WO2021208761A1 - 滤波结构和滤波器件 - Google Patents

滤波结构和滤波器件 Download PDF

Info

Publication number
WO2021208761A1
WO2021208761A1 PCT/CN2021/085213 CN2021085213W WO2021208761A1 WO 2021208761 A1 WO2021208761 A1 WO 2021208761A1 CN 2021085213 W CN2021085213 W CN 2021085213W WO 2021208761 A1 WO2021208761 A1 WO 2021208761A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant
coupling
shielding layer
shielding
columns
Prior art date
Application number
PCT/CN2021/085213
Other languages
English (en)
French (fr)
Inventor
牛建
左成杰
何军
Original Assignee
安徽安努奇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽安努奇科技有限公司 filed Critical 安徽安努奇科技有限公司
Priority to US17/919,247 priority Critical patent/US20230187799A1/en
Priority to JP2022563004A priority patent/JP7481038B2/ja
Priority to KR1020227036709A priority patent/KR102721020B1/ko
Priority to EP21787857.8A priority patent/EP4117110A4/en
Publication of WO2021208761A1 publication Critical patent/WO2021208761A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2053Comb or interdigital filters; Cascaded coaxial cavities the coaxial cavity resonators being disposed parall to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators

Definitions

  • the coupling enhancement component includes at least one set of coupling connectors, and each set of coupling connectors includes two coupling connectors;
  • two coupling connectors belonging to the same group are respectively connected to two resonant columns, and the two coupling connectors are alternately arranged at intervals to form a capacitive component, thereby improving the capacitive coupling coefficient between the two resonant columns.
  • connection port includes a first port and a second port
  • FIG. 1 is a structural block diagram of a filter device provided by an embodiment of the application.
  • Fig. 2 is a schematic structural diagram of a filtering structure provided by an embodiment of the application.
  • Fig. 3 is a schematic structural diagram of a shielding component provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of the connection relationship between the coupling connector and two non-adjacent resonant columns provided in FIG. 6 according to an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of an existing filtering structure.
  • FIG. 13 is a schematic structural diagram of a filter structure including a coupling connector for improving the electromagnetic coupling coefficient provided by an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of a filter structure including a coupling connector for improving the capacitive coupling coefficient provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of simulation results based on the two filtering structures of FIG. 12 and FIG. 15.
  • Icon 10-filter component; 100-filter structure; 110-shielding component; 111-first shielding layer; 113-second shielding layer; 115-shielding column; 120-resonant component; 121-resonant column; 123-resonant disk 130-Coupling enhancement component; 131-Coupling connector; 200-Connecting port; 210-First port; 230-Second port.
  • an embodiment of the present application provides a filter device 10.
  • the filter device 10 may include a connection port 200 and a filter structure 100.
  • connection port 200 may include a first port 210 and a second port 230, and the filtering structure 100 may be multiple.
  • a plurality of filtering structures 100 may be respectively connected between the first port 210 and the second port 230 for filtering the signal to be processed input through the first port 210 and then outputting the signal through the second port 230 (ie, the second port 230).
  • One port 210 is used as an input port, and the second port 230 is used as an output port), or the signal to be processed input through the second port 230 is filtered and then output through the first port 210 (that is, the first port 210 is used as an output port, and the second port is used as an output port.
  • Port 230 is used as an input port).
  • connection ports 200 is not limited. For example, on the basis of including the first port 210 and the second port 230, it may also include a third port, a fourth port, etc., which can be set according to actual application requirements.
  • connection relationship between the multiple filtering structures 100 is not limited, and can be selected according to actual application requirements.
  • a plurality of filter structures 100 may be connected in series.
  • multiple filter structures 100 may also be connected in parallel.
  • multiple filter structures 100 may also be connected in a mixed manner (that is, including series connection and parallel connection).
  • the specific type of the filter device 10 is not limited, and can be selected according to actual application requirements, for example, it may be a millimeter wave filter.
  • an embodiment of the present application also provides a filtering structure 100 that can be applied to the above-mentioned filtering device 10.
  • the filtering structure 100 may include a shielding component 110, a resonance component 120 and a coupling enhancement component 130.
  • the shielding member 110 may include a first shielding layer 111 and a second shielding layer 113, and the first shielding layer 111 and the second shielding layer 113 are opposed to and spaced apart.
  • Each resonant component 120 may include a resonant column 121 and a resonant disk 123 connected to the resonant column 121.
  • the resonant column 121 is located between the first shielding layer 111 and the second shielding layer 113 and connected to the first shielding layer 111 .
  • the coupling enhancement member 130 may be spaced apart from the first shielding layer 111 and the second shielding layer 113 and respectively connected to the at least two resonant columns 121 to improve the coupling coefficient between the at least two resonant columns 121.
  • the arrangement of the coupling enhancement component 130 will not lead to an increase in the volume of the filter structure 100.
  • the coupling coefficient between the connected resonant columns 121 can also be increased, thereby making The bandwidth of the passband of the filter structure 100 can be increased, thereby solving the problem of simultaneously achieving integration and effectively broadening the bandwidth of the passband of the device.
  • the specific structure of the shielding component 110 (such as the first shielding layer 111 and the second shielding layer 113, and other structures included) is not limited, and can be selected according to actual application requirements.
  • the specific structures of the first shielding layer 111 and the second shielding layer 113 are also not limited, and can be selected according to actual application requirements.
  • the first shielding layer 111 and the second shielding layer 113 may be a metal layered structure.
  • the first shielding layer 111 and the second shielding layer 113 may also be non-metallic shielding structures with electromagnetic shielding effect.
  • first shielding layer 111 and the second shielding layer 113 can be either a patterned conductive structure formed on other non-conductive structures (that is, only the patterned conductive structure has an electromagnetic shielding effect), or a layered conductive structure ( That is, all the layered conductive structures have an electromagnetic shielding effect).
  • the shielding component 110 may also include other shielding structures.
  • the shielding structure composed of the first shielding layer 111, the second shielding layer 113 and other shielding structures can be formed as a cavity, and the resonant component 120 and the coupling enhancement component 130 can be located inside the cavity of the shielding structure, thereby achieving Isolation of external interference signals.
  • the specific configuration of other shielding structures used to form the cavity is not limited, and can be selected according to actual application requirements.
  • a plurality of shielding pillars 115 may be arranged at intervals between the first shielding layer 111 and the second shielding layer 113 to form a containing space (that is, the aforementioned cavity) for aligning the resonant component 120 located in the containing space. Electromagnetic shielding is performed with the coupling enhancement member 130.
  • the shielding component 110 may also include other shielding structures.
  • the shielding layer that is, the other shielding layer can be used as the aforementioned other shielding structure.
  • the fact that the opposed surfaces of the first shielding layer 111 and the second shielding layer 113 are quadrilaterals is only an exemplary description. In other examples, based on different application requirements, three can also be used. Hexagons, pentagons, hexagons, etc.
  • the specific structure of the shielding pillar 115 or other shielding layer as the above-mentioned other shielding structure is not limited, and can be selected according to actual application requirements.
  • it may also be a metal shielding layer or a metal shielding column (or a non-metal shielding layer, Non-metallic shielding column).
