to a higher concentration to form a predetermined conductive type.
 ここで、エッチングストップ層303の厚さおよびAlの組成比は、開口306を形成した後において、チャネルと第1半導体層302との間のキャリアの移動が可能となる範囲とされていることが重要である。 Here, the thickness of the etching stop layer 303 and the composition ratio of Al are set within a range in which carriers can be moved between the channel and the first semiconductor layer 302 after the opening 306 is formed. is important.
 実施の形態3において、開口306の形成のための熱分解によるエッチングは、前述した実施の形態1,2と同様である。ただし、この例で示す半導体装置(MOSトランジスタ)では、本来、GaNのみで構成されるところに、AlGaNからなるエッチングストップ層303を挿入している。AlGaNは、Al組成が低い方が電子(キャリア)に対してバリアとして機能しにくいことから、エッチングストップ層303は、低Al組成である方が望ましい。 In the third embodiment, the etching by thermal decomposition for forming the opening 306 is the same as that of the first and second embodiments described above. However, in the semiconductor device (MOS transistor) shown in this example, the etching stop layer 303 made of AlGaN is inserted in the place where it is originally composed of only GaN. Since it is difficult for AlGaN to function as a barrier against electrons (carriers) when the Al composition is low, it is desirable that the etching stop layer 303 has a low Al composition.
 実施の形態4において、エッチングされるGaNの層(第2半導体層304および第3半導体層305)の厚さが1μm以下であり、GaNのエッチング中に生じる凹凸は数十nm程度と考えられる。例えば、50nm程度の凹凸をエッチングストップ層303のAlGaNをオーバーエッチングすることで平坦にする場合には、前述した実施の形態3と同様に、厚さ2nm程度のエッチングストップ層303を用いることが望ましい。 In the fourth embodiment, the thickness of the GaN layer to be etched (the second semiconductor layer 304 and the third semiconductor layer 305) is 1 μm or less, and the unevenness generated during the etching of GaN is considered to be about several tens of nm. For example, when flattening unevenness of about 50 nm by over-etching AlGaN of the etching stop layer 303, it is desirable to use the etching stop layer 303 having a thickness of about 2 nm as in the above-described third embodiment. ..
 また、実施の形態4において、エッチングストップ層303は、n型GaNからなる第1半導体層302の上部に位置するため、エッチングストップ層303にドーピングを行うことで、第1半導体層302へのエッチングストップ層303を用いたことによる影響を低減することができる。 Further, in the fourth embodiment, since the etching stop layer 303 is located above the first semiconductor layer 302 made of n-type GaN, the etching stop layer 303 is doped to etch the first semiconductor layer 302. The influence of using the stop layer 303 can be reduced.
 また、トレンチ型MOSFETでは、図4Eに示すように、ソースとなる第1半導体層302の厚さ方向の途中にAlGaNからなるエッチングストップ層303aを挿入した構造とすることもできる。この場合にも、組成,層厚、ドーピング濃度について上と同様の議論が成り立つ。 Further, as shown in FIG. 4E, the trench-type MOSFET may have a structure in which an etching stop layer 303a made of AlGaN is inserted in the middle of the source first semiconductor layer 302 in the thickness direction. In this case as well, the same discussion as above holds for composition, layer thickness, and doping concentration.
[実施の形態5]
 次に、本発明の実施の形態5に係る半導体装置の製造方法について、図5A~図5Cを参照して説明する。
[Embodiment 5]
Next, a method of manufacturing the semiconductor device according to the fifth embodiment of the present invention will be described with reference to FIGS. 5A to 5C.
 まず、図5Aに示すように、基板401の上に、第1半導体層402、エッチングストップ層403、および第2半導体層404を、これらの順に形成する(第1工程、第2工程、第3工程)。第1半導体層402は、例えばn型のGaNから構成され、厚さ300nm程度である。エッチングストップ層403は、AlGaNから構成されている。第2半導体層404は、例えばn型のGaNから構成され、厚さ300nm程度である。 First, as shown in FIG. 5A, the first semiconductor layer 402, the etching stop layer 403, and the second semiconductor layer 404 are formed in this order on the substrate 401 (first step, second step, third step). Process). The first semiconductor layer 402 is made of, for example, an n-type GaN and has a thickness of about 300 nm. The etching stop layer 403 is made of AlGaN. The second semiconductor layer 404 is composed of, for example, an n-type GaN and has a thickness of about 300 nm.
