WO2021208594A1 - 汽车中制动系统的液压调节单元、制动系统及控制方法 - Google Patents

汽车中制动系统的液压调节单元、制动系统及控制方法 Download PDF

Info

Publication number
WO2021208594A1
WO2021208594A1 PCT/CN2021/077229 CN2021077229W WO2021208594A1 WO 2021208594 A1 WO2021208594 A1 WO 2021208594A1 CN 2021077229 W CN2021077229 W CN 2021077229W WO 2021208594 A1 WO2021208594 A1 WO 2021208594A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil inlet
brake
inlet pipe
wheel
pressure
Prior art date
Application number
PCT/CN2021/077229
Other languages
English (en)
French (fr)
Inventor
杨维妙
张永生
刘栋豪
张伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21787694.5A priority Critical patent/EP4122785A4/en
Publication of WO2021208594A1 publication Critical patent/WO2021208594A1/zh
Priority to US17/964,569 priority patent/US20230033528A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/16Master control, e.g. master cylinders
    • B60T11/224Master control, e.g. master cylinders with pressure-varying means, e.g. with two stage operation provided by use of different piston diameters including continuous variation from one diameter to another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/16Master control, e.g. master cylinders
    • B60T11/18Connection thereof to initiating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/16Master control, e.g. master cylinders
    • B60T11/22Master control, e.g. master cylinders characterised by being integral with reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems

Definitions

  • This application relates to the field of automobiles, and more specifically, to a hydraulic adjustment unit of a brake system in an automobile, a brake system in an automobile, an automobile, and a control method of the brake system in an automobile.
  • the braking system of a car is a system that applies a certain braking force to the wheels of the car to perform a certain degree of forced braking.
  • the function of the braking system is to force a driving car to decelerate or even stop according to the requirements of the driver or the controller, or to make a stopped car park stably under various road conditions (for example, on a ramp), or to make The speed of the car driving downhill remains stable.
  • Electro-Hydraulic Brake as a popular brake system, usually includes a liquid storage device, which is used to contain brake fluid.
  • the brake fluid in the fluid storage device can be delivered to the booster device, the booster device pressurizes the brake fluid, and provides braking force for the wheels through the oil inlet pipe. power.
  • the pressure difference between the pressure of the brake fluid in the fluid storage device and the pressure of the brake fluid in the brake wheel cylinder can be used to transfer the brake wheel cylinder through the oil return line.
  • the brake fluid in the pump is delivered to the fluid storage device for the next time to provide braking force for the wheels.
  • the present application provides a hydraulic adjustment unit of a brake system in an automobile, a brake system in an automobile, an automobile and a control method of the brake system in an automobile, so as to improve the decompression efficiency of the brake wheel cylinder in the brake system .
  • a hydraulic adjustment unit for a brake system in an automobile which includes a first liquid storage device 29, a second liquid storage device 2, a first oil return line 110, and a second oil return line 120.
  • the oil pipeline 110 is used to connect with the wheel brake cylinders 151 and 152 of the automobile to deliver the brake fluid in the wheel brake cylinders 151 and 152 of the automobile to the first liquid storage device 29 to decompress the wheels of the automobile;
  • the second oil return line 120 is used to connect to the brake wheel cylinders 151, 152 of the car through the oil inlet lines 130 and 140 of the brake system, so as to connect the brake wheel cylinders of the car through the oil inlet lines 130 and 140 of the brake system.
  • the brake fluid in 151 and 152 is delivered to the second fluid storage device 2 to depressurize the wheels of the automobile.
  • the first oil return pipe 110 and the second oil return pipe 120 are used to simultaneously deliver the brake fluid from the brake wheel cylinders 151 and 152 to the fluid storage device, so as to reduce the pressure of the wheels of the automobile, which is beneficial to Improve the decompression efficiency of the brake wheel cylinder decompression in the braking system. It avoids that in the existing brake system, only one oil return line can be used to decompress the wheels of the car, which leads to low braking efficiency of the brake system.
  • the second oil return line 120 is connected to the oil inlet lines 130 and 140.
  • the brake fluid in the wheel brake cylinders 151 and 152 can be transported to the reservoir through the oil inlet lines 130 and 140.
  • the device is designed to decompress the wheels of the automobile, that is, to reuse the oil inlet pipes 130 and 140 as the oil return pipe during the decompression process, which is beneficial to reduce the complexity of the brake pipe deployment in the brake system.
  • the oil inlet pipeline of the hydraulic adjustment unit includes a first oil inlet pipeline 130 and a second oil inlet pipeline 140, and the second oil return pipeline 120 passes through the first pressure reducing valve 10 and the first oil inlet pipeline.
  • 130 is connected, if the first pressure reducing valve 10 is in a conducting state, the second oil return line 120 is in communication with the first oil inlet line 130, if the first pressure reducing valve 10 is in a disconnected state, the second oil return line 120 is connected to the An oil inlet pipe 130 is disconnected; the second oil return pipe 120 is connected to the second oil inlet pipe 140 through the second pressure reducing valve 11, and if the second pressure reducing valve 11 is in a conducting state, the second oil return pipe 120 is connected to the second oil return pipe 120.
  • the two oil inlet pipes 140 are in communication. If the second pressure reducing valve 11 is in a disconnected state, the second oil return pipe 120 is disconnected from the second oil inlet pipe 140.
  • the on and off of the first pressure reducing valve 10 and the second pressure reducing valve 11 by controlling the on and off of the first pressure reducing valve 10 and the second pressure reducing valve 11, the relationship between the second oil return pipe 120 and the first oil inlet pipe 130 and the second oil inlet pipe 140 is controlled.
  • the on-off of the brake system is conducive to enriching the working modes of the brake system, so that the brake system can be used in a wider range of application scenarios.
  • the hydraulic adjustment unit includes a master brake cylinder 3 and a pressure providing device 18.
  • the master brake cylinder 3 is the first wheel of the automobile through the first oil inlet branch 131 of the first oil inlet pipe 130. 25 provides braking force.
  • the brake master cylinder 3 provides braking force for the second wheels 26 of the automobile through the second oil inlet branch 132 of the first oil inlet pipe 130; the brake master cylinder 3 passes through the second oil inlet pipe 140
  • the three oil inlet pipe branch 141 provides braking force for the third wheel 27 of the automobile, and the master brake cylinder 3 provides braking force for the fourth wheel 28 of the automobile through the fourth oil inlet pipe branch 142 of the second oil inlet pipe 140;
  • the device 18 provides braking force for the first wheel 25 and the second wheel 26 through the third oil inlet pipe 150, the first oil inlet pipe branch 131 and the second oil pipe branch 132.
  • the third oil inlet pipe 150 and the first oil inlet pipe The third oil inlet pipe 150 is in communication with the second oil inlet pipe branch 132; the pressure providing device 18 is connected to the fourth oil inlet pipe 160, the third oil inlet pipe branch 141, and the fourth oil inlet pipe branch 131.
  • the third wheel 27 and the fourth wheel 28 provide braking force, the fourth oil inlet pipe 160 communicates with the third oil inlet pipe branch 141, and the fourth oil pipe 160 communicates with the fourth oil pipe branch 142.
  • the master brake cylinder 3 provides braking force for the wheels through the first oil inlet pipe 130 and the second oil inlet pipe 140, and the pressure providing device 18 can pass through the third oil inlet pipe 150 and the fourth oil inlet pipe.
  • Lu 160 provides braking force for the car, which is beneficial to improve the efficiency of the braking system to provide braking force to the wheels.
  • the first oil inlet pipe 130 is connected to the first oil inlet pipe branch 131 and the second oil inlet pipe branch 132 through the first isolation valve 12. If the first isolation valve 12 is in the disconnected state, Then the brake fluid in the first oil inlet pipe 130 is blocked by the first isolation valve 12, and cannot flow into the brakes of the first wheel 25 and the second wheel 26 through the first oil inlet pipe branch 131 and the second oil pipe branch 132.
  • the moving wheel cylinder; the second oil inlet pipe 140 and the third oil inlet pipe branch 141 and the fourth oil inlet pipe branch 142 are connected by the second isolation valve 13, if the second isolation valve 13 is in a disconnected state, the second oil inlet pipe
  • the brake fluid in the passage 140 is blocked by the first isolation valve 12 and cannot flow into the first wheel 25 and the second wheel 26 through the third oil inlet pipe branch 141 and the fourth oil inlet pipe branch 142.
  • the first oil inlet pipe 130 is connected to the first oil inlet pipe branch 131 and the second oil inlet pipe branch 132 through the first isolation valve 12, and the second oil inlet pipe 140 is connected through the second isolation valve 13
  • the third oil inlet pipe branch 141 and the fourth oil inlet pipe branch 142 are connected to the first isolation valve 12 and the second isolation valve 13 to control whether the braking system passes through the first oil inlet pipe 130 and the second oil inlet pipe.
  • the oil pipeline 140 provides braking force for the automobile to increase the working mode of the braking system. For example, when the first isolation valve 12 and the second isolation valve 13 are in a disconnected state, the above-mentioned supercharging device 18 can provide braking force for the automobile.
  • first liquid storage device 29 and the second liquid storage device 2 are the same liquid storage device, or the first liquid storage device 29 and the second liquid storage device 2 are different liquid storage devices.
  • the above-mentioned first liquid storage device 29 and the second liquid storage device 2 are the same liquid storage device, which is beneficial to reduce the number of components in the braking system and reduce the cost of the braking system.
  • the above-mentioned first liquid storage device 29 and the second liquid storage device 2 are different liquid storage devices, it is beneficial to increase the capacity of the brake system to store brake fluid.
  • a brake system of an automobile which includes a first liquid storage device 29, a second liquid storage device 2, a first oil return line 110, a second oil return line 120, and a plurality of wheel brake cylinders 151, 152.
  • the first oil return line 110 is connected to a plurality of brake wheel cylinders 151, 152, and the first oil return line 110 is used to transport the brake fluid in the plurality of brake wheel cylinders 151, 152 to the first liquid storage device 29.
  • the second oil return line 120 is connected to the multiple brake wheel cylinders 151, 152 through the oil inlet lines 130, 140 of the brake system in the automobile, and the second oil return line 120 is used for braking
  • the oil inlet pipes 130 and 140 of the system transport the brake fluid in the wheel brake cylinders 151 and 152 of the automobile to the second liquid storage device 2 to depressurize the wheels of the automobile.
  • the first oil return pipe 110 and the second oil return pipe 120 are used to simultaneously deliver the brake fluid from the brake wheel cylinders 151 and 152 to the fluid storage device, so as to reduce the pressure of the wheels of the automobile, which is beneficial to Improve the decompression efficiency of the brake wheel cylinder decompression in the braking system. It avoids that in the existing brake system, only one oil return line can be used to decompress the wheels of the car, which leads to low braking efficiency of the brake system.
  • the second oil return line 120 is connected to the oil inlet lines 130 and 140.
  • the brake fluid in the wheel brake cylinders 151 and 152 can be transported to the reservoir through the oil inlet lines 130 and 140.
  • the device is designed to decompress the wheels of the automobile, that is, to reuse the oil inlet pipes 130 and 140 as the oil return pipe during the decompression process, which is beneficial to reduce the complexity of the brake pipe deployment in the brake system.
  • the oil inlet pipeline of the brake system includes a first oil inlet pipeline 130 and a second oil inlet pipeline 140, and the second oil return pipeline 120 passes through the first pressure reducing valve 10 and the first oil inlet pipeline.
  • 130 is connected, if the first pressure reducing valve 10 is in a conducting state, the second oil return line 120 is in communication with the first oil inlet line 130, if the first pressure reducing valve 10 is in a disconnected state, the second oil return line 120 is connected to the An oil inlet pipe 130 is disconnected; the second oil return pipe 120 is connected to the second oil inlet pipe 140 through the second pressure reducing valve 11, and if the second pressure reducing valve 11 is in a conducting state, the second oil return pipe 120 is connected to the second oil return pipe 120.
  • the two oil inlet pipes 140 are in communication. If the second pressure reducing valve 11 is in a disconnected state, the second oil return pipe 120 is disconnected from the second oil inlet pipe 140.
  • the on and off of the first pressure reducing valve 10 and the second pressure reducing valve 11 by controlling the on and off of the first pressure reducing valve 10 and the second pressure reducing valve 11, the relationship between the second oil return pipe 120 and the first oil inlet pipe 130 and the second oil inlet pipe 140 is controlled.
  • the on-off of the brake system is conducive to enriching the working modes of the brake system, so that the brake system can be used in a wider range of application scenarios.
  • the brake system further includes a master brake cylinder 3 and a pressure supply device 18.
  • the master brake cylinder 3 is the first oil inlet pipe branch 131 of the first oil inlet pipe 130.
  • the wheels 25 provide braking force
  • the master brake cylinder 3 provides braking force for the second wheels 26 of the automobile through the second oil inlet pipe branch 132 of the first oil inlet pipe 130;
  • the brake master cylinder 3 passes through the second oil inlet pipe 140
  • the third oil inlet pipe branch 141 provides braking force for the third wheel 27 of the automobile, and the master brake cylinder 3 provides braking force for the fourth wheel 28 of the automobile through the fourth oil inlet pipe branch 142 of the second oil inlet pipe 140;
  • the providing device 18 provides braking force for the first wheel 25 and the second wheel 26 through the third oil inlet line 150, the first oil inlet line branch 131, and the second oil inlet line branch 132.
  • the third oil inlet line 150 is connected to the first oil inlet line branch 132.
  • the oil pipeline branch 131 is in communication, and the third oil inlet pipeline 150 is in communication with the second oil inlet pipeline branch 132; the pressure providing device 18 passes through the fourth oil inlet pipeline 160, the third oil inlet pipeline branch 141, and the fourth oil inlet pipeline branch 131
  • the fourth oil inlet pipe 160 communicates with the third oil inlet pipe branch 141, and the fourth oil pipe 160 communicates with the fourth oil pipe branch 142.
  • the master brake cylinder 3 provides braking force for the wheels through the first oil inlet pipe 130 and the second oil inlet pipe 140, and the pressure providing device 18 can pass through the third oil inlet pipe 150 and the fourth oil inlet pipe.
  • Lu 160 provides braking force for the car, which is beneficial to improve the efficiency of the braking system to provide braking force to the wheels.
  • the first oil inlet pipe 130 is connected to the first oil inlet pipe branch 131 and the second oil inlet pipe branch 132 through the first isolation valve 12. If the first isolation valve 12 is in the disconnected state, Then the brake fluid in the first oil inlet pipe 130 is blocked by the first isolation valve 12, and cannot flow into the brakes of the first wheel 25 and the second wheel 26 through the first oil inlet pipe branch 131 and the second oil pipe branch 132.
  • the moving wheel cylinder; the second oil inlet pipe 140 and the third oil inlet pipe branch 141 and the fourth oil inlet pipe branch 142 are connected by the second isolation valve 13, if the second isolation valve 13 is in a disconnected state, the second oil inlet pipe
  • the brake fluid in the passage 140 is blocked by the first isolation valve 12 and cannot flow into the first wheel 25 and the second wheel 26 through the third oil inlet pipe branch 141 and the fourth oil inlet pipe branch 142.
  • the first oil inlet pipe 130 is connected to the first oil inlet pipe branch 131 and the second oil inlet pipe branch 132 through the first isolation valve 12, and the second oil inlet pipe 140 is connected through the second isolation valve 13
  • the third oil inlet pipe branch 141 and the fourth oil inlet pipe branch 142 are connected to the first isolation valve 12 and the second isolation valve 13 to control whether the braking system passes through the first oil inlet pipe 130 and the second oil inlet pipe.
  • the oil pipeline 140 provides braking force for the automobile to increase the working mode of the braking system. For example, when the first isolation valve 12 and the second isolation valve 13 are in a disconnected state, the above-mentioned supercharging device 18 can provide braking force for the automobile.
  • first liquid storage device 29 and the second liquid storage device 2 are the same liquid storage device, or the first liquid storage device 29 and the second liquid storage device 2 are different liquid storage devices.
  • the above-mentioned first liquid storage device 29 and the second liquid storage device 2 are the same liquid storage device, which is beneficial to reduce the number of components in the braking system and reduce the cost of the braking system.
  • the above-mentioned first liquid storage device 29 and the second liquid storage device 2 are different liquid storage devices, it is beneficial to increase the capacity of the brake system to store brake fluid.
  • an automobile including any possible braking system in the second aspect.
  • a method for controlling a braking system in an automobile which includes: a controller of the braking system controls the first control valves 16, 17 to be in a conductive state, so as to connect the first oil return line 110 with the brake system.
  • the brake wheel cylinder, the brake fluid in the brake wheel cylinder of the brake system flows to the first fluid storage device 29 of the brake system through the first oil return line 110 of the brake system to depressurize the wheels of the automobile;
  • the controller controls the second control valves 10 and 11 to be in a conducting state to connect the oil inlet pipes 130 and 140 of the brake system with the second oil return pipe 120 of the brake system, and the brakes in the brake wheel cylinders of the brake system
  • the fluid flows to the second liquid storage device 2 of the brake system through the oil inlet pipes 130 and 140 and the second oil return pipe 120 of the brake system.
  • the first oil return pipe 110 and the second oil return pipe 120 are used to simultaneously deliver the brake fluid from the brake wheel cylinders 151 and 152 to the fluid storage device, so as to reduce the pressure of the wheels of the automobile, which is beneficial to Improve the decompression efficiency of the brake wheel cylinder decompression in the braking system. It avoids that in the existing brake system, only one oil return line can be used to decompress the wheels of the car, which leads to low braking efficiency of the brake system.
  • the second oil return line 120 is connected to the oil inlet lines 130 and 140.
  • the brake fluid in the wheel brake cylinders 151 and 152 can be transported to the reservoir through the oil inlet lines 130 and 140.
  • the device is designed to decompress the wheels of the automobile, that is, to reuse the oil inlet pipes 130 and 140 as the oil return pipe during the decompression process, which is beneficial to reduce the complexity of the brake pipe deployment in the brake system.
  • the controller controlling the second control valve to be in a conducting state includes: if the decompression rate of the braking system is lower than a preset decompression rate threshold, the controller controls the second control valve 10, 11 is in a conducting state.
  • the controller may control the second control valves 10 and 11 to be in the conducting state, so that the second oil return pipeline 120 is used as The decompression of the car is conducive to improving the performance of the braking system.
  • the oil inlet pipeline of the brake system includes a first oil inlet pipeline 130 and a second oil inlet pipeline 140, and the second oil return pipeline 120 passes through the first pressure reducing valve 10 and the first oil inlet pipeline. 130 is connected, the second oil return pipe 120 is connected to the second oil inlet pipe 140 through the second pressure reducing valve 11, and the controller controls the second control valve to be in a conducting state, including: the controller controls the second control valves 10, 11
  • the first pressure reducing valve 10 is in a conducting state to connect the second oil return pipe 120 with the first oil inlet pipe 130 in the oil inlet pipe of the brake system; the controller controls the first oil inlet pipe 130 in the second control valve 10, 11
  • the second pressure reducing valve 11 is in a conducting state to connect the second oil return pipe 120 with the second oil inlet pipe 140 of the oil inlet pipe of the brake system.
  • the on and off of the first pressure reducing valve 10 and the second pressure reducing valve 11 by controlling the on and off of the first pressure reducing valve 10 and the second pressure reducing valve 11, the relationship between the second oil return pipe 120 and the first oil inlet pipe 130 and the second oil inlet pipe 140 is controlled.
  • the on-off of the brake system is conducive to enriching the working modes of the brake system, so that the brake system can be used in a wider range of application scenarios.
  • the master brake cylinder 3 of the braking system provides braking force for the first wheel 25 of the automobile through the first oil inlet pipe branch 131 of the first oil inlet pipe 130, and passes through the first oil inlet pipe branch 131.
  • the second oil inlet pipe branch 132 of the oil pipe 130 provides braking force for the second wheel 26 of the automobile;
  • the master brake cylinder 3 passes through the third oil inlet branch 141 of the second oil inlet pipe 140, which is the third wheel of the automobile 27 provides braking force, and provides braking force for the fourth wheel 28 of the automobile through the fourth oil inlet branch 142 of the second oil inlet pipe 140;
  • the above method also includes: the controller controls the pressure supply device 18 of the brake system to pass
  • the third oil inlet pipe 150, the first oil inlet pipe branch 131, and the second oil inlet pipe branch 132 of the braking system provide braking force for the first wheel 25 and the second wheel 26.
  • the third oil inlet pipe 150 and the first The oil inlet pipe branch 131 is in communication, and the third oil inlet pipe 150 is in communication with the second oil inlet pipe branch 132; the controller controls the pressure providing device 18 through the fourth oil inlet pipe 160 and the third oil inlet pipe branch 141 of the brake system And the fourth oil inlet pipe branch 142 provides braking force for the third wheel 27 and the fourth wheel 28, the fourth oil inlet pipe 160 communicates with the third oil inlet pipe branch 141, and the fourth oil inlet pipe 160 is connected to the fourth oil inlet pipe branch 141.
  • the oil pipeline branch 142 communicates with each other.
  • the master brake cylinder 3 provides braking force for the wheels through the first oil inlet pipe 130 and the second oil inlet pipe 140, and the pressure providing device 18 can pass through the third oil inlet pipe 150 and the fourth oil inlet pipe.
  • Lu 160 provides braking force for the car, which is beneficial to improve the efficiency of the braking system to provide braking force to the wheels.
  • the controller controls the pressure supply device 18 of the brake system to pass through the third oil inlet line 150, the first oil inlet line branch 131, and the second oil inlet line branch 132 of the brake system.
  • the first wheel 25 and the second wheel 26 provide braking force, including: if the master cylinder 3 fails, the controller controls the pressure supply device 18 through the third oil inlet pipe 150, the first oil inlet pipe branch 131, and the second oil inlet pipe
  • the road branch 132 provides braking force for the first wheel 25 and the second wheel 26.
  • the controller can control the pressure providing device 18 to provide braking force for the first wheel 25 and the second wheel 26 to improve the redundancy performance of the braking system.
  • the controller controls the pressure providing device 18 to pass through the fourth oil inlet line 160, the third oil inlet line branch 141, and the fourth oil inlet line branch 142 of the braking system, which are the third wheels 27 and The fourth wheel 28 provides braking force, including: if the master brake cylinder 3 fails, the controller controls the pressure providing device 18 through the fourth oil inlet line 160, the third oil inlet line branch 141, and the fourth oil inlet line branch 142, as The third wheel 27 and the fourth wheel 28 provide braking force.
  • the controller can control the pressure providing device 18 to provide braking force for the third wheel 27 and the fourth wheel 28 to improve the redundancy performance of the braking system.
  • the controller controls the pressure providing device 18 of the braking system through the third oil inlet line 150, the first oil inlet line branch 131, and the second oil inlet line branch 160, which are the first wheels 25 and The second wheel 26 provides braking force, including: if the boost rate of the brake system is lower than the preset boost rate threshold, the controller controls the pressure supply device 18 of the brake system to pass through the third oil inlet line 150 and the first inlet
  • the oil pipeline branch 131 and the second oil inlet pipeline branch 132 provide braking force for the first wheel 25 and the second wheel 26.
  • the controller may control the pressure providing device 18 to provide braking force for the first wheel 25 and the second wheel 26 to increase the braking force.
  • the braking efficiency of the dynamic system if the boost rate of the brake system is lower than the preset boost rate threshold, the controller may control the pressure providing device 18 to provide braking force for the first wheel 25 and the second wheel 26 to increase the braking force.
  • the controller controls the pressure providing device 18 to be the third wheel 27 and the fourth wheel 28 through the fourth oil inlet line 160, the third oil inlet line branch 141, and the fourth oil inlet line branch 142.
  • Providing braking force includes: if the boost rate of the brake system is lower than the preset boost rate threshold, the controller controls the pressure providing device 18 to pass through the fourth inlet line 160, the third inlet line branch 141, and the fourth inlet line.
  • the oil pipeline branch 142 provides braking force for the third wheel 27 and the fourth wheel 28.
  • the controller may control the pressure providing device 18 to provide braking force for the third wheel 27 and the fourth wheel 28 to increase the braking force.
  • the braking efficiency of the dynamic system if the boost rate of the braking system is lower than the preset boost rate threshold, the controller may control the pressure providing device 18 to provide braking force for the third wheel 27 and the fourth wheel 28 to increase the braking force.
  • a control device in a fifth aspect, includes a processing unit and a storage unit, wherein the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the control device executes any one of the third aspect Possible method.
  • control device may be an independent controller in the automobile, or may be a chip with a control function in the automobile.
  • the foregoing processing unit may be a processor
  • the foregoing storage unit may be a memory, where the memory may be a storage unit in a chip (for example, a register, a cache, etc.), or a storage unit (for example, a read-only Memory, random access memory, etc.).
  • the memory and the processor are coupled in the above-mentioned controller.
  • the memory is coupled to the processor, it can be understood that the memory is located inside the processor, or the memory is located outside the processor, thereby being independent of the processor.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the methods in the foregoing aspects.
  • the above-mentioned computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor, or may be packaged separately with the processor. Specific restrictions.
  • a computer-readable medium stores program code, and when the computer program code runs on a computer, the computer executes the methods in the above-mentioned aspects.
  • FIG. 1 is a schematic diagram of the structure of a conventional electro-hydraulic brake system 100.
  • FIG. 2 is a schematic diagram of a hydraulic pressure adjusting unit 200 in a braking system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a hydraulic pressure adjustment unit 300 of the brake system according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a hydraulic adjustment unit 400 according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a hydraulic adjustment unit 500 according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a braking system 600 according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the pressure increase path of the brake fluid in the brake system 600 of the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the pressure increase path of the brake fluid in the online control mode of the brake system of the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the pressure increase path of the brake fluid during the pressure reduction process of the brake system of the embodiment of the present application.
  • FIG. 10 is a schematic diagram of the boosting path of the brake fluid when the high-speed boosting mode and the brake-by-wire mode are combined according to the embodiment of the present application.
  • FIG. 11 is a schematic diagram of the brake pipeline where the brake fluid is located during the pressure maintaining process when the high-speed pressurization mode of the embodiment of the present application is combined with the brake-by-wire mode.
  • FIG. 12 is a schematic diagram of the pressure reduction path of the brake fluid during the pressure reduction process when the high-speed pressure-increasing mode and the brake-by-wire mode of the embodiment of the present application are combined.
  • FIG. 13 is a schematic diagram of the pressure increase path of the brake fluid in the brake system 600 of the embodiment of the present application.
  • FIG. 14 is a schematic diagram of the brake pipeline where the brake fluid is located during the pressure holding process of the brake system in the redundant brake mode of the embodiment of the present application.
  • FIG. 15 is a schematic diagram of the pressure reduction path of the brake fluid during the pressure reduction process of the brake system in the redundant braking mode of the embodiment of the present application.
  • FIG. 16 is a schematic diagram of the pressure increase path of the brake fluid in the mechanical brake mode of the brake system 600 of the embodiment of the present application.
  • FIG. 17 is a schematic diagram of the pressure reduction path of the brake fluid in the mechanical brake mode of the brake system of the embodiment of the present application.
  • FIG. 18 is a schematic diagram of the pressure increase path of the brake fluid in the brake system 700 of the embodiment of the present application.
  • 19 is a schematic diagram of the brake pipeline where the brake fluid is located during the pressure holding process in the online control dynamic mode of the brake system of the embodiment of the present application.
  • FIG. 20 is a schematic diagram of the decompression path of the brake fluid during the decompression process of the brake system of the embodiment of the present application.
  • FIG. 21 is a schematic diagram of the boosting path of the brake fluid when the high-speed boosting mode and the brake-by-wire mode are combined in the braking system of the embodiment of the present application.
  • FIG. 22 is a schematic diagram of the brake pipeline where the brake fluid is located during the pressure maintaining process of the brake system of the embodiment of the present application under the combination of the high-speed pressurization mode and the brake-by-wire mode.
  • FIG. 23 is a schematic diagram of the decompression path of the brake fluid during the decompression process of the brake system of the embodiment of the present application.
  • FIG. 24 is a schematic diagram of the pressure increase path of the brake fluid in the brake system 700 of the embodiment of the present application.
  • FIG. 25 is a schematic diagram of the brake pipeline where the brake fluid is located during the pressure maintaining process of the brake system in the redundant braking mode of the embodiment of the present application.
  • FIG. 26 is a schematic diagram of the pressure reduction path of the brake fluid during the pressure reduction process of the brake system in the redundant braking mode of the embodiment of the present application.
  • FIG. 27 is a schematic diagram of the pressure increase path of the brake fluid in the mechanical brake mode of the brake system 700 of the embodiment of the present application.
  • FIG. 28 is a schematic diagram of the pressure reduction path of the brake fluid in the mechanical brake mode of the brake system 700 of the embodiment of the present application.
  • Fig. 29 is a flowchart of a control method of an embodiment of the present application.
  • FIG. 30 is a flowchart of a control method according to another embodiment of the present application.
  • FIG. 31 is a flowchart of a control method according to another embodiment of the present application.
  • Fig. 32 is a flowchart of a control method according to another embodiment of the present application.
  • FIG. 33 is a flowchart of a control method according to another embodiment of the present application.
  • Fig. 34 is a schematic diagram of a control device according to an embodiment of the present application.
  • FIG. 35 is a schematic block diagram of a controller according to an embodiment of the present application.
  • EHB electro-hydraulic Brake
  • FIG. 1 is a schematic diagram of the structure of a conventional electro-hydraulic brake system 100.
  • the brake system 100 shown in FIG. 1 includes a master cylinder 1015, a first brake pipe 1011, a second brake pipe 1012, a third brake pipe 1013, a liquid storage device 1014, and a first set of wheels.
  • the controller in the braking system 100 controls the plurality of first control valves 101, 102, 103, 104 to be in the conducting state, and the plurality of second control valves 105, 106, 107, 108 is in the disconnected state.
  • the fluid storage device 1014 provides brake fluid for the brake master cylinder 1015.
  • the master brake cylinder 1015 delivers the brake fluid to the wheel brake cylinders 1017 of the first group of wheels through the first brake pipeline 1011 to provide braking force for the first group of wheels.
  • the master brake cylinder 1015 delivers the brake fluid to the wheel brake cylinder 1016 of the second group of wheels through the second brake pipeline 1012 to provide braking force for the second group of wheels.
  • first brake line 1011 and the second brake line 1012 are used to provide braking force for the wheels of the automobile. Therefore, the first brake line 1011 and the second brake pipeline 1012 are also called "oil inlet pipeline”.
  • the controller in the braking system 100 controls the multiple first control valves 101, 102, 103, 104 to be in an open state, and the multiple second control valves 105, 106, 107, 108 In a connected state.
  • the pressure of the brake fluid in the wheel brake cylinder 1017 of the first set of wheels and the brake fluid pressure in the wheel brake cylinder 1016 of the second set of wheels is higher than the pressure of the brake fluid in the master brake cylinder 1015, there is a hydraulic pressure difference. .
  • the brake fluid in the wheel brake cylinders 1017 of the first group of wheels and the wheel brake cylinders 1016 of the second group of wheels can be delivered to the liquid storage device 1014 through the third brake pipeline 1013 by using the above-mentioned hydraulic pressure difference.
  • the third brake pipe 1013 is used to depressurize the wheels of the automobile. Therefore, the third brake pipe 1013 is also called the "oil return pipe”. ".
  • the present application provides a new hydraulic adjustment unit 200 in the braking system.
  • the hydraulic adjustment unit 200 includes a plurality of parallel oil return pipelines.
  • the brake fluid can be delivered from the brake wheel cylinder of the car to the fluid storage device through multiple oil return lines at the same time to improve the decompression efficiency of the brake system.
  • the hydraulic pressure adjusting unit 200 in the braking system of the embodiment of the present application is described below in conjunction with FIG. 2.
  • pressure outlet port can be understood as the port through which the brake fluid flows out
  • pressure inlet port can be understood as the port through which the brake fluid flows in.
  • pressure outlet port and “pressure inlet port” can be understood as the function of limiting the role of the port.
  • the above-mentioned “pressure outlet port” and “pressure inlet port” can be used to define a physical port to work in different ways.
  • the above-mentioned “pressure outlet port” and “pressure inlet port” may also correspond to two different physical ports, which are not limited in the embodiment of the present application.
  • the pressure inlet port of the device A when connected to the pressure outlet port of the device B described below, it can be understood as corresponding to two physical ports and used to describe the connection relationship between the device A and the device B.
  • oil return pipeline and “oil inlet pipeline” mentioned below may correspond to different brake pipelines, or may correspond to the same brake pipeline.
  • Oil return line and “oil inlet line” are only distinguished based on the function of the brake line in the brake system.
  • the brake line 1 in the brake system is used In order to deliver the brake fluid in the wheel brake cylinder to the fluid storage device, at this time, the brake pipeline 1 can be referred to as the "oil return pipeline”.
  • the brake pipe 1 In the process of pressurizing the wheels of the car, the brake pipe 1 is used to provide brake fluid for the wheels of the car, so as to provide braking force for the wheels of the car. At this time, the brake pipe 1 can be called "oil inlet pipe”. road”.
  • the "oil return pipeline” and the “oil inlet pipeline” generally correspond to two different brake pipelines.
  • oil inlet valve used to control the connection or disconnection of the oil inlet pipeline
  • oil outlet valve used to control the connection or disconnection of the oil return line
  • control valve used to isolate the two-stage brake subsystem may be referred to as an "isolation valve”.
  • the above-mentioned control valve may be a valve commonly used in an existing brake system, for example, a solenoid valve, etc., which is not specifically limited in the embodiment of the present application.
  • first oil return pipeline 110 can be understood as a section that realizes a certain function.
  • second oil return pipeline 120 can be understood as a section that realizes a certain function.
  • second oil inlet pipeline 130 can be understood as a section that realizes a certain function.
  • the first oil inlet pipeline 130 is a multi-section brake pipeline for connecting the master brake cylinder 3 and the wheel brake cylinder 151 of the first set of wheels.
  • FIG. 2 is a schematic diagram of a hydraulic pressure adjusting unit 200 in a braking system according to an embodiment of the present application.
  • the hydraulic adjustment unit 200 shown in FIG. 2 includes a first liquid storage device 29, a first oil return line 110 and a second oil return line 120.
  • the first oil return line 110 is used to connect with the wheel brake cylinders 151 and 152 of the automobile to deliver the brake fluid in the wheel brake cylinders 151 and 152 of the automobile to the first liquid storage device 29, which reduces the power of the wheels of the automobile. Pressure.
  • the above-mentioned first oil return line 110 is used to connect to the wheel brake cylinders 151 and 152 of the automobile. It can be understood that the pressure inlet port of the first oil return line 110 is used to connect to the outlet ports of the wheel brake cylinders 151 and 152.
  • the above-mentioned wheel brake cylinder of the automobile can be understood as a certain wheel brake cylinder in the automobile, for example, the wheel brake cylinder of the first wheel.
  • the wheel brake cylinders of the aforementioned automobile can also be understood as the wheel brake cylinders of all wheels in the automobile.
  • the pressure of the brake fluid in the brake wheel cylinders 151, 152 is higher than the pressure of the brake fluid in the first fluid storage device 29, so that the brake can be used.
  • the pressure difference between the pressure of the brake fluid in the wheel cylinders 151, 152 and the pressure of the brake fluid in the first reservoir 29 passes the pressure of the brake fluid in the brake wheel cylinders 151, 152 through the first oil return pipe
  • the road 110 is transported to the first liquid storage device 29.
  • the second oil return line 120 is used to connect the brake wheel cylinders 151, 152 of the car through the oil inlet lines 130 and 140 of the brake system, so as to connect the brake wheel cylinders of the car through the oil inlet lines 130 and 140 of the brake system.
  • the brake fluid in the cylinders 151 and 152 is delivered to the second reservoir 2 to depressurize the wheels of the automobile.
  • the pressure inlet port of the second oil return line 120 is connected to the pressure outlet ports of the oil inlet lines 130 and 140.
  • the pressure inlet ports of the oil inlet lines 130 and 140 and the pressure outlet ports of the brake wheel cylinders 151 and 152 are connected. Connected.
  • the above-mentioned oil inlet pipes 130 and 140 are connected to the wheel brake cylinders 151 and 152, and are used to pump the brake hydraulic pressure into the wheel brake cylinders 151 and 152 to provide braking force for the wheels of the car. .
  • the above-mentioned oil inlet pipes 130 and 140 can be used as oil return pipes to deliver the brake fluid in the brake wheel cylinders 151 and 152 to the pressure of the second oil return pipe 120 Into the port, and delivered to the second liquid storage device 2 through the second oil return pipeline 120.
  • the above-mentioned oil inlet pipelines 130 and 140 may include a first oil inlet pipeline 130 and a second oil inlet pipeline 140.
  • the first oil inlet pipe 130 is used to pump the brake hydraulic pressure into the wheel brake cylinders 151 of the first group of wheels to provide braking force for the first group of wheels.
  • the second oil inlet line 140 is used to pump the brake hydraulic pressure into the wheel brake cylinders 152 of the second group of wheels to provide braking force for the second group of wheels.
  • the above-mentioned first set of wheels 25, 26 are different from the second set of wheels 27, 28.
  • the first set of wheels 25, 26 may include the right front wheel of an automobile and the left front wheel of an automobile.
  • the second set of wheels 27, 28 can include the left rear wheel of the car and the right rear wheel of the car.
  • the above-mentioned braking system is arranged in H.
  • the first set of wheels 25, 26 may include the right front wheel of an automobile and the left rear wheel of an automobile.
  • the second set of wheels 27, 28 may include the right rear wheel of the automobile and the left front wheel of the automobile.
  • the above-mentioned braking system was arranged in an X-shape.
  • the pressure reducing valves 10 and 11 can be used to connect the aforementioned oil inlet pipes 130 and 140 and the second oil return pipe 120. In this way, when the pressure reducing valves 10 and 11 are in the disconnected state, the oil inlet pipes 130 and 140 are disconnected from the second oil return pipe 120, and the brake system can be the brake wheel cylinder 151 of the automobile through the oil inlet pipes 130 and 140. 152 provides braking force.
  • the oil inlet pipes 130 and 140 are connected to the second oil return pipe 120, and the brake system can decompress the brake wheel cylinders 151 and 152 of the automobile through the oil inlet pipes 130 and 140. .
  • the oil inlet pipeline of the above brake system includes a first oil inlet pipeline 130 and a second oil inlet pipeline 140, and the second oil return pipeline 120 is connected to the first oil inlet pipeline 130 through the first pressure reducing valve 10, if the first The pressure reducing valve 10 is in a conducting state, and the second oil return line 120 is in communication with the first oil inlet line 130. If the first pressure reducing valve 10 is in a disconnected state, the second oil return line 120 is disconnected from the first oil inlet line 130.
  • the second oil return line 120 is connected to the second oil inlet line 140 through the second pressure reducing valve 11, if the second pressure reducing valve 11 is in a conducting state, the second oil return line 120 is connected to the second oil inlet line 140 If the second pressure reducing valve 11 is in the disconnected state, the second oil return line 120 is disconnected from the second oil inlet line 140.
  • the above-mentioned first liquid storage device and the second liquid storage device may be the same liquid storage device, and the liquid storage device may be the second liquid storage device 2 or the first liquid storage device 29.
  • the fluid storage device in order to improve the utilization rate of the brake fluid, in the process of depressurizing the wheels, the fluid storage device is used to contain the brake fluid delivered from the wheel brake cylinder of the automobile. In the process of providing braking force to the wheels, the liquid storage device may also provide brake fluid for the booster device (for example, the master cylinder, etc.) of the braking system. Of course, if the utilization rate of the brake fluid is not considered, the fluid storage device may not provide brake fluid for the booster device of the brake system. The embodiment of the application does not limit this.
  • the above-mentioned first liquid storage device 29 and the second liquid storage device 2 may be connected by a pipeline (see 111 in FIG. 2), so that the brake fluid can be stored in the first liquid storage device 29 and the second liquid storage device 29 and the second liquid storage device. Flow between the fluid devices 2 in order to provide brake fluid to the booster device in the brake system in time.
  • the above-mentioned first liquid storage device 29 and the second liquid storage device 2 may also be mutually independent liquid storage devices, that is, the first liquid storage device 29 and the second liquid storage device 2 do not have a connected pipeline.
  • the second liquid storage device 2 may provide brake fluid for the master cylinder 3 of the braking system together with the first liquid storage device 29.
  • the second liquid storage device 2 and the second liquid storage device 2 may be respectively connected to the brake fluid inlet port of the master brake cylinder 3 to provide brake fluid to the master brake cylinder 3 independently of each other.
  • the second liquid storage device 2 can also provide brake fluid to the master brake cylinder 3 through the first liquid storage device 29.
  • Fig. 2 shows a possible connection method.
  • the second liquid storage device 2 is located on the first oil return line 110.
  • the first oil return line 110 transports the brake fluid from the wheel brake cylinders 151 and 152 of the automobile to the second oil return line 110.
  • the second liquid storage device 2 transports the brake fluid in the second liquid storage device 2 to the first liquid storage device 29 through the first section of the oil return pipeline 111 of the second oil return pipeline 110,
  • the brake master cylinder 3 is supplied with brake fluid through the first fluid storage device 29.
  • the above-mentioned first oil outlet line 110 may include a first oil outlet line branch 115, a second oil outlet line branch 112, a third oil outlet line branch 113, and a fourth oil outlet line branch 114.
  • the first oil outlet pipe branch 115 is used to decompress the wheel brake cylinder of the first wheel 25
  • the second oil outlet pipe branch 112 is used to decompress the wheel brake cylinder of the second wheel 26
  • the road branch 113 is used to decompress the wheel brake cylinder of the third wheel 27
  • the fourth oil outlet pipe branch 114 is used to decompress the wheel brake cylinder of the fourth wheel 28.
  • the first oil outlet pipe branch 115, the second oil outlet pipe branch 112, the third oil outlet pipe branch 113, and the fourth oil outlet pipe branch 114 can be respectively installed.
  • a fifth pressure reducing valve 16 is provided on the first oil outlet pipe branch 115 to control whether to reduce pressure for the first wheel 25.
  • a third pressure reducing valve 14 is provided on the second oil outlet pipe branch 112 to control whether to reduce pressure for the second wheel 26.
  • a fourth pressure reducing valve 15 is provided on the third oil outlet pipe branch 113 to control whether to reduce pressure for the third wheel 27.
  • a sixth pressure reducing valve 17 is provided on the fourth oil outlet pipe branch 114 to control whether to reduce pressure for the fourth wheel 28.
  • FIGS. 2 and 3 only schematically show two working states that can be realized by each control valve, and do not limit the current working state of the control valve as shown in the figure.
  • the hydraulic adjustment unit 200 shown in FIG. 2 further includes a brake master cylinder booster valve 6, a pedal feedback simulator 4, a booster device 7, a first isolation valve 12, a second isolation valve 13, and a third isolation valve 5.
  • the hydraulic adjusting unit 200 can adopt three working modes to provide braking force for the wheels of the automobile. Among them, the three working modes are mechanical braking mode, wire control mode and automatic driving mode.
  • the above-mentioned boosting device 7 is used to assist the hydraulic adjustment unit 200 to realize the brake-by-wire working mode or the intelligent driving and braking mode. , 26, 27, 28 provide braking force.
  • the pressure outlet port of the booster device 7 is connected to the pressure inlet port 133 of the first oil inlet pipe 130, and the pressure outlet port of the booster device 7 is connected to the pressure inlet port 143 of the second oil inlet pipe 140.
  • the brake master cylinder 3 In the online control mode, the brake master cylinder 3 usually does not directly provide braking force to the wheels. Therefore, the working state of the brake master cylinder booster valve 6 is required to block the brake fluid in the brake master cylinder 3 from passing through the An oil inlet pipe 130 and a second oil inlet pipe 140 flow into the brake wheel cylinders 151 and 152 of the automobile.
  • Figure 2 shows a possible connection of the brake master cylinder booster valve 6 in the brake system.
  • the master brake cylinder 3 feeds the brake hydraulic pressure into the first oil inlet pipe 130 and the second oil inlet pipe 140 through the brake pipe 210.
  • the pressure inlet port of the brake pipe 210 is connected to the pressure outlet port of the brake master cylinder 3, and the pressure outlet port of the brake pipe 210 is respectively connected to the pressure inlet port 133 of the first oil inlet pipe 130 and the second oil inlet pipe 140 The pressure is connected to port 143.
  • the pressure outlet port of the booster device 7 is respectively connected to the pressure inlet port 133 of the first oil inlet line 130 and the pressure inlet port 143 of the second oil inlet line 140.
  • the brake master cylinder booster valve 6 is located on the fifth brake pipeline 170 between the pressure outlet port of the brake master cylinder 3 and the oil inlet pipeline pressure inlet ports 133 and 143.
  • the brake fluid in the master brake cylinder 3 can flow through the brake pipeline 210 and be blocked by the master cylinder booster valve 6.
  • the brake fluid in the brake pipe 210 flows to the pedal feedback simulator 4 through the brake pipe 220 to reduce the pressure of the brake fluid in the fifth brake pipe 170.
  • the fourth isolation valve 5 is used to isolate the pedal feedback simulator 4 from the braking system when the pedal feedback simulator 4 is not working.
  • the above-mentioned brake master cylinder booster valve 6 is arranged between the pressure outlet port of the master brake cylinder 3 and the pressure inlet port 133 of the first oil inlet line 130 and the pressure inlet port 143 of the second oil inlet line 140, and is located
  • the pressure increasing device 7 is in front of the pressure inlet port of the first oil inlet pipe 130 and the pressure inlet port of the second oil inlet pipe 140.
  • the brake master cylinder booster valve 6 is only used to isolate the brake master cylinder 3 to provide braking force for the brake system, but it will not affect the booster device 7 to provide braking force for the brake system.
  • first isolation valve 12, the second isolation valve 13, the oil inlet valves 21, 22, 23, 24, and the third isolation valve 5 are in a conducting state.
  • Brake master cylinder booster valve 6 first pressure-reducing valve 10, second pressure-reducing valve 11, third pressure-reducing valve 14, fourth pressure-reducing valve 15, fifth pressure-reducing valve 16, sixth pressure-reducing valve 17 In a disconnected state.
  • the brake master cylinder 3 puts the brake hydraulic pressure into the brake pipe 210, which is used to connect the oil outlet of the brake master cylinder with the first oil inlet pipe 130 and the second oil pipe.
  • the brake line of the oil inlet line 140 Since the brake master cylinder booster valve 6 is in a disconnected state, the brake fluid pressed into the brake line 210 is blocked by the brake master cylinder booster valve 6 and passes through the brake line 220 and the third isolation valve 5. Flow to pedal feedback simulator 4.
  • the controller controls the boosting device 7 to feed the brake hydraulic pressure in the hydraulic cylinder into the first oil inlet pipe 130 and the second oil inlet pipe 140, and press it into the second oil inlet pipe 130 through the first oil inlet pipe 130.