  • the shielding component 110 since there are at least two resonant components 120, in order to make the signal to be processed can be filtered through each resonant component 120 in an orderly manner, in this embodiment, the first shielding layer 111 On the basis of the cavity structure formed by the second shielding layer 113 and other shielding structures, at least two cavity sub-structures can also be formed inside the cavity structure to separately provide each resonant component 120.
  • a certain shielding opening may be formed between the above-mentioned cavity substructures, so that the cavity substructures processed by the resonant components 120
  • the signal to be processed can be transmitted through the shielding opening to the subsequent cavity structure and processed by the resonant component 120 again.
  • the specific forming method of the cavity substructure is not limited, and can be selected according to actual application requirements.
  • it can be used as a shielding layer of the above-mentioned other shielding structure.
  • the shielding column 115 as the above-mentioned other shielding structure can also be used.
  • the corresponding cavity sub-structure needs to be processed, for example, in the cavity sub-structure
  • the positional relationship of the cavity shielding pillars 115 can also be set to form a shielding opening, so that the signal to be processed can be transmitted through the shielding opening.
  • the positional relationship of the cavity shielding column 115 is not limited, and can be set according to actual application requirements, which is not specifically limited here.
  • the containing space formed by the cavity structure can also be filled with dielectric materials.
  • the specific type of the above-mentioned dielectric material is not limited, and can be selected according to actual application requirements.
  • it may include, but is not limited to, media with a dielectric constant of 3.0, 3.5, or 4.0.
  • the specific number of the resonant component 120 is not limited, and can be selected according to actual application requirements, as long as there are at least two.
  • there may be two resonance components 120 that is, two resonance columns 121 and two resonance disks 123 are included.
  • the number of resonance components 120 may be three, that is, three resonance columns 121 and three resonance disks 123 are included.
  • there may be four resonance components 120 that is, four resonance columns 121 and four resonance disks 123 are included.
  • the specific structure of the resonant component 120 (such as the connection relationship between the resonant column 121 and the resonant disk 123) is also not limited, and can be selected according to actual application requirements.
  • the resonant column 121 and the resonant disk 123 included in the resonant component 120 may be connected by side surfaces.
  • the resonance column 121 and the resonance disk 123 may also be connected by an end surface. As long as it can be ensured that the resonant column 121 and the resonant disk 123 can be effectively electrically connected.
  • the resonant column 121 can penetrate the resonant disk 123, that is, the resonant column 121 can extend to the side of the resonant disk 123 close to the second shielding layer 113 ( Or across the surface).
  • the resonant column 121 may also only extend to the side of the resonant disk 123 away from the second shielding layer 113.
  • the relative positional relationship between the resonant column 121 and the resonant disk 123 is also not limited, and can be selected according to actual application requirements.
  • the resonant column 121 and the resonant disk 123 are arranged non-vertically, that is, there may be a non-zero included angle between each end surface.
  • the resonance column 121 and the resonance disk 123 may also be arranged vertically, that is, the end faces may be parallel to each other.
  • the specific structure of the resonant column 121 and the resonant disk 123 is not limited, and can be selected according to actual application requirements.
  • the resonant column 121 and the resonant disk 123 may be a non-metallic conductive column and a non-metallic conductive disk, respectively.
  • the resonance column 121 and the resonance disk 123 may be a metal column and a metal disk, respectively.
  • the specific shape of the non-metallic conductive column or the metal column is not limited, and can also be selected according to actual application requirements.
  • it may include, but is not limited to, regular or irregular columnar structures such as non-metallic conductive cylinders, metal cylinders, non-metallic conductive square pillars, or metal square pillars.
  • non-metallic conductive disk or the metal disk is not limited.
  • it may include, but is not limited to, non-metallic conductive disks, metal disks, non-metal conductive square disks or metal square disks, such as regular or irregular disk shapes. structure.
  • the relative positional relationship between the resonant column 121 and the first shielding layer 111 is also not limited, and can be selected according to actual application requirements.
  • the resonance column 121 and the first shielding layer 111 can also be arranged vertically, that is, one end of the resonance column 121 is arranged on the first shielding layer 111, and the other end is perpendicular to the first shielding layer 111. It extends in the direction of the first shielding layer 111.
  • the resonant column 121 when the resonant column 121 is perpendicular to the resonant disk 123 (that is, the first shielding layer 111 and the resonant disk 123 are arranged in parallel), the resonant column 121 also extends in a direction perpendicular to the resonant disk 123.
  • the projections of the resonant column 121 and the resonant disk 123 in the extension direction of the resonant column 121 can either be completely overlapped or partially overlapped based on a certain manufacturing process. The overlap, as long as it can ensure that the resonant column 121 is connected to the resonant disk 123.
  • the specific configuration of the coupling enhancement component 130 is not limited, and can be selected according to actual application requirements. For example, based on the actual coupling effect, it can have different configurations.
  • the filter structure 100 in order to make the frequency value of the passband of the filter structure 100 larger as a whole, it may be configured to enhance the electromagnetic coupling coefficient between the resonant columns 121 through the coupling enhancement component 130.
  • the filter structure 100 in order to make the frequency value of the passband of the filter structure 100 smaller as a whole, it may be configured to enhance the capacitive coupling coefficient between the resonant columns 121 through the coupling enhancement component 130.
  • the coupling enhancement component 130 may include at least one coupling connector 131.
  • each coupling connector 131 is connected to two resonant poles 121 respectively to improve the electromagnetic coupling coefficient between the two resonant poles 121.
  • one coupling connector 131 may be directly electrically connected to the two resonant columns 121 respectively, so that the two resonant columns 121 form an electromagnetic coupling.
  • the relative relationship between the two resonance columns 121 connected by each coupling connector 131 is not limited, and can be selected according to actual application requirements, as long as there are two resonance columns 121.
  • each coupling connector 131 is respectively connected to two adjacent resonant columns 121 to improve the electromagnetic coupling between the two adjacent resonant columns 121 coefficient.
  • the resonant components may include a resonant column 1, a resonant column 2 and a resonant column 3, and the transmission direction of the signal to be processed is sequentially Resonant column 1, resonant column 2, and resonant column 3.
  • the resonant column 1 and the resonant column 2 can be electrically connected via the coupling connector 131 (that is, there is no resonant column 121 between the resonant column 1 and the resonant column 2).
  • At least one coupling connector 131 is connected to two non-adjacent resonant columns 121, respectively, for improving the phase difference.
  • the electromagnetic coupling coefficient between two adjacent resonant columns 121 forms a transmission zero point outside the pass band of the filter structure 100 and close to the upper cut-off frequency.
  • the resonant components may include a resonant column 1, a resonant column 2, and a resonant column 3, and the transmission direction of the signal to be processed is sequentially Resonant column 1, resonant column 2, and resonant column 3.
  • the resonant column 1 and the resonant column 3 can be electrically connected through the coupling connector 131 (that is, the resonant column 2 is separated from the resonant column 1 and the resonant column 3).
  • the specific position of the transmission zero point close to the upper cut-off frequency is not limited, and can be configured accordingly according to actual application requirements.
  • the distance between the coupling connector 131 and the first shielding layer 111 (that is, the height of the coupling connector 131) can be increased, And/or, increase the width of the coupling member 131.