 次に、AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、第2半導体層404のパターニングにより、図5Bに示すように、第2半導体層404を貫通してエッチングストップ層403に到達する開口405を形成する(第4工程)。例えば、公知のリソグラフィー技術により第2半導体層404の上にマスクパターンを形成し、形成したマスクパターンをマスクとし、第2半導体層404を熱分解によるエッチング処理によりエッチングする。マスクパターンは、開口405を形成した後で除去する。 Next, by patterning the second semiconductor layer 404 using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN, as shown in FIG. 5B, the etching stop layer penetrates the second semiconductor layer 404. The opening 405 that reaches 403 is formed (fourth step). For example, a mask pattern is formed on the second semiconductor layer 404 by a known lithography technique, the formed mask pattern is used as a mask, and the second semiconductor layer 404 is etched by an etching process by thermal decomposition. The mask pattern is removed after forming the opening 405.
 次に、開口405に露出するエッチングストップ層403の上に、例えばp型のGaNを再成長させて、図5Cに示すように、第3半導体層406を形成する。再成長の層厚は、300nmである。 Next, for example, p-type GaN is re-grown on the etching stop layer 403 exposed to the opening 405 to form the third semiconductor layer 406 as shown in FIG. 5C. The layer thickness for regrowth is 300 nm.
 実施の形態5では、エッチングされる第2半導体層404の層厚が300nmであり、GaNの熱分解によるエッチング中に生じる凹凸は、数十nm程度と考えられる。例えば、50nm程度の凹凸をエッチングストップ層403をオーバーエッチングすることで平坦にする場合には、エッチングストップ層403の厚さを2nm程度とすることが望ましい。また、この例においても、エッチングストップ層403は、GaNからなる層の中に配置するため、エッチングストップ層403にドーピングを行うことで、GaNからなる層へのAlGaNの層の挿入の影響を低減することができる。 In the fifth embodiment, the layer thickness of the second semiconductor layer 404 to be etched is 300 nm, and the unevenness generated during etching by thermal decomposition of GaN is considered to be about several tens of nm. For example, when the unevenness of about 50 nm is flattened by over-etching the etching stop layer 403, it is desirable that the thickness of the etching stop layer 403 is about 2 nm. Further, also in this example, since the etching stop layer 403 is arranged in the layer made of GaN, the influence of the insertion of the AlGaN layer into the layer made of GaN is reduced by doping the etching stop layer 403. can do.
 ところで、熱分解によるエッチングは、上述した窒化物半導体の成長を実施する装置で実施できる。例えば、有機金属気相成長を実施する成長装置では、成長室内にNH3ガスおよびH2ガスを供給することが可能であり、また、成長室内に配置した基板401を、1000℃程度に加熱することができる。このような成長装置を用いることで、上述した開口405を形成した後、第3半導体層406の再成長を、大気に曝すことなく連続して実施できる。このように同一装置内で連続して処理することで、再成長させる面に対する不純物の付着などが防げる。 By the way, etching by thermal decomposition can be carried out by the above-mentioned apparatus for growing the nitride semiconductor. For example, in a growth apparatus that carries out metalorganic vapor phase growth, it is possible to supply NH 3 gas and H 2 gas to the growth chamber, and the substrate 401 arranged in the growth chamber is heated to about 1000 ° C. be able to. By using such a growth device, after the above-mentioned opening 405 is formed, the third semiconductor layer 406 can be continuously regrown without being exposed to the atmosphere. By continuously treating in the same apparatus in this way, it is possible to prevent impurities from adhering to the surface to be regrown.
