WO2021213072A1 - 定位网的组网信号发送方法及装置 - Google Patents

定位网的组网信号发送方法及装置 Download PDF

Info

Publication number
WO2021213072A1
WO2021213072A1 PCT/CN2021/080823 CN2021080823W WO2021213072A1 WO 2021213072 A1 WO2021213072 A1 WO 2021213072A1 CN 2021080823 W CN2021080823 W CN 2021080823W WO 2021213072 A1 WO2021213072 A1 WO 2021213072A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
base station
network
signal
networking
Prior art date
Application number
PCT/CN2021/080823
Other languages
English (en)
French (fr)
Inventor
陈诗军
陈大伟
王阳
李俊强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21791965.3A priority Critical patent/EP4149142A4/en
Priority to US17/917,015 priority patent/US20230198701A1/en
Publication of WO2021213072A1 publication Critical patent/WO2021213072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/008Timing of allocation once only, on installation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • This application relates to the field of communications, and in particular, to a method and device for transmitting a networking signal of a positioning network.
  • the current mainstream positioning technology comes from Beidou and GPS satellite positioning systems.
  • the satellite positioning system can provide positioning in the sphere, and the positioning accuracy in an open environment can also reach 10 to 20 meters, which can basically meet most positioning needs.
  • the satellite positioning system cannot cover indoors and commercial areas with dense high-rise buildings due to the path loss caused by the long distance. These two types of environments are the scenes with the most intensive commercial activities and personnel activities.
  • FIG 1 is a schematic diagram of a positioning system based on communication base stations in related technologies.
  • the positioning system of the communication base station performs positioning.
  • Figure 2 is a structural diagram of a base station according to related technologies.
  • 4G and 5G wireless communication networks are essentially cellular networks.
  • the typical structure of a communication base station generally consists of at least two parts: a baseband unit and a radio frequency unit. It is a very complex system.
  • the complexity of the system leads to greater time jitter in signal transmission within the base station. This kind of jitter leads to the deterioration of the synchronization performance of the signals transmitted by the antenna ports of each base station.
  • the current 3gpp standard stipulates that the synchronization index between base stations is 2us. This synchronization index is satisfactory for general communication functions, but for the mainstream positioning technology OTDOA, this synchronization index will introduce a measurement error of 600 meters. At the same time, the use of base station positioning will lead to an increase in the density of base station deployment, which brings about a big cost problem.
  • the embodiments of the present application provide a channel state information reference signal transmission method and device, so as to at least solve the problem of increased deployment density of base stations and increased network cost caused by communication base station positioning in related technologies.
  • a method for transmitting a networking signal of a positioning network including:
  • the networking mode includes the independent networking of the positioning network, and the joint networking of the positioning network and the communication network;
  • the positioning base station of the positioning network or configure the positioning base station and the communication base station according to the networking mode, where the positioning base station is used to send positioning signals or the positioning signals and synchronization signals, so The communication base station is used to send the synchronization signal.
  • a networking signal sending device of a positioning network including:
  • the determining module is configured to determine the networking mode of the positioning network according to the application scenario, wherein the networking mode includes the independent networking of the positioning network, and the joint networking of the positioning network and the communication network;
  • the configuration module is configured to configure the positioning base station of the positioning network according to the networking mode, or configure the positioning base station and the communication base station, wherein the positioning base station is used to send a positioning signal or the positioning signal And a synchronization signal, the communication base station is used to send the synchronization signal.
  • a computer-readable storage medium in which a computer program is stored, wherein the computer program is configured to execute any of the above method embodiments when running Steps in.
  • an electronic device including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute any of the above Steps in the method embodiment.
  • the networking mode of the positioning network is determined according to the application scenario, wherein the networking mode includes the independent networking of the positioning network, the joint networking of the positioning network and the communication network;
  • the positioning base station of the positioning network, or the configuration of the positioning base station and the communication base station, wherein the positioning base station is used to send positioning signals or the positioning signal and synchronization signal, and the communication base station is used to send the Synchronization signals can solve the problem of increased base station deployment density and increased network cost caused by communication base station positioning in related technologies.
  • the positioning function can be independently completed and the network can be combined with the communication base station.
  • To maintain the flexibility of positioning network networking through positioning base station positioning compared to communication base station positioning has lower networking cost and positioning accuracy.
  • FIG. 1 is a schematic diagram of a positioning system based on a communication base station according to related technologies
  • Fig. 2 is a structural diagram of a base station according to related technologies
  • FIG. 3 is a hardware structure block diagram of a mobile terminal of a method for transmitting a networking signal of a positioning network according to an embodiment of the present application
  • Fig. 4 is a flowchart of a method for transmitting a networking signal of a positioning network according to an embodiment of the present application
  • Figure 5 is a flowchart of the configuration and transmission of positioning network networking signals according to an embodiment of the present invention.
  • Figure 6 is a schematic diagram of a signal transmitted by a communication base station according to a joint networking mode
  • Figure 7 is a schematic diagram of a positioning signal transmitted by a positioning network according to a joint networking mode
  • Fig. 8 is a schematic diagram of signals transmitted by a positioning network in independent networking mode according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the composition of an SSB according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of synchronization signal transmission according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of puncturing a communication base station according to an embodiment of the present application.
  • Fig. 12 is a flowchart of PRS generation according to an embodiment of the present application.
  • Fig. 13 is a schematic diagram of a positioning signal transmitted by a base station according to an embodiment of the present application.
  • Fig. 14 is a block diagram of a device for sending a networking signal of a positioning network according to an embodiment of the present application.
  • FIG. 3 is a hardware structure block diagram of the mobile terminal of the method for transmitting the networking signal of the positioning network according to the embodiment of the present application.
  • the mobile terminal may include one or more (FIG. 3 Only one is shown in) a processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 for storing data.
  • a processor 102 the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • a memory 104 for storing data.
  • the above-mentioned mobile terminal is also It may include a transmission device 106 and an input/output device 108 for communication functions.
  • a transmission device 106 may include a transmission device 106 and an input/output device 108 for communication functions.
  • the structure shown in FIG. 3 is only for illustration, and does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 3, or have a different configuration from that shown in FIG. 3.
  • the memory 104 may be used to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the message receiving method in the embodiment of the present application.
  • the processor 102 executes the computer programs stored in the memory 104 by running Various functional applications and data processing, that is, to achieve the above methods.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memories.
  • the memory 104 may further include a memory remotely provided with respect to the processor 102, and these remote memories may be connected to the mobile terminal 10 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is used to receive or send data via a network.
  • the above-mentioned specific example of the network may include a wireless network provided by the communication provider of the mobile terminal 10.
  • the transmission device 106 includes a network adapter (Network INterface CoNtroller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio FrequeNcy, referred to as RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio FrequeNcy
  • a method for transmitting a networking signal of a positioning network is provided.
  • Fig. 4 is a flowchart of a method for transmitting a networking signal of a positioning network according to an embodiment of the present application. As shown in Fig. 4, the process includes the following steps:
  • Step S402 Determine the networking mode of the positioning network according to the application scenario, wherein the networking mode includes the independent networking of the positioning network, and the joint networking of the positioning network and the communication network;
  • the above-mentioned application scenarios include: the first scenario where there is a positioning requirement and a communication requirement for the wireless network, and the second scenario where there is only a positioning requirement for the wireless network.
  • the foregoing step S402 may specifically include: if the application scenario is the first scenario, determining that the networking mode is the joint networking of the positioning network and the communication network; if the application scenario is the In the second scenario, it is determined that the networking mode is the independent networking of the positioning network.