  • the distance between the coupling connector 131 and the first shielding layer 111 can be reduced , And/or, reduce the width of the coupling member 131.
  • the coupling enhancement component 130 may include at least one set of coupling connectors 131, and each set of coupling connectors 131 may include Two coupling connectors 131.
  • each group of coupling connectors 131 two coupling connectors 131 belonging to the same group are respectively connected to two resonant columns 121, and the two coupling connectors 131 are alternately arranged at intervals to form a capacitor component, thereby improving the The capacitive coupling coefficient between the two resonant columns 121.
  • a capacitive component can be formed by indirect electrical connection of two coupling connectors 131 in the same group, thereby increasing the capacitive coupling coefficient between the two connected resonant columns 121.
  • the relative relationship between the two resonance columns 121 connected by each group of coupling connectors 131 is not limited, and can be selected according to actual application requirements.
  • the two coupling connectors 131 belonging to the same group are respectively connected to two adjacent resonant columns 121 to increase the distance between the two adjacent resonant columns 121.
  • the capacitive coupling coefficient is a constant value that is a constant value that is a constant value that is a constant value that is a constant value that is a constant value that is a constant value that is a constant value that is a constant value that is a constant value that is respectively connected to two adjacent resonant columns 121 to increase the distance between the two adjacent resonant columns 121.
  • the capacitive coupling coefficient is the capacitive coupling coefficient.
  • the resonant components may include a resonant column 1, a resonant column 2 and a resonant column 3, and the transmission direction of the signal to be processed is sequentially Resonant column 1, resonant column 2, and resonant column 3.
  • two coupling connectors 131 in a group of coupling connectors 131 can be electrically connected to the resonant column 1 and the resonant column 2 respectively (that is, the resonant column 1 and the resonant column 2 are not separated by any resonant column 121).
  • two coupling connectors 131 of at least one set of coupling connectors 131 are respectively connected to two non-adjacent resonant columns 121, so as to improve the two non-adjacent resonant columns 121
  • the capacitive coupling coefficient between the resonant columns 121 forms a transmission zero point outside the passband of the filter structure 100 and close to the lower cutoff frequency.
  • the resonant components may include a resonant column 1, a resonant column 2 and a resonant column 3, and the transmission direction of the signal to be processed is sequentially Resonant column 1, resonant column 2, and resonant column 3.
  • two coupling connectors 131 in a group of coupling connectors 131 can be electrically connected to the resonant column 1 and the resonant column 3 respectively (that is, the resonant column 1 and the resonant column 3 are separated by the resonant column 2).
  • the specific position of the transmission zero point close to the lower limit cut-off frequency is not limited, and can be configured accordingly according to actual application requirements.
  • the distance between the two coupling connectors 131 and the first shielding layer 111 can be increased (that is, the distance between the two coupling connections 131 and the first shielding layer 111).
  • the height of the element 131 and/or, increase the staggered area of the two coupling connecting elements 131 (that is, the facing area of the formed capacitor element).
  • the distance between the two coupling connectors 131 and the first shielding layer 111 can be reduced (that is, the distance between the two coupling connectors 131 and the first shielding layer 111).
  • the height of the connecting piece 131 and/or, reduce the intersecting area of the two coupling connecting pieces 131 (that is, the facing area of the formed capacitor component).
  • the two coupling connectors 131 belonging to the same group of coupling connectors 131 may be arranged relatively non-parallel, for example, may have a small included angle.
  • the two coupling connectors 131 belonging to the same group of coupling connectors 131 can be arranged relatively in parallel, and the staggered part of the two coupling connectors 131 is perpendicular to the two coupling connectors 131.
  • the projections of the extension directions of the two coupling connectors 131 coincide.
  • the specific structure of the coupling enhancement component 130 is also not limited, and can be selected according to actual application requirements.
  • the coupling enhancement member 130 may be a metal structure (for example, the above-mentioned coupling connection member 131 may be a metal connection wire).
  • the coupling enhancement component 130 may also be a non-metallic conductive structure.
  • the coupling coefficient between the resonant columns 121 can be increased, so that the bandwidth of the passband of the filter structure 100 can be increased.
  • the present application is based on the filter structure 100 in the above example, and performs simulation analysis separately from the existing filter structure.
  • the filter structure 100 may include two resonant columns 121.
  • the filter structure 100 includes two resonant columns 121 and a coupling connector 131. Connect to achieve electromagnetic coupling.
  • a simulation result as shown in FIG. 14 can be obtained, where the distance between the two wave crests can represent the bandwidth of the passband of the filtering structure.
  • the filter structure 100 provided with the coupling connector 131 has a larger passband bandwidth than the filter structure without the coupling connector 131.
  • the filter structure 100 includes two resonant columns 121 and a group of coupling connectors 131, and the two resonant columns 121 are respectively coupled to the group.
  • the two coupling connectors 131 in the connector 131 are electrically connected to realize capacitive coupling.
  • FIG. 16 By performing simulation analysis on the filtering structure 100 and the aforementioned existing filtering structure, a simulation result as shown in FIG. 16 can be obtained, where the distance between the two wave crests can represent the bandwidth of the passband of the filtering structure.
  • the filter structure 100 provided with the coupling connector 131 has a larger passband bandwidth than the filter structure without the coupling connector 131.
  • the inventor of the present application found in the process of research that if the coupling enhancement component 130 is grounded, the coupling coefficient between the resonant columns 121 cannot be effectively increased, and the bandwidth of the passband cannot be effectively widened. .
  • this application has also performed corresponding simulation analysis, as shown in FIG. 17, respectively showing the comparative example of FIG. 12 and the A simulation schematic diagram of a test example and another test example in which the coupling connector 131 is arranged in contact with the first shielding layer 111 in the test example.
  • FIG. 17 shows the comparative example of FIG. 12 and the A simulation schematic diagram of a test example and another test example in which the coupling connector 131 is arranged in contact with the first shielding layer 111 in the test example.
  • the filter structure 100 in which the coupling connector 131 is not grounded has a larger bandwidth of the passband.
  • the filter structure 100 and the filter device 10 provided in the present application are provided with the shielding component 110 and the resonant component 120, and the coupling enhancement component 130 is provided, so that at least two resonant columns 121 of the resonant component 120 are provided.
  • the coupling coefficient between the two is enhanced.
  • the arrangement of the coupling enhancement component 130 will not lead to an increase in the volume of the filter structure 100.
  • the coupling coefficient between the connected resonant columns 121 can also be increased, thereby making the filter
  • the bandwidth of the passband of the structure 100 is increased, thereby solving the problem of simultaneously achieving integration and effectively broadening the bandwidth of the passband of the device. It has high practical value, especially in the application of precision instruments. Effect.
  • the coupling enhancement component is provided on the basis of the shielding component and the resonant component, so as to enhance the coupling coefficient between the resonant columns of at least two resonant components.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本申请提供的滤波结构和滤波器件,涉及电子器件技术领域。其中,滤波结构包括:屏蔽部件,该屏蔽部件包括第一屏蔽层和第二屏蔽层,该第一屏蔽层和该第二屏蔽层相对且间隔设置;谐振部件,该谐振部件至少为两个,各谐振部件间隔设置,每个谐振部件包括谐振柱和与该谐振柱连接的谐振盘,该谐振柱位于第一屏蔽层和第二屏蔽层之间,且与该第一屏蔽层连接;耦合增强部件,该耦合增强部件分别与第一屏蔽层和第二屏蔽层间隔设置,且与至少两个谐振柱分别连接,以提高该至少两个谐振柱之间的耦合系数。通过上述设置,可以解决在滤波器件中同时实现集成化及有效扩宽器件的通频带的带宽的问题。

