WO2021212691A1 - 一种线粒体靶向化合物及其制备方法和应用 - Google Patents

一种线粒体靶向化合物及其制备方法和应用 Download PDF

Info

Publication number
WO2021212691A1
WO2021212691A1 PCT/CN2020/107179 CN2020107179W WO2021212691A1 WO 2021212691 A1 WO2021212691 A1 WO 2021212691A1 CN 2020107179 W CN2020107179 W CN 2020107179W WO 2021212691 A1 WO2021212691 A1 WO 2021212691A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
present
mitochondrial
mitochondrial targeting
Prior art date
Application number
PCT/CN2020/107179
Other languages
English (en)
French (fr)
Inventor
范培红
史晓佳
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2021212691A1 publication Critical patent/WO2021212691A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D455/00Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • C07D455/03Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention relates to the technical field of medicinal chemistry, in particular to a mitochondrial targeting compound and a preparation method and application thereof.
  • Tumor is a malignant disease with extremely high mortality, and the number of new cases is increasing year by year.
  • chemotherapy has become one of the widely used clinical tumor treatment methods.
  • Tumor drug resistance is a barrier for chemotherapeutic drugs to exert their anti-tumor effects.
  • drug-resistant tumors evade the killing effect of drugs by reducing the uptake of drugs by tumor cells and inhibiting apoptosis.
  • More and more evidence shows (such as the use of Gleevec) that the best way to solve tumor drug resistance should be to avoid drug resistance during the use of chemotherapeutic drugs, rather than to make up for adverse consequences. Therefore, in order to avoid the emergence of tumor resistance to pro-apoptotic drugs, research and development of drugs that can induce death through non-apoptotic pathways has become a new way of treating tumors.
  • Mitochondria play a key role in various programmed death processes, including apoptosis (Apoptosis), para-apoptosis (Paraptosis), mitochondrial permeability transition-mediated necrosis (Mitochondrial permeability transition-driven necrosis) and other programmed cell death .
  • apoptosis Apoptosis
  • para-apoptosis Para-apoptosis
  • mitochondrial permeability transition-mediated necrosis Mitochondrial permeability transition-driven necrosis
  • drugs that target mitochondria can be specifically aggregated in mitochondria, which can improve the regulation of mitochondria, avoid the occurrence of apoptosis escape, and enhance the sensitivity of tumors to chemical drugs.
  • the purpose of the present invention is to provide a mitochondrial targeting compound and its preparation method and application.
  • the compound of the present invention can specifically target the mitochondria of tumor cells and has excellent anti-tumor effects.
  • the present invention provides a mitochondrial targeting compound, the structure of which is shown in Formula I or Formula II:
  • R 1 and R 2 are each independently selected from a hydrogen atom or an alkyl substituent.
  • the alkyl group refers to a C 1 -C 5 linear or branched saturated alkyl group; n is selected from an integer between 1-18; X -is selected from halide ions.
  • the R 1 and R 2 are each independently selected from a hydrogen atom or a C 1 -C 5 linear saturated alkyl group.
  • R 1 and R 2 may be the same or different.
  • the C 1 -C 5 linear saturated alkyl group is selected from methyl, propyl or n-pentyl.
  • n is selected from an integer between 1-6, preferably 1, 3 or 6; particularly preferably 3.
  • the quaternary ammonium cation N + forms a salt with X - , and X-is selected from halide ions, preferably F, Cl, Br or I, most preferably I, that is, X - is iodide ion.
  • the compound of formula I or formula II of the present invention is selected from the following structures:
  • the present invention also provides a method for preparing the mitochondrial targeting compound described in the first aspect, which comprises: after activation with acetone, a saturated halogenated compound is introduced at position 13 of berberine The hydrocarbon chain obtains the intermediate compound 4, and the compound 4 undergoes further etherification to obtain the compounds of formula I and formula II. After separation, the compound of formula I or formula II is obtained.
  • the reaction route is as follows:
  • R 1 , R 2 , n, X - are the same as described in claim 1 or 2, and Y is halogen, selected from fluorine, chlorine, bromine, and iodine, preferably iodine.
  • the separation method can be column chromatography, for example, silica gel column chromatography is used to realize the separation of the compound of formula I and the compound of formula II.
  • the preparation method includes the following steps:
  • Step 1 Add acetone to berberine for activation to generate compound 3.
  • reaction solution is filtered through a sand core funnel, and the filter residue is washed with 80% methanol to a neutral pH, and then vacuum-dried to obtain compound 3.
  • Step 2 After dissolving compound 3, add dihalogenated hydrocarbon to it The reaction is stirred to produce compound 4.
  • the solvent is spin-dried on a rotary evaporator, the sample is mixed, and silica gel column chromatography can be used to separate compound 4.
  • Step 3 After the compound 2 is dissolved, the compound of formula 4 is added to it, and the compound of formula I and formula II is prepared by reaction.
  • the reaction solution is filtered under reduced pressure, spin-dried, sample mixed, and separated by silica gel column chromatography to obtain the compounds represented by formula I and formula II, respectively.
  • the preparation method of the present invention includes the following steps:
  • Step 1 Put berberine hydrochloride into the NaOH aqueous solution under normal temperature conditions, add acetone dropwise under stirring, react for 30-60 minutes, and check the progress of the reaction by TLC; after the reaction, the reaction solution is filtered through a sand core funnel. The filter residue was washed with 80% methanol until the pH was neutral, and dried in vacuum to obtain compound 3;
  • Step 2 Dissolve compound 3 in acetonitrile and add dihalogenated hydrocarbon Stir and react in an oil bath at 80°C for 6-10 hours. TLC detects the progress of the reaction; after the reaction, the acetonitrile is spin-dried on a rotary evaporator, the sample is mixed, and separated by silica gel column chromatography to obtain compound 4;
  • Step 3 Dissolve compound 2 in acetonitrile or acetone, add hydrogenation reagent potassium carbonate, stir for a while, add compound of formula 4, heat in an oil bath at 50-80°C, and monitor the progress of the reaction by TLC; after the reaction, the reaction solution is pumped under reduced pressure Filtration, spin-drying, sample mixing, and silica gel column chromatography to obtain the compound of formula I and the compound of formula II, respectively.
  • the present invention provides a pharmaceutical composition comprising the mitochondrial targeting compound described in the first aspect above, or a pharmaceutical composition containing the mitochondrial targeting compound described in the second aspect above Acceptable salt.
  • the present invention provides a pharmaceutical preparation comprising the mitochondrial targeting compound described in the above-mentioned first aspect, or a pharmaceutically acceptable compound containing the mitochondrial targeting compound described in the above-mentioned second aspect
  • the accepted salt may contain the pharmaceutical composition described in the fourth aspect above.
  • the pharmaceutical formulation further includes at least one pharmaceutically acceptable excipient.
  • the pharmaceutical composition or pharmaceutical preparation involved in the present invention contains one or more compounds described herein and one or more pharmaceutical excipients.
  • Some embodiments of the present invention include a method of producing a pharmaceutical composition or pharmaceutical preparation, the method comprising mixing at least one compound according to any of the compound embodiments disclosed herein with pharmaceutical excipients.
  • the preparation is prepared by any suitable method, usually by uniformly mixing the active compound with liquid and/or finely pulverized solid excipients in the desired ratio, and then, if necessary, forming the resulting mixture into the desired shape.
  • excipients such as excipients such as binders, fillers, acceptable wetting agents, tableting lubricants and disintegrating agents can be used in tablets and capsules for oral administration.
  • Liquid preparations for oral administration can be, for example, solutions, emulsions, aqueous suspensions, oily suspensions, syrups, and the like.
  • the oral preparation may be in the form of a dry powder that can be reconstituted with water or another suitable liquid vehicle before use.
  • Other adjuvant additives such as suspending agents, emulsifiers, non-aqueous vehicles (including edible oils), preservatives, flavoring agents, and coloring agents can be added to the liquid formulation.
  • the dosage form for parenteral administration can be prepared as follows: dissolve the compound of the present invention in a suitable liquid vehicle, filter and sterilize the solution, and then fill it into a suitable vial or ampoule and seal it. These methods are just a few examples of the many suitable methods known in the art for preparing dosage forms.
  • the compounds of the present invention can be formulated into pharmaceutical compositions or preparations using techniques well known to those skilled in the art. Except as mentioned in this article, suitable pharmaceutical excipients are known in the art, for example, see the 2005 edition of the Pharmaceutical Excipients Handbook (Original Fourth Edition), author (British) RC Luo (Raymond Crowe) (U.S.) PJ Shesky (PaulJSheskey).
  • the present invention provides a mitochondrial targeting drug carrier, which comprises the mitochondrial targeting compound described in the above-mentioned first aspect, or a mitochondrial targeting compound described in the above-mentioned second aspect A pharmaceutically acceptable salt, or the pharmaceutical composition described in the fourth aspect above, or comprises the pharmaceutical preparation described in the fifth aspect above.
  • the present invention provides the mitochondrial targeting compound described in the above-mentioned first aspect, or a pharmaceutically acceptable salt of the mitochondrial targeting compound described in the above-mentioned second aspect, or the above-mentioned fourth aspect.
  • the tumor disease is selected from ovarian cancer, liver cancer, colon cancer, prostate cancer, pancreatic cancer, lung cancer, and breast cancer.