  • Step S404 Configure the positioning base station of the positioning network, or configure the positioning base station and the communication base station according to the networking mode, where the positioning base station is used to send positioning signals or the positioning signals and synchronization Signal, the communication base station is used to send the synchronization signal.
  • the above step S404 may specifically include: if the networking mode is the independent networking of the positioning network, configuring the positioning signal resources, the positioning signal parameters, and the synchronization signal parameters for the positioning base station, Wherein, the positioning base station is configured to generate the synchronization signal according to the synchronization signal parameter, send the synchronization signal on a predetermined resource; and generate the positioning signal according to the positioning signal parameter and the positioning signal resource , Send the positioning signal on the positioning signal resource; if the networking mode is a joint networking of the positioning network and the communication network, configure positioning signal resources for the positioning base station and the communication base station, and Configure positioning signal parameters for the positioning base station, where the communication base station is used to transmit the synchronization signal, and does not transmit signals on the configured positioning signal resources; the positioning base station is used to perform according to the positioning signal parameters Generating the positioning signal with the positioning signal resource, and sending the positioning signal on the positioning signal resource.
  • the networking mode is the independent networking of the positioning network, configuring the positioning signal resources, the positioning signal parameters, and the synchron
  • the positioning signal sent by the positioning base station of the positioning network can independently complete the positioning function network and can communicate with each other.
  • the base station is jointly organized to maintain the flexibility of the positioning network. Compared with the communication base station positioning, the positioning of the base station has lower network cost and positioning accuracy.
  • the positioning signal resource includes at least: a time-frequency mapping pattern, a transmission period, the number of continuously transmitted resources, the number of continuous transmissions, and the starting position of the resource.
  • the positioning signal parameters at least include: a positioning signal ID and a suffix type of the cyclic prefix CP.
  • the synchronization signal parameters include at least: cell CELL ID, bandwidth parameters, subcarrier spacing, and starting frequency point position.
  • the communication base station is a base station that transmits wireless signals necessary for communication services
  • the positioning base station is a base station that transmits only wireless signals necessary for positioning.
  • Fig. 5 is a flow chart of signal configuration and transmission of positioning network networking according to an embodiment of the present invention, as shown in Fig. 5, including:
  • Step S501 Determine the positioning network deployment mode; specifically, determine the positioning network networking mode according to the application scenario. If the positioning network is an independent networking mode, perform step S505. If the positioning network and communication network are combined, perform step S502. .
  • Step S502 configuring positioning signal resources for the positioning network and communication network, and configuring positioning signal parameters for the positioning network;
  • Step S503 The communication network sends communication signals (including synchronization signals) according to the standard, and according to the positioning signal resource configuration, no service data is sent on the wireless port;
  • Figure 6 is a schematic diagram of the signals transmitted by the communication base station according to the joint networking mode, as shown in the figure As shown in 6, the positioning signal resources are configured for the positioning network positioning base station and the communication network communication base station, and the positioning signal parameters are configured for the positioning network positioning base station.
  • the communication base station of the communication network sends synchronization signals and other necessary signals for communication, and according to the positioning signal resource configuration, punching holes does not send signals.
  • Step S504 the positioning network sends positioning signals on the configured positioning signal resources.
  • FIG. 7 is a schematic diagram of positioning signals transmitted by the positioning network according to the joint networking mode. As shown in FIG. 7, the positioning network positioning base station allocates the positioning signals according to positioning signal parameters The resource generates a positioning signal, and sends the positioning signal on the configured positioning signal resource.
  • Step S505 Configure positioning signal resources, positioning signal parameters, and synchronization signal parameters for the positioning network
  • Step S506 the positioning network sends a synchronization signal on the wireless port according to the synchronization signal parameter
  • Step S507 The positioning network sends a positioning signal on the configured radio resource.
  • FIG. 8 is a schematic diagram of signals transmitted by a positioning network in an independent networking mode according to an embodiment of the present application. As shown in FIG. 8, the positioning network positioning base station generates synchronization signals according to synchronization signal parameters, and sends the synchronization signals on resources specified by the standard.
  • the configuration and transmission of positioning network networking signals include the following steps:
  • Step 1 Configure positioning signal resources for the positioning network positioning base station, and configure positioning signal parameters for the positioning network positioning base station.
  • Positioning signal parameters include but are not limited to:
  • Cyclic prefix type standard cyclic prefix
  • Subcarrier spacing SCS 30kHz.
  • Step 2 The communication base station of the communication network sends synchronization signals and other necessary communication signals, and according to the positioning signal resource configuration, punching does not send signals.
  • the 5G synchronization signal sending process includes:
  • NR defines 1008 physical cell numbers in
  • PSS Primary synchronization signal
  • the PSS is located in the 127 sub-carriers in the middle of the first symbol of the SSB, and is generated from the m sequence.
  • the specific generation process is detailed in the R16 standard. The generation method is as follows:
  • the SSS is located in the 127 sub-carriers in the middle of the second symbol of the SSB and is generated by the Gold sequence.
  • the specific generation process is detailed in the R16 standard, and the generation method is as follows:
  • d sss (n) [1-2x 0 (n+m 0 )mod 127][1-2x 1 (n+m 1 )mod 127], 0 ⁇ n ⁇ 127;
  • the shift register is:
  • the initial state is:
  • the PBCH DMRS is located at the 1st to 3rd symbols of the SSB, with a total of 144 subcarriers.
  • the PBCH DMRS signal is generated by the pseudo-random sequence Gold sequence common to the NR physical layer. For the specific generation process, please refer to the R16 standard.
  • the generation method is as follows:
  • the shift register is:
  • the initial state is:
  • the PBCH is located at the 1st to 3rd symbols of the SSB, with a total of 432 subcarriers.
  • the carried system information is 32 bits in total, including the following parts:
  • MIB master information block
  • 8bit additional information low 4-bit frame number, half-frame indicator and SSB index.
  • the specific processing process of bit information includes but not limited to the following steps:
  • the SSB is composed of 4 OFDM symbols in the time domain and occupies 20 PRB (that is, 240 subcarriers) in the frequency domain.
  • Figure 9 is a schematic diagram of SSB composition according to an embodiment of the application. As shown in Figure 9, the frequency domain positions of PSS, SSS, and PBCH are fixed, and the frequency domain positions of PBCH DMRS are offset according to the physical cell number, where The resource allocation of SSB is shown in Table 2.
  • Period stipulates that the period can be 5ms, 10ms, 20ms, 40ms, 80ms and 160ms, and the default value is 20ms.
  • Frequency band NR specifies two major frequency ranges: the frequency band below 6GHz, FR1: 450MHz-6.0GHz, supports a maximum channel bandwidth of 100MHz; millimeter wave frequency band FR2: 24.25GHz-52.6GHz, supports a maximum channel bandwidth of 400MHz.
  • Sub-carrier spacing NR defines 4 sub-carrier spacing: 15kHz, 30kHz, 120kHz and 240kHz.
  • Synchronization signal group (SS Burst Set): A cycle contains one SS Burst Set, where all SSBs are located in the same half frame (5ms) and are transmitted on the same antenna port, and different SSBs have different SSB indexes.
  • Time-domain position mapping The time-domain position of the SSB is determined by the subcarrier spacing and frequency range. The specific relationship is shown in Table 3.
  • FIG. 10 is a schematic structural diagram of synchronization signal transmission according to an embodiment of the present application. As shown in FIG. 10, after the time-frequency domain position is mapped, the transmitted synchronization signal can be generated.
  • Fig. 11 is a schematic diagram of puncturing a communication base station according to an embodiment of the present application.
  • the communication network is punctured.
  • the communication network performs corresponding positions when sending small signals Of punching.
  • Step 3 The positioning network positioning base station generates a positioning signal according to the positioning signal parameters and allocated resources, and sends the positioning signal on the configured positioning signal resources.
  • Fig. 12 is a flowchart of PRS generation according to an embodiment of the present application, as shown in Fig. 12, including:
  • S1 Generate Gold code through m sequence 1 and m sequence 2, and generate Gold code in the following way:
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod 2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod 2
  • the PRS pilot sequence is generated to map the real-time frequency resource grid.
  • the PRS pilot sequence is obtained by QPSK modulation by the Gold code, specifically in the following manner:
  • FIG. 13 is a schematic diagram of a positioning signal transmitted by a base station according to an embodiment of the present application. As shown in FIG. 13, the PRS ID Positioning signal transmitted by the base station, time slot offset (Corresponding to T1 in the figure), PRS transmission cycle Time slot (80ms, corresponding to T2 in the figure).
  • the configuration and transmission of the positioning network networking signal includes the following steps:
  • Step 1 Configure positioning signal resources, positioning signal parameters, and synchronization signal parameters for the positioning base station of the positioning network.