Description

滤波结构和滤波器件
相关申请的交叉引用
本申请要求于2020年4月17日提交中国专利局的申请号为202010306011.8、名称为“滤波结构和滤波器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子器件技术领域,具体而言,涉及一种滤波结构和滤波器件。
背景技术
在电子器件技术领域中,在器件的集成化过程中,进行小型化处理尤为重要。其中,滤波器件一般由滤波结构构成,使得滤波结构的体积决定了滤波器件的体积。然而,基于现有的滤波结构的制作工艺,在滤波器件的集成化过程中,如果要满足小型化的需求,会使得器件的通频带的带宽受到限制,难以被有效地扩宽。
发明内容
有鉴于此,本申请提供一种滤波结构和滤波器件,以解决在滤波器件中同时实现集成化及器件的通频带的带宽有效扩宽的问题。
本申请实施例采用如下技术方案:
一种滤波结构,包括:
屏蔽部件,该屏蔽部件包括第一屏蔽层和第二屏蔽层,该第一屏蔽层和该第二屏蔽层相对且间隔设置;
谐振部件,该谐振部件至少为两个,各所述谐振部件间隔设置,每个所述谐振部件包括谐振柱和与该谐振柱连接的谐振盘,该谐振柱位于所述第一屏蔽层和所述第二屏蔽层之间,且与该第一屏蔽层连接;
耦合增强部件,该耦合增强部件分别与所述第一屏蔽层和所述第二屏蔽层间隔设置,且与至少两个所述谐振柱分别连接,以提高该至少两个谐振柱之间的耦合系数。
可选地,在上述滤波结构中,所述耦合增强部件包括至少一个耦合连接件;
其中,每一个所述耦合连接件与两个谐振柱分别连接,以提高两个谐振柱之间的电磁耦合系数。
可选地,在上述滤波结构中,沿待处理信号在各所述谐振部件之间的传播方向,每一个所述耦合连接件与相邻的两个谐振柱分别连接,用于提高该相邻的两个谐振柱之间的电 磁耦合系数。
可选地,在上述滤波结构中,沿待处理信号在各所述谐振部件之间的传播方向,在所述至少一个耦合连接件中,至少有一个耦合连接件与不相邻的两个谐振柱分别连接,以提高该不相邻的两个谐振柱之间的电磁耦合系数,且在所述滤波结构的通频带之外、接近上限截止频率的位置形成传输零点。
可选地,在上述滤波结构中,所述耦合增强部件包括至少一组耦合连接件,每组耦合连接件包括两个耦合连接件;
其中,属于同一组的两个耦合连接件分别连接两个谐振柱,且该两个耦合连接件间隔交错设置,以形成电容组件,由此提高该两个谐振柱之间的电容耦合系数。
可选地,在上述滤波结构中,沿待处理信号在各所述谐振部件之间的传播方向,属于同一组的两个耦合连接件分别连接相邻的两个谐振柱,以提高该相邻的两个谐振柱之间的电容耦合系数。
可选地,在上述滤波结构中,沿待处理信号在各所述谐振部件之间的传播方向,至少有一组耦合连接件的两个耦合连接件,分别连接不相邻的两个谐振柱,以提高该不相邻的两个谐振柱之间的电容耦合系数,且在所述滤波结构的通频带之外、接近下限截止频率的位置形成传输零点。
可选地,在上述滤波结构中,属于同一组的两个耦合连接件平行设置,且该两个耦合连接件的交错部分,在垂直于该两个耦合连接件的延伸方向的方向上的投影重合。
可选地,在上述滤波结构中,所述耦合增强部件为金属结构。
可选地,在上述滤波结构中,所述第一屏蔽层和所述第二屏蔽层是在其它非导电结构上形成的图形化导电结构。
可选地,在上述滤波结构中,所述屏蔽部件还包括多个屏蔽柱,多个所述屏蔽柱间隔设置于所述第一屏蔽层和所述第二屏蔽层之间,以围合形成腔体结构,所述谐振部件和所述耦合增强部件位于所述腔体结构的内部。
可选地,在上述滤波结构中,所述屏蔽部件还包括设置于所述第一屏蔽层和所述第二屏蔽层之间且与第一屏蔽层及第二屏蔽层共同围成封闭的腔体结构的多个其它屏蔽层,所述谐振部件和所述耦合增强部件位于所述腔体结构的内部。
可选地,在上述滤波结构中,在所述腔体结构的内部形成多个腔体子结构,以分别设置各谐振部件,在所述腔体子结构之间形成有用于使待处理信号在各谐振部件之间进行传输的屏蔽开口。
可选地,在上述滤波结构中,所述第一屏蔽层和所述第二屏蔽层相对的表面为四边形,所述其它屏蔽层为4个。
在上述基础上,本申请实施例还提供了一种滤波器件,包括:
连接端口,该连接端口包括第一端口和第二端口;
上述的滤波结构,该滤波结构为多个,且分别连接于所述第一端口与所述第二端口之间,以对通过所述第一端口输入的待处理信号进行滤波处理之后通过所述第二端口输出,或对通过所述第二端口输入的待处理信号进行滤波处理之后通过所述第一端口输出。
附图说明
图1为本申请实施例提供的滤波器件的结构框图。
图2为本申请实施例提供的滤波结构的结构示意图。
图3为本申请实施例提供的屏蔽部件的结构示意图。
图4为本申请实施例提供的屏蔽柱形成的腔体结构与谐振柱的位置分布关系示意图。
图5为本申请实施例提供的谐振部件的结构示意图。
图6为本申请实施例提供的包括用于提高电磁耦合系数的耦合增强部件的滤波结构的结构示意图。
图7为本申请实施例基于图6提供的耦合连接件与相邻的两个谐振柱之间的连接关系示意图。
图8为本申请实施例基于图6提供的耦合连接件与不相邻的两个谐振柱之间的连接关系示意图。
图9为本申请实施例提供的包括用于提高电容耦合系数的耦合增强部件的滤波结构的结构示意图。
图10为本申请实施例提供的本申请实施例基于图9提供的耦合连接件与相邻的两个谐振柱之间的连接关系示意图。
图11为本申请实施例基于图9提供的耦合连接件与不相邻的两个谐振柱之间的连接关系示意图。
图12为现有的一种滤波结构的结构示意图。
图13为本申请实施例提供的包括用于提高电磁耦合系数的耦合连接件的滤波结构的结构示意图。
图14为基于图12和图13的两种滤波结构的仿真结果示意图。
图15为本申请实施例提供的包括用于提高电容耦合系数的耦合连接件的滤波结构的结构示意图。
图16为基于图12和图15的两种滤波结构的仿真结果示意图。
图17为基于图12、图13和图15的三种滤波结构的仿真示意图。
图标:10-滤波器件;100-滤波结构;110-屏蔽部件;111-第一屏蔽层;113-第二屏蔽层;115-屏蔽柱;120-谐振部件;121-谐振柱;123-谐振盘;130-耦合增强部件;131-耦合连接件;200-连接端口;210-第一端口;230-第二端口。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例只是本申请的一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本申请实施例提供了一种滤波器件10。其中,该滤波器件10可以包括连接端口200和滤波结构100。
详细地,连接端口200可以包括第一端口210和第二端口230,滤波结构100可以为多个。如此,多个滤波结构100,可以分别连接于第一端口210与第二端口230之间,用于对通过第一端口210输入的待处理信号进行滤波处理之后通过第二端口230输出(即第一端口210作为输入端口,第二端口230作为输出端口),或对通过第二端口230输入的待处理信号进行滤波处理之后通过第一端口210输出(即第一端口210作为输出端口,第二端口230作为输入端口)。
其中,连接端口200的数量不受限制,如在包括第一端口210和第二端口230基础上,还可以包括第三端口、第四端口等,根据实际应用需求进行设置即可。
并且,多个滤波结构100之间的连接关系也不受限制,可以根据实际应用需求进行选择。
例如,在一种可选的示例中,多个滤波结构100可以串联连接。又例如,在另一种可选的示例中,多个滤波结构100也可以并联连接。再例如,在另一种可选的示例中,多个滤波结构100还可以混合连接(即包括串联连接和并联连接)。
需要说明的是,滤波器件10的具体类型不受限制,可以根据实际应用需求进行选择,例如,可以是毫米波滤波器。
结合图2,本申请实施例还提供一种可应用于上述滤波器件10的滤波结构100。其中,滤波结构100可以包括屏蔽部件110、谐振部件120和耦合增强部件130。
详细地,屏蔽部件110可以包括第一屏蔽层111和第二屏蔽层113,该第一屏蔽层111 和该第二屏蔽层113相对且间隔设置。谐振部件120可以至少为两个,且各谐振部件120之间可以间隔设置。每个谐振部件120可以包括谐振柱121和与该谐振柱121连接的谐振盘123,该谐振柱121位于第一屏蔽层111和第二屏蔽层113之间,且与该第一屏蔽层111连接。耦合增强部件130可以分别与第一屏蔽层111和第二屏蔽层113间隔设置,且与至少两个谐振柱121分别连接,以提高该至少两个谐振柱121之间的耦合系数。
基于此,一方面,耦合增强部件130的设置不会导致滤波结构100的体积增加,另一方面,由于耦合增强部件130的设置,还可以提高连接的谐振柱121之间的耦合系数,从而使得该滤波结构100的通频带的带宽可以增加,进而解决同时实现集成化及有效扩宽器件的通频带的带宽的问题。