  • the present invention provides the mitochondrial targeting compound described in the first aspect above, or a pharmaceutically acceptable salt of the mitochondrial targeting compound described in the second aspect above, or the fourth aspect described above.
  • the pharmaceutical composition described in the aspect, or the pharmaceutical preparation described in the fifth aspect, or the mitochondrial targeting drug carrier described in the sixth aspect is used in the preparation of drugs that target to interfere with or destroy the function of mitochondria in tumor cells. Or the application of reagents.
  • the interference or destruction of mitochondrial function in tumor cells includes overloading free radicals (such as reactive oxygen radicals, ROS, etc.) and/or destroying or losing membrane potential, thereby causing tumor cell damage.
  • free radicals such as reactive oxygen radicals, ROS, etc.
  • the present invention also provides a method for treating tumors, the method comprising administering to an individual the compound or pharmaceutical composition or pharmaceutical preparation of the present invention as described above.
  • “Individual” means any animal including mammals, preferably mice, rats, other rodents, rabbits, dogs, cats, pigs, cows, sheep, horses or primates, and most preferably humans.
  • the tumors such as ovarian cancer, liver cancer, colon cancer, prostate cancer, pancreatic cancer, lung cancer, breast cancer and so on.
  • the dosage When administering the compounds of the present invention to humans or animals, the dosage can be varied within a wide range. As is customary and known to doctors, the dosage can be adjusted to suit individual conditions in each individual case. For example, the dosage depends on the nature and severity of the disease to be treated, the condition of the patient, the compound used, whether the treatment is an acute or chronic condition, whether prevention is to be performed or whether other active compounds are administered in addition to the compound of the present invention.
  • Representative doses of the present invention include, but are not limited to, about 0.001 mg to about 5000 mg, about 0.001 mg to about 2500 mg, about 0.001 mg to about 1000 mg, 0.001 mg to about 500 mg, 0.001 mg to about 250 mg, about 0.001 mg to 100 mg, about 0.001 mg to about 50 mg and about 0.001 mg to about 25 mg.
  • Multiple doses may be administered in one day, especially when a relatively large amount is deemed necessary, the multiple doses being, for example, 2, 3 or 4 doses. Based on individual conditions and when the patient's doctor considers it appropriate, the dosage described herein may need to be adjusted up or down.
  • the active ingredients that need to be used in the treatment can vary with the route of administration, the nature of the disease to be treated, and the age and condition of the patient, and are ultimately determined by the clinician. Therefore, the actual dosage regimen used can vary greatly, and therefore may deviate from the preferred dosage regimen, and those skilled in the art should be aware that dosages and dosage regimens other than these typical ranges can be tested, And when appropriate, it can be used in the method of the present invention.
  • the present invention has the following beneficial effects:
  • the mitochondrial targeting compound provided by the present invention has strong anti-tumor activity in vitro, and its activity is significantly stronger than honokiol monotherapy, berberine monotherapy and honokiol-berberis The effect of alkali combination medication.
  • the compound of the present invention can specifically target mitochondria.
  • the mitochondrial targeting compound provided by the present invention can specifically target the mitochondria of tumor cells, swelling and deforming the mitochondria, and destroying the normal physiological functions of mitochondria such as free radicals (such as reactive oxygen species).
  • free radicals such as reactive oxygen species.
  • ROS free radicals
  • the compound of the present invention is a non-single apoptosis-inducing death agent.
  • the mitochondrial targeting compound provided by the present invention causes tumor cells to undergo cytoplasmic vacuolation-mediated cell death and apoptosis.
  • Figure 1 is a high-resolution mass spectrum of compound 6b of the present invention.
  • Figure 2 is a proton nuclear magnetic resonance spectrum of compound 6b of the present invention.
  • Figure 3 is a carbon nuclear magnetic resonance spectrum of compound 6b of the present invention.
  • Figure 4 is the NMR HSQC correlation spectrum of compound 6b of the present invention.
  • Figure 5 is the NMR HMBC correlation spectrum of compound 6b of the present invention.
  • Figure 6 is the tumor cell growth curve data of the compound 6b administration group of the present invention, the magnolol administration group, the berberine administration group, and the magnolol combined with berberine administration group; where **P ⁇ 0.01vs related control ;***P ⁇ 0.001vs related control.
  • Figure 7 shows that the compounds of the present invention induce vacuolation of HepG2 cells.
  • Figure 8 shows that compound 6b of the present invention up-regulates ROS levels.
  • Figure 9 shows the destruction of mitochondrial membrane potential by compound 6b of the present invention.
  • Figure 10 shows that compound 6b of the present invention is targeted and localized in the mitochondria of tumor cells.
  • reagents or raw materials used in the present invention can be purchased through conventional means. Unless otherwise specified, the reagents or raw materials used in the present invention are used in a conventional manner in the field or used in accordance with product instructions. In addition, any methods and materials similar or equivalent to the content described can be applied to the method of the present invention. The preferred implementation methods and materials described in this article are for demonstration purposes only.
  • the present invention adopts the following synthetic route to prepare the mitochondrial targeting compound of the present invention, namely the compound of formula I or formula II:
  • R 1 and R 2 are each independently selected from a hydrogen atom or an alkyl substituent.
  • the alkyl group refers to a C 1 -C 5 linear or branched saturated alkyl group; n is selected from an integer between 1-18; X -is selected from halide ions, especially iodide ions.
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 are each independently selected from a hydrogen atom or a C 1 -C 5 linear saturated alkyl group; in particular, the C 1 -C 5 linear saturated alkyl group It is selected from methyl, propyl or n-pentyl; n is selected from an integer between 1-6, especially 1, 3 or 6.
  • the preparation method of the compound of formula I or formula II of the present invention can be prepared according to the following method:
  • Synthesis of compound of formula 4 dissolve compound of formula 3 in acetonitrile and add dihalogenated hydrocarbon (Y is halogen, selected from fluorine, chlorine, bromine, and iodine, especially iodine; n is the same as defined in Formula I or Formula II), stirring, and reacting in an oil bath at 80° C. for 6-10 hours, and detecting the progress of the reaction by TLC. After the reaction, the acetonitrile was spin-dried on a rotary evaporator, the sample was mixed, and the silica gel column chromatography was used for separation to obtain a series of compounds of formula 4.
  • the compounds of the formula 4 series can be used in the following examples.
  • the series of compounds of formula 4 of the present invention for example, when Y is iodine, the series of compounds may include:
  • Synthesis of compounds of formula I and formula II dissolve the compound of formula 2 in acetonitrile or acetone, add hydrogen-extracting reagent potassium carbonate, stir for a while, add the compound of formula 4, heat in an oil bath at 50-80°C, and monitor the progress of the reaction by TLC. After the completion of the reaction, the reaction solution is filtered under reduced pressure, spin-dried, sample mixed, and separated by silica gel column chromatography to obtain the compounds represented by formula I and formula II, respectively.
  • the compound of formula 2 can be the following compounds:
  • the present invention investigates the anti-tumor activity of the mitochondrial targeting compound represented by formula I or formula II and its specific targeting to the mitochondria of tumor cells.
  • compound 3 (2.0g, 5.08mmol) and 1,3-diiodopropane (3.0ml, 25.5mmol) were dissolved in 35ml of acetonitrile, and the mixture was refluxed at 80°C for 6-8h, and the reaction progress was detected by TLC. After the reaction, it was cooled to room temperature, spin-dried on a rotary evaporator, sample mixed, and purified by silica gel column chromatography (DCM:MeOH 100:1-50:1) to obtain compound 4a as a yellow solid.
  • DCM:MeOH 100:1-50:1 silica gel column chromatography
  • the synthetic route is as follows:
  • compound 3 (1.5g, 3.8mmol) and 1,5-diiodopropane (2.6ml, 19mmol) were dissolved in 25ml of acetonitrile, and the mixture was refluxed at 80°C for 6-8h, and the reaction progress was monitored by TLC. After the reaction, it was cooled to room temperature, spin-dried on a rotary evaporator, sample mixed, and purified by silica gel column chromatography (DCM:MeOH 100:1-50:1) to obtain compound 4b as a yellow solid.
  • DCM:MeOH 100:1-50:1 silica gel column chromatography
  • the synthetic route is as follows:
  • compound 3 (1.38 g, 3.5 mmol) and 1,8-diiodooctane (3.7 ml, 17.5 mmol) were dissolved in 35 ml of acetonitrile, and the mixture was refluxed at 80° C. for 8-10 hours, and the reaction progress was detected by TLC. After the reaction, it was cooled to room temperature, spin-dried on a rotary evaporator, sample mixed, and purified by silica gel column chromatography (DCM:MeOH 100:1-50:1) to obtain compound 4c as a yellow solid.
  • DCM:MeOH 100:1-50:1 silica gel column chromatography
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the MTT colorimetric method was used to determine its effects on human ovarian cancer A2780, liver cancer HepG2, colon cancer HT29, pancreatic cancer PANC-1, and prostate cancer.
  • PC3 normal stem cell HL7702 growth inhibition, doxorubicin (DOX) as a positive control drug, and berberine (BBR, B), honokiol (HN, H) single-drug group and two-drug combination Use group (B+H).
  • HepG2 and PANC1 were inoculated in 10% FBS DMEM medium, A2780, PC3, HL7702 were inoculated in 10% FBS 1640 medium, and HT29 was inoculated in 10% FBS Mycoy'5a medium.
