WO2021213054A1 - 转轴机构和具有开合性能的设备 - Google Patents

转轴机构和具有开合性能的设备 Download PDF

Info

Publication number
WO2021213054A1
WO2021213054A1 PCT/CN2021/080060 CN2021080060W WO2021213054A1 WO 2021213054 A1 WO2021213054 A1 WO 2021213054A1 CN 2021080060 W CN2021080060 W CN 2021080060W WO 2021213054 A1 WO2021213054 A1 WO 2021213054A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
rotating shaft
variable
swing arm
torsion
Prior art date
Application number
PCT/CN2021/080060
Other languages
English (en)
French (fr)
Inventor
龙腾
朱明超
杨峻
钟梅芳
杨庆志
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021213054A1 publication Critical patent/WO2021213054A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1681Details related solely to hinges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position

Definitions

  • This application relates to the field of electronic devices, and more specifically, to a rotating shaft mechanism and a device with opening and closing performance.
  • the hinge is a bridge connecting different components of the device.
  • the different components of the device are connected by hinges to achieve relative rotation to control the relative angle to meet the requirements of comfortable user experience.
  • a laptop computer connects the screen assembly and the host through the hinge. Components, when working, rotating the screen components to a certain angle and fixing them are all achieved through the shaft.
  • This application provides a rotating shaft mechanism and a device with opening and closing performance.
  • the hinge mechanism can provide a relatively small torque
  • the hinge mechanism can provide a relatively large torque, so as to realize the one-handed opening and closing of the device and improve the user experience.
  • a rotating shaft mechanism for connecting a first body and a second body of a device, which is characterized in that it includes: a bracket, a swing arm, a roller, and a rotating shaft;
  • the rotating shaft can be fixedly connected to the first body, and includes a constant torsion structure and a variable torsion structure;
  • the bracket can be fixedly connected with the second body, sleeved on the constant torsion structure and connected with the swing arm;
  • the swing arm is provided with a roller compartment with an opening facing the rotating shaft and accommodating the rollers.
  • the rollers are respectively rotatably connected with the variable torsion structure and the roller compartment.
  • the rotating shaft can drive the roller to rotate toward the top of the roller compartment.
  • the rotating shaft rotates in a second direction opposite to the first direction, the rotating shaft can drive the roller
  • the column rotates towards the bottom end of the roller compartment, where
  • the inner wall of the roller compartment includes a guiding inclined surface, and in the extending direction from the bottom end to the top end, the guiding inclined surface is inclined toward a direction away from the rotating shaft, so as to make the When the roller is located at the bottom end, a greater damping force is generated between the roller and the variable torsion structure when the roller is located at the top end.
  • the first direction is the opening direction of the device, and the second direction is the closing direction of the device.
  • the first direction is a clockwise direction
  • the second direction is a counterclockwise direction.
  • the roller when the device equipped with the rotating shaft mechanism is in the open state, the roller is located at the top of the roller compartment, and the top of the roller compartment represents a limit position of the roller on the roller compartment; when the device is in the closed state, The roller is located at the bottom end of the roller compartment, and the bottom end of the roller compartment represents another extreme position of the roller on the roller compartment.
  • the guiding inclined surface is inclined in a direction away from the rotating shaft, which means that the bottom end of the guiding inclined surface is closer to the rotating shaft relative to the top end of the guiding inclined surface, and the guiding inclined surface
  • the top end is close to the top end of the roller compartment, and the bottom end of the guiding inclined surface is close to the bottom end of the roller compartment.
  • the rotating shaft mechanism can provide two kinds of torsion, one is the constant torque provided by the cooperation between the support and the constant torque structure of the rotating shaft, and the other is the variable torsion force of the swing arm, the roller and the rotating shaft.
  • the roller compartment of the swing arm has a guiding inclined surface. In the extending direction from the bottom end of the roller compartment to the top end of the roller compartment, the guiding inclined surface is inclined toward the direction away from the rotating shaft.
  • the inclined surface design of the guiding inclined surface can make Under the same rotation angle of the shaft, when the roller is at the bottom end of the roller compartment, compared to the top end of the roller compartment, a greater squeezing force is generated between the roller and the variable torsion structure to generate greater damping force
  • the variable torque structure can be provided with greater torsion, thereby providing greater torsion for the rotating shaft, so that the rotating shaft has a differentiated torsion in the same angle and opposite rotation directions, so that the equipment equipped with the rotating shaft mechanism has The characteristics of light opening and closing heavy, realize the one-handed opening and closing of the device.
  • the swing arm is rotatably connected to the bracket, and the swing arm is rotatable about the axial direction of the rotating shaft;
  • the rotating shaft mechanism further includes an elastic member, one end of the elastic member is fixed on the bracket and the other end abuts on the swing arm.
  • the rotation connection of the roller can effectively avoid the jam between the roller and the variable torque structure.
  • the elastic member can provide pre-pressure for the swing arm, and when the swing arm rotates in a direction away from the rotating shaft, the compressed elastic member presses the roller against the variable torsion structure so as to be between the roller and the variable torsion structure.
  • variable torsion structure includes a plurality of connected variable torsion regions surrounding the axial direction of the rotating shaft, and along the first direction, the roller The damping force with the plurality of torque-variable regions gradually increases.
  • the variable torsion structure includes a plurality of variable torsion regions, and along the first direction, the damping force between the roller and the plurality of variable torsion regions gradually increases, which can make the damping of the device in the opening process
  • the force gradually increases, that is, the shaft mechanism can provide a small damping force when the device is just opened, so that the user can open the device with a small force.
  • the damping force gradually increases
  • the larger damping force can balance the gravity of the first body to enhance the stability of the first body, especially when the first body has a touch screen.
  • the larger damping force can also balance the click force of the user to click on the screen to enhance the stability of the screen of the first body when it is clicked. In short, it can enhance the stability of the device during use.
  • the radius of the plurality of torque-variable regions gradually increases.
  • the rotating shaft mechanism provided by the present application, by providing a plurality of variable torsion zones with variable diameters, along the first direction, the squeezing force between the roller and the plurality of variable torsion zones is gradually increased to provide a gradually increasing damping force .
  • variable torsion zone with the smallest radius among the plurality of variable torsion zones has a clearance fit between the roller.
  • the damping force between the variable torsion zone with the smallest radius and the roller is basically zero, and the overall shaft is The torque is the smallest and only provided by the constant torque.
  • the intermittent cooperation between the roller and the variable torque zone facilitates the user to open the device with one hand when the device is just being opened.
  • the intermittent fit between the roller and the variable torque zone facilitates closing the device and reduces the residual torque.
  • the plurality of variable torsion regions include three variable torsion regions, arranged in order of radius from small to large, and the central angle of the first variable torsion region is between Between 0 degrees and 15 degrees, the central angle of the second variable torque zone is between 15 degrees and 90 degrees, and the central angle of the third variable torque zone is between 90 degrees and 135 degrees.
  • a swing arm limiting structure located on a side of the swing arm close to the rotating shaft is provided on the support to restrict the swing arm from facing toward the center. The displacement amount of the rotation of the shaft.
  • a swing arm limiting structure for limiting the displacement of the swing arm toward the rotating shaft is provided on the support, so that the jamming between the swing arm and the rotating shaft due to excessive rotation of the swing arm can be avoided.
  • the variable torsion structure includes a plurality of variable torsion zones, when the variable torsion zone with the smallest radius (for example, the first variable torsion zone) intermittently cooperates with the roller, under the action of the elastic member, the swing arm The limit structure restricts the position of the swing arm, which can better realize the intermittent cooperation between the roller and the variable torsion zone.
  • the bracket is provided with a sleeve sleeved on the constant torsion structure, and the swing arm limiting structure is provided on the sleeve The end.
  • the guiding inclined surface is a curved surface.
  • the contact area between the guiding inclined surface and the cylindrical surface of the roller can be increased, the friction force can be increased, and the wear can be reduced.
  • the inner wall of the roller compartment further includes a top arc surface and a bottom arc surface connecting the guiding inclined surface.
  • the radius of the top arc surface and the radius of the bottom arc surface are the same.
  • the radius of the top arc surface and the bottom arc surface is greater than the radius of the roller.
  • the radius of the top arc surface and the bottom arc surface can be larger than the radius of the roller, so as to realize the stable contact between the roller and the roller compartment.
  • the friction between the roller and the roller compartment can be reduced to reduce wear and increase the life of the rotating shaft mechanism.
  • the radius of the variable torsion structure is less than or equal to the radius of the constant torsion structure.
  • the structure in which the variable torsion structure is arranged between the constant torsion radii facilitates the assembly between the rotating shaft and the bracket.
  • a device with opening and closing performance which includes a first body, a second body, and a shaft mechanism according to any one of the above-mentioned first aspects, wherein the first body and the shaft mechanism are The shaft is connected, and the second body is connected with the bracket of the shaft mechanism.
  • the device is a notebook computer
  • the first body is a screen component
  • the second body is a host component.
  • Fig. 1 is a schematic exploded view of the notebook computer provided by the present application.
  • Fig. 2 is a schematic assembly diagram of the notebook computer provided by the present application.
  • Fig. 3 is a schematic assembly diagram of the shaft mechanism provided by the present application.
  • Fig. 4 is a schematic exploded view of the shaft mechanism provided by the present application.
  • Fig. 5 is a schematic structural diagram of the stent provided by the present application.
  • Fig. 6 is a schematic structural diagram of a rotating shaft provided in the present application.
  • Fig. 7 is a schematic structural diagram of a swing arm mechanism provided by the present application.
  • Fig. 8 is another schematic cross-sectional view of the shaft mechanism provided by the present application.
  • Fig. 9 is a schematic cross-sectional view of a swing arm provided by the present application.
  • FIG. 10 is a schematic diagram of the relationship between the roller and the rotating shaft provided by the present application.
  • Fig. 11 is another schematic cross-sectional view of the swing arm provided by the present application.
  • Fig. 12 is a schematic cross-sectional view of the variable torsion structure provided by the present application.
  • 13 to 15 are schematic cross-sectional views of different states of cooperation between the rotating shaft and the swing arm mechanism during the opening process of the device provided by the present application.
  • 16 to 18 are schematic cross-sectional views of different states of cooperation between the rotating shaft and the swing arm mechanism during the closing process of the device provided by the present application.
  • Fig. 19 is another schematic assembly diagram of the shaft mechanism provided by the application.
  • Fig. 20 is another exemplary cross-sectional view of the shaft mechanism provided by the present application.
  • Fig. 21 is another schematic assembly diagram of the shaft mechanism provided by the present application.
  • the electronic device 10 the rotating shaft mechanism 100, the screen assembly 200, and the host assembly 300.
  • Swing arm mechanism 130 swing arm 131, through hole 1311, roller compartment 1312, top end 1312-1 of roller compartment 1312, bottom end 1312-2 of roller compartment 1312, guide slope 1312A of roller compartment 1312, guide slope
  • the hinge mechanism of the present application can be applied to any device with opening and closing performance.
  • the device can be a notebook computer, a foldable mobile phone, and the like.
  • a notebook computer is taken as an example to briefly explain the application of the hinge mechanism in the device.
  • FIG. 1 is a schematic exploded view of the notebook computer provided by the present application
  • FIG. 2 is a schematic assembly view of the notebook computer provided by the present application.
  • the notebook computer 10 includes a hinge mechanism 100, a screen assembly 200, and a host assembly 300.
  • the screen assembly 200 and the host assembly 300 are rotatably connected by the hinge mechanism 100.
  • one end of the hinge mechanism 100 is fixed to the screen assembly 200
  • the other end is fixedly connected to the host assembly 300.
  • the screen assembly 200 rotates in a clockwise direction relative to the host assembly 300, and the torsion provided by the hinge mechanism 100 keeps the notebook computer 10 in a stable open state.
  • the notebook computer 10 is closed, the screen assembly 200
  • the relative host assembly 300 rotates in a counterclockwise direction, and the torsion force provided by the rotating shaft mechanism 100 allows the screen assembly 200 to fall freely.
  • the device provided in this application may be provided with one or more rotating shaft mechanisms, which is not limited in this application.
  • the device may be provided with one, two, three, or more rotating shaft mechanisms.
  • the notebook computer 10 shown in FIG. 1 is provided with two rotating shaft mechanisms 100, for example, along the axial direction of the rotating shaft mechanism 100, the two rotating shaft mechanisms 100 are symmetrically arranged.
  • the torsion force of the shaft mechanism 100 is provided by the damping force (or frictional force).
  • the damping force or frictional force.
  • the damping force is naturally as small as possible.
  • the screen assembly is automatically closed under the action of gravity to cause damage to the device, and it is necessary to provide a large damping force through the shaft mechanism 100 to balance the gravity of the screen assembly 200.
  • the lighter the screen assembly 200 is the smaller the damping force generated by the shaft mechanism 100 will be, which means that the smaller the force that the user can apply, the easier it is to open the device with one hand, and vice versa.
  • the lighter the host assembly 300 the greater the damping force generated by the hinge mechanism 100 will be. It is easier to lift the host assembly 300 when the notebook computer is opened, and the less easy it is to open it with one hand, and vice versa. The easier it is to open with one hand.
  • the present application provides a rotating shaft mechanism that can provide differentiated torsion for opening and closing ("opening and closing" for short) of a device (for example, a notebook computer) equipped with the rotating shaft mechanism, so that the device has a light opening Key features.
  • the "open light and close heavy" of the device means that the hinge mechanism provides low torque when the device is opened to realize the one-handed opening of the device, and when the device is closed, the hinge mechanism provides greater torque to make a part of the device (for example, The screen assembly can be freely attached to another part (for example, the host assembly).
  • the rotating shaft mechanism of the present application can provide two torsion forces, one is a constant torque, the other is a variable torque, and the two torsion forces are reasonably combined to realize the opening and closing of the device.
  • the variable torque In the process of opening the device, the variable torque is relatively small.
  • the variable torque In the process of closing the device, the variable torque becomes larger, and the constant torque remains unchanged during the two processes, thus realizing the one-handed opening and closing of the device.
  • the present application also provides a device with opening and closing performance.
  • the device is equipped with the above-mentioned rotating shaft mechanism.
  • the rotating shaft mechanism connects the two parts of the device in rotation to realize the one-handed opening and closing of the device.
  • this application defines two parts of the device that can be opened and closed, namely the first body and the second body.
  • the first body may be a component connected to the shaft in the shaft mechanism, and the second body is connected to the shaft in the shaft mechanism.
  • the components connected to the bracket can drive the rotating shaft and the bracket to rotate relative to each other, so that the first body and the second body rotate relative to each other.
  • the first body may be a screen component
  • the second body may be a host component.
  • this application also defines two rotation directions, namely the first direction and the second direction.
  • the first direction is the opening direction of the device. When the device is opened, the rotating shaft of the rotating shaft mechanism rotates around the first direction.
  • the second direction is the closing direction of the device. When the device is closed, the rotating shaft of the rotating shaft mechanism rotates around the second direction, which is opposite to the first direction.
  • the first direction is a clockwise direction
  • the second direction is a counterclockwise direction.
  • Fig. 3 is a schematic assembly diagram of the shaft mechanism provided by the present application.
  • Fig. 4 is a schematic exploded view of the shaft mechanism provided by the present application.
  • Fig. 5 is a schematic structural diagram of the stent provided by the present application.
  • Fig. 6 is a schematic structural diagram of a rotating shaft provided in the present application.
  • Fig. 7 is a schematic structural diagram of a swing arm mechanism provided by the present application.
  • Fig. 8 is a schematic cross-sectional view of the shaft mechanism provided by the present application.
  • the rotating shaft mechanism 100 includes a rotating shaft 110, a bracket 120, and a swing arm mechanism 130.
  • the swing arm mechanism 130 includes a swing arm 131 and a roller 132 accommodated in the swing arm 131.
  • the rotating shaft 110 can be connected to the first body of the device. (For example, the screen assembly) is fixedly connected, and the bracket 120 can be fixedly connected with the second body (for example, the host assembly) of the device to realize the rotational connection of the first body and the second body, and realize the opening and closing of the device.
  • the bracket 120 is respectively connected with the swing arm 131 and the rotating shaft 110.
  • the swing arm 131 is arranged adjacent to the rotating shaft 110.
  • the roller 132 is rotatably connected with the swing arm 131 and the rotating shaft 110.