对于屏蔽部件110,需要说明的是,屏蔽部件110的具体结构(如第一屏蔽层111和第二屏蔽层113,以及包括的其它结构)不受限制,可以根据实际应用需求进行选择。
例如,在一种可选的示例中,屏蔽部件110包括的第一屏蔽层111和第二屏蔽层113可以稍微相对倾斜设置,即可以非平行设置。又例如,在另一种可选的示例中,第一屏蔽层111与第二屏蔽层113也可以平行设置。
其中,第一屏蔽层111和第二屏蔽层113的具体结构也不受限制,可以根据实际应用需求进行选择。
例如,在一种可选的示例中,第一屏蔽层111和第二屏蔽层113可以是金属层状结构。又例如,在另一种可选的示例中,第一屏蔽层111和第二屏蔽层113也可以是具有电磁屏蔽作用的非金属屏蔽结构。
并且,第一屏蔽层111和第二屏蔽层113既可以是在其它非导电结构上形成的图形化导电结构(即仅该图形化导电结构具有电磁屏蔽作用),也可以是层状导电结构(即该层状导电结构全部都具有电磁屏蔽作用)。
可以理解的是,屏蔽部件110在包括第一屏蔽层111和第二屏蔽层113的基础上,还可以包括其它屏蔽结构。如此,由第一屏蔽层111、第二屏蔽层113和其它屏蔽结构构成的屏蔽结构可以形成为腔体,并使得谐振部件120和耦合增强部件130可以位于该屏蔽结构的腔体内部,从而实现对外部干扰信号的隔离。
可选地,上述的用于构成腔体的其它屏蔽结构的具体构成也不受限制,可以根据实际应用需求进行选择。
例如,在一种可选的示例中,结合图3,为了使得屏蔽部件110包括的第一屏蔽层111、第二屏蔽层113和其它屏蔽结构可以形成非封闭的腔体,该屏蔽部件110还可以包括多个屏蔽柱115,即该多个屏蔽柱115可以作为前述的其它屏蔽结构。
其中,多个屏蔽柱115可以间隔设置于第一屏蔽层111和第二屏蔽层113之间,以围 合形成容纳空间(即上述的腔体),用于对位于该容纳空间的谐振部件120和耦合增强部件130进行电磁屏蔽。
又例如,在另一种可选的示例中,为了使得屏蔽部件110包括的第一屏蔽层111、第二屏蔽层113和其它屏蔽结构可以形成封闭的腔体,该屏蔽部件110还可以包括其它屏蔽层,即该其它屏蔽层可以作为前述的其它屏蔽结构。
其中,在一种具体的应用示例中,第一屏蔽层111和第二屏蔽层113相对的表面为四边形(如长方形或正方形),其它屏蔽层为4个,从而使得第一屏蔽层111、第二屏蔽层113和4个其它屏蔽层,能够围合形成封闭的容纳空间(即上述的腔体),以使该容纳空间可以设置谐振部件120和耦合增强部件130。
可以理解的是,在上述的示例中,第一屏蔽层111和第二屏蔽层113相对的表面为四边形仅是一种示例性的说明,在其它示例中,基于不同的应用需求,也可以三边形、五边形、六边形等。
并且,作为上述其它屏蔽结构的屏蔽柱115或其它屏蔽层的具体构成也不受限制,可以根据实际应用需求进行选择,例如,也可以是金属屏蔽层或金属屏蔽柱(或非金属屏蔽层,非金属屏蔽柱)。
对于屏蔽部件110需要进一步说明的是,由于谐振部件120为至少两个,为了使待处理信号可以依次有序地通过各谐振部件120进行滤波处理,在本实施例中,在第一屏蔽层111、第二屏蔽层113和其它屏蔽结构形成的腔体结构的基础上,还可以在该腔体结构的内部分别形成至少两个腔体子结构,以分别设置各谐振部件120。
其中,为了使得待处理信号依次在至少两个谐振部件120之间传输,上述的腔体子结构之间可以形成一定的屏蔽开口,使得在前的腔体子结构中通过谐振部件120处理后的待处理信号,可以通过该屏蔽开口传输至在后的腔体结构中再次通过谐振部件120进行处理。
可选地,腔体子结构的具体形成方式不受限制,可以根据实际应用需求进行选择,例如,在一种可选的示例中,可以采用作为上述其它屏蔽结构的屏蔽层。在另一种可选的示例中,也可以采用作为上述其它屏蔽结构的屏蔽柱115(如图4所示)。
基于上述的设置,在上述的腔体结构的内部形成至少为两个腔体子结构中,为了形成上述屏蔽开口,还需要对相应的腔体子结构进行处理,例如,在该腔体子结构是由多个腔体屏蔽柱115围合形成时,还可以通过对该腔体屏蔽柱115的位置关系进行设置来形成屏蔽开口,从而使得待处理信号可以经过该屏蔽开口传输。
可以理解的是,对腔体屏蔽柱115的位置关系不受限制,可以根据实际应用需求进行设置,在此不做具体限定。
并且,在第一屏蔽层111和第二屏蔽层113之间(如上述示例中,腔体结构形成的容 纳空间),还可以填充介质材料。
其中,上述的介质材料的具体类型不受限制,可以根据实际应用需求进行选择,例如,可以包括但不限于介电常数为3.0、3.5或4.0等的介质。
对于谐振部件120需要说明的是,谐振部件120的具体数量不受限制,可以根据实际应用需求进行选择,只要至少有两个即可。
例如,在一种可选的示例中,谐振部件120可以为两个,即包括两个谐振柱121和两个谐振盘123。又例如,在另一种可选的示例中,谐振部件120可以为三个,即包括三个谐振柱121和三个谐振盘123。再例如,在另一种可选的示例中,谐振部件120可以为四个,即包括四个谐振柱121和四个谐振盘123。
并且,谐振部件120的具体结构(如谐振柱121和谐振盘123的连接关系)也不受限制,可以根据实际应用需求进行选择。
例如,在一种可选的示例中,如图5所示,谐振部件120包括的谐振柱121和谐振盘123,可以通过侧面连接。又例如,在另一种可选的示例中,如图2所示,谐振柱121和谐振盘123,也可以通过端面连接。只要能够保证谐振柱121和谐振盘123之间可以有效地电连接即可。
其中,在谐振柱121与谐振盘123通过端面连接时,基于不同的需求,谐振柱121既可以贯穿该谐振盘123,即谐振柱121可以延伸至谐振盘123靠近第二屏蔽层113的一面(或穿过该面)。谐振柱121也可以仅延伸至该谐振盘123的远离第二屏蔽层113的一面。
可选地,谐振柱121和谐振盘123之间的相对位置关系也不受限制,可以根据实际应用需求进行选择。
例如,在一种可选的示例中,谐振柱121与谐振盘123之间非垂直设置,即各端面之间可以具有一个非0的夹角。又例如,在另一种可选的示例中,谐振柱121与谐振盘123之间,也可以垂直设置,即各端面之间可以相互平行。
可选地,谐振柱121和谐振盘123的具体构成也不受限制,可以根据实际应用需求进行选择。
例如,在一种可选的示例中,谐振柱121和谐振盘123可以分别是非金属导电柱和非金属导电盘。又例如,在另一种可选的示例中,谐振柱121和谐振盘123可以分别是金属柱和金属盘。
其中,非金属导电柱或金属柱的具体形状也不受限制,也可以根据实际应用需求进行选择。例如,可以包括但不限于非金属导电圆柱、金属圆柱、非金属导电方柱或金属方柱等规则或不规则的柱状结构。
并且,非金属导电盘或金属盘的具体形状不受限制,例如,可以包括但不限于非金属 导电圆盘、金属圆盘、非金属导电方盘或金属方盘等规则或不规则的盘状结构。
可选地,谐振柱121与第一屏蔽层111之间的相对位置关系也不受限制,可以根据实际应用需求进行选择。
例如,在一种可选的示例中,谐振柱121与第一屏蔽层111之间,可以非垂直设置。
又例如,在另一种可选的示例中,谐振柱121与第一屏蔽层111之间,也可以垂直设置,即该谐振柱121的一端设置于该第一屏蔽层111、另一端沿垂直于该第一屏蔽层111的方向延伸。
其中,当谐振柱121垂直于谐振盘123(即第一屏蔽层111和谐振盘123平行设置)时,该谐振柱121也是沿垂直于该谐振盘123的方向延伸。
可以理解的是,在上述示例中,针对每一个谐振柱121,基于一定的制作工艺使该谐振柱121与谐振盘123在该谐振柱121的延伸方向上的投影既可以全部重合,也可以部分重合,只要能够保证该谐振柱121与谐振盘123连接即可。
对于耦合增强部件130需要说明的是,该耦合增强部件130的具体构成不受限制,可以根据实际应用需求进行选择,如基于实际的耦合作用不同,可以有不同的构成。
例如,在一种可选的示例中,为了使得滤波结构100的通频带的频率值整体上较大,可以构成为通过耦合增强部件130对谐振柱121之间的电磁耦合系数进行增强。
又例如,在另一种可选的示例中,为了使得滤波结构100的通频带的频率值整体上较小,可以构成为通过耦合增强部件130对谐振柱121之间的电容耦合系数进行增强。
基于此,为了实现对电磁耦合系数的增强,可选地,如图6所示,耦合增强部件130可以包括至少一个耦合连接件131。
详细地,每一个耦合连接件131与两个谐振柱121分别连接,用于提高该两个谐振柱121之间的电磁耦合系数。也就是说,一个耦合连接件131可以分别与两个谐振柱121直接电连接,使得该两个谐振柱121之间形成电磁耦合。
可选地,每一个耦合连接件131连接的两个谐振柱121之间的相对关系不受限制,可以根据实际应用需求进行选择,只要是两个谐振柱121即可。
例如,在一种可选的示例中,若仅需要对滤波结构100的通频带的整体频率值进行提高,可以进行如下设置:
沿待处理信号在各谐振部件120之间的传播方向,每一个耦合连接件131与相邻的两个谐振柱121分别连接,用于提高该相邻的两个谐振柱121之间的电磁耦合系数。