  • Each medium contained Penicillin 100U/ml, streptomycin 100 ⁇ g/ml, cultured at 37°C, 5% CO 2 incubator.
  • MTT colorimetric method Take cells in the logarithmic growth phase, inoculate 5000 cells/well in a 96-well plate, culture until the cells are completely attached to the wall, add drugs, and add different concentrations of drugs to each well at 37°C, 5% After incubating in a CO 2 incubator for 48 hours, add 10 ⁇ l of 5mg/mL MTT solution to each well, incubate at 37°C for 4 hours in the dark, carefully wash off the supernatant, add 100 ⁇ l of DMSO to each well to dissolve formazan and develop color using enzyme-linked immunosorbent assay The instrument detects the absorbance OD at a wavelength of 570nm. The experiment was carried out three times under different incubation times, and the average value and SD value were obtained. Honokiol invention - berberine mitochondrial targeting antitumor compounds in order to evaluate the median lethal dose IC 50, the specific data in Table 1.
  • the cell selectivity of compound 6b is better than other compounds, magnolol and berberine. For example, it has better selectivity between liver cancer HepG2 and normal hepatocyte HL7702.
  • this example also uses compound 6b as an example to determine the growth curve of HepG2 liver cancer cells.
  • the results are shown in Fig. 6. According to Fig. 6, it can be seen that the cell survival rate of the compound 6b group is the lowest, and it shows a stronger inhibitory effect at a lower concentration, which is significantly better than the honokiol and berberine single-agent group And the combination group of magnolol-berberine.
  • hepatocarcinoma HepG2 was taken as an example, and it was found that the compounds 5a to 5e and 6a to 6f of the present invention can induce vacuolation of tumor cells.
  • the fluorescent probe DCFH-DA is used to detect the level of reactive oxygen free radicals.
  • the specific operation is to add 1ml of serum-free cell culture medium containing 10 ⁇ M DCFH-DA to each sample, 37°C cell incubator Incubate for 20 minutes, after the probe is loaded, wash the cells three times with serum-free cell culture solution to fully remove the probes that have not entered the cells.
  • the active oxygen positive control agent Ros-up was added to the positive control well 2 hours before loading the probe, and other groups did not need to be added.
  • the cells were collected by digestion and centrifugation, resuspended in PBS, and detected by flow cytometry (FL1 channel).
  • Figure 8 shows that the compound 6b of the present invention can up-regulate the level of ROS in HepG2 cells.
  • the compound 6b of the present invention can significantly up-regulate ROS, and the up-regulation effect of 1 ⁇ M compound 6b on ROS is significantly better than the magnolol-berberine combination.
  • Group (B+H, 4+4 ⁇ M) and showed a dose-dependence.
  • this example also tested the effect of the compound of the present invention on the mitochondrial membrane potential.
  • the fluorescent probe JC-1 is used to detect the change of mitochondrial membrane potential.
  • the specific operation is to add 1ml of cell culture medium containing 2.5 ⁇ g/ml JC-1 to each sample, in a 37°C cell incubator Incubate for 20 minutes, wash the cells with cell culture medium three times, digest and centrifuge to collect the stained cells, resuspend in PBS, and detect by flow cytometry (FL2, FL3 channels).
  • Figure 9 shows the damage of compound 6b to the mitochondrial membrane potential of HepG2 cells. As the concentration of the drug increases, the degree of damage to the mitochondrial membrane potential is higher.
  • Example 10 Targeting mitochondrial localization of the compounds of the invention.
  • a laser confocal microscope was used to locate the compound in cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种线粒体靶向化合物及其制备方法和应用,所述线粒体靶向化合物的结构如式I或式II所示,其中,R 1与R 2各自独立地选自氢原子或烷基取代基,烷基是指C 1-C 5直链或支链的饱和烷基;n选自1-18之间的整数;X -选自卤素离子。该化合物能够特异性靶向线粒体,具有较好的抗肿瘤活性。

Description

一种线粒体靶向化合物及其制备方法和应用 技术领域
本发明涉及药物化学技术领域,具体涉及一种线粒体靶向化合物及其制备方法和应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
肿瘤是一种死亡率极高的恶性疾病,且新发病例数呈逐年上升趋势。目前,除手术和放疗外,化疗已成为临床上广泛使用的肿瘤治疗方法之一。肿瘤耐药性是化疗药物发挥抗肿瘤作用的屏障。通常,耐药肿瘤通过减少肿瘤细胞对药物的摄取和产生凋亡抑制来逃避药物的杀伤作用。越来越多的证据表明(如格列卫的使用),解决肿瘤耐药性的最佳方法应是在化疗药物使用过程中避免产生耐药,而不是产生不良后果再去弥补。因此,为了避免肿瘤对促凋亡药物耐药性的产生,研究和开发能够诱导非凋亡途径死亡的药物成为治疗肿瘤的新思路。
线粒体在各种程序性死亡进程中起着关键作用,包括凋亡(Apoptosis)、旁凋亡(Paraptosis)、线粒体通透性转换介导的坏死(Mitochondrial permeability transition-driven necrosis)等程序性细胞死亡。研究表明,通过靶向载体将以线粒体为靶点作用的药物特异性聚集于线粒体,可提高对线粒体的调控,避免凋亡逃逸发生,增强肿瘤对化药的敏感性。
发明内容
因此,本发明的目的是在于提供一种线粒体靶向的化合物及其制备方法和应用。本发明的化合物能够特异性靶向定位于肿瘤细胞的线粒体,并且具有优异的抗肿瘤效果。
具体地,本发明的技术方案如下所示:
在本发明的第一方面,本发明提供了一种线粒体靶向化合物,其结构如式I或式II所示:
Figure PCTCN2020107179-appb-000001