  • the configuration of the positioning base station is the positioning signal resource:
  • Subcarrier spacing SCS 30kHz
  • Positioning signal parameters include but are not limited to:
  • Cyclic prefix type standard cyclic prefix
  • PRS ID A total of 12 base stations.
  • the number of PRS resource symbols L PRS 12;
  • Step 2 The positioning network positioning base station generates a synchronization signal according to the synchronization signal parameters, and sends the synchronization signal on the resources specified in the standard.
  • the 5G synchronization signal transmission process includes:
  • NR defines 1008 physical cell numbers in
  • PSS Primary synchronization signal
  • the PSS is located in the 127 sub-carriers in the middle of the first symbol of the SSB, and is generated by the m sequence.
  • the specific generation process is detailed in the R16 standard.
  • the SSS is located in the 127 sub-carriers in the middle of the second symbol of the SSB and is generated by the Gold sequence.
  • the specific generation process is detailed in the R16 standard, and the generation method is as follows:
  • d sss (n) [1-2x 0 (n+m 0 )mod 127][1-2x 1 (n+m 1 )mod 127], 0 ⁇ n ⁇ 127;
  • the shift register is:
  • the initial state is:
  • the PBCH DMRS is located at the 1st to 3rd symbols of the SSB, with a total of 144 subcarriers.
  • the PBCH DMRS signal is generated by the pseudo-random sequence Gold sequence common to the NR physical layer.
  • the specific generation process is detailed in the R16 standard. The generation method is as follows:
  • the shift register is:
  • the initial state is:
  • the PBCH is located at the 1st to 3rd symbols of the SSB, with a total of 432 subcarriers.
  • the carried system information is 32 bits in total, including the following parts:
  • MIB master information block
  • 8bit additional information low 4-bit frame number, half-frame indicator and SSB index.
  • the specific processing process of bit information includes but not limited to the following steps:
  • the SSB is composed of 4 OFDM symbols in the time domain and occupies 20 PRB (that is, 240 subcarriers) in the frequency domain.
  • the composition of SSB is shown in Figure 9.
  • the frequency domain positions of PSS, SSS and PBCH are fixed, and the frequency domain positions of PBCH DMRS are offset according to the physical cell number.
  • the resource allocation of SSB is shown in Table 2.
  • Period stipulates that the period can be 5ms, 10ms, 20ms, 40ms, 80ms and 160ms, and the default value is 20ms.
  • Frequency band NR specifies two major frequency ranges: the frequency band below 6GHz, FR1: 450MHz-6.0GHz, supports a maximum channel bandwidth of 100MHz; millimeter wave frequency band FR2: 24.25GHz-52.6GHz, supports a maximum channel bandwidth of 400MHz.
  • Subcarrier spacing NR defines 4 subcarrier spacing: 15kHz, 30kHz, 120kHz and 240kHz.
  • Synchronization signal group (SS Burst Set): A cycle contains one SS Burst Set, in which all SSBs are located in the same half frame (5ms) and are transmitted on the same antenna port, and different SSBs have different SSB indexes.
  • Time-domain position mapping The time-domain position of the SSB is determined by the subcarrier spacing and frequency range. The specific relationship is shown in Table 3.
  • the transmitted synchronization signal can be generated, and the specific structure is shown in Fig. 10.
  • Step 3 The positioning network locates the positioning signal parameters of the base station and the allocated resources to generate positioning signals, and sends the positioning signals on the configured radio resources.
  • PRS generation includes:
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod 2;
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod 2;
  • the PRS pilot sequence is obtained by QPSK modulation of any long Gold code, where the length of the Gold code is twice the length of the pilot sequence.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to enable a terminal device (which can be a mobile phone, a computer, a server, or a network device, etc.) to execute the method described in each embodiment of the present application.
  • a device for sending a networking signal for a positioning network is also provided.
  • the device is used to implement the above-mentioned embodiments and preferred implementations, and those that have been described will not be repeated.
  • the term "module" can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 14 is a block diagram of a networking signal sending device of a positioning network according to an embodiment of the present application. As shown in Fig. 14, it is applied to an enhanced platform of the Internet of Things, including:
  • the determining module 142 is configured to determine the networking mode of the positioning network according to the application scenario, wherein the networking mode includes the independent networking of the positioning network, and the joint networking of the positioning network and the communication network;
  • the configuration module 144 is configured to configure the positioning base station of the positioning network according to the networking mode, or configure the positioning base station and the communication base station, wherein the positioning base station is used to send positioning signals or the positioning Signal and synchronization signal, the communication base station is used to send the synchronization signal.
  • the configuration module 144 includes:
  • the first configuration unit is configured to configure the positioning signal resources, the positioning signal parameters, and the synchronization signal parameters for the positioning base station if the networking mode is the independent networking of the positioning network, wherein the positioning base station Is used to generate the synchronization signal according to the synchronization signal parameter, and send the synchronization signal on a pre-defined resource; and generate the positioning signal according to the positioning signal parameter and the positioning signal resource; Sending the positioning signal on the resource;
  • the second configuration unit is configured to configure positioning signal resources for the positioning base station and the communication base station, and configure positioning for the positioning base station if the networking mode is the joint networking of the positioning network and the communication network Signal parameters, wherein the communication base station is used to send the synchronization signal, and does not send a signal on the configured positioning signal resource; the positioning base station is used to generate a signal based on the positioning signal parameter and the positioning signal resource For the positioning signal, the positioning signal is sent on the positioning signal resource.
  • the application scenario includes: a first scenario where there is a positioning requirement and a communication requirement for the wireless network, and a second scenario where there is only a positioning requirement for the wireless network.
  • the determining module 142 includes:
  • the first determining unit is configured to determine that the networking mode is the joint networking of the positioning network and the communication network if the application scenario is the first scenario;
  • the second determining unit is configured to determine that the networking mode is the positioning network independent networking if the application scenario is the second scenario.
  • the positioning signal resource includes at least: a time-frequency mapping pattern, a transmission period, the number of continuously transmitted resources, the number of continuous transmissions, and the starting position of the resource.
  • the positioning signal parameters include at least: a positioning signal ID and a suffix type of the cyclic prefix CP.
  • the synchronization signal parameters include at least: cell CELL ID, bandwidth parameters, subcarrier spacing, and starting frequency point position.
  • the communication base station is a base station that transmits wireless signals necessary for communication services
  • the positioning base station is a base station that only transmits wireless signals necessary for positioning.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination.
  • the forms are located in different processors.
  • the embodiment of the present application also provides a computer-readable storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any of the foregoing method embodiments when running.
  • the aforementioned storage medium may be configured to store a computer program for executing the following steps:
  • S11 Determine a networking mode of the positioning network according to the application scenario, where the networking mode includes the independent networking of the positioning network, and the joint networking of the positioning network and the communication network;
  • the aforementioned storage medium may include, but is not limited to: U disk, read-only memory (Read-ONly Memory, ROM for short), random access memory (RaNdom Access Memory, RAM for short), Various media that can store computer programs, such as mobile hard disks, magnetic disks, or optical disks.
  • the embodiment of the present application also provides an electronic device, including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute the steps in any of the foregoing method embodiments.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • the foregoing processor may be configured to execute the following steps through a computer program:
  • S11 Determine a networking mode of the positioning network according to the application scenario, where the networking mode includes the independent networking of the positioning network, and the joint networking of the positioning network and the communication network;
  • modules or steps of this application can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they can be implemented with program codes executable by the computing device, so that they can be stored in the storage device for execution by the computing device, and in some cases, can be executed in a different order than here.
  • the embodiments of the present application are applied to the communication field, and can solve the problem of increasing the density of base stations and increasing the network cost caused by the positioning of communication base stations in the related technology.
  • the positioning signal is sent through the positioning base station of the positioning network to independently complete the positioning function networking. It can be combined with the communication base station to maintain the flexibility of the positioning network. Compared with the communication base station positioning, the positioning of the base station has lower network cost and positioning accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种定位网的组网信号发送方法及装置,其中,该方法包括:根据应用场景确定定位网的组网方式,其中,所述组网方式包括所述定位网独立组网,所述定位网与通信网联合组网;根据所述组网方式对所述定位网的定位基站,或者,对所述定位基站和通信基站进行配置,其中,所述定位基站用于发送定位信号或者,所述定位信号和同步信号,所述通信基站用于发送所述同步信号,可以解决相关技术中通过通信基站定位导致基站布设密度增加,增加组网成本的问题,通过定位网的定位基站发送定位信号,能够独立完成定位功能组网,能够和通信基站联合组网,保持定位网组网的灵活性,通过定位基站定位相比通信基站定位具有更低的组网成本和定位精度。

Description

定位网的组网信号发送方法及装置 技术领域
本申请涉及通信领域,具体而言,涉及一种定位网的组网信号发送方法及装置。
背景技术
位置信息在智能技术中的位置越来越重要,目前典型的新兴市场应用,如智能打车、共享单车、自动驾驶、人员管理等等都以精确的位置信息为前提。
目前主流定位技术来自北斗、GPS卫星定位系统。卫星定位系统能够提供球域定位,空旷环境定位精度也能够达到10米~20米,基本能够满足大多数定位需要。但卫星定位系统由于距离很远带来的路径损耗,无法覆盖到室内,以及城市高楼密集的商业区。而这两类环境又是商业活动和人员活动最密集的场景。
为了解决室内和城区定位问题,人们提出了很多定位方法,如wifi、uwb、蓝牙、惯导等等,但这些技术普遍的缺点是只能完成小范围的定位。为了解决广域室内高精度定位问题,图1是根据相关技术中的基于通信基站的定位系统的示意图,如图1所示,希望具有良好覆盖的无线通信网一体化提供高精度定位功能,利用通信基站的定位系统进行定位。图2是根据相关技术中的基站的结构图,如图2所示,4G、5G无线通信网本质上是蜂窝网络,通信基站典型结构一般至少由基带单元和射频单元两部分组成,每一部分内部又是一个非常复杂的系统。系统的复杂性导致基站内部信号传递带来较大的时间抖动性。这种抖动性导致各个基站天线口发射信号的同步性能变差,目前3gpp标准规定,基站间的同步指标为2us。这个同步指标对一般的通信功能是满足的,但对于主流定位技术OTDOA而言,这个同步指标将引入600米的测量误差。同时利用基站定位将导致基站布设密度增加,带来很大的成本问题。
针对相关技术中通过通信基站定位导致基站布设密度增加,增加组网成本的问题,尚未提出解决方案。
发明内容
本申请实施例提供了一种信道状态信息参考信号传输方法及装置,以至少解决相关技术中通过通信基站定位导致基站布设密度增加,增加组网成本的问题。
根据本申请的一个实施例,提供了一种定位网的组网信号发送方法,包括:
根据应用场景确定定位网的组网方式,其中,所述组网方式包括所述定位网独立组网,所述定位网与通信网联合组网;
根据所述组网方式对所述定位网的定位基站,或者,对所述定位基站和通信基站进行配置,其中,所述定位基站用于发送定位信号或者,所述定位信号和同步信号,所述通信基站用于发送所述同步信号。
根据本申请的又一个实施例,还提供了一种定位网的组网信号发送装置,包括:
确定模块,设置为根据应用场景确定定位网的组网方式,其中,所述组网方式包括所述定位网独立组网,所述定位网与通信网联合组网;
配置模块,设置为根据所述组网方式对所述定位网的定位基站,或者,对所述定位基站和通信基站进行配置,其中,所述定位基站用于发送定位信号或者,所述定位信号和同步信号,所述通信基站用于发送所述同步信号。
根据本申请的又一个实施例,还提供了一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述 计算机程序以执行上述任一项方法实施例中的步骤。
通过本申请,根据应用场景确定定位网的组网方式,其中,所述组网方式包括所述定位网独立组网,所述定位网与通信网联合组网;根据所述组网方式对所述定位网的定位基站,或者,对所述定位基站和通信基站进行配置,其中,所述定位基站用于发送定位信号或者,所述定位信号和同步信号,所述通信基站用于发送所述同步信号,可以解决相关技术中通过通信基站定位导致基站布设密度增加,增加组网成本的问题,通过定位网的定位基站发送定位信号,能够独立完成定位功能组网,能够和通信基站联合组网,保持定位网组网的灵活性,通过定位基站定位相比通信基站定位具有更低的组网成本和定位精度。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据相关技术中的基于通信基站的定位系统的示意图;
图2是根据相关技术中的基站的结构图;
图3是本申请实施例的定位网的组网信号发送方法的移动终端的硬件结构框图;
图4是根据本申请实施例的定位网的组网信号发送方法的流程图;
图5是根据本分发明实施例的定位网组网信号配置与发射的流程图;
图6是根据联合组网模式通信基站发射的信号的示意图;
图7是根据联合组网模式定位网发射的定位信号的示意图;
图8是根据本申请实施例的独立组网模式定位网发射的信号的示意图;
图9是根据本申请实施例的SSB组成的示意图;
图10是根据本申请实施例的同步信号发送的结构示意图;
图11是根据本申请实施例的通信基站打孔的示意图;
图12是根据本申请实施例的PRS生成的流程图;
图13是根据本申请实施例的基站发射的定位信号的示意图;
图14是根据本申请实施例的定位网的组网信号发送装置的框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图3是本申请实施例的定位网的组网信号发送方法的移动终端的硬件结构框图,如图3所示,移动终端可以包括一个或多个(图3中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,可选地,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图3所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的报文接收方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非 易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network INterface CoNtroller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio FrequeNcy,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
基于上述移动终端,在本实施例中提供了一种定位网的组网信号发送方法。图4是根据本申请实施例的定位网的组网信号发送方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,根据应用场景确定定位网的组网方式,其中,所述组网方式包括所述定位网独立组网,所述定位网与通信网联合组网;
本发明实施例中,上述的应用场景包括:对无线网络有定位需求和通信需求的第一场景,只对无线网路有定位需求的第二场景。对应的,上述步骤S402具体可以包括:若所述应用场景为所述第一场景,确定所述组网方式为所述定位网与所述通信网联合组网;若所述应用场景为所述第二场景,确定所述组网方式为所述定位网独立组网。
步骤S404,根据所述组网方式对所述定位网的定位基站,或者,对所述定位基站和通信基站进行配置,其中,所述定位基站用于发送定位信号或者,所述定位信号和同步信号,所述通信基站用于发送所述同步信号。
本发明实施例中,上述步骤S404具体可以包括:若所述组网方式为所述定位网独立组网,对所述定位基站配置所述定位信号资源、所述定位信号参数以及同步信号参数,其中,所述定位基站用于根据所述同步信号参数生成所述同步信号,在预先规定的资源上发送所述同步信号;并根据 所述定位信号参数和所述定位信号资源生成所述定位信号,在所述定位信号资源上发送所述定位信号;若所述组网方式为所述定位网与所述通信网联合组网,对所述定位基站和所述通信基站配置定位信号资源,并对所述定位基站配置定位信号参数,其中,所述通信基站用于发送所述同步信号,并在配置的所述定位信号资源上不发送信号;所述定位基站用于根据所述定位信号参数和所述定位信号资源生成所述定位信号,在所述定位信号资源上发送所述定位信号。
通过上述步骤S402至S404,可以解决相关技术中通过通信基站定位导致基站布设密度增加,增加组网成本的问题,通过定位网的定位基站发送定位信号,能够独立完成定位功能组网,能够和通信基站联合组网,保持定位网组网的灵活性,通过定位基站定位相比通信基站定位具有更低的组网成本和定位精度。
本发明实施例中,所述定位信号资源至少包括:时频映射图样,发射周期、连续发射的资源数量、连续发射次数、资源起始位置。
本发明实施例中,所述定位信号参数至少包括:定位信号ID,循环前缀CP的后缀类型。
本发明实施例中,所述同步信号参数至少包括:小区CELL ID,带宽参数,子载波间隔,起始频点位置。
本发明实施例中,所述通信基站为发送通信业务所必需的无线信号的基站,所述定位基站为只发送定位所必需的无线信号的基站。
图5是根据本分发明实施例的定位网组网信号配置与发射的流程图,如图5所示,包括:
步骤S501,确定定位网部署方式;具体的,根据应用场景确定定位网组网方式,若为定位网独立组网方式,执行步骤S505,若为定位网和通信网联合组网方式,执行步骤S502。
步骤S502,对定位网和通信网配置定位信号资源,并对定位网配置定位信号参数;
步骤S503,通信网发送按照标准发送通信信号(包括同步信号),并根据定位信号资源配置,在无线端口不发送业务数据;图6是根据联合组网模式通信基站发射的信号的示意图,如图6所示,对定位网定位基站和通信网通信基站配置定位信号资源,并对定位网定位基站配置定位信号参数。通信网通信基站发送同步信号等通信必需信号,并根据定位信号资源配置,打孔不发送信号。
步骤S504,定位网在配置的定位信号资源上发送定位信号,图7是根据联合组网模式定位网发射的定位信号的示意图,如图7所示,定位网定位基站根据定位信号参数和分配的资源生成定位信号,在配置的定位信号资源上发送定位信号。
步骤S505,对定位网配置定位信号资源和定位信号参数、同步信号参数;
步骤S506,定位网根据同步信号参数,在无线端口发送同步信号;
步骤S507,定位网在配置无线资源上发送定位信号。图8是根据本申请实施例的独立组网模式定位网发射的信号的示意图,如图8所示,定位网定位基站根据同步信号参数生成同步信号,在标准规定的资源上发送同步信号。
下面以具体实施例对本申请实施例进行详细说明。
示例1
5G通信网+定位网的联合组网方式时,定位网组网信号的配置与发送包括以下步骤:
步骤1,对定位网定位基站配置定位信号资源,并对定位网定位基站配置定位信号参数。
对定位基站配置定位信号资源:
1)PRS发送周期
Figure PCTCN2021080823-appb-000001
时隙(80ms);
2)时隙偏移
Figure PCTCN2021080823-appb-000002
时隙(20ms);
3)连续发送子帧数N PRS=4。
定位信号参数包括但不限于:
1)循环前缀类型:标准循环前缀;
2)时隙号:
Figure PCTCN2021080823-appb-000003
3)PRS ID
Figure PCTCN2021080823-appb-000004
共12个基站;
4)梳齿大小:
Figure PCTCN2021080823-appb-000005
5)PRS资源符号个数L PRS=12;
6)PRS起始符号:
Figure PCTCN2021080823-appb-000006
7)资源元素偏移:
Figure PCTCN2021080823-appb-000007
9)带宽BW=100MHz;
10)子载波间隔SCS=30kHz。
每个符号上元素偏移量k',如表1所示。
表1
l 2 3 4 5 6 7 8 9 10 11 12 13
k’ 0 6 3 9 1 7 4 10 2 8 5 11
上述参数满足3gpp标准规范。
步骤2,通信网通信基站发送同步信号等通信必需信号,并根据定位信号资源配置,打孔不发送信号,5G同步信号发送过程包括:
1)定义物理小区号;
NR定义了1008个物理小区号
Figure PCTCN2021080823-appb-000008
其中,
Figure PCTCN2021080823-appb-000009
Figure PCTCN2021080823-appb-000010
2)主同步信号(PSS)序列生成;
PSS位于SSB第一个符号中间的127个子载波,由m序列生成,具体生成过程详见R16标准,生成方式如下:
d pss(n)=1-2x(m),其中,
Figure PCTCN2021080823-appb-000011
移位寄存器为:x(i+7)=(x(i+4)+x(i))mod2;
初始状态:[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]。
3)辅同步信号(SSS)序列生成;
SSS位于SSB第二个符号中间的127个子载波,由Gold序列生成。具体生成过程详见R16标准,生成方式如下:
d sss(n)=[1-2x 0(n+m 0)mod 127][1-2x 1(n+m 1)mod 127],0≤n<127;
两个m序列的偏移量分别为:
Figure PCTCN2021080823-appb-000012
移位寄存器为:
Figure PCTCN2021080823-appb-000013
初始状态为:
[x 0(6) x 0(5) x 0(4) x 0(3) x 0(2) x 0(1) x 0(0)]=[0 0 0 0 0 0 1];
[x 1(6) x 1(5) x 1(4) x 1(3) x 1(2) x 1(1) x 1(0)]=[0 0 0 0 0 0 1]。
4)PBCH DMRS信号生成;
PBCH DMRS位于SSB第1至3个符号,共计144个子载波。PBCH DMRS信号由NR物理层通用的伪随机序列Gold序列生成,具体生成过程详见R16标准。
生成方式如下:
Figure PCTCN2021080823-appb-000014
由两个m序列构成:c(n)=(x 1(n+N c)+x 2(n+N c))mod 2,其中N c=1600;
移位寄存器为:
Figure PCTCN2021080823-appb-000015
初始状态为:
x 1(0)=1,x 1(n)=0,n=1,2,…,30;
Figure PCTCN2021080823-appb-000016
5)PBCH承载信息产生;
PBCH位于SSB第1至3个符号,共计432个子载波。承载的系统信息共32bit,包括如下部分:
23bit的主信息块(MIB):系统高6位帧号、SSB的子载波间隔、子载波偏移的具体值、DMRS的具体位置等;
1bit的choice:指示当前是否为扩展MIB消息(用于向前兼容);
8bit的额外信息:低4位帧号,半帧指示和SSB索引。
比特信息的具体处理过程包括但不限于以下步骤:
初始比特信息生成与比特交织,添加CRC,Polar编码,速率匹配,QPSK调制等。
6)同步信号块(SSB)生成;
SSB在时域上由4个OFDM符号组成,频域上占用20PRB(即240个子载波)。图9是根据本申请实施例的SSB组成的示意图,如图9所示,PSS、SSS和PBCH的频域位置是固定的,PBCH DMRS的频域位置根据物理小区号进行偏移,其中
Figure PCTCN2021080823-appb-000017
SSB的资源分配情况如表2所示。
表2
Figure PCTCN2021080823-appb-000018
Figure PCTCN2021080823-appb-000019
7)SSB时频域位置映射;
周期:NR标准规定周期可以为5ms,10ms,20ms,40ms,80ms和160ms,默认值为20ms。
频段:NR指定两大频率范围:6GHz以下频段FR1:450MHz-6.0GHz,支持最大信道带宽100MHz;毫米波频段FR2:24.25GHz-52.6GHz,支持最大信道带宽400MHz。
子载波间隔:NR定义了4种子载波间隔:15kHz、30kHz、120kHz和240kHz。
同步信号组(SS Burst Set):一个周期内包含一个SS Burst Set,其中,所有SSB位于同一个半帧内(5ms),并在同一个天线端口传输,不同SSB具有不同SSB索引。
一个周期内最大的SSB个数L max:由频率f决定,当f≤3GHz时,L max=4;当3GHz<f<6GHz时,L max=8;当f≥6GHz时,L max=64。
时域位置映射:SSB的时域位置由子载波间隔和频率范围决定,具体关系如表3所示。
表3
Figure PCTCN2021080823-appb-000020
Figure PCTCN2021080823-appb-000021
8)生成同步信号。
图10是根据本申请实施例的同步信号发送的结构示意图,如图10所示,时频域位置映射后,可生成发送的同步信号。
图11是根据本申请实施例的通信基站打孔的示意图,如图11所示,通信网打孔,根据定位网配置的定位信号的时频资源位置,通信网在发送小信号时进行对应位置的打孔。
步骤3,定位网定位基站根据定位信号参数和分配的资源生成定位信号,在配置的定位信号资源上发送定位信号。
图12是根据本申请实施例的PRS生成的流程图,如图12所示,包括:
S1,通过m序列1和m序列2生成Gold码,通过以下方式生成Gold码:
c(n)=(x 1(n+N c)+x 2(n+N c))mod 2
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2
c(n)长度为M,n=0,…,M-1,N c=1600,x 1(0)=1,x 1(n)=0,n=1,2,…,30。x 2(n)的初始值为c init=x 2(0)·20+x 2(1)·21+…+x 2(30)·2 30
S2,PRS导频序列生成及时频资源网格映射,PRS导频序列是由Gold码经过QPSK调制得到的,具体通过以下方式:
Figure PCTCN2021080823-appb-000022
Figure PCTCN2021080823-appb-000023
m=0,1,...;
Figure PCTCN2021080823-appb-000024
Figure PCTCN2021080823-appb-000025
S3,PRS信号生成,对资源网格,每个符号上的导频序列进行快速傅里叶IFFT变换得到时域信号。
图13是根据本申请实施例的基站发射的定位信号的示意图,如图13所示,PRS ID
Figure PCTCN2021080823-appb-000026
的基站发射的定位信号,时隙偏移
Figure PCTCN2021080823-appb-000027
(对应图中T1),PRS发送周期
Figure PCTCN2021080823-appb-000028
时隙(80ms,对应图中T2)。
示例2
5G独立定位网的组网方式时,定位网组网信号的配置与发送包括以下步骤:
步骤1,对定位网定位基站配置定位信号资源和定位信号参数、同步信号参数。
对定位基站配置是定位信号资源:
带宽BW=100MHz;
子载波间隔SCS=30kHz;
PRS发送周期
Figure PCTCN2021080823-appb-000029
时隙(80ms);
时隙偏移
Figure PCTCN2021080823-appb-000030
时隙(20ms);
连续发送子帧数N PRS=4;
定位信号参数包括但不限于:
循环前缀类型:标准循环前缀;
时隙号:
Figure PCTCN2021080823-appb-000031
PRS ID
Figure PCTCN2021080823-appb-000032
共12个基站。
梳齿大小:
Figure PCTCN2021080823-appb-000033
PRS资源符号个数L PRS=12;
PRS起始符号:
Figure PCTCN2021080823-appb-000034
资源元素偏移:
Figure PCTCN2021080823-appb-000035
每个符号上元素偏移量k',如表4所示。
表4
l 2 3 4 5 6 7 8 9 10 11 12 13
k’ 0 6 3 9 1 7 4 10 2 8 5 11
上述的参数满足3gpp标准规范。
步骤2,定位网定位基站根据同步信号参数生成同步信号,在标准规定的资源上发送同步信号,5G同步信号发送过程包括:
1)定义物理小区号;
NR定义了1008个物理小区号
Figure PCTCN2021080823-appb-000036
其中,
Figure PCTCN2021080823-appb-000037
其中,
Figure PCTCN2021080823-appb-000038
2)主同步信号(PSS)序列生成;
PSS位于SSB第一个符号中间的127个子载波,由m序列生成,具体生成过程详见R16标准。
生成方式如下:d pss(n)=1-2x(m),其中,
Figure PCTCN2021080823-appb-000039
移位寄存器为:x(i+7)=(x(i+4)+x(i))mod2;
初始状态:[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]。
3)辅同步信号(SSS)序列生成;
SSS位于SSB第二个符号中间的127个子载波,由Gold序列生成。具体生成过程详见R16标准,生成方式如下:
d sss(n)=[1-2x 0(n+m 0)mod 127][1-2x 1(n+m 1)mod 127],0≤n<127;
两个m序列的偏移量分别为:
Figure PCTCN2021080823-appb-000040
移位寄存器为:
Figure PCTCN2021080823-appb-000041
初始状态为:
[x 0(6) x 0(5) x 0(4) x 0(3) x 0(2) x 0(1) x 0(0)]=[0 0 0 0 0 0 1];
[x 1(6) x 1(5) x 1(4) x 1(3) x 1(2) x 1(1) x 1(0)]=[0 0 0 0 0 0 1]。
4)PBCH DMRS信号生成;
PBCH DMRS位于SSB第1至3个符号,共计144个子载波。PBCH DMRS信号由NR物理层通用的伪随机序列Gold序列生成,具体生成过程详见R16标准,生成方式如下:
Figure PCTCN2021080823-appb-000042
由两个m序列构成:c(n)=(x 1(n+N c)+x 2(n+N c))mod 2,其中N c=1600;
移位寄存器为:
Figure PCTCN2021080823-appb-000043
初始状态为:
x 1(0)=1,x 1(n)=0,n=1,2,…,30;
Figure PCTCN2021080823-appb-000044
5)PBCH承载信息产生;
PBCH位于SSB第1至3个符号,共计432个子载波。承载的系统信息共32bit,包括以下部分:
23bit的主信息块(MIB):系统高6位帧号、SSB的子载波间隔、子载波偏移的具体值、DMRS的具体位置等;
1bit的choice:指示当前是否为扩展MIB消息(用于向前兼容);
8bit的额外信息:低4位帧号,半帧指示和SSB索引。
比特信息的具体处理过程包括但不限于以下步骤:
初始比特信息生成与比特交织,添加CRC,Polar编码,速率匹配,QPSK调制等。
6)同步信号块(SSB)生成;
SSB在时域上由4个OFDM符号组成,频域上占用20PRB(即240个子载波)。SSB的组成如图9所示,PSS、SSS和PBCH的频域位置是固定的,PBCH DMRS的频域位置根据物理小区号进行偏移,其中
Figure PCTCN2021080823-appb-000045
SSB的资源分配情况如表2所示。
7)SSB时频域位置映射;
周期:NR标准规定周期可以为5ms,10ms,20ms,40ms,80ms和160ms,默认值为20ms。
频段:NR指定两大频率范围:6GHz以下频段FR1:450MHz-6.0GHz,支持最大信道带宽100MHz;毫米波频段FR2:24.25GHz-52.6GHz,支持最大信道带宽400MHz。
子载波间隔:NR定义了4种子载波间隔:15kHz、30kHz、120kHz和 240kHz。
同步信号组(SS Burst Set):一个周期内包含一个SS Burst Set,其中所有SSB位于同一个半帧内(5ms),并在同一个天线端口传输,不同SSB具有不同SSB索引。
一个周期内最大的SSB个数L max:由频率f决定,当f≤3GHz时,L max=4;当3GHz<f<6GHz时,L max=8;当f≥6GHz时,L max=64。
时域位置映射:SSB的时域位置由子载波间隔和频率范围决定,具体关系如表3所示。
8)生成同步信号。
时频域位置映射后,可生成发送的同步信号,具体结构如图10所示。
步骤3,定位网定位基站定位信号参数和分配的资源生成定位信号,在配置无线资源上发送定位信号。如图12所示,PRS生成包括:
S1,Gold码生成:
c(n)=(x 1(n+N c)+x 2(n+N c))mod 2;
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2;
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2;
c(n)长度为M,n=0,…,M-1,N c=1600,x 1(0)=1,x 1(n)=0,n=1,2,…,30。x 2(n)的初始值为c init=x 2(0)·20+x 2(1)·21+…+x 2(30)·2 30
S2,PRS导频序列生成及时频资源网格映射;
PRS导频序列是由任意长Gold码经过QPSK调制得到的,其中Gold码的长度是导频序列长度的2倍。
Figure PCTCN2021080823-appb-000046
Figure PCTCN2021080823-appb-000047
Figure PCTCN2021080823-appb-000048
Figure PCTCN2021080823-appb-000049
m=0,1,...;
Figure PCTCN2021080823-appb-000050
Figure PCTCN2021080823-appb-000051
S3,PRS信号生成,对资源网格,每个符号上的导频序列进行快速傅里叶IFFT变换得到时域信号。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
实施例2
在本实施例中还提供了一种定位网的组网信号发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图14是根据本申请实施例的定位网的组网信号发送装置的框图,如图14所示,应用于物联网增强平台,包括:
确定模块142,设置为根据应用场景确定定位网的组网方式,其中,所述组网方式包括所述定位网独立组网,所述定位网与通信网联合组网;
配置模块144,设置为根据所述组网方式对所述定位网的定位基站,或者,对所述定位基站和通信基站进行配置,其中,所述定位基站用于发送定位信号或者,所述定位信号和同步信号,所述通信基站用于发送所述同步信号。
可选地,所述配置模块144包括:
第一配置单元,设置为若所述组网方式为所述定位网独立组网,对所述定位基站配置所述定位信号资源、所述定位信号参数以及同步信号参数,其中,所述定位基站用于根据所述同步信号参数生成所述同步信号,在预先规定的资源上发送所述同步信号;并根据所述定位信号参数和所述定位信号资源生成所述定位信号,在所述定位信号资源上发送所述定位信号;
第二配置单元,设置为若所述组网方式为所述定位网与所述通信网联合组网,对所述定位基站和所述通信基站配置定位信号资源,并对所述定位基站配置定位信号参数,其中,所述通信基站用于发送所述同步信号,并在配置的所述定位信号资源上不发送信号;所述定位基站用于根据所述定位信号参数和所述定位信号资源生成所述定位信号,在所述定位信号资源上发送所述定位信号。
可选地,所述应用场景包括:对无线网络有定位需求和通信需求的第一场景,只对无线网路有定位需求的第二场景。
可选地,所述确定模块142包括:
第一确定单元,设置为若所述应用场景为所述第一场景,确定所述组网方式为所述定位网与所述通信网联合组网;
第二确定单元,设置为若所述应用场景为所述第二场景,确定所述组网方式为所述定位网独立组网。
可选地,所述定位信号资源至少包括:时频映射图样,发射周期、连续发射的资源数量、连续发射次数、资源起始位置。
可选地,所述定位信号参数至少包括:定位信号ID,循环前缀CP的后缀类型。
可选地,所述同步信号参数至少包括:小区CELL ID,带宽参数,子载波间隔,起始频点位置。
可选地,所述通信基站为发送通信业务所必需的无线信号的基站;
所述定位基站为只发送定位所必需的无线信号的基站。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本申请的实施例还提供了一种计算机可读的存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S11,根据应用场景确定定位网的组网方式,其中,所述组网方式包括所述定位网独立组网,所述定位网与通信网联合组网;
S12,根据所述组网方式对所述定位网的定位基站,或者,对所述定位基站和通信基站进行配置,其中,所述定位基站用于发送定位信号或者,所述定位信号和同步信号,所述通信基站用于发送所述同步信号。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-ONly Memory,简称为ROM)、随机存取存储器(RaNdom Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
实施例4
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S11,根据应用场景确定定位网的组网方式,其中,所述组网方式包括所述定位网独立组网,所述定位网与通信网联合组网;
S12,根据所述组网方式对所述定位网的定位基站,或者,对所述定位基站和通信基站进行配置,其中,所述定位基站用于发送定位信号或者,所述定位信号和同步信号,所述通信基站用于发送所述同步信号。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请实施例,应用于通信领域,可以解决相关技术中通过通信基站定位导致基站布设密度增加,增加组网成本的问题,通过定位网的定位基站发送定位信号,能够独立完成定位功能组网,能够和通信基站联合组网,保持定位网组网的灵活性,通过定位基站定位相比通信基站定位具有更低的组网成本和定位精度。

Claims (11)

  1. 一种定位网的组网信号发送方法,包括:
    根据应用场景确定定位网的组网方式,其中,所述组网方式包括所述定位网独立组网,所述定位网与通信网联合组网;
    根据所述组网方式对所述定位网的定位基站,或者,对所述定位基站和通信基站进行配置,其中,所述定位基站用于发送定位信号或者,所述定位信号和同步信号,所述通信基站用于发送所述同步信号。
  2. 根据权利要求1所述的方法,其中,根据所述组网方式对所述定位网的定位基站,或者,对所述定位基站和所述通信基站进行配置包括:
    若所述组网方式为所述定位网独立组网,对所述定位基站配置所述定位信号资源、所述定位信号参数以及同步信号参数,其中,所述定位基站用于根据所述同步信号参数生成所述同步信号,在预先规定的资源上发送所述同步信号;并根据所述定位信号参数和所述定位信号资源生成所述定位信号,在所述定位信号资源上发送所述定位信号;
    若所述组网方式为所述定位网与所述通信网联合组网,对所述定位基站和所述通信基站配置定位信号资源,并对所述定位基站配置定位信号参数,其中,所述通信基站用于发送所述同步信号,并在配置的所述定位信号资源上不发送信号;所述定位基站用于根据所述定位信号参数和所述定位信号资源生成所述定位信号,在所述定位信号资源上发送所述定位信号。
  3. 根据权利要求1所述的方法,其中,所述应用场景包括:对无线网络有定位需求和通信需求的第一场景,只对无线网路有定位需求的第二场景。
  4. 根据权利要求3所述的方法,其中,根据应用场景确定所述 定位网的组网方式包括:
    若所述应用场景为所述第一场景,确定所述组网方式为所述定位网与所述通信网联合组网;
    若所述应用场景为所述第二场景,确定所述组网方式为所述定位网独立组网。
  5. 根据权利要求2所述的方法,其中,所述定位信号资源至少包括:时频映射图样,发射周期、连续发射的资源数量、连续发射次数、资源起始位置。
  6. 根据权利要求2所述的方法,其中,所述定位信号参数至少包括:定位信号ID,循环前缀CP的后缀类型。
  7. 根据权利要求2所述的方法,其中,所述同步信号参数至少包括:小区CELL ID,带宽参数,子载波间隔,起始频点位置。
  8. 根据权利要求1至7中任一项所述的方法,其中,
    所述通信基站为发送通信业务所必需的无线信号的基站;
    所述定位基站为只发送定位所必需的无线信号的基站。
  9. 一种定位网的组网信号发送装置,包括:
    确定模块,设置为根据应用场景确定定位网的组网方式,其中,所述组网方式包括所述定位网独立组网,所述定位网与通信网联合组网;
    配置模块,设置为根据所述组网方式对所述定位网的定位基站,或者,对所述定位基站和通信基站进行配置,其中,所述定位基站用于发送定位信号或者,所述定位信号和同步信号,所述通信基站用于 发送所述同步信号。
  10. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至8任一项中所述的方法。
  11. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至8任一项中所述的方法。
PCT/CN2021/080823 2020-04-24 2021-03-15 定位网的组网信号发送方法及装置 WO2021213072A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21791965.3A EP4149142A4 (en) 2020-04-24 2021-03-15 METHOD AND APPARATUS FOR TRANSMITTING NETWORKING SIGNAL FOR POSITIONING NETWORK
US17/917,015 US20230198701A1 (en) 2020-04-24 2021-03-15 Networking signal sending method and device for positioning network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010334389.9 2020-04-24
CN202010334389.9A CN111866894A (zh) 2020-04-24 2020-04-24 定位网的组网信号发送方法及装置

Publications (1)

Publication Number Publication Date
WO2021213072A1 true WO2021213072A1 (zh) 2021-10-28

Family

ID=72985116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080823 WO2021213072A1 (zh) 2020-04-24 2021-03-15 定位网的组网信号发送方法及装置

Country Status (4)

Country Link
US (1) US20230198701A1 (zh)
EP (1) EP4149142A4 (zh)
CN (1) CN111866894A (zh)
WO (1) WO2021213072A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116471604A (zh) * 2023-05-04 2023-07-21 乾位智通(深圳)技术有限公司 组网系统、方法、装置、uwb定位基站和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111866894A (zh) * 2020-04-24 2020-10-30 中兴通讯股份有限公司 定位网的组网信号发送方法及装置
CN115278876B (zh) * 2022-09-19 2022-12-09 四川创智联恒科技有限公司 一种在5g网络和uwb共同定位的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592629A (zh) * 2013-10-21 2014-02-19 国家电网公司 变电站多目标精确定位系统
WO2016019522A1 (zh) * 2014-08-06 2016-02-11 富士通株式会社 定位方法、装置以及通信系统
CN105636193A (zh) * 2014-10-29 2016-06-01 中兴通讯股份有限公司 通信网的带内定位信号发射方法及带内定位系统
CN108990146A (zh) * 2017-05-31 2018-12-11 中兴通讯股份有限公司 定位网覆盖距离的获取方法、装置和计算机设备
CN109819396A (zh) * 2019-01-30 2019-05-28 北京布科思科技有限公司 一种无线定位方法及系统
CN109819513A (zh) * 2019-03-26 2019-05-28 四川中电昆辰科技有限公司 多个定位基站发射同步信号的定位系统及其方法
US20190364535A1 (en) * 2018-05-24 2019-11-28 Qualcomm Incorporated Identifying and reporting beams of interest for position estimation
CN110999434A (zh) * 2017-08-01 2020-04-10 高通股份有限公司 多波束系统中的下行链路定位参考信号
CN111866894A (zh) * 2020-04-24 2020-10-30 中兴通讯股份有限公司 定位网的组网信号发送方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013022758A2 (pt) * 2011-03-07 2016-12-06 Intel Corp método implementado por computador, dispositivo de máquina para máquina, sistema de computador e sistema de máquina para máquina
EP3218737B1 (en) * 2014-11-10 2019-01-09 Telefonaktiebolaget LM Ericsson (publ) Signaling and using crs muting in shared cell for positioning

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592629A (zh) * 2013-10-21 2014-02-19 国家电网公司 变电站多目标精确定位系统
WO2016019522A1 (zh) * 2014-08-06 2016-02-11 富士通株式会社 定位方法、装置以及通信系统
CN105636193A (zh) * 2014-10-29 2016-06-01 中兴通讯股份有限公司 通信网的带内定位信号发射方法及带内定位系统
CN108990146A (zh) * 2017-05-31 2018-12-11 中兴通讯股份有限公司 定位网覆盖距离的获取方法、装置和计算机设备
CN110999434A (zh) * 2017-08-01 2020-04-10 高通股份有限公司 多波束系统中的下行链路定位参考信号
US20190364535A1 (en) * 2018-05-24 2019-11-28 Qualcomm Incorporated Identifying and reporting beams of interest for position estimation
CN109819396A (zh) * 2019-01-30 2019-05-28 北京布科思科技有限公司 一种无线定位方法及系统
CN109819513A (zh) * 2019-03-26 2019-05-28 四川中电昆辰科技有限公司 多个定位基站发射同步信号的定位系统及其方法
CN111866894A (zh) * 2020-04-24 2020-10-30 中兴通讯股份有限公司 定位网的组网信号发送方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4149142A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116471604A (zh) * 2023-05-04 2023-07-21 乾位智通(深圳)技术有限公司 组网系统、方法、装置、uwb定位基站和存储介质

Also Published As

Publication number Publication date
CN111866894A (zh) 2020-10-30
US20230198701A1 (en) 2023-06-22
EP4149142A4 (en) 2023-12-20
EP4149142A1 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
WO2021213072A1 (zh) 定位网的组网信号发送方法及装置
CN113765640B (zh) 用于在无线通信系统中发射/接收定位参考信号的方法和装置
US11616612B2 (en) Method and device for transmitting data
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
WO2020001532A1 (zh) 定位参考信号配置方法、网络侧设备和终端设备
WO2020200114A1 (zh) Dmrs端口的指示方法及装置
US11647505B2 (en) Uplink signal transmission method and device
JP2022122973A (ja) システムメッセージの伝送方法及び装置
WO2019063007A1 (zh) 随机接入方法及装置
WO2021160162A1 (zh) 发送物理上行共享信道的方法及装置
WO2020063428A1 (zh) 时域资源分配方法及装置
WO2021017995A1 (zh) 控制信息传输方法及装置
WO2017133010A1 (zh) 一种物理下行信道的传输方法、装置及系统
JP2019519957A (ja) システム情報の伝送方法、基地局及び端末
WO2019192287A1 (zh) 资源配置方法及装置
WO2020187132A1 (zh) 数据信道的传输方法及装置
WO2017031643A1 (zh) 资源分配、指示及识别资源类型、接收数据的方法及装置
WO2018228177A1 (zh) 一种调度请求的传输方法及相关设备
CN112887074B (zh) 信息发送方法、装置、终端、接入网设备及系统
CN104717763A (zh) 传输数据的方法、装置和系统
WO2021032030A1 (zh) 一种通信方法和装置
WO2022027695A1 (zh) 信息传输方法及通信装置
CN108259148A (zh) 传输参考信号的方法和装置
US11910350B2 (en) Physical layer signaling by base stations for provisioning positioning-resources
JP7313420B2 (ja) データ伝送方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021791965

Country of ref document: EP

Effective date: 20221124

NENP Non-entry into the national phase

Ref country code: DE