详细地,在一种具体的应用示例中,如图7所示,包括至少两个谐振组件,谐振组件可以包括谐振柱1、谐振柱2和谐振柱3,且待处理信号的传输方向依次是谐振柱1、谐振 柱2和谐振柱3。如此,可以通过耦合连接件131分别与谐振柱1和谐振柱2电连接(即在谐振柱1和谐振柱2之间未间隔任何谐振柱121)。
又例如,在另一种可选的示例中,在需要对滤波结构100的通频带的整体频率值进行提高的基础上,还需要在接近上限截止频率的位置进行信号抑制,可以进行如下设置:
沿待处理信号在各谐振部件120之间的传播方向,在至少一个耦合连接件131中,至少有一个耦合连接件131与不相邻的两个谐振柱121分别连接,用于提高该不相邻的两个谐振柱121之间的电磁耦合系数,且在滤波结构100的通频带之外、接近上限截止频率的位置形成传输零点。
详细地,在一种具体的应用示例中,如图8所示,包括至少两个谐振组件,谐振组件可以包括谐振柱1、谐振柱2和谐振柱3,且待处理信号的传输方向依次是谐振柱1、谐振柱2和谐振柱3。如此,可以通过耦合连接件131分别与谐振柱1和谐振柱3电连接(即谐振柱1和谐振柱3之间间隔了谐振柱2)。
其中,接近上限截止频率的传输零点的具体位置不受限制,可以根据实际应用需求进行相应的配置。
例如,在一种可选的示例中,为了使传输零点的频率更为接近上限截止频率,可以增加耦合连接件131与第一屏蔽层111之间的距离(即耦合连接件131的高度),和/或,增加该耦合连接件131的宽度。
又例如,在另一种可选的示例中,为了使得传输零点的频率更为偏离上限截止频率,可以降低耦合连接件131与第一屏蔽层111之间的距离(耦合连接件131的高度),和/或,减小该耦合连接件131的宽度。
基于另一种需求,为了实现对电容耦合系数的增强,在本实施例中,如图9所示,耦合增强部件130可以包括至少一组耦合连接件131,且每组耦合连接件131可以包括两个耦合连接件131。
详细地,针对每一组耦合连接件131,属于同一组的两个耦合连接件131分别连接两个谐振柱121,且该两个耦合连接件131间隔交错设置,以形成电容组件,从而提高该两个谐振柱121之间的电容耦合系数。
也就是说,可以通过同一组的两个耦合连接件131的非直接电连接,形成一个电容组件,从而提高连接的两个谐振柱121之间的电容耦合系数。
可选地,每一组耦合连接件131连接的两个谐振柱121之间的相对关系不受限制,可以根据实际应用需求进行选择。
例如,在一种可选的示例中,若仅需要对滤波结构100的通频带的整体频率值进行降低,可以进行如下设置:
沿待处理信号在各谐振部件120之间的传播方向,属于同一组的两个耦合连接件131分别连接相邻的两个谐振柱121,用于提高该相邻的两个谐振柱121之间的电容耦合系数。
详细地,在一种具体的应用示例中,如图10所示,包括至少两个谐振组件,谐振组件可以包括谐振柱1、谐振柱2和谐振柱3,且待处理信号的传输方向依次是谐振柱1、谐振柱2和谐振柱3。如此,可以通过一组耦合连接件131中的两个耦合连接件131分别与谐振柱1和谐振柱2电连接(即谐振柱1和谐振柱2之间,未间隔任何谐振柱121)。
又例如,在另一种可选的示例中,在需要对滤波结构100的通频带的整体频率值进行降低的基础上,还需要对接近下限截止频率的位置处的信号进行抑制,可以进行如下设置:
沿待处理信号在各谐振部件120之间的传播方向,至少有一组耦合连接件131的两个耦合连接件131分别连接不相邻的两个谐振柱121,以提高该不相邻的两个谐振柱121之间的电容耦合系数,且在滤波结构100的通频带之外、接近下限截止频率的位置形成传输零点。
详细地,在一种具体的应用示例中,如图11所示,包括至少两个谐振组件,谐振组件可以包括谐振柱1、谐振柱2和谐振柱3,且待处理信号的传输方向依次是谐振柱1、谐振柱2和谐振柱3。如此,可以通过一组耦合连接件131中的两个耦合连接件131分别与谐振柱1和谐振柱3电连接(即谐振柱1和谐振柱3之间,间隔了谐振柱2)。
其中,接近下限截止频率的传输零点的具体位置不受限制,可以根据实际应用需求进行相应的配置。
例如,在一种可选的示例中,为了使传输零点的位置的频率更为接近下限截止频率,可以增加两个耦合连接件131与第一屏蔽层111之间的距离(即两个耦合连接件131的高度),和/或,增加两个耦合连接件131的交错面积(即形成的电容组件的正对面积)。
又例如,在另一种可选的示例中,为了使传输零点的位置的频率更偏离下限截止频率,可以降低两个耦合连接件131与第一屏蔽层111之间的距离(即两个耦合连接件131的高度),和/或,减小两个耦合连接件131的交错面积(即形成的电容组件的正对面积)。
可以理解的是,属于同一组耦合连接件131的两个耦合连接件131之间的相对位置关系也不受限制,可以根据实际应用需求进行选择。
例如,在一种可选的示例中,属于同一组耦合连接件131的两个耦合连接件131可以相对不平行设置,例如,可以具有一个较小的夹角。
又例如,在另一种可选的示例中,属于同一组耦合连接件131的两个耦合连接件131,可以相对平行设置,且该两个耦合连接件131的交错部分,在垂直于该两个耦合连接件131的延伸方向的方向上的投影重合。
如此,可以保证属于同一组耦合连接件131的两个耦合连接件131的正对面积较大, 以提高形成的电容组件的电容值,从而提高连接的两个谐振柱121之间的电容耦合系数。
对于耦合增强部件130需要进一步说明的是,该耦合增强部件130的具体结构也不受限制,可以根据实际应用需求进行选择。
例如,在一种可选的示例中,耦合增强部件130可以是金属结构(如上述的耦合连接件131可以是金属连接线)。又例如,在另一种可选的示例中,耦合增强部件130也可以是非金属导电结构。
基于上述的示例,可以使得谐振柱121之间的耦合系数提高,从而使得滤波结构100的通频带的带宽增加。并且,为了对通频带的带宽的增加效果进行充分说明,本申请基于上述示例中的滤波结构100,与现有的滤波结构分别进行了仿真分析。
针对现有的不包括耦合增强部件130的滤波结构100,提供一对比例,如图12所示,该滤波结构100可以包括两个谐振柱121。
在此,提供的能够提高电磁耦合系数的滤波结构100的实验例如图13所示,该滤波结构100包括两个谐振柱121和一个耦合连接件131,两个谐振柱121通过耦合连接件131电连接以实现电磁耦合。如此,将该滤波结构100与前述的现有滤波结构进行仿真分析,可以得到如图14所示的仿真结果,其中,两个波峰之间的间距可以表征滤波结构的通频带的带宽,显然,可以知道,相较于未设置耦合连接件131的滤波结构,设置有耦合连接件131的滤波结构100具有更大的通频带的带宽。
在此,提供的能够提高电容耦合系数的滤波结构100的实验例如图15所示,该滤波结构100包括两个谐振柱121和一组耦合连接件131,两个谐振柱121分别与该组耦合连接件131中的两个耦合连接件131电连接以实现电容耦合。如此,将该滤波结构100与前述的现有滤波结构进行仿真分析,可以得到如图16所示的仿真结果,其中,两个波峰之间的间距可以表征滤波结构的通频带的带宽,显然,可以知道,相较于未设置耦合连接件131的滤波结构,设置有耦合连接件131的滤波结构100具有更大的通频带的带宽。
并且,本申请的发明人在研究的过程中发现,如果将耦合增强部件130进行接地设置,将会导致无法有效地提高谐振柱121之间的耦合系数,使得通频带的带宽也无法有效扩宽。
同样地,为了说明对耦合增强部件130是否进行接地设置会产生不同的效果,本申请也进行了相应的仿真分析,如图17所示,分别示出了图12的对比例、图13中的试验例和将该试验例中将耦合连接件131与第一屏蔽层111接触设置的另一试验例的仿真示意图。显然,可以知道,相较于耦合连接件131接地的滤波结构,耦合连接件131未接地的滤波结构100具有更大的通频带的带宽。
综上所述,本申请提供的滤波结构100和滤波器件10,通过在设置屏蔽部件110和谐振部件120的基础上,设置耦合增强部件130,以对至少两个谐振部件120的谐振柱121 之间的耦合系数进行增强处理。如此,一方面耦合增强部件130的设置不会导致滤波结构100的体积增加,另一方面,由于耦合增强部件130的设置,还可以提高连接的谐振柱121之间的耦合系数,从而使得该滤波结构100的通频带的带宽增加,进而解决了同时实现集成化及有效扩宽器件的通频带的带宽的问题,具有较高的实用价值,尤其是在精密仪器的应用中,具有较好的应用效果。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请提供的滤波结构和滤波器件,通过在设置屏蔽部件和谐振部件的基础上,设置耦合增强部件,以对至少两个谐振部件的谐振柱之间的耦合系数进行增强处理。如此,解决了在滤波器件中同时实现集成化及有效扩宽器件的通频带的带宽的问题,具有较高的实用价值。