 以上に説明したように、本発明によれば、AlGaNから構成されたエッチングストップ層を用いるので、デバイスの構造を制限することなく、ドライエッチング処理によりGaNを制御性よくエッチングしてGaNデバイスが作製できるようになる。 As described above, according to the present invention, since the etching stop layer composed of AlGaN is used, the GaN device is manufactured by etching GaN with good controllability by the dry etching process without limiting the structure of the device. become able to.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 The present invention is not limited to the embodiments described above, and many modifications and combinations can be carried out by a person having ordinary knowledge in the art within the technical idea of the present invention. That is clear.
 101…基板、102…チャネル層、103…障壁層、104…エッチングストップ層、105…p型半導体層、106…ゲートパターン、107…ゲート電極、108…ソース電極、109…ドレイン電極。 101 ... substrate, 102 ... channel layer, 103 ... barrier layer, 104 ... etching stop layer, 105 ... p-type semiconductor layer, 106 ... gate pattern, 107 ... gate electrode, 108 ... source electrode, 109 ... drain electrode.

Claims (5)

  1.  基板の上にGaNから構成されたチャネル層を形成する第1工程と、
     前記チャネル層の上に、AlGaNから構成された障壁層を形成する第2工程と、
     前記障壁層の上に、AlGaNから構成されたエッチングストップ層を形成する第3工程と、
     前記エッチングストップ層の上にp型のGaNから構成されたp型半導体層を形成する第4工程と、
     AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、前記p型半導体層のパターニングにより、前記エッチングストップ層の上に、ゲートパターンを形成する第5工程と、
     前記ゲートパターンの上に配置されるゲート電極を形成する第6工程と、
     前記エッチングストップ層の上の前記ゲートパターンの側方に、前記チャネル層と前記障壁層との界面近傍に形成される2次元電子ガスにオーミックコンタクトするソース電極およびドレイン電極を形成する第7工程と
     を備え、
     前記エッチングストップ層の厚さおよびAlの組成比は、前記ゲートパターンにより形成される空乏が前記2次元電子ガスに作用する範囲とされている
     ことを特徴とする半導体装置の製造方法。
    The first step of forming a channel layer composed of GaN on the substrate, and
    A second step of forming a barrier layer made of AlGaN on the channel layer, and
    A third step of forming an etching stop layer made of AlGaN on the barrier layer, and
    A fourth step of forming a p-type semiconductor layer composed of p-type GaN on the etching stop layer, and
    A fifth step of forming a gate pattern on the etching stop layer by patterning the p-type semiconductor layer using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN.
    The sixth step of forming the gate electrode arranged on the gate pattern and
    A seventh step of forming a source electrode and a drain electrode that make ohmic contact with a two-dimensional electron gas formed in the vicinity of the interface between the channel layer and the barrier layer on the side of the gate pattern on the etching stop layer. With
    A method for manufacturing a semiconductor device, wherein the thickness of the etching stop layer and the composition ratio of Al are within a range in which the depletion formed by the gate pattern acts on the two-dimensional electron gas.
  2.  基板の上にGaNから構成されたチャネル層を形成する第1工程と、
     前記チャネル層の上に、AlGaNから構成された障壁層を形成する第2工程と、
     前記障壁層の上に、AlGaNから構成されたエッチングストップ層を形成する第3工程と、
     前記エッチングストップ層の上にGaNから構成されたキャップ層を形成する第4工程と、
     AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、前記キャップ層のパターニングにより、前記キャップ層を貫通して前記エッチングストップ層の表面が露出するゲート開口を形成する第5工程と、
     前記ゲート開口に露出する前記エッチングストップ層の上に、ゲート電極を形成する第6工程と、
     前記エッチングストップ層の上の前記ゲート電極の側方に、前記チャネル層と前記障壁層との界面近傍に形成される2次元電子ガスにオーミックコンタクトするソース電極およびドレイン電極を形成する第7工程と
     を備え、
     前記エッチングストップ層の厚さおよびAlの組成比は、前記ゲート電極によるゲート電界が前記2次元電子ガスに作用する範囲とされている
     ことを特徴とする半導体装置の製造方法。
    The first step of forming a channel layer composed of GaN on the substrate, and
    A second step of forming a barrier layer made of AlGaN on the channel layer, and
    A third step of forming an etching stop layer made of AlGaN on the barrier layer, and
    A fourth step of forming a cap layer composed of GaN on the etching stop layer, and
    Fifth step of forming a gate opening that penetrates the cap layer and exposes the surface of the etching stop layer by patterning the cap layer using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN. When,
    A sixth step of forming a gate electrode on the etching stop layer exposed to the gate opening, and
    A seventh step of forming a source electrode and a drain electrode that make ohmic contact with a two-dimensional electron gas formed in the vicinity of the interface between the channel layer and the barrier layer on the side of the gate electrode on the etching stop layer. With
    A method for manufacturing a semiconductor device, wherein the thickness of the etching stop layer and the composition ratio of Al are within a range in which the gate electric field generated by the gate electrode acts on the two-dimensional electron gas.
  3.  基板の上に第1導電型のGaNから構成された第1半導体層を形成する第1工程と、
     前記第1半導体層の上に、AlGaNから構成されたエッチングストップ層を形成する第2工程と、
     前記エッチングストップ層の上に第1導電型のGaNから構成された第2半導体層を形成する第3工程と、
     前記第2半導体層の上に第2導電型のGaNから構成された第3半導体層を形成する第4工程と、
     AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、前記第2半導体層および前記第3半導体層のパターニングにより前記エッチングストップ層の一部の表面を露出させて電極形成面を形成する第5工程と、
     前記エッチングストップ層の前記電極形成面の上に、前記第1半導体層にオーミックコンタクトする第1電極を形成する第6工程と、
     前記第3半導体層の上に、前記第3半導体層にオーミックコンタクトする第2電極を形成する第7工程と
     を備え、
     前記エッチングストップ層の厚さおよびAlの組成比は、前記第1電極と前記第1半導体層とのオーミックコンタクトが得られる範囲とされている
     ことを特徴とする半導体装置の製造方法。
    The first step of forming the first semiconductor layer composed of the first conductive type GaN on the substrate, and
    A second step of forming an etching stop layer made of AlGaN on the first semiconductor layer, and
    A third step of forming a second semiconductor layer composed of a first conductive type GaN on the etching stop layer, and
    A fourth step of forming a third semiconductor layer composed of a second conductive type GaN on the second semiconductor layer, and
    By patterning the second semiconductor layer and the third semiconductor layer using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN, a part of the surface of the etching stop layer is exposed to expose the electrode forming surface. The fifth step of forming and
    A sixth step of forming a first electrode that makes ohmic contact with the first semiconductor layer on the electrode forming surface of the etching stop layer.
    A seventh step of forming a second electrode that makes ohmic contact with the third semiconductor layer is provided on the third semiconductor layer.
    A method for manufacturing a semiconductor device, wherein the thickness of the etching stop layer and the composition ratio of Al are within a range in which ohmic contact between the first electrode and the first semiconductor layer can be obtained.
  4.  基板の上に第1導電型のGaNから構成されてドレインとなる第1半導体層を形成する第1工程と、
     前記第1半導体層の上に、AlGaNから構成されたエッチングストップ層を形成する第2工程と、
     前記エッチングストップ層の上に第2導電型のGaNから構成されてチャネルが形成される第2半導体層を形成する第3工程と、
     前記第2半導体層の上に第1導電型のGaNから構成されてソースとなる第3半導体層を形成する第4工程と、
     AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、前記第2半導体層および前記第3半導体層のパターニングにより、前記第2半導体層および前記第3半導体層を貫通して前記エッチングストップ層に到達する開口を形成する第5工程と、
     前記開口の底面および側面を覆う絶縁層を形成する第6工程と、
     前記絶縁層で底面および側面が覆われた前記開口の内部に、前記チャネルに対してゲート電界を作用させるためのゲート電極を形成する第7工程と、
     前記第1半導体層に電気的に接続するドレイン電極を形成する第8工程と、
     前記第3半導体層に電気的に接続するソース電極を形成する第9工程と
     を備え、
     前記エッチングストップ層の厚さおよびAlの組成比は、前記チャネルと前記第1半導体層との間のキャリアの移動が可能となる範囲とされている
     ことを特徴とする半導体装置の製造方法。
    The first step of forming a first semiconductor layer which is composed of a first conductive type GaN and serves as a drain on a substrate, and
    A second step of forming an etching stop layer made of AlGaN on the first semiconductor layer, and
    A third step of forming a second semiconductor layer composed of a second conductive type GaN and forming a channel on the etching stop layer, and
    A fourth step of forming a third semiconductor layer as a source, which is composed of a first conductive type GaN, on the second semiconductor layer.
    By patterning the second semiconductor layer and the third semiconductor layer using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN, the second semiconductor layer and the third semiconductor layer are penetrated and said. The fifth step of forming an opening reaching the etching stop layer, and
    The sixth step of forming an insulating layer covering the bottom surface and the side surface of the opening, and
    A seventh step of forming a gate electrode for applying a gate electric field to the channel inside the opening whose bottom surface and side surfaces are covered with the insulating layer.
    The eighth step of forming the drain electrode electrically connected to the first semiconductor layer, and
    A ninth step of forming a source electrode electrically connected to the third semiconductor layer is provided.
    A method for manufacturing a semiconductor device, characterized in that the thickness of the etching stop layer and the composition ratio of Al are within a range in which carriers can be moved between the channel and the first semiconductor layer.
  5.  基板の上にGaNから構成された第1半導体層を形成する第1工程と、
     前記第1半導体層の上に、AlGaNから構成されたエッチングストップ層を形成する第2工程と、
     前記エッチングストップ層の上にGaNから構成された第2半導体層を形成する第3工程と、
     AlGaNに対してGaNを選択的に分解する熱分解によるエッチングを用いた、前記第2半導体層のパターニングにより、前記第2半導体層を貫通して前記エッチングストップ層に到達する開口を形成する第4工程と、
     前記開口に露出する前記エッチングストップ層の上に、GaNを再成長させて第3半導体層を形成する第5工程と
     を備える半導体装置の製造方法。
    The first step of forming the first semiconductor layer composed of GaN on the substrate, and
    A second step of forming an etching stop layer made of AlGaN on the first semiconductor layer, and
    A third step of forming a second semiconductor layer composed of GaN on the etching stop layer, and
    A fourth patterning of the second semiconductor layer using etching by thermal decomposition that selectively decomposes GaN with respect to AlGaN forms an opening that penetrates the second semiconductor layer and reaches the etching stop layer. Process and
    A method for manufacturing a semiconductor device, comprising a fifth step of regrowth of GaN to form a third semiconductor layer on the etching stop layer exposed to the opening.
PCT/JP2020/017454 2020-04-23 2020-04-23 Method for producing semiconductor device WO2021214933A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022516571A JP7388545B2 (en) 2020-04-23 2020-04-23 Manufacturing method of semiconductor device
PCT/JP2020/017454 WO2021214933A1 (en) 2020-04-23 2020-04-23 Method for producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017454 WO2021214933A1 (en) 2020-04-23 2020-04-23 Method for producing semiconductor device

Publications (1)

Publication Number Publication Date
WO2021214933A1 true WO2021214933A1 (en) 2021-10-28

Family

ID=78270512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017454 WO2021214933A1 (en) 2020-04-23 2020-04-23 Method for producing semiconductor device

Country Status (2)

Country Link
JP (1) JP7388545B2 (en)
WO (1) WO2021214933A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252265A (en) * 1999-03-03 2000-09-14 Hitachi Ltd Etching method of compound semiconductor material and compound semiconductor device
JP2006080378A (en) * 2004-09-10 2006-03-23 Toshiba Corp Semiconductor substrate, semiconductor element, method for manufacturing semiconductor element, and method for manufacturing semiconductor substrate
JP2006339561A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Field-effect transistor and its manufacturing method
JP2012156321A (en) * 2011-01-26 2012-08-16 Toshiba Corp Nitride semiconductor device and method of manufacturing the same
JP2012231081A (en) * 2011-04-27 2012-11-22 Sharp Corp Semiconductor device manufacturing method
JP2013065612A (en) * 2011-09-15 2013-04-11 Rohm Co Ltd Nitride semiconductor device and manufacturing method of the same
JP2013225621A (en) * 2012-04-23 2013-10-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
JP2015165530A (en) * 2014-03-03 2015-09-17 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090033A (en) 2012-10-29 2014-05-15 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252265A (en) * 1999-03-03 2000-09-14 Hitachi Ltd Etching method of compound semiconductor material and compound semiconductor device
JP2006080378A (en) * 2004-09-10 2006-03-23 Toshiba Corp Semiconductor substrate, semiconductor element, method for manufacturing semiconductor element, and method for manufacturing semiconductor substrate
JP2006339561A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Field-effect transistor and its manufacturing method
JP2012156321A (en) * 2011-01-26 2012-08-16 Toshiba Corp Nitride semiconductor device and method of manufacturing the same
JP2012231081A (en) * 2011-04-27 2012-11-22 Sharp Corp Semiconductor device manufacturing method
JP2013065612A (en) * 2011-09-15 2013-04-11 Rohm Co Ltd Nitride semiconductor device and manufacturing method of the same
JP2013225621A (en) * 2012-04-23 2013-10-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
JP2015165530A (en) * 2014-03-03 2015-09-17 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JPWO2021214933A1 (en) 2021-10-28
JP7388545B2 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
US8680580B2 (en) Field effect transistor and process for manufacturing same
JP7178121B2 (en) Semiconductor device manufacturing method and use thereof
JP3733420B2 (en) Heterojunction field effect transistor using nitride semiconductor material
US20180358458A1 (en) Normally-off hemt transistor with selective generation of 2deg channel, and manufacturing method thereof
JP2008521248A (en) Nitride-based transistors and cap and / or inert layers of transistor structures and methods for their manufacture
JP2009164235A (en) Nitride semiconductor element and its manufacturing method
JP4517077B2 (en) Heterojunction field effect transistor using nitride semiconductor material
JP2005039257A (en) Semiconductor device and method for manufacturing the same
CN111415987B (en) Gallium nitride device structure combining secondary epitaxy and self-alignment process and preparation method thereof
JP2008227073A (en) Formation method of nitride semiconductor laminate structure and manufacturing method of nitride semiconductor element
US20230106300A1 (en) GaN VERTICAL-CHANNEL JUNCTION FIELD-EFFECT TRANSISTORS WITH REGROWN p-GaN BY METAL ORGANIC CHEMICAL VAPOR DEPOSITION (MOCVD)
JP4876927B2 (en) Method for forming a semiconductor device
US8932926B2 (en) Method for forming gate oxide film of sic semiconductor device using two step oxidation process
JP2019062140A (en) Method for manufacturing semiconductor device
JP4748501B2 (en) High electron mobility transistor
US10121663B2 (en) Semiconductor device and method for producing same
WO2021214933A1 (en) Method for producing semiconductor device
JP4465890B2 (en) Manufacturing method of semiconductor device
CN113140630B (en) Preparation method of p-type nitride gate of enhanced HEMT and method for preparing enhanced nitride HEMT by using p-type nitride gate
JP2005116858A (en) Semiconductor electronic device and method for manufacturing the same
US20240021724A1 (en) GaN TRENCH MOSFET AND FABRICATION METHOD
WO2023095237A1 (en) Field effect transistor and method for producing same
WO2023223375A1 (en) Semiconductor multilayer structure, method for producing same, and method for producing semiconductor device
JP2006060071A (en) GaN-BASED FIELD EFFECT TRANSISTOR
Sato et al. Damage-less wet etching for normally-off AlGaN/GaN HEMTs using photo-electrochemical reactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932227

Country of ref document: EP

Kind code of ref document: A1