  • the wheel brake cylinders 151 of one group of wheels are pressed into the wheel brake cylinders 152 of the second group of wheels through the second oil inlet pipe 140.
  • the controller can be based on a pedal stroke sensor (in the figure) Not shown) to obtain the pedal stroke of the brake pedal in the master cylinder when the driver steps on the pedal.
  • the controller determines the required braking force based on the pedal stroke and the corresponding relationship between the pedal stroke and the required braking force.
  • a pressure sensor (not shown in the figure) may be provided on the brake pipe 210, and the pressure sensor is used to detect the pressure of the brake fluid in the brake pipe 210. In this way, the controller can determine the required braking force based on the pressure of the brake fluid in the brake pipe 210 and the corresponding relationship between the pressure of the brake fluid and the required braking force.
  • the brake master cylinder booster valve 6, the first isolation valve 12, the second isolation valve 13, and the oil inlet valves 21, 22, 23, 24 are in a conducting state.
  • the first pressure reducing valve 10, the second pressure reducing valve 11, the third pressure reducing valve 14, the fourth pressure reducing valve 15, the fifth pressure reducing valve 16, the sixth pressure reducing valve 17, and the third isolation valve 5 are off state.
  • the brake master cylinder 3 enters the brake hydraulic pressure into the first oil inlet pipe 130 and the second oil inlet pipe 140, and flows to the vehicle through the first oil inlet pipe 130 and the second oil inlet pipe 140.
  • Brake wheel cylinders 151, 152 are off state.
  • first isolation valve 12, the second isolation valve 13, the oil inlet valves 21, 22, 23, 24, and the third isolation valve 5 are in a conducting state.
  • Brake master cylinder booster valve 6 first pressure-reducing valve 10, second pressure-reducing valve 11, third pressure-reducing valve 14, fourth pressure-reducing valve 15, fifth pressure-reducing valve 16, sixth pressure-reducing valve 17 In a disconnected state.
  • the controller can directly control the boosting device 7 based on the required braking force, and inject the brake hydraulic pressure into the first oil inlet pipe 130 and the second oil inlet pipe 140, and press it into the brake of the first group of wheels through the first oil inlet pipe 130.
  • the wheel cylinder 151 is pressed into the brake wheel cylinder 152 of the second group of wheels through the second oil inlet pipe 140.
  • the above-mentioned required braking force does not need to be provided by the driver, and may be determined based on the road condition information of the car.
  • the foregoing mainly introduces several ways for the hydraulic adjustment unit 200 to provide braking force for the wheels of the automobile.
  • the following describes the process of decompressing the wheels of the braking system function 200.
  • the first isolation valve 12, the second isolation valve 13, the oil inlet valves 21, 22, 23, 24, the first pressure reducing valve 10, the second pressure reducing valve 11, the third pressure reducing valve 14, the first The fourth pressure reducing valve 15, the fifth pressure reducing valve 16, and the sixth pressure reducing valve 17 are in a conducting state. Control the brake master cylinder booster valve 6 and the third isolation valve 5 to be in a disconnected state.
  • the pressure of the brake fluid in the wheel brake cylinders 151 of the first group of wheels and the brake wheel cylinders 152 of the second group of wheels is higher than that of the first reservoir 1 and the second reservoir.
  • the pressure of the brake fluid in the fluid device 2 therefore, based on the pressure difference between the pressure of the brake fluid in the wheel brake cylinders of the wheels in the brake system and the pressure of the brake fluid in the reservoir It flows to the first liquid storage device 29 through the first oil return line 110 and the second oil return line 120 respectively.
  • the oil inlet valves 21, 22, 23, 24 and the third pressure reducing valve 14, the fourth pressure reducing valve 15, the fifth pressure reducing valve 16, and the sixth pressure reducing valve 17 are in the conducting state, therefore, the first oil return line
  • the brake wheel cylinders 151, 152 of the automobile in 110 can be connected with the oil return pipeline between the second fluid storage device 2. Based on the above pressure difference, the brake fluid can flow from the brake wheel cylinders 151, 152 of the automobile to The second storage device 2. Then, since the second fluid storage device 2 and the first fluid storage device 29 are connected through the first section of the return line 111 of the first return line 110, the brake fluid can continue to flow from the The second liquid storage device 2 flows to the first liquid storage device 29 through the first section of the oil return pipeline 111.
  • the liquid can also flow to the second oil return line 120 through the first oil inlet line 130 and the second oil inlet line 140, and flow to the first liquid storage device 29 through the second oil return line 120.
  • the above-mentioned first oil inlet pipe 110 and the second oil inlet pipe 120 serve as the oil return pipe, as described above, the "oil inlet pipe"
  • the function of the brake pipeline is only introduced from a functional point of view, and it is not limited that the brake pipeline can only serve as a via pipeline.
  • the decompression of the wheel brake cylinder of the first wheel 25 will be described as an example. It should be understood that the solution for decompressing the wheel brake cylinders of other wheels in the automobile is similar to the solution for depressurizing the wheel brake cylinders of the first wheel 25, and will not be repeated for the sake of brevity.
  • the first isolation valve 12, the second isolation valve 13, the oil inlet valve 21 of the first wheel, the first pressure reducing valve 10, the second pressure reducing valve 11, and the fifth pressure reducing valve 16 are in conduction. state.
  • the isolation valve 5 is in an open state.
  • the pressure of the brake fluid in the wheel brake cylinder 21 of the first wheel is higher than that in the first fluid storage device 1 and the second fluid storage device 2 Therefore, based on the pressure difference between the pressure of the brake fluid in the wheel brake cylinder 21 of the first wheel and the pressure of the brake fluid in the reservoir, the brake fluid in the wheel brake cylinder 21 of the first wheel
  • the dynamic fluid can flow to the first liquid storage device 29 through the first oil return line 110 and the second oil return line 120 respectively.
  • the oil inlet valve 21 and the fifth pressure reducing valve 16 of the first wheel are in a conducting state. Therefore, the wheel brake cylinder 21 of the first wheel in the first oil return line 110 can be connected to the second fluid storage device 2
  • the oil return pipeline is connected, and based on the above-mentioned pressure difference, the brake fluid can flow from the wheel brake cylinder 21 of the first wheel to the second fluid storage device 2.
  • the brake fluid can continue to flow from the second oil return line 111 based on the above-mentioned hydraulic pressure difference.
  • the liquid storage device 2 flows to the first liquid storage device 29 through the first section of the oil return pipeline 111.
  • the brake flow from the wheel brake cylinder 21 of the first wheel based on the pressure difference The liquid can also flow to the second oil return line 120 through the first oil inlet line 130 and the first pressure reducing valve 10, and flow to the first liquid storage device 29 through the second oil return line 120.
  • the above-mentioned first oil inlet pipe 110 serves as the oil return pipe.
  • the function of the dynamic pipeline does not limit the brake pipeline to only serve as the oil inlet pipeline.
  • FIG. 3 is a schematic diagram of a hydraulic pressure adjustment unit 300 of the brake system according to an embodiment of the present application.
  • the hydraulic adjustment unit 300 shown in FIG. 3 is another brake system architecture that can apply the decompression solution provided by the present application. It should be noted that the brake components in the hydraulic adjustment unit 300 and the hydraulic adjustment unit 200 that perform the same function use the same reference numerals.
  • the brake master cylinder 3 in the hydraulic adjustment unit 300 may be a tandem two-cylinder brake cylinder, wherein the first hydraulic chamber of the brake master cylinder 3 is the brake wheel of the first set of wheels of the automobile through the first oil inlet pipe 130.
  • the cylinder 151 provides braking force
  • the second hydraulic chamber of the master brake cylinder 3 provides braking force for the wheel brake cylinders 152 of the second set of wheels of the automobile through the second oil inlet pipe 140.
  • the hydraulic adjustment unit 300 shown in FIG. 3 also includes a brake master cylinder booster valve 6, a booster device booster valve 8, a booster device booster valve 9, a pedal feedback simulator 4, a booster device 7, and a first isolation Valve 12, second isolation valve 13, and third isolation valve 5.
  • the hydraulic adjusting unit 300 can adopt three working modes to provide braking force for the wheels of the automobile. Among them, the three working modes are mechanical braking mode, wire control mode and automatic driving mode.
  • the above-mentioned pressure-increasing device pressure-increasing valve 8 and pressure-increasing device pressure-increasing valve 9 are used to determine whether to isolate the pressure-increasing device 7 from the hydraulic pressure regulating unit 300 based on the working mode of the hydraulic pressure regulating unit 300. For example, in the automatic driving mode or the brake-by-wire mode, the pressure-increasing device pressure-increasing valve 8 and the pressure-increasing device pressure-increasing valve 9 can be controlled to be in a conducting state, so as to provide a braking force for the hydraulic adjustment unit 300.
  • the pressure-increasing device pressure-increasing valve 8 and the pressure-increasing device pressure-increasing valve 9 can be controlled to be in a disconnected state, so as to isolate the pressure-increasing device 7 from the hydraulic adjustment unit 300.
  • first isolation valve 12, the second isolation valve 13, the oil inlet valves 21, 22, 23, 24, the third isolation valve 5, and the booster booster valve 8 are in a conducting state.
  • Brake master cylinder booster valve 6 first pressure-reducing valve 10, second pressure-reducing valve 11, third pressure-reducing valve 14, fourth pressure-reducing valve 15, fifth pressure-reducing valve 16, sixth pressure-reducing valve 17 In a disconnected state.
  • the brake master cylinder 3 transfers the brake hydraulic pressure in the first hydraulic cylinder into section 310 of the first oil inlet pipe 130, and the brake master cylinder 3 transfers the brake hydraulic pressure in the second hydraulic cylinder
  • the brake hydraulic pressure enters the brake pipe 330 section of the second oil inlet pipe 140. Since the brake master cylinder booster valve 6 is in a disconnected state, the flow path of the brake fluid in the brake line 310 section and the brake line 330 section is blocked by the brake master cylinder booster valve 6.
  • the brake fluid in the 310 section of the brake line and the section 330 of the brake line flows to the pedal feedback simulator 4 through the brake line 320 and the third isolation valve 5.
  • the controller controls the boosting device 7 to feed the brake hydraulic pressure in the hydraulic cylinder into the first oil inlet pipe 130 and the second oil inlet pipe 140, and press it into the second oil inlet pipe 130 through the first oil inlet pipe 130.
  • the wheel brake cylinders 151 of one group of wheels are pressed into the wheel brake cylinders 152 of the second group of wheels through the second oil inlet pipe 140.
  • the controller can be based on a pedal stroke sensor (in the figure) Not shown) to obtain the pedal stroke of the brake pedal in the master cylinder when the driver steps on the pedal.
  • the controller determines the required braking force based on the pedal stroke and the corresponding relationship between the pedal stroke and the required braking force.
  • a pressure sensor (not shown in the figure) may be provided on the brake pipe 310, and the pressure sensor is used to detect the pressure of the brake fluid in the brake pipe 310. In this way, the controller can determine the required braking force based on the pressure of the brake fluid in the brake pipe 310 and the corresponding relationship between the pressure of the brake fluid and the required braking force.
  • the brake master cylinder booster valve 6, the first isolation valve 12, the second isolation valve 13, and the oil inlet valve (21, 22, 23, 24) are in a conducting state.
  • Booster device booster valve 8 first pressure-reducing valve 10, second pressure-reducing valve 11, third pressure-reducing valve 14, fourth pressure-reducing valve 15, fifth pressure-reducing valve 16, sixth pressure-reducing valve 17,
  • the third isolation valve 5 is in an open state.
  • the master brake cylinder 3 transfers the brake hydraulic pressure in the first hydraulic cylinder into the first oil inlet pipe 130, and flows through the first oil inlet pipe 130 to the wheel brake cylinders 151 of the first group of wheels. .
  • the master brake cylinder 3 feeds the brake hydraulic pressure in the second hydraulic cylinder into the second oil inlet pipe 140 and flows to the wheel brake cylinders 152 of the second group of wheels through the second oil inlet pipe 140.
  • the first isolation valve 12, the second isolation valve 13, the oil inlet valves 21, 22, 23, 24, the third isolation valve 5, and the booster booster valve 8 are in a conducting state.
  • Brake master cylinder booster valve 6 first pressure-reducing valve 10, second pressure-reducing valve 11, third pressure-reducing valve 14, fourth pressure-reducing valve 15, fifth pressure-reducing valve 16, sixth pressure-reducing valve 17 In a disconnected state.
  • the controller can directly control the boosting device 7 based on the required braking force, and inject the brake hydraulic pressure into the first oil inlet pipe 130 and the second oil inlet pipe 140, and press it into the brake of the first group of wheels through the first oil inlet pipe 130.
  • the wheel cylinder 151 is pressed into the brake wheel cylinder 152 of the second group of wheels through the second oil inlet pipe 140.
  • the above-mentioned required braking force does not need to be provided by the driver, and may be determined based on the road condition information of the car.
  • the foregoing mainly introduces several ways for the hydraulic adjustment unit 300 to provide braking force for the wheels of an automobile.
  • the following describes the process of decompressing the wheels in the hydraulic adjustment unit 300.
  • the control valves in the conducting state in the hydraulic regulating unit 300 include: a first isolation valve 12, a second isolation valve 13, an oil inlet valve 21, 22, 23, 24, a first pressure reducing valve 10, and a second pressure reducing valve 11.
  • the control valves in the disconnected state include: a booster pressure booster valve 8, a brake master cylinder booster valve 6, and a third isolation valve 5.
  • the pressure of the brake fluid in the wheel brake cylinders 151 of the first group of wheels and the brake wheel cylinders 152 of the second group of wheels is higher than that of the first reservoir 1 and the second reservoir.
  • the pressure of the brake fluid in the fluid device 2 therefore, based on the pressure difference between the pressure of the brake fluid in the wheel brake cylinders of the wheels in the brake system and the pressure of the brake fluid in the reservoir It flows to the first liquid storage device 29 through the first oil return line 110 and the second oil return line 120 respectively.
  • the oil inlet valves 21, 22, 23, 24 and the third pressure reducing valve 14, the fourth pressure reducing valve 15, the fifth pressure reducing valve 16, and the sixth pressure reducing valve 17 are in the conducting state, therefore, the first oil return line
  • the brake wheel cylinders 151, 152 of the automobile in 110 can be connected with the oil return pipeline between the second fluid storage device 2. Based on the above pressure difference, the brake fluid can flow from the brake wheel cylinders 151, 152 of the automobile to The second storage device 2. Then, since the second fluid storage device 2 and the first fluid storage device 29 are connected through the first section of the return line 111 of the first return line 110, the brake fluid can continue to flow from the The second liquid storage device 2 flows to the first liquid storage device 29 through the first section of the oil return pipeline 111.
  • the liquid can also flow to the second oil return line 120 through the first oil inlet line 130 and the second oil inlet line 140, and flow to the first liquid storage device 29 through the second oil return line 120.
  • the above-mentioned first oil inlet pipe 110 and the second oil inlet pipe 120 serve as the oil return pipe, as described above, the "oil inlet pipe"
  • the function of the brake pipeline is only introduced from a functional point of view, and it is not limited that the brake pipeline can only serve as a via pipeline.
  • the first isolation valve 12, the second isolation valve 13, the oil inlet valve 21 of the first wheel, the first pressure reducing valve 10, the second pressure reducing valve 11, and the fifth pressure reducing valve 16 are in conduction. state.
  • the isolation valve 5 is in an open state.
  • the pressure of the brake fluid in the wheel brake cylinder 21 of the first wheel is higher than that in the first fluid storage device 1 and the second fluid storage device 2 Therefore, based on the pressure difference between the pressure of the brake fluid in the wheel brake cylinder 21 of the first wheel and the pressure of the brake fluid in the reservoir, the brake fluid in the wheel brake cylinder 21 of the first wheel
  • the dynamic fluid can flow to the first liquid storage device 29 through the first oil return line 110 and the second oil return line 120 respectively.
  • the oil inlet valve 21 and the fifth pressure reducing valve 16 of the first wheel are in a conducting state. Therefore, the wheel brake cylinder 21 of the first wheel in the first oil return line 110 can be connected to the second fluid storage device 2
  • the oil return pipeline is connected, and based on the above-mentioned pressure difference, the brake fluid can flow from the wheel brake cylinder 21 of the first wheel to the second fluid storage device 2.
  • the brake fluid can continue to flow from the second oil return line 111 based on the above-mentioned hydraulic pressure difference.
  • the liquid storage device 2 flows to the first liquid storage device 29 through the first section of the oil return pipeline 111.
  • the brake flow from the wheel brake cylinder 21 of the first wheel based on the pressure difference The liquid can also flow to the second oil return line 120 through the first oil inlet line 130 and the first pressure reducing valve 10, and flow to the first liquid storage device 29 through the second oil return line 120.
  • the above-mentioned first oil inlet pipe 110 serves as the oil return pipe.
  • the function of the dynamic pipeline does not limit the brake pipeline to only serve as the oil inlet pipeline.
  • the redundancy performance of the brake system is also one of the hot issues of the brake system.
  • the embodiment of the present application also provides a new hydraulic adjustment unit in which a pressure providing device 18 is added, and the pressure providing device 18 passes
  • the third oil inlet line 150 and the fourth oil inlet line 160 provide braking force for the wheel brake cylinders 151 and 152 of the automobile, wherein the pressure providing device 18 provides the brake force for the wheel brake cylinders 151 and 152 of the automobile,
  • the brake master cylinder 3 provides braking force to the wheel brake cylinders 151 and 152 of the car. They are independent brake subsystems. When one of the brake subsystems fails, the other can be braked.
  • the subsystem provides braking force for the car, which is conducive to improving the redundant performance of the braking system.
  • FIG. 4 is a schematic diagram of a hydraulic adjustment unit 400 according to an embodiment of the present application. It should be understood that the components in the hydraulic adjustment unit 400 and the components in the hydraulic adjustment unit 200 that achieve the same function use the same numbers. For the specific working mode, please refer to the above introduction, for the sake of brevity, it will not be repeated here.
  • the hydraulic pressure adjusting unit 400 shown in FIG. 4 includes a hydraulic pressure adjusting unit including a master brake cylinder 3 and a pressure providing device 18.
  • the master brake cylinder 3 provides braking force for the first wheel 25 of the automobile through the first oil inlet branch 131 of the first oil inlet pipe 130, and the master brake cylinder 3 is branched from the second oil inlet pipe of the first oil inlet pipe 130. 132 provides braking force for the second wheel (26) of the car.
  • the first oil inlet pipeline 130 includes two branches: a first oil inlet pipeline branch 131 and a second oil inlet pipeline branch 132.
  • the first pressure outlet port of the master brake cylinder 3 is connected to the pressure inlet port of the first oil inlet pipe branch 131, and the first pressure outlet port of the brake master cylinder 3 and the pressure inlet port of the second oil inlet pipe branch 132 are connected to each other.
  • the port is connected.
  • the pressure outlet port of the first oil inlet pipe branch 131 is connected to the pressure inlet port of the wheel brake cylinder of the first wheel 25, and the pressure outlet port of the second oil inlet pipe branch 132 is connected to the pressure of the wheel brake cylinder of the second wheel 26.
  • Incoming port connection is provided.
  • the master brake cylinder 3 provides braking force for the third wheel 27 of the automobile through the third oil inlet branch 141 of the second oil inlet line 140, and the master brake cylinder 3 passes through the fourth oil inlet line branch of the second oil inlet 140 142 provides braking force for the fourth wheel 28 of the car.
  • the second oil inlet line 140 includes two branches: a third oil inlet line branch 141 and a fourth oil inlet line branch 142.
  • the second pressure outlet port of the master brake cylinder 3 is connected with the pressure inlet port of the third oil inlet pipe branch 141, and the second pressure outlet port is connected with the pressure inlet port of the fourth oil inlet pipe branch 142.
  • the pressure outlet port of the third oil inlet pipe branch 141 is connected to the pressure inlet port of the wheel brake cylinder of the third wheel 27.
  • the pressure outlet port of the fourth oil inlet pipe branch 142 is connected to the pressure inlet port of the wheel brake cylinder of the fourth wheel 28.
  • first pressure inlet port and the second pressure inlet port of the brake master cylinder 3 may be the same port, and the first pressure inlet port and the second pressure inlet port of the brake master cylinder 3 may be different Port, this embodiment of the application does not limit this.
  • the pressure providing device 18 provides braking force for the first wheel 25 and the second wheel 26 through the third oil inlet line 150, the first oil inlet line branch 131, and the second oil inlet line branch 132.
  • the third oil inlet line 150 and the first The oil inlet line branch 131 is in communication, and the third oil inlet line 150 is in communication with the second oil inlet line branch 132.
  • the pressure providing device 18 provides braking force for the first wheel 25 and the second wheel 26, which is not specifically limited in the embodiment of the present application.
  • the pressure outlet port of the pressure providing device 18 is connected to the pressure inlet port of the third oil inlet line 150, and the pressure outlet port of the third oil inlet line 150 is connected to the pressure inlet port of the second oil inlet line branch 132.
  • the oil pipeline branch 131 is communicated with the second oil inlet pipeline branch 132. Therefore, the pressure providing device 18 can be connected to the first oil pipeline branch 131 and the second oil inlet pipeline branch 132 as the first wheel 25 and the second oil pipeline branch 132.
  • the wheels 26 provide braking force.
  • the pressure outlet port of the pressure providing device 18 is connected to the pressure inlet port of the third oil inlet pipe 150, and the pressure outlet port of the third oil inlet pipe 150 is respectively connected to the pressure inlet port and the second oil inlet port of the first oil inlet pipe branch 131.
  • the pressure inlet port of the oil inlet pipe branch 132 is connected, and accordingly, the pressure supply device 18 can provide braking force for the first wheel 25 and the second wheel 26 through the first oil inlet pipe branch 131 and the second oil inlet pipe branch 132.
  • the pressure providing device 18 provides braking force for the third wheel 27 and the fourth wheel 28 through the fourth oil inlet line 160, the third oil inlet line branch 141, and the fourth oil inlet line branch 131.
  • the fourth oil inlet line 160 and the third oil inlet line The oil inlet line branch 141 is in communication, and the fourth oil inlet line 160 is in communication with the fourth oil inlet line branch 142.
  • the pressure providing device 18 provides braking force to the third wheel 27 and the fourth wheel 28, which is not specifically limited in the embodiment of the present application.
  • the pressure outlet port of the pressure providing device 18 is connected to the pressure inlet port of the fourth oil inlet line 160
  • the pressure outlet port of the fourth oil inlet line 160 is connected to the pressure inlet port of the third oil inlet line branch 141
  • the third inlet line 160 is connected to the pressure inlet port.
  • the oil pipeline branch 141 is in communication with the fourth oil inlet pipeline branch 142. Therefore, the pressure providing device 18 can be connected to the third oil pipeline branch 141 and the fourth oil inlet pipeline branch 142 to form the third wheel 27 and the fourth oil pipeline branch 142.
  • Wheel 28 provides braking force.
  • the pressure outlet port of the pressure providing device 18 is connected to the pressure inlet port of the fourth oil inlet pipe 160, and the pressure outlet port of the fourth oil inlet pipe 160 is respectively connected to the pressure inlet port and the fourth oil inlet port of the third oil inlet pipe branch 141.
  • the pressure inlet port of the oil inlet pipe branch 142 is connected, and accordingly, the pressure providing device 18 can provide braking force for the third wheel 27 and the fourth wheel 28 through the third oil inlet pipe branch 141 and the fourth oil inlet pipe branch 142.
  • the above-mentioned pressure providing device 18 is a motor, and the motor drives the first plunger pump 19 to move, so as to feed the brake hydraulic pressure into the second oil inlet pipe branch 132.
  • the motor drives the second plunger pump 20 to move, so as to pump the brake hydraulic pressure into the third oil inlet pipe branch 141.
  • the first plunger pump 19 can connect the second oil inlet pipe branch 132 and the first oil inlet pipe branch 131 to connect The brake hydraulic pressure enters the first oil inlet pipe branch 131.
  • the second plunger pump 20 can reduce the brake hydraulic pressure through the connected third oil inlet pipe branch 141 and the fourth oil inlet pipe branch 142.
  • the fourth oil inlet pipeline branch 142 Into the fourth oil inlet pipeline branch 142.
  • the pressure outlet port of the first plunger pump 19 may be connected to the pressure inlet port of the second oil inlet pipe branch 132.
  • the pressure outlet port of the second plunger pump 20 may be connected to the pressure inlet port of the third oil inlet pipeline branch 141.
  • the oil inlet lines 130 and 140 through which the brake master cylinder 3 provides braking force and the oil inlet lines 150 and 160 through which the pressure supply device 18 provides braking force can be understood as two groups of independent oil inlet lines, which can be independently Provide braking force for the braking force wheel cylinders 151 and 152 of the automobile.
  • the pressure outlet port of the first brake pipeline 130 and the pressure outlet port of the third brake pipeline 150 are connected to the pressure inlet port of the first oil inlet pipeline branch 131, or ,
  • the above-mentioned first brake pipe 130 and the third brake pipe 150 converge at the pressure inlet port of the first oil inlet pipe branch 131.
  • the pressure outlet port of the first brake pipe 130 and the pressure outlet port of the third brake pipe 150 are connected to the pressure inlet port of the second oil inlet pipe branch 132, or in other words, the first brake pipe 130 and The third brake line 150 converges at the pressure inlet port of the second oil inlet line branch 132.
  • the pressure outlet port of the second brake pipe 140 and the pressure outlet port of the fourth brake pipe 160 are connected to the pressure inlet port of the third oil inlet pipe branch 141, or in other words, the second brake pipe
  • the road 140 and the fourth brake pipe 160 converge at the pressure inlet port of the third oil inlet pipe branch 141.
  • the pressure outlet port of the second brake pipe 140 and the pressure outlet port of the fourth brake pipe 160 are connected to the pressure inlet port of the fourth oil inlet pipe branch 142, or in other words, the second brake pipe 140 and The fourth brake pipe 160 converges at the pressure inlet port of the fourth oil inlet pipe branch 142.
  • the isolation valve 12, 13 In order to enable the oil inlet pipes 130 and 140 provided by the brake master cylinder 3 to provide braking force and the oil inlet pipes 150 and 160 provided by the pressure providing device 18 to work independently without interfering with each other, the isolation valve 12, 13 to block the oil inlet pipeline connecting the two sets of brake subsystems.
  • first oil inlet pipe 130 is connected to the first oil inlet pipe branch 131 and the second oil inlet pipe branch 132 through the first isolation valve 12, and if the first isolation valve 12 is in the disconnected state, the first oil inlet pipe 130 The brake fluid inside is blocked by the first isolation valve 12 and cannot flow into the brake wheel cylinders of the first wheel 25 and the second wheel 26 through the first oil inlet pipe branch 131 and the second oil inlet pipe branch 132.
  • the first isolation valve 12 is arranged in the first oil inlet line 130, and is arranged at the pressure inlet port of the third oil inlet line 150 and the first oil inlet line branch 131, the third oil inlet line 150 and the second oil inlet line Before the pressure of the branch 132 enters the port, the working state of the first isolation valve 12 does not affect the flow of brake fluid in the third oil inlet line 150, regardless of whether the first isolation valve 12 is in the disconnected state or the connected state, the third oil inlet line The brake fluid in 150 can pass through the first oil inlet pipe branch 131 and the second oil inlet pipe branch 132 into the first wheel 25 and the second wheel 26.
  • the second oil inlet pipe 140 is connected to the third oil inlet pipe branch 141 and the fourth oil inlet pipe branch 142 through the second isolation valve 13. If the second isolation valve 13 is in the disconnected state, the second oil inlet pipe 140 The brake fluid is blocked by the first isolation valve 12 and cannot flow into the first wheel 25 and the second wheel 26 through the third oil inlet pipe branch 141 and the fourth oil inlet pipe branch 142.
  • the second isolation valve 13 is arranged in the second oil inlet pipe 140, and is arranged at the pressure inlet ports of the fourth oil inlet pipe 160 and the third oil inlet pipe branch 141, as well as the fourth oil pipe 160 and the fourth oil inlet pipe Before the pressure of the circuit branch 142 enters the port, the working state of the second isolation valve 12 does not affect the flow of brake fluid in the fourth oil inlet pipe 160, regardless of whether the second isolation valve 13 is in the disconnected state or the connected state, the fourth oil inlet pipe The brake fluid in the circuit 160 can pass through the third oil inlet pipe branch 141 and the fourth oil inlet pipe branch 142 into the third wheel 27 and the fourth wheel 28.
  • the first oil inlet pipe branch 131, the second oil inlet pipe branch 132, the third oil inlet pipe branch 141, and the fourth oil inlet pipe branch 142 can be used.
  • the oil inlet valves 21, 22, 23, 24 are respectively provided.
  • the first oil inlet valve 21 is provided on the first oil inlet pipe branch 131 to control whether to provide braking force for the first wheels 25.
  • a second oil inlet valve 22 is provided on the second oil inlet pipe branch 132 to control whether to provide braking force for the second wheel 26.
  • a third oil inlet valve 23 is provided on the third oil inlet pipe branch 141 to control whether to provide braking force for the third wheel 27.
  • a fourth oil inlet valve 24 is provided on the fourth oil inlet pipe branch 142 to control whether to provide braking force for the fourth wheels 28.
  • the hydraulic adjustment system 400 supports the mechanical brake mode, the wire control mode, and the automatic driving mode described above, and the hydraulic adjustment system 400 also supports high-speed boost pressure. Dynamic mode. It should be noted that the above-mentioned mechanical braking mode, line control mode, and automatic driving mode can be referred to the relevant introduction of the three modes in the hydraulic adjustment unit 200, which will not be repeated here for the sake of brevity.
  • the above-mentioned high-speed pressurized braking mode uses the pressure providing device 18 as an auxiliary device, and other pressure providing devices of the auxiliary hydraulic adjustment unit together provide braking force for the automobile, which is beneficial to improve the efficiency of providing braking force.
  • the high-speed boost braking mode can be divided into two situations: Case 1, when the other pressure providing device is the boosting device 7, the pressure providing device 18 assists the boosting device 7 to provide braking force for the car .
  • the other pressure providing device is the master brake cylinder 3
  • the pressure providing device 18 assists the master brake cylinder 3 to provide braking force for the vehicle.
  • the pressure providing device 18 assists the supercharging device 7 to provide braking force for the automobile.
  • the pressure providing device 18 and the pressure boosting device 7 are in working condition at the same time.
  • the controller determines, based on the required braking force, the pressure (or braking force) of the brake fluid that the pressure providing device 18 needs to provide for the automobile, and the pressure (or braking force) of the brake fluid that the pressure boosting device 7 needs to provide for the automobile.
  • the controller respectively informs the pressure supply device 18 of the pressure (or braking force) of the brake fluid that needs to be provided for the automobile and the pressure of the brake fluid (or braking force) that the pressure boosting device 7 needs to provide for the automobile.
  • the above-mentioned required braking force may be determined based on the driver's input, or may be determined based on the road condition information of the automobile, which is not limited in the embodiment of the present application.
  • the pressure supply device 18 assists the master brake cylinder 3 to provide braking force for the car.
  • the pressure providing device 18 and the master brake cylinder 3 are in working condition at the same time.
  • the controller determines the pressure (or braking force) of the brake fluid that the pressure providing device 18 needs to provide to the automobile based on the required braking force.
  • the controller notifies the pressure providing device 18 of the pressure (or braking force) of the brake fluid that needs to be provided for the automobile and the pressure of the brake fluid (or braking force) that the pressure boosting device 7 needs to provide for the automobile.
  • the pressure building solution of the newly-added pressure providing device 18 provided by the embodiment of the present application can be applied to various hydraulic adjustment units.
  • the above-mentioned hydraulic adjustment unit 400 only shows one type of hydraulic adjustment unit 400. The application will be described below with reference to FIG. 5 Another hydraulic adjustment unit applicable to the pressure building program.
  • FIG. 5 is a schematic diagram of a hydraulic adjustment unit 500 according to an embodiment of the present application.
  • the components in the hydraulic adjustment unit 500 shown in FIG. 5 that have the same functions as those in the hydraulic adjustment unit 300 use the same numbers.
  • the hydraulic adjustment system 500 not only supports the mechanical brake mode, the wire control mode, and the automatic driving mode in the above hydraulic adjustment system 300, the hydraulic adjustment system 500 also supports High-speed pressurized braking mode. It should be noted that the above-mentioned mechanical braking mode, brake-by-wire mode and automatic driving mode can be referred to the relevant introduction of the three modes in the hydraulic adjustment system 300, which will not be repeated here for the sake of brevity.
  • the above-mentioned high-speed pressurized braking mode uses the pressure providing device 18 as an auxiliary device, and other pressure providing devices of the auxiliary hydraulic adjustment unit together provide braking force for the automobile, which is beneficial to improve the efficiency of providing braking force.
  • the high-speed boost braking mode can be divided into two situations: Case 1, when the other pressure providing device is the boosting device 7, the pressure providing device 18 assists the boosting device 7 to provide braking force for the car .
  • the other pressure providing device is the master brake cylinder 3
  • the pressure providing device 18 assists the master brake cylinder 3 to provide braking force for the vehicle.
  • the pressure providing device 18 assists the supercharging device 7 to provide braking force for the automobile.
  • the pressure providing device 18 and the pressure boosting device 7 are in working condition at the same time.
  • the controller determines, based on the required braking force, the pressure (or braking force) of the brake fluid that the pressure providing device 18 needs to provide for the automobile, and the pressure (or braking force) of the brake fluid that the pressure boosting device 7 needs to provide for the automobile.
  • the controller respectively informs the pressure supply device 18 of the pressure (or braking force) of the brake fluid that needs to be provided for the automobile and the pressure of the brake fluid (or braking force) that the pressure boosting device 7 needs to provide for the automobile.
  • the above-mentioned required braking force may be determined based on the driver's input, or may be determined based on the road condition information of the automobile, which is not limited in the embodiment of the present application.
  • the pressure supply device 18 assists the master brake cylinder 3 to provide braking force for the car.
  • the pressure providing device 18 and the master brake cylinder 3 are in working condition at the same time.
  • the controller determines the pressure (or braking force) of the brake fluid that the pressure providing device 18 needs to provide to the automobile based on the required braking force.
  • the controller notifies the pressure providing device 18 of the pressure (or braking force) of the brake fluid that needs to be provided for the automobile and the pressure of the brake fluid (or braking force) that the pressure boosting device 7 needs to provide for the automobile.
  • first situation in the hydraulic adjustment system 500 and the hydraulic adjustment system 600 can be understood as a combination of the high-speed boost mode and the wire control mode.
  • the second situation in the hydraulic adjustment system 500 and the hydraulic adjustment system 600 can be understood as a combination of the high-speed pressurization mode and the mechanical braking mode.
  • control subsystem where the pressure providing device 18 is located can also implement a redundant braking mode, that is, when the boosting device 7 fails, the pressure providing device 18 replaces the boosting device. 7
  • the auxiliary braking system enters the brake-by-wire mode, or the automatic driving mode.
  • the hydraulic adjustment unit of the embodiment of the present application is described above in conjunction with FIGS. 2 to 5, and the braking system of the embodiment of the present application is described below in conjunction with FIGS. 6 to 28. It should be understood that the braking system may include any of the above-described Kind of hydraulic adjustment unit.
  • a brake system including a hydraulic adjustment unit 400 or a hydraulic adjustment unit 500 is taken as an example for introduction.
  • FIG. 6 is a schematic diagram of a braking system 600 according to an embodiment of the present application.
  • the brake system 600 includes a hydraulic adjustment unit 400 and wheel brake cylinders 151 and 152 of the automobile. It should be understood that the components in the braking system 600 and the components with the same function in the hydraulic adjustment unit 400 use the same numbers. For the sake of brevity, I won't repeat them in the following.
  • the first oil return line 110 is connected to the wheel brake cylinders 151 and 152 of the automobile, and the first oil return line 110 is used to transport the brake fluid in the wheel brake cylinders 151 and 152 of the automobile to the first liquid storage device 29, Thought the wheels of the car were decompressed.
  • the above-mentioned first oil return line 110 is connected to the wheel brake cylinders 151 and 152 of the automobile. It can be understood that the pressure inlet port of the first oil return line 110 is connected to the outlet ports of the wheel brake cylinders 151 and 152.
  • the above-mentioned wheel brake cylinder of the automobile can be understood as a certain wheel brake cylinder in the automobile, for example, the wheel brake cylinder of the first wheel.
  • the wheel brake cylinders of the aforementioned automobile can also be understood as the wheel brake cylinders of all wheels in the automobile.
  • the pressure of the brake fluid in the brake wheel cylinders 151, 152 is higher than the pressure of the brake fluid in the fluid storage device 2, so that the brake wheel can be used
  • the pressure difference between the pressure of the brake fluid in the cylinders 151 and 152 and the pressure of the brake fluid in the reservoir 2 transmits the pressure of the brake fluid in the wheel brake cylinders 151 and 152 through the first oil return line 110 to The second storage device 2.
  • the second oil return line 120 is connected to the oil inlet lines 130 and 140 of the brake system.
  • the second oil return line 120 is used to pass the oil inlet lines 130 and 140 of the brake system to the brake wheel cylinders 151 and 152 of the automobile.
  • the brake fluid is delivered to the second reservoir 2 to depressurize the wheels of the car.
  • the above-mentioned second oil return pipeline 120 is connected to the oil inlet pipelines 130 and 140 of the brake system. It can be understood that the second oil return pipeline 120 is connected to the brake wheel cylinders 151 and 152 through the oil inlet pipelines 130 and 140.
  • the above-mentioned oil inlet pipes 130 and 140 are connected to the brake wheel cylinders 151 and 152, and are used to pump the brake hydraulic pressure into the brake wheel cylinders 151 and 152 to provide braking force for the wheels of the automobile.
  • the above-mentioned oil inlet pipes 130 and 140 can be used as oil return pipes to deliver the brake fluid in the brake wheel cylinders 151 and 152 to the pressure of the second oil return pipe 120 Into the port, and delivered to the liquid storage device 2 through the second oil return line 120.
  • the above-mentioned oil inlet pipelines 130 and 140 may include a first oil inlet pipeline 130 and a second oil inlet pipeline 140.
  • the first oil inlet pipe 130 is used to pump the brake hydraulic pressure into the wheel brake cylinders 151 of the first group of wheels to provide braking force for the first group of wheels.
  • the second oil inlet line 140 is used to pump the brake hydraulic pressure into the wheel brake cylinders 152 of the second group of wheels to provide braking force for the second group of wheels.
  • the above-mentioned first set of wheels 25, 26 are different from the second set of wheels 27, 28.
  • the first set of wheels 25, 26 may include the right front wheel of an automobile and the left front wheel of an automobile.
  • the second set of wheels 27, 28 can include the left rear wheel of the car and the right rear wheel of the car.
  • the above-mentioned braking system is arranged in H.
  • the first set of wheels 25, 26 may include the right front wheel of an automobile and the left rear wheel of an automobile.
  • the second set of wheels 27, 28 may include the right rear wheel of the automobile and the left front wheel of the automobile.
  • the above-mentioned braking system was arranged in an X-shape.
  • the pressure reducing valves 10 and 11 can be used to connect the aforementioned oil inlet pipes 130 and 140 and the second oil return pipe 120. In this way, when the pressure reducing valves 10 and 11 are in the disconnected state, the oil inlet pipes 130 and 140 are disconnected from the second oil return pipe 120, and the brake system can be the brake wheel cylinder 151 of the automobile through the oil inlet pipes 130 and 140. 152 provides braking force.
  • the oil inlet pipes 130 and 140 are connected to the second oil return pipe 120, and the brake system can decompress the brake wheel cylinders 151 and 152 of the automobile through the oil inlet pipes 130 and 140. .
  • the oil inlet pipeline of the above brake system includes a first oil inlet pipeline 130 and a second oil inlet pipeline 140, and the second oil return pipeline 120 is connected to the first oil inlet pipeline 130 through the first pressure reducing valve 10, if the first The pressure reducing valve 10 is in a conducting state, and the second oil return line 120 is in communication with the first oil inlet line 130. If the first pressure reducing valve 10 is in a disconnected state, the second oil return line 120 is disconnected from the first oil inlet line 130.
  • the second oil return line 120 is connected to the second oil inlet line 140 through the second pressure reducing valve 11, if the second pressure reducing valve 11 is in a conducting state, the second oil return line 120 is connected to the second oil inlet line 140 If the second pressure reducing valve 11 is in the disconnected state, the second oil return line 120 is disconnected from the second oil inlet line 140.
  • the hydraulic adjustment unit 400 in the braking system 600 supports multiple working modes, and the braking system 600 also supports multiple working modes.
  • the working process of the braking system 600 is described in conjunction with FIGS. 7 to 17.
  • Figures 7 to 9 introduce the pressure increase process, pressure hold process and decompression process of the brake fluid in the brake-by-wire mode.
  • Figures 10 to 12 illustrate the pressure increase process, pressure holding process and decompression process of the brake fluid when the high-speed boost mode is combined with the brake-by-wire mode.
  • Figures 13 to 15 describe the pressure increase process, pressure hold process and decompression process of the brake fluid in the redundant braking mode.
  • Figure 16 and Figure 17 describe the pressure increase and pressure reduction process of the brake fluid in the mechanical brake mode.
  • FIG. 7 is a schematic diagram of the pressure increase path of the brake fluid in the brake system 600 of the embodiment of the present application.
  • the braking system 600 shown in FIG. 7 works in the online control mode.
  • the first isolation valve 12, the second isolation valve 13, the oil inlet valves 21, 22, 23, 24, the booster booster valve 8, and the third isolation valve 5 are in a conducting state.
  • Brake master cylinder booster valve 6, first pressure-reducing valve 10, second pressure-reducing valve 11, third pressure-reducing valve 14, fourth pressure-reducing valve 15, fifth pressure-reducing valve 16, sixth pressure-reducing valve 17 In a disconnected state.
  • the brake master cylinder 3 puts the brake hydraulic pressure into the brake pipe 210, which is used to connect the oil outlet of the brake master cylinder with the first oil inlet pipe 130 and the second oil pipe. Two brake lines of the oil inlet line 140. Since the brake master cylinder booster valve 6 is in a disconnected state, the brake fluid pressed into the brake line 210 is blocked by the brake master cylinder booster valve 6 and passes through the brake line 220 and the third isolation valve 5. Flow to pedal feedback simulator 4.
  • the controller controls the boosting device 7 to feed the brake hydraulic pressure in the hydraulic cylinder into the first oil inlet pipe 130 and the second oil inlet pipe 140, and press it into the second oil inlet pipe 130 through the first oil inlet pipe 130.
  • the wheel brake cylinders 151 of one group of wheels are pressed into the wheel brake cylinders 152 of the second group of wheels through the second oil inlet pipe 140.
  • the controller may be based on a pedal stroke sensor set on the master brake cylinder 3 ( Figure Not shown in ), to obtain the pedal stroke generated by the brake pedal in the master cylinder of the brake when the driver steps on the pedal.
  • the controller determines the required braking force based on the pedal stroke and the corresponding relationship between the pedal stroke and the required braking force.
  • a pressure sensor (not shown in the figure) may be provided on the brake pipe 210, and the pressure sensor is used to detect the pressure of the brake fluid in the brake pipe 210. In this way, the controller can determine the required braking force based on the pressure of the brake fluid in the brake pipe 210 and the corresponding relationship between the pressure of the brake fluid and the required braking force.
  • the brake system 600 After the brake system 600 completes the pressure increase process, the brake system can enter the pressure holding process in the brake-by-wire mode. At this time, it is only necessary to control the pressure increase device pressure increase valve 8 to be in the disconnected state, and the other parts of the brake system 600 The state of the control valve remains unchanged. At the same time, it is also necessary to control the booster device 7 to stop providing pressure for the brake system.
  • the brake pipeline where the brake fluid is located during the pressure holding process in the brake-by-wire mode is shown in Figure 8.
  • the brake system 600 When the brake system 600 needs to enter the pressure reduction process from the pressure maintaining process, it is only necessary to control the first pressure reducing valve 10 and the second pressure reducing valve 11 to be in a conducting state, and the other control valves in the braking system 600 work The state may not change. At this time, the brake fluid in the brake system 600 may flow to the second liquid storage device 2 through the second oil return line 120. Optionally, if it is necessary to accelerate the decompression process, the decompression valves 14, 15, 16, 17 can also be controlled to be in a conducting state. At this time, the brake fluid in the wheel brake cylinders 151 and 152 can pass through the first oil return pipe The path 110 flows to the first liquid storage device 29. Refer to Figure 9 for the decompression path of the brake fluid during decompression.
  • FIG. 10 is a schematic diagram of the boosting path of the brake fluid when the high-speed boosting mode and the brake-by-wire mode are combined according to the embodiment of the present application.
  • the first isolation valve 12, the second isolation valve 13, the oil inlet valve 21, 22, 23, 24, the pressurization device booster valve 8, and the third isolation valve 5 is in the on state.
  • Brake master cylinder booster valve 6, first pressure-reducing valve 10, second pressure-reducing valve 11, third pressure-reducing valve 14, fourth pressure-reducing valve 15, fifth pressure-reducing valve 16, sixth pressure-reducing valve 17 In a disconnected state.
  • the brake master cylinder 3 puts the brake hydraulic pressure into the brake pipe 210, which is used to connect the oil outlet of the brake master cylinder with the first oil inlet pipe 130 and the second oil pipe. Two brake lines of the oil inlet line 140. Since the brake master cylinder booster valve 6 is in a disconnected state, the brake fluid pressed into the brake line 210 is blocked by the brake master cylinder booster valve 6 and passes through the brake line 220 and the third isolation valve 5. Flow to pedal feedback simulator 4.
  • the controller determines the braking force to be provided by the booster device 7 and the pressure supply device 18 respectively. Then, based on the braking force that the booster device 7 needs to provide, the controller controls the booster device 7 to turn the hydraulic cylinder
  • the brake hydraulic pressure in the pump enters the first oil inlet line 130 and the second oil inlet line 140, and is pressed into the wheel brake cylinders 151 of the first set of wheels through the first oil inlet line 130, and is pressed into the second oil inlet line 140.
  • Wheel brake cylinder 152 for the second set of wheels.
  • the controller controls the pressure providing device 18 to pump the brake hydraulic pressure into the third oil inlet line 150 through the plunger pump 19, and the brake fluid in the third oil inlet line 150
  • the braking force can be provided for the first wheel 25 and the second wheel 26 through the first oil inlet pipe branch 131 and the second oil inlet pipe branch 132.
  • the controller controls the pressure supply device 18 to feed the brake hydraulic pressure into the fourth oil inlet line 160 through the plunger pump 20, and the brake fluid in the fourth oil inlet line 160 can pass through the third oil inlet line branch 141 and the third oil inlet line.
  • the four-intake pipeline branch 142 provides braking force for the third wheel 27 and the fourth wheel 28.
  • the controller may be based on a pedal stroke sensor set on the master brake cylinder 3 ( Figure Not shown in ), to obtain the pedal stroke generated by the brake pedal in the master cylinder of the brake when the driver steps on the pedal.
  • the controller determines the required braking force based on the pedal stroke and the corresponding relationship between the pedal stroke and the required braking force.
  • a pressure sensor (not shown in the figure) may be provided on the brake pipe 210, and the pressure sensor is used to detect the pressure of the brake fluid in the brake pipe 210. In this way, the controller can determine the required braking force based on the pressure of the brake fluid in the brake pipe 210 and the corresponding relationship between the pressure of the brake fluid and the required braking force.
  • the brake system 600 can enter the pressure holding process under the combination of the high-speed pressure increase mode and the brake-by-wire mode.
  • the pressure boost valve 8 of the pressure boost device needs to be controlled to be in the disconnected state.
  • the state of the other control valves in the braking system 600 remains unchanged.
  • the brake pipeline where the brake fluid is located during the pressure holding process is shown in FIG. 11.
  • the brake system 600 When the brake system 600 needs to enter the pressure reduction process from the pressure maintaining process, it is only necessary to control the first pressure reducing valve 10 and the second pressure reducing valve 11 to be in a conducting state, and the other control valves in the braking system 600 work The state may not change. At this time, the brake fluid in the brake system 600 may flow to the second liquid storage device 2 through the second oil return line 120. Optionally, if it is necessary to accelerate the decompression process, the decompression valves 14, 15, 16, 17 can also be controlled to be in a conducting state. At this time, the brake fluid in the wheel brake cylinders 151 and 152 can pass through the first oil return pipe The path 110 flows to the first liquid storage device 29. Refer to Figure 12 for the decompression path of the brake fluid during decompression.
  • FIG. 13 is a schematic diagram of the pressure increase path of the brake fluid in the brake system 600 of the embodiment of the present application.
  • the braking system 600 shown in FIG. 13 works in a redundant braking mode. If the boosting device 7 fails, the braking system 600 enters the redundant braking mode. At this time, the oil inlet valves 21, 22, 23, 24, the booster booster valve 8, and the third isolation valve 5 are in a conducting state.
  • the first isolation valve 12, the second isolation valve 13, the brake master cylinder booster valve 6, the first pressure-reducing valve 10, the second pressure-reducing valve 11, the third pressure-reducing valve 14, the fourth pressure-reducing valve 15, the first The fifth pressure reducing valve 16 and the sixth pressure reducing valve 17 are in an open state.
  • the brake master cylinder 3 puts the brake hydraulic pressure into the brake pipe 210, which is used to connect the oil outlet of the brake master cylinder with the first oil inlet pipe 130 and the second oil pipe. Two brake lines of the oil inlet line 140. Since the brake master cylinder booster valve 6 is in a disconnected state, the brake fluid pressed into the brake line 210 is blocked by the brake master cylinder booster valve 6 and passes through the brake line 220 and the third isolation valve 5. Flow to pedal feedback simulator 4.
  • the controller controls the pressure supply device 18 to feed the brake hydraulic pressure in the hydraulic cylinder into the third oil inlet line 150 and the fourth oil inlet line 160, and press it into the third oil inlet line 150 through the third oil inlet line 150 and the fourth oil inlet line 160.
  • the wheel brake cylinders 151 of one group of wheels are pressed into the wheel brake cylinders 152 of the second group of wheels through the fourth oil inlet pipe 160.
  • the controller may be based on a pedal stroke sensor set on the master brake cylinder 3 ( Figure Not shown in ), to obtain the pedal stroke generated by the brake pedal in the master cylinder of the brake when the driver steps on the pedal.
  • the controller determines the required braking force based on the pedal stroke and the corresponding relationship between the pedal stroke and the required braking force.
  • a pressure sensor (not shown in the figure) may be provided on the brake pipe 210, and the pressure sensor is used to detect the pressure of the brake fluid in the brake pipe 210. In this way, the controller can determine the required braking force based on the pressure of the brake fluid in the brake pipe 210 and the corresponding relationship between the pressure of the brake fluid and the required braking force.
  • the braking system 600 After the braking system 600 completes the pressure increase process, the braking system can enter the pressure maintaining process in the redundant braking mode. At this time, it is only necessary to control the pressure providing device 18 to stop providing pressure to the braking system.
  • the brake pipeline where the brake fluid is located during the pressure holding process in the redundant brake mode is shown in Figure 14.
  • the braking system 600 When the braking system 600 needs to enter the pressure reducing process from the pressure maintaining process, it only needs to control the first isolation valve 12, the second isolation valve 13, the first pressure reducing valve 10, and the second pressure reducing valve 11 to be in a conducting state. , The working state of other control valves in the brake system 600 may not change. At this time, the brake fluid in the brake system 600 may flow to the second liquid storage device 2 through the second oil return line 120. Optionally, if it is necessary to accelerate the decompression process, the decompression valves 14, 15, 16, 17 can also be controlled to be in a conducting state. At this time, the brake fluid in the wheel brake cylinders 151 and 152 can pass through the first oil return pipe The path 110 flows to the first liquid storage device 29. Refer to Figure 15 for the decompression path of the brake fluid during decompression.
  • the redundant braking mode described in Figures 13 to 15 above can also be used without the driver’s participation, that is, in the automatic driving mode, the pressure supply device can be replaced by the pressure supply device after the pressure boost device 7 fails.
  • the braking system provides braking force, and its pressure increase process, pressure hold process and pressure reduction process are similar to the paths introduced in FIGS. 13 to 15. For the sake of brevity, details are not described in detail below.
  • FIG. 16 is a schematic diagram of the pressure increase path of the brake fluid in the mechanical brake mode of the brake system 600 of the embodiment of the present application.
  • the brake master cylinder booster valve 6, the first isolation valve 12, the second isolation valve 13, and the oil inlet valves 21, 22, 23, 24 are in a conducting state.
  • the first pressure reducing valve 10, the second pressure reducing valve 11, the third pressure reducing valve 14, the fourth pressure reducing valve 15, the fifth pressure reducing valve 16, the sixth pressure reducing valve 17, and the third isolation valve 5 are off state.
  • the brake master cylinder 3 When the driver steps on the brake pedal 1, the brake master cylinder 3 enters the brake hydraulic pressure into the first oil inlet pipe 130 and the second oil inlet pipe 140, and flows to the car through the first oil inlet pipe 130 and the second oil inlet pipe 140 The brake wheel cylinders 151, 152.
  • the brake master cylinder 3 When the brake system 600 needs to enter the decompression process, when the driver reduces the force of stepping on the brake pedal 1, the brake master cylinder 3 will reduce the brake fluid in the brake wheel cylinders 151 and 152 under the action of the return spring. The first oil inlet pipe 130 and the second oil inlet pipe 140 are sucked into the brake master cylinder 3, and excess oil can enter the second liquid storage device 2 to depressurize the brake system.
  • the decompression path of the brake fluid of the brake system 600 in the mechanical brake mode is shown in FIG. 17.
  • the brake system 600 applied by the hydraulic adjustment unit 400 and the working principle of the brake system 600 in different working modes are described above in conjunction with FIGS. 7 to 17.
  • the following describes the application of the hydraulic adjustment unit 500 to the brake system 700 and the working principle of the brake system 700 in different working modes in conjunction with FIGS. 18-28.
  • components in the braking system 700 that have the same functions as those in the hydraulic adjustment unit 500 use the same numbers. For the sake of brevity, details will not be repeated below.
  • the hydraulic adjustment unit 500 in the braking system 700 supports multiple working modes, and the braking system 600 also supports multiple working modes.
  • the working process of the braking system 700 is described in conjunction with FIGS. 18 to 28.
  • Figures 18 to 20 describe the pressure increase process, pressure hold process and decompression process of the brake fluid in the brake-by-wire mode.
  • Figures 21 to 23 illustrate the pressure increase process, pressure hold process and decompression process of the brake fluid when the high-speed boost mode is combined with the brake-by-wire mode.
  • Figures 24 to 26 describe the pressure increase process, pressure hold process and decompression process of the brake fluid in the redundant braking mode.
  • Figure 27 and Figure 28 illustrate the pressure increase and pressure reduction process of the brake fluid in the mechanical brake mode.
  • the brake master cylinder 3 in the brake system 700 may be a tandem two-cylinder brake cylinder, wherein the first hydraulic chamber of the brake master cylinder 3 is the brake wheel of the first set of wheels of the automobile through the first oil inlet pipe 130.
  • the cylinder 151 provides braking force
  • the second hydraulic chamber of the master brake cylinder 3 provides braking force for the wheel brake cylinders 152 of the second set of wheels of the automobile through the second oil inlet pipe 140.
  • FIG. 18 is a schematic diagram of the pressure increase path of the brake fluid in the brake system 700 of the embodiment of the present application.
  • the braking system 700 shown in FIG. 18 works in the online control mode.
  • the valve 5 is in a conducting state.
  • Brake master cylinder booster valve 6, first pressure-reducing valve 10, second pressure-reducing valve 11, third pressure-reducing valve 14, fourth pressure-reducing valve 15, fifth pressure-reducing valve 16, sixth pressure-reducing valve 17 In a disconnected state.
  • the brake master cylinder 3 When the driver steps on the brake pedal 1, the brake master cylinder 3 will apply the brake hydraulic pressure into the brake pipe 310 and the brake pipe 330.
  • the brake pipe 310 is used to connect the oil outlet of the brake master cylinder with the first
  • the oil inlet pipe 130 and the brake pipe 330 are used to connect the oil outlet of the brake master cylinder and the second oil inlet pipe 140. Since the brake master cylinder booster valve 6 is in a disconnected state, the brake fluid pressed into the brake line 310 and the brake line 330 is blocked by the brake master cylinder booster valve 6 deployed on the two brake lines. It is turned off and flows to the pedal feedback simulator 4 through the brake pipeline 320 and the third isolation valve 5.
  • the controller controls the boosting device 7 to feed the brake hydraulic pressure in the hydraulic cylinder into the first oil inlet pipe 130 and the second oil inlet pipe 140, and press it into the second oil inlet pipe 130 through the first oil inlet pipe 130.
  • the wheel brake cylinders 151 of one group of wheels are pressed into the wheel brake cylinders 152 of the second group of wheels through the second oil inlet pipe 140.
  • the controller may be based on a pedal stroke sensor set on the master brake cylinder 3 ( Figure Not shown in ), to obtain the pedal stroke generated by the brake pedal in the master cylinder of the brake when the driver steps on the pedal.
  • the controller determines the required braking force based on the pedal stroke and the corresponding relationship between the pedal stroke and the required braking force.
  • a pressure sensor (not shown in the figure) may be provided on the brake pipe 310 and/or the brake pipe 330, and the pressure sensor is used to detect the pressure of the brake fluid in the brake pipe. In this way, the controller can determine the required braking force based on the pressure of the brake fluid in the brake pipe and the corresponding relationship between the pressure of the brake fluid and the required braking force.
  • the brake system 700 can enter the pressure holding process in the brake-by-wire mode.
  • the pressure booster valve 8 and the pressure booster valve 9 of the booster device need to be controlled to be in a disconnected state.
  • the state of the other control valves in the braking system 700 remains unchanged.
  • the brake pipeline where the brake fluid is located during the pressure holding process in the brake-by-wire mode is shown in Figure 19.
  • the brake system 700 When the brake system 700 needs to enter the pressure reduction process from the pressure maintaining process, it is only necessary to control the first pressure reducing valve 10 and the second pressure reducing valve 11 to be in a conducting state, and the other control valves in the braking system 700 work The state may not change. At this time, the brake fluid in the brake system 700 may flow to the second liquid storage device 2 through the second oil return line 120. Optionally, if it is necessary to accelerate the decompression process, the decompression valves 14, 15, 16, 17 can also be controlled to be in a conducting state. At this time, the brake fluid in the wheel brake cylinders 151 and 152 can pass through the first oil return pipe The path 110 flows to the first liquid storage device 29. Refer to Figure 20 for the decompression path of the brake fluid during decompression.
  • FIG. 21 is a schematic diagram of the boosting path of the brake fluid when the high-speed boosting mode and the brake-by-wire mode are combined according to the embodiment of the present application.
  • the first isolation valve 12, the second isolation valve 13, the oil inlet valve 21, 22, 23, 24, the booster booster valve 8, and the booster booster The pressure valve 9 and the third isolation valve 5 are in a conducting state.
  • Brake master cylinder booster valve 6, first pressure-reducing valve 10, second pressure-reducing valve 11, third pressure-reducing valve 14, fourth pressure-reducing valve 15, fifth pressure-reducing valve 16, sixth pressure-reducing valve 17 In a disconnected state.
  • the brake master cylinder 3 When the driver steps on the brake pedal 1, the brake master cylinder 3 will apply the brake hydraulic pressure into the brake pipe 310 and the brake pipe 330.
  • the brake pipe 310 is used to connect the oil outlet of the brake master cylinder with the first
  • the oil inlet pipe 130 and the brake pipe 330 are used to connect the oil outlet of the brake master cylinder and the second oil inlet pipe 140. Since the brake master cylinder booster valve 6 is in a disconnected state, the brake fluid pressed into the brake line 310 and the brake line 330 is blocked by the brake master cylinder booster valve 6 deployed on the two brake lines. It is turned off and flows to the pedal feedback simulator 4 through the brake pipeline 320 and the third isolation valve 5.
  • the controller determines the braking force to be provided by the booster device 7 and the pressure supply device 18 respectively. Then, based on the braking force that the booster device 7 needs to provide, the controller controls the booster device 7 to turn the hydraulic cylinder
  • the brake hydraulic pressure in the pump enters the first oil inlet line 130 and the second oil inlet line 140, and is pressed into the wheel brake cylinders 151 of the first set of wheels through the first oil inlet line 130, and is pressed into the second oil inlet line 140.
  • Wheel brake cylinder 152 for the second set of wheels.
  • the controller controls the pressure providing device 18 to pump the brake hydraulic pressure into the third oil inlet line 150 through the plunger pump 19, and the brake fluid in the third oil inlet line 150
  • the braking force can be provided for the first wheel 25 and the second wheel 26 through the first oil inlet pipe branch 131 and the second oil inlet pipe branch 132.
  • the controller controls the pressure supply device 18 to feed the brake hydraulic pressure into the fourth oil inlet line 160 through the plunger pump 20, and the brake fluid in the fourth oil inlet line 160 can pass through the third oil inlet line branch 141 and the third oil inlet line.
  • the four-intake pipeline branch 142 provides braking force for the third wheel 27 and the fourth wheel 28.
  • the controller may be based on a pedal stroke sensor set on the master brake cylinder 3 ( Figure Not shown in ), to obtain the pedal stroke generated by the brake pedal in the master cylinder of the brake when the driver steps on the pedal.
  • the controller determines the required braking force based on the pedal stroke and the corresponding relationship between the pedal stroke and the required braking force.
  • a pressure sensor (not shown in the figure) may be provided on the brake pipe 310 and/or the brake pipe 330, and the pressure sensor is used to detect the pressure of the brake fluid in the brake pipe. In this way, the controller can determine the required braking force based on the pressure of the brake fluid in the brake pipe and the corresponding relationship between the pressure of the brake fluid and the required braking force.
  • the brake system 700 can enter the pressure holding process when the high-speed pressure boosting mode is combined with the brake-by-wire mode.
  • the pressure boosting valve 8 of the boosting device needs to be controlled to be in the disconnected state.
  • the state of the other control valves in the braking system 700 remains unchanged.
  • the brake pipeline where the brake fluid is located during the pressure holding process is shown in FIG. 22.
  • the brake system 700 When the brake system 700 needs to enter the pressure reduction process from the pressure maintaining process, it is only necessary to control the first pressure reducing valve 10 and the second pressure reducing valve 11 to be in a conducting state, and the other control valves in the braking system 700 work The state may not change. At this time, the brake fluid in the brake system 700 may flow to the second liquid storage device 2 through the second oil return line 120. Optionally, if it is necessary to accelerate the decompression process, the decompression valves 14, 15, 16, 17 can also be controlled to be in a conducting state. At this time, the brake fluid in the wheel brake cylinders 151 and 152 can pass through the first oil return pipe The path 110 flows to the first liquid storage device 29. Refer to Figure 23 for the decompression path of the brake fluid during decompression.
  • FIG. 24 is a schematic diagram of the pressure increase path of the brake fluid in the brake system 700 of the embodiment of the present application.
  • the braking system 700 shown in FIG. 24 operates in a redundant braking mode. If the boosting device 7 fails, the braking system 700 enters the redundant braking mode. At this time, the oil inlet valves 21, 22, 23, 24, the booster booster valve 8, the booster booster valve 9, and the third isolation valve 5 are in a conducting state.
  • the first isolation valve 12, the second isolation valve 13, the brake master cylinder booster valve 6, the first pressure-reducing valve 10, the second pressure-reducing valve 11, the third pressure-reducing valve 14, the fourth pressure-reducing valve 15, the first The fifth pressure reducing valve 16 and the sixth pressure reducing valve 17 are in an open state.
  • the brake master cylinder 3 When the driver steps on the brake pedal 1, the brake master cylinder 3 will apply the brake hydraulic pressure into the brake pipe 310 and the brake pipe 330.
  • the brake pipe 310 is used to connect the oil outlet of the brake master cylinder with the first
  • the oil inlet pipe 130 and the brake pipe 330 are used to connect the oil outlet of the brake master cylinder and the second oil inlet pipe 140. Since the brake master cylinder booster valve 6 is in a disconnected state, the brake fluid pressed into the brake line 310 and the brake line 330 is blocked by the brake master cylinder booster valve 6 deployed on the two brake lines. It is turned off and flows to the pedal feedback simulator 4 through the brake pipeline 320 and the third isolation valve 5.
  • the controller controls the pressure supply device 18 to feed the brake hydraulic pressure in the hydraulic cylinder into the third oil inlet line 150 and the fourth oil inlet line 160, and press it into the third oil inlet line 150 through the third oil inlet line 150 and the fourth oil inlet line 160.
  • the wheel brake cylinders 151 of one group of wheels are pressed into the wheel brake cylinders 152 of the second group of wheels through the fourth oil inlet pipe 160.
  • the controller may be based on a pedal stroke sensor set on the master brake cylinder 3 ( Figure Not shown in ), to obtain the pedal stroke generated by the brake pedal in the master cylinder of the brake when the driver steps on the pedal.
  • the controller determines the required braking force based on the pedal stroke and the corresponding relationship between the pedal stroke and the required braking force.
  • a pressure sensor (not shown in the figure) may be provided on the brake pipe 310 and/or the brake pipe 330, and the pressure sensor is used to detect the pressure of the brake fluid in the brake pipe. In this way, the controller can determine the required braking force based on the pressure of the brake fluid in the brake pipe and the corresponding relationship between the pressure of the brake fluid and the required braking force.
  • the braking system 700 After the braking system 700 completes the pressure increase process, the braking system can enter the pressure maintaining process in the redundant braking mode. At this time, it is only necessary to control the pressure providing device 18 to stop providing pressure to the braking system. Refer to Figure 25 for the brake pipeline where the brake fluid is located during the pressure holding process in the redundant brake mode.
  • the brake system 700 When the brake system 700 needs to enter the pressure reduction process from the pressure maintaining process, it only needs to control the first isolation valve 12, the second isolation valve 13, the first pressure reducing valve 10, and the second pressure reducing valve 11 to be in a conducting state. , The working state of other control valves in the brake system 600 may not change. At this time, the brake fluid in the brake system 700 may flow to the second liquid storage device 2 through the second oil return line 120. Optionally, if it is necessary to accelerate the decompression process, the decompression valves 14, 15, 16, 17 can also be controlled to be in a conducting state. At this time, the brake fluid in the wheel brake cylinders 151 and 152 can pass through the first oil return pipe The path 110 flows to the first liquid storage device 29. Refer to Figure 26 for the decompression path of the brake fluid during decompression.
  • FIG. 27 is a schematic diagram of the pressure increase path of the brake fluid in the mechanical brake mode of the brake system 700 of the embodiment of the present application.
  • the brake master cylinder booster valve 6, the first isolation valve 12, the second isolation valve 13, and the oil inlet valves 21, 22, 23, 24 are in a conducting state.
  • the first pressure reducing valve 10, the second pressure reducing valve 11, the third pressure reducing valve 14, the fourth pressure reducing valve 15, the fifth pressure reducing valve 16, the sixth pressure reducing valve 17, and the third isolation valve 5 are off state.
  • the brake master cylinder 3 presses the brake fluid into the first oil inlet pipe 130 through the brake pipe 310 and into the second oil inlet pipe 140 through the brake pipe 330, correspondingly , The brake fluid in the brake pipe 310 and the brake pipe 330 flows to the wheel brake cylinders 151 and 152 of the automobile through the first oil inlet pipe 130 and the second oil pipe 140.
  • the master brake cylinder 3 When the brake system 700 needs to enter the decompression process, when the driver reduces the force of stepping on the brake pedal 1, the master brake cylinder 3 will pass the brake fluid in the wheel brake cylinder 151 through the first under the action of the return spring. An oil inlet pipe 130 and a brake pipe 310 are sucked into the first hydraulic chamber of the brake master cylinder 3, and the brake fluid in the brake wheel cylinder 152 is sucked into the brake through the second oil inlet pipe 140 and the brake pipe 330. In the second hydraulic chamber of the master cylinder 3, excess oil can enter the second reservoir 2 to decompress the brake system.
  • the brake fluid pressure reduction path of the brake system 700 in the mechanical brake mode is shown in Figure 28. Shown.
  • Fig. 29 is a flowchart of a control method of an embodiment of the present application.
  • the method shown in FIG. 29 can be executed by the controller in the braking system.
  • the method shown in FIG. 29 may include steps 2910 and 2920.
  • the controller controls the first control valves 16, 17 to be in a conducting state to connect the first oil return line 110 with the brake wheel cylinder of the brake system, and the brake fluid in the brake wheel cylinder of the brake system passes through the brake.
  • the first oil return pipe 110 of the power system flows to the first liquid storage device 29 of the brake system to depressurize the wheels of the automobile.
  • the above-mentioned first control valve is also called a pressure reducing valve, and may include one or more control valves, which is not limited in the embodiment of the present application.
  • the first control valve may include the third pressure reducing valve 14, the fourth pressure reducing valve 15, the fifth pressure reducing valve 16, and the sixth pressure reducing valve 17, when the pressure reducing valve is in a conducting state.
  • the first oil return pipeline 110 is in communication with the wheel brake cylinders 151 and 152 of the brake system.
  • the above-mentioned first control valve may only include the fifth pressure reducing valve 16 and the sixth pressure reducing valve 17, because the first oil inlet pipeline branch 131 and the second oil inlet pipeline branch 132 are connected by the fifth pressure reducing valve 16.
  • the brake fluid in the wheel brake cylinders of the first wheel 25 and the second wheel 26 can pass through the first oil inlet line branch 131 and The second oil inlet pipe branch 132 flows to the first oil return pipe 110 to depressurize the wheels of the automobile.
  • the controller controls the second control valves 10 and 11 to be in a conducting state to connect the oil inlet pipes 130 and 140 of the brake system with the second oil return pipe 120, and the brake fluid in the brake wheel cylinder of the brake system It flows to the second liquid storage device 2 through the oil inlet pipes 130 and 140 and the second oil return pipe 120 of the brake system.
  • the above step 2920 includes: if the decompression rate of the braking system is lower than a preset decompression rate threshold, the controller controls the second control valves 10 and 11 to be in a conducting state.
  • the oil inlet pipeline of the brake system includes a first oil inlet pipeline 130 and a second oil inlet pipeline 140
  • the second oil return pipeline 120 is connected to the first oil inlet pipeline 130 through the first pressure reducing valve 10
  • the second oil inlet pipeline The oil return pipeline 120 is connected to the second oil inlet pipeline 140 through the second pressure reducing valve 11.
  • the above step 2920 includes: the controller controls the first pressure reducing valve 10 to be in a conducting state to connect the second oil return pipeline 120 with the brake.
  • the first oil inlet pipe 130 in the oil inlet pipe of the system the controller controls the second pressure reducing valve 11 to be in a conducting state to connect the second oil return pipe 120 with the second oil inlet pipe in the oil inlet pipe of the brake system ⁇ 140.
  • the master brake cylinder 3 provides braking force for the first wheels 25 through the first oil inlet pipe branch 131, and controls the master brake cylinder 3 to pass through the second oil inlet pipe branch 132 of the first oil inlet pipe 130, Provide braking force for the second wheel 26 of the automobile; the master brake cylinder 3 passes through the third oil inlet pipe branch 141 of the second oil inlet pipe 140 to provide braking force for the third wheel 27 of the automobile, and controls the master brake cylinder 3
  • the fourth oil inlet pipe branch 142 of the second oil inlet pipe 140 provides braking force for the fourth wheels 28 of the automobile; the above method includes: the controller controls the pressure providing device 18 to pass through the third oil inlet pipe 150 and the first oil inlet pipe.
  • the road branch 131 and the second oil inlet pipe branch 132 provide braking force for the first wheel 25 and the second wheel 26.
  • the third oil inlet pipe 150 communicates with the first oil inlet pipe branch 131, and the third oil inlet pipe 150 is connected to the first oil inlet pipe branch 131.
  • the second oil inlet pipeline branch 132 is connected;
  • the controller controls the pressure supply device 18 to provide braking force for the third wheel 27 and the fourth wheel 28 through the fourth oil inlet line 160, the third oil inlet line branch 141, and the fourth oil inlet line branch 142.
  • the fourth oil inlet line 160 communicates with the third oil inlet pipe branch 141, and the fourth oil inlet pipe 160 communicates with the fourth oil inlet pipe branch 142.
  • the third oil inlet line 150 and the first oil inlet line 130 are independent brake lines
  • the fourth oil inlet line 160 and the second oil inlet line 140 are independent brake lines.
  • the controller controls the pressure supply device 18 of the brake system to pass through the third oil inlet pipe 150, the first oil inlet pipe branch 131, and the second oil inlet pipe branch 132 of the brake system to form the first wheel 25 and the second oil inlet pipe.
  • the two wheels 26 provide braking force, including: if the boosting device 7 fails, the controller controls the pressure providing device 18 to pass through the third oil inlet line 150, the first oil inlet line branch 131, and the second oil inlet line branch 132, which are the first One wheel 25 and second wheel 26 provide braking force.
  • the controller controls the pressure providing device 18 to provide the third wheel 27 and the fourth wheel 28 through the fourth oil inlet line 160, the third oil inlet line branch 141, and the fourth oil inlet line branch 142 of the braking system.
  • the braking force includes: if the boosting device 7 fails, the controller controls the pressure providing device 18 to pass through the fourth oil inlet line 160, the third oil inlet line branch 141, and the fourth oil inlet line branch 142, which are the third wheels 27 and the first Four wheels 28 provide braking force.
  • the controller controls the pressure supply device 18 of the brake system to provide the first wheel 25 and the second wheel 26 through the third oil inlet line 150, the first oil inlet line branch 131, and the second oil inlet line branch 160.
  • the braking force includes: if the boost rate of the brake system is lower than the preset boost rate threshold, the controller controls the pressure supply device 18 of the brake system to pass through the third oil inlet pipe 150, the first oil inlet branch 131, and The second oil inlet pipe branch 132 provides braking force for the first wheel 25 and the second wheel 26.
  • the controller controls the pressure providing device 18 to provide braking force for the third wheel 27 and the fourth wheel 28 through the fourth oil inlet line 160, the third oil inlet line branch 141, and the fourth oil inlet line branch 142, including : If the boost rate of the brake system is lower than the preset boost rate threshold, the controller controls the pressure providing device 18 to pass through the fourth oil inlet line 160, the third oil inlet line branch 141, and the fourth oil inlet line branch 142, The third wheel 27 and the fourth wheel 28 are provided with braking force.
  • control method of the embodiment of the present application in conjunction with FIG. 30 to FIG. 33. It should be noted that the control methods shown in FIGS. 30 to 33 are only specific examples shown for ease of understanding, and do not limit the scope of the embodiments of the present application.
  • FIG. 30 is a flowchart of a control method according to another embodiment of the present application. This method can be applied to the hydraulic adjustment unit 400 and the hydraulic adjustment unit 500 shown above. Of course, the control method can also be applied to the brake system 600 that includes the hydraulic adjustment unit 400, or the brake system that includes the hydraulic adjustment unit 500. 700.
  • the method shown in FIG. 30 describes the process of judging whether the braking system needs to work in a high-speed pressurization mode and does not need to build pressure for the first wheel 25.
  • the method shown in FIG. 30 includes step 3010 to step 3050.
  • the controller determines whether the braking system enters a high-speed boost mode.
  • the controller may determine whether the brake system enters the high-speed boost mode based on the current build-up rate of the brake system and the build-up rate threshold. If the current pressure build rate is higher than the build pressure rate threshold, the controller determines that there is no need to enter the high-speed pressurization mode, and step 3020 is executed. If the current build-up rate is lower than the build-up rate threshold, the controller determines that the braking system enters the high-speed pressurization mode, and executes step 3030.
  • the controller controls the booster device 7 to enter the working state, and at the same time controls the booster valve 6 of the brake master cylinder to be in a disconnected state, and execute step 3040.
  • the controller controls the booster device 7 and the pressure supply device 18 to be in working state, controls the booster device booster valve to be in the on state, controls the brake master cylinder booster valve 6 to be in the off state, and executes step 3040.
  • the controller determines that it is not necessary to build pressure for the first wheel 25.
  • the controller controls the first oil inlet valve 21 corresponding to the first wheel 25 to be in the off state, and the oil inlet valves 22, 23, and 24 corresponding to the other wheels to be in the on state.
  • FIG. 31 is a flowchart of a control method according to another embodiment of the present application. This method can be applied to the hydraulic adjustment unit 400 and the hydraulic adjustment unit 500 shown above. Of course, the control method shown in FIG. 31 can also be applied to the brake system 600 including the hydraulic adjustment unit 400 or the hydraulic adjustment unit 500. The braking system 700.
  • the method shown in FIG. 31 describes the flow of the method for judging whether the braking system needs to work in the high-speed decompression working mode and does not need to depressurize the second wheel 26.
  • the method shown in FIG. 31 includes step 3110 to step 3170.
  • the controller determines that it is not necessary to depressurize the second wheel 26.
  • the controller controls the second oil inlet valve 22 corresponding to the second wheel 26 to be in a disconnected state.
  • the controller controls the first isolation valve 12 and the second isolation valve 13 to be in a disconnected state.
  • the controller controls the first pressure reducing valve 10 and the second pressure reducing valve 11 to be in a conducting state.
  • the controller controls the first pressure reducing valve 10 and the second pressure reducing valve 11 to be in a conducting state to communicate with the first oil inlet pipe 130 and the second oil return pipe 120, and to communicate with the second oil pipe 140 and the second oil return pipe. 120.
  • the brake fluid in the first oil inlet pipe 130 and the second oil inlet pipe 140 can flow to the second liquid storage device 2 through the second oil return pipe 120 to depressurize the brake system.
  • the controller determines whether the braking system enters the high-speed decompression mode.
  • the controller can determine whether the braking system enters the high-speed decompression mode based on the current decompression rate of the braking system and the decompression rate threshold. If the current decompression rate is less than the decompression rate threshold, the controller determines to enter the high-speed decompression mode, and executes step 3160. If the current decompression rate is greater than the decompression rate threshold, the controller determines not to enter the high-speed decompression mode, and executes 3170.
  • the controller controls the fifth pressure reducing valve 16 and the sixth pressure reducing valve 17 to be in a conducting state.
  • the controller controls the fifth pressure reducing valve 16 and the sixth pressure reducing valve 17 to be in an off state.
  • Fig. 32 is a flowchart of a control method according to another embodiment of the present application. This method can be applied to the hydraulic adjustment unit 400 and the hydraulic adjustment unit 500 shown above. Of course, the control method shown in FIG. 32 can also be applied to the brake system 600 including the hydraulic adjustment unit 400, or the hydraulic adjustment unit 500. The braking system 700.
  • the method shown in FIG. 32 describes the process of the method for switching between the multiple operating modes of the braking system including the above-mentioned first braking subsystem and the second braking subsystem.
  • the method shown in FIG. 32 includes step 3210 to step 3265.
  • the controller determines the required braking force of the braking system.
  • the controller may determine the required braking force of the braking system based on the driver's input, and the controller may also determine the braking system based on the road condition information of the vehicle, which is not limited in the embodiment of the present application.
  • the controller detects the state of the braking system.
  • the controller can determine the state of the brake system based on the pressure sensor (not shown in the figure) provided in the brake system. For example, it can be set on the brake pipe 310 and the brake pipe 330 in the brake system 700.
  • the pressure sensor detects the pressure of the brake fluid in the brake pipe 310 and the brake pipe 330, and judges the state of the brake system based on the pressure of the brake fluid in the brake pipe 310 and the brake pipe 330.
  • the controller may also determine the state of the brake system based on the current pressure build-up time of the brake system and the average pressure build-up time of the brake system.
  • the controller determines whether the braking system is partially failed.
  • the aforementioned partial failure of the braking system refers to the failure of the first braking subsystem or the failure of the second braking subsystem in the braking system.
  • the controller can determine whether the brake system is partially failed based on the current pressure build-up time of the brake system. For example, the controller may determine whether the brake system is partially failed based on the current pressure build-up time of the brake system and the average pressure build-up time of the brake system. If the current pressure build-up time of the brake system is higher than the average pressure build-up time of the brake system, it can be determined that the brake system has partially failed. If the current pressure build-up time of the brake system is less than the average pressure build-up time of the brake system, it can be determined that the brake system is normal.
  • step 3225 If the brake system fails partially, execute step 3225; if the brake system works normally, execute step 3245.
  • the controller determines whether the first braking subsystem is disabled.
  • the controller may determine whether the first brake subsystem is invalid based on the pressure build-up rate of the booster device 7 in the first brake subsystem. For example, in the online control dynamic mode or the intelligent driving mode, if the pressure build-up rate of the supercharging device 7 is lower than the average decompression rate of the supercharging device 7, it can be judged that the first brake subsystem has failed. On the contrary, it can be judged that the first braking subsystem is working normally. The controller may also determine whether the first brake subsystem is working normally based on the pressure of the brake fluid at the oil outlet of the booster device 7. The embodiments of the present application do not specifically limit this.
  • step 3235 is executed; if the first braking subsystem works normally, then step 3230 is executed.
  • the controller controls the second brake subsystem to enter the brake-by-wire mode, and execute step 3255.
  • the above-mentioned entry of the second brake subsystem into the brake-by-wire mode can be understood as replacing the function of the pressure-increasing device 7 in the linear brake mode by the pressure providing device 18.
  • the second brake subsystem enters the brake-by-wire mode, that is, the redundant brake mode described above.
  • the working mode of the second brake subsystem enters the brake-by-wire mode please refer to the brake system 600 or the brake system 700 above. Enter the working mode in redundant braking mode.
  • the controller determines whether the second brake subsystem is invalid.
  • the controller may determine whether the second brake subsystem has failed based on the build-up rate of the pressure providing device 18 in the second brake subsystem. For example, in the online control dynamic mode or the intelligent driving mode, if the pressure building rate of the pressure providing device 18 is lower than the average decompression rate of the pressure providing device 18, it can be determined that the second brake subsystem is invalid. On the contrary, it can be judged that the second brake subsystem is working normally.
  • the controller may also determine whether the second brake subsystem is working normally based on the pressure of the brake fluid at the oil outlet of the pressure providing device 18. The embodiments of the present application do not specifically limit this.
  • step 3240 If the second brake subsystem fails, step 3240 is executed. If the second brake subsystem works normally, step 3255 is executed.
  • the controller prompts the driver to enter the mechanical braking mode.
  • step 3250 If after the above step 3250, it is determined that the second brake subsystem fails and the first brake subsystem fails, it can be determined that the driver is required to access and enter the mechanical braking mode.
  • the controller controls the first braking subsystem and the second braking subsystem to provide braking force for the car at the same time.
  • the controller determines the braking force that the first braking subsystem and the second braking subsystem need to provide respectively.
  • the controller controls the braking system to enter the boosting process.
  • the controller controls the braking system to enter the pressure holding process.
  • the controller controls the braking system to enter the decompression process.
  • FIG. 33 is a flowchart of a control method according to another embodiment of the present application.
  • the method shown in FIG. 33 can be applied to the hydraulic adjustment unit 400 and the hydraulic adjustment unit 500 shown above.
  • the method can also be applied to the brake system 600 including the hydraulic adjustment unit 400, or the hydraulic adjustment unit 500.
  • the braking system 700 is a flowchart of a control method according to another embodiment of the present application.
  • the method shown in Fig. 33 describes a scheme in which the second brake subsystem provides braking force for the car after the first brake subsystem fails. It is assumed that there is no need to build pressure for the first wheel 25 during the supercharging process.
  • the method shown in FIG. 33 includes step 3310 to step 3370.
  • the controller controls the first isolation valve 12 and the second isolation valve 13 to be in a disconnected state.
  • the controller determines that it is not necessary to provide braking force for the first wheel 25.
  • the controller controls the first oil inlet valve 21 corresponding to the first wheel 25 to be in an open state.
  • the controller controls the pressure providing device 18 to provide braking force for the braking system.
  • step 3330 The controller judges whether the boosting process is over. If the boosting process is over, step 3335 is executed; if the boosting process is not finished, then step 3325 is continued.
  • controller can determine whether the above-mentioned supercharging process is over based on the current vehicle speed of the vehicle.
  • the controller controls the pressure providing device 18 to stop providing braking force for the braking system, and the braking system enters the pressure maintaining process.
  • step 3345 The controller judges whether to end the pressure holding process. If the pressure holding process is ended, step 3345 is executed; if the pressure holding process is not ended, the pressure holding process is continued.
  • step 3350 The controller judges whether to enter the decompression process. If it enters the decompression process, step 3350 is executed.
  • the controller controls the first isolation valve 12 and the second isolation valve 13 to be in a conducting state.
  • the controller controls the fifth pressure reducing valve 16 and the sixth pressure reducing valve 17 to be in a conducting state.
  • step 3360 The controller determines whether the decompression process is over. If it is determined to end the decompression process, step 3365 is executed.
  • the controller controls the fifth pressure reducing valve 16 and the sixth pressure reducing valve 17 to be in a disconnected state.
  • the controller controls the first isolation valve 12 and the second isolation valve 13 to be in a conducting state.
  • control method of the embodiment of the present application is described above with reference to Figs. 29 to 33, and the device of the embodiment of the present application is described below with reference to Figs. 34 to 35. It should be noted that the device of the embodiment of the present application can be applied to any of the hydraulic adjustment units introduced above to implement any of the control methods introduced above. For the sake of brevity, details are not repeated here.
  • FIG. 34 is a schematic diagram of a control device according to an embodiment of the present application.
  • the control device 3400 shown in FIG. 34 includes a processing unit 3410 and a storage unit 3420.
  • the storage unit 3420 is used to store instructions, and the processing unit 3410 is used to read instructions from the storage unit 3420 to implement any of the above control methods.
  • the processing unit 3410 controls the first control valves 16, 17 to be in a conducting state to connect the first oil return line 110 and the wheel brake cylinder, and the brake fluid in the wheel brake cylinder flows to the first oil return line 110 through the first oil return line 110.
  • the first liquid storage device 29 depressurizes the wheels of the car;
  • the processing unit 3410 controls the second control valves 10, 11 to be in a conducting state to connect the oil inlet pipes 130, 140 and the second oil return pipe 120.
  • the brake fluid in the brake wheel cylinder passes through the oil inlet pipes 130, 140 and the second oil return pipe.
  • the second oil return pipeline 120 flows to the second liquid storage device 2.
  • the processing unit 3410 is further configured to control the second control valves 10 and 11 to be in a conducting state.
  • the oil inlet pipeline of the brake system includes a first oil inlet pipeline 130 and a second oil inlet pipeline 140
  • the second oil return pipeline 120 is connected to the first oil inlet pipeline 130 through the first pressure reducing valve 10
  • the second oil inlet pipeline The oil return line 120 is connected to the second oil inlet line 140 through the second pressure reducing valve 11, and the processing unit 3410 is also used to control the first pressure reducing valve 10 of the second control valves 10 and 11 to be in a conducting state to communicate with the first pressure reducing valve 10
  • the second oil return line 120 and the first oil inlet line 130 in the oil inlet line of the brake system; the processing unit 3410 is also used to control the second pressure reducing valve 11 of the second control valves 10 and 11 to be in a conducting state to
  • the second oil return pipeline 120 is connected with the second oil inlet pipeline 140 in the oil inlet pipeline of the brake system.
  • the master brake cylinder 3 of the braking system provides braking force for the first wheel 25 of the automobile through the first oil inlet pipe branch 131 of the first oil inlet pipe 130, and passes through the first oil inlet pipe 130.
  • the second oil inlet pipe branch 132 provides braking force for the second wheel 26 of the automobile;
  • the master brake cylinder 3 provides braking force for the third wheel 27 of the automobile through the third oil inlet pipe branch 141 of the second oil inlet pipe 140,
  • the fourth oil inlet pipe branch 142 of the second oil inlet pipe 140 the fourth wheel 28 of the automobile is provided with braking force;
  • the processing unit 3410 is also used to control the pressure supply device 18 of the brake system through the third brake system.
  • the oil inlet line 150, the first oil inlet line branch 131, and the second oil inlet line branch 132 provide braking force for the first wheel 25 and the second wheel 26, and the third oil inlet line 150 is in communication with the first oil inlet line branch 131 , And the third oil inlet line 150 is in communication with the second oil inlet line branch 132; the processing unit 3410 is also used to control the pressure supply device 18 to pass through the fourth oil inlet line 160, the third oil inlet line branch 141, and the second oil inlet line of the brake system.
  • the four oil inlet pipe branch 142 provides braking force for the third wheel 27 and the fourth wheel 28, the fourth oil inlet pipe 160 communicates with the third oil inlet pipe branch 141, and the fourth oil pipe 160 and the fourth oil inlet pipe The branch 142 is connected.
  • the processing unit 3410 is also used to control the control pressure providing device 18 through the third oil inlet line 150, the first oil inlet line branch 131, and the second oil inlet line branch 132, which are the first One wheel 25 and second wheel 26 provide braking force.
  • the processing unit 3410 is also used to control the pressure providing device 18 to pass through the fourth oil inlet line 160, the third oil inlet line branch 141, and the fourth oil inlet line branch 142 to be the third Wheel 27 and fourth wheel 28 provide braking force.
  • the processing unit 3410 is also used to control the pressure supply device 18 of the brake system to pass through the third oil inlet line 150 and the first oil inlet line.
  • the branch 131 and the second oil inlet pipe branch 132 provide braking force for the first wheel 25 and the second wheel 26.
  • the processing unit 3410 is further configured to control the pressure providing device 18 to pass through the fourth oil inlet pipe 160, the third oil inlet branch 141, and the second oil inlet pipe branch 141.
  • the four-intake pipeline branch 142 provides braking force for the third wheel 27 and the fourth wheel 28.
  • the processing unit 3410 may be a processor 3520
  • the storage unit 3420 may be a memory 3510
  • the control unit 3400 may further include a communication interface 3530, as shown in FIG. 35.
  • FIG. 35 is a schematic block diagram of a controller according to an embodiment of the present application.
  • the controller 3500 shown in FIG. 35 may include a memory 3510, a processor 3520, and a communication interface 3530.
  • the memory 3510, the processor 3520, and the communication interface 3530 are connected by an internal connection path.
  • the memory 3510 is used to store instructions, and the processor 3520 is used to execute the instructions stored in the memory 3520 to control the communication interface 3530 to receive/send information.
  • the memory 3510 may be coupled with the processor 3520 through an interface, or may be integrated with the processor 3520.
  • the above-mentioned communication interface 3530 uses a transceiving device such as but not limited to a transceiver to implement communication between the communication device 3500 and other devices or communication networks.
  • the aforementioned communication interface 3530 may also include an input/output interface.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor 3520 or instructions in the form of software.
  • the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 3510, and the processor 3520 reads the information in the memory 3510, and completes the steps of the foregoing method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • a part of the processor may also include a non-volatile random access memory.
  • the processor may also store device type information.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

一种汽车制动系统的液压调节单元,包括第一储液装置(29)、第二储液装置(2)、第一回油管路(110)以及第二回油管路(120),第一回油管路(110)用于与汽车的制动轮缸(151)、(152)相连,以将汽车的制动轮缸(151)、(152)中的制动液输送至第一储液装置(29),为汽车的车轮减压;第二回油管路(120)用于通过制动系统的进油管路(130)、(140)连接至汽车的制动轮缸(151)、(152),以通过制动系统的进油管路(130)、(140),将汽车的制动轮缸(151)、(152)中的制动液输送至第二储液装置(2),为汽车的车轮减压,从而可提高制动系统的减压效率。还提供一种汽车的制动系统、汽车及控制方法。

Description

汽车中制动系统的液压调节单元、制动系统及控制方法
本申请要求于2020年04月13日提交中国专利局、申请号为202010286285.5、申请名称为“汽车中制动系统的液压调节单元、制动系统及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车领域,并且更具体地,涉及汽车中制动系统的液压调节单元、汽车中的制动系统、汽车及汽车中制动系统的控制方法。
背景技术
汽车的制动系统是通过对汽车的车轮施加一定的制动力,从而对其进行一定程度的强制制动的系统。制动系统作用是使行驶中的汽车按照驾驶员或者控制器的要求进行强制减速甚至停车,或者使已停驶的汽车在各种道路条件下(例如,在坡道上)稳定驻车,或者使下坡行驶的汽车速度保持稳定。
电液制动系统(Electro-Hydraulic Brake,EHB)作为流行的制动系统,通常包含储液装置,储液装置用于容纳制动液。当制动系统需要为汽车的车轮提供制动力时,可以将储液装置中的制动液输送到增压装置,由增压装置为制动液增压,并通过进油管路为车轮提供制动力。当制动系统需要为汽车的车轮减压时,可以利用储液装置中制动液的压力与制动轮缸中制动液的压力之间的压力差,通过回油管路将制动轮缸中的制动液输送到储液装置,以供下一次为车轮提供制动力使用。
目前,随着汽车电动化和智能化的发展,汽车对制动系统的要求也越来越高。在考虑了线控特性和冗余备份等问题后,制动系统还需满足制动系统减压高效率的控制需求。因此,为了满足制动系统减压高效率的控制需求,亟需一种具有较高减压效率的制动系统。
发明内容
本申请提供一种汽车中制动系统的液压调节单元、汽车中的制动系统、汽车及汽车中制动系统的控制方法,以提高制动系统中为制动轮缸减压的减压效率。
第一方面,提供了一种汽车中制动系统的液压调节单元,包括第一储液装置29、第二储液装置2、第一回油管路110以及第二回油管路120,第一回油管路110用于与汽车的制动轮缸151、152相连,以将汽车的制动轮缸151、152中的制动液输送至第一储液装置29,为汽车的车轮减压;第二回油管路120用于通过制动系统的进油管路130、140连接至汽车的制动轮缸151、152,以通过制动系统的进油管路130、140,将汽车的制动轮缸151、152中的制动液输送至第二储液装置2,为汽车的车轮减压。
在本申请实施例中,通过第一回油管路110和第二回油管路120,同时将制动液从制动轮缸151、152输送至储液装置,以为汽车的车轮减压,有利于提高制动系统中为制动 轮缸减压的减压效率。避免了现有的制动系统中,只能通过一条回油管路为汽车的车轮减压导致制动系统的制动效率较低。
另一方面,第二回油管路120与进油管路130、140相连,在减压的过程中,制动轮缸151、152中的制动液可以通过进油管路130、140输送至储液装置,以为汽车的车轮减压,即在减压的过程中复用进油管路130、140作为回油管路,有利于降低制动系统中制动管路部署的复杂度。
在一种可能的实现方式中,液压调节单元的进油管路包括第一进油管路130和第二进油管路140,第二回油管路120通过第一减压阀10与第一进油管路130相连,若第一减压阀10处于导通状态,第二回油管路120与第一进油管路130连通,若第一减压阀10处于断开状态,第二回油管路120与第一进油管路130断开;第二回油管路120通过第二减压阀11与第二进油管路140相连,若第二减压阀11处于导通状态,第二回油管路120与第二进油管路140连通,若第二减压阀11处于断开状态,第二回油管路120与第二进油管路140断开。
在本申请实施例中,通过控制第一减压阀10与第二减压阀11的通断,以控制第二回油管路120与第一进油管路130、第二进油管路140之间的通断,有利于丰富制动系统的工作模式,以使得制动系统可以的应用场景更加广泛。
在一种可能的实现方式中,液压调节单元包括制动主缸3以及压力提供装置18,制动主缸3通过第一进油管路130的第一进油管路分支131为汽车的第一车轮25提供制动力,制动主缸3通过第一进油管路130的第二进油管路分支132为汽车的第二车轮26提供制动力;制动主缸3通过第二进油管路140的第三进油管路分支141为汽车的第三车轮27提供制动力,制动主缸3通过第二进油管路140的第四进油管路分支142为汽车的第四车轮28提供制动力;压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支132为第一车轮25和第二车轮26提供制动力,第三进油管路150与第一进油管路分支131连通,且第三进油管路150与第二进油管路分支132连通;压力提供装置18通过第四进油管路160、第三进油管路分支141以及第四进油管路分支131为第三车轮27和第四车轮28提供制动力,第四进油管路160与第三进油管路分支141连通,且第四进油管路160与第四进油管路分支142连通。
在本申请实施例中,制动主缸3通过第一进油管路130、第二进油管路140为车轮提供制动力,同时压力提供装置18可以通过第三进油管路150以及第四进油管路160为汽车提供制动力,有利于提高制动系统为车轮提供制动力的效率。
在一种可能的实现方式中,第一进油管路130与第一进油管路分支131以及第二进油管路分支132通过第一隔离阀12相连,若第一隔离阀12处于断开状态,则第一进油管路130内的制动液被第一隔离阀12阻断,无法通过第一进油管路分支131和第二进油管路分支132流入第一车轮25和第二车轮26的制动轮缸;第二进油管路140与第三进油管路分支141以及第四进油管路分支142通过第二隔离阀13相连,若第二隔离阀13处于断开状态,则第二进油管路140内的制动液被第一隔离阀12阻断,无法通过第三进油管路分支141和第四进油管路分支142流入第一车轮25和第二车轮26。
在本申请实施例中,通过第一隔离阀12连接第一进油管路130与第一进油管路分支131、第二进油管路分支132,通过第二隔离阀13连接第二进油管路140与第三进油管路 分支141、第四进油管路分支142,以通过第一隔离阀12以及第二隔离阀13的通断,控制制动系统是否通过第一进油管路130以及第二进油管路140为汽车提供制动力,以增加制动系统的工作模式。例如,当第一隔离阀12以及第二隔离阀13处于断开状态时,上述增压装置18可以为汽车提供制动力。
在一种可能的实现方式中,第一储液装置29与第二储液装置2为同一个储液装置,或第一储液装置29与第二储液装置2为不同的储液装置。
在本申请实施例中,上述第一储液装置29与第二储液装置2为同一个储液装置,有利于减少制动系统中的元件的数量,以降低制动系统的成本。上述第一储液装置29与第二储液装置2为不同的储液装置时,有利于提高制动系统存储制动液的容量。
第二方面,提供一种汽车的制动系统,包括第一储液装置29、第二储液装置2、第一回油管路110、第二回油管路120以及多个制动轮缸151、152,第一回油管路110与多个制动轮缸151、152相连,第一回油管路110用于将多个制动轮缸151、152中的制动液输送至第一储液装置29,以为多个车轮减压;第二回油管路120通过汽车中制动系统的进油管路130、140连接至多个制动轮缸151、152,第二回油管路120用于通过制动系统的进油管路130、140,将汽车的制动轮缸151、152中的制动液输送至第二储液装置2,以为汽车的车轮减压。
在本申请实施例中,通过第一回油管路110和第二回油管路120,同时将制动液从制动轮缸151、152输送至储液装置,以为汽车的车轮减压,有利于提高制动系统中为制动轮缸减压的减压效率。避免了现有的制动系统中,只能通过一条回油管路为汽车的车轮减压导致制动系统的制动效率较低。
另一方面,第二回油管路120与进油管路130、140相连,在减压的过程中,制动轮缸151、152中的制动液可以通过进油管路130、140输送至储液装置,以为汽车的车轮减压,即在减压的过程中复用进油管路130、140作为回油管路,有利于降低制动系统中制动管路部署的复杂度。
在一种可能的实现方式中,制动系统的进油管路包括第一进油管路130和第二进油管路140,第二回油管路120通过第一减压阀10与第一进油管路130相连,若第一减压阀10处于导通状态,第二回油管路120与第一进油管路130连通,若第一减压阀10处于断开状态,第二回油管路120与第一进油管路130断开;第二回油管路120通过第二减压阀11与第二进油管路140相连,若第二减压阀11处于导通状态,第二回油管路120与第二进油管路140连通,若第二减压阀11处于断开状态,第二回油管路120与第二进油管路140断开。
在本申请实施例中,通过控制第一减压阀10与第二减压阀11的通断,以控制第二回油管路120与第一进油管路130、第二进油管路140之间的通断,有利于丰富制动系统的工作模式,以使得制动系统可以的应用场景更加广泛。
在一种可能的实现方式中,制动系统还包括制动主缸3以及压力提供装置18,制动主缸3通过第一进油管路130的第一进油管路分支131为汽车的第一车轮25提供制动力,制动主缸3通过第一进油管路130的第二进油管路分支132为汽车的第二车轮26提供制动力;制动主缸3通过第二进油管路140的第三进油管路分支141为汽车的第三车轮27提供制动力,制动主缸3通过第二进油管路140的第四进油管路分支142为汽车的第四车 轮28提供制动力;压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支132为第一车轮25和第二车轮26提供制动力,第三进油管路150与第一进油管路分支131连通,且第三进油管路150与第二进油管路分支132连通;压力提供装置18通过第四进油管路160、第三进油管路分支141以及第四进油管路分支131为第三车轮27和第四车轮28提供制动力,第四进油管路160与第三进油管路分支141连通,且第四进油管路160与第四进油管路分支142连通。
在本申请实施例中,制动主缸3通过第一进油管路130、第二进油管路140为车轮提供制动力,同时压力提供装置18可以通过第三进油管路150以及第四进油管路160为汽车提供制动力,有利于提高制动系统为车轮提供制动力的效率。
在一种可能的实现方式中,第一进油管路130与第一进油管路分支131以及第二进油管路分支132通过第一隔离阀12相连,若第一隔离阀12处于断开状态,则第一进油管路130内的制动液被第一隔离阀12阻断,无法通过第一进油管路分支131和第二进油管路分支132流入第一车轮25和第二车轮26的制动轮缸;第二进油管路140与第三进油管路分支141以及第四进油管路分支142通过第二隔离阀13相连,若第二隔离阀13处于断开状态,则第二进油管路140内的制动液被第一隔离阀12阻断,无法通过第三进油管路分支141和第四进油管路分支142流入第一车轮25和第二车轮26。
在本申请实施例中,通过第一隔离阀12连接第一进油管路130与第一进油管路分支131、第二进油管路分支132,通过第二隔离阀13连接第二进油管路140与第三进油管路分支141、第四进油管路分支142,以通过第一隔离阀12以及第二隔离阀13的通断,控制制动系统是否通过第一进油管路130以及第二进油管路140为汽车提供制动力,以增加制动系统的工作模式。例如,当第一隔离阀12以及第二隔离阀13处于断开状态时,上述增压装置18可以为汽车提供制动力。
在一种可能的实现方式中,第一储液装置29与第二储液装置2为同一个储液装置,或第一储液装置29与第二储液装置2为不同的储液装置。
在本申请实施例中,上述第一储液装置29与第二储液装置2为同一个储液装置,有利于减少制动系统中的元件的数量,以降低制动系统的成本。上述第一储液装置29与第二储液装置2为不同的储液装置时,有利于提高制动系统存储制动液的容量。
第三方面,提供一种汽车,包括第二方面中任一种可能的制动系统。
第四方面,提供一种汽车中制动系统的控制方法,包括:制动系统的控制器控制第一控制阀16、17处于导通状态,以连通第一回油管路110与制动系统的制动轮缸,制动系统的制动轮缸中的制动液通过制动系统的第一回油管路110流至制动系统的第一储液装置29,以为汽车的车轮减压;控制器控制第二控制阀10、11处于导通状态,以连通制动系统的进油管路130、140与制动系统的第二回油管路120,制动系统的制动轮缸中的制动液通过制动系统的进油管路130、140以及第二回油管路120流至制动系统的第二储液装置2。
在本申请实施例中,通过第一回油管路110和第二回油管路120,同时将制动液从制动轮缸151、152输送至储液装置,以为汽车的车轮减压,有利于提高制动系统中为制动轮缸减压的减压效率。避免了现有的制动系统中,只能通过一条回油管路为汽车的车轮减压导致制动系统的制动效率较低。
另一方面,第二回油管路120与进油管路130、140相连,在减压的过程中,制动轮缸151、152中的制动液可以通过进油管路130、140输送至储液装置,以为汽车的车轮减压,即在减压的过程中复用进油管路130、140作为回油管路,有利于降低制动系统中制动管路部署的复杂度。
在一种可能的实现方式中,控制器控制第二控制阀处于导通状态,包括:若制动系统的减压速率低于预设的减压速率阈值,控制器控制第二控制阀10、11处于导通状态。
在本申请实施例中,当制动系统的减压效率低于预设的减压速率阈值,控制器可以控制第二控制阀10、11处于导通状态,以通过第二回油管路120为汽车减压,有利于提高制动系统的性能。
在一种可能的实现方式中,制动系统的进油管路包括第一进油管路130和第二进油管路140,第二回油管路120通过第一减压阀10与第一进油管路130相连,第二回油管路120通过第二减压阀11与第二进油管路140相连,控制器控制第二控制阀处于导通状态,包括:控制器控制第二控制阀10、11中的第一减压阀10处于导通状态,以连通第二回油管路120与制动系统的进油管路中的第一进油管路130;控制器控制第二控制阀10、11中的第二减压阀11处于导通状态,以连通第二回油管路120与制动系统的进油管路中的第二进油管路140。
在本申请实施例中,通过控制第一减压阀10与第二减压阀11的通断,以控制第二回油管路120与第一进油管路130、第二进油管路140之间的通断,有利于丰富制动系统的工作模式,以使得制动系统可以的应用场景更加广泛。
在一种可能的实现方式中,制动系统的制动主缸3通过第一进油管路130的第一进油管路分支131,为汽车的第一车轮25提供制动力,并通过第一进油管路130的第二进油管路分支132,为汽车的第二车轮26提供制动力;制动主缸3通过第二进油管路140的第三进油管路分支141,为汽车的第三车轮27提供制动力,并通过第二进油管路140的第四进油管路分支142,为汽车的第四车轮28提供制动力;上述方法还包括:控制器控制制动系统的压力提供装置18通过制动系统的第三进油管路150、第一进油管路分支131以及第二进油管路分支132,为第一车轮25和第二车轮26提供制动力,第三进油管路150与第一进油管路分支131连通,且第三进油管路150与第二进油管路分支132连通;控制器控制压力提供装置18通过制动系统的第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力,第四进油管路160与第三进油管路分支141连通,且第四进油管路160与第四进油管路分支142连通。
在本申请实施例中,制动主缸3通过第一进油管路130、第二进油管路140为车轮提供制动力,同时压力提供装置18可以通过第三进油管路150以及第四进油管路160为汽车提供制动力,有利于提高制动系统为车轮提供制动力的效率。
在一种可能的实现方式中,控制器控制制动系统的压力提供装置18通过制动系统的第三进油管路150、第一进油管路分支131以及第二进油管路分支132,为第一车轮25和第二车轮26提供制动力,包括:若制动主缸3故障,控制器控制控制压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支132,为第一车轮25和第二车轮26提供制动力。
在本申请实施例中,若制动主缸3故障,控制器可以控制压力提供装置18为第一车 轮25和第二车轮26提供制动力,以提高制动系统的冗余性能。
在一种可能的实现方式中,控制器控制压力提供装置18通过制动系统的第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力,包括:若制动主缸3故障,控制器控制压力提供装置18通过第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力。
在本申请实施例中,若制动主缸3故障,控制器可以控制压力提供装置18为第三车轮27和第四车轮28提供制动力,以提高制动系统的冗余性能。
在一种可能的实现方式中,控制器控制制动系统的压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支160,为第一车轮25和第二车轮26提供制动力,包括:若制动系统的增压速率低于预设的增压速率阈值,控制器控制制动系统的压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支132,为第一车轮25和第二车轮26提供制动力。
在本申请实施例中,若制动系统的增压速率低于预设的增压速率阈值,控制器可以控制压力提供装置18为第一车轮25和第二车轮26提供制动力,以提高制动系统的制动效率。
在一种可能的实现方式中,控制器控制压力提供装置18通过第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力,包括:若制动系统的增压速率低于预设的增压速率阈值,控制器控制压力提供装置18通过第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力。
在本申请实施例中,若制动系统的增压速率低于预设的增压速率阈值,控制器可以控制压力提供装置18为第三车轮27和第四车轮28提供制动力,以提高制动系统的制动效率。
第五方面,提供一种控制装置,该控制装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使控制装置执行第三方面中任一种可能的方法。
可选地,上述控制装置可以是汽车中独立的控制器,也可以是汽车中具有控制功能的芯片。上述处理单元可以是处理器,上述存储单元可以是存储器,其中存储器可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是汽车内位于上述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
需要说明的是,上述控制器中存储器与处理器耦合。存储器与处理器耦合,可以理解为,存储器位于处理器内部,或者存储器位于处理器外部,从而独立于处理器。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第七方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所 述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
附图说明
图1是现有的电液制动系统100的架构的示意图。
图2是本申请实施例的制动系统中液压调节单元200的示意图。
图3是本申请实施例的制动系统的液压调节单元300的示意图。
图4是本申请实施例的液压调节单元400的示意图。
图5是本申请实施例的液压调节单元500的示意图。
图6是本申请实施例的制动系统600的示意图。
图7是本申请实施例的制动系统600中制动液的增压路径的示意图。
图8是本申请实施例的制动系统在线控制动模式下制动液的增压路径的示意图。
图9是本申请实施例的制动系统在减压过程中制动液的增压路径的示意图。
图10是本申请实施例的高速增压模式与线控制动模式结合时制动液的增压路径的示意图。
图11是本申请实施例的高速增压模式与线控制动模式结合的情况下保压过程中制动液的所在的制动管路的示意图。
图12是本申请实施例的高速增压模式与线控制动模式结合的情况下减压过程中制动液的减压路径的示意图。
图13是本申请实施例的制动系统600中制动液的增压路径的示意图。
图14是本申请实施例的制动系统在冗余制动模式下的保压过程中制动液的所在的制动管路的示意图。
图15是本申请实施例的制动系统在冗余制动模式下的减压过程中制动液的减压路径的示意图。
图16是本申请实施例的制动系统600在机械制动模式下制动液的增压路径的示意图。
图17是本申请实施例的制动系统在机械制动模式下制动液的减压路径的示意图。
图18是本申请实施例的制动系统700中制动液的增压路径的示意图。
图19是本申请实施例的制动系统在线控制动模式下的保压过程中制动液的所在的制动管路的示意图。
图20是本申请实施例的制动系统在减压过程中制动液的减压路径的示意图。
图21是本申请实施例的制动系统在高速增压模式与线控制动模式结合时制动液的增压路径的示意图。
图22是本申请实施例的制动系统在高速增压模式与线控制动模式结合的情况下保压过程中制动液的所在的制动管路的示意图。
图23是本申请实施例的制动系统在减压过程中制动液的减压路径的示意图。
图24是本申请实施例的制动系统700中制动液的增压路径的示意图。
图25是本申请实施例的制动系统在冗余制动模式下的保压过程中制动液的所在的制动管路的示意图。
图26是本申请实施例的制动系统在冗余制动模式下的减压过程中制动液的减压路径的示意图。
图27是本申请实施例的制动系统700在机械制动模式下制动液的增压路径的示意图。
图28是本申请实施例的制动系统700在机械制动模式下制动液的减压路径的示意图。
图29是本申请实施例的控制方法的流程图。
图30是本申请另一实施例的控制方法的流程图。
图31是本申请另一实施例的控制方法的流程图。
图32是本申请另一实施例的控制方法的流程图。
图33是本申请另一实施例的控制方法的流程图。
图34是本申请实施例的控制装置的示意图。
图35是本申请实施例的控制器的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了便于理解本申请,下文先结合图1介绍现有的电液制动系统(Electro-Hydraulic Brake,EHB)。
图1是现有的电液制动系统100的架构的示意图。图1所示的制动系统100包括制动主缸1015、第一制动管路1011、第二制动管路1012、第三制动管路1013、储液装置1014、第一组车轮的制动轮缸1017、第二组车轮的制动轮缸1016、多个第一控制阀101、102、103、104以及多个第二控制阀105、106、107、108。
当需要为汽车的车轮提供制动力时,制动系统100中的控制器控制多个第一控制阀101、102、103、104处于导通状态,多个第二控制阀105、106、107、108处于断开状态。储液装置1014为制动主缸1015提供制动液。相应地,制动主缸1015通过第一制动管路1011,将制动液输送到第一组车轮的制动轮缸1017,以为第一组车轮提供制动力。制动主缸1015通过第二制动管路1012,将制动液输送到第二组车轮的制动轮缸1016,以为第二组车轮提供制动力。
需要说明的是,在为车轮提供制动力的过程中,上述第一制动管路1011和第二制动管路1012用于为汽车的车轮提供制动力,因此,上述第一制动管路1011和第二制动管路1012又称为“进油管路”。
当需要为汽车的车轮减压时,制动系统100中的控制器控制多个第一控制阀101、102、103、104处于断开状态,多个第二控制阀105、106、107、108处于连通状态。此时,由于第一组车轮的制动轮缸1017和第二组车轮的制动轮缸1016内制动液的压力,高于制动主缸1015内制动液的压力,即存在液压差。因此,可以利用上述液压差将第一组车轮的制动轮缸1017和第二组车轮的制动轮缸1016内的制动液,通过第三制动管路1013输送至储液装置1014。
需要说明的是,在为汽车的车轮减压的过程中,上述第三制动管路1013用于为汽车的车轮减压,因此,上述第三制动管路1013又称为“回油管路”。
基于上文介绍制动系统100可以看出,在需要为汽车的车轮减压时,只有第三制动管路1013用作回油管路,限制了制动管路的减压效率。因此,为了提高制动系统的减压效率,本申请提供了一种新的制动系统中的液压调节单元200,该液压调节单元200包括多条并联的回油管路,这样,在需要为汽车的车轮减压时,可以同时通过多条回油管路将制 动液从汽车的制动轮缸输送至储液装置,以提高制动系统的减压效率。下文结合图2介绍本申请实施例的制动系统中的液压调节单元200。
需要说明的是,下文为了便于描述制动系统中各个制动元件之间的连接关系,会使用“压力出端口”以及“压力入端口”等术语。其中,“压力出端口”可以理解为制动液流出的端口,“压力入端口”可以理解为制动液流入的端口。也就是说,“压力出端口”以及“压力入端口”可以理解为是从功能上限定端口的作用,上述“压力出端口”以及“压力入端口”可以用于限定一个物理端口在不同的工作模式下的作用,上述“压力出端口”以及“压力入端口”还可以对应两个不同的物理端口,本申请实施例对此不做限定。
通常,下文中介绍设备A的压力入端口与设备B的压力出端口相连时,可以理解为对应两个物理端口,并且用于描述设备A与设备B之间的连接关系。
另外,下文中涉及的“回油管路”和“进油管路”可以对应不同的制动管路,也可以对应相同的一条制动管路。“回油管路”和“进油管路”仅仅基于制动管路在制动系统中的功能来区分的。例如,当“回油管路”和“进油管路”对应相同的制动管路1时,可以理解为,在为汽车的车轮减压的过程中,制动系统中的制动管路1用于将制动轮缸中的制动液输送至储液装置,此时,制动管路1可以称为“回油管路”。在为汽车的车轮增压的过程中,该制动管路1用于为汽车的车轮提供制动液,以为汽车的车轮提供制动力,此时,制动管路1可以称为“进油管路”。
下文中除了特别说明,“回油管路”和“进油管路”一般对应两条不同的制动管路。
另外,下文中涉及的“进油阀”、“出油阀”以及“隔离阀”仅仅基于控制阀在制动系统中的功能来区分的。用于控制进油管路连通或者断开的控制阀可以称为“进油阀”或者“增压阀”。用于控制回油管路连通或者断开的控制器可以称为“出油阀”或者“减压阀”。用于隔离两级制动子系统的控制阀可以称为“隔离阀”。其中,上述控制阀可以是现有的制动系统中常用的阀,例如,电磁阀等,本申请实施例对此不作具体限定。
另外,下文中涉及的“第一回油管路110”、“第二回油管路120”、“第一进油管路130”、“第二进油管路130”可以理解为实现某一功能的一段或多段制动管路。例如,第一进油管路130为用于连接制动主缸3与第一组车轮的制动轮缸151的多段制动管路。
另外,下文在结合附图介绍制动系统、汽车等架构时,附图中会示意性地示出每个控制阀可以实现的两种工作状态(断开或连通),并不限定控制阀当前的工作状态如图所示。
图2是本申请实施例的制动系统中液压调节单元200的示意图。图2所示的液压调节单元200包括第一储液装置29、第一回油管路110以及第二回油管路120。
第一回油管路110用于与汽车的制动轮缸151、152相连,以将汽车的制动轮缸151、152中的制动液输送至第一储液装置29,为汽车的车轮减压。
上述第一回油管路110用于与汽车的制动轮缸151、152相连,可以理解为,第一回油管路110的压力入端口用于与制动轮缸151、152的出端口相连。
上述汽车的制动轮缸可以理解为汽车中的某一个制动轮缸,例如第一车轮的制动轮缸。上述汽车的制动轮缸还可以理解为汽车中全部的车轮的制动轮缸。
可选地,需要为制动轮缸151、152减压时,制动轮缸151、152内制动液的压力高于第一储液装置29内制动液的压力,这样,可以利用制动轮缸151、152内制动液的压力与第一储液装置29内制动液的压力之间的压力差,将制动轮缸151、152内制动液的压力通 过第一回油管路110输送至第一储液装置29。
第二回油管路120用于通过制动系统的进油管路130、140连接至汽车的制动轮缸151、152,以通过制动系统的进油管路130、140,将汽车的制动轮缸151、152中的制动液输送至第二储液装置2,为汽车的车轮减压。
上述第二回油管路120的压力入端口与进油管路130、140的压力出端口相连,相应地,上述进油管路130、140的压力入端口与制动轮缸151、152的压力出端口相连。
需要说明的是,在制动过程中,上述进油管路130、140与制动轮缸151、152相连,用于将制动液压入制动轮缸151、152,以为汽车的车轮提供制动力。在需要为制动轮缸151、152减压时,上述进油管路130、140可以作为回油管路,将制动轮缸151、152中的制动液输送至第二回油管路120的压力入端口,并通过第二回油管路120输送至第二储液装置2。
可选地,上述进油管路130、140可以包括第一进油管路130和第二进油管路140。第一进油管路130用于将制动液压入第一组车轮的制动轮缸151,以为第一组车轮提供制动力。第二进油管路140用于将制动液压入第二组车轮的制动轮缸152,以为第二组车轮提供制动力。
上述第一组车轮25、26与第二组车轮27、28不同,例如,第一组车轮25、26可以包括汽车的右前轮和汽车的左前轮,相应地,第二组车轮27、28可以包括汽车的左后轮和汽车的右后轮,此时,上述制动系统呈H布置。又例如,上述第一组车轮25、26可以包括汽车的右前轮和汽车的左后轮,相应地,第二组车轮27、28可以包括汽车的右后轮和汽车的左前轮,此时,上述制动系统呈X型布置。
如上文所述,在制动系统实现增压和减压功能时,上述进油管路130、140的作用不同,为了使得进油管路130、140可以实现为制动轮缸增压或者为制动轮缸减压的功能,可以使用减压阀10、11连接上述进油管路130、140与第二回油管路120。这样,当减压阀10、11处于断开状态时,进油管路130、140与第二回油管路120断开,制动系统可以通过进油管路130、140为汽车的制动轮缸151、152提供制动力。当减压阀10、11处于连通状态时,进油管路130、140与第二回油管路120连通,制动系统可以通过进油管路130、140为汽车的制动轮缸151、152减压。
即,上述制动系统的进油管路包括第一进油管路130和第二进油管路140,第二回油管路120通过第一减压阀10与第一进油管路130相连,若第一减压阀10处于导通状态,第二回油管路120与第一进油管路130连通,若第一减压阀10处于断开状态,第二回油管路120与第一进油管路130断开;第二回油管路120通过第二减压阀11与第二进油管路140相连,若第二减压阀11处于导通状态,第二回油管路120与第二进油管路140连通,若第二减压阀11处于断开状态,第二回油管路120与第二进油管路140断开。
可选地,为了节约成本,上述第一储液装置和第二储液装置可以是同一个储液装置,该储液装置可以是第二储液装置2或者第一储液装置29。通常,为了提高制动液的利用率,在为车轮减压的过程中,储液装置用于容纳从汽车的制动轮缸中输送出来的制动液。在为车轮提供制动力的过程中,储液装置还可以为制动系统的增压装置(例如,制动主缸等)提供制动液。当然,如果不考虑制动液的利用率,储液装置也可以不为制动系统的增压装置提供制动液。本申请实施例对此不作限定。
可选地,上述第一储液装置29和第二储液装置2之间可以通过管路(参见图2中111)相连,以便于制动液可以在第一储液装置29和第二储液装置2之间流动,以便及时为制动系统中的增压装置提供制动液。当然,上述第一储液装置29和第二储液装置2也可以是相互独立的储液装置,即第一储液装置29和第二储液装置2没有连通的管路。
可选地,上述增压装置为制动系统的制动主缸3时,第二储液装置2可以与第一储液装置29一起为制动系统的制动主缸3提供制动液。此时,第二储液装置2和第二储液装置2可以分别与制动主缸3的制动液入端口相连,相互独立地为制动主缸3提供制动液。
若上述第二储液装置2还可以通过第一储液装置29为制动主缸3提供制动液。图2示出了一种可能的连接方式,第二储液装置2位于第一回油管路110上,第一回油管路110将制动液从汽车的制动轮缸151、152输送至第二储液装置2后,第二储液装置2通过第二回油管路110的第一段回油管路111,将第二储液装置2内的制动液输送至第一储液装置29,以通过第一储液装置29为制动主缸3提供制动液。
可选地,上述第一出油管路110可以包括第一出油管路分支115、第二出油管路分支112、第三出油管路分支113以及第四出油管路分支114。其中,第一出油管路分支115用于为第一车轮25的制动轮缸减压,第二出油管路分支112用于为第二车轮26的制动轮缸减压,第三出油管路分支113用于为第三车轮27的制动轮缸减压,第四出油管路分支114用于为第四车轮28的制动轮缸减压。
通常,为了实现对汽车中的部分车轮减压的功能,可以在第一出油管路分支115、第二出油管路分支112、第三出油管路分支113以及第四出油管路分支114上分别设置减压阀16、14、15、17。其中,第一出油管路分支115上设置第五减压阀16,以控制是否为第一车轮25减压。在第二出油管路分支112上设置第三减压阀14,以控制是否为第二车轮26减压。在第三出油管路分支113上设置第四减压阀15,以控制是否为第三车轮27减压。在第四出油管路分支114上设置第六减压阀17,以控制是否为第四车轮28减压。
上文所介绍的减压方案可以应用于多种液压调节单元中,本申请实施例对此不作限定。为了便于理解本申请,下文将结合图2和图3介绍适用本申请的减压方案的液压调节单元。应理解,图2和图3中仅示意性地示出了每个控制阀可以实现的两种工作状态,并不限定控制阀当前的工作状态如图所示。
图2所示的液压调节单元200还包括制动主缸增压阀6、踏板反馈模拟器4、增压装置7、第一隔离阀12、第二隔离阀13以及第三隔离阀5。液压调节单元200可以采用3种工作模式为汽车的车轮提供制动力。其中,3种工作模式分别是机械制动模式、线控制动模式以及自动驾驶模式。
通常,上述增压装置7用于辅助液压调节单元200实现线控制动工作模式或者智能驾驶制动模式,增压装置7通过第一进油管路130和第二进油管路140为汽车的车轮25、26、27、28提供制动力。具体地,增压装置7的压力出端口与第一进油管路130的压力入端口133相连,增压装置7的压力出端口第二进油管路140的压力入端口143相连。
在线控制动模式下,制动主缸3通常不直接向车轮提供制动力,因此需要通过制动主缸增压阀6的工作状态,以阻断制动主缸3内的制动液通过第一进油管路130和第二进油管路140流入汽车的制动轮缸151、152。
图2示出了制动主缸增压阀6在制动系统中的一种可能的连接方式。制动主缸3通过 制动管路210将制动液压入第一进油管路130和第二进油管路140。制动管路210的压力入端口与制动主缸3的压力出端口相连,制动管路210的压力出端口分别与第一进油管路130的压力入端口133以及第二进油管路140的压力入端口143相连。
增压装置7的压力出端口分别与第一进油管路130的压力入端口133以及第二进油管路140的压力入端口143相连。
制动主缸增压阀6位于制动主缸3的压力出端口与进油管路压力入端口133、143之间的第五制动管路170上。
如图2所示,当制动主缸增压阀6处于断开状态时,制动主缸3内的制动液可以通过制动管路210流动并被制动主缸增压阀6阻断。相应地,制动管路210内的制动液通过制动管路220流动至踏板反馈模拟器4,以减少制动液在第五制动管路170中的压力。其中,第四隔离阀5用于在踏板反馈模拟器4不工作时,将踏板反馈模拟器4与制动系统隔离。
通常上述制动主缸增压阀6设置在制动主缸3的压力出端口与第一进油管路130的压力入端口133和第二进油管路140的压力入端口143之间,且位于增压装置7与第一进油管路130的压力入端口、第二进油管路140的压力入端口之前。这样,制动主缸增压阀6仅由用于隔离制动主缸3为制动系统提供制动力,但不会影响增压装置7为制动系统提供制动力。
在线控制动模式下,第一隔离阀12、第二隔离阀13、进油阀21、22、23、24、第三隔离阀5处于导通状态。制动主缸增压阀6、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于断开状态。
当驾驶员踩踏制动踏板,制动主缸3将制动液压入制动管路210,制动管路210用于连接制动主缸的出油口与第一进油管路130和第二进油管路140的制动管路。由于制动主缸增压阀6处于断开状态,被压入制动管路210的制动液被制动主缸增压阀6阻断,通过制动管路220以及第三隔离阀5流向踏板反馈模拟器4。
控制器基于驾驶员输入的需求制动力,控制增压装置7将液压缸中的制动液压入第一进油管路130和第二进油管路140,并通过第一进油管路130压入第一组车轮的制动轮缸151,通过第二进油管路140压入第二组车轮的制动轮缸152。
需要说明的是,控制器获取驾驶员输入的需求制动力的方式有很多种,本申请实施例对此不作具体限定,例如,控制器可以基于制动主缸上设置的踏板行程传感器(图中未示出),获取驾驶员踩踏板时,制动踏板在制动主缸内产生的踏板行程。控制器基于踏板行程,以及踏板行程与需求制动力之间的对应关系,确定需求制动力。又例如,可以在制动管路210上设置压力传感器(图中未示出),压力传感器用于检测制动管路210内制动液的压力。这样,控制器可以基于制动管路210内制动液的压力,以及制动液的压力与需求制动力之间的对应关系,确定需求制动力。
在机械制动模式下,制动主缸增压阀6、第一隔离阀12、第二隔离阀13、进油阀21、22、23、24处于导通状态。第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17、第三隔离阀5处于断开状态。当驾驶员踩踏制动踏板,制动主缸3将制动液压入第一进油管路130、第二进油管路140,并通过第一进油管路130、第二进油管路140流向汽车的制动轮缸151、152。
在智能驾驶模式下,第一隔离阀12、第二隔离阀13、进油阀21、22、23、24、第三 隔离阀5处于导通状态。制动主缸增压阀6、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于断开状态。
控制器可以基于需求制动力直接控制增压装置7,将制动液压入第一进油管路130和第二进油管路140,并通过第一进油管路130压入第一组车轮的制动轮缸151,通过第二进油管路140压入第二组车轮的制动轮缸152。
需要说明的是,在智能驾驶模式下,上述需求制动力无需由驾驶员提供,可以是基于汽车的路况信息确定的。
上文主要介绍了液压调节单元200为汽车的车轮提供制动力的几种方式,下文介绍制动系统功能200的为车轮减压的过程。液压调节单元200中第一隔离阀12、第二隔离阀13、进油阀21、22、23、24、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于导通状态。控制制动主缸增压阀6、第三隔离阀5处于断开状态。
在需要为汽车的车轮减压时,第一组车轮的制动轮缸151和第二组车轮的制动轮缸152内制动液的压力,高于第一储液装置1和第二储液装置2内制动液的压力,因此,基于制动系统中车轮的制动轮缸内制动液的压力,与储液装置内制动液的压力之间的压力差,制动液可以分别通过第一回油管路110和第二回油管路120,流至第一储液装置29。
进油阀21、22、23、24和第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于导通状态,因此,第一回油管路110中位于汽车的制动轮缸151、152可以与第二储液装置2之间的回油管路是连通的,基于上述压力差,制动液可以从汽车的制动轮缸151、152流向第二储液装置2。然后,由于第二储液装置2与第一储液装置29之间,通过第一回油管路110的第一段回油管路111连通,因此,基于上述液压差,制动液可以继续从第二储液装置2通过第一段回油管路111流向第一储液装置29。
由于第一隔离阀12和第二隔离阀13,第一减压阀10和第二减压阀11处于连通状态,因此,基于压力差从汽车的制动轮缸151、152内流出的制动液,还可以通过第一进油管路130和第二进油管路140流向第二回油管路120,并通过第二回油管路120流向第一储液装置29。
需要说明的是,在为汽车的制动轮缸减压的过程中,上述第一进油管路110以及第二进油管路120充当的回油管路的作用,如上文介绍,“进油管路”仅仅从功能的角度介绍制动管路的作用,并不限定该制动管路仅能充当经由管路。
上文介绍了如何为汽车的制动轮缸整体进行减压,本申请实施例的减压方案还可应用于对某个车轮的制动轮缸进行减压。
下文以对第一车轮25的制动轮缸进行减压为例进行说明。应理解,对汽车中其他车轮的制动轮缸进行减压的方案,与对第一车轮25的制动轮缸进行减压的方案相似,为了简洁,不再赘述。
液压调节单元200中,第一隔离阀12、第二隔离阀13、第一车轮的进油阀21、第一减压阀10、第二减压阀11、第五减压阀16处于导通状态。其他车轮26、27、28的进油阀22、23、24、第三减压阀14、第四减压阀15、第六减压阀17、控制制动主缸增压阀6、第三隔离阀5处于断开状态。
在需要为第一车轮的制动轮缸21减压时,第一车轮的制动轮缸21内制动液的压力, 高于第一储液装置1和第二储液装置2内制动液的压力,因此,基于第一车轮的制动轮缸21内制动液的压力与储液装置内制动液的压力之间的压力差,第一车轮的制动轮缸21内的制动液可以分别通过第一回油管路110和第二回油管路120,流至第一储液装置29。
第一车轮的进油阀21、第五减压阀16处于导通状态,因此,第一回油管路110中位于第一车轮的制动轮缸21可以与第二储液装置2之间的回油管路是连通的,基于上述压力差,制动液可以从第一车轮的制动轮缸21流向第二储液装置2。然后,由于第二储液装置2与第一储液装置29之间通过第一回油管路110的第一段回油管路111连通,因此,基于上述液压差,制动液可以继续从第二储液装置2通过第一段回油管路111流向第一储液装置29。
由于第一隔离阀12和第二隔离阀13,第一减压阀10和第二减压阀11处于连通状态,因此,基于压力差从第一车轮的制动轮缸21内流出的制动液,还可以通过第一进油管路130以及第一减压阀10流向第二回油管路120,并通过第二回油管路120流向第一储液装置29。
需要说明的是,在为汽车的制动轮缸减压的过程中,上述第一进油管路110充当的回油管路的作用,如上文介绍,“进油管路”仅仅从功能的角度介绍制动管路的作用,并不限定该制动管路仅能充当进油管路。
图3是本申请实施例的制动系统的液压调节单元300的示意图。图3所示的液压调节单元300是另一种可以应用本申请提供的减压方案的制动系统架构。需要说明的是,液压调节单元300与液压调节单元200中实现相同功能的制动元件采用相同的附图标记。
液压调节单元300中制动主缸3可以是串联双缸式制动缸,其中,制动主缸3的第一液压腔通过第一进油管路130为汽车的第一组车轮的制动轮缸151提供制动力,制动主缸3的第二液压腔通过第二进油管路140为汽车的第二组车轮的制动轮缸152提供制动力。
图3所示的液压调节单元300还包括制动主缸增压阀6、增压装置增压阀8、增压装置增压阀9、踏板反馈模拟器4、增压装置7、第一隔离阀12、第二隔离阀13以及第三隔离阀5。液压调节单元300可以采用3种工作模式为汽车的车轮提供制动力。其中,3种工作模式分别是机械制动模式、线控制动模式以及自动驾驶模式。
上述增压装置增压阀8和增压装置增压阀9用于基于液压调节单元300的工作模式,判断是否将增压装置7与液压调节单元300相隔离。例如,在自动驾驶模式或者线控制动模式下,可以控制增压装置增压阀8和增压装置增压阀9处于导通状态,以为液压调节单元300提供制动力。在机械制动模式下,可以控制增压装置增压阀8和增压装置增压阀9处于断开状态,以将增压装置7与液压调节单元300隔离。
在线控制动模式下,第一隔离阀12、第二隔离阀13、进油阀21、22、23、24、第三隔离阀5、增压装置增压阀8处于导通状态。制动主缸增压阀6、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于断开状态。
当驾驶员踩踏制动踏板,制动主缸3将第一液压缸内的制动液压入第一进油管路130的制动管路310段,制动主缸3将第二液压缸内的制动液压入第二进油管路140的制动管路330段。由于制动主缸增压阀6处于断开状态,制动管路310段以及制动管路330段内的制动液的流动路径被制动主缸增压阀6阻断。制动管路310段以及制动管路330段内的制动液通过制动管路320以及第三隔离阀5流向踏板反馈模拟器4。
控制器基于驾驶员输入的需求制动力,控制增压装置7将液压缸中的制动液压入第一进油管路130和第二进油管路140,并通过第一进油管路130压入第一组车轮的制动轮缸151,通过第二进油管路140压入第二组车轮的制动轮缸152。
需要说明的是,控制器获取驾驶员输入的需求制动力的方式有很多种,本申请实施例对此不作具体限定,例如,控制器可以基于制动主缸上设置的踏板行程传感器(图中未示出),获取驾驶员踩踏板时,制动踏板在制动主缸内产生的踏板行程。控制器基于踏板行程,以及踏板行程与需求制动力之间的对应关系,确定需求制动力。又例如,可以在制动管路310上设置压力传感器(图中未示出),压力传感器用于检测制动管路310内制动液的压力。这样,控制器可以基于制动管路310内制动液的压力,以及制动液的压力与需求制动力之间的对应关系,确定需求制动力。
在机械制动模式下,制动主缸增压阀6、第一隔离阀12、第二隔离阀13、进油阀(21、22、23、24)处于导通状态。增压装置增压阀8、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17、第三隔离阀5处于断开状态。当驾驶员踩踏制动踏板,制动主缸3将第一液压缸内的制动液压入第一进油管路130,并通过第一进油管路130流向第一组车轮的制动轮缸151。制动主缸3将第二液压缸内的制动液压入第二进油管路140,并通过第二进油管路140流向第二组车轮的制动轮缸152。
在智能驾驶模式下,第一隔离阀12、第二隔离阀13、进油阀21、22、23、24、第三隔离阀5、增压装置增压阀8处于导通状态。制动主缸增压阀6、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于断开状态。
控制器可以基于需求制动力直接控制增压装置7,将制动液压入第一进油管路130和第二进油管路140,并通过第一进油管路130压入第一组车轮的制动轮缸151,通过第二进油管路140压入第二组车轮的制动轮缸152。
需要说明的是,在智能驾驶模式下,上述需求制动力无需由驾驶员提供,可以是基于汽车的路况信息确定的。
上文主要介绍了液压调节单元300为汽车的车轮提供制动力的几种方式,下文介绍液压调节单元300中为车轮减压的过程。液压调节单元300中处于导通状态的控制阀包括:第一隔离阀12、第二隔离阀13、进油阀21、22、23、24、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17。处于断开状态的控制阀包括:增压装置增压阀8、制动主缸增压阀6、第三隔离阀5。
在需要为汽车的车轮减压时,第一组车轮的制动轮缸151和第二组车轮的制动轮缸152内制动液的压力,高于第一储液装置1和第二储液装置2内制动液的压力,因此,基于制动系统中车轮的制动轮缸内制动液的压力,与储液装置内制动液的压力之间的压力差,制动液可以分别通过第一回油管路110和第二回油管路120,流至第一储液装置29。
进油阀21、22、23、24和第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于导通状态,因此,第一回油管路110中位于汽车的制动轮缸151、152可以与第二储液装置2之间的回油管路是连通的,基于上述压力差,制动液可以从汽车的制动轮缸151、152流向第二储液装置2。然后,由于第二储液装置2与第一储液装置29之间,通过第一回油管路110的第一段回油管路111连通,因此,基于上述液压差,制动液可以继续从第二储液装置2通过第一段回油管路111流向第一储液装置29。
由于第一隔离阀12和第二隔离阀13,第一减压阀10和第二减压阀11处于连通状态,因此,基于压力差从汽车的制动轮缸151、152内流出的制动液,还可以通过第一进油管路130和第二进油管路140流向第二回油管路120,并通过第二回油管路120流向第一储液装置29。
需要说明的是,在为汽车的制动轮缸减压的过程中,上述第一进油管路110以及第二进油管路120充当的回油管路的作用,如上文介绍,“进油管路”仅仅从功能的角度介绍制动管路的作用,并不限定该制动管路仅能充当经由管路。
上文介绍了如何为汽车的制动轮缸整体进行减压,本申请实施例的减压方案还可应用于对某个车轮的制动轮缸进行减压。下文以对第一车轮25的制动轮缸进行减压为例进行说明。应理解,对汽车中其他车轮的制动轮缸进行减压的方案,与对第一车轮25的制动轮缸进行减压的方案相似,为了简洁,不再赘述。
液压调节单元300中,第一隔离阀12、第二隔离阀13、第一车轮的进油阀21、第一减压阀10、第二减压阀11、第五减压阀16处于导通状态。其他车轮26、27、28的进油阀22、23、24、第三减压阀14、第四减压阀15、第六减压阀17、控制制动主缸增压阀6、第三隔离阀5处于断开状态。
在需要为第一车轮的制动轮缸21减压时,第一车轮的制动轮缸21内制动液的压力,高于第一储液装置1和第二储液装置2内制动液的压力,因此,基于第一车轮的制动轮缸21内制动液的压力与储液装置内制动液的压力之间的压力差,第一车轮的制动轮缸21内的制动液可以分别通过第一回油管路110和第二回油管路120,流至第一储液装置29。
第一车轮的进油阀21、第五减压阀16处于导通状态,因此,第一回油管路110中位于第一车轮的制动轮缸21可以与第二储液装置2之间的回油管路是连通的,基于上述压力差,制动液可以从第一车轮的制动轮缸21流向第二储液装置2。然后,由于第二储液装置2与第一储液装置29之间通过第一回油管路110的第一段回油管路111连通,因此,基于上述液压差,制动液可以继续从第二储液装置2通过第一段回油管路111流向第一储液装置29。
由于第一隔离阀12和第二隔离阀13,第一减压阀10和第二减压阀11处于连通状态,因此,基于压力差从第一车轮的制动轮缸21内流出的制动液,还可以通过第一进油管路130以及第一减压阀10流向第二回油管路120,并通过第二回油管路120流向第一储液装置29。
需要说明的是,在为汽车的制动轮缸减压的过程中,上述第一进油管路110充当的回油管路的作用,如上文介绍,“进油管路”仅仅从功能的角度介绍制动管路的作用,并不限定该制动管路仅能充当进油管路。
制动系统的冗余性能也是制动系统的热点问题之一,本申请实施例还提供了种新的液压调节单元,在该液压调节单元中新增压力提供装置18,由压力提供装置18通过第三进油管路150和第四进油管路160为汽车的制动轮缸151、152提供制动力,其中,由压力提供装置18为汽车的制动轮缸151、152提供制动力的方案,与由制动主缸3为汽车的制动轮缸151、152提供制动力的方案是相互独立的制动子系统,当其中一套制动子系统故障后,可以由其中另一套制动子系统为汽车提供制动力,有利于提升制动系统的冗余性能。当然,上述两套制动子系统还可以同时处于工作状态,为汽车提供制动力,有利于提高制 动系统的制动效率。下文结合图4介绍本申请实施例的液压调节单元400。
图4是本申请实施例的液压调节单元400的示意图。应理解,液压调节单元400中元件与液压调节单元200中实现相同功能的元件,使用的编号相同。具体地工作模式可以参见上文的介绍,为了简洁,在此不再赘述。
图4所示的液压调节单元400包括液压调节单元包括制动主缸3以及压力提供装置18。
制动主缸3通过第一进油管路130的第一进油管路分支131为汽车的第一车轮25提供制动力,制动主缸3通过第一进油管路130的第二进油管路分支132为汽车的第二车轮(26)提供制动力。
第一进油管路130包括两个分支:第一进油管路分支131和第二进油管路分支132。其中,制动主缸3的第一压力出端口与第一进油管路分支131的压力入端口相连,且制动主缸3的第一压力出端口与第二进油管路分支132的压力入端口相连。第一进油管路分支131的压力出端口与第一车轮25的制动轮缸的压力入端口相连,第二进油管路分支132的压力出端口与第二车轮26的制动轮缸的压力入端口相连。
制动主缸3通过第二进油管路140的第三进油管路分支141为汽车的第三车轮27提供制动力,制动主缸3通过第二进油管路140的第四进油管路分支142为汽车的第四车轮28提供制动力。
第二进油管路140包括两个分支:第三进油管路分支141和第四进油管路分支142。其中,制动主缸3的第二压力出端口与第三进油管路分支141的压力入端口相连,且第二压力出端口与第四进油管路分支142的压力入端口相连。第三进油管路分支141的压力出端口与第三车轮27的制动轮缸的压力入端口相连。第四进油管路分支142的压力出端口与第四车轮28的制动轮缸的压力入端口相连。
可选地,上述制动主缸3的第一压力入端口和第二压力入端口可以是相同的端口,上述制动主缸3的第一压力入端口和第二压力入端口可以是不同的端口,本申请实施例对此不作限定。
压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支132为第一车轮25和第二车轮26提供制动力,第三进油管路150与第一进油管路分支131连通,且第三进油管路150与第二进油管路分支132连通。
需要说明的是,上述压力提供装置18为第一车轮25和第二车轮26提供制动力的方式有很多种,本申请实施例对此不作具体限定。例如,压力提供装置18的压力出端口与第三进油管路150的压力入端口相连,第三进油管路150的压力出端口与第二进油管路分支132的压力入端口相连,第一进油管路分支131与第二进油管路分支132之间连通,因此,压力提供装置18可以通过连通的第一进油管路分支131和第二进油管路分支132,为第一车轮25和第二车轮26提供制动力。
又例如,压力提供装置18的压力出端口与第三进油管路150的压力入端口相连,第三进油管路150的压力出端口分别与第一进油管路分支131的压力入端口、第二进油管路分支132的压力入端口相连,相应地,压力提供装置18可以通过第一进油管路分支131和第二进油管路分支132,为第一车轮25和第二车轮26提供制动力。
压力提供装置18通过第四进油管路160、第三进油管路分支141以及第四进油管路 分支131为第三车轮27和第四车轮28提供制动力,第四进油管路160与第三进油管路分支141连通,且第四进油管路160与第四进油管路分支142连通。
需要说明的是,上述压力提供装置18为第三车轮27和第四车轮28提供制动力的方式有很多种,本申请实施例对此不作具体限定。例如,压力提供装置18的压力出端口与第四进油管路160的压力入端口相连,第四进油管路160的压力出端口与第三进油管路分支141的压力入端口相连,第三进油管路分支141与第四进油管路分支142之间连通,因此,压力提供装置18可以通过连通的第三进油管路分支141与第四进油管路分支142,为第三车轮27和第四车轮28提供制动力。
又例如,压力提供装置18的压力出端口与第四进油管路160的压力入端口相连,第四进油管路160的压力出端口分别与第三进油管路分支141的压力入端口、第四进油管路分支142的压力入端口相连,相应地,压力提供装置18可以通过第三进油管路分支141和第四进油管路分支142,为第三车轮27和第四车轮28提供制动力。
可选地,上述压力提供装置18为电机,电机通过驱动第一柱塞泵19运动,以将制动液压入第二进油管路分支132。电机通过驱动第二柱塞泵20运动,以将制动液压入第三进油管路分支141。
相应地,由于第二进油管路分支132和第一进油管路分支131连通,因此,第一柱塞泵19可以通过连通的第二进油管路分支132和第一进油管路分支131,将制动液压入第一进油管路分支131。
由于第三进油管路分支141和第四进油管路分支142连通,因此,第二柱塞泵20可以通过连通的第三进油管路分支141和第四进油管路分支142,将制动液压入第四进油管路分支142。
上述第一柱塞泵19的压力出端口可以与第二进油管路分支132的压力入端口相连。上述第二柱塞泵20的压力出端口可以与第三进油管路分支141的压力入端口相连。
可选地,上述制动主缸3提供制动力的进油管路130、140,与压力提供装置18提供制动力的进油管路150、160可以理解为两组独立的进油管路,可以独立地为汽车的制动力轮缸151、152提供制动力。
通常为了简化制动管路的部署,上述第一制动管路130的压力出端口和第三制动管路150的压力出端口与第一进油管路分支131的压力入端口相连,或者说,上述第一制动管路130和第三制动管路150在第一进油管路分支131的压力入端口处汇聚。上述第一制动管路130的压力出端口和第三制动管路150的压力出端口与第二进油管路分支132的压力入端口相连,或者说,上述第一制动管路130和第三制动管路150在第二进油管路分支132的压力入端口处汇聚。
同理,上述第二制动管路140的压力出端口和第四制动管路160的压力出端口与第三进油管路分支141的压力入端口相连,或者说,上述第二制动管路140和第四制动管路160在第三进油管路分支141的压力入端口处汇聚。上述第二制动管路140的压力出端口和第四制动管路160的压力出端口与第四进油管路分支142的压力入端口相连,或者说,上述第二制动管路140和第四制动管路160在第四进油管路分支142的压力入端口处汇聚。
为了使得上述制动主缸3提供制动力的进油管路130、140,与压力提供装置18提供 制动力的进油管路150、160可以独立地工作,互不干扰,可以通过设置隔离阀12、13以阻断两套制动子系统之间连通的进油管路。
即,第一进油管路130与第一进油管路分支131以及第二进油管路分支132通过第一隔离阀12相连,若第一隔离阀12处于断开状态,则第一进油管路130内的制动液被第一隔离阀12阻断,无法通过第一进油管路分支131和第二进油管路分支132流入第一车轮25和第二车轮26的制动轮缸。
由于上述第一隔离阀12设置在第一进油管路130中,且设置在第三进油管路150与第一进油管路分支131压力入端口、第三进油管路150与第二进油管路分支132的压力入端口之前,第一隔离阀12的工作状态不影响第三进油管路150内制动液的流动,无论第一隔离阀12处于断开状态或者连通状态,第三进油管路150内的制动液都可以通过第一进油管路分支131和第二进油管路分支132为第一车轮25和第二车轮26。
第二进油管路140与第三进油管路分支141以及第四进油管路分支142通过第二隔离阀13相连,若第二隔离阀13处于断开状态,则第二进油管路140内的制动液被第一隔离阀12阻断,无法通过第三进油管路分支141和第四进油管路分支142流入第一车轮25和第二车轮26。
由于上述第二隔离阀13设置在第二进油管路140中,且设置在第四进油管路160与第三进油管路分支141的压力入端口以及第四进油管路160与第四进油管路分支142的压力入端口之前,第二隔离阀12的工作状态不影响第四进油管路160内制动液的流动,无论第二隔离阀13处于断开状态或者连通状态,第四进油管路160内的制动液都可以通过第三进油管路分支141以及第四进油管路分支142为第三车轮27和第四车轮28。
通常,为了实现对汽车中的部分车轮提供制动力的功能,可以在第一进油管路分支131、第二进油管路分支132、第三进油管路分支141以及第四进油管路分支142上分别设置进油阀21、22、23、24。其中,第一进油管路分支131上设置第一进油阀21,以控制是否为第一车轮25提供制动力。在第二进油管路分支132上设置第二进油阀22,以控制是否为第二车轮26提供制动力。在第三进油管路分支141上设置第三进油阀23,以控制是否为第三车轮27提供制动力。在第四进油管路分支142上设置第四进油阀24,以控制是否为第四车轮28提供制动力。
在图4所示的液压调节系统400中,该液压调节系统400除了支持上文中介绍的机械制动模式、线控制动模式以及自动驾驶模式之外,该液压调节系统400还支持高速增压制动模式。需要说明的是,上述机械制动模式、线控制动模式以及自动驾驶模式可以参见液压调节单元200中3种模式的相关介绍,为了简洁,在此不再赘述。
上述高速增压制动模式即通过压力提供装置18作为辅助装置,辅助液压调节单元的其他压力提供装置一起为汽车提供制动力,有利于提高提供制动力的效率。基于上述其他压力提供装置的不同,高速增压制动模式可以分为两种情况:情况一,其他压力提供装置为增压装置7时,压力提供装置18辅助增压装置7为汽车提供制动力。情况二,其他压力提供装置为制动主缸3时,压力提供装置18辅助制动主缸3为汽车提供制动力。
情况一,压力提供装置18辅助增压装置7为汽车提供制动力。在该模式下,压力提供装置18和增压装置7同时处于工作状态。
控制器基于需求制动力确定压力提供装置18需要为汽车提供的制动液的压力(或者 制动力),以及增压装置7需要为汽车提供的制动液的压力(或者制动力)。控制器分别通知压力提供装置18需要为汽车提供的制动液的压力(或者制动力)以及增压装置7需要为汽车提供的制动液的压力(或者制动力)。
上述需求制动力可以基于驾驶员的输入确定的,也可以是基于汽车的路况信息确定的,本申请实施例对此不作限定。
情况二,压力提供装置18辅助制动主缸3为汽车提供制动力。在该模式下,压力提供装置18和制动主缸3同时处于工作状态。
控制器基于需求制动力确定压力提供装置18需要为汽车提供的制动液的压力(或者制动力)。控制器通知压力提供装置18需要为汽车提供的制动液的压力(或者制动力)以及增压装置7需要为汽车提供的制动液的压力(或者制动力)。
本申请实施例提供的新增压力提供装置18的建压方案可以应用于多种液压调节单元中,上述液压调节单元400仅示出了一种液压调节单元400,下文将结合图5介绍本申请的建压方案适用的另一种液压调节单元。
图5是本申请实施例的液压调节单元500的示意图。图5所示的液压调节单元500中与液压调节单元300中功能相同的元件使用的编号相同。编号相同的元件的工作原理可以参见上文液压调节单元300中的相关介绍,为了简洁,在此不再赘述。
在图5所示的液压调节系统500中,该液压调节系统500除了支持上文中液压调节系统300中的机械制动模式、线控制动模式以及自动驾驶模式之外,该液压调节系统500还支持高速增压制动模式。需要说明的是,上述机械制动模式、线控制动模式以及自动驾驶模式可以参见液压调节系统300中3种模式的相关介绍,为了简洁,在此不再赘述。
上述高速增压制动模式即通过压力提供装置18作为辅助装置,辅助液压调节单元的其他压力提供装置一起为汽车提供制动力,有利于提高提供制动力的效率。基于上述其他压力提供装置的不同,高速增压制动模式可以分为两种情况:情况一,其他压力提供装置为增压装置7时,压力提供装置18辅助增压装置7为汽车提供制动力。情况二,其他压力提供装置为制动主缸3时,压力提供装置18辅助制动主缸3为汽车提供制动力。
情况一,压力提供装置18辅助增压装置7为汽车提供制动力。在该模式下,压力提供装置18和增压装置7同时处于工作状态。
控制器基于需求制动力确定压力提供装置18需要为汽车提供的制动液的压力(或者制动力),以及增压装置7需要为汽车提供的制动液的压力(或者制动力)。控制器分别通知压力提供装置18需要为汽车提供的制动液的压力(或者制动力)以及增压装置7需要为汽车提供的制动液的压力(或者制动力)。
上述需求制动力可以基于驾驶员的输入确定的,也可以是基于汽车的路况信息确定的,本申请实施例对此不作限定。
情况二,压力提供装置18辅助制动主缸3为汽车提供制动力。在该模式下,压力提供装置18和制动主缸3同时处于工作状态。
控制器基于需求制动力确定压力提供装置18需要为汽车提供的制动液的压力(或者制动力)。控制器通知压力提供装置18需要为汽车提供的制动液的压力(或者制动力)以及增压装置7需要为汽车提供的制动液的压力(或者制动力)。
需要说明的是,液压调节系统500和液压调节系统600中的情况一,可以理解为高速 增压模式与线控制动模式的结合。液压调节系统500和液压调节系统600中的情况二,可以理解为高速增压模式与机械制动模式的结合。
可选地,上述压力提供装置18所在的控制子系统除了实现上文中的高速增压模式,还可以实现冗余制动模式,即当增压装置7故障后,压力提供装置18替代增压装置7辅助制动系统进入线控制动模式,或者自动驾驶模式。具体的控制过程将在下文中介绍。
上文结合图2至图5介绍了本申请实施例的液压调节单元,下文结合图6至图28介绍本本申请实施例的制动系统,应理解,制动系统可以包括上文中介绍的任何一种液压调节单元。为了便于理解,下文以包含液压调节单元400或液压调节单元500的制动系统为例进行介绍。
图6是本申请实施例的制动系统600的示意图。制动系统600包括液压调节单元400,以及汽车的制动轮缸151、152。应理解,制动系统600中的元件与液压调节单元400中功能相同的元件使用的编号相同。为了简洁,下文不再赘述。
第一回油管路110与汽车的制动轮缸151、152相连,第一回油管路110用于将汽车的制动轮缸151、152中的制动液输送至第一储液装置29,以为汽车的车轮减压。
上述第一回油管路110与汽车的制动轮缸151、152相连,可以理解为,第一回油管路110的压力入端口与制动轮缸151、152的出端口相连。
上述汽车的制动轮缸可以理解为汽车中的某一个制动轮缸,例如第一车轮的制动轮缸。上述汽车的制动轮缸还可以理解为汽车中全部的车轮的制动轮缸。
可选地,需要为制动轮缸151、152减压时,制动轮缸151、152内制动液的压力高于储液装置2内制动液的压力,这样,可以利用制动轮缸151、152内制动液的压力与储液装置2内制动液的压力之间的压力差,将制动轮缸151、152内制动液的压力通过第一回油管路110输送至第二储液装置2。
第二回油管路120与制动系统的进油管路130、140相连,第二回油管路120用于通过制动系统的进油管路130、140,将汽车的制动轮缸151、152中的制动液输送至第二储液装置2,以为汽车的车轮减压。
上述第二回油管路120与制动系统的进油管路130、140相连,可以理解为,第二回油管路120通过进油管路130、140连接至制动轮缸151、152。
上述进油管路130、140与制动轮缸151、152相连,用于将制动液压入制动轮缸151、152,以为汽车的车轮提供制动力。在需要为制动轮缸151、152减压时,上述进油管路130、140可以作为回油管路,将制动轮缸151、152中的制动液输送至第二回油管路120的压力入端口,并通过第二回油管路120输送至储液装置2。
可选地,上述进油管路130、140可以包括第一进油管路130和第二进油管路140。第一进油管路130用于将制动液压入第一组车轮的制动轮缸151,以为第一组车轮提供制动力。第二进油管路140用于将制动液压入第二组车轮的制动轮缸152,以为第二组车轮提供制动力。
上述第一组车轮25、26与第二组车轮27、28不同,例如,第一组车轮25、26可以包括汽车的右前轮和汽车的左前轮,相应地,第二组车轮27、28可以包括汽车的左后轮和汽车的右后轮,此时,上述制动系统呈H布置。又例如,上述第一组车轮25、26可以包括汽车的右前轮和汽车的左后轮,相应地,第二组车轮27、28可以包括汽车的右后轮 和汽车的左前轮,此时,上述制动系统呈X型布置。
如上文所述,在制动系统实现增压和减压功能时,上述进油管路130、140的作用不同,为了使得进油管路130、140可以实现为制动轮缸增压或者为制动轮缸减压的功能,可以使用减压阀10、11连接上述进油管路130、140与第二回油管路120。这样,当减压阀10、11处于断开状态时,进油管路130、140与第二回油管路120断开,制动系统可以通过进油管路130、140为汽车的制动轮缸151、152提供制动力。当减压阀10、11处于连通状态时,进油管路130、140与第二回油管路120连通,制动系统可以通过进油管路130、140为汽车的制动轮缸151、152减压。
即,上述制动系统的进油管路包括第一进油管路130和第二进油管路140,第二回油管路120通过第一减压阀10与第一进油管路130相连,若第一减压阀10处于导通状态,第二回油管路120与第一进油管路130连通,若第一减压阀10处于断开状态,第二回油管路120与第一进油管路130断开;第二回油管路120通过第二减压阀11与第二进油管路140相连,若第二减压阀11处于导通状态,第二回油管路120与第二进油管路140连通,若第二减压阀11处于断开状态,第二回油管路120与第二进油管路140断开。
如上文所述,制动系统600中的液压调节单元400支持多种工作模式,则制动系统600也支持多种工作模式。下文以线控制动模式、高速增压模式与线控制动模式结合、冗余制动模式为例,结合图7至图17介绍制动系统600的工作过程。其中,图7至图9介绍线控制动模式下制动液的增压过程、保压过程以及减压过程。图10至图12介绍高速增压模式与线控制动模式结合时制动液的增压过程、保压过程以及减压过程。图13至图15介绍冗余制动模式下制动液的增压过程、保压过程以及减压过程。图16和图17介绍机械制动模式下制动液的增压过程以及减压过程。
图7是本申请实施例的制动系统600中制动液的增压路径的示意图。图7所示的制动系统600工作在线控制动模式下。在线控制动模式下,第一隔离阀12、第二隔离阀13、进油阀21、22、23、24、增压装置增压阀8、第三隔离阀5处于导通状态。制动主缸增压阀6、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于断开状态。
当驾驶员踩踏制动踏板1,制动主缸3将制动液压入制动管路210,制动管路210用于连接制动主缸的出油口与第一进油管路130和第二进油管路140的制动管路。由于制动主缸增压阀6处于断开状态,被压入制动管路210的制动液被制动主缸增压阀6阻断,通过制动管路220以及第三隔离阀5流向踏板反馈模拟器4。
控制器基于驾驶员输入的需求制动力,控制增压装置7将液压缸中的制动液压入第一进油管路130和第二进油管路140,并通过第一进油管路130压入第一组车轮的制动轮缸151,通过第二进油管路140压入第二组车轮的制动轮缸152。
需要说明的是,控制器获取驾驶员输入的需求制动力的方式有很多种,本申请实施例对此不作具体限定,例如,控制器可以基于制动主缸3上设置的踏板行程传感器(图中未示出),获取驾驶员踩踏板时,制动踏板在制动主缸内产生的踏板行程。控制器基于踏板行程,以及踏板行程与需求制动力之间的对应关系,确定需求制动力。又例如,可以在制动管路210上设置压力传感器(图中未示出),压力传感器用于检测制动管路210内制动液的压力。这样,控制器可以基于制动管路210内制动液的压力,以及制动液的压力与需 求制动力之间的对应关系,确定需求制动力。
当制动系统600完成增压过程后,制动系统可以进入线控制动模式下的保压过程,此时只需控制增压装置增压阀8处于断开状态,而制动系统600内其他的控制阀的状态保持不变。同时,还需要控制增压装置7停止为制动系统提供压力。其中线控制动模式下的保压过程中制动液的所在的制动管路参见图8所示。
当制动系统600需要从保压过程进入减压过程时,只需要控制第一减压阀10和第二减压阀11处于导通状态即可,制动系统600中的其他控制阀的工作状态可以不变,此时,制动系统600中的制动液可以通过第二回油管路120流动至第二储液装置2。可选地,如果需要加速减压过程,也可以控制减压阀14、15、16、17处于导通状态,此时,制动轮缸151、152内的制动液可以通过第一回油管路110流动至第一储液装置29。减压过程中制动液的减压路径参见图9所示。
图10是本申请实施例的高速增压模式与线控制动模式结合时制动液的增压路径的示意图。在高速增压模式与线控制动模式结合的情况下,第一隔离阀12、第二隔离阀13、进油阀21、22、23、24、增压装置增压阀8、第三隔离阀5处于导通状态。制动主缸增压阀6、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于断开状态。
当驾驶员踩踏制动踏板1,制动主缸3将制动液压入制动管路210,制动管路210用于连接制动主缸的出油口与第一进油管路130和第二进油管路140的制动管路。由于制动主缸增压阀6处于断开状态,被压入制动管路210的制动液被制动主缸增压阀6阻断,通过制动管路220以及第三隔离阀5流向踏板反馈模拟器4。
控制器基于驾驶员输入的需求制动力,确定增压装置7以及压力提供装置18分别需要提供的制动力,然后控制器基于增压装置7需要提供的制动力,控制增压装置7将液压缸中的制动液压入第一进油管路130和第二进油管路140,并通过第一进油管路130压入第一组车轮的制动轮缸151,通过第二进油管路140压入第二组车轮的制动轮缸152。
与此同时,控制器基于压力提供装置18需要提供的制动力,控制压力提供装置18通过柱塞泵19将制动液压入第三进油管路150,第三进油管路150中的制动液可以通过与第一进油管路分支131、第二进油管路分支132,为第一车轮25以及第二车轮26提供制动力。相应地,控制器控制压力提供装置18通过柱塞泵20将制动液压入第四进油管路160,第四进油管路160中的制动液可以通过与第三进油管路分支141、第四进油管路分支142,为第三车轮27以及第四车轮28提供制动力。
需要说明的是,控制器获取驾驶员输入的需求制动力的方式有很多种,本申请实施例对此不作具体限定,例如,控制器可以基于制动主缸3上设置的踏板行程传感器(图中未示出),获取驾驶员踩踏板时,制动踏板在制动主缸内产生的踏板行程。控制器基于踏板行程,以及踏板行程与需求制动力之间的对应关系,确定需求制动力。又例如,可以在制动管路210上设置压力传感器(图中未示出),压力传感器用于检测制动管路210内制动液的压力。这样,控制器可以基于制动管路210内制动液的压力,以及制动液的压力与需求制动力之间的对应关系,确定需求制动力。
当制动系统600完成增压过程后,制动系统可以进入高速增压模式与线控制动模式结合下的保压过程,此时,只需控制增压装置增压阀8处于断开状态,而制动系统600内其 他的控制阀的状态保持不变。同时,还需要控制压力提供装置18和增压装置7停止为制动系统提供压力。其中高速增压模式与线控制动模式结合的情况下保压过程中制动液的所在的制动管路参见图11所示。
当制动系统600需要从保压过程进入减压过程时,只需要控制第一减压阀10和第二减压阀11处于导通状态即可,制动系统600中的其他控制阀的工作状态可以不变,此时,制动系统600中的制动液可以通过第二回油管路120流动至第二储液装置2。可选地,如果需要加速减压过程,也可以控制减压阀14、15、16、17处于导通状态,此时,制动轮缸151、152内的制动液可以通过第一回油管路110流动至第一储液装置29。减压过程中制动液的减压路径参见图12所示。
图13是本申请实施例的制动系统600中制动液的增压路径的示意图。图13所示的制动系统600工作在冗余制动模式下。若增压装置7故障,则制动系统600进入冗余制动模式。此时,进油阀21、22、23、24、增压装置增压阀8、第三隔离阀5处于导通状态。第一隔离阀12、第二隔离阀13、制动主缸增压阀6、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于断开状态。
当驾驶员踩踏制动踏板1,制动主缸3将制动液压入制动管路210,制动管路210用于连接制动主缸的出油口与第一进油管路130和第二进油管路140的制动管路。由于制动主缸增压阀6处于断开状态,被压入制动管路210的制动液被制动主缸增压阀6阻断,通过制动管路220以及第三隔离阀5流向踏板反馈模拟器4。
控制器基于驾驶员输入的需求制动力,控制压力提供装置18将液压缸中的制动液压入第三进油管路150和第四进油管路160,并通过第三进油管路150压入第一组车轮的制动轮缸151,通过第四进油管路160压入第二组车轮的制动轮缸152。
需要说明的是,控制器获取驾驶员输入的需求制动力的方式有很多种,本申请实施例对此不作具体限定,例如,控制器可以基于制动主缸3上设置的踏板行程传感器(图中未示出),获取驾驶员踩踏板时,制动踏板在制动主缸内产生的踏板行程。控制器基于踏板行程,以及踏板行程与需求制动力之间的对应关系,确定需求制动力。又例如,可以在制动管路210上设置压力传感器(图中未示出),压力传感器用于检测制动管路210内制动液的压力。这样,控制器可以基于制动管路210内制动液的压力,以及制动液的压力与需求制动力之间的对应关系,确定需求制动力。
当制动系统600完成增压过程后,制动系统可以进入冗余制动模式下的保压过程,此时只需控制压力提供装置18停止为制动系统提供压力。其中冗余制动模式下的保压过程中制动液的所在的制动管路参见图14所示。
当制动系统600需要从保压过程进入减压过程时,只需要控制第一隔离阀12、第二隔离阀13、第一减压阀10、第二减压阀11处于导通状态即可,制动系统600中的其他控制阀的工作状态可以不变,此时,制动系统600中的制动液可以通过第二回油管路120流动至第二储液装置2。可选地,如果需要加速减压过程,也可以控制减压阀14、15、16、17处于导通状态,此时,制动轮缸151、152内的制动液可以通过第一回油管路110流动至第一储液装置29。减压过程中制动液的减压路径参见图15所示。
需要说明的是,上述图13至图15介绍的冗余制动模式还可以无需驾驶员的参与,即在自动驾驶模式下,增压装置7故障后可以由压力提供装置替代增压装置7为制动系统提 供制动力,其增压过程、保压过程以及减压过程与图13至图15介绍的路径类似,为了简洁,下文不再具体赘述。
图16是本申请实施例的制动系统600在机械制动模式下制动液的增压路径的示意图。在机械制动模式下,制动主缸增压阀6、第一隔离阀12、第二隔离阀13、进油阀21、22、23、24处于导通状态。第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17、第三隔离阀5处于断开状态。当驾驶员踩踏制动踏板1,制动主缸3将制动液压入第一进油管路130、第二进油管路140,并通过第一进油管路130、第二进油管路140流向汽车的制动轮缸151、152。
当制动系统600需要进入减压过程时,当驾驶员减小踩踏制动踏板1的力,制动主缸3在回位弹簧作用下,将制动轮缸151、152内的制动液经过第一进油管路130和第二进油管路140吸入制动主缸3内,多余的油液可以进入第二储液装置2,以为制动系统减压。其中制动系统600在机械制动模式下制动液的减压路径参见图17所示。
上文结合图7至图17介绍了液压调节单元400应用的制动系统600,以及制动系统600在不同工作模式下的工作原理。下文结合图18至图28介绍液压调节单元500应用于制动系统700,以及制动系统700在不同的工作模式下的工作原理。应理解,制动系统700中与液压调节单元500中功能相同的元件使用的编号相同。为了简洁,下文不再具体赘述。
如上文所述,制动系统700中的液压调节单元500支持多种工作模式,则制动系统600也支持多种工作模式。下文以线控制动模式、高速增压模式与线控制动模式结合、冗余制动模式为例,结合图18至图28介绍制动系统700的工作过程。其中,图18至图20介绍线控制动模式下制动液的增压过程、保压过程以及减压过程。图21至图23介绍高速增压模式与线控制动模式结合时制动液的增压过程、保压过程以及减压过程。图24至图26介绍冗余制动模式下制动液的增压过程、保压过程以及减压过程。图27和图28介绍机械制动模式下制动液的增压过程以及减压过程。
制动系统700中制动主缸3可以是串联双缸式制动缸,其中,制动主缸3的第一液压腔通过第一进油管路130为汽车的第一组车轮的制动轮缸151提供制动力,制动主缸3的第二液压腔通过第二进油管路140为汽车的第二组车轮的制动轮缸152提供制动力。
图18是本申请实施例的制动系统700中制动液的增压路径的示意图。图18所示的制动系统700工作在线控制动模式下。在线控制动模式下,第一隔离阀12、第二隔离阀13、进油阀(21、22、23、24)、增压装置增压阀8、增压装置增压阀9、第三隔离阀5处于导通状态。制动主缸增压阀6、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于断开状态。
当驾驶员踩踏制动踏板1,制动主缸3将制动液压入制动管路310和制动管路330,制动管路310用于连接制动主缸的出油口与第一进油管路130,制动管路330用于连接制动主缸的出油口与第二进油管路140。由于制动主缸增压阀6处于断开状态,被压入制动管路310和制动管路330的制动液被两条制动管路上部署的制动主缸增压阀6阻断,通过制动管路320以及第三隔离阀5流向踏板反馈模拟器4。
控制器基于驾驶员输入的需求制动力,控制增压装置7将液压缸中的制动液压入第一进油管路130和第二进油管路140,并通过第一进油管路130压入第一组车轮的制动轮缸151,通过第二进油管路140压入第二组车轮的制动轮缸152。
需要说明的是,控制器获取驾驶员输入的需求制动力的方式有很多种,本申请实施例对此不作具体限定,例如,控制器可以基于制动主缸3上设置的踏板行程传感器(图中未示出),获取驾驶员踩踏板时,制动踏板在制动主缸内产生的踏板行程。控制器基于踏板行程,以及踏板行程与需求制动力之间的对应关系,确定需求制动力。又例如,可以在制动管路310和/或制动管路330上设置压力传感器(图中未示出),压力传感器用于检测制动管路内制动液的压力。这样,控制器可以基于制动管路内制动液的压力,以及制动液的压力与需求制动力之间的对应关系,确定需求制动力。
当制动系统700完成增压过程后,制动系统可以进入线控制动模式下的保压过程,此时只需控制增压装置增压阀8以及增压装置增压阀9处于断开状态,而制动系统700内其他的控制阀的状态保持不变。同时,还需要控制增压装置7停止为制动系统提供压力。其中线控制动模式下的保压过程中制动液的所在的制动管路参见图19所示。
当制动系统700需要从保压过程进入减压过程时,只需要控制第一减压阀10和第二减压阀11处于导通状态即可,制动系统700中的其他控制阀的工作状态可以不变,此时,制动系统700中的制动液可以通过第二回油管路120流动至第二储液装置2。可选地,如果需要加速减压过程,也可以控制减压阀14、15、16、17处于导通状态,此时,制动轮缸151、152内的制动液可以通过第一回油管路110流动至第一储液装置29。减压过程中制动液的减压路径参见图20所示。
图21是本申请实施例的高速增压模式与线控制动模式结合时制动液的增压路径的示意图。在高速增压模式与线控制动模式结合的情况下,第一隔离阀12、第二隔离阀13、进油阀21、22、23、24、增压装置增压阀8、增压装置增压阀9、第三隔离阀5处于导通状态。制动主缸增压阀6、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于断开状态。
当驾驶员踩踏制动踏板1,制动主缸3将制动液压入制动管路310和制动管路330,制动管路310用于连接制动主缸的出油口与第一进油管路130,制动管路330用于连接制动主缸的出油口与第二进油管路140。由于制动主缸增压阀6处于断开状态,被压入制动管路310和制动管路330的制动液被两条制动管路上部署的制动主缸增压阀6阻断,通过制动管路320以及第三隔离阀5流向踏板反馈模拟器4。
控制器基于驾驶员输入的需求制动力,确定增压装置7以及压力提供装置18分别需要提供的制动力,然后控制器基于增压装置7需要提供的制动力,控制增压装置7将液压缸中的制动液压入第一进油管路130和第二进油管路140,并通过第一进油管路130压入第一组车轮的制动轮缸151,通过第二进油管路140压入第二组车轮的制动轮缸152。
与此同时,控制器基于压力提供装置18需要提供的制动力,控制压力提供装置18通过柱塞泵19将制动液压入第三进油管路150,第三进油管路150中的制动液可以通过与第一进油管路分支131、第二进油管路分支132,为第一车轮25以及第二车轮26提供制动力。相应地,控制器控制压力提供装置18通过柱塞泵20将制动液压入第四进油管路160,第四进油管路160中的制动液可以通过与第三进油管路分支141、第四进油管路分支142,为第三车轮27以及第四车轮28提供制动力。
需要说明的是,控制器获取驾驶员输入的需求制动力的方式有很多种,本申请实施例对此不作具体限定,例如,控制器可以基于制动主缸3上设置的踏板行程传感器(图中未 示出),获取驾驶员踩踏板时,制动踏板在制动主缸内产生的踏板行程。控制器基于踏板行程,以及踏板行程与需求制动力之间的对应关系,确定需求制动力。又例如,可以在制动管路310和/或制动管路330上设置压力传感器(图中未示出),压力传感器用于检测制动管路内制动液的压力。这样,控制器可以基于制动管路内制动液的压力,以及制动液的压力与需求制动力之间的对应关系,确定需求制动力。
当制动系统700完成增压过程后,制动系统可以进入高速增压模式与线控制动模式结合时的保压过程,此时,只需控制增压装置增压阀8处于断开状态,而制动系统700内其他的控制阀的状态保持不变。同时,还需要控制压力提供装置18和增压装置7停止为制动系统提供压力。其中高速增压模式与线控制动模式结合的情况下保压过程中制动液的所在的制动管路参见图22所示。
当制动系统700需要从保压过程进入减压过程时,只需要控制第一减压阀10和第二减压阀11处于导通状态即可,制动系统700中的其他控制阀的工作状态可以不变,此时,制动系统700中的制动液可以通过第二回油管路120流动至第二储液装置2。可选地,如果需要加速减压过程,也可以控制减压阀14、15、16、17处于导通状态,此时,制动轮缸151、152内的制动液可以通过第一回油管路110流动至第一储液装置29。减压过程中制动液的减压路径参见图23所示。
图24是本申请实施例的制动系统700中制动液的增压路径的示意图。图24所示的制动系统700工作在冗余制动模式下。若增压装置7故障,则制动系统700进入冗余制动模式。此时,进油阀21、22、23、24、增压装置增压阀8、增压装置增压阀9、第三隔离阀5处于导通状态。第一隔离阀12、第二隔离阀13、制动主缸增压阀6、第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17处于断开状态。
当驾驶员踩踏制动踏板1,制动主缸3将制动液压入制动管路310和制动管路330,制动管路310用于连接制动主缸的出油口与第一进油管路130,制动管路330用于连接制动主缸的出油口与第二进油管路140。由于制动主缸增压阀6处于断开状态,被压入制动管路310和制动管路330的制动液被两条制动管路上部署的制动主缸增压阀6阻断,通过制动管路320以及第三隔离阀5流向踏板反馈模拟器4。
控制器基于驾驶员输入的需求制动力,控制压力提供装置18将液压缸中的制动液压入第三进油管路150和第四进油管路160,并通过第三进油管路150压入第一组车轮的制动轮缸151,通过第四进油管路160压入第二组车轮的制动轮缸152。
需要说明的是,控制器获取驾驶员输入的需求制动力的方式有很多种,本申请实施例对此不作具体限定,例如,控制器可以基于制动主缸3上设置的踏板行程传感器(图中未示出),获取驾驶员踩踏板时,制动踏板在制动主缸内产生的踏板行程。控制器基于踏板行程,以及踏板行程与需求制动力之间的对应关系,确定需求制动力。又例如,可以在制动管路310和/或制动管路330上设置压力传感器(图中未示出),压力传感器用于检测制动管路内制动液的压力。这样,控制器可以基于制动管路内制动液的压力,以及制动液的压力与需求制动力之间的对应关系,确定需求制动力。
当制动系统700完成增压过程后,制动系统可以进入冗余制动模式下的保压过程,此时只需控制压力提供装置18停止为制动系统提供压力。其中冗余制动模式下的保压过程 中制动液的所在的制动管路参见图25所示。
当制动系统700需要从保压过程进入减压过程时,只需要控制第一隔离阀12、第二隔离阀13、第一减压阀10、第二减压阀11处于导通状态即可,制动系统600中的其他控制阀的工作状态可以不变,此时,制动系统700中的制动液可以通过第二回油管路120流动至第二储液装置2。可选地,如果需要加速减压过程,也可以控制减压阀14、15、16、17处于导通状态,此时,制动轮缸151、152内的制动液可以通过第一回油管路110流动至第一储液装置29。减压过程中制动液的减压路径参见图26所示。
需要说明的是,上述图24至图26介绍的冗余制动模式还可以无需驾驶员的参与,即在自动驾驶模式下,增压装置7故障后可以由压力提供装置替代增压装置7为制动系统提供制动力,其增压过程、保压过程以及减压过程与图24至图26介绍的路径类似,为了简洁,下文不再具体赘述。
图27是本申请实施例的制动系统700在机械制动模式下制动液的增压路径的示意图。在机械制动模式下,制动主缸增压阀6、第一隔离阀12、第二隔离阀13、进油阀21、22、23、24处于导通状态。第一减压阀10、第二减压阀11、第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17、第三隔离阀5处于断开状态。当驾驶员踩踏制动踏板1,制动主缸3将制动液通过制动管路310压入第一进油管路130,通过制动管路330压入第二进油管路140,相应地,制动管路310和制动管路330内的制动液通过第一进油管路130、第二进油管路140流向汽车的制动轮缸151、152。
当制动系统700需要进入减压过程时,当驾驶员减小踩踏制动踏板1的力,制动主缸3在回位弹簧作用下,将制动轮缸151内的制动液经过第一进油管路130、制动管路310吸入制动主缸3的第一液压腔,将制动轮缸152内的制动液经过第二进油管路140、制动管路330吸入制动主缸3的第二液压腔,多余的油液可以进入第二储液装置2,以为制动系统减压,其中制动系统700在机械制动模式下制动液的减压路径参见图28所示。
上文结合图2至图28介绍了本申请实施例的装置,下文结合图29至图33介绍本申请实施例的控制方法,需要说明的是,本申请实施例的控制方法可以应用于上文介绍的任意一种装置,本申请实施例对此不作限定。
图29是本申请实施例的控制方法的流程图。图29所示的方法可以由制动系统中的控制器执行。图29所示的方法可以包括步骤2910和2920。
2910,控制器控制第一控制阀16、17处于导通状态,以连通第一回油管路110与制动系统的制动轮缸,制动系统的制动轮缸中的制动液通过制动系统的第一回油管路110流至制动系统的第一储液装置29,以为汽车的车轮减压。
上述第一控制阀又称减压阀,可以包括一个或多个控制阀,本申请实施例对此不作限定。例如,上述第一控制阀可以包括上文中的第三减压阀14、第四减压阀15、第五减压阀16、第六减压阀17,当上述减压阀处于导通状态时,第一回油管路110与制动系统的制动轮缸151、152连通。又例如,上述第一控制阀可以仅包括第五减压阀16和第六减压阀17,由于第一进油管路分支131和第二进油管路分支132,通过第五减压阀16连接至第一回油管路110,当第五减压阀16处于导通状态时,第一车轮25和第二车轮26的制动轮缸内的制动液可以通过第一进油管路分支131和第二进油管路分支132,流至第一回油管路110,以为汽车的车轮减压。
2920,控制器控制第二控制阀10、11处于导通状态,以连通制动系统的进油管路130、140与第二回油管路120,制动系统的制动轮缸中的制动液通过制动系统的进油管路130、140以及第二回油管路120流至第二储液装置2。
可选地,上述步骤2920包括:若制动系统的减压速率低于预设的减压速率阈值,控制器控制第二控制阀10、11处于导通状态。
可选地,制动系统的进油管路包括第一进油管路130和第二进油管路140,第二回油管路120通过第一减压阀10与第一进油管路130相连,第二回油管路120通过第二减压阀11与第二进油管路140相连,上述步骤2920包括:控制器控制第一减压阀10处于导通状态,以连通第二回油管路120与制动系统的进油管路中的第一进油管路130;控制器控制第二减压阀11处于导通状态,以连通第二回油管路120与制动系统的进油管路中的第二进油管路140。
可选地,制动主缸3通过第一进油管路分支131,为第一车轮25提供制动力,并控制制动主缸3通过第一进油管路130的第二进油管路分支132,为汽车的第二车轮26提供制动力;制动主缸3通过第二进油管路140的第三进油管路分支141,为汽车的第三车轮27提供制动力,并控制制动主缸3通过第二进油管路140的第四进油管路分支142,为汽车的第四车轮28提供制动力;上述方法包括:控制器控制压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支132,为第一车轮25和第二车轮26提供制动力,第三进油管路150与第一进油管路分支131连通,且第三进油管路150与第二进油管路分支132连通;
控制器控制压力提供装置18通过第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力,第四进油管路160与第三进油管路分支141连通,且第四进油管路160与第四进油管路分支142连通。
可选地,上述第三进油管路150和第一进油管路130为相互独立的制动管路,上述第四进油管路160和第二进油管路140为相互独立的制动管路。
可选地,控制器控制制动系统的压力提供装置18通过制动系统的第三进油管路150、第一进油管路分支131以及第二进油管路分支132,为第一车轮25和第二车轮26提供制动力,包括:若增压装置7故障,控制器控制控制压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支132,为第一车轮25和第二车轮26提供制动力。
可选地,控制器控制压力提供装置18通过制动系统的第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力,包括:若增压装置7故障,控制器控制压力提供装置18通过第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力。
可选地,控制器控制制动系统的压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支160,为第一车轮25和第二车轮26提供制动力,包括:若制动系统的增压速率低于预设的增压速率阈值,控制器控制制动系统的压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支132,为第一车轮25和第二车轮26提供制动力。
可选地,控制器控制压力提供装置18通过第四进油管路160、第三进油管路分支141 以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力,包括:若制动系统的增压速率低于预设的增压速率阈值,控制器控制压力提供装置18通过第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力。
为了便于理解,下文结合图30至图33介绍本申请实施例的控制方法。需要说明的是,图30至图33所示的控制方法仅仅是为了便于理解所示出的具体的例子,并不会限定对本申请实施例的范围。
图30是本申请另一实施例的控制方法的流程图。该方法可以应用于上文所示的液压调节单元400和液压调节单元500,当然,该控制方法还可以应用于包含液压调节单元400的制动系统600,或者包含液压调节单元500的制动系统700。
图30所示的方法描述了判断制动系统是否需要工作在高速增压工作模式下,且不需要为第一车轮25建压的方法流程。图30所示的方法包括步骤3010至步骤3050。
3010,控制器确定制动系统是否进入高速增压模式。
具体地,控制器可以基于制动系统的当前建压速率和建压速率阈值,确定制动系统是否进入高速增压模式。若当前建压速率高于建压速率阈值,控制器确定无需进入高速增压模式,执行步骤3020。若当前建压速率低于建压速率阈值,控制器确定制动系统进入高速增压模式,执行步骤3030。
3020,控制器控制增压装置7进入工作状态,同时控制制动主缸增压阀6处于断开状态,并执行步骤3040。
3030,控制器控制增压装置7和压力提供装置18处于工作状态,控制增压装置增压阀处于导通状态,控制制动主缸增压阀6处于断开状态,并执行步骤3040。
3040,控制器确定不需要为第一车轮25建压。
3050,控制器控制第一车轮25对应的第一进油阀21处于断开状态,其他车轮对应的进油阀22、23、24处于导通状态。
图31是本申请另一实施例的控制方法的流程图。该方法可以应用于上文所示的液压调节单元400和液压调节单元500,当然,图31所示的控制方法还可以应用于包含液压调节单元400的制动系统600,或者包含液压调节单元500的制动系统700。
图31所示的方法描述了判断制动系统是否需要工作在高速减压工作模式下,且不需要为第二车轮26减压的方法流程。图31所示的方法包括步骤3110至步骤3170。
3110,控制器确定不需要为第二车轮26减压。
3120,控制器控制第二车轮26对应的第二进油阀22处于断开状态。
3130,控制器控制第一隔离阀12和第二隔离阀13处于断开状态。
3140,控制器控制第一减压阀10和第二减压阀11处于导通状态。
控制器控制第一减压阀10和第二减压阀11处于导通状态,以连通第一进油管路130和第二回油管路120,连通第二进油管路140和第二回油管路120,这样,第一进油管路130和第二进油管路140内的制动液可以通过第二回油管路120流动至第二储液装置2,以为制动系统减压。
3150,控制器确定制动系统是否进入高速减压模式。
控制器可以基于制动系统的当前减压速率以及减压速率阈值,确定制动系统是否进入 高速减压模式。若当前减压速率小于减压速率阈值,控制器确定进入高速减压模式,并执行步骤3160。若当前减压速率大于减压速率阈值,控制器确定不进入高速减压模式,并执行3170。
3160,控制器控制第五减压阀16、第六减压阀17处于导通状态。
当第五减压阀16、第六减压阀17处于导通状态后,除第二车轮26的制动轮缸之外的其他制动轮缸都可以通过第四出油管路分支114和第一出油管路分支115与第一储液装置29相连,以将其他制动轮缸中的制动液吸入第一储液装置29,以为其他制动轮缸减压。
3170,控制器控制第五减压阀16、第六减压阀17处于断开状态。
当第五减压阀16、第六减压阀17处于断开状态后,仅第二回油管路120用于为制动系统减压,第一回油管路110此时不工作。
图32是本申请另一实施例的控制方法的流程图。该方法可以应用于上文所示的液压调节单元400和液压调节单元500,当然,图32所示的控制方法还可以应用于包含液压调节单元400的制动系统600,或者包含液压调节单元500的制动系统700。
假设上文中由增压装置7提供制动力的制动子系统称为“第一制动子系统”,由压力提供装置18提供制动力的制动子系统称为“第二制动子系统”。图32所示的方法描述了包含上述第一制动子系统和第二制动子系统的制动系统在多种工作模式之间切换的方法流程。图32所示的方法包括步骤3210至步骤3265。
3210,控制器确定制动系统的需求制动力。
应理解,控制器可以基于驾驶员的输入确定制动系统的需求制动力,控制器还可以基于车辆的路况信息确定制动系统的,本申请实施例对此不作限定。
3215,控制器检测制动系统的状态。
应理解,本申请实施例对控制器检测制动系统的状态的具体方式不作限定。控制器可以基于制动系统中设置的压力传感器(图中未示出),判断制动系统的状态,例如,可以在制动系统700中的制动管路310和制动管路330上设置压力传感器,以检测制动管路310和制动管路330内制动液的压力,并基于制动管路310和制动管路330内制动液的压力判断制动系统的状态。又例如,控制器还可以基于制动系统当前的建压时间以及制动系统的平均建压时间,判断制动系统的状态。
3220,控制器确定制动系统是否部分失效。
上述制动系统部分失效指制动系统中的第一制动子系统失效或者第二制动子系统失效。
控制器可以基于制动系统当前的建压时间判断制动系统是否部分失效。例如,控制器可以基于制动系统当前的建压时间以及制动系统的平均建压时间,判断制动系统是否部分失效。若制动系统的当前建压时间高于制动系统的平均建压时间,可以确定制动系统部分失效。若制动系统的当前建压时间小于制动系统的平均建压时间,可以确定制动系统正常。
若制动系统部分失效,执行步骤3225,若制动系统正常工作,则执行步骤3245。
3225,控制器确定第一制动子系统是否失效。
控制器可以基于第一制动子系统中的增压装置7的建压速率,确定第一制动子系统是否失效。例如,在线控制动模式或者智能驾驶模式下,若增压装置7的建压速率低于增压装置7的平均减压速率,可以判断第一制动子系统失效。相反,可以判断第一制动子系统 正常工作。控制器还可以基于增压装置7的出油口的制动液的压力,确定第一制动子系统是否正常工作。本申请实施例对此不作具体限定。
若第一制动子系统失效,则执行步骤3235;若第一制动子系统正常工作,则执行步骤3230。
3230,控制器控制第二制动子系统进入线控制动模式,并执行步骤3255。
上述第二制动子系统进入线控制动模式可以理解为由压力提供装置18替代增压装置7在线性制动模式中的作用。第二制动子系统进入线控制动模式即上文中介绍的冗余制动模式,第二制动子系统进入线控制动模式的工作方式可以参见上文中关于制动系统600或者制动系统700进入冗余制动模式下的工作方式。
3235,控制器确定第二制动子系统是否失效。
控制器可以基于第二制动子系统中的压力提供装置18的建压速率,确定第二制动子系统是否失效。例如,在线控制动模式或者智能驾驶模式下,若压力提供装置18的建压速率低于压力提供装置18的平均减压速率,可以判断第二制动子系统失效。相反,可以判断第二制动子系统正常工作。控制器还可以基于压力提供装置18的出油口的制动液的压力,确定第二制动子系统是否正常工作。本申请实施例对此不作具体限定。
若第二制动子系统失效,则执行步骤3240。若第二制动子系统正常工作,则执行步骤3255。
3240,控制器提示驾驶员进入机械制动模式。
若经过上述步骤3250之后,确定第二制动子系统失效,同时第一制动子系统失效,可以判断需要驾驶员接入,进入机械制动模式。
3245,控制器控制第一制动子系统和第二制动子系统同时为汽车提供制动力。
3250,控制器基于需求制动力,确定第一制动子系统和第二制动子系统分别需要提供的制动力。
3255,控制器控制制动系统进入增压过程。
3260,控制器控制制动系统进入保压过程。
3265,控制器控制制动系统进入减压过程。
需要说明的是,上述步骤3255、3260、3265中的增压过程、保压过程以及减压过程可以参见上文的介绍,为了简洁,不再赘述。
图33是本申请另一实施例的控制方法的流程图。图33所示的方法可以应用于上文所示的液压调节单元400和液压调节单元500,当然,该方法还可以应用于包含液压调节单元400的制动系统600,或者包含液压调节单元500的制动系统700。
图33所示的方法描述了第一制动子系统故障后,第二制动子系统为汽车提供制动力的方案。假设在增压过程中无需为第一车轮25建压。图33所示的方法包括步骤3310至步骤3370。
3310,控制器控制第一隔离阀12和第二隔离阀13处于断开状态。
3315,控制器确定不需要为第一车轮25提供制动力。
3320,控制器控制第一车轮25对应的第一进油阀21处于断开状态。
3325,控制器控制压力提供装置18为制动系统提供制动力。
3330,控制器判断增压过程是否结束。若增压过程结束,则执行步骤3335,若增压 过程未结束,则继续执行步骤3325。
需要说明的是,控制器可以基于汽车当前的车速判断上述增压过程是否结束。
3335,控制器控制压力提供装置18停止为制动系统提供制动力,制动系统进入保压过程。
3340,控制器判断是否结束保压过程。若结束保压过程,执行步骤3345;若不结束保压过程,则继续处于保压过程。
3345,控制器判断是否进入减压过程。若进入减压过程,则执行步骤3350。
3350,控制器控制第一隔离阀12和第二隔离阀13处于导通状态。
3355,控制器控制第五减压阀16、第六减压阀17处于导通状态。
3360,控制器判断减压过程是否结束。若确定结束减压过程,则执行步骤3365。
3365,控制器控制第五减压阀16、第六减压阀17处于断开状态。
3370,控制器控制第一隔离阀12和第二隔离阀13处于导通状态。
上文结合图29至图33介绍了本申请实施例的控制方法,下文结合图34至图35介绍本申请实施例的装置。需要说明的是,本申请实施例的装置可以应用于上文介绍的任意一种液压调节单元中,实现上文介绍的任意一种控制方法,为了简洁,在此不再赘述。
图34是本申请实施例的控制装置的示意图,图34所示的控制装置3400包括处理单元3410和存储单元3420。其中存储单元3420用于存储指令,处理单元3410用于从存储单元3420中读取指令以实现上述任一种控制方法。
即,处理单元3410控制第一控制阀16、17处于导通状态,以连通第一回油管路110与制动轮缸,制动轮缸中的制动液通过第一回油管路110流至第一储液装置29,以为汽车的车轮减压;
处理单元3410控制第二控制阀10、11处于导通状态,以连通进油管路130、140与第二回油管路120,制动轮缸中的制动液通过进油管路130、140以及第二回油管路120流至第二储液装置2。
可选地,若制动系统的减压速率低于预设的减压速率阈值,处理单元3410还用于控制第二控制阀10、11处于导通状态。
可选地,制动系统的进油管路包括第一进油管路130和第二进油管路140,第二回油管路120通过第一减压阀10与第一进油管路130相连,第二回油管路120通过第二减压阀11与第二进油管路140相连,处理单元3410还用于控制第二控制阀10、11中的第一减压阀10处于导通状态,以连通第二回油管路120与制动系统的进油管路中的第一进油管路130;处理单元3410还用于控制第二控制阀10、11中的第二减压阀11处于导通状态,以连通第二回油管路120与制动系统的进油管路中的第二进油管路140。
可选地,制动系统的制动主缸3通过第一进油管路130的第一进油管路分支131,为汽车的第一车轮25提供制动力,并通过第一进油管路130的第二进油管路分支132,为汽车的第二车轮26提供制动力;制动主缸3通过第二进油管路140的第三进油管路分支141,为汽车的第三车轮27提供制动力,并通过第二进油管路140的第四进油管路分支142,为汽车的第四车轮28提供制动力;处理单元3410还用于控制制动系统的压力提供装置18通过制动系统的第三进油管路150、第一进油管路分支131以及第二进油管路分支132,为第一车轮25和第二车轮26提供制动力,第三进油管路150与第一进油管路分 支131连通,且第三进油管路150与第二进油管路分支132连通;处理单元3410还用于控制压力提供装置18通过制动系统的第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力,第四进油管路160与第三进油管路分支141连通,且第四进油管路160与第四进油管路分支142连通。
可选地,若制动主缸3故障,处理单元3410还用于控制控制压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支132,为第一车轮25和第二车轮26提供制动力。
可选地,若制动主缸3故障,处理单元3410还用于控制压力提供装置18通过第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力。
可选地,若制动系统的增压速率低于预设的增压速率阈值,处理单元3410还用于控制制动系统的压力提供装置18通过第三进油管路150、第一进油管路分支131以及第二进油管路分支132,为第一车轮25和第二车轮26提供制动力。
可选地,若制动系统的增压速率低于预设的增压速率阈值,处理单元3410还用于控制压力提供装置18通过第四进油管路160、第三进油管路分支141以及第四进油管路分支142,为第三车轮27和第四车轮28提供制动力。
在可选的实施例中,所述处理单元3410可以为处理器3520,所述存储单元3420可以为存储器3510,上述控制单元3400还可以包括通信接口3530,具体如图35所示。
图35是本申请实施例的控制器的示意性框图。图35所示的控制器3500可以包括:存储器3510、处理器3520、以及通信接口3530。其中,存储器3510、处理器3520,通信接口3530通过内部连接通路相连,该存储器3510用于存储指令,该处理器3520用于执行该存储器3520存储的指令,以控制通信接口3530接收/发送信息。可选地,存储器3510既可以和处理器3520通过接口耦合,也可以和处理器3520集成在一起。
需要说明的是,上述通信接口3530使用例如但不限于收发器一类的收发装置,来实现通信设备3500与其他设备或通信网络之间的通信。上述通信接口3530还可以包括输入/输出接口(input/output interface)。
在实现过程中,上述方法的各步骤可以通过处理器3520中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器3510,处理器3520读取存储器3510中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向 处理器提供指令和数据。处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种汽车中制动系统的液压调节单元,其特征在于,包括第一储液装置(29)、第二储液装置(2)、第一回油管路(110)以及第二回油管路(120),
    所述第一回油管路(110)用于与所述汽车的制动轮缸(151、152)相连,以将所述汽车的制动轮缸(151、152)中的制动液输送至所述第一储液装置(29),为所述汽车的车轮减压;
    所述第二回油管路(120)用于通过所述制动系统的进油管路(130、140)连接至所述汽车的制动轮缸(151、152),以通过所述制动系统的进油管路(130、140),将所述汽车的制动轮缸(151、152)中的制动液输送至所述第二储液装置(2),为所述汽车的车轮减压。
  2. 如权利要求1所述的液压调节单元,其特征在于,所述液压调节单元的进油管路包括第一进油管路(130)和第二进油管路(140),
    所述第二回油管路(120)通过第一减压阀(10)与所述第一进油管路(130)相连,若所述第一减压阀(10)处于导通状态,所述第二回油管路(120)与所述第一进油管路(130)连通,若所述第一减压阀(10)处于断开状态,所述第二回油管路(120)与所述第一进油管路(130)断开;
    所述第二回油管路(120)通过第二减压阀(11)与所述第二进油管路(140)相连,若所述第二减压阀(11)处于导通状态,所述第二回油管路(120)与所述第二进油管路(140)连通,若所述第二减压阀(11)处于断开状态,所述第二回油管路(120)与所述第二进油管路(140)断开。
  3. 如权利要求2所述的液压调节单元,其特征在于,所述液压调节单元包括制动主缸(3)以及压力提供装置(18),
    所述制动主缸(3)通过所述第一进油管路(130)的第一进油管路分支(131)为所述汽车的第一车轮(25)提供制动力,所述制动主缸(3)通过所述第一进油管路(130)的第二进油管路分支(132)为所述汽车的第二车轮(26)提供制动力;
    所述制动主缸(3)通过所述第二进油管路(140)的第三进油管路分支(141)为所述汽车的第三车轮(27)提供制动力,所述制动主缸(3)通过所述第二进油管路(140)的第四进油管路分支(142)为所述汽车的第四车轮(28)提供制动力;
    所述压力提供装置(18)通过第三进油管路(150)、第一进油管路分支(131)以及第二进油管路分支(132)为所述第一车轮(25)和所述第二车轮(26)提供制动力,所述第三进油管路(150)与所述第一进油管路分支(131)连通,且所述第三进油管路(150)与所述第二进油管路分支(132)连通;
    所述压力提供装置(18)通过第四进油管路(160)、第三进油管路分支(141)以及第四进油管路分支(131)为所述第三车轮(27)和所述第四车轮(28)提供制动力,所述第四进油管路(160)与所述第三进油管路分支(141)连通,且所述第四进油管路(160)与所述第四进油管路分支(142)连通。
  4. 如权利要求3所述的液压调节单元,其特征在于,所述第一进油管路(130)与所 述第一进油管路分支(131)以及所述第二进油管路分支(132)通过第一隔离阀(12)相连,若所述第一隔离阀(12)处于断开状态,则所述第一进油管路(130)内的制动液被所述第一隔离阀(12)阻断,无法通过第一进油管路分支(131)和第二进油管路分支(132)流入第一车轮(25)和第二车轮(26)的制动轮缸;
    所述第二进油管路(140)与所述第三进油管路分支(141)以及所述第四进油管路分支(142)通过第二隔离阀(13)相连,若所述第二隔离阀(13)处于断开状态,则所述第二进油管路(140)内的制动液被所述第一隔离阀(12)阻断,无法通过所述第三进油管路分支(141)和所述第四进油管路分支(142)流入第一车轮(25)和第二车轮(26)。
  5. 如权利要求1-4中任一项所述的液压调节单元,其特征在于,所述第一储液装置(29)与所述第二储液装置(2)为同一个储液装置,或所述第一储液装置(29)与所述第二储液装置(2)为不同的储液装置。
  6. 一种汽车的制动系统,其特征在于,包括第一储液装置(29)、第二储液装置(2)、第一回油管路(110)、第二回油管路(120)以及多个制动轮缸(151、152),
    所述第一回油管路(110)与所述多个制动轮缸(151、152)相连,所述第一回油管路(110)用于将所述多个制动轮缸(151、152)中的制动液输送至所述第一储液装置(29),以为所述多个车轮减压;
    所述第二回油管路(120)通过所述汽车中制动系统的进油管路(130、140)连接至所述多个制动轮缸(151、152),所述第二回油管路(120)用于通过所述制动系统的进油管路(130、140),将所述汽车的制动轮缸(151、152)中的制动液输送至所述第二储液装置(2),以为所述汽车的车轮减压。
  7. 如权利要求6所述的制动系统,其特征在于,所述制动系统的进油管路包括第一进油管路(130)和第二进油管路(140),
    所述第二回油管路(120)通过第一减压阀(10)与所述第一进油管路(130)相连,若所述第一减压阀(10)处于导通状态,所述第二回油管路(120)与所述第一进油管路(130)连通,若所述第一减压阀(10)处于断开状态,所述第二回油管路(120)与所述第一进油管路(130)断开;
    所述第二回油管路(120)通过第二减压阀(11)与所述第二进油管路(140)相连,若所述第二减压阀(11)处于导通状态,所述第二回油管路(120)与所述第二进油管路(140)连通,若所述第二减压阀(11)处于断开状态,所述第二回油管路(120)与所述第二进油管路(140)断开。
  8. 如权利要求7所述的制动系统,其特征在于,所述制动系统还包括制动主缸(3)以及压力提供装置(18),
    所述制动主缸(3)通过所述第一进油管路(130)的第一进油管路分支(131)为所述汽车的第一车轮(25)提供制动力,所述制动主缸(3)通过所述第一进油管路(130)的第二进油管路分支(132)为所述汽车的第二车轮(26)提供制动力;
    所述制动主缸(3)通过所述第二进油管路(140)的第三进油管路分支(141)为所述汽车的第三车轮(27)提供制动力,所述制动主缸(3)通过所述第二进油管路(140)的第四进油管路分支(142)为所述汽车的第四车轮(28)提供制动力;
    所述压力提供装置(18)通过第三进油管路(150)、第一进油管路分支(131)以及 第二进油管路分支(132)为所述第一车轮(25)和所述第二车轮(26)提供制动力,所述第三进油管路(150)与所述第一进油管路分支(131)连通,且所述第三进油管路(150)与所述第二进油管路分支(132)连通;
    所述压力提供装置(18)通过第四进油管路(160)、第三进油管路分支(141)以及第四进油管路分支(131)为所述第三车轮(27)和所述第四车轮(28)提供制动力,所述第四进油管路(160)与所述第三进油管路分支(141)连通,且所述第四进油管路(160)与所述第四进油管路分支(142)连通。
  9. 如权利要求8所述的制动系统,其特征在于,所述第一进油管路(130)与所述第一进油管路分支(131)以及所述第二进油管路分支(132)通过第一隔离阀(12)相连,若所述第一隔离阀(12)处于断开状态,则所述第一进油管路(130)内的制动液被所述第一隔离阀(12)阻断,无法通过第一进油管路分支(131)和第二进油管路分支(132)流入第一车轮(25)和第二车轮(26)的制动轮缸;
    所述第二进油管路(140)与所述第三进油管路分支(141)以及所述第四进油管路分支(142)通过第二隔离阀(13)相连,若所述第二隔离阀(13)处于断开状态,则所述第二进油管路(140)内的制动液被所述第一隔离阀(12)阻断,无法通过所述第三进油管路分支(141)和所述第四进油管路分支(142)流入第一车轮(25)和第二车轮(26)。
  10. 如权利要求6-9中任一项所述的制动系统,其特征在于,所述第一储液装置(29)与所述第二储液装置(2)为同一个储液装置,或所述第一储液装置(29)与所述第二储液装置(2)为不同的储液装置。
  11. 一种汽车,其特征在于,包括如权利要求6-10中任一项所述的制动系统。
  12. 一种汽车中制动系统的控制方法,其特征在于,包括:
    所述制动系统的控制器控制第一控制阀(16、17)处于导通状态,以连通所述制动系统的第一回油管路(110)与所述制动系统的制动轮缸,所述制动系统的制动轮缸中的制动液通过所述第一回油管路(110)流至所述制动系统的第一储液装置(29),以为所述汽车的车轮减压;
    所述控制器控制第二控制阀(10、11)处于导通状态,以连通所述制动系统的进油管路(130、140)与所述制动系统的第二回油管路(120),所述制动系统的制动轮缸中的制动液通过所述制动系统的进油管路(130、140)以及所述第二回油管路(120)流至所述制动系统的第二储液装置(2)。
  13. 如权利要求12所述的控制方法,其特征在于,所述控制器控制所述第二控制阀(10、11)处于导通状态,包括:
    若所述制动系统的减压速率低于预设的减压速率阈值,所述控制器控制所述第二控制阀(10、11)处于导通状态。
  14. 如权利要求13所述的控制方法,其特征在于,所述制动系统的进油管路包括第一进油管路(130)和第二进油管路(140),
    所述第二回油管路(120)通过所述第一减压阀(10)与所述第一进油管路(130)相连,所述第二回油管路(120)通过所述第二减压阀(11)与所述第二进油管路(140)相连,
    所述控制器控制所述第二控制阀(10、11)处于导通状态,包括:
    所述控制器控制所述第二控制阀(10、11)中的第一减压阀(10)处于导通状态,以连通所述第二回油管路(120)与所述制动系统的进油管路中的第一进油管路(130);
    所述控制器控制所述第二控制阀(10、11)中的第二减压阀(11)处于导通状态,以连通所述第二回油管路(120)与所述制动系统的进油管路中的第二进油管路(140)。
  15. 如权利要求14所述的控制方法,其特征在于,所述制动系统的制动主缸(3)通过所述第一进油管路(130)的第一进油管路分支(131),为所述汽车的第一车轮(25)提供制动力,并通过所述第一进油管路(130)的第二进油管路分支(132),为所述汽车的第二车轮(26)提供制动力;所述制动主缸(3)通过所述第二进油管路(140)的第三进油管路分支(141),为所述汽车的第三车轮(27)提供制动力,并通过所述第二进油管路(140)的第四进油管路分支(142),为所述汽车的第四车轮(28)提供制动力;
    所述方法还包括:
    所述控制器控制所述制动系统的压力提供装置(18)通过所述制动系统的第三进油管路(150)、所述第一进油管路分支(131)以及所述第二进油管路分支(132),为所述第一车轮(25)和所述第二车轮(26)提供制动力,所述第三进油管路(150)与所述第一进油管路分支(131)连通,且所述第三进油管路(150)与所述第二进油管路分支(132)连通;
    所述控制器控制所述压力提供装置(18)通过所述制动系统的第四进油管路(160)、所述第三进油管路分支(141)以及所述第四进油管路分支(142),为所述第三车轮(27)和所述第四车轮(28)提供制动力,所述第四进油管路(160)与所述第三进油管路分支(141)连通,且所述第四进油管路(160)与所述第四进油管路分支(142)连通。
  16. 如权利要求15所述的控制方法,其特征在于,所述控制器控制所述制动系统的压力提供装置(18)通过所述制动系统的第三进油管路(150)、所述第一进油管路分支(131)以及所述第二进油管路分支(132),为所述第一车轮(25)和所述第二车轮(26)提供制动力,包括:
    若所述制动主缸(3)故障,所述控制器控制控制所述压力提供装置(18)通过所述第三进油管路(150)、所述第一进油管路分支(131)以及所述第二进油管路分支(132),为所述第一车轮(25)和所述第二车轮(26)提供制动力。
  17. 如权利要求15或16所述的控制方法,其特征在于,所述控制器控制所述压力提供装置(18)通过所述制动系统的第四进油管路(160)、所述第三进油管路分支(141)以及所述第四进油管路分支(142),为所述第三车轮(27)和所述第四车轮(28)提供制动力,包括:
    若所述制动主缸(3)故障,所述控制器控制所述压力提供装置(18)通过所述第四进油管路(160)、所述第三进油管路分支(141)以及所述第四进油管路分支(142),为所述第三车轮(27)和所述第四车轮(28)提供制动力。
  18. 如权利要求15所述的控制方法,其特征在于,所述控制器控制所述制动系统的压力提供装置(18)通过第三进油管路(150)、第一进油管路分支(131)以及第二进油管路分支(160),为所述第一车轮(25)和所述第二车轮(26)提供制动力,包括:
    若所述制动系统的增压速率低于预设的增压速率阈值,所述控制器控制所述制动系统的压力提供装置(18)通过所述第三进油管路(150)、所述第一进油管路分支(131)以 及所述第二进油管路分支(132),为所述第一车轮(25)和所述第二车轮(26)提供制动力。
  19. 如权利要求15或18所述的控制方法,其特征在于,所述控制器控制所述压力提供装置(18)通过第四进油管路(160)、第三进油管路分支(141)以及第四进油管路分支(142),为所述第三车轮(27)和所述第四车轮(28)提供制动力,包括:
    若所述制动系统的增压速率低于预设的增压速率阈值,所述控制器控制所述压力提供装置(18)通过所述第四进油管路(160)、所述第三进油管路分支(141)以及所述第四进油管路分支(142),为所述第三车轮(27)和所述第四车轮(28)提供制动力。
PCT/CN2021/077229 2020-04-13 2021-02-22 汽车中制动系统的液压调节单元、制动系统及控制方法 WO2021208594A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21787694.5A EP4122785A4 (en) 2020-04-13 2021-02-22 HYDRAULIC CONTROL UNIT FOR A BRAKE SYSTEM IN A VEHICLE, BRAKE SYSTEM AND CONTROL METHOD
US17/964,569 US20230033528A1 (en) 2020-04-13 2022-10-12 Hydraulic adjustment unit of brake system in vehicle, brake system, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010286285.5 2020-04-13
CN202010286285.5A CN113525320B (zh) 2020-04-13 2020-04-13 汽车中制动系统的液压调节单元、制动系统及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/964,569 Continuation US20230033528A1 (en) 2020-04-13 2022-10-12 Hydraulic adjustment unit of brake system in vehicle, brake system, and control method

Publications (1)

Publication Number Publication Date
WO2021208594A1 true WO2021208594A1 (zh) 2021-10-21

Family

ID=78084064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077229 WO2021208594A1 (zh) 2020-04-13 2021-02-22 汽车中制动系统的液压调节单元、制动系统及控制方法

Country Status (4)

Country Link
US (1) US20230033528A1 (zh)
EP (1) EP4122785A4 (zh)
CN (1) CN113525320B (zh)
WO (1) WO2021208594A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018003001A1 (de) * 2018-04-12 2019-10-17 Lucas Automotive Gmbh Hydraulische Kraftfahrzeug-Bremsanlage und Verfahren zum Betreiben derselben
CN115123165A (zh) * 2022-08-31 2022-09-30 万向钱潮股份公司 多轴车线控制动系统
WO2024098335A1 (zh) * 2022-11-10 2024-05-16 华为技术有限公司 制动系统的控制方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102975706A (zh) * 2012-11-27 2013-03-20 奇瑞汽车股份有限公司 汽车制动助力及控制装置
JP5167954B2 (ja) * 2008-05-27 2013-03-21 株式会社アドヴィックス 車両用ブレーキ制御装置
CN104442767A (zh) * 2014-12-23 2015-03-25 清华大学 具有能量回馈和esp功能的液压制动系统及其控制方法
CN106143458A (zh) * 2015-05-13 2016-11-23 罗伯特·博世有限公司 液压机组和用于车辆的制动系统
DE10059348B4 (de) * 1999-12-03 2016-12-01 Continental Teves Ag & Co. Ohg Verfahren zur Ansteuerung einer Bremsvorrichtung in einem Kraftfahrzeug, sowie Bremsvorrichtung
CN109153376A (zh) * 2016-05-18 2019-01-04 罗伯特·博世有限公司 用于车辆的制动系统和用于运行车辆的制动系统的方法
CN109562751A (zh) * 2016-05-27 2019-04-02 日立汽车系统株式会社 液压控制装置以及制动系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4132469A1 (de) * 1991-09-30 1993-04-01 Bosch Gmbh Robert Hydraulische bremsanlage, insbesondere fuer kraftfahrzeuge, mit einer differentialsperre
DE4435622C2 (de) * 1994-10-05 2003-05-22 Bosch Gmbh Robert Zweikreisbremsanlage für ein Kraftfahrzeug
CN105128841B (zh) * 2010-09-17 2018-02-02 丰田自动车株式会社 液压制动系统
US9533665B2 (en) * 2013-05-08 2017-01-03 Toyota Jidosha Kabushiki Kaisha Brake device for vehicle
KR102016372B1 (ko) * 2014-12-08 2019-09-02 주식회사 만도 전자식 브레이크 시스템
KR101638345B1 (ko) * 2015-01-26 2016-07-13 주식회사 만도 전자식 브레이크 시스템
KR20170031396A (ko) * 2015-09-11 2017-03-21 주식회사 만도 전자식 브레이크 시스템
DE102018212016A1 (de) * 2018-07-19 2020-01-23 Robert Bosch Gmbh Verfahren zu einer Prüfung einer hydraulischen Fahrzeugbremsanlage auf Dichtheit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059348B4 (de) * 1999-12-03 2016-12-01 Continental Teves Ag & Co. Ohg Verfahren zur Ansteuerung einer Bremsvorrichtung in einem Kraftfahrzeug, sowie Bremsvorrichtung
JP5167954B2 (ja) * 2008-05-27 2013-03-21 株式会社アドヴィックス 車両用ブレーキ制御装置
CN102975706A (zh) * 2012-11-27 2013-03-20 奇瑞汽车股份有限公司 汽车制动助力及控制装置
CN104442767A (zh) * 2014-12-23 2015-03-25 清华大学 具有能量回馈和esp功能的液压制动系统及其控制方法
CN106143458A (zh) * 2015-05-13 2016-11-23 罗伯特·博世有限公司 液压机组和用于车辆的制动系统
CN109153376A (zh) * 2016-05-18 2019-01-04 罗伯特·博世有限公司 用于车辆的制动系统和用于运行车辆的制动系统的方法
CN109562751A (zh) * 2016-05-27 2019-04-02 日立汽车系统株式会社 液压控制装置以及制动系统

Also Published As

Publication number Publication date
EP4122785A4 (en) 2023-11-01
US20230033528A1 (en) 2023-02-02
CN113525320B (zh) 2023-03-03
CN113525320A (zh) 2021-10-22
EP4122785A1 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
WO2021208594A1 (zh) 汽车中制动系统的液压调节单元、制动系统及控制方法
WO2021063159A1 (zh) 汽车的制动系统、汽车及制动系统的控制方法
CN110944889A (zh) 制动系统
WO2021248396A1 (zh) 踏板感觉模拟系统、液压调节单元及控制方法
CN105189224B (zh) 用于机动车的液压制动系统的控制设备,用于机动车的液压制动系统和用于运行机动车的液压制动系统的方法
US20220234561A1 (en) Method and apparatus for controlling electric hydraulic brake
US20220219665A1 (en) Distributed Braking System in Automobile, Automobile, and Control Method Therefor
WO2021098345A1 (zh) 汽车制动系统中的液压调节单元、汽车及控制方法
CN116648389A (zh) 用于控制制动系统的方法和用于机动车辆的制动系统
CN113561954B (zh) 汽车中制动系统的液压调节单元、制动系统及控制方法
WO2022021106A1 (zh) 液压调节单元、制动系统、车辆及控制方法
WO2021237496A1 (zh) 液压调节单元、制动系统及控制方法
WO2021226887A1 (zh) 液压调节单元、制动系统及控制方法
KR102507683B1 (ko) 차량용 전자제동장치의 유압블럭
CN114620016B (zh) 液压调节装置、液压调节单元、制动系统及控制方法
WO2022016347A1 (zh) 制动控制装置、制动控制系统及控制方法
WO2023272668A1 (zh) 制动系统及制动系统的控制方法
US20240132037A1 (en) Braking System and Method for Controlling Braking System
CN115402281B (zh) 一种电子液压制动系统及方法
US20230148031A1 (en) Control method for electronic hydraulic brake
CN112744203B (zh) 电液制动系统及应用于电液制动系统的方法、车辆
CN218907206U (zh) 冗余线控液压制动系统
WO2023272667A1 (zh) 线控制动系统及控制方法
KR20220098060A (ko) 회생제동이 가능한 자율주행 차량용 브레이크 시스템 및 그 제어방법
CN117962840A (zh) 冗余线控液压制动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021787694

Country of ref document: EP

Effective date: 20221018

NENP Non-entry into the national phase

Ref country code: DE