Claims (15)

  1. 一种滤波结构,其特征在于,包括:
    屏蔽部件,该屏蔽部件包括第一屏蔽层和第二屏蔽层,该第一屏蔽层和该第二屏蔽层相对且间隔设置;
    谐振部件,该谐振部件至少为两个,各所述谐振部件间隔设置,每个所述谐振部件包括谐振柱和与该谐振柱连接的谐振盘,该谐振柱位于所述第一屏蔽层和所述第二屏蔽层之间,且与该第一屏蔽层连接;
    耦合增强部件,该耦合增强部件分别与所述第一屏蔽层和所述第二屏蔽层间隔设置,且与至少两个所述谐振柱分别连接,以提高该至少两个谐振柱之间的耦合系数。
  2. 根据权利要求1所述的滤波结构,其特征在于,所述耦合增强部件包括至少一个耦合连接件;
    其中,每一个所述耦合连接件与两个谐振柱分别连接,以提高该两个谐振柱之间的电磁耦合系数。
  3. 根据权利要求2所述的滤波结构,其特征在于,沿待处理信号在各所述谐振部件之间的传播方向,每一个所述耦合连接件与相邻的两个谐振柱分别连接,用于提高相邻的两个谐振柱之间的电磁耦合系数。
  4. 根据权利要求2所述的滤波结构,其特征在于,沿待处理信号在各所述谐振部件之间的传播方向,在所述至少一个耦合连接件中,至少有一个耦合连接件与不相邻的两个谐振柱分别连接,以提高该不相邻的两个谐振柱之间的电磁耦合系数,且在所述滤波结构的通频带之外、接近上限截止频率的位置形成传输零点。
  5. 根据权利要求1所述的滤波结构,其特征在于,所述耦合增强部件包括至少一组耦合连接件,每组耦合连接件包括两个耦合连接件;
    其中,属于同一组的两个耦合连接件分别连接两个谐振柱,且该两个耦合连接件间隔交错设置,以形成电容组件,由此提高该两个谐振柱之间的电容耦合系数。
  6. 根据权利要求5所述的滤波结构,其特征在于,沿待处理信号在各所述谐振部件之间的传播方向,属于同一组的两个耦合连接件分别连接相邻的两个谐振柱,以提高该相邻的两个谐振柱之间的电容耦合系数。
  7. 根据权利要求5所述的滤波结构,其特征在于,沿待处理信号在各所述谐振部件之间的传播方向,至少有一组耦合连接件的两个耦合连接件,分别连接不相邻的两个谐振柱,以提高该不相邻的两个谐振柱之间的电容耦合系数,且在所述滤波结构的通频带之外、接近下限截止频率的位置形成传输零点。
  8. 根据权利要求5所述的滤波结构,其特征在于,属于同一组的两个耦合连接件平行设置,且该两个耦合连接件的交错部分,在垂直于该两个耦合连接件的延伸方向的方向上的投影重合。
  9. 根据权利要求1-8任意一项所述的滤波结构,其特征在于,所述耦合增强部件为金属结构。
  10. 根据权利要求1-9任意一项所述的滤波结构,其特征在于,所述第一屏蔽层和所述第二屏蔽层是在其它非导电结构上形成的图形化导电结构。
  11. 根据权利要求1-10任意一项所述的滤波结构,其特征在于,所述屏蔽部件还包括多个屏蔽柱,多个所述屏蔽柱间隔设置于所述第一屏蔽层和所述第二屏蔽层之间,以围合形成腔体结构,所述谐振部件和所述耦合增强部件位于所述腔体结构的内部。
  12. 根据权利要求1-10任意一项所述的滤波结构,其特征在于,所述屏蔽部件还包括设置于所述第一屏蔽层和所述第二屏蔽层之间且与第一屏蔽层及第二屏蔽层共同围成封闭的腔体结构的多个其它屏蔽层,所述谐振部件和所述耦合增强部件位于所述腔体结构的内部。
  13. 根据权利要求11或12任意一项所述的滤波结构,其特征在于,在所述腔体结构的内部形成多个腔体子结构,以分别设置各谐振部件,在所述腔体子结构之间形成有用于使待处理信号在各谐振部件之间进行传输的屏蔽开口。
  14. 根据权利要求12任意一项所述的滤波结构,其特征在于,所述第一屏蔽层和所述第二屏蔽层相对的表面为四边形,所述其它屏蔽层为4个。
  15. 一种滤波器件,其特征在于,包括:
    连接端口,该连接端口包括第一端口和第二端口;
    权利要求1-14中任意一项所述的滤波结构,该滤波结构为多个,且分别连接于所述第一端口与所述第二端口之间,以对通过所述第一端口输入的待处理信号进行滤波处理之后通过所述第二端口输出,或对通过所述第二端口输入的待处理信号进行滤波处理之后通过所述第一端口输出。
PCT/CN2021/085213 2020-04-17 2021-04-02 滤波结构和滤波器件 WO2021208761A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/919,247 US20230187799A1 (en) 2020-04-17 2021-04-02 Filter structure and filter device
JP2022563004A JP7481038B2 (ja) 2020-04-17 2021-04-02 フィルタ構造およびフィルタデバイス
KR1020227036709A KR102721020B1 (ko) 2020-04-17 2021-04-02 필터 구조 및 필터 장치
EP21787857.8A EP4117110A4 (en) 2020-04-17 2021-04-02 FILTER STRUCTURE AND FILTER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010306011.8 2020-04-17
CN202010306011.8A CN111403868A (zh) 2020-04-17 2020-04-17 滤波结构和滤波器件