  • the rotating shaft 110 can drive the roller 132 on the swing arm 131.
  • the damping force generated by the relative rotation between the rotating shaft 110 and the bracket 120 is used to provide a constant torsion force
  • the damping force generated by the relative rotation between the rotating shaft 110 and the roller 132 is used to provide a variable torsion force.
  • the bracket 120 includes a support plate 123, which can be fixedly connected to the second body of the device.
  • the support plate 123 is provided with a plurality of fastening holes 1231, and the fasteners (for example, a bolt or a screw, etc.) pass through the fastening hole 1231 to fix the support plate 123 on the second body, so as to fixedly connect the bracket 120 and the second body.
  • the end of the rotating shaft 110 is set as a fixed structure 113, which can be inserted into the first body of the device to achieve a fixed connection between the rotating shaft 110 and the first body.
  • the fixed structure 113 The outer surface is provided with anti-slip patterns to better fix the rotating shaft 110 on the first body.
  • the bracket 120 includes a shaft sleeve 121, and the shaft sleeve 121 has a through hole through which the rotating shaft 110 is sleeved.
  • the rotating shaft 110 includes a constant torque structure 111 corresponding to the sleeve 121, and the sleeve 121 cooperates with the constant torque structure 111 to provide a constant torque.
  • the sleeve 121 is sleeved on the constant torque structure 111 and serves as a support structure for the rotation of the shaft 110.
  • the constant torque structure 111 and the shaft sleeve 121 adopt an interference fit.
  • the shaft 110 rotates relative to the bracket 120, the friction fit between the sleeve 121 and the constant torque structure 111 can provide a constant damping force to provide a constant torque, and, when the device is in use, the gap between the sleeve 121 and the constant torque structure 111
  • the damping force can also make the first body in a relatively stable state.
  • the bracket 120 may include one, two, three, four or more shaft sleeves 121.
  • the bracket 120 includes a plurality of sleeves 121
  • the plurality of sleeves 121 are arranged coaxially and spaced apart so that the rotating shaft 110 penetrates the plurality of sleeves 121.
  • FIG. 5 shows two sleeves 121.
  • the present application does not make any limitation on the number of the constant torsion structure 111, and the number of the constant torsion structure 111 is the same as the number of the sleeve 121.
  • the support 120 further includes a swing arm connecting structure 124, and the swing arm connecting structure 124 has an accommodating cavity opening toward the rotating shaft 110 to accommodate the swing arm 131 to connect the swing arm 131 to the support 120.
  • the support plate 123 of the bracket 120 may be provided with a swing arm connection structure 124.
  • the swing arm connection structure 124 may be arranged between two adjacent shaft sleeves 121 and fixedly connected to the two shaft sleeves 121 respectively.
  • the swing arm 131 and the bracket 120 are rotatably connected, and the swing arm 131 can rotate around the axial direction of the rotating shaft 110 toward a direction close to the rotating shaft 110 or away from the rotating shaft 110.
  • the swing arm 131 can rotate around the axial direction of the rotating shaft 110 toward a direction close to the rotating shaft 110 or away from the rotating shaft 110.
  • two movable holes 1241 are provided on opposite sides of the swing arm connecting structure 124 (as shown in FIG. 5), and along the axial direction of the shaft 110, the pendulum
  • the arm 131 is provided with a through hole 1311 (as shown in FIG.
  • the movable member 1301 sequentially passes through one movable hole 1241 of the swing arm connecting structure 124, the through hole 1311 of the swing arm 131, and another movable member of the swing arm connecting structure 124.
  • a hole 1241 (as shown in FIG. 8) is used to realize the rotational connection between the swing arm 131 and the bracket 120.
  • the movable part 1301 may be a movable part like an axle pin.
  • a gap 122 between the two sleeves 121 of the bracket 120 (as shown in FIG. 5), the gap 122 communicates with the accommodating cavity of the swing arm connecting structure 124, and the rotation shaft 110 is constant
  • the torsion structure 111 is matched with the shaft sleeve 121, a part of the shaft 110 is exposed in the gap 122, and this part can cooperate with the roller 132 to provide variable torsion.
  • a variable torsion structure 112 (as shown in FIG. 6) located in the gap 122 is provided between the two constant torsion structures 111 of the rotating shaft 110, and the variable torsion structure 112 cooperates with the roller 132 (as shown in FIG. 8). ) To provide the variable torque of the shaft mechanism.
  • the swing arm 131 is provided with a roller compartment 1312 with an opening facing the rotating shaft 110.
  • the roller compartment 1312 is generally U-shaped, and the roller compartment 1312 contains a roller 132.
  • the roller 132 is rotatably connected with the roller compartment 1312, and the roller 132 is rotatably connected with the rotating shaft 110.
  • the rotating shaft 110 rotates in the first direction, which can drive the roller 132 to rotate toward the top end 1312-1 of the roller compartment 1312, and when the device is closed, the rotating shaft 110 rotates in the second direction to drive the roller 132 Rotate toward the bottom end 1312-2 of the roller compartment 1312.
  • the roller 132 when the device is in an open state, the roller 132 is located at the top end 1312-1 of the roller compartment 1312, and the top end 1312-1 of the roller compartment 1312 represents a limit position of the roller 132 on the roller compartment 1312;
  • the roller 132 When in the closed state, the roller 132 is located at the bottom end 1312-2 of the roller compartment 1312, and the bottom end 1312-2 of the roller compartment 1312 represents another extreme position of the roller 132 on the roller compartment 1312.
  • the inner wall of the roller compartment 1312 includes a guide inclined surface.
  • the guide inclined surface faces away from the shaft 110 in the extending direction from the bottom end 1312-2 of the roller compartment 1312 to the top end 1312-1 of the roller compartment 1312.
  • FIG. 9 is a schematic structural diagram of the swing arm provided in the present application
  • FIG. 10 is a schematic diagram of the relationship between the roller and the rotating shaft provided in the present application.
  • the guiding inclined surface 1312A is inclined toward the direction away from the rotating shaft, or in other words, the guiding inclined surface 1312A
  • the bottom end 1312A-2 of the guide slope 1312A is closer to the shaft 110 than the top end 1312A-1 of the guide slope 1312A
  • the bottom end 1312A-2 of the guide slope 1312A is close to the bottom end 1312-2 of the roller compartment 1312
  • the top end 1312A-1 of the guide slope 1312A Near the top end 1312-1 of the roller compartment 1312.
  • the distance L2 between the bottom end 1312A-2 of the guiding inclined surface 1312A and the axis of the rotating shaft 110 is smaller than the axis between the top end 1312A-1 of the guiding inclined surface 1312A and the rotating shaft 110
  • the distance from the heart is L1.
  • the rotating shaft rotates toward the bottom end 1312-2 of the roller compartment 1312 when the roller 132 rotates toward the top end 1312 of the roller compartment 1312 at the same rotation angle.
  • a greater squeezing force can be generated between the roller 132 and the variable torque structure 112 to generate a greater damping force, or the roller 132 is located at the roller compartment 1312 under the same rotation angle of the shaft.
  • a greater squeezing force is generated between the roller 132 and the variable torsion structure 112 to generate a greater damping force, so that it can be a variable
  • the torsion structure 112 provides greater torsion, thereby providing greater torsion to the rotating shaft 110, so that the rotating shaft 110 has a differentiated torsion in the same angle and opposite rotation directions, so that the device equipped with the rotating shaft mechanism can open and close. Heavy characteristics.
  • C2' can be approximately 0 or a negative number.
  • C2' can be a negative number
  • interference occurs between the roller 132 and the variable torsion structure 112 of the shaft 110, and C2' can be understood
  • the amount of interference when the roller 132 is located at the bottom end 1312-2 of the roller compartment 1312, the amount of interference between the roller 132 and the variable torque structure 112 is denoted as C2.
  • the roller 132 and the rotating shaft 110 may be caused. Stuck between. Therefore, in some embodiments, the swing arm 131 and the bracket 120 may be designed as a rotational connection, and there is a gap between the swing arm 131 and the swing arm connection structure 124 of the bracket 120 to reserve the swing arm 131 away from the rotating shaft 110. The amount of displacement in the direction of rotation.
  • the amount of interference between the roller 132 and the variable torque structure 112 may be little or no.
  • the amount of interference is converted into the displacement of the swing arm 131, and the swing arm 131 can move in a direction away from the rotating shaft 110, thereby avoiding the jamming between the roller 132 and the rotating shaft 110.
  • the swing arm mechanism 130 may further include an elastic member to provide pre-pressure for the swing arm 131 so that the elastic member
  • the swing arm 131 provides a pressing force for the roller 132 and the variable torsion structure 112, and when the swing arm 131 rotates in a direction away from the rotating shaft 110, the roller 132 can be pressed against the variable torsion structure 112 by an elastic member , In order to generate a larger squeezing force between the roller 132 and the variable torsion structure 112 to generate a larger damping force, thereby providing a larger torsion force for the rotating shaft 110.
  • the swing arm mechanism 130 includes an elastic member 133, one end of the elastic member 133 is fixed on the bracket 120 and the other end abuts on the swing arm 131 to realize the compression and extension of the elastic member 133.
  • one end of the elastic member 133 is fixed on the swing arm connecting structure 124 of the bracket 120.
  • a blind hole 1313 (as shown in FIG. 7) is provided on the swing arm 131, and the elastic member 133 extends into the blind hole 1313, and the other end of the elastic member 133 abuts against the bottom wall of the blind hole 1313 superior.
  • the rotating shaft 110 rotates in the first direction, the roller 132 rotates toward the top end 1312-1 of the roller compartment 1312, the swing arm 131 may or may not rotate, and the roller 132 and the variable torque structure 112 are connected
  • the squeezing force is small or almost zero, which provides small or almost zero torque for the variable torsion structure 112.
  • the rotating shaft 110 rotates in the second direction, and the roller 132 rotates toward the bottom end 1312-2 of the roller compartment 1312.
  • the swing arm 131 Under the action of the guiding inclined surface 1312A, the swing arm 131 can rotate in a direction away from the rotating shaft 110 , The elastic member 133 is compressed, and the elastic force of the elastic member 133 is transmitted to the roller 132, so that a relatively large squeezing force (or damping force) is generated between the roller 132 and the variable torsion structure 112, thus, the variable torsion structure 112 Provide greater torque.
  • the elastic member 133 may be a component having elasticity such as a compression spring, a rubber spring, or the like.
  • the roller 132 faces the top end 1312-1 of the roller compartment 1312.
  • the swing arm 131 may or may not rotate.
  • the squeezing force (or damping force) between the roller 132 and the variable torsion structure 112 is small or almost zero, which provides a small or almost zero for the variable torsion structure 112
  • the swing arm 131 can rotate in a direction away from the rotating shaft 110, and the compressed elastic member 133 transmits the elastic force to the roller 132.
  • a greater pressing force (or damping force) can be generated between the roller 132 and the variable torsion structure 112, so as to provide a greater torsion force to the variable torsion structure 112, thereby providing a greater torsion force for the rotating shaft 110, so that the rotating shaft 110 Differential torsion is provided at the same angle and opposite direction of rotation, so that the device equipped with the rotating shaft mechanism has the characteristics of light and heavy turning on and off.
  • the guide inclined surface 1312A of the roller compartment 1312 can be a surface of any shape, and this application does not make any limitation, as long as it meets the requirements from the bottom end 1312-2 of the roller compartment 1312 to the top end 1312-1 of the roller compartment 1312 It is sufficient that the guiding inclined surface 1312A is inclined in the direction away from the rotating shaft 110 in the extending direction.
  • the guiding inclined surface 1312A is a curved surface.
  • the curved guide slope 1312A can increase the contact area between the guide slope 1312A and the cylindrical surface of the roller 132, which can increase friction and reduce wear.
  • FIG. 11 which is another schematic structural diagram of the swing arm provided in the present application, and the guiding inclined surface 1312A is a straight surface. In this way, the straight guiding inclined surface 1312A can make the roller 132 roll up and down smoothly, and the torsion change of the roller 132 during the rolling process also tends to change in a linear ratio.
  • the inner wall of the roller compartment 1312 can be composed of three sections of wall surfaces, the guide slope 1312A in the middle and the wall surfaces connecting the two ends of the guide slope 1312A, and the wall surface at the top end 1312-1 of the roller compartment 1312 is marked as the top
  • the wall surface 1312B, the wall surface located at the bottom end 1312-2 of the roller compartment 1312 is denoted as the bottom wall surface 1312C, wherein the shape of the top wall surface 1312B and the bottom wall surface 1312C can be in any form, and this application does not make any limitation.
  • the top wall surface 1312B of the roller compartment 1312 is a curved surface, which may be referred to as a top curved surface 1312B, and/or, the bottom wall surface 1312B of the roller compartment 1312 is a curved surface, which may be referred to as Bottom curved surface 1312C.
  • a better fit between the roller 132 and the roller compartment 1312 can be achieved.
  • the roller compartment 1312 has a top arc surface 1312B and a bottom arc surface 1312C
  • the radius of the top arc surface 1312B and the bottom arc surface 1312C are the same.
  • the radius of the top arc surface 1312B and the bottom arc surface 1312C is greater than or equal to the radius of the roller 132.
  • the surface contact between the roller 132 and the roller compartment 1312 can be achieved, so as to achieve stable contact between the roller 132 and the roller compartment 1312, and the friction between the roller 132 and the roller compartment 1312 can be reduced to reduce Wear, improve the life of the shaft mechanism.
  • the top wall surface of the roller compartment 1312 can be a straight surface or other forms of wall surfaces (not shown in the figure), and the bottom wall surface of the roller compartment 1312 can also be a straight surface or other forms of wall surfaces (not shown in the figure). show).
  • the shaft mechanism provided by the present application through the cooperation between the swing arm mechanism 130 and the variable torsion structure 112, can make the shaft have a differentiated torsion in the same angle and opposite rotation directions, so that the configuration with The equipment of the shaft mechanism has the characteristics of light and heavy switching.
  • the device has the following characteristics: when the device is just opened, it is hoped that the shaft 110 has a small damping force, so that the user can open the device with a small force, but when the device is opened to a certain angle (for example, when the angle range of 90° ⁇ 135° is in normal use, it is desirable that the shaft 110 has a large damping force to balance the gravity of the first body to enhance the stability of the first body, especially in the first body.
  • the main body has a touch-enabled screen, it is also necessary to balance the click force of clicking on the screen to enhance the stability of the first main body when the screen is clicked. In short, it is necessary to enhance the stability of the device during use.
  • the rotating shaft mechanism provided by the present application can be provided with a plurality of connected variable torsion zones on the variable torsion structure 112, the plurality of variable torsion zones are arranged around the axial direction of the rotating shaft, and the surfaces of the plurality of variable torsion zones are curved surfaces ,
  • the angle corresponding to the multiple torque-changing areas is the angle at which the first body (or shaft 110) rotates when the device is opened or the angle that can be formed between the first body and the second body, for example, the angle formed by the multiple torsion-changing areas If it is 0° ⁇ 135°, then the angle at which the first body (or the rotating shaft 110) can rotate or the angle between the first body and the second body is 0° ⁇ 135°.
  • the damping force between the plurality of variable torsion zones and the roller 132 gradually increases, which can enhance the stability of the device when the device is in use.
  • the roller 132 and the roller 132 The damping force between the variable torsion zones can be increased from a first value to a second value, and the first value is greater than or equal to zero.
  • the plurality of variable torsion regions are variable torsion regions with variable diameters, that is, the radii of the plurality of variable torsion regions gradually increase, so that The damping force between the roller 132 and the plurality of variable torque zones gradually increases.
  • variable-torque regions with variable diameters of the variable-torque structure will be described.
  • Fig. 12 is a schematic structural diagram of the variable torsion structure provided by the present application.
  • the variable torque structure 112 includes three variable torque regions, namely: a first variable torque region 1121, a second variable torque region 1122 and a third variable torque region 1123, the first variable torque region 1121 and The second variable torque zone 1122 is connected, and the second variable torque zone 1122 is connected with the third variable torque zone 1123.
  • the radius of the first variable torque zone 1121, the second variable torque zone 1122, and the third variable torque zone 1123 gradually increase, that is, the radius r1 of the first variable torque zone 1121 is smaller than that of the second variable torque zone 1121.
  • the radius r2 of the torsion zone 1122 and the radius r2 of the second variable torque zone 1122 are smaller than the radius r3 of the third variable torque zone.
  • the angles corresponding to the three variable torque zones are the rotation angles of the shaft 110, that is, when the shaft 110 rotates to the first variable torque zone 1121, the angle at which the shaft 110 rotates is the angle corresponding to the first variable torque zone 1121.
  • the angle of rotation of the shaft 110 is the angle corresponding to the second variable torque zone 1122, and when the shaft 110 is rotated to the third variable torque zone 1123, the angle of rotation of the shaft 110 is corresponding to the third variable torque zone 1123 Angle.
  • the angle of the third torque-changing zone 1123 with the largest radius is an angle at which the device can be in use.
  • the device when the shaft 110 rotates to the third torque-changing zone 1123, the device can be stable at any time. status of use.
  • the rotating shaft 110 rotates in the first direction (clockwise as shown in Figure 12), which can drive the roller 132 to rotate from the bottom end 1312-2 of the roller compartment 1312 to the top end 1312 of the roller compartment 1312 -1, the roller 132 can cooperate with the first variable torque zone 1121, the second variable torque zone 1122, and the third variable torque zone 1123 in sequence. Since r1 is less than r2 and r2 is less than r3, during the process of opening the device, the fit between the roller 132 and the multiple torsion zones can gradually change from intermittent fit to squeeze contact, or the roller 132 and multiple torsion forces The fit of the zones can also always be squeeze contact.
  • the rotating shaft 110 can be made to provide an increasing damping force. It should be understood that if there is a clearance fit between the roller 132 and a certain variable torque zone (for example, the first variable torque zone 1121), the pressing force and damping force of the roller 132 and the variable torque zone can be ignored.
  • the roller 132 is in contact with the third variable torque zone 1123, the squeezing force between the roller 132 and the third variable torque zone 1123 is the largest and the damping force is the largest. Therefore, when the rotating shaft 110 rotates to the third variable torque zone 1123, it corresponds to When the rotating shaft 110 stops rotating, the device can be in a stable state of use.
  • the shaft 110 rotates in a second direction (counterclockwise as shown in Figure 12), which can drive the roller 132 to rotate from the top 1312-1 of the roller compartment 1312 to the bottom of the roller compartment 1312.
  • the roller 132 is sequentially matched with the third variable torque zone 1123, the second variable torque zone 1122, and the first variable torque zone 1121. Since r1 is less than r2 and r2 is less than r3, during the process of closing the device, the mating fit of the roller 132 with the multiple variable torsion regions can be gradually changed from the pressing contact to the intermittent fit, or the roller 132 and the multiple variable torque zones The fit of the torsion zone can also always be squeeze contact.
  • the rotating shaft 110 can be made to provide a gradually decreasing damping force.
  • the damping force in the variable torsion zone is greater than the damping force in the variable torsion zone when the device is opened.
  • the roller 132 contacts the third variable torque zone 1123, and the damping force when the device is closed is greater than the damping force when the device is opened.
  • variable torsion zones with variable diameters provided in the variable torsion structure described above can gradually increase the damping force of the device during the opening process.
  • the stability of the first body and the first body can be enhanced.
  • the stability of the screen is clicked to enhance the stability of the device.
  • the damping force of the rotating shaft 110 is small or even zero, so as to facilitate the closing of the device and reduce the residual torque. Therefore, in this application, a reasonable design can be made for the variable torsion zone, so that when the device is closed to a certain angle, the damping force in the variable torsion zone is very small or even zero.
  • the fit between the variable torsion zone with the smallest radius and the roller 132 can be intermittent. Due to the design of the guide inclined surface, it means that whether it is during the opening of the device or During the closing process, the fit between the variable torsion zone with the smallest radius and the roller 132 is intermittent fit. In this way, during the process of opening the device, the fit between the roller 132 and the multiple torque-changing zones gradually changes from intermittent fit to squeeze contact, and the damping force in the torsion-changing zone gradually increases. During the process of closing the device , The fit between the roller 132 and the variable torque zone gradually changes from squeeze contact to an intermittent fit. Once the roller 132 and the variable torque zone are intermittently fitted, it means that the roller 132 and the variable torque zone are intermittently fitted. The damping force is very small or even zero, and the device can be closed easily.
  • variable torque structure includes the first variable torque zone 1121, the second variable torque zone 1122, and the third variable torque zone 1123
  • the first variable torque zone 1121 is a torsion zone intermittently cooperated with the roller 132
  • the variable torsion zone 1123 is a torsion zone that is in contact with the roller 132 and is a torsion zone in which the device can be used in a stable state.
  • the second variable torsion zone 1122 is between the two.
  • the central angle of the first variable torque zone is between 0°-15°, and the central angle of the second variable torque zone is between 0° and 15°. Between 15° and 90°, the central angle of the third variable torque zone is between 90° and 135°.
  • FIG. 12 shows three variable torsion zones with variable diameters
  • the rotating shaft mechanism of the present application does not limit the number of variable torsion zones.
  • the rotating shaft mechanism may use one, two, four, or five A different number of variable torque zones.
  • variable torsion structure includes a plurality of variable torsion zones
  • the connection of adjacent variable torsion zones in the plurality of variable torsion zones may be a smooth transition .
  • the smooth transition means that the two variable torque zones are co-tangent at the connection, or it can also be understood as the arc at the connection is the same, so that the roller 132 can be transferred from one variable torque zone to another variable torque zone. Achieve a smooth transition and avoid jams between the two.
  • FIGS. 16 to 18 are schematic diagrams of the rotation shaft 110 and the swing arm mechanism 130 in the closing process of the device.
  • FIG. 13 is a schematic diagram of the state 1 in which the rotating shaft 110 and the swing arm mechanism 130 cooperate with the device provided by the present application during the opening process.
  • the device is opened, and the first variable torque zone 1121 corresponds to the position of the roller 132 of the swing arm mechanism 130 during the rotation of the shaft 110 (or the first body) around the first direction to 0°-15° ,
  • the radius r1 of the first variable torque zone 1121 is the smallest, the first variable torque zone 1121 and the roller 132 are intermittently fitted, the roller 132 and the swing arm 131 are stationary, and the first variable torque zone 1121 is between the roller 132 There is no torque, and the torque F1 between the first variable torque zone 1121 and the roller 132 in this state is 0.
  • the torque of the rotating shaft 110 is only provided by the friction fit between the constant torque structure 111 and the sleeve 121, and the overall torque of the rotating shaft 110 is the smallest. Therefore, the user can open the device with one hand with a smaller force and one hand. .
  • FIG. 14 is a schematic diagram of the state 2 in which the rotating shaft 110 cooperates with the swing arm mechanism 130 during the opening process of the device provided by the present application.
  • the device continues to be opened, and while the shaft 110 (or the first body) rotates around the first direction to 15° to 90°, the second variable torsion zone 1122 corresponds to the position of the roller 132, and the second variable The radius r2 of the torsion zone 1122 is greater than the radius r1 of the first variable torque zone 1121, the second variable torque zone 1122 is in contact with the roller 132, and the second variable torque zone 1122 drives the roller 132 toward the top end 1312-1 of the roller compartment 1312 (In the direction of the upward arrow shown in Figure 14), but the pressing force between the second variable torque zone 1122 and the roller 132 is very small, and the torque F2 between the second variable torque zone 1122 and the roller 132 is very small.
  • FIG. 15 is a schematic diagram of the state 3 in which the rotating shaft 110 and the swing arm mechanism 130 cooperate with the device provided by the present application during the opening process.
  • the device continues to be opened, and when the shaft 110 (or the first body) rotates to 90° ⁇ 150° in the first direction, the third variable torsion zone 1123 corresponds to the position of the roller 132, and the third variable The radius r3 of the torsion zone 1123 is the largest.
  • the roller 132 cannot continue to rotate upward after rotating to the top end 1312-1 of the roller compartment 1312.
  • the third variable torque zone 1123 squeezes the roller 132 and drives the swing arm 131 to move away from the shaft 110 (First direction) rotating, the elastic member 133 is compressed, under the action of the elastic member 133, the pressing force between the third variable torque zone 1123 and the roller 132 increases, and the third variable torque zone 1123 and the roller 132 A larger torque F3 is generated between. Therefore, during this process, the overall torsion of the rotating shaft 110 (the sum of the torsion between the roller 132 and the variable torque structure 112 and the torsion between the sleeve 121 and the constant torque structure 111) increases, and the torque can be enhanced by the torque.
  • Fig. 16 is a schematic diagram of the state 4 in which the rotating shaft 110 and the swing arm mechanism 130 cooperate with the device provided by the present application during the closing process.
  • the third variable torque zone 1123 corresponds to the position of the roller 132, and the third variable torque force
  • the area 1123 continues to contact the roller 132 and drives the roller 132 to rotate toward the bottom end 1312-2 (the downward arrow direction in Figure 16) of the roller compartment 1312, due to the inclined surface design of the guide slope 1312A of the roller compartment 1312 ,
  • the third variable torque zone 1123 continues to squeeze the roller 1312 and drives the swing arm 131 to continue to rotate in the direction away from the rotating shaft 110 (the first direction).
  • FIG. 17 is a schematic diagram of the state 5 in which the rotating shaft 110 cooperates with the swing arm mechanism 130 during the closing process of the device provided by the present application.
  • the device continues to be closed.
  • the second variable torsion zone 1122 corresponds to the position of the roller 132, because the second The radius r2 of the variable torsion zone 1122 is smaller than the radius r3 of the third variable torsion zone 1123.
  • the swing arm 131 Compared with the state 4, the swing arm 131 will rotate in the direction close to the rotating shaft 110 (the second direction), between the swing arm 131 and the rotating shaft 110 When the distance between the two parts becomes smaller, the compression amount of the elastic member 133 gradually becomes smaller.
  • the pressing force between the second variable torque zone 1122 and the roller 132 is smaller than the pressing force in the state 4, and the second variable torque zone 1122 and the roller 132 A small torque F5 is generated between, but due to the inclined surface design of the guide inclined surface 1312A, the torque F5 is still greater than the torque F2 of the state 2.
  • the overall torsion of the shaft 110 (the sum of the torsion between the roller 132 and the variable torque structure 112 and the torsion between the sleeve 121 and the constant torque structure 111) becomes smaller, but it is still lower than that of the state 2
  • the overall torque of the rotating shaft 110 is large, which can prevent the first body from being automatically closed under the action of its own gravity to cause damage to the equipment.
  • FIG. 18 is a schematic diagram of the state 6 in which the rotating shaft 110 and the swing arm mechanism 130 cooperate with the device provided by the present application during the closing process.
  • the schematic of State 1 shown in FIG. 13 can be compared.
  • the device continues to be closed.
  • the first variable torque zone 1121 corresponds to the position of the roller 132, because the first The radius r1 of the variable torque zone 1121 is the smallest.
  • the first variable torque zone 1121 is in clearance fit with the roller 132.
  • Both the roller 132 and the swing arm 131 are stationary. There is no torque between the first variable torque zone 1121 and the roller 132.
  • the shaft mechanism provided by the present application can provide constant torque through the cooperation of the sleeve 121 and the constant torque structure 111 of the shaft 10, and the cooperation between the swing arm mechanism 130 and the variable torque structure 112 of the shaft 110 can provide variable torque. Torque.
  • the varying torque can produce different torques depending on the opening or closing of the device. The torque can be changed in two aspects: On the one hand, when the device is opened, a smaller torque is provided, so that the user can use a smaller force to open the device with one hand, and when the device is closed, a larger torque is provided.
  • variable torsion structure 112 includes In a structure with multiple variable torque zones, when the device is opened, the damping force in the variable torque zone gradually increases, resulting in a gradual increase in torque.
  • the stability of the first body and the screen of the first body are enhanced. Stability when clicked, so that the device can be in a stable state of use.
  • FIGS. 12 to 18 only show that the torsion force between the roller 132 and the variable torsion region is changed by changing the radius of the plurality of variable torsion regions.
  • the shaft mechanism provided in the present application is not limited to the above-mentioned one.
  • Other methods can also be used. From the formula of the damping force, it can be seen that the magnitude of the damping force is not only related to the squeeze force, but also related to the damping coefficient. Therefore, the multiple variable torsion regions provided by the present application can also change the damping force (ie torsion) when the roller 132 is matched with different variable torsion regions by changing the damping coefficients of different variable torsion regions.
  • the coefficient of friction between the plurality of variable torque zones and the roller 132 gradually increases.
  • the torsion force between the roller 132 and the plurality of variable torsion regions may also change due to the change of the friction coefficient.
  • the constant torsion structure 111 and the variable torsion structure 112 of the shaft 110 can be flexibly set to meet actual needs.
  • the rotating shaft 110 includes a plurality of constant torsion structures 111 and a plurality of variable torsion structures 112 arranged at intervals along the axial direction of the rotating shaft 110.
  • the present application does not make any limitation on the position between the constant torsion structure 111 and the variable torsion structure 112.
  • variable torque structure 112 may be arranged between any two adjacent constant torque structures 111. In this way, it is possible to ensure the balance of the forces on both ends of the rotating shaft 110 as much as possible, so that the rotating shaft mechanism has better stability.
  • the rotating shaft 110 includes two constant torsion structures 111 and a variable torsion structure 112, and the variable torsion structure 112 is arranged between the two constant torsion structures 111.
  • the radius of the variable torque structure 112 is less than or equal to the radius of the constant torque structure. In this way, in the embodiment in which the variable torsion structure 112 is arranged between the constant torsion radius 111, the assembly of the rotating shaft 110 and the bracket 120 is facilitated.
  • the rotation of the shaft 110 drives the roller 132 to rotate in the roller compartment 1312 so that the swing arm 131 can move toward
  • the rotating shaft 110 rotates in a direction away from the rotating shaft 110.
  • a swing arm limiting structure can be provided on the bracket.
  • Fig. 19 is another schematic assembly diagram of the shaft mechanism provided by the application.
  • Fig. 20 is another exemplary cross-sectional view of the shaft mechanism provided by the present application.
  • the support 120 is provided with a swing arm limiting structure 125 located on the side of the swing arm 131 close to the rotating shaft 110, and the swing arm limiting structure 125 corresponds to the position of the swing arm 131.
  • the end of the sleeve 121 of the bracket 120 is provided with a swing arm limiting structure 125.
  • the swing arm 131 moves to a certain position in the direction close to the rotating shaft 110, the swing arm 131 can abut on the swing arm limiting structure 125.
  • the swing arm limiting structure 125 limits the displacement of the swing arm 131 to Avoid excessive rotation of the swing arm 131 causing jamming between the swing arm 131 and the rotating shaft 110.
  • the variable torsion structure 112 includes multiple variable torsion zones, when the variable torsion zone with the smallest radius (for example, the first variable torsion zone) intermittently cooperates with the roller 132, under the action of the elastic member 133, By restricting the position of the swing arm 131 by the swing arm limiting structure 125, the intermittent cooperation between the roller 132 and the variable torsion zone can be better realized.
  • the present application does not make any limitation on the number of the swing arm limiting structure 125, and the number of the swing arm limiting structure 125 may be one, two, three, or even more.
  • the number of the swing arm limiting structure 125 may be one, two, three, or even more.
  • two opposite ends of the two shaft sleeves 121 of the bracket 120 are respectively provided with two swing arm limiting structures 125.
  • the swing arm 131 is rotatably connected to the bracket 120, and the swing arm 131 can rotate around the bracket 120.
  • the swing arm 131 and the bracket 120 may also be fixedly connected.
  • the swing arm 131 may not be provided with the elastic member 133 as shown in FIGS. 7 and 8.
  • the swing arm 131 may be made of an elastic material.
  • the swing arm 131 is elastic and deforms. Due to the design of the guiding inclined surface 1312A, under the same rotation angle, when the roller 132 is located at the bottom of the roller compartment 1312 At the end 1312-2 and the top end 1312-1, the swing arm 131 can have different deformations, so as to provide different squeezing forces for the variable torsion structure 112 to provide different damping forces to achieve the purpose of providing different torsion forces.
  • the roller 132 may be made of elastic material, and the roller 132 has elasticity. Due to the design of the guiding inclined surface 1312A, under the same rotation angle, when the roller 132 is located at the bottom end 1312 of the roller compartment 1312 -2 and the top end 1312-1, the roller 132 can have different deformations to provide different squeezing forces for the variable torsion structure 112 to provide different damping forces to achieve the purpose of providing different torsion forces.
  • the rotating shaft 110 and the bracket 120 rotate relatively to realize the relative rotation between the first body and the second body.
  • the bracket 120 is provided with a notch 126
  • the rotating shaft 110 is provided with a stop structure 114 that cooperates with the notch 126, and the stop structure 114 can rotate within the opening range of the notch 126. 21 when in use, the rotating shaft 110 rotates at a certain angle, and the stop structure 114 can be pressed against the side wall 1261 of the notch 126 to limit the rotation angle of the rotating shaft 110 and the opening angle of the electronic device.
  • the device may be a notebook computer.
  • the screen assembly 200 shown in FIGS. 1 and 2 is an example of the first body fixedly connected to the shaft 110 of the shaft mechanism 100.
  • the host assembly 300 shown in Figures 1 and 2 is connected to the shaft An example of the second body to which the bracket 120 of the mechanism 100 is fixedly connected.
  • connection means connection, fixed connection, rotational connection, and contact
  • connection it can be fixed connection, rotating connection, flexible connection, mobile connection, integral molding, electrical connection, etc.; it can be directly connected, or, can be indirectly connected through an intermediate medium, or , It can be the internal communication between two elements or the interaction between two elements.
  • fixed connection one element can be directly or indirectly fixedly connected to another element; fixed connection can include mechanical connection, welding, and bonding, among which mechanical connection can include riveting, bolted connection, etc. , Thread connection, key pin connection, snap connection, lock connection, plug connection and other methods, bonding can include adhesive bonding and solvent bonding.
  • contact can mean that one element is in direct or indirect contact with another element.
  • contact between two elements described in the embodiments of the present application can be understood as being within the allowable range of installation error In the internal contact, there may be a small gap due to installation errors.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • At least part of the element refers to part or all of the element.
  • And/or describes the association relationship of the associated object, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

本申请提供了一种转轴机构和具有开合性能的设备,转轴机构可提供两种扭力,一种是由支架与转轴的恒定扭力结构之间的配合提供的恒定扭力,另一种是由摆臂、滚柱和转轴的变扭力结构之间的配合提供的变扭力。并且,摆臂的滚柱仓的导向斜面的斜面设计,可以使得转轴在相同的转动角度下,在滚柱位于滚柱仓的底端时相对于位于滚柱仓的顶端时,滚柱和变扭力结构之间产生更大的挤压力以产生更大的阻尼力,以为转轴提供更大的扭力,使得转轴在相同角度且相反的转动方向上具有差异化的扭力,以使得配置有转轴机构的设备具有开轻关重的特性,实现该设备的单手开合。

Description

转轴机构和具有开合性能的设备
本申请要求于2020年4月22日提交中国专利局、申请号为202010322841.X、申请名称为“转轴机构和具有开合性能的设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备领域,更具体地,涉及一种转轴机构和具有开合性能的设备。
背景技术
转轴作为设备的关键部件,是连接设备的不同组件的桥梁,设备的不同组件通过铰链连接实现相对转动来控制相对角度,以满足舒适的用户体验要求,例如,笔记本电脑通过转轴连接屏幕组件和主机组件,工作时将屏幕组件旋转到一定角度并固定都是通过转轴实现的。
在打开和闭合设备的过程中,实现单手打开设备是非常重要的用户体验。以笔记本电脑为例,屏幕组件越轻越容易实现单手打开,反之越不容易实现单手打开,主机组件越轻越不容易实现单手打开,反之越容易实现单手打开。
但是,当前的笔记本电脑的屏幕组件的重量变重且主机组件的重量变轻,出现了“头重脚轻”的问题,更加不容易实现设备的单手打开。
发明内容
本申请提供了一种转轴机构和具有开合性能的设备,通过转轴机构的摆臂、滚柱和转轴的变扭力结构之间的配合,可以为配置有该转轴机构的设备提供差异化的扭力,即,在设备被打开时,该转轴机构可提供较小的扭力,在设备被关闭时,该转轴机构可提供较大的扭力,以实现设备的单手开合,提高用户体验。
第一方面,提供了一种转轴机构,用于连接设备的第一本体和第二本体,其特征在于,包括:支架、摆臂、滚柱和转轴;
所述转轴可与所述第一本体固定连接,包括恒定扭力结构和变扭力结构;
所述支架可与所述第二本体固定连接,套设在所述恒定扭力结构上且与所述摆臂连接;
所述摆臂上设置有开口朝向所述转轴且容纳所述滚柱的滚柱仓,所述滚柱分别与所述变扭力结构和所述滚柱仓转动连接,在所述转轴绕第一方向转动时,所述转轴可带动所述滚柱朝所述滚柱仓的顶端转动,在所述转轴绕与所述第一方向相反的第二方向转动时,所述转轴可带动所述滚柱朝所述滚柱仓的底端转动,其中,
所述滚柱仓的内壁包括导向斜面,在自所述底端至所述顶端的延伸方向上,所述导向斜面朝着远离所述转轴的方向倾斜,以在相同的转动角度下,使得当所述滚柱位于所述底 端时相对于位于所述顶端时所述滚柱与所述变扭力结构产生更大的阻尼力。
第一方向是设备的打开方向,第二方向是设备的闭合方向。示例性地,第一方向是顺时针方向,第二方向是逆时针方向。
应理解,当配置有该转轴机构的设备处于打开状态时,滚柱位于滚柱仓的顶端,滚柱仓的顶端表示滚柱在滚柱仓上的一个极限位置;当设备处于闭合状态时,滚柱位于滚柱仓的底端,滚柱仓的底端表示滚柱在滚柱仓上的另一个极限位置。
在自所述底端至所述顶端的延伸方向上,所述导向斜面朝着远离所述转轴的方向倾斜,表示的是,导向斜面的底端相对于导向斜面的顶端更靠近转轴,导向斜面的顶端靠近所述滚柱仓的顶端,导向斜面的底端靠近所述滚柱仓的底端。
本申请提供的转轴机构,转轴机构可提供两种扭力,一种是由支架与转轴的恒定扭力结构之间的配合提供的恒定扭力,另一种是由摆臂、滚柱和转轴的变扭力结构之间的配合提供的变扭力。并且,摆臂的滚柱仓具有导向斜面,在自滚柱仓的底端至滚柱仓的顶端的延伸方向上,导向斜面朝着远离转轴的方向倾斜,由于导向斜面的斜面设计,可以使得转轴在相同的转动角度下,滚柱位于滚柱仓的底端时相对于位于滚柱仓的顶端时,滚柱和变扭力结构之间产生更大的挤压力以产生更大的阻尼力,这样,可以为变扭力结构提供更大的扭力,从而,为转轴提供更大的扭力,使得转轴在相同角度且相反的转动方向上具有差异化的扭力,以使得配置有转轴机构的设备具有开轻关重的特性,实现该设备的单手开合。
结合第一方面,在第一方面的某些实现方式中,所述摆臂与所述支架转动连接,所述摆臂可绕所述转轴的轴向方向转动;以及,
所述转轴机构还包括弹性件,所述弹性件的一端固定在所述支架上且另一端抵接在所述摆臂上。
本申请提供的转轴机构,由于导向斜面的设计,在滚柱朝滚柱仓的底端转动时,可能会导致滚柱与变扭力结构(或转轴)之间的卡壳,摆臂与支架之间的转动连接,可有效避免滚柱与变扭力结构之间的卡壳。弹性件可为摆臂提供预压力,并且,在摆臂朝着远离转轴的方向转动时,通过被压缩的弹性件将滚柱紧压在变扭力结构上,以在滚柱和变扭力结构之间产生较大的挤压力(阻尼力),从而,为转轴提供较大的扭力使得转轴在同样的角度且相反的转动方向上具有差异化的扭力,以使得配置有转轴机构的设备具有开轻关重的特性。结合第一方面,在第一方面的某些实现方式中,所述变扭力结构包括环绕所述转轴的轴向方向的多个相连的变扭力区,沿所述第一方向,所述滚柱与所述多个变扭力区之间的阻尼力逐渐变大。
本申请提供的转轴机构,变扭力结构包括多个变扭力区,并且,沿着第一方向,滚柱与多个变扭力区之间的阻尼力逐渐变大,可以使得设备在打开过程的阻尼力逐渐变大,即,在设备刚被打开时转轴机构可提供较小的阻尼力,以便于用户使用较小的力就可以打开设备,随着打开的角度的增大,阻尼力逐渐增大,在设备被打开至处于正常的使用状态的角度时,较大的阻尼力可以平衡第一本体的自身重力以增强第一本体的稳定性,特别是在第一本体具有触摸功能的屏幕时,较大的阻尼力还可以平衡用户点击屏幕的点击力以增强第一本体的屏幕被点击时的稳定性,总之,可以增强设备在使用过程的稳定性。
结合第一方面,在第一方面的某些实现方式中,沿所述第一方向,所述多个变扭力区的半径逐渐增大。
本申请提供的转轴机构,通过设置多个变径的变扭力区,沿着第一方向,可滚柱与多个变扭力区之间的挤压力逐渐变大以提供逐渐变大的阻尼力。
结合第一方面,在第一方面的某些实现方式中,所述多个变扭力区中半径最小的变扭力区与所述滚柱之间为间隙配合。
本申请提供的转轴机构,通过将半径最小的变扭力区与滚柱之间的配合设计为间歇配合,使得半径最小的变扭力区与滚柱之间的阻尼力基本上为0,转轴整体的扭力最小,仅由恒定扭力提供,这样,一方面,在设备刚开始被打开的过程,滚柱与变扭力区的间歇配合便于用户单手打开设备,另一方面,在设备快被闭合的过程中,滚柱与变扭力区之间的间歇配合便于闭合设备并减少残余扭力。
结合第一方面,在第一方面的某些实现方式中,所述多个变扭力区包括三个变扭力区,按半径由小到大的顺序排列,第一变扭力区的圆心角介于0度~15度之间,第二变扭力区的圆心角介于15度~90度之间,第三变扭力区的圆心角介于90度~135度之间。
结合第一方面,在第一方面的某些实现方式中,所述支架上设置有位于所述摆臂的靠近所述转轴的一侧的摆臂限位结构,以限制所述摆臂朝所述转轴转动的位移量。
本申请提供的转轴机构,通过在支架上设置用于限制摆臂朝转轴转动的位移量的摆臂限位结构,可以避免由于摆臂的过度转动导致摆臂与转轴之间的卡壳。此外,在变扭力结构包括多个变扭力区的结构中,当半径最小的变扭力区(例如,第一变扭力区)与滚柱是间歇配合时,在弹性件的作用下,通过摆臂限位结构限制摆臂的位置,可较好地实现滚柱和该变扭力区之间的间歇配合。
结合第一方面,在第一方面的某些实现方式中,所述支架上设置有套设在所述恒定扭力结构上的轴套,以及,所述摆臂限位结构设置在所述轴套的端部。
结合第一方面,在第一方面的某些实现方式中,所述导向斜面是弧面。
本申请提供的转轴机构,通过将导向斜面设置为弧面,可增加导向斜面与滚柱的圆柱面之间的接触面积,可以增大摩擦力并减少磨损。
结合第一方面,在第一方面的某些实现方式中,所述滚柱仓的内壁还包括连接所述导向斜面的顶弧面和底弧面。
本申请提供的转轴机构,通过设置与导向斜面相连的顶弧面和底弧面,在滚柱相对滚柱仓转动的过程中,可以使得滚柱与滚柱仓之间具有较好的配合,以使得滚柱可在滚柱仓上实现较好的转动。
结合第一方面,在第一方面的某些实现方式中,所述顶弧面和所述底弧面的半径相同。
结合第一方面,在第一方面的某些实现方式中,所述顶弧面和所述底弧面的半径大于所述滚柱的半径。
本申请提供的转轴结构,通过设置顶弧面和底弧面的半径大于滚柱的半径,可以实现滚柱与滚柱仓的面接触,以实现滚柱与滚柱仓之间的稳定接触,以及,可以减少滚柱与滚柱仓之间的摩擦以减少磨损,提高转轴机构的寿命。
结合第一方面,在第一方面的某些实现方式中,所述变扭力结构的半径小于或等于所述恒定扭力结构的半径。
本申请提供的转轴机构,通过设置变扭力结构的半径小于或等于恒定扭力机构的半径,在变扭力结构设置在恒定扭力半径之间的结构中,便于转轴与支架之间的装配。
第二方面,提供了一种具有开合性能的设备,包括第一本体、第二本体和如上述第一方面中任一方面的转轴机构,其中,所述第一本体与所述转轴机构的转轴连接,所述第二本体与所述转轴机构的支架连接。
结合第二方面,在第二方面的某些实现方式中,所述设备为笔记本电脑,所述第一本体为屏幕组件,所述的第二本体为主机组件。
附图说明
图1是本申请提供的笔记本电脑的示意性爆炸图。
图2是本申请提供的笔记本电脑的示意性装配图。
图3是本申请提供的转轴机构的示意性装配图。
图4是本申请提供的转轴机构的示意性爆炸图。
图5是本申请提供的支架的示意性结构图。
图6是本申请提供的转轴的示意性结构图。
图7是本申请提供的摆臂机构的示意性结构图。
图8是本申请提供的转轴机构的另一示意性截面图。
图9是本申请提供的摆臂的示意性截面图。
图10是本申请提供的滚柱与转轴的关系的示意图。
图11是本申请提供的摆臂的另一示意性截面图。
图12是本申请提供的变扭力结构的示意性截面图。
图13至图15是本申请提供的设备在打开过程中转轴与摆臂机构配合的不同状态的示意性截面图。
图16至图18是本申请提供的设备在闭合过程中转轴与摆臂机构配合的不同状态的示意性截面图。
图19是申请提供的转轴机构的另一示意性装配图。
图20是本申请提供的转轴机构的另一示例性截面图。
图21是本申请提供的转轴机构的另一示意性装配图。
附图标记说明
电子设备10,转轴机构100,屏幕组件200,主机组件300。
转轴110,恒定扭力结构111,变扭力结构112,第一变扭力区1121,第二变扭力区1122,第三变扭力区1123,固定结构113,止档结构114。
支架120,轴套121,轴套之间的间隙122,支撑板123,支撑板123上的紧固孔1231,摆臂连接结构124、摆臂连接结构124上的活动孔1241,摆臂限位结构125,缺口126。
摆臂机构130,摆臂131,通孔1311,滚柱仓1312,滚柱仓1312的顶端1312-1,滚柱仓1312的底端1312-2,滚柱仓1312的导向斜面1312A,导向斜面1312A的顶端1312A-1,导向斜面1312A的底端1312A-2,顶弧面1312B,底弧面1312C,盲孔1313,滚柱132,弹性件133,活动件1301。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的转轴机构可以应用于任何具有开合性能的设备中,示例性地,该设备可以是笔记本电脑、可折叠的手机等。
为了便于描述转轴机构的应用场景,以笔记本电脑为例,对转轴机构在设备中的应用做一简单说明。
图1是本申请提供的笔记本电脑的示意性爆炸图,图2是本申请提供的笔记本电脑的示意性装配图。
参考图1和图2,笔记本电脑10包括转轴机构100、屏幕组件200和主机组件300,屏幕组件200和主机组件300通过转轴机构100转动连接,具体地,转轴机构100的一端与屏幕组件200固定连接,另一端与主机组件300固定连接。在笔记本电脑10被打开时,屏幕组件200相对主机组件300绕顺时针方向转动,并且通过转轴机构100提供的扭力使得笔记本电脑10保持稳定打开的状态,在笔记本电脑10被闭合时,屏幕组件200相对主机组件300绕逆时针方向转动,并且通过转轴机构100提供的扭力使得屏幕组件200自由落下。
可以理解,本申请提供的设备可设置有一个或多个转轴机构,本申请不做任何限定,例如,设备中可设置有一个、两个、三个以及更多个转轴机构。示例性地,图1所示的笔记本电脑10中设置有两个转轴机构100,例如,沿着转轴机构100的轴线方向,两个转轴机构100对称设置。
转轴机构100的扭力由阻尼力(或摩擦力)提供,在笔记本电脑10被打开的过程中,阻尼力自然是越小越好,在笔记本电脑10被闭合的过程中,为了避免笔记本电脑10在屏幕组件的重力作用下被自动闭合以造成设备的损伤,需要通过转轴机构100提供较大的阻尼力来平衡屏幕组件200的重力。
所以,原则上,屏幕组件200越轻,转轴机构100产生的阻尼力也会越小,意味着用户可施加的力越小,越容易实现设备的单手打开,反之越不容易实现单手打开。在另一个角度上,主机组件300越轻,转轴机构100产生的阻尼力也会越大,在笔记本电脑被打开的过程中更容易带起主机组件300,也就越不容易实现单手打开,反之越容易实现单手打开。
在当前笔记本的轻量化趋势和触屏趋势下,屏幕组件的重量变重,主机组件的重量变轻,出现了“头重脚轻”的问题,若依然采用现有提供的恒定扭力的转轴机构,为了实现笔记本电脑的开合功能,转轴机构提供的恒定扭力必然会较大,这种情况下,在笔记本电脑被打开的过程中必然会带起主机组件,很难实现笔记本电脑的单手打开。
基于此,本申请提供了一种转轴机构,可为配置有该转轴机构的设备(例如,笔记本电脑)的打开和闭合(简称“开合”)提供差异化的扭力,使得该设备具有开轻关重的特性。设备的“开轻关重”表示的是,设备被打开时转轴机构提供低扭力,以实现设备的单手打开,设备被闭合时转轴机构提供较大的扭力,以使得设备的一部分(例如,屏幕组件)可自由盖合至另一部分(例如,主机组件)上。
简单来说,本申请的转轴机构可提供两种扭力,一种是恒定扭力,一种是变扭力,两种扭力合理组合以实现设备的打开和闭合。在设备被打开的过程中,变扭力较小,在设备被闭合的过程中,变扭力变大,两个过程中恒定扭力不变,从而,实现设备的单手开合。
此外,本申请还提供了一种具有开合性能的设备,该设备配置有上述的转轴机构,该转轴机构将设备的两部分转动连接,实现设备的单手开合。
为了便于描述,本申请定义了设备的可开合的两部分,分别是第一本体和第二本体,第一本体可以是与转轴机构中的转轴连接的部件,第二本体是与转轴机构中的支架连接的部件,在第一本体被打开时,可驱动转轴和支架发生相对转动,以使得第一本体和第二本体发生相对转动。以笔记本电脑为例,第一本体可以是屏幕组件,第二本体可以是主机组件。
此外,本申请还定义了两个转动方向,分别是第一方向和第二方向。第一方向是设备的打开方向,当设备被打开时,转轴机构的转轴绕第一方向转动。第二方向是设备的闭合方向,当设备被闭合时,转轴机构的转轴绕第二方向转动,第二方向与第一方向相反。示例性地,第一方向为顺时针方向,第二方向为逆时针方向。
以下,结合图3至图21,对本申请的转轴机构做详细说明。
图3是本申请提供的转轴机构的示意性装配图。图4是本申请提供的转轴机构的示意性爆炸图。图5是本申请提供的支架的示意性结构图。图6是本申请提供的转轴的示意性结构图。图7是本申请提供的摆臂机构的示意性结构图。图8是本申请提供的转轴机构的示意性截面图。
参考图3和图4,转轴机构100包括转轴110、支架120和摆臂机构130,摆臂机构130包括摆臂131和容纳于摆臂131的滚柱132,转轴110可与设备的第一本体(例如,屏幕组件)固定连接,支架120可与设备的第二本体(例如,主机组件)固定连接,以实现第一本体和第二本体的转动连接,实现设备的打开和闭合。其中,支架120分别与摆臂131和转轴110连接,摆臂131与转轴110邻近匹配设置,滚柱132与摆臂131和转轴110都转动连接,转轴110转动可带动滚柱132在摆臂131上转动,转轴110和支架120之间的相对转动产生的阻尼力用于提供恒定扭力,转轴110与滚柱132之间的相对转动产生的阻尼力用于提供变扭力。
参考图3、图4和图5,支架120包括支撑板123,可与设备的第二本体固定连接,示例性地,支撑板123上设置有多个紧固孔1231,可将紧固件(例如,螺栓或螺钉等)穿过紧固孔1231以将支撑板123固定在第二本体上,以将支架120和第二本体固定连接。参考图3、图4和图6,转轴110的端部被设置为固定结构113,可插入设备的第一本体中以实现转轴110与第一本体的固定连接,示例性地,固定结构113的外表面上设置有防滑纹,以更好地将转轴110固定在第一本体上。
继续参考图5,支架120包括轴套121,轴套121上具有套设转轴110的通孔。继续参考图6,转轴110包括与轴套121对应的恒定扭力结构111,轴套121与恒定扭力结构111之间配合以提供恒定扭力。一并参考图3,轴套121套设在恒定扭力结构111上且作为转轴110转动的支撑结构,恒定扭力结构111与轴套121之间采用过盈配合,在设备被打开或闭合时,转轴110相对支架120转动,轴套121与恒定扭力结构111之间的摩擦配合可提供恒定的阻尼力以提供恒定扭力,以及,在设备处于使用状态时,轴套121与恒定扭力结构111之间的阻尼力还可使得第一本体处于相对稳定的状态。
可以理解,本申请对轴套121的数量不做任何限定,支架120可包括一个、两个、三个、四个或更多个轴套121。当支架120包括多个轴套121时,多个轴套121同轴且间隔设置,以便于转轴110穿入多个轴套121中,示例性地,图5示出了两个轴套121。对应地,本申请对 恒定扭力结构111的数量也不做任何限定,恒定扭力结构111的数量与轴套121的数量相同。
继续参考图5,支架120还包括摆臂连接结构124,摆臂连接结构124具有开口朝向转轴110的容纳腔,以容纳摆臂131,以将摆臂131连接在支架120上。示例性地,支架120的支撑板123上可设置有摆臂连接结构124。示例性地,摆臂连接结构124可设置在两个相邻的轴套121之间,分别与两个轴套121固定连接。
在一些实施例中,摆臂131与支架120可转动连接,摆臂131可绕着转轴110的轴向方向朝着靠近转轴110或远离转轴110的方向转动。一并参考图5、图7和图8。示例性地,沿着转轴110的轴向方向,摆臂连接结构124上相对的两侧设置有两个活动孔1241(如图5所示),以及,沿着转轴110的轴向方向,摆臂131上设置有通孔1311(如图7所示),活动件1301依次穿过摆臂连接结构124的一个活动孔1241、摆臂131的通孔1311以及摆臂连接结构124的另一个活动孔1241(如图8所示),以实现摆臂131与支架120之间的转动连接。示例性地,活动件1301可以是类似轴销的可活动的部件。
一并参考图5、图6和图8,支架120的两个轴套121之间具有间隙122(如图5所示),间隙122与摆臂连接结构124的容纳腔相通,转轴110的恒定扭力结构111与轴套121配合,转轴110的一部分外露于间隙122中,该部分可与滚柱132配合以提供变扭力,为了便于描述,将该部分区域记为转轴110的变扭力结构112。在一些实施例中,转轴110的两个恒定扭力结构111之间设置有位于间隙122的变扭力结构112(如图6所示),变扭力结构112与滚柱132配合(如图8所示)以提供转轴机构的变扭力。
以下,结合图7至图11,详细描述摆臂机构130与变扭力结构112以及相关部件,以说明转轴机构可提供不同扭力的原理和过程。
参考图7和图8,摆臂131上设置有开口朝向转轴110的滚柱仓1312,滚柱仓1312大体上呈U字型结构,滚柱仓1312中容纳有滚柱132。滚柱132与滚柱仓1312转动连接,以及,滚柱132与转轴110转动连接。当设备被打开时,转轴110绕第一方向转动,可带动滚柱132朝滚柱仓1312的顶端1312-1转动,当设备被闭合时,转轴110绕第二方向转动,可带动滚柱132朝滚柱仓1312的底端1312-2转动。应理解,当设备处于打开状态时,滚柱132位于滚柱仓1312的顶端1312-1,滚柱仓1312的顶端1312-1表示滚柱132在滚柱仓1312上的一个极限位置;当设备处于闭合状态时,滚柱132位于滚柱仓1312的底端1312-2,滚柱仓1312的底端1312-2表示滚柱132在滚柱仓1312上的另一个极限位置。
在一些实施例中,滚柱仓1312的内壁包括导向斜面,在滚柱仓1312的底端1312-2延伸至滚柱仓1312的顶端1312-1的延伸方向上,导向斜面朝着远离转轴110的方向倾斜,这种设计可以使得转轴在相同角度且相反的转动方向上具有差异化的扭力,以使得配置有转轴机构的设备具有开轻关重的特性。
图9是本申请提供的摆臂的示意性结构图,图10是本申请提供的滚柱与转轴的关系的示意图。
一并参考图9,在滚柱仓1312的底端1312-2延伸至滚柱仓1312的顶端1312-1的延伸方向上,导向斜面1312A朝着远离转轴的方向倾斜,或者说,导向斜面1312A的底端1312A-2相对于导向斜面1312A的顶端1312A-1更靠近转轴110,导向斜面1312A的底端1312A-2靠近滚柱仓1312的底端1312-2,导向斜面1312A的顶端1312A-1靠近滚柱仓1312的顶端1312-1。假设,图9中的点画线表示转轴110的轴心所在的位置,导向斜面1312A的底端1312A-2与 转轴110的轴心的距离L2小于导向斜面1312A的顶端1312A-1与转轴110的轴心的距离L1。这样,由于导向斜面1312A的斜面设计,转轴在相同的转动角度下,在滚柱132朝着滚柱仓1312的底端1312-2转动相对于滚柱132朝着滚柱仓1312的顶端1312-1转动时,可以使得滚柱132和变扭力结构112之间产生更大的挤压力以产生更大的阻尼力,或者,转轴在相同的转动角度下,滚柱132位于滚柱仓1312的底端1312-2时相对于位于滚柱仓1312的顶端1312-1时,滚柱132和变扭力结构112之间产生更大的挤压力以产生更大的阻尼力,这样,可以为变扭力结构112提供更大的扭力,从而,为转轴110提供更大的扭力,使得转轴110在相同角度且相反的转动方向上具有差异化的扭力,以使得配置有转轴机构的设备具有开轻关重的特性。
一并参考图10,为了分析滚柱132与变扭力结构112之间的配合,假设摆臂131不动,当滚柱132位于滚柱仓1312的顶端1312-1时,滚柱132与转轴110的变扭力结构112之间的距离为C2’,C2’可以近似为0或为负数,当C2’为负数时,滚柱132与转轴110的变扭力结构112之间出现干涉,C2’可以理解为干涉量,当滚柱132位于滚柱仓1312的底端1312-2时,滚柱132与变扭力结构112之间出现干涉量,记为C2。可以看出,在摆臂131不动的情况下,由于导向斜面1312A的斜面设计,滚柱132从滚柱仓1312的底端1312-2转动至滚柱仓1312的顶端1312-1时,滚柱132与变扭力结构112(或转轴110)之间的距离越来越小,意味着滚柱132与变扭力结构112之间的挤压力越来越小,两者之间的阻尼力越来越小,相反地,滚柱132从滚柱仓1312的顶端1312-1转动至滚柱仓1312的底端1312-2时,滚柱132与变扭力结构112(或转轴110)之间的距离越来越小,出现干涉量,意味着滚柱132与变扭力结构112之间的挤压力越来越大,两者之间的阻尼力越来越大。
从上述分析可以看出,由于导向斜面1312A的斜面设计,尤其在滚柱132朝滚柱仓1312的底端1312-2转动时,可能会导致滚柱132与转轴110(或变扭力结构112)之间的卡壳。因此,在一些实施例中,摆臂131与支架120之间可设计为转动连接,摆臂131与支架120的摆臂连接结构124之间具有间隙,以预留摆臂131朝着远离转轴110的方向转动的位移量。在该实施例中,在滚柱132朝着滚柱仓1312的底端1312-2转动时,滚柱132与变扭力结构112之间的干涉量可能会很少或者没有,将两者之间的干涉量转为摆臂131的位移,摆臂131可朝着远离转轴110的方向移动,避免了滚柱132与转轴110之间的卡壳。
在摆臂131的转动过程中,为了向变扭力结构112提供足够的挤压力以提供足够的阻尼力,摆臂机构130还可包括弹性件,以为摆臂131提供预压力,以使得弹性件通过摆臂131为滚柱132和变扭力结构112提供挤压力,并且,在摆臂131朝着远离转轴110的方向转动时,可通过弹性件将滚柱132紧压在变扭力结构112上,以在滚柱132和变扭力结构112之间产生较大的挤压力,以产生较大的阻尼力,从而,为转轴110提供较大的扭力。
继续参考图7和图8,摆臂机构130包括弹性件133,弹性件133的一端固定在支架120上另一端抵接在摆臂131上,以实现弹性件133的压缩和伸长。示例性地,弹性件133的一端固定在支架120的摆臂连接结构124上。示例性地,摆臂131上设置有盲孔1313(如图7所示)盲孔1313,弹性件133的伸入盲孔1313中,弹性件133的另一端抵接在盲孔1313的底壁上。当设备被打开时,转轴110绕第一方向转动,滚柱132朝着滚柱仓1312的顶端1312-1转动,摆臂131可转动也可以不转动,滚柱132与变扭力结构112之间的挤压力(或阻尼力)较小或者几乎为0,为变扭力结构112提供较小或几乎为零的扭力。当设备被关闭,转轴110 绕第二方向转动,滚柱132朝着滚柱仓1312的底端1312-2转动,在导向斜面1312A的作用下,摆臂131可朝着远离转轴110的方向转动,弹性件133被压缩,弹性件133的弹性力传递至滚柱132,使得滚柱132和变扭力结构112之间产生较大的挤压力(或阻尼力),从而,为变扭力结构112提供较大的扭力。
示例性地,弹性件133可以是压簧、橡胶弹簧等具有弹性的部件。
综上,可以看出,在摆臂131与支架120之间可转动连接的实施例中,在导向斜面1312A的斜面设计的作用下,在滚柱132朝着滚柱仓1312的顶端1312-1转动时,摆臂131可转动也可不转动,滚柱132和变扭力结构112之间的挤压力(或阻尼力)较小或者几乎为0,为变扭力结构112提供较小或几乎为零的扭力,在滚柱132朝着滚柱仓1312的底端1312-2转动时,摆臂131可朝着远离转轴110的方向转动,被压缩的弹性件133将弹性力传递至滚柱132,使得滚柱132和变扭力结构112之间可产生更大的挤压力(或阻尼力),以为变扭力结构112提供较大的扭力,从而,为转轴110提供较大的扭力,使得转轴110在同样的角度且相反的转动方向上具有差异化的扭力,以使得配置有转轴机构的设备具有开轻关重的特性。
需要说明的是,滚柱仓1312的导向斜面1312A可以是任何形状的面,本申请不做任何限定,只要满足在滚柱仓1312的底端1312-2至滚柱仓1312的顶端1312-1的延伸方向上导向斜面1312A朝着远离转轴110的方向倾斜即可。
在一些实施例中,继续参考图9,导向斜面1312A是弧面。这样,弧面的导向斜面1312A可增加导向斜面1312A与滚柱132的圆柱面之间的接触面积,可以增大摩擦力并减少磨损。在另一些实施例中,参考图11,图11是本申请提供的摆臂的另一示意性结构图,导向斜面1312A是直面。这样,直面的导向斜面1312A可以使得滚柱132可以平顺地上下滚动,而且,滚柱132在滚动过程中的扭力变化也趋向于线性比变化。
可以理解,继续参考图9,滚柱仓1312的内壁可由三段壁面构成,位于中间的导向斜面1312A和连接导向斜面1312A的两端的壁面,位于滚柱仓1312的顶端1312-1的壁面记为顶壁面1312B,位于滚柱仓1312的底端1312-2的壁面记为底壁面1312C,其中,顶壁面1312B和底壁面1312C的形状可以是任何形式的,本申请不做任何限定。
在一些实施例中,继续参考图9,滚柱仓1312的顶壁面1312B是弧面,可称为顶弧面1312B,和/或,滚柱仓1312的底壁面1312B是弧面,可称为底弧面1312C。这样,在滚柱132相对滚柱仓1312转动的过程中,由于顶弧面1312B和/或底弧面1312C的弧面设计,可以使得滚柱132与滚柱仓1312之间具有较好的配合,以使得滚柱132可在滚柱仓1312上实现较好的转动。继续参考图9,在滚柱仓1312具有顶弧面1312B和底弧面1312C的实施例下,由于导向斜面1312A的斜面设计,底弧面1312C的圆心O2与转轴110的轴心之间的距离小于顶弧面1312B的圆心O1与转轴110的轴心之间的距离。
示例性地,顶弧面1312B和底弧面1312C的半径相同。
示例性地,顶弧面1312B和底弧面1312C的半径大于或等于滚柱132的半径。这样,可以实现滚柱132与滚柱仓1312的面接触,以实现滚柱132与滚柱仓1312之间的稳定接触,以及,可以减少滚柱132与滚柱仓1312之间的摩擦以减少磨损,提高转轴机构的寿命。
在另一些实施例中,滚柱仓1312的顶壁面可以是直面或其他形式的壁面(图中未示出),滚柱仓1312的底壁面也可以是直面或其他形式的壁面(图中未示出)。
在上述实施例中,本申请提供的转轴机构,通过摆臂机构130与变扭力结构112之间 的配合,可使得转轴在相同角度且相反的转动方向上具有差异化的扭力,以使得配置有转轴机构的设备具有开轻关重的特性。此外,我们还希望设备具有如下特性:在设备刚被打开时,希望转轴110具有较小的阻尼力,以便于用户使用较小的力就可以打开设备,但是,在设备被打开至一定角度(例如,90°~135°的角度范围)处于正常的使用状态时,希望转轴110具有较大的阻尼力,以平衡第一本体的自身重力来增强第一本体的稳定性,特别是在第一本体具有触摸功能的屏幕时,还需要平衡点击在屏幕上的点击力以增强第一本体的屏幕被点击时的稳定性,总之,需要增强设备在使用过程的稳定性。
基于上述需求,本申请提供的转轴机构,可以在变扭力结构112上设置多个相连的变扭力区,多个变扭力区环绕转轴的轴向方向设置,多个变扭力区的表面是弧面,多个变扭力区对应的角度是设备被打开时第一本体(或转轴110)转动的角度或第一本体与第二本体之间可形成的角度,例如,多个变扭力区形成的角度是0°~135°,那么第一本体(或转轴110)可转动的角度或第一本体与第二本体之间的角度是0°~135°。沿设备的打开方向(即第一方向),多个变扭力区与滚柱132之间的阻尼力逐渐变大,在设备处于使用状态时可增强设备的稳定性,其中,滚柱132与多个变扭力区之间的阻尼力可以由第一值增加至第二值,第一值大于或等于0。
在一些实施例中,沿设备的打开方向(即第一方向),多个变扭力区是多个变径的变扭力区,即,多个变扭力区的半径逐渐增大,这样,可以使得滚柱132与多个变扭力区之间的阻尼力逐渐增大。
以下,结合图12至图18,对变扭力结构的多个变径的变扭力区进行说明。
图12是本申请提供的变扭力结构的示意性结构图。参考图12,示例性地,变扭力结构112包括三个变扭力区,分别为:第一变扭力区1121、第二变扭力区1122和第三变扭力区1123,第一变扭力区1121与第二变扭力区1122相连,第二变扭力区1122与第三变扭力区1123相连。按照半径从小到大的顺序排列,第一变扭力区1121、第二变扭力区1122和第三变扭力区1123的半径逐渐增大,即,第一变扭力区1121的半径r1小于第二变扭力区1122的半径r2,第二变扭力区1122的半径r2小于第三变扭力区的半径r3。三个变扭力区对应的角度是转轴110转动的角度,即,当转轴110转动至第一变扭力区1121时,转轴110转动的角度是第一变扭力区1121对应的角度,当转轴110转动至第二变扭力区时,转轴110转动的角度是第二变扭力区1122对应的角度,当转轴110转动至第三变扭力区1123时,转轴110转动的角度是第三变扭力区1123对应的角度。
可以理解,作为半径最大的第三变扭力区1123的角度是设备可以处于使用状态的一个角度,换句话说,当转轴110转动至第三变扭力区1123的过程中,设备可随时处于稳定的使用状态。
在设备被打开时,转轴110绕第一方向(如图12所示的顺时针方向)转动,可带动滚柱132从滚柱仓1312的底端1312-2转动至滚柱仓1312的顶端1312-1,滚柱132可依次与第一变扭力区1121、第二变扭力区1122以及第三变扭力区1123配合。由于r1小于r2,r2小于r3,因此,在设备被打开的过程中,滚柱132与多个变扭力区的配合可由间歇配合逐渐变为挤压接触,或者,滚柱132与多个变扭力区的配合也可以一直是挤压接触。但是,无论滚柱132与多个变扭力区是何种形式的配合,滚柱132与多个变扭力区之间的挤压力会逐渐增大以使得阻尼力逐渐增大,从而在设备被打开的过程中,可以使得转轴 110提供逐渐增大的阻尼力。应理解,若滚柱132与某个变扭力区(例如,第一变扭力区1121)之间是间隙配合,滚柱132与该变扭力区的挤压力以及阻尼力可以忽略。当滚柱132与第三变扭力区1123接触时,滚柱132与第三变扭力区1123之间的挤压力最大从而阻尼力最大,所以,当转轴110转动至第三变扭力区1123对应的角度时,转轴110在停止转动时设备可以处于稳定的使用状态。
在设备被闭合的过程中,转轴110绕第二方向(如图12所示的逆时针方向)转动,可带动滚柱132从滚柱仓1312的顶端1312-1转动至滚柱仓1312的底端1312-2,滚柱132依次与第三变扭力区1123、第二变扭力区1122以及第一变扭力区1121配合。由于r1小于r2,r2小于r3,因此,在设备被闭合的过程中,滚柱132与多个变扭力区的配合配合可由挤压接触逐渐变为间歇配合,或者,滚柱132与多个变扭力区的配合也可以一直是挤压接触。但是,无论滚柱132与多个变扭力区是何种形式的配合,滚柱132与多个变扭力区之间的挤压力逐渐减小以使得阻尼力逐渐减小,从而在设备被闭合过程中,可以使得转轴110提供逐渐减小的阻尼力。
应注意,由于滚柱仓1312的导向斜面1312A的设计,在设备被闭合过程中,即使转轴110的阻尼力逐渐减少,但是,在同一个变扭力区中,只要滚柱132与该变扭力区接触,设备被闭合过程中该变扭力区的阻尼力大于设备被打开过程中该变扭力区的阻尼力。例如,当转轴110转动至第三变扭力区1123时,滚柱132与第三变扭力区1123接触,设备被闭合的阻尼力大于设备被打开的阻尼力。
上文描述的变扭力结构设置的多个变径的变扭力区,可以使得设备在打开过程的阻尼力逐渐增大,在设备处于使用状态时,可增强第一本体的稳定性以及第一本体的屏幕被点击时的稳定性,以增强设备的稳定性。此外,在设备被闭合至一定角度范围(例如,0°~15°)时,我们又希望转轴110的阻尼力很小甚至为0,以便于闭合设备并减少残余扭力。因此,在本申请中,可以对变扭力区做合理设计,使得设备被闭合至一定角度时变扭力区的阻尼力很小甚至为0。
在变扭力结构包括多个变扭力区的实施例中,可以使得半径最小的变扭力区与滚柱132之间的配合是间歇配合,由于导向斜面的设计,意味着无论是在设备的打开还是闭合过程,半径最小的变扭力区与滚柱132之间的配合都是间歇配合。这样,在设备被打开的过程中,滚柱132与多个变扭力区之间的配合由间歇配合逐渐变为挤压接触,变扭力区的阻尼力逐渐增大,在设备被闭合的过程中,滚柱132与多个变扭力区之间的配合由挤压接触逐渐变为间歇配合,一旦滚柱132与变扭力区之间是间歇配合,意味着滚柱132与变扭力区之间的阻尼力很小甚至为0,可以很容易地闭合设备。
在变扭力结构包括上述第一变扭力区1121、第二变扭力区1122和第三变扭力区1123的实施例中,第一变扭力区1121是与滚柱132间歇配合的扭力区,第三变扭力区1123是与滚柱132挤压接触的扭力区,是设备可处于稳定的使用状态的扭力区,第二变扭力区1122介于两者之间。
以半径最小的第一变扭力区1121的起始角度作为0°为例,示例性地,第一变扭力区的圆心角介于0°~15°之间,第二变扭力区的圆心角介于15°~90°之间,第三变扭力区的圆心角介于90°~135°之间。
应理解,虽然图12示出了三个变径的变扭力区,但是,本申请的转轴机构并不限定变 扭力区的个数,例如,转轴机构可以采用一个、两个、四个、五个等不同数量的变扭力区。
在变扭力结构包括多个变扭力区时,除了满足多个变扭力区之间的半径变化需求外,示例性地,多个变扭力区中相邻的变扭力区的连接处可以为圆滑过渡。其中,圆滑过渡表示的是两个变扭力区在连接处共切线,或者,也可以理解为在连接处的弧度相同,以使得滚柱132从一个变扭力区过渡到另一个变扭力区时可实现平滑过渡,避免两者出现卡顿的情况。
为了便于理解上述设备在打开以及闭合过程中转轴110与摆臂机构130之间的配合,以下,结合图13至图18,以上述三个角度对应的变扭力区为例,对设备的打开以及闭合过程进行说明。其中,图13至图15为设备在打开过程中转轴110与摆臂机构130配合的示意图,图16至图18为设备在闭合过程中转轴110与摆臂机构130配合的示意图。
图13是本申请提供的设备在打开过程中转轴110与摆臂机构130配合的状态1的示意图。参考图13,设备被打开,在转轴110(或第一本体)绕第一方向转动至0°~15°的过程中,第一变扭力区1121与摆臂机构130的滚柱132的位置对应,第一变扭力区1121的半径r1最小,第一变扭力区1121与滚柱132之间是间歇配合,滚柱132和摆臂131都静止,第一变扭力区1121与滚柱132之间无扭力,将该状态下第一变扭力区1121与滚柱132之间的扭力F1=0。因此,在该过程中,转轴110的扭力仅由恒定扭力结构111与轴套121之间的摩擦配合提供,转轴110整体的扭力最小,所以,用户可单手使用较小的力单手打开设备。
图14是本申请提供的设备在打开过程中转轴110与摆臂机构130配合的状态2的示意图。参考图14,设备继续被打开,在转轴110(或第一本体)绕第一方向转动至15°~90°的过程中,第二变扭力区1122与滚柱132的位置对应,第二变扭力区1122的半径r2大于第一变扭力区1121的半径r1,第二变扭力区1122与滚柱132接触,第二变扭力区1122带动滚柱132朝着滚柱仓1312的顶端1312-1(图14所示的向上的箭头方向)转动,但是,第二变扭力区1122与滚柱132之间的挤压力非常小,第二变扭力区1122与滚柱132之间的扭力F2非常小,几乎可以忽略。因此,在该过程中,转轴110整体的扭力与状态1几乎相同,转轴110整体的扭力都小,所以,用户可单手使用较小的力继续打开设备。可以理解,在该过程中,由于第二变扭力区1122与滚柱132之间的挤压力非常小,摆臂131可以视为静止的,或者,即使摆臂131转动也是微小转动,可忽略。
图15是本申请提供的设备在打开过程中转轴110与摆臂机构130配合的状态3的示意图。参考图15,设备继续被打开,在转轴110(或第一本体)绕第一方向转动至90°~150°的过程中,第三变扭力区1123与滚柱132的位置对应,第三变扭力区1123的半径r3最大,滚柱132转动至滚柱仓1312的顶端1312-1后无法继续向上转动,第三变扭力区1123挤压滚柱132且带动摆臂131朝远离转轴110的方向(第一方向)转动,弹性件133被压缩,在弹性件133的作用下,第三变扭力区1123与滚柱132之间的挤压力变大,第三变扭力区1123与滚柱132之间产生较大的扭力F3。因此,在该过程中,转轴110整体的扭力(滚柱132与变扭力结构112之间的扭力以及轴套121与恒定扭力结构111之间的扭力之和)变大,通过该扭力可增强该角度下第一本体的稳定性以及第一本体的屏幕被点击时的稳定性。
图16是本申请提供的设备在闭合过程中转轴110与摆臂机构130配合的状态4的示 意图。为了更好地理解设备的开轻关重的特性,可对比图15所示的状态3的示意图。参考图16,设备被闭合,在转轴110(或第一本体)绕第二方向转动至90°~150°的过程中,第三变扭力区1123与滚柱132的位置对应,第三变扭力区1123继续和滚柱132接触,且带动滚柱132朝着滚柱仓1312的底端1312-2(图16中向下的箭头方向)转动,由于滚柱仓1312的导向斜面1312A的斜面设计,第三变扭力区1123继续挤压滚柱1312且带动摆臂131继续朝远离转轴110的方向(第一方向)转动,在该状态下摆臂131转动的位移量大于状态3下摆臂131转动的位移量,弹性件133继续被压缩,在弹性件133的作用下,第三变扭力区1123与滚柱132之间的挤压力更大,第三变扭力区1123与滚柱132之间产生更大的扭力F4。因此,在该过程中,转轴110整体的扭力(滚柱132与变扭力结构112之间的扭力以及轴套121与恒定扭力结构111之间的扭力之和)更大,通过该扭力可增强该角度下第一本体的稳定性以及第一本体的屏幕被点击时的稳定性。
图17是本申请提供的设备在闭合过程中转轴110与摆臂机构130配合的状态5的示意图。为了更好地理解设备的开轻关重的特性,可对比图14所示的状态2的示意图。参考图17,设备继续被闭合,在转轴110(或第一本体)绕第二方向转动至15°~90°的过程中,第二变扭力区1122与滚柱132的位置对应,由于第二变扭力区1122的半径r2小于第三变扭力区1123的半径r3,相比于状态4,摆臂131会朝着靠近转轴110的方向(第二方向)转动,摆臂131与转轴110之间的间距变小,弹性件133的压缩量逐渐变小,第二变扭力区1122与滚柱132之间的挤压力比状态4的挤压力小,第二变扭力区1122与滚柱132之间产生较小的扭力F5,但是,由于导向斜面1312A的斜面设计,扭力F5仍然比状态2的扭力F2大。因此,在该过程中,转轴110整体的扭力(滚柱132与变扭力结构112之间的扭力以及轴套121与恒定扭力结构111之间的扭力之和)变小,但仍然比状态2的转轴110整体的扭力大,可避免第一本体在自身重力的作用下被自动闭合以造成设备的损伤。
图18是是本申请提供的设备在闭合过程中转轴110与摆臂机构130配合的状态6的示意图。可对比图13所示的状态1的示意性。参考图18,设备继续被闭合,在转轴110(或第一本体)绕第二方向转动至0°~15°的过程中,第一变扭力区1121与滚柱132的位置对应,由于第一变扭力区1121的半径r1最小,第一变扭力区1121与滚柱132间隙配合,滚柱132和摆臂131都静止,第一变扭力区1121与滚柱132之间无扭力,将该状态下第一变扭力区1121与滚柱132之间的扭力F6=0。因此,在该过程中,转轴110的扭力仅由恒定扭力结构111与轴套121之间的摩擦配合提供,转轴110整体的扭力最小,有利于闭合设备并减少残余扭力。
在上述6个状态中,在设备打开时,摆臂机构130与变扭力结构112配合的扭力变化为:F1<F2<F3,在设备被闭合时,摆臂机构130与变扭力结构112配合的扭力变化为:F4>F5>F6,并且F4>F3,F5>F2。结合上文所述的设备的开轻关重的特性,可以进一步看出,在相同的转动角度(例如,第二变扭力区1122或第三变扭力区1123对应的角度)下,由于滚柱仓1312的导向斜面1312A的设计,在滚柱132位于滚柱仓1312的顶端1312-1和底端1312-2时,滚柱132与变扭力结构112之间可产生不同的挤压力以产生不同的扭力,在滚柱132位于滚柱仓1312的顶端1312-1时,滚柱132与变扭力结构112之间的挤压力小导致扭力小,滚柱132位于滚柱仓1312的底端1312-2时,滚柱132与变扭力结构 112之间的挤压力大导致扭力大。
综上,本申请提供的转轴机构,通过轴套121与转轴10的恒定扭力结构111的配合可提供恒定扭力,通过摆臂机构130与转轴110的变扭力结构112之间的配合可提供变化的扭力,该变化的扭力可根据设备的打开或闭合而产生不同的扭力。该变化的扭力可以有两方面的变化:一方面,在设备被打开时,提供较小的扭力,以便于用户可采用较小的力单手打开设备,在设备被闭合时,提供较大的扭力,以使得设备的第一本体不是因为自身重力而自动盖合到第二本体上而导致设备的损伤,从而,实现设备的开轻关重的特性;另一方面,在变扭力结构112包括多个变扭力区的结构中,在设备被打开过程中,变扭力区的阻尼力逐渐增加导致扭力逐渐增大,在设备处于使用状态时,增强第一本体的稳定性以及第一本体的屏幕被点击时的稳定性,以使得设备可处于稳定的使用状态。
上述图12至图18仅示出了通过改变多个变扭力区的半径来改变滚柱132与变扭力区之间的扭力,但是,应理解,本申请提供的转轴机构不仅限于上述一种方式,还可以采用其他的方式。由阻尼力的公式可知,阻尼力的大小除了与挤压力相关外,还与阻尼系数相关。因此,本申请提供的多个变扭力区还可以通过改变不同变扭力区的阻尼系数来改变滚柱132与不同变扭力区配合时的阻尼力(即扭力)。示例性地,沿设备的打开方向(即第一方向),多个变扭力区与滚柱132之间的摩擦系数逐渐增大。在滚柱132与多个变扭力区接触时,由于摩擦系数的改变,滚柱132与多个变扭力区之间的扭力也可以改变。
在本申请的转轴机构中,转轴110的恒定扭力结构111和变扭力结构112可灵活设置,以满足实际需求。
在一些实施例中,转轴110包括沿转轴110的轴向方向间隔设置的多个恒定扭力结构111和多个变扭力结构112。其中,本申请对恒定扭力结构111和变扭力结构112之间的位置不做任何限定。
示例性地,变扭力结构112可设置在任意相邻的两个恒定扭力结构111之间。这样,可尽可能保证转轴110的两端受力均衡,使得转轴机构具有较好的稳定性。
例如,参考图6,转轴110包括两个恒定扭力结构111和一个变扭力结构112,变扭力结构112设置在两个恒定扭力结构111之间。
在一些实施例中,变扭力结构112的半径小于或等于恒定扭力结构的半径。这样,在变扭力结构112设置在恒定扭力半径111之间的实施例中,便于转轴110与支架120的装配。
在摆臂131与支架120转动连接的实施例中,由于滚柱仓1312的导向斜面1312A的斜面设计,转轴110的转动带动滚柱132在滚柱仓1312转动以使得摆臂131可朝着靠近转轴110或远离转轴110的方向转动,为了限制摆臂131向转轴110转动的位移,可以在支架上设置一个摆臂限位结构。
图19是申请提供的转轴机构的另一示意性装配图。图20是本申请提供的转轴机构的另一示例性截面图。参考图19和图20,支架120上设置有位于摆臂131的靠近转轴110的一侧的摆臂限位结构125,摆臂限位结构125与摆臂131的位置对应。示例性地,支架120的轴套121的端部设置有摆臂限位结构125。当摆臂131朝靠近转轴110的方向移动至一定位置时,摆臂131可抵接在摆臂限位结构125上,这样,通过摆臂限位结构125来限制摆臂131的位移量,以避免摆臂131过度转动导致摆臂131与转轴110之间的卡壳。此外,在变扭力结构112包括多个变扭力区的结构中,当半径最小的变扭力区(例如,第 一变扭力区)与滚柱132是间歇配合时,在弹性件133的作用下,通过摆臂限位结构125限制摆臂131的位置,可较好地实现滚柱132和该变扭力区之间的间歇配合。
可以理解,本申请对摆臂限位结构125的数量不做任何限定,摆臂限位结构125的数量可以是一个、两个、三个甚至更多个。示例性地,支架120的两个轴套121相对的一端分别设置有两个摆臂限位结构125。
如前所述,摆臂131与支架120之间转动连接,摆臂131可绕着支架120转动。在其他实施例中,摆臂131与支架120之间也可以是固定连接,在该实施例中,摆臂131可以不设置如图7和图8所示的弹性件133。
在一些实施例中,摆臂131可以由弹性材料制成,摆臂131具有弹性会发生形变,由于导向斜面1312A的设计,在相同的转动角度下,当滚柱132位于滚柱仓1312的底端1312-2和顶端1312-1时,摆臂131可具有不同的形变,以为变扭力结构112提供不同的挤压力以提供不同的阻尼力,达到提供不同扭力的目的。
在另一些实施例中,滚柱132可以由弹性材料制成,滚柱132具有弹性,由于导向斜面1312A的设计,在相同的转动角度下,当滚柱132位于滚柱仓1312的底端1312-2和顶端1312-1时,滚柱132可具有不同的形变,以为变扭力结构112提供不同的挤压力以提供不同的阻尼力,达到提供不同扭力的目的。
在本申请的转轴机构在使用时,转轴110与支架120相对转动,以实现第一本体与第二本体之间的相对转动。而设备在使用时,需要限定第一本体与第二本体转动的最大角度,以避免第一本体的转动角度过大损坏设备内的器件。因此,继续参考图5和图6,支架120上设置有缺口126,转轴110上设置有与缺口126配合的止档结构114,止档结构114可在缺口126的开口范围内转动。参考图21,在使用时,转轴110转动一定角度,可将止档结构114抵压在缺口126的侧壁1261上,以限定转轴110的转动角度,而限定了电子设备的打开角度。
本申请还提供了一种具有开合性能的设备,示例性地,该设备可以是笔记本电脑。关于该设备的描述可以参考图1和图2对笔记本电脑的描述,不再赘述。需要说明的是,图1和图2所示的屏幕组件200是与转轴机构100的转轴110固定连接的第一本体的一例,对应地,图1和图2所示的主机组件300是与转轴机构100的支架120固定连接的第二本体的一例。
应理解,图1至图21所示的设备中的各个部件的结构以及部件之间的连接关系仅为示意性说明,任何可替换的与每个部件所起的作用相同的部件的结构都在本申请实施例的保护范围内。
应理解,在本申请实施例中,除非另有明确的规定和限定,术语“连接”、“固定连接”、“转动连接”以及“接触”等术语应做广义理解。对于本领域的普通技术人员而言,可以根据具体情况理解上述各种术语在本申请实施例中的具体含义。
示例性地,针对“连接”,可以是固定连接、转动连接、柔性连接、移动连接、一体成型、电连接等各种连接方式;可以是直接相连,或,可以是通过中间媒介间接相连,或,可以是两个元件内部的连通或两个元件的相互作用关系。
示例性地,针对“固定连接”,可以是一个元件可以直接或间接固定连接在另一个元件上;固定连接可以包括机械连接、焊接以及粘接等方式,其中,机械连接可以包括铆接、螺栓连接、螺纹连接、键销连接、卡扣连接、锁扣连接、插接等方式,粘接可以包括粘合剂粘接以及溶剂粘接等方式。
示例性地,对于“接触”的解释,可以是一个元件与另一个元件直接接触或间接接触,此外,本申请实施例所描述的两个元件之间的接触,可以理解为在安装误差允许范围内的接触,可以存在由于安装误差原因造成的很小的间隙。
还应理解,本申请实施例描述的“平行”或“垂直”,可以理解为“近似平行”或“近似垂直”。
还应理解,术语“中心”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“元件的至少部分”是指元件的部分或全部。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种转轴机构,用于连接设备的第一本体和第二本体,其特征在于,包括:支架、摆臂、滚柱和转轴;
    所述转轴可与所述第一本体固定连接,包括恒定扭力结构和变扭力结构;
    所述支架可与所述第二本体固定连接,套设在所述恒定扭力结构上且与所述摆臂连接;
    所述摆臂上设置有开口朝向所述转轴且容纳所述滚柱的滚柱仓,所述滚柱分别与所述变扭力结构和所述滚柱仓转动连接,在所述转轴绕第一方向转动时,所述转轴可带动所述滚柱朝所述滚柱仓的顶端转动,在所述转轴绕与所述第一方向相反的第二方向转动时,所述转轴可带动所述滚柱朝所述滚柱仓的底端转动,其中,
    所述滚柱仓的内壁包括导向斜面,在自所述底端至所述顶端的延伸方向上,所述导向斜面朝着远离所述转轴的方向倾斜,以在相同的转动角度下,使得当所述滚柱位于所述底端时相对于位于所述顶端时所述滚柱与所述变扭力结构产生更大的阻尼力。
  2. 根据权利要求1所述的转轴机构,其特征在于,所述摆臂与所述支架转动连接,所述摆臂可绕所述转轴的轴向方向转动;以及,
    所述转轴机构还包括弹性件,所述弹性件的一端固定在所述支架上且另一端抵接在所述摆臂上。
  3. 根据权利要求1或2所述的转轴机构,其特征在于,所述变扭力结构包括环绕所述转轴的轴向方向的多个相连的变扭力区,沿所述第一方向,所述滚柱与所述多个变扭力区之间的阻尼力逐渐变大。
  4. 根据权利要求3所述的转轴机构,其特征在于,沿所述第一方向,所述多个变扭力区的半径逐渐增大。
  5. 根据权利要求3或4所述的转轴机构,其特征在于,所述多个变扭力区中半径最小的变扭力区与所述滚柱之间为间隙配合。
  6. 根据权利要求3至5中任一项所述的转轴机构,其特征在于,所述多个变扭力区包括三个变扭力区,按半径由小到大的顺序排列,第一变扭力区的圆心角介于0度~15度之间,第二变扭力区的圆心角介于15度~90度之间,第三变扭力区的圆心角介于90度~135度之间。
  7. 根据权利要求1至6中任一项所述的转轴机构,其特征在于,所述支架上设置有位于所述摆臂的靠近所述转轴的一侧的摆臂限位结构,以限制所述摆臂朝所述转轴转动的位移量。
  8. 根据权利要求7所述的转轴机构,其特征在于,所述支架上设置有套设在所述恒定扭力结构上的轴套,以及,所述摆臂限位结构设置在所述轴套的端部。
  9. 根据权利要求1至8中任一项所述的转轴机构,其特征在于,所述导向斜面是弧面。
  10. 根据权利要求1至9中任一项所述的转轴机构,其特征在于,所述滚柱仓的内壁还包括连接所述导向斜面的顶弧面和底弧面。
  11. 根据权利要求10所述的转轴机构,其特征在于,所述顶弧面和所述底弧面的半径相同。
  12. 根据权利要求10或11所述的转轴机构,其特征在于,所述顶弧面和所述底弧面的半径大于所述滚柱的半径。
  13. 根据权利要求1至12中任一项所述的转轴机构,其特征在于,所述变扭力结构的半径小于或等于所述恒定扭力结构的半径。
  14. 一种具有开合性能的设备,其特征在于,包括第一本体、第二本体和如权利要求1至13中任一项所述的转轴机构,其中,所述第一本体与所述转轴机构的转轴连接,所述第二本体与所述转轴机构的支架连接。
  15. 根据权利要求14所述的设备,其特征在于,所述设备为笔记本电脑,所述第一本体为屏幕组件,所述的第二本体为主机组件。
PCT/CN2021/080060 2020-04-22 2021-03-10 转轴机构和具有开合性能的设备 WO2021213054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010322841.X 2020-04-22
CN202010322841.XA CN113534892A (zh) 2020-04-22 2020-04-22 转轴机构和具有开合性能的设备

Publications (1)

Publication Number Publication Date
WO2021213054A1 true WO2021213054A1 (zh) 2021-10-28

Family

ID=78124052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080060 WO2021213054A1 (zh) 2020-04-22 2021-03-10 转轴机构和具有开合性能的设备

Country Status (2)

Country Link
CN (1) CN113534892A (zh)
WO (1) WO2021213054A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116044886A (zh) * 2022-06-24 2023-05-02 荣耀终端有限公司 轴套、转动结构及电子设备
CN116085379A (zh) * 2022-06-17 2023-05-09 荣耀终端有限公司 转轴机构及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796171B (zh) * 2022-03-18 2023-03-11 英業達股份有限公司 電子裝置及其樞軸結構
CN115059682B (zh) * 2022-05-30 2024-04-19 联想(北京)有限公司 电子设备
CN116044890B (zh) * 2022-07-07 2023-10-20 荣耀终端有限公司 阻尼机构及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100223756A1 (en) * 2009-03-06 2010-09-09 Chia-Hui Chen Two-stage type torsion pivot hinge
CN204186789U (zh) * 2014-10-17 2015-03-04 兆利科技工业股份有限公司 转轴装置
CN106125831A (zh) * 2016-06-17 2016-11-16 联想(北京)有限公司 旋转结构及电子设备
CN106555815A (zh) * 2015-09-25 2017-04-05 昆山玮硕恒基电子科技有限公司 可变旋转扭力双轴同动转轴装置
CN108757716A (zh) * 2018-06-29 2018-11-06 联想(北京)有限公司 转轴装置和电子设备
CN110805610A (zh) * 2019-09-29 2020-02-18 华为技术有限公司 一种转轴组件及电子设备
CN213182472U (zh) * 2020-04-22 2021-05-11 华为技术有限公司 转轴机构和具有开合性能的设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100223756A1 (en) * 2009-03-06 2010-09-09 Chia-Hui Chen Two-stage type torsion pivot hinge
CN204186789U (zh) * 2014-10-17 2015-03-04 兆利科技工业股份有限公司 转轴装置
CN106555815A (zh) * 2015-09-25 2017-04-05 昆山玮硕恒基电子科技有限公司 可变旋转扭力双轴同动转轴装置
CN106125831A (zh) * 2016-06-17 2016-11-16 联想(北京)有限公司 旋转结构及电子设备
CN108757716A (zh) * 2018-06-29 2018-11-06 联想(北京)有限公司 转轴装置和电子设备
CN110805610A (zh) * 2019-09-29 2020-02-18 华为技术有限公司 一种转轴组件及电子设备
CN213182472U (zh) * 2020-04-22 2021-05-11 华为技术有限公司 转轴机构和具有开合性能的设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116085379A (zh) * 2022-06-17 2023-05-09 荣耀终端有限公司 转轴机构及电子设备
CN116085379B (zh) * 2022-06-17 2024-03-26 荣耀终端有限公司 转轴机构及电子设备
CN116044886A (zh) * 2022-06-24 2023-05-02 荣耀终端有限公司 轴套、转动结构及电子设备
CN116044886B (zh) * 2022-06-24 2023-11-10 荣耀终端有限公司 轴套、转动结构及电子设备

Also Published As

Publication number Publication date
CN113534892A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2021213054A1 (zh) 转轴机构和具有开合性能的设备
WO2021058034A1 (zh) 一种转轴组件及电子设备
WO2021115462A1 (zh) 一种转轴机构和电子设备
US7565719B2 (en) Hinge for anchoring and folding on a small pintle
US6754081B2 (en) Pop-up friction hinge having multiple levels of torque
US7984533B2 (en) Dual-axis hinge mechanism
US20130135809A1 (en) Terminal apparatus
WO2021136028A1 (zh) 铰链装置以及折叠终端
US20130205543A1 (en) Adjustable torque hinge
WO2019200549A1 (zh) 开合机构及电子设备
US20080078062A1 (en) Swivel hinge for portable electronic device
US20050155183A1 (en) Hinge for a notebook computer
US20100064475A1 (en) Hinge assembly and electronic device using the same
US10168746B2 (en) Hinge mechanism for a computing device
US11382228B2 (en) Dual-axis hinge assemblies
EP2581613A1 (en) Hinge device
CN217462862U (zh) 一种枢纽器和电子设备
WO2012152093A1 (zh) 微波炉的开门结构
US20080078056A1 (en) Swivel hinge assembly for portable electronic device
CN114087277B (zh) 铰接装置以及电子设备
CN106020340B (zh) 一种电子设备
CN213182472U (zh) 转轴机构和具有开合性能的设备
WO2019104492A1 (zh) 折叠机构及电子装置
US20220147113A1 (en) Hinge assembly and portable electronic device
JP5351595B2 (ja) キャビネット用ステー及びそれを用いたキャビネット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21791759

Country of ref document: EP

Kind code of ref document: A1