其中,R 1与R 2各自独立地选自氢原子或烷基取代基,烷基是指C 1-C 5直链或支链的饱和烷基;n选自1-18之间的整数;X -选自卤素离子。
在本发明的实施方式中,所述R 1与R 2各自独立地选自氢原子或C 1-C 5直链的饱和烷基。
在本发明的实施方式中,R 1和R 2可相同或不同。
在本发明的实施方式中,所述C 1-C 5直链的饱和烷基选自甲基、丙基或正戊基。
在本发明的实施方式中,n选自1-6之间的整数,优选为1、3或6;尤其优选为3。
在本发明的实施方式中,季铵阳离子N +与X -成盐,X -选自卤素离子,优选为F、Cl、Br或I,最优为I,即X -为碘离子。
在本发明的实施方式中,本发明所述式I或式II化合物选自以下结构:
Figure PCTCN2020107179-appb-000002
在本发明的第三方面,本发明还提供了一种制备上述第一方面中所述的线粒体靶向化合物的方法,其包括:经丙酮活化后,在小檗碱的13位引入饱和卤代烃链得到中间体化合物4,化合物4经进一步醚化反应得到式I和式II化合物,分离即得式I或式II化合物,反应路线如下所示:
Figure PCTCN2020107179-appb-000003
其中,R 1、R 2、n、X -同权利要求1或2中所述,Y为卤素,选自氟、氯、溴、碘,优选为碘。
所述分离的方法,可采用柱层析法,比如采用硅胶柱层析实现将式I化合物和式II化合物的分离。
在本发明的一些实施方式中,所述制备方法包括以下步骤:
步骤一:在小檗碱中加入丙酮进行活化生成化合物3。
优选地,该反应结束后,反应液经砂芯漏斗过滤,滤渣经80%甲醇洗涤至PH中性,真空抽干,可分离得到化合物3。
步骤二:将化合物3溶解后,向其中加入二卤代烃
Figure PCTCN2020107179-appb-000004
搅拌反应生成化合物4。
优选地,反应结束后,旋转蒸发仪旋干溶剂,拌样,硅胶柱层析可分离得化合物4。
骤三:将化合物2溶解后,向其中加入式4化合物,反应制备式I和式II化合物。
优选地,反应结束后,反应液经减压抽滤、旋干、拌样、硅胶柱层析分离,可分别得式I和式II所示化合物。
在本发明的一些实施方式中,本发明所述的制备方法包括以下步骤:
步骤一:在常温条件下,将盐酸小檗碱投入NaOH水溶液中,在搅拌下,逐滴滴加丙酮,反应30-60min,TLC检测反应进程;反应结束后,反应液经砂芯漏斗过滤,滤渣经80%甲醇洗涤至PH中性,真空抽干,得化合物3;
步骤二:将化合物3溶于乙腈,加入二卤代烃
Figure PCTCN2020107179-appb-000005
搅拌,80℃油浴反应6-10h,TLC检测反应进程;反应结束后,旋转蒸发仪旋干乙腈,拌样,硅胶柱层析分离,得化合物4;
步骤三:将化合物2溶于乙腈或丙酮,加入拔氢试剂碳酸钾,搅拌片刻,加入式4化合物,50-80℃油浴加热,TLC监测反应进程;反应结束后,反应液经减压抽滤、旋干、拌样、硅胶柱层析分离,分 别得式I化合物和式II化合物。
在本发明的第四方面,本发明提供了一种药物组合物,其包含上述第一方面中所述的线粒体靶向化合物,或者包含上述第二方面中所述的线粒体靶向化合物的药学上可接受的盐。
在本发明的第五方面,本发明提供了一种药物制剂,其包含上述第一方面中所述的线粒体靶向化合物,或者包含上述第二方面中所述的线粒体靶向化合物的药学上可接受的盐,或者包含上述第四方面中所述的药物组合物。
在一些实施方式中,所述药物制剂中还进一步包含至少一种药学上可接受的辅料。
本发明所涉及的药物组合物或药物制剂含有本文所述一种或多种化合物和一种或多种药用辅料。
本发明的一些实施方式中包括生产药物组合物或药物制剂的方法,所述方法包括将根据本文披露的任意化合物实施方案的至少一种化合物与药用辅料混合。
通过任意合适的方法制备制剂,通常通过以所需比例均匀混合活性化合物与液体和/或微细粉碎的固体辅料制备,然后如果需要,使所得混合物形成所需的形状。
常用的辅料比如赋型剂例如粘合剂、填充剂、可接受的润湿剂、制片润滑剂和崩解剂,这些可用在口服给药的片剂和胶囊剂中。用于口服给药的液体制剂比如可以为溶液剂、乳剂、水性混悬剂、油性混悬剂和糖浆剂等等。可选择地,口服制剂可呈干燥粉末剂的形式,所述干燥粉末剂可在使用前用水或另一种合适的液体媒介物复溶。可将其它辅料添加剂例如助悬剂、乳化剂、非水性媒介物(包括食用油)、防腐剂、矫味剂和着色剂加到液体制剂中。肠胃外给药的剂型可按如下方法制备:将本发明化合物溶解在合适的液体媒介物中,对溶液进行过滤灭菌,然后装填到合适的小瓶或安瓿中并密封。这些方法只是本领域公知的用于制备剂型的多种合适方法中的几个实例。
可使用本领域技术人员公知的技术将本发明的化合物配制成药物组合物或制剂。除本文提到以外,合适的药用辅料是本领域已知的,例如参见2005年版的药用辅料手册(原著第四版),作者(英)R.C.罗(RaymondCRowe)(美)P.J.舍斯基(PaulJSheskey)。
在本发明的第六方面,本发明提供了一种线粒体靶向的药物载体,其包含上述第一方面中所述的线粒体靶向化合物,或者包含上述第二方面中所述线粒体靶向化合物的药学上可接受的盐,或者上述第四方面所述的药物组合物,或者包含上述第五方面中所述的药物制剂。
在本发明的第七方面,本发明提供了上述第一方面中所述的线粒体靶向化合物,或者上述第二方面中所述的线粒体靶向化合物的药学上可接受的盐,或者上述第四方面中所述的药物组合物,或者上述第五方面中所述的药物制剂,或者上述第六方面中所述的线粒体靶向的药物载体在制备治疗肿瘤类疾病的药物中的应用。
在本发明的实施方式中,所述肿瘤类疾病选自卵巢癌、肝癌、结肠癌、前列腺癌、胰腺癌、肺癌、乳腺癌。
在本发明的第八方面,本发明提供了上述第一方面中所述的线粒体靶向化合物,或者上述第二方面中所述的线粒体靶向化合物的药学上可接受的盐,或者上述第四方面中所述的药物组合物,或者上 述第五方面中所述的药物制剂,或者上述第六方面中所述的线粒体靶向的药物载体在制备靶向干扰或破坏肿瘤细胞内线粒体功能的药物或试剂中的应用。
在本发明的实施方式中,所述干扰或破坏肿瘤细胞内线粒体功能包括使自由基(比如活性氧自由基ROS等等)过载和/或使膜电位破坏或丧失,进而导致肿瘤细胞损伤。
以及,在本发明的第九方面,本发明还提供了一种治疗肿瘤的方法,该方法包括向个体施用本发明如上所述的化合物或者药物组合物或者药物制剂。“个体”意指任意动物包括哺乳动物,优选小鼠、大鼠、其它啮齿动物、兔、狗、猫、猪、牛、羊、马或灵长类动物,以及最优选为人类。
所述肿瘤比如卵巢癌、肝癌、结肠癌、前列腺癌、胰腺癌、肺癌、乳腺癌等等。
当向人或动物施用使用本发明化合物时,剂量可在宽范围内变化,如对医生来说所习惯和已知的,对剂量进行调整以在每种个体情况下适应个体状况。例如,剂量取决于待治疗的疾病的性质和严重程度、患者的状况、所使用的化合物、治疗的是急性病症还是慢性病症、是否进行预防或除本发明化合物外是否还给药其它活性化合物。
本发明的代表性剂量包括但不限于约0.001mg至约5000mg、约0.001mg至约2500mg、约0.001mg至约1000mg、0.001mg至约500mg、0.001mg至约250mg、约0.001mg至100mg、约0.001mg至约50mg和约0.001mg至约25mg。可在一天内给药多次剂量,特别是当认为需要相对大的量时,所述多次剂量为例如2、3或4次剂量。基于个体状况并且当患者的医生认为合适时,可能需要上调或下调本文所述的剂量。
治疗中所需要使用的活性成分可以随给药途径、所治疗的病症的性质和患者的年龄和状况而变化,并且最终由临床医生来确定。因此,所使用的实际给药方案可变化很大,因此可偏离优选的给药方案,并且本领域技术人员应该意识到的是,可对除这些典型范围外的剂量和给药方案进行试验,以及当合适时,可用在本发明的方法中。
与现有技术相比,本发明具有以下有益效果:
(1)抗肿瘤活性高,本发明提供的线粒体靶向化合物具有较强的体外抗肿瘤活性,其活性显著强于和厚朴酚单一用药、小檗碱单一用药以及和厚朴酚-小檗碱联合用药的效果。
(2)本发明的化合物能够特异性靶向线粒体,本发明提供的线粒体靶向化合物可特异性靶向至肿瘤细胞的线粒体,使线粒体肿胀变形,破坏线粒体正常生理功能如自由基(比如活性氧自由基ROS)过载、膜电位丧失,导致肿瘤细胞代谢异常。
(3)本发明的化合物为非单一的凋亡诱导死亡剂,本发明提供的线粒体靶向化合物使肿瘤细胞发生胞质空泡化介导的细胞死亡及凋亡。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。以下,结合附图来详细说明本发明的实施方案,其中:
图1为本发明化合物6b的高分辨质谱图。
图2为本发明化合物6b的核磁共振氢谱图。
图3为本发明化合物6b的核磁共振碳谱图。
图4为本发明化合物6b的核磁共振HSQC相关图谱。
图5为本发明化合物6b的核磁共振HMBC相关图谱。
图6为本发明化合物6b用药组与和厚朴酚用药组、小檗碱用药组以及和厚朴酚联合小檗碱用药组的肿瘤细胞生长曲线数据;其中,**P<0.01vs related control;***P<0.001vs related control。
图7示出了本发明化合物诱导HepG2细胞空泡化。
图8示出了本发明化合物6b上调ROS水平。
图9示出了本发明化合物6b对线粒体膜电位的破坏。
图10示出了本发明的化合物6b靶向定位于肿瘤细胞的线粒体内。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。本发明所使用的试剂或原料均可通过常规途径购买获得,如无特殊说明,本发明所使用的试剂或原料均按照本领域常规方式使用或者按照产品说明书使用。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
在本发明的实施方式中,本发明采用以下合成路线制备本发明的线粒体靶向化合物,即式I或式II化合物:
Figure PCTCN2020107179-appb-000006
其中,R 1与R 2各自独立地选自氢原子或烷基取代基,烷基是指C 1-C 5直链或支链的饱和烷基;n选自1-18之间的整数;X -选自卤素离子,尤其为碘离子。R 1和R 2可相同或不同。
在一些优选地实施方式中,所R 1与R 2各自独立地选自氢原子或C 1-C 5直链的饱和烷基;尤其是,所述C 1-C 5直链的饱和烷基选自甲基、丙基或正戊基;n选自1-6之间的整数,尤其为1、3或6。
在本发明的一些实施方式中,本发明式I或式II化合物的制备方法可按照以下方法制备:
式3化合物的合成:在常温条件下,将5g盐酸小檗碱投入25ml 5N NaOH水溶液中,在搅拌下,逐滴滴加5ml丙酮,反应30-60min,TLC检测反应进程。反应结束后,反应液经砂芯漏斗过滤,滤渣经80%甲醇洗涤至PH中性,真空抽干,得式3化合物,用于下述实施例。
式4化合物的合成:将式3化合物溶于乙腈,加入二卤代烃
Figure PCTCN2020107179-appb-000007
(Y为卤素,选自氟、氯、溴、碘,尤其为碘;n同式I或式II中的定义),搅拌,80℃油浴反应6-10h,TLC检测反应进程。反应结束后,旋转蒸发仪旋干乙腈,拌样,硅胶柱层析分离,得式4系列化合物。式4系列化合物可用于下述实施例中。
本发明所述的式4系列化合物,比如当Y为碘时,该系列化合物可以包括:
Figure PCTCN2020107179-appb-000008
等。
式I和式II化合物的合成:将式2化合物溶于乙腈或丙酮,加入拔氢试剂碳酸钾,搅拌片刻,加入式4化合物,50-80℃油浴加热,TLC监测反应进程。反应结束后,反应液经减压抽滤、旋干、拌样、硅胶柱层析分离,即可分别得式I和式II所示化合物。
式2化合物根据R 1和R 2的选择,可以为以下化合物:
Figure PCTCN2020107179-appb-000009
等等。
式2系列化合物可用于下述实施例中。
为了使本领域工作人员更加清楚了解本发明的技术方案,下面将结合具体地制备实例进行详细说明。
在本发明的又一实施案例中,本发明考察了式I或式II所示的线粒体靶向化合物的抗肿瘤活性及其对肿瘤细胞的线粒体的特异性靶向性。
实验数据表明,本发明的具有显著的抗肿瘤活性,且活性优于和厚朴酚、小檗碱,以及和厚朴酚-小檗碱联合用药的效果。这表明,所发明化合物具有开发为抗肿瘤药物的潜力,且能够特异性靶向于肿瘤细胞的线粒体。
为了使本领域工作人员更加清楚了解本发明的技术方案,下面将结合实例进行详细说明。
实施例1:化合物5a与6a的合成
在搅拌下,将化合物3(2.0g,5.08mmol),1,3-二碘丙烷(3.0ml,25.5mmol)溶于35ml乙腈,混合液于80℃回流6-8h,TLC检测反应进程。反应结束后,冷却至室温,旋转蒸发仪旋干,拌样,硅胶柱层析纯化(DCM:MeOH 100:1-50:1),得黄色固体化合物4a。在搅拌下,将化合物2a(372mg,1.4mmol),K 2CO 3(1.9g,14mmol)溶于14ml乙腈,搅拌至溶液呈淡黄色后加入化合物4a(888mg,1.4mmol),混合液于80℃回流3-4h,聚酰胺板检测反应进程。反应结束后,反应液经真空抽滤、旋干、拌样、硅胶柱层析分离(DCM:MeOH 120:1),分别得化合物5a、化合物6a。
合成路线如下:
Figure PCTCN2020107179-appb-000010
5a的具体表征信息为: 1H NMR(600MHz,CD 3OD)δ9.68(s,1H),7.90(d,J=9.3Hz,1H),7.79(d,J=9.4Hz,1H),7.28(s,1H),7.18(d,J=2.3Hz,1H),7.15(dd,J=8.2,2.3Hz,1H),7.06–7.03(m,2H),6.91(s,1H),6.87(d,J=8.1Hz,1H),6.78(d,J=8.1Hz,1H),6.05(s,2H),5.99-5.02((m,2H),4.91-4.8(m,4H),4.70(t,J=5.7Hz,2H),4.20(s,3H),4.12(s,3H),3.99(t,J=5.0Hz,2H),3.60(t,J=7.9Hz,2H),3.35(d,J=6.7,2H),3.23(d,J=6.8,2H),2.97(t,J=5.8Hz,2H),2.20(q,J=7.0Hz,2H). 13C NMR(150MHz,CD 3OD)δ155.36,155.25,151.60,151.35,148.81,145.18,139.35,138.35,138.12,135.54,134.30,133.94,132.29,131.91,129.22,128.96,127.01,122.97,122.26,121.64,115.68,115.56,115.52,113.62,110.45,109.29,103.61,68.45,62.58,58.77,57.51,40.42,35.31,31.95,29.16,28.02.HR-ESI-MS m/z 642.2852for C 41H 40NO 6 +[M-I] +
6a的具体表征信息为: 1H-NMR(600MHz,CD 3OD):δ9.78(s,1H),8.23(d,J=9.3Hz,1H),8.11(d,J=9.4Hz,1H),7.36(s,1H),7.32(dd,J=8.4,2.3Hz,1H),7.28(d,J=2.3Hz,1H),7.03(d,J=2.2Hz,1H),6.94(dd,J=8.2,2.2Hz,1H),6.86(s,1H),6.79(t,J=8.4Hz, 2H),6.09(s,2H),6.01–5.91(m,2H),5.06-4,99(m,4H),4.72(s,2H),4.21(s,3H),4.12(s,3H),3.97–3.92(t,2H),3.80(t,2H),3.33–3.32(m,2H),3.28(dd,J=6.7Hz,2H),2.97(t,J=5.8Hz,2H),2.28(s,2H). 13C NMR(150MHz,CD 3OD)δ156.42,153.56,151.80,151.34,148.77,146.50,145.33,139.60,138.52,138.45,135.50,135.04,134.45,132.81,132.50,131.85,131.58,129.54,129.28,129.04,128.94,127.16,123.20,122.29,121.73,116.89,115.71,115.46,111.54,110.67,109.33,103.64,67.17,62.62,58.72,57.53,40.45,35.51,31.74,29.18,27.36,23.31.HR-ESI-MS m/z 642.2860for C 41H 40NO 6 +[M-I] +
实施例2:化合物5b与6b的合成
在搅拌下,将化合物3(1.5g,3.8mmol),1,5-二碘丙烷(2.6ml,19mmol)溶于25ml乙腈,混合液于80℃回流6-8h,TLC检测反应进程。反应结束后,冷却至室温,旋转蒸发仪旋干,拌样,硅胶柱层析纯化(DCM:MeOH 100:1-50:1),得黄色固体化合物4b。在搅拌下,将化合物2a(240mg,0.9mmol),K 2CO 3(1.25g,9mmol)溶于10ml乙腈,搅拌至溶液呈淡黄色后加入化合物4b(598mg,0.9mmol),混合液于80℃回流3-4h,聚酰胺板检测反应进程。反应结束后,反应液经真空抽滤、旋干、拌样、硅胶柱层析分离(DCM:MeOH 120:1),分别得化合物5b、化合物6b。
合成路线如下:
Figure PCTCN2020107179-appb-000011
5b的具体表征信息为: 1H NMR(600MHz,CD 3OD)δ9.73(s,1H),8.04(s,2H),7.18(d,J=2.3Hz,1H),7.08(s,1H),7.03(dd,J=8.3,2.3Hz,1H),7.00(d,J=2.2Hz,1H),6.98(dd,J=8.2,2.3Hz,1H),6.95(s,1H),6.90(d,J=8.3Hz,1H),6.56(d,J=8.2Hz,1H),6.00(s,2H),5.99–5.80(m,2H),5.06-4.86(m,4H),4.75(t,J=5.8Hz,2H),4.23(s,3H),4.11(s,3H),3.95(t,J=5.7Hz,2H),3.33(d,J=7.0Hz,2H),3.27(t,J=8.1Hz,2H),3.06(d,J=6.6Hz,1H),3.01(t,J=5.9Hz,2H),1.86,1.75,1.54(each,2H). 13C NMR(150MHz,CD 3OD)δ155.64,154.88,151.71,151.27,148.66,146.39,145.09,139.39,138.29,137.75,136.11,134.89,134.39,133.55,132.43,131.91,131.59,131.37,129.16,128.84,127.10,126.64,123.16,122.19,121.69,115.62,115.55,115.15,113.70,110.64,109.16,103.61,69.88,62.65,58.88,57.57,40.42,35.10,31.87,30.73,29.55,29.20,27.82.HR-ESI-MS m/z 670.3171for C 43H 44NO 6 +[M-I] +
6b的具体表征信息为: 1H NMR(600MHz,CD 3OD)δ9.77(s,1H),8.15(d,J=9.4Hz,1H),8.04 (d,J=9.5Hz,1H),7.34(dt,J=8.3,1.8Hz,1H),7.30(d,J=2.3Hz,1H),7.29(d,J=1.9Hz,1H),7.01(s,1H),7.00(d,J=2.3Hz,1H),6.92(dd,J=8.1,2.2Hz,1H),6.89(dd,J=8.5,1.5Hz,1H),6.79(d,J=8.2Hz,1H),6.08(s,2H),5.99–5.90(m,2H),5.08–4.94(m,4H),4.79–4.74(t,2H),4.20(s,3H),4.07(s,3H),4.01(t,J=6.0Hz,2H),3.46(dd,J=9.4,6.4Hz,2H),3.33(s,2H),3.30(s,2H),3.08(q,J=4.7,3.6Hz,2H),1.95,1.86,1.68(each,2H). 13C NMR(150MHz,CD 3OD)δ156.90,153.50,151.76,151.36,148.78,146.34,145.20,139.58,138.59,137.85,136.21,135.09,134.43,132.51,131.87,131.55,129.51,129.33,129.11,129.00,127.12,123.11,122.26,121.82,116.91,115.62,115.55,115.45,112.03,110.48,109.37,103.73,68.64,62.65,58.86,57.53,40.44,35.62,31.53,30.69,29.82,29.23,27.09.HR-ESI-MS m/z 670.3168for C 43H 44NO 6 +[M-I] +
实施例3:化合物5c与6c的合成
在搅拌下,将化合物3(1.38g,3.5mmol),1,8-二碘辛烷(3.7ml,17.5mmol)溶于35ml乙腈,混合液于80℃回流8-10h,TLC检测反应进程。反应结束后,冷却至室温,旋转蒸发仪旋干,拌样,硅胶柱层析纯化(DCM:MeOH 100:1-50:1),得黄色固体化合物4c。在搅拌下,将化合物2a(395mg,1.5mmol),K 2CO 3(2.0g,15mmol)溶于15ml乙腈,搅拌至溶液呈淡黄色后加入4c所示化合物(1050mg,1.5mmol),混合液于80℃回流6h,聚酰胺板检测反应进程。反应结束后,反应液经真空抽滤、旋干、拌样、硅胶柱层析分离(DCM:MeOH 120:1),分别得化合物5c、化合物6c。
合成路线如下:
Figure PCTCN2020107179-appb-000012
5c的具体表征信息为: 1H NMR(600MHz,CD 3OD)δ9.75(s,1H),8.12–8.06(m,2H),7.23(s,1H),7.21(d,J=2.2Hz,1H),7.10(dd,J=8.2,2.3Hz,1H),7.02(dd,J=5.7,2.4Hz,2H),6.97(s,1H),6.92–6.90(m,1H),6.70(d,J=8.3Hz,1H),6.00(s,2H),5.99–5.91(m,2H),5.08–4.92(m,4H),4.78(t,2H),4.20(s,3H),4.09(s,3H),3.91(t,J=6.1Hz,2H),3.32(d,J=1.5Hz,2H),3.29(dt,J=6.5,1.6Hz,2H),3.07(t,J=5.9Hz,2H),1.82(m,2H),1.64(m,2H),1.47–1.37(m,4H),1.36–1.26(m,6H). 13C NMR(150MHz,CD 3OD)δ155.77,155.13,151.75,151.32,148.74,145.14,139.38,138.52,137.77,135.01,134.44,133.61,132.38,131.59,131.32,129.30,128.82,127.13,126.82,123.10,122.25,121.78,115.63,115.42,115.34,114.15, 110.43,109.33,103.67,69.74,62.64,58.88,57.50,40.44,35.37,31.79,30.48,30.34,29.96,29.72,29.23,27.16.HR-ESI-MS m/z 712.3636for C 46H 50NO 6 +[M-I] +
6c的具体表征信息为: 1H NMR(600MHz,CD 3OD)δ9.74(s,1H),8.15(dd,J=9.3,2.3Hz,1H),8.13–8.09(m,1H),7.32(dt,J=8.5,2.2Hz,1H),7.28(m,2H),7.01(s,1H),6.97(d,J=2.2Hz,1H),6.91(dt,J=9.0,2.1Hz,1H),6.90–6.88(m,1H),6.77(d,J=8.2Hz,1H),6.08(s,2H),5.95(m,2H),5.09-4.92(m,4H),4.74(t,J=5.7Hz,2H),4.19(s,3H),4.10(s,3H),4.01(t,J=5.1,2H),3.41–3.37(m,2H),3.36–3.34(m,2H),3.30–3.28(m,2H),3.07(t,J=5.8Hz,2H),1.90–1.84,1.84–1.78,1.51,1.41(each,m,2H). 13C NMR(150MHz,CD 3OD)δ156.99,153.49,151.76,148.77,146.34,145.13,139.56,138.57,136.34,135.08,134.44,132.43,131.84,131.54,129.53,129.30,129.16,128.96,127.15,123.10,122.22,121.81,116.91,115.46(d,J=3.4Hz),112.02,110.46,109.35,103.74,69.02,62.59,58.84,57.50,40.44,35.63,31.88,30.51,30.28,30.09,29.90,29.23,27.14,23.26.HR-ESI-MS m/z 712.3631for C 46H 50NO 6 +[M-I] +
实施例4:化合物5d合成
在搅拌下,将化合物2b(145mg,0.518mmol),K 2CO 3(286mg,2.07mmol),实施例2所得化合物4b(227mg,0.345mmol)溶于3ml丙酮,混合液于50℃油浴加热5-6h,聚酰胺板检测反应进程。反应结束后,反应液经减压抽滤、旋干、拌样、硅胶柱层析分离(DCM:MeOH 100:1-50:1),得化合物5d。
合成路线如下:
Figure PCTCN2020107179-appb-000013
5d的具体表征信息为: 1H NMR(600MHz,CDCl 3)δ10.45(s,1H),7.85–7.73(m,2H),7.41–7.34(1H),7.32(dd,J=8.4,2.3Hz,1H),7.13(t,J=2.5Hz,1H),7.12–7.04(m,2H),6.93–6.86(m,2H),6.83(dd,J=16.0,8.5Hz,1H),6.05(d,J=4.3Hz,2H),5.97(dddt,J=16.8,10.1,8.4,6.7Hz,2H),5.13–4.95(m,4H),4.37(s,3H),4.07(s,3H),3.97(t,J=6.1Hz,2H),3.80(s,3H),3.37(dq,J=6.6,2.0,1.5Hz,2H),3.34(dt,J=6.6,1.6Hz,2H),3.24(q,J=9.9,9.2Hz,2H),3.16(t,J=5.5Hz,2H),1.81(dq,J=12.0,6.3Hz,2H),1.66(m,2H),1.28–1.23(m,2H). 13C NMR(150MHz,CDCl 3)δ150.57,149.89,147.38,146.49,146.00, 137.87,137.14,136.16,134.18,133.88,133.20,131.35,131.10,130.94,128.38,128.07,125.54,122.36,120.43,120.24,115.75,115.52,112.96,110.02,109.20,108.72,102.25,68.39,63.31,57.83,57.11,55.71,39.58,34.43,30.89,30.15,28.83,28.79,26.55.HR-ESI-MS m/z 684.3315 for C 44H 46NO 6 +[M-I] +
实施例5:化合物的6d合成
在搅拌下,将化合物2c(110mg,0.393mmol),K 2CO 3(220mg,3.9mmol),实施例2所得化合物4b(172mg,0.26mmol)溶于3ml丙酮,混合液于50℃油浴加热5-6h,聚酰胺板检测反应进程。反应结束后,反应液经减压抽滤、旋干、拌样、硅胶柱层析分离(DCM:MeOH 100:1-50:1),得化合物6d。
合成路线如下:
Figure PCTCN2020107179-appb-000014
6d的具体表征信息为: 1H NMR(600MHz,CDCl 3)δ10.38(s,1H),7.91(d,J=9.4Hz,1H),7.81(d,J=9.3Hz,1H),7.35(dd,J=8.3,2.3Hz,1H),7.31(d,J=2.2Hz,1H),7.13(s,1H),7.11–7.09(m,2H),6.91–6.89(m,2H),6.87(d,J=8.4Hz,1H),6.09(s,2H),5.99(dddt,J=18.4,16.8,10.1,6.8Hz,2H),5.10(q,J=1.8Hz,1H),5.07(q,J=1.8Hz,1H),5.05(dq,J=10.1,1.5Hz,1H),5.02(ddt,J=10.0,2.2,1.3Hz,1H),4.36(s,3H),4.05(m,5H),3.78(s,3H),3.48(s,2H),3.44–3.41(m,2H),3.38–3.33(m,4H),3.19(t,J=5.7Hz,2H),1.92(dt,J=12.0,6.2Hz,2H),1.77(m,2H),1.27–1.23(m,2H). 13C NMR(150MHz,CDCl 3)δ154.98,150.59,149.94,147.46,146.39,145.84,137.93,137.29,136.25,134.31,133.87,131.14,131.06,130.90,130.44,128.52,128.26,128.13,125.67,122.35,120.34,115.70,115.59,111.44,110.91,109.22,108.78,102.31,67.52,63.24,57.95,57.10,55.84,39.54,34.69,30.95,30.24,28.99,28.85,26.49.HR-ESI-MS m/z 684.3324for C 44H 46NO 6 +[M-I] +
实施例6:化合物的5e合成
在搅拌下,将化合物2d(120mg,0.389mmol),K 2CO 3(143mg,1.04mmol),实施例2所得化合物4b(171mg,0.26mmol)溶于3ml丙酮,混合液于50℃油浴加热7-8h,聚酰胺板检测反应进程。反应结束后, 反应液经减压抽滤、旋干、拌样、硅胶柱层析分离(DCM:MeOH 100:1-50:1),得化合物5e。
合成路线如下:
Figure PCTCN2020107179-appb-000015
5e的具体表征信息为: 1H NMR(600MHz,CDCl 3)δ10.39(s,1H),7.79(d,J=9.3Hz,1H),7.73(d,J=9.3Hz,1H),7.36(d,J=2.3Hz,1H),7.30(dd,J=8.4,2.3Hz,1H),7.13(d,J=2.3Hz,1H),7.07(dd,J=8.4,2.3Hz,1H),7.05(s,1H),6.89(d,J=8.3Hz,1H),6.86(s,1H),6.80(d,J=8.4Hz,1H),6.04(s,2H),5.97(dddt,J=16.9,10.2,6.7,3.6Hz,2H),5.14(2H),5.09-5.49(m,4H),4.38(s,3H),4.05(s,3H),3.97(t,J=6.0Hz,2H),3.90(t,J=6.3Hz,2H),3.37(d,J=6.7Hz,4H),3.24–3.20(m,2H),3.19(t,J=5.9Hz,2H),1.87(m,2H),1.81(m,4H),1.65(m,2H),1.25(2H)1.03(t,J=7.4Hz,3H). 13C NMR(150MHz,CDCl 3)δ155.91,154.38,150.53,149.86,147.34,146.51,145.93,137.89,137.30,136.19,134.07,134.00,133.21,132.70,131.28,131.11,130.81,130.71,128.33,128.02,125.46,122.28,120.41,120.15,115.74,115.45,112.99,110.87,109.14,108.73,102.23,69.80,68.36,63.39,58.04,57.08,39.59,34.70,30.86,30.15,28.78,28.74,26.53,22.88,10.89.HR-ESI-MS m/z 712.3632for C 46H 50NO 6 +[M-I] +
实施例7:化合物的6e合成
在搅拌下,将化合物2e(87.6mg,0.284mmol),K 2CO 3(157mg,1.14mmol),实施例2所得化合物4b(124mg,0.189mmol)溶于2.5ml丙酮,混合液于50℃油浴加热7-8h,聚酰胺板检测反应进程。反应结束后,反应液经减压抽滤、旋干、拌样、硅胶柱层析分离(DCM:MeOH 100:1-50:1),得化合物6e。
合成路线如下:
Figure PCTCN2020107179-appb-000016
6e的具体表征信息为: 1H NMR(600MHz,CDCl 3)δ10.41(s,1H),7.91(d,J=9.3Hz,1H),7.79(d,J=9.3Hz,1H),7.41(d,J=2.3Hz),7.36(dd,J=8.3,2.3Hz,1H),7.13(s,1H),7.12(d,J=2.3Hz,1H),7.07(dd,J=8.3,2.3Hz,1H),6.89(s,1H),6.88(d,1H),6.87(d,J=4.6Hz,1H),6.08(s,2H),5.99(dddt,J=20.7,16.9,10.1,6.8Hz,2H),5.11–5.00(m,4H),4.36(s,3H),4.06(d,J=6.9Hz,2H),4.04(s,3H),3.89(t,J=6.4Hz,2H),3.43(d,J=6.7,2H),3.37(d,2H),3.19(t,J=5.9Hz,2H),1.97(2H),1.95(2H),1.80–1.75(m,2H),1.75–1.69(m,4H),0.97(t,J=7.4Hz,3H). 13C NMR(150MHz,CDCl 3)δ155.62,154.46,150.58,149.90,147.42,146.32,145.84,137.98,137.28,136.15,134.25,133.81,133.18,132.24,131.35,130.97,130.39,128.43,128.05,127.86,125.55,122.29,120.41,120.36,115.63,115.59,112.55,110.79,109.18,108.75,102.30,70.10,67.44,63.27,57.90,57.06,39.56,34.69,30.93,30.25,28.97,28.80,26.47,22.73,10.97.HR-ESI-MS m/z 712.3632for C 46H 50NO 6 +[M-I] +
实施例8:化合物的6f合成
在搅拌下,将化合物2g(100mg,0.361mmol),K 2CO 3(166mg,1.2mmol),实施例2所得化合物4b(132mg,0.2mmol)溶于3ml丙酮,混合液于50℃油浴加热6-8h,聚酰胺板检测反应进程。反应结束后,反应液经减压抽滤、旋干、拌样、硅胶柱层析分离(DCM:MeOH 100:1-50:1),得化合物6f。
合成路线如下:
Figure PCTCN2020107179-appb-000017
6f的具体表征信息为: 1H NMR(600MHz,CDCl 3)δ10.47(s,1H),7.89(d,J=9.4Hz,1H),7.78(d,J=9.3Hz,1H),7.40(d,J=2.3Hz,1H),7.35(dd,J=8.4,2.3Hz,1H),7.13(s,1H),7.12(d,J=2.3Hz,1H),7.07(dd,J=8.3,2.3Hz,1H),6.89–6.88(m,2H),6.87(d,J=6.9Hz,1H),6.08(s,2H),6.05–5.94(m,2H),5.19(2H),5.10-5.02(dq,J=1.7Hz,4H),4.36(s,3H),4.05(dd,J=7.3,4.7Hz,2H),4.04(s,3H),3.92(t,J=6.5Hz,2H),3.43(dd,J=6.6,1.7Hz,2H),3.36(d,J=6.8Hz,2H),3.33(d,J=8.4Hz,2H),3.22(d,J=6.1Hz,2H),1.97(d,J=12.9Hz,2H),1.93(dt,J=12.4,6.2Hz,2H),1.78(p,J=7.7Hz,2H),1.71(dt,J=14.7,6.7Hz,2H),1.37(ddd,J=9.3,7.0,4.0Hz,2H),1.33–1.29(m,2H),0.88(t,J= 7.2Hz,3H). 13C NMR(150MHz,CDCl 3)δ155.68,154.54,150.62,149.88,147.38,146.57,146.18,138.00,137.34,136.21,134.13,133.22,132.30,131.40,131.03,130.51,128.45,128.06,127.91,125.56,122.41,120.49,120.25,115.64,115.54,112.72,110.87,109.17,108.79,102.27,68.67,67.52,63.37,60.54,57.95,57.10,39.59,34.71,30.96,30.25,29.10,29.02,28.44,26.50,22.53,21.20,14.34,14.17.HR-ESI-MS m/z 740.3956for C 48H 54NO 6 +[M-I] +
实施例9:本发明化合物的抗肿瘤活性评价
为了验证本发明的和厚朴酚-小檗碱线粒体靶向化合物的抗肿瘤活性,采用MTT比色法测定其对人卵巢癌A2780、肝癌HepG2、结肠癌HT29、胰腺癌PANC-1、前列腺癌PC3、正常干细胞HL7702的生长抑制作用,以多柔比星(DOX)为阳性对照药,同时设置小檗碱(BBR,B)、和厚朴酚(HN,H)单药组及两药联用组(B+H)。
细胞培养:将HepG2、PANC1接种于10%FBS DMEM培养基中,A2780、PC3、HL7702接种于10%FBS 1640培养基中,HT29接种于10%FBS Mycoy’5a培养基中,各培养基内含青霉素100U/ml,链霉素100μg/ml,于37℃、5%CO 2孵箱培养。
MTT比色法:取处于对数生长期的细胞,5000个细胞/孔接种于96孔板,培养至细胞完全贴壁后加药,每孔加入含有不同浓度的药物,于37℃、5%CO 2孵箱培养48h后,每孔加入10μl 5mg/mL的MTT溶液,37℃避光孵育4h,小心洗掉上清液,每孔加入100μl DMSO使甲臜溶解显色,使用酶联免疫检测仪在570nm波长检测吸光值OD。实验在不同培养时间下进行三次,求得平均值与SD值。本发明的和厚朴酚-小檗碱线粒体靶向化合物的抗肿瘤活性以半数致死量IC 50评价,具体数据见表1。
表1.本发明线粒体靶向化合物的抗肿瘤活性
Figure PCTCN2020107179-appb-000018
Figure PCTCN2020107179-appb-000019
a所有试验重复三次以上,结果通过Mean±SD呈现。 bp<0.0001vs HN。
c阳性药多柔比星。 d未测试。
根据表1可知,化合物6b的细胞选择性相较于其他化合物以及厚朴酚、小檗碱均更佳,比如在肝癌HepG2和正常肝细胞HL7702之间具有较好选择性。
同时,本实施例还以化合物6b为例测定对HepG2肝癌细胞的生长曲线。结果示于图6中,根据图6可知,化合物6b组的细胞存活率最低,并且在较低浓度下即表现出较强的抑制作用,明显优于和厚朴酚及小檗碱单药组以及和厚朴酚-小檗碱的联合用药组。
以及,本实施例以肝癌HepG2为例,检测发现本发明的化合物5a~5e、化合物6a~6f能够诱导肿瘤细胞发生空泡化。
实验方法:细胞经加药孵育后,置于光学显微镜下,相差条件下观察细胞形态。
其结果示于图7中,如图7所示,化合物6b组的胞质空泡化现象作为明显。
以及,本实施例还测试了本发明化合物对活性氧自由基ROS的影响。
实验方法:细胞经加药孵育后,使用荧光探针DCFH-DA检测活性氧自由基ROS水平,具体操作为每样品中加入1ml含10μM DCFH-DA的无血清细胞培养液,37℃细胞培养箱内培养20分钟,探针装载完毕,使用无血清细胞培养液洗涤细胞三次,以充分去除未进入细胞的探针。活性氧阳性对照剂Ros-up在装载 探针前2小时加入阳性对照孔中,其他组无需加入。消化离心收集细胞,PBS重悬,流式细胞仪(FL1通道)检测。
其中,图8示出了本发明化合物6b能够上调HepG2细胞内的ROS水平。与正常组(Ctrl)以及试剂盒阳性组(Ros-up)相比,本发明的化合物6b能够显著上调ROS,1μM化合物6b对ROS的上调效果显著优于厚朴酚-小檗碱的联合用药组(B+H,4+4μM),并且呈现出剂量依赖性。
以及,本实施例还测试了本发明化合物对线粒体膜电位的影响。
实验方法:细胞经加药孵育后,使用荧光探针JC-1检测线粒体膜电位变化,具体操作为每样品中加入1ml含2.5μg/ml JC-1的细胞培养液,37℃细胞培养箱内孵育20分钟,用细胞培养液洗涤细胞三次,消化离心收集染色后的细胞,PBS重悬,流式细胞仪(FL2,FL3通道)检测。
其中,图9示出了化合物6b对HepG2细胞线粒体膜电位的破坏,随着药物浓度的升高,对线粒体膜电位的破坏程度越高。
实施例10:本发明化合物的靶向线粒体定位。
为了验证本发明化合物的线粒体靶向性,采用激光共聚焦显微镜对化合物进行细胞定位。
实验步骤:HT29细胞给药结束后,装载线粒体红色荧光探针Mito Tracker Red CMXRos,使用激光共聚焦显微镜63×Oil进行拍摄,红色荧光为线粒体染色,绿色荧光为本发明化合物自发荧光。
结果表明本发明的化合物5a~5e、化合物6a~6f均可靶向定位于线粒体,比如图10示出了化合物6b靶向定位于HT29细胞的线粒体中。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种线粒体靶向的化合物,其结构如式I或式II所示:
    Figure PCTCN2020107179-appb-100001
    其中,R 1与R 2各自独立地选自氢原子或烷基取代基,烷基是指C 1-C 5直链或支链的饱和烷基;n选自1-18之间的整数;X -选自卤素离子。
  2. 根据权利要求1所述的线粒体靶向化合物,其特征在于,所述R 1与R 2各自独立地选自氢原子或C 1-C 5直链的饱和烷基;
    优选地,所述C 1-C 5直链的饱和烷基选自甲基、丙基或正戊基;
    优选地,n选自1-6之间的整数,优选为1、3或6;
    优选地,X -为碘离子。
  3. 根据权利要求1或2所述的线粒体靶向化合物,其特征在于,所述式I或式II化合物选自以下结构:
    Figure PCTCN2020107179-appb-100002
  4. 一种制备权利要求1至3任一项所述的线粒体靶向化合物的方法,其包括:经丙酮活化后,在小檗碱的13位引入饱和卤代烃链得到如式4所示的中间体化合物,式4化合物与式2化合物经进一步醚化反应得到式I和式II化合物,分离即得式I或式II化合物,反应路线如下所示:
    Figure PCTCN2020107179-appb-100003
    其中,R 1、R 2、n、X -同权利要求1或2中所述,Y为卤素。
  5. 药物组合物,其包含权利要求1至3中任一项所述的线粒体靶向化合物。
  6. 药物制剂,其包含权利要求1至3中任一项所述的线粒体靶向化合物,或者包含权利要求5中所述的药物组合物;
    优选地,所述药物制剂中还进一步包含至少一种药学上可接受的辅料。
  7. 线粒体靶向的药物载体,其包含权利要求1至3中任一项所述的线粒体靶向化合物,或者包含权利要求5中所述的药物组合物,或者包含权利要求6中所述的药物制剂。
  8. 权利要求1至3中任一项所述的线粒体靶向化合物,或者权利要求5中所述的药物组合物,或者权利要求6中所述的药物制剂,或者权利要求7中所述的线粒体靶向的药物载体在制备治疗肿瘤类疾病的药物中的应用。
  9. 根据权利要求8所述的应用,其特征在于,所述肿瘤类疾病选自卵巢癌、肝癌、结肠癌、前列腺癌、胰腺癌、乳腺癌。
  10. 权利要求1至3中任一项所述的线粒体靶向化合物,或者权利要求5中所述的药物组合物,或者权利要求6中所述的药物制剂,或者权利要求7中所述的线粒体靶向的药物载体在制备靶向干扰或破坏肿瘤细胞内线粒体功能的药物或试剂中的应用;
    优选地,所述干扰或破坏肿瘤细胞内线粒体功能包括使自由基过载和/或使膜电位破坏或丧失。
PCT/CN2020/107179 2020-04-22 2020-08-05 一种线粒体靶向化合物及其制备方法和应用 WO2021212691A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010320726.9A CN111349092B (zh) 2020-04-22 2020-04-22 一种线粒体靶向化合物及其制备方法和应用
CN202010320726.9 2020-04-22

Publications (1)

Publication Number Publication Date
WO2021212691A1 true WO2021212691A1 (zh) 2021-10-28

Family

ID=71191506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107179 WO2021212691A1 (zh) 2020-04-22 2020-08-05 一种线粒体靶向化合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111349092B (zh)
WO (1) WO2021212691A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349092B (zh) * 2020-04-22 2021-03-12 山东大学 一种线粒体靶向化合物及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153039A (zh) * 2006-09-30 2008-04-02 中国科学院上海药物研究所 13,13a-二氢小檗碱衍生物及其药物组合物和用途
WO2011009714A2 (en) * 2009-07-20 2011-01-27 Naxospharma S.R.L. Benzoquinolizinium salt derivatives as anticancer agents
CN103059016A (zh) * 2011-10-24 2013-04-24 中国医学科学院药物研究所 黄连碱衍生物、其合成方法及其抗肿瘤的药物用途
CN104211697A (zh) * 2013-06-04 2014-12-17 中山大学 小檗碱衍生物及其用途
CN105566353A (zh) * 2016-01-13 2016-05-11 北京宜生堂医药科技研究有限公司 一种化合物及其制备方法
US20180105533A1 (en) * 2016-10-18 2018-04-19 City Of Hope Bile acid receptor modulators and methods of use thereof
CN108395429A (zh) * 2018-01-23 2018-08-14 北京宜生堂医药科技研究有限公司 一种化合物及其制备方法和用途
CN111349092A (zh) * 2020-04-22 2020-06-30 山东大学 一种线粒体靶向化合物及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153039A (zh) * 2006-09-30 2008-04-02 中国科学院上海药物研究所 13,13a-二氢小檗碱衍生物及其药物组合物和用途
WO2011009714A2 (en) * 2009-07-20 2011-01-27 Naxospharma S.R.L. Benzoquinolizinium salt derivatives as anticancer agents
CN103059016A (zh) * 2011-10-24 2013-04-24 中国医学科学院药物研究所 黄连碱衍生物、其合成方法及其抗肿瘤的药物用途
CN104211697A (zh) * 2013-06-04 2014-12-17 中山大学 小檗碱衍生物及其用途
CN105566353A (zh) * 2016-01-13 2016-05-11 北京宜生堂医药科技研究有限公司 一种化合物及其制备方法
US20180105533A1 (en) * 2016-10-18 2018-04-19 City Of Hope Bile acid receptor modulators and methods of use thereof
CN108395429A (zh) * 2018-01-23 2018-08-14 北京宜生堂医药科技研究有限公司 一种化合物及其制备方法和用途
CN111349092A (zh) * 2020-04-22 2020-06-30 山东大学 一种线粒体靶向化合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KONSTANTIN G LYAMZAEV; ANTONINA V PUSTOVIDKO; RUBEN A SIMONYAN; TATYANA I ROKITSKAYA; LIDIA V DOMNINA; OLGA YU IVANOVA; INNA I SEV: "Novel Mitochondria-Targeted Antioxidants Plastoquinone Conjugated with Cationic Plant Alkaloids Berberine and Palmatine", PHARMACEUTICAL RESEARCH, vol. 11, no. 28, 14 June 2011 (2011-06-14), pages 2883 - 2895, XP019961719, ISSN: 1573-904X, DOI: 10.1007/s11095-011-0504-8 *

Also Published As

Publication number Publication date
CN111349092B (zh) 2021-03-12
CN111349092A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
CN107750249A (zh) 异噁唑基取代的苯并咪唑
EP2766355B1 (en) Pyrazol-3-ones that activate pro-apoptotic bax
KR20170001962A (ko) 항 악성 종양제 조성물
CN107151250B (zh) 嘧啶类七元环化合物、其制备方法、药用组合物及其应用
Zhang et al. Anticancer effect evaluation in vitro and in vivo of iridium (III) polypyridyl complexes targeting DNA and mitochondria
WO1994026260A1 (en) METHODS AND COMPOUNDS FOR INHIBITING CELL PROLIFERATIVE DISORDERS CHARACTERIZED BY ABNORMAL abl ACTIVITY
KR20210027382A (ko) 접히지 않은 단백질 반응의 활성화제
EP2734645A1 (en) Carbocyanines for g-quadruplex dna stabilization and telomerase inhibition
JP2007524633A (ja) 癌細胞におけるアポトーシスの誘導のための化合物および方法
CN110062757A (zh) 凝血因子XIa抑制剂及其用途
CN108368143A (zh) 用于癌症疗法的单马来酰亚胺官能化的铂化合物
JP2019501225A (ja) B細胞リンパ腫2(bcl−2)及び関連タンパク質の阻害
CN103502219A (zh) 作为治疗剂的新型小分子
WO2021212691A1 (zh) 一种线粒体靶向化合物及其制备方法和应用
US9884815B2 (en) PGAM1 inhibitors and methods related thereto
US10494341B2 (en) Compound containing indoleacetic acid core structure and use thereof
CN104230912B (zh) 喹啉衍生物、其制备方法及其用途
Dai et al. Sophoridine Derivatives Induce Apoptosis and Autophagy to Suppress the Growth of Triple‐Negative Breast Cancer through Inhibition of mTOR Signaling
WO2013138600A1 (en) Radioprotector compounds
US20110077230A1 (en) Copper organocomplexes, use thereof as antitumor means and for protecting healthy tissue from ionizing radiation
CN106631975B (zh) 吲哚啉-2-酮的肼基二硫代甲酸甲酯衍生物的铂配合物及其制备方法和用途
AU2015256266B2 (en) BH4 antagonists and methods related thereto
WO2021157613A1 (ja) ピラゾール誘導体及び医薬組成物
KR20130130802A (ko) 보르트만닌 유사체의 결정질 형태의 조성물 및 이의 사용 방법
KR102073961B1 (ko) 메트포르민 및 페로센계 화합물을 유효성분으로 함유하는 암 예방 또는 치료용 약학적 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932633

Country of ref document: EP

Kind code of ref document: A1