Publications (1)

Publication Number Publication Date
WO2021208761A1 true WO2021208761A1 (zh) 2021-10-21

Family

ID=71429674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085213 WO2021208761A1 (zh) 2020-04-17 2021-04-02 滤波结构和滤波器件

Country Status (5)

Country Link
US (1) US20230187799A1 (zh)
EP (1) EP4117110A4 (zh)
JP (1) JP7481038B2 (zh)
CN (1) CN111403868A (zh)
WO (1) WO2021208761A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403868A (zh) * 2020-04-17 2020-07-10 安徽安努奇科技有限公司 滤波结构和滤波器件
CN112599942A (zh) * 2020-11-30 2021-04-02 湖南迈克森伟电子科技有限公司 一种腔体滤波器的可调强感性耦合结构
CN117092384B (zh) * 2023-10-09 2024-06-28 荣耀终端有限公司 屏蔽装置、信息确定方法、电子设备和测试设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359394A (zh) * 2017-08-15 2017-11-17 罗森伯格技术(昆山)有限公司 可调电磁混合耦合滤波器
US20180131063A1 (en) * 2016-11-04 2018-05-10 Com Dev International Ltd. Multi-band bandpass filter
CN111403868A (zh) * 2020-04-17 2020-07-10 安徽安努奇科技有限公司 滤波结构和滤波器件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516030A (en) * 1967-09-19 1970-06-02 Joseph S Brumbelow Dual cavity bandpass filter
JPS58194405A (ja) * 1982-05-08 1983-11-12 Murata Mfg Co Ltd 複合フイルタ
JP2670963B2 (ja) * 1993-04-01 1997-10-29 国際電気株式会社 コムライン形バンドパスフィルタ
FI113578B (fi) * 1999-03-03 2004-05-14 Filtronic Lk Oy Resonaattorisuodatin
EP2068393A1 (en) * 2007-12-07 2009-06-10 Panasonic Corporation Laminated RF device with vertical resonators
CN101276952B (zh) * 2008-04-15 2012-08-22 华南理工大学 可控电磁混合耦合同轴腔滤波器
CN103378388A (zh) * 2012-04-20 2013-10-30 南京赛格微电子科技有限公司 同轴宽带滤波器
JP5513545B2 (ja) * 2012-04-23 2014-06-04 島田理化工業株式会社 帯域通過フィルタ
CN111682293B (zh) * 2014-12-15 2021-12-31 康普公司意大利有限责任公司 谐振滤波器
KR101756124B1 (ko) * 2015-11-30 2017-07-11 주식회사 케이엠더블유 크로스 커플링 노치 구조를 구비한 캐비티 타입의 무선 주파수 필터
JP6676171B2 (ja) * 2015-12-24 2020-04-08 華為技術有限公司Huawei Technologies Co.,Ltd. フィルタおよびワイヤレスネットワークデバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180131063A1 (en) * 2016-11-04 2018-05-10 Com Dev International Ltd. Multi-band bandpass filter
CN107359394A (zh) * 2017-08-15 2017-11-17 罗森伯格技术(昆山)有限公司 可调电磁混合耦合滤波器
CN111403868A (zh) * 2020-04-17 2020-07-10 安徽安努奇科技有限公司 滤波结构和滤波器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117110A4 *

Also Published As

Publication number Publication date
JP2023522064A (ja) 2023-05-26
US20230187799A1 (en) 2023-06-15
JP7481038B2 (ja) 2024-05-10
KR20220161554A (ko) 2022-12-06
EP4117110A1 (en) 2023-01-11
CN111403868A (zh) 2020-07-10
EP4117110A4 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2021208761A1 (zh) 滤波结构和滤波器件
JP5019033B2 (ja) コモンモード電流抑制ebgフィルタ
US10749234B2 (en) Band-pass filter
WO2021008005A1 (zh) 一种介质波导滤波器
US20190198959A1 (en) Band-pass filter
US20130249652A1 (en) Gigahertz common-mode filter for multi-layer planar structure
TW480770B (en) Miniaturized trisection cross-coupled bandpass filter structure
CN109904570A (zh) 一种介质波导滤波器
CN106450611A (zh) 基于基片集成波导的高频率选择性平衡带通滤波器
JP6267801B2 (ja) 共振器、フィルタおよび通信装置
JP6563776B2 (ja) 共振器、バンドパスフィルタおよび通信装置
CN211605368U (zh) 滤波结构和滤波器件
US9882544B2 (en) Electronic component
CN114937856B (zh) 一种基于混合电磁耦合的基片集成波导带通滤波器
WO2021056415A1 (zh) 陶瓷介质滤波器
WO2019179524A1 (zh) 双模谐振器、滤波器及射频单元
KR20210021736A (ko) 전송영점을 갖는 로우 패스 필터
US11201599B2 (en) Band pass filter
JPH0646083Y2 (ja) ストリップラインフィルタ
KR102721020B1 (ko) 필터 구조 및 필터 장치
JP6013280B2 (ja) 高周波伝送線路
TWI843274B (zh) 多層共振器線路結構及多層濾波器線路結構
JP2006332979A (ja) ハイパスフィルタ
CN109286383A (zh) 一种新型介质陶瓷低通滤波器
JP6068678B2 (ja) 誘電体共振器,誘電体フィルタおよび通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787857

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021787857

Country of ref document: EP

Effective date: 20221003

ENP Entry into the national phase

Ref document number: 2022563004

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227036709

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE