WO2023272668A1 - 制动系统及制动系统的控制方法 - Google Patents

制动系统及制动系统的控制方法 Download PDF

Info

Publication number
WO2023272668A1
WO2023272668A1 PCT/CN2021/103896 CN2021103896W WO2023272668A1 WO 2023272668 A1 WO2023272668 A1 WO 2023272668A1 CN 2021103896 W CN2021103896 W CN 2021103896W WO 2023272668 A1 WO2023272668 A1 WO 2023272668A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
redundant
braking
isolation valve
input end
Prior art date
Application number
PCT/CN2021/103896
Other languages
English (en)
French (fr)
Inventor
杨维妙
吕尚炜
刘栋豪
张永生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180099802.0A priority Critical patent/CN117561189A/zh
Priority to EP21947621.5A priority patent/EP4349673A1/en
Priority to PCT/CN2021/103896 priority patent/WO2023272668A1/zh
Publication of WO2023272668A1 publication Critical patent/WO2023272668A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/148Arrangements for pressure supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/413Plausibility monitoring, cross check, redundancy

Definitions

  • the present application relates to the field of automobiles, and more particularly, to a braking system and a control method for the braking system.
  • the braking system of a car refers to a system that applies a certain braking force to the wheels of the car to perform a certain degree of mandatory braking.
  • the function of the braking system is to make the driving car decelerate or even stop forcibly according to the requirements of the driver or the controller, or to make the stopped car stably park under various road conditions (for example, on a slope), or to make the Cars traveling downhill maintain a steady speed.
  • the requirements for automobile braking system are also getting higher and higher.
  • Electro-Hydraulic Brake can include brake-by-wire mode, active braking mode and manual braking mode.
  • the controller controls the supercharging device to provide braking force for the wheels in a wire-controlled manner; in the active braking mode, the controller also controls the supercharging device to provide braking force for the wheels.
  • active braking mode In active braking mode, the driver does not need to operate the brake pedal; in manual braking, the brake master cylinder provides braking force for the wheels.
  • the present application provides a braking system, which includes a redundant braking subsystem, which improves the redundant performance of the braking system, and the redundant braking subsystem has a relatively simple structure and is easy to Control difficulty and low cost.
  • a braking system in a first aspect, includes a main braking subsystem 110 and a redundant braking subsystem 120, the main braking subsystem 110 includes a brake master cylinder 119; the redundant braking The subsystem 120 includes a redundant booster device 122 and a third isolation valve 123; wherein, the redundant booster device 122 includes a first input port 33 and a first output port 34, and the first input port 33 is used for input control
  • the first output end 34 of the redundant supercharging device 122 is hydraulically connected to the brake master cylinder 119, and one end of the third isolation valve 123 is hydraulically connected to the first input end 33 of the redundant supercharging device 122 , the other end of the third isolation valve 123 is hydraulically connected to the brake master cylinder 119 .
  • the brake force can be provided for the wheels through the redundant brake subsystem, thereby improving the redundancy performance of the brake system.
  • the redundant braking subsystem has a relatively simple structure, is easy to control and has low cost.
  • the redundant pressurization device 122 further includes a second input port 35 and a second output port 36, and the second input port 35 and the fourth isolation valve 124 One end is hydraulically connected, the other end of the fourth isolation valve 124 is hydraulically connected to the brake master cylinder 119 , and the second output end is hydraulically connected to the brake master cylinder 119 .
  • the redundant supercharging device 122 further includes a second input end 35 and a second output end 36, and the second input end 35 and the first input end 33 ) is hydraulically connected, and the second output end 36 is hydraulically connected to the first output end 34.
  • the main brake subsystem further includes a liquid storage device 118, the liquid storage device 118 is connected to the input end of the redundant booster device 122, and the redundant The input end of the booster device 122 includes at least one of the first input end 33 and the second input end 35 .
  • the redundant braking subsystem 120 further includes a first pressure sensor 121, and the first pressure sensor 121 is connected to the third isolation valve 123 and the braking On the pipeline between the master cylinders 119 , the first pressure sensor 121 is used to sense the pressure of the brake fluid in the brake master cylinder 119 .
  • the redundant braking subsystem 120 further includes a first one-way valve 127, and the first one-way valve 127 and the fourth isolation valve 124 are connected in parallel; Alternatively, the first one-way valve 127 and the third isolation valve 123 are connected in parallel.
  • the redundant booster device 122 is a plunger pump assembly
  • the plunger pump assembly includes a first hydraulic pump and a second hydraulic pump, the first The input end of the hydraulic pump is the first input end 33, the output end of the first hydraulic pump is the first output end 34, the input end of the second hydraulic pump is the second input end 35, the second hydraulic pump The output terminal of is the second output terminal 36 .
  • the redundant braking subsystem 120 further includes first plug connectors (1, 2, 3, 4), and the first plug connectors (1 , 2, 3, 4) are used to connect the brake master cylinder 119.
  • the redundant braking subsystem 120 further includes a second plug connector (5, 6), and the second plug connector (5, 6) is used for The redundant braking subsystem 120 is connected to the fluid reservoir (118).
  • the main braking subsystem further includes a main booster device 111, a first isolation valve 116, a second isolation valve 117, a target braking pipeline (114, 115), at least one liquid inlet valve (11, 12, 13, 14) and at least one liquid outlet valve (15, 16, 17, 18); wherein, the first isolation valve 116 and the second isolation valve 117 are used to block The brake fluid in the target brake pipeline (114, 115); the main booster device 111 is used to increase the pressure of the brake fluid in the target brake pipeline (114, 115), through the at least one liquid inlet valve (11, 12, 13, 14) provide braking force for at least one brake wheel cylinder (23, 24, 25, 26); or, reduce the braking force in at least one brake wheel cylinder (23, 24, 25, 26).
  • the main braking subsystem further includes the pedal feel simulation system 113, the pedal feel simulation system 113 is used to collect the required braking force, the pedal feel simulation system 113 includes a pedal feel simulator 106, a control valve 105 and a second pressure sensor 104; wherein, the pedal feel simulator 106 is connected to the target brake pipeline, and the control valve 105 is set at the pressure input of the pedal feel simulator 106.
  • the control valve 105 is used to control the on-off of the pedal feeling simulator 106; the second pressure sensor 104 is connected between the pressure input port of the pedal feeling simulator 106 and the On the pipeline between the target brake pipelines (115), the second pressure sensor 104 is used to sense the pressure of the brake fluid in the brake master cylinder 119.
  • a hydraulic device which is characterized in that the hydraulic device includes a redundant booster device 122, a third isolation valve (123) and a first connection interface (1, 2, 3, 4); wherein,
  • the redundant supercharging device 122 includes a first input end 33 and a first output end 34, the first input end (33) is used for inputting brake fluid, the first output end (34) and the first output end (34)
  • a first interface in a connection interface (1, 2, 3, 4) is hydraulically connected, and the first interface is at least one of the first connection interfaces (1, 2, 3, 4);
  • the third One end of the isolation valve (123) is hydraulically connected to the first input port 33 of the redundant booster device 122, and the other end of the third isolation valve (123) is connected to the first connection interface (1, 2, 3 ,4)
  • the second interface in 4) is hydraulically connected; the first connection interface (1, 2, 3, 4) is used for the hydraulic connection between the hydraulic device and the brake master cylinder.
  • the hydraulic device further includes: a second input end 35 and a second output end 36, and the second output end of the redundant booster device 122 is connected to the The third interface in the first connection interface (1, 2, 3, 4) is hydraulically connected, and the third interface is at least one of the plug joints (1, 2, 3, 4); the fourth isolation Valve 124, one end of the fourth isolation valve 124 is hydraulically connected to the second input end 35 of the redundant booster device 122, and the other end of the fourth isolation valve 124 is connected to the first connection interface (1, 2,3,4) The fourth interface hydraulic connection.
  • the hydraulic device further includes: a second input end 35 and a second output end 36, and the second input end 35 and the second input end 36 of the redundant booster device 122
  • the first input end 33 is hydraulically connected
  • the second output end 36 is hydraulically connected to the first output end 34 .
  • the hydraulic device further includes: a liquid storage device 118, the liquid storage device 118 is connected to the input end of the redundant booster device 122, the The input terminals of the redundant boosting device 122 include at least one of the first input terminal 33 and the second input terminal (35).
  • the hydraulic device further includes: a second connection interface (5, 6), and the second connection interface (5, 6) is used to connect the redundant The input end of the redundant booster device 122 and the liquid storage device 118 , the input end of the redundant booster device 122 includes at least one of the first input end 33 and the second input end 35 .
  • the hydraulic device further includes: a first pressure sensor 121, the first pressure sensor 121 is connected to the third isolation valve 123 and the second On the pipeline between the interfaces, the first pressure sensor 121 is used to sense the pressure of the brake fluid in the master brake cylinder 119 .
  • the hydraulic device further includes: a first one-way valve (127), the first one-way valve (127) and the fourth isolation valve ( 124) in parallel; or, the first one-way valve (127) and the third isolation valve (123) are connected in parallel.
  • the redundant booster device (122) is a plunger pump assembly
  • the plunger pump assembly includes a first hydraulic pump and a second hydraulic pump
  • the input end of the first hydraulic pump is the first input end (33)
  • the output end of the first hydraulic pump is the first output end (34)
  • the input end of the second hydraulic pump is The second input end (35)
  • the output end of the second hydraulic pump is the second output end (36).
  • a method for controlling a braking system includes a main braking subsystem (110) and a redundant braking subsystem (120), and the main braking subsystem 110 includes a braking master cylinder 119;
  • the redundant brake subsystem 120 includes a redundant booster device 122 and a third isolation valve 123; wherein, the redundant booster device 122 includes a first input end 33 and a first output end 34, The first input port (33) is used to input brake fluid so that the redundant supercharging device 122 outputs hydraulic pressure, and the first output port 34 of the redundant supercharging device 122 is connected to the brake master cylinder 119 Hydraulically connected, one end of the third isolation valve 123 is hydraulically connected to the first input end 33 of the redundant booster device 122, and the other end of the third isolation valve 123 is hydraulically connected to the brake master cylinder 119
  • the method includes: the redundant controller controls the third isolation valve to be disconnected; the redundant controller controls the redundant booster device 122 to brake the Wheel cylinders (23, 24,
  • the redundant pressurization device 122 further includes a second input port 35 and a second output port 36, and the second input port 35 and the fourth isolation valve One end of 124 is hydraulically connected, the other end of the fourth isolation valve 124 is hydraulically connected to the brake master cylinder 119, and the second output end is hydraulically connected to the brake master cylinder 119; the method also includes: The redundant controller controls the disconnection of the fourth isolation valve; the redundant controller controls the redundant booster device 122 to provide the control valve through the first output terminal 34 and the second output terminal. Moving wheel cylinders (23, 24, 25, 26) provide hydraulic pressure.
  • first information is received, and the first information indicates that the main booster device is faulty.
  • a computer-readable storage medium including a computer program, which, when the computer program is run on a computer, causes the computer to execute the method according to any one of claims 20 to 22.
  • FIG. 1 is a schematic diagram of a braking system 100 according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another braking system 100 according to the embodiment of the present application.
  • FIG. 3 is a schematic diagram of another braking system 100 according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another braking system 100 according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another braking system 100 according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a flow path of brake fluid in the brake system of the embodiment of the present application.
  • Fig. 7 is a schematic diagram of another flow path of brake fluid in the brake system of the embodiment of the present application.
  • Fig. 8 is a schematic diagram of another flow path of brake fluid in the brake system of the embodiment of the present application.
  • Fig. 9 is a schematic diagram of another flow path of brake fluid in the brake system of the embodiment of the present application.
  • Fig. 10 is a schematic diagram of another flow path of brake fluid in the brake system of the embodiment of the present application.
  • Fig. 11 is a schematic flowchart of a method for controlling a braking system provided by an embodiment of the present application.
  • the braking system of the present application is applicable to automatic driving vehicles or new energy vehicles, including passenger vehicles and commercial vehicles with automatic driving functions, and passenger vehicles and commercial vehicles using new energy.
  • FIG. 1 is a schematic diagram of a braking system 100 according to an embodiment of the present application. As shown in FIG. 1 , the braking system 100 includes a main braking subsystem and a redundant braking subsystem 120 .
  • the main brake subsystem may include a main booster device 111, a mechanical brake input device 112, a pedal feel simulation system 113, a first brake line 114, a second brake line 115, a first isolation valve 116, a second Two isolation valves 117, liquid inlet valves (11, 12, 13, 14), liquid outlet valves (15, 16, 17, 18), liquid storage device 118 and brake master cylinder 119.
  • the mechanical brake input device 111 includes a brake pedal 101 , a pedal displacement sensor 102 and a push rod 103 .
  • the brake pedal 101 pushes the piston in the brake master cylinder 119 through the push rod 103, and the brake hydraulic pressure in the hydraulic chamber of the brake master cylinder 119 is injected into the first brake pipeline 114 and the second brake line 115.
  • the pedal displacement sensor 102 is used to detect the displacement generated when the brake pedal 101 pushes the piston, or in other words, detect the relative displacement between the piston and the cylinder body of the brake master cylinder 119 .
  • the pedal feel simulation system 113 includes a pedal feel simulator 106, and the pedal feel simulator 106 is connected to the second brake pipeline 115, so that the brake fluid in the second brake pipeline 115 can flow into the pedal feel simulator 106, Make the pedal feel simulator 106 determine the displacement of the piston in the brake master cylinder 119 relative to the brake cylinder by sensing the pressure of the brake fluid in the second brake pipeline 115; the pedal feel simulator 106 can also use the detected The pressure of the brake fluid is sent to the main controller so that the controller can determine the braking force of the wheels.
  • a control valve 105 can also be set, and when the pedal feel simulator 106 is not required to work, the control valve 105 can be controlled to make It is in an open state to isolate the second brake line 115 from the pedal feel simulator 106 .
  • a pressure sensor 104 may also be provided, and the pressure sensor 104 is used to detect the second braking force regulated by the brake master cylinder 119.
  • the pressure of the brake fluid in the pipeline 115; the pressure sensor 104 is also used to send the indicated pressure information to the main controller, so that the main controller can determine the braking force applied to the wheels of the vehicle based on the pressure information.
  • the main pressurizing device 111 can be used to pressurize the brake fluid of the first brake pipeline 114 and the second brake pipeline 115, so as to increase the pressure applied to the first group of wheels 131 and the second group of wheels 132 of the vehicle. on the braking force.
  • the supercharging device 111 may include a motor and a hydraulic cylinder, the motor drives the hydraulic cylinder, and injects the brake hydraulic pressure in the hydraulic cylinder into the first brake pipeline 114 and the second brake pipeline 115, so as to increase the The pressure of the brake fluid in the brake line.
  • the pressure outlet ports of the main booster device 111 are respectively connected to the pressure inlet ports of the first brake pipeline 114 and the second brake pipeline 115; it should be understood that the first brake pipeline 114 includes two pressure outlet ports ( 7, 8), the two pressure outlet ports (7, 8) are connected with the pressure inlet ports (19, 20) of the brake wheel cylinders of the first group of wheels; the second brake pipeline 115 includes two pressure outlet ports Ports (9, 10), the two pressure outlet ports (9, 10) are connected to the pressure inlet ports (21, 22) of the brake wheel cylinders of the second set of wheels.
  • a first isolation valve 116 is provided at the pressure outlet port of the pressure booster 111 and the first chamber 107 of the brake master cylinder 119, and the first isolation valve 116 can be controlled to be in a conduction or disconnection state to control the pressure of the first chamber. 107 is connected or disconnected from the first brake pipeline 114 .
  • a second isolation valve 117 may also be provided at the pressure outlet port of the second chamber 108, and the connection between the second chamber 108 and the second brake pipeline can be controlled by controlling the second isolation valve 117 to be in a conduction or disconnection state. 115 is turned on or off.
  • liquid inlet valves (11, 12, 13, 14) can be arranged on the corresponding brake pipelines for controlling the braking force of each wheel, so as to independently manage the braking force applied to each wheel. That is, control the liquid inlet valve corresponding to the wheel that needs to apply the braking force to be in the on state, and control the liquid inlet valve corresponding to the other wheels that do not need to apply the braking force to be in the off state.
  • the brake fluid in each brake pipeline can flow to the brake wheel cylinder of the wheel through the corresponding brake pipeline; when the liquid inlet valve is in the disconnected state, the brake pipeline The brake fluid in the brake system cannot flow to the brake wheel cylinder of the wheel through the corresponding brake line.
  • the first brake pipeline 114 may include a first branch 1141 and a second branch 1142 to respectively control the braking force of two wheels in the first group of wheels 131 .
  • the pressure outlet port of the first branch 1141 is connected with the pressure inlet port 19 of the brake wheel cylinder 23 of the first group of wheels 131
  • the pressure outlet port of the second branch 1142 is connected with the brake wheel cylinder of the first group of wheels 131.
  • the pressure of 24 is connected to port 20.
  • a liquid inlet valve 11 is arranged between the pressure inlet port 19 of the first branch 1141 and the pressure inlet port 19 of the brake wheel cylinder 19, a liquid inlet valve 11 is arranged.
  • the pressure of the medium brake fluid increases the braking force applied to the wheel brake cylinder 23.
  • a liquid inlet valve 12 is arranged between the pressure inlet port of the second branch 1142 and the pressure inlet port 20 of the brake wheel cylinder 24, arranged.
  • the pressure of the medium brake fluid increases the braking force applied to the brake wheel cylinder 24
  • the above-mentioned first group of wheels is different from the second group of wheels, the first group of wheels includes the right front wheel and the left front wheel, and the second group of wheels includes the right rear wheel and the left rear wheel, that is, the main brake subsystem 100 is H-type layout.
  • the first set of wheels includes a right front wheel and a left rear wheel
  • the second set of wheels includes a left front wheel and a left rear wheel, that is, the brake system 100 is arranged in an X shape. This application does not limit this.
  • the brake fluid flows from the brake wheel cylinder to the booster device, it can also be used at both ends of the inlet valve (11, 12, 13, 14) (pressure outlet port and pressure inlet port). Parallel check valve.
  • outlet valves (15, 16, 17, 18) can be arranged on the brake lines controlling each wheel in order to independently manage the reduction of the braking force on each wheel. That is, control the liquid outlet valves corresponding to the wheels that need to reduce the braking force to be in the on state, and control the liquid outlet valves corresponding to other wheels that do not need to reduce the braking force to be in the off state.
  • the brake fluid in the brake pipeline can flow to the liquid outlet pipeline 109 through the liquid outlet valve, and then flow to the liquid storage device 118 through the liquid outlet pipeline 109 for recycling.
  • the brake fluid in the liquid outlet pipeline 109 is blocked by the liquid outlet valve and cannot flow to the liquid storage device 118 .
  • a fluid outlet valve 15 is provided between the pressure inlet port 7 of the first branch 1141 of the first brake pipeline 114 and the fluid storage device 118 .
  • the brake fluid in the first branch 1141 can flow to the liquid outlet pipeline 109 through the liquid outlet valve 13, and finally flow into the liquid storage device 118, so as to reduce the impact of the brake fluid on the brake fluid.
  • a liquid outlet valve 16 is provided between the pressure inlet port 8 of the second branch 1142 and the liquid storage device 118 .
  • the brake fluid in the second branch 1142 can flow to the liquid outlet pipeline 109 through the liquid outlet valve 16, and finally flow into the liquid storage device 118, so as to reduce the impact of the brake fluid on the brake fluid.
  • the solution of the liquid outlet valve and the solution of the liquid inlet valve can be configured separately for use in the braking system, and can also be used in conjunction with each other in a braking system, and the cooperation mode of the liquid inlet valve and the liquid outlet valve can also be varied kind.
  • the first branch 1141 can also be divided into two parallel independent branches, and the liquid inlet valve and the liquid outlet valve are respectively arranged on these two independent branches, which is not limited in this application.
  • the braking system 100 can implement a mechanical braking mode, a wire-controlled braking mode and an active braking mode through the main braking subsystem.
  • the mechanical braking mode is that the driver depresses the brake pedal, and the four brake wheel cylinders (23, 24, 25 , 26) provide braking force
  • the brake-by-wire mode is that the driver steps on the brake pedal to output the required braking force
  • the main controller controls the main supercharging device 111 to four brake wheel cylinders (23, 26) based on the required braking force.
  • the main controller judges that the vehicle needs to perform active braking mode and determines the required braking mode by analyzing information such as environmental conditions, vehicle status, ADAS status and driver input. Power, based on the required braking force, the main controller controls the main supercharging device 111 to provide braking force for the four brake wheel cylinders (23, 24, 25, 26).
  • the braking performance of the braking system 100 can be maintained through the redundant braking subsystem 120 .
  • the redundant brake subsystem 120 may include a first pressure sensor 121, a redundant booster device 122, a third isolation valve 123, a fourth isolation valve 124, a first redundant brake pipeline 125, a second redundant brake Moving line 126 and first one-way valve 127.
  • the first pressure sensor 121 is used to detect the pressure of the brake fluid in the first cavity 107 of the brake master cylinder 119, and the first pressure sensor 121 is also used to send the indicated pressure information to the redundant controller for redundant The controller determines the braking force applied to the wheels of the vehicle based on the pressure information.
  • the first pressure sensor 121 may be connected to the second branch 1252 of the first redundant brake pipeline 125 .
  • the redundant pressurization device 122 may be a plunger pump assembly, which may include a motor and at least one hydraulic pump.
  • the application does not limit the specific structure of the plunger pump assembly.
  • the plunger pump assembly may include The first hydraulic pump and the second hydraulic pump, or the plunger pump assembly may also include four hydraulic pumps.
  • the first hydraulic pump is connected to the first branch 1251 of the first redundant brake pipeline 125, or in other words, the first hydraulic pump
  • the first branch 1251 of a redundant brake pipeline 125 is connected to the first input end 33 of the redundant booster device 122, the first input end 33 can be understood as the input end of the first hydraulic pump, through the redundant
  • the first input port 33 of the supercharging device 122 can input the brake fluid in the liquid storage device 118, so that the redundant supercharging device 122 increases the brake fluid volume of the brake master cylinder 119 through the first output port 34.
  • the second hydraulic pump is connected to the first branch 1261 of the second redundant brake pipeline 126, or in other words, the first branch 1261 of the second redundant brake pipeline 126 is connected to the redundant booster
  • the second input end 35 of the device 122, the second input end 35 can be understood as the input end of the second hydraulic pump. and output the brake fluid through the second output port 36 of the redundant booster device 122 to increase the pressure of the brake fluid in the brake master cylinder 119 .
  • the motor is used to drive the first hydraulic pump and the second hydraulic pump, and press the brake fluid in the first redundant brake pipeline 125 and the second redundant brake pipeline 126 into the first brake fluid through the brake master cylinder 119
  • a brake pipeline 114 and a second brake pipeline 115 are used to increase the pressure of the brake fluid in each brake pipeline.
  • a third isolation valve 123 is provided between the pressure inlet port 31 of the first redundant brake line 125 and the pressure inlet port 28 of the brake master cylinder 119, and the third isolation valve 123 can be controlled to be in The conduction or disconnection state controls the connection or disconnection between the first cavity 107 of the brake master cylinder 119 and the liquid storage device 118; the pressure inlet port 32 of the second redundant brake pipeline 126 is connected to the brake master cylinder Between the pressure inlet port 30 of 119, a fourth isolation valve 124 is provided, and the second chamber 108 of the brake master cylinder 119 and the liquid storage device 118 can be controlled by controlling the fourth isolation valve 124 to be in a conduction or disconnection state. connected or disconnected.
  • a first one-way valve 127 is connected in parallel at both ends (the pressure outlet port and the pressure inlet port) of the fourth isolation valve 124 .
  • the first one-way valve 127 can prevent the brake fluid from flowing back, that is, the brake fluid flows from the brake master cylinder 119 to the fluid storage device 118 .
  • the master cylinder piston returns to the right position, if there is leakage between the brake master cylinder (119) and the pedal feel simulator (106), or the fourth isolation valve (124) is stuck, the brake master cylinder cannot be activated. (119) perform liquid replenishment, at this time, the liquid replenishment can be carried out through the first one-way valve (127), and the first one-way valve (127) can also be the fluid inlet valve for the wheel cylinder.
  • the redundant braking subsystem 120 may also include redundant braking subsystem plug connectors (1, 2, 3, 4, 5, 6), and the redundant braking subsystem plug connector (1 , 2, 3, 4, 5, 6) are used for the connection between the redundant braking subsystem 120 and the main braking subsystem, and the redundant braking subsystem plug connectors (1, 2, 3, 4 ) are respectively provided at the pressure inlet ports (27, 28, 29, 30) of the brake master cylinder 119, or in other words, provided at the first branch 1251 and the second branch 1252 of the first redundant brake pipeline 125, And the pressure outlet ports of the first branch 1261 and the second branch 1262 of the second redundant brake pipeline 126; the redundant brake subsystem plug connectors (5, 6) are located at the first redundant brake
  • the pressure inlet ports (31, 32) of the pipeline 125 and the second redundant brake pipeline 126, the braking system is shown in Figure 2; or, the redundant braking subsystem 120 can also only include redundant Plug connectors (5, 6) of the brake subsystem, the brake system is shown in Figure 3.
  • the redundant braking subsystem 120 can be integrated with the main braking subsystem as a system to provide braking force for the automobile, or it can be set separately to provide braking force for the automobile, or through the plug connector (1, 2, 3, 4, 5, 6) Connect and adapt different main braking subsystems to provide braking force for the car.
  • the braking performance of the braking system can be maintained through the redundant braking subsystem 120.
  • the redundant braking subsystem 120 has a relatively simple structure and is easy to control And the cost is low.
  • the redundant braking subsystem 120 of the present application can be adapted to various forms of primary braking subsystems.
  • the brake master cylinder 119 in the master brake subsystem is a serial dual-chamber brake master cylinder.
  • the brake master cylinder 119 can also be in other forms, for example, a brake master cylinder of decoupling design, as shown in the brake master cylinder 119 in FIG.
  • the brake master cylinder 119 of this decoupling design includes a first chamber 107, the second chamber 108 and the third chamber 109, when the brake master cylinder is designed for this decoupling in the main brake subsystem, the first branch 1261 and the second branch of the second redundant brake pipeline 126 1262
  • the pressure outlet port can be respectively connected to the second cavity 108 and the third cavity 109 of the brake master cylinder 119 .
  • the braking system 100 is shown in FIG. 4 .
  • the main braking subsystem may also be a single-chamber brake master cylinder, as shown in the brake master cylinder 119 in FIG. 5 .
  • the pressure inlet ports of the first brake pipeline 114 and the second brake pipeline 115 are merged, or in other words, the main brake subsystem only includes the first brake pipeline 114, the first The brake pipeline 114 includes four branches (1141, 1142, 1151, 1152), the pressure outlet ports of the four branches are (7, 8, 9, 10), and the pressure outlet ports of the four branches (7, 8 .
  • the braking system 100 is shown in FIG. 5, wherein the redundant braking subsystem 120 may include a first pressure sensor 121, a redundant booster device 122, a third isolation valve 123, a first redundant brake pipe Road 125 and the first one-way valve 127.
  • the first one-way valve 127 is connected in parallel at both ends of the third isolation valve 123 (pressure outlet port and pressure inlet port); the first redundant brake pipeline 125 may also include a third branch 1253, the third branch 1253 connects the liquid storage device 118 and the brake master cylinder 119 through the second hydraulic pump of the redundant supercharging device 122, and one end of the third branch 1253 is connected between the first hydraulic pump of the redundant supercharging device 122 and the liquid storage device 118 Meanwhile, the other end of the third branch 1253 is connected between the second hydraulic pump of the redundant booster device 122 and the brake master cylinder 119 .
  • the motor of the redundant supercharging device 122 drives the first hydraulic pump and the second hydraulic pump, and presses the brake fluid into the master brake cylinder 119 through the three branches of the first redundant brake pipeline 125.
  • the pressure of the brake fluid in the brake pipeline to increase the braking force applied to each brake wheel cylinder.
  • the braking system 100 may include three braking modes: a mechanical braking mode, a brake-by-wire mode and an active braking mode.
  • the mechanical braking mode can be understood as providing braking force to the four brake wheel cylinders (23, 24, 25, 26) through the brake master cylinder 119 via the first brake pipeline 114 and the second brake pipeline 115 , at this time, only the main braking subsystem 110 can provide braking force for the wheels;
  • the brake-by-wire mode can be understood as, the controller (redundant controller or main controller) controls the main The supercharging device 111 or the redundant supercharging device 122 provides braking force for the wheels;
  • the active braking mode can be understood as controlling the main supercharging device 111 or the redundant supercharging device 122 by the controller (redundant controller or main controller)
  • the difference between the active braking mode and the brake-by-wire mode is that the driver does not need to operate the brake pedal 101 in the active braking mode to provide braking force for the wheels.
  • Active braking mode
  • the first isolation valve 116 and the second isolation valve 117 are normally open valves
  • the liquid inlet valves (11, 12, 13, 13) are normally open valves
  • the liquid outlet valves (15, 16, 17, 18) is a normally closed valve
  • the third isolation valve 123 and the fourth isolation valve 124 are normally open valves
  • the control valve 105 is a normally closed valve.
  • normally open can be understood as the isolation valve or control valve is in a conducting state, and normally closed as the isolation valve or control valve is in a disconnected state; secondly, the above normally open and normally closed states are not given to the isolation valve Default state of the isolation valve or control valve when power is supplied to the control valve.
  • power can be supplied to the isolation valve or control valve in the state to be adjusted, so as to control the isolation valve or control valve to be in a disconnected state or a conductive state.
  • the brake-by-wire modes may include a primary boost brake-by-wire mode and a redundant boost brake-by-wire mode.
  • the main controller controls the first isolation valve 116 and the second isolation valve 117 to be in the disconnected state, and the control valve 105 is in the conductive state, so that the pedal feeling simulator 106 and the second brake pipe The road 115 is connected, and other control valves in the braking system 100 maintain the above-mentioned default state.
  • the driver depresses the brake pedal 101, so that the piston of the brake master cylinder 119 is displaced relative to the brake master cylinder 119, and the brake hydraulic pressure in the brake master cylinder 119 is injected into the second brake pipeline 115 and the second brake line 115.
  • a brake pipeline 114, the brake fluid in the two brake pipelines is blocked at the first isolation valve 116 and the second isolation valve 117, wherein the brake fluid in the second brake pipeline 115 It will be pressed into the pedal feeling simulator 106 through the control valve 105; the pressure sensor 104 measures the pressure of the brake fluid in the second brake pipeline 115 to determine the braking force required by the driver, and then feeds the braking force back to the main booster device 111 ; The main supercharging device 111 provides braking force for the brake wheel cylinders (23, 24, 25, 26) according to the required braking force. Wherein, the path of brake fluid flow in the brake system is shown in FIG. 6 .
  • a single brake wheel cylinder can be realized by controlling a single liquid inlet valve and a liquid outlet valve. Cylinder pressurization, pressure maintenance and decompression operations.
  • the piston of the brake master cylinder 119 returns to the initial position under the action of the return spring, and the brake fluid in the pedal feeling simulator 106 is returned to the second brake fluid in the opposite direction by the control valve 105. chamber 108, and finally flows into the liquid storage device 118; the hydraulic cylinder in the main supercharging device 111 works in reverse, so that the pressure in the brake wheel cylinder (23, 24, 25, 26) is greater than that in the hydraulic cylinder in the main supercharging device 111
  • the brake fluid is returned from the brake wheel cylinders (23, 24, 25, 26) to the main booster through the corresponding liquid inlet valves (11, 12, 13, 13) and check valves along the brake pipeline.
  • first isolation valve 116 and the second isolation valve 117 it is also possible to control the first isolation valve 116 and the second isolation valve 117 to be in a conduction state, so that the brake fluid passes through the first isolation valve 116 and the second isolation valve 116 from the brake wheel cylinders (23, 24, 25, 26).
  • the isolation valve 117 , the second chamber 222 and the first chamber 212 return to the reservoir 118 .
  • the conduction of the liquid outlet valves (15, 16, 17, 18) can be further controlled to return the brake fluid in the brake wheel cylinders (23, 24, 25, 26) to the storage tank.
  • Liquid device 118 Liquid device 118.
  • failure of the main boost brake-by-wire mode includes, but is not limited to, failure of the main boost device 111.
  • the other control valves in the braking system 100 maintain the above default states.
  • the driver depresses the brake pedal 101, pushes the piston of the brake master cylinder 119 to move relative to the brake master cylinder 119 through the push rod 103, and injects the brake hydraulic pressure in the brake master cylinder 119 into the second brake pipe.
  • the redundant controller measures the pedal displacement according to the pedal displacement sensor 102, determines the required braking force of the driver, and feeds back the required braking force to the redundant supercharging device 122; redundant supercharging The device 122 drives the motor according to the required braking force, compresses the brake fluid through the first hydraulic pump and the second hydraulic pump, so that the brake fluid passes through the first brake pipeline 114 and the second brake pipeline 115 to become the brake wheel cylinder ( 23, 24, 25, 26) provide braking force.
  • the path of brake fluid flow is shown in FIG. 7 .
  • the piston of the brake master cylinder 119 returns to the initial position under the action of the return spring, and the brake fluid is passed through the first isolation cylinder by the brake wheel cylinders (23, 24, 25, 26).
  • the valve 116 and the second isolation valve 117 are returned to the brake master cylinder 118 , and the first hydraulic pump and the second hydraulic pump of the redundant booster device 122 work in reverse so that the brake fluid returns to the fluid storage device 118 .
  • the fluid outlet valves (15, 16, 17, 18) can be further opened to allow the brake fluid in the brake wheel cylinders (23, 24, 25, 26) to flow back to the fluid storage device 118 in.
  • the active braking modes may include a main boost active braking mode and a redundant boost active braking mode.
  • the main controller judges that the vehicle needs to perform active braking mode and determine the required braking force by analyzing information such as environmental conditions, vehicle status, ADAS status and driver input, then the main controller controls the first The first isolation valve 116 and the second isolation valve 117 are in disconnected state, and other control valves in the braking system 100 maintain the aforementioned default state.
  • the main controller sends the required braking force to the main supercharging device 111; the main supercharging device 111 provides braking pressure for the brake wheel cylinders (23, 24, 25, 26) based on the braking force.
  • the main supercharging active braking mode the flow path of the brake fluid in the braking system 100 is shown in FIG. 8 .
  • the hydraulic cylinder of the main supercharging device 111 works in reverse under the action of the motor, so that the brake fluid passes through the respective liquid inlet valves (11) from the brake wheel cylinders (23, 24, 25, 26) respectively. , 12, 13, 13) and the one-way valve respectively return to the main booster 111 hydraulic cylinder along the brake pipeline.
  • the fluid outlet valves (15, 16, 17, 18) can be further opened to allow the brake fluid in the brake wheel cylinders (23, 24, 25, 26) to flow back to the reservoir. Liquid device 118.
  • failure of the main supercharging active braking mode includes but is not limited to failure of the main supercharging device 111 .
  • the redundant controller controls the third isolation valve 123 and the fourth isolation valve 124 to be in the disconnected state, and the other control valves maintain the above default state.
  • the redundant controller sends the required braking force to the redundant supercharging device 122; the redundant supercharging device 122 drives the motor according to the required braking force, compresses the brake fluid through the first hydraulic pump and the second hydraulic pump, and makes the brake fluid pass through
  • the brake master cylinder 119, the first brake pipeline 114 and the second brake pipeline 115 provide braking force for the brake wheel cylinders (23, 24, 25, 26).
  • the determination of the required braking force is similar to that in the main supercharging active braking mode, and will not be described again for the sake of brevity.
  • the flow path of the brake fluid in the braking system 100 is shown in FIG. 9 .
  • the hydraulic pump of the redundant booster device 122 works in reverse under the action of the motor, so that the brake fluid returns to the fluid storage device 118 .
  • the fluid outlet valves (15, 16, 17, 18) can be further opened to allow the brake fluid in the brake wheel cylinders (23, 24, 25, 26) to flow back to the reservoir. Liquid device 118.
  • all isolation valves or control valves in the braking system 100 are in the default state, the driver depresses the brake pedal 101, and the brake fluid in the second chamber 108 is pushed into the second brake pipe Road 115, push the brake fluid in the first chamber 107 into the first brake pipeline 114, and flow into the brake wheel cylinders (23, 24, 25, 26) through the liquid inlet valves (11, 12, 13, 13) , to achieve human braking.
  • the braking system 100 and its various braking modes have been introduced above, and the control method based on the above-mentioned braking system provided by the embodiment of the present application will be described below with reference to FIG. 11 .
  • the method may be executed by a redundant controller, and the method may include the following steps. Wherein, for the sake of brevity, any one of the first brake pipeline 114 and the second brake pipeline 115 is referred to as a "target brake pipeline".
  • the method may include S1110, determining that the pressure providing device on the target brake pipeline in the brake system is faulty.
  • the brake system 100 may be any one of the brake systems 100 shown in FIGS. 1 to 5 , and the pressure supply device may include a main booster device 111 .
  • the failure of the pressure supply device on the target brake pipeline in the braking system 100 can be determined by the redundant controller, or can also be determined by the redundant controller through other units, for example, the redundant controller through the main controller or Other components in the brake system, such as test valves in the brake system determine.
  • the method may further include determining the working mode of the braking system 100 . If the braking system 100 works in the active control braking mode, the method further includes that the redundant controller controls the third isolation valve 123 and the fourth isolation valve 124 to be in a disconnected state. By controlling the third isolation valve 123 and the fourth isolation valve 124 to be in the disconnected state, it is possible to prevent the brake fluid in the brake master cylinder 119 from flowing back into the fluid storage device 118 during braking.
  • controlling the redundant supercharging device 122 to work includes controlling the redundant supercharging device 122 to drive the motor according to the required braking force, compressing the brake fluid through the first hydraulic pump and the second hydraulic pump, so that the braking The fluid provides braking force for the brake wheel cylinders (23, 24, 25, 26) through the first brake pipeline 114 and the second brake pipeline 115.
  • the redundant controller controls the operation of the redundant supercharging device, so that the hydraulic pressure in the target brake pipeline rises, and the pressure of the brake fluid provides braking force for the brake wheel cylinder, which is beneficial to improve the brake pressure. Redundancy performance of the dynamic system.
  • the controllers or redundant controllers described in the embodiments of the present application may be independent controllers or the same controller.
  • the controller may be a vehicle domain controller or an intelligent driving domain controller, and this application does not limit the form of the controller.
  • the braking system 100 provided in the present application can be applied in a car, and the car includes a first set of wheels 131 , a second set of wheels 132 and any one of the braking systems 100 described above. For the sake of brevity, the braking system 100 will not be described in detail.
  • the control valve used to control the connection or disconnection of the liquid inlet pipeline may be called a “liquid inlet valve” or a “boosting valve”.
  • the controller used to control the connection or disconnection of the return line can be called a “liquid outlet valve” or a “pressure relief valve”.
  • the control valve used to isolate the two-stage braking subsystem may be referred to as an "isolation valve”.
  • the above-mentioned control valve may be a commonly used valve in an existing braking system, for example, a solenoid valve, etc., which is not specifically limited in this embodiment of the present application.
  • connection port between the control valve and the brake pipeline can be represented by the first end and the second end.
  • the brake fluid is between the first end and the second end.
  • the flow direction is not limited. For example, when the control valve is in the on state, the brake fluid can flow from the first end of the control valve to the second end of the control valve, or, when the control valve is in the off state, the brake fluid can flow from the control valve The second end flows to the first end of the control valve.
  • first brake pipeline 114 can be understood as one or more sections of brake pipelines that achieve a certain function.
  • first brake pipeline 114 may include a multi-section brake pipeline for connecting the first cavity 107 of the brake master cylinder 119 and the first isolation valve 116 .
  • the hydraulic adjustment unit in this application may be a unit used to adjust the brake fluid pressure in the brake system, including one or more brake lines mentioned above, as well as control valves, one-way components such as valves.
  • the above-mentioned hydraulic adjustment unit may also include components such as a hydraulic cylinder, a piston, and a push rod in the hydraulic adjustment device.
  • the braking system may also include one or more elements of the brake wheel cylinder, the fluid storage device, and the brake pedal.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to implement the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Abstract

一种制动系统及制动系统的控制方法,该制动系统包括主制动子系统(110)和冗余制动子系统(120),主制动子系统(110)包括制动主缸(119);冗余制动子系统(120)包括冗余增压装置(122)和第三隔离阀(123);其中,冗余增压装置(122)包括第一输入端(33)与第一输出端(34),第一输入端(33)用于输入制动液,冗余增压装置(122)的第一输出端(34)与制动主缸(119)液压连接,第三隔离阀(123)的一端与冗余增压装置(122)的第一输入端(33)液压连接,第三隔离阀(123)的另一端与所述制动主缸(119)液压连接。通过该冗余制动子系统能够提高制动系统的冗余性能,且该冗余制动子系统结构较为简单,易于控制且成本较低。

Description

制动系统及制动系统的控制方法 技术领域
本申请涉及汽车领域,并且更具体地,涉及制动系统及制动系统的控制方法。
背景技术
汽车的制动系统是指通过对汽车的车轮施加一定的制动力,从而对其进行一定程度的强制制动的系统。制动系统作用是使行驶中的汽车按照驾驶员或者控制器的要求进行强制减速甚至停车,或者使已停驶的汽车在各种道路条件下(例如,在坡道上)稳定驻车,或者使下坡行驶的汽车保持车速稳定。随着汽车电动化和智能化的发展,对汽车制动系统的要求也越来越高。例如,随着自动驾驶等级的提升,需要降低制动系统的运行对驾驶员的依赖,使得对制动系统的冗余性能的要求越来越高,即使制动系统的某一部件或多个部件失效后汽车仍具有制动功能。
电液制动系统(Electro-Hydraulic Brake,EHB)作为流行的制动系统,可以包含线控制动模式、主动制动模式及人工制动模式。线控制动中由控制器以线控的方式控制增压装置为车轮提供制动力;主动制动模式中同样由控制器控制增压装置为车轮提供制动力,与线控制动模式不同的是,在主动制动模式下可以不需要驾驶员操作制动踏板;人工制动中由制动主缸为车轮提供制动力。在制动系统的上述制动模式中,当制动管路上的压力提供装置(增压装置和制动主缸)失效后,需要通过冗余制动模块为车轮提供制动力,提高制动系统的冗余性能。现有技术中冗余制动模块结构较复杂,增加了制动系统的控制难度及成本。
发明内容
本申请提供一种制动系统,该制动系统包括冗余制动子系统,该冗余制动子系统提高了制动系统的冗余性能,该冗余制动子系统结构较简单,易于控制难度且成本低。
第一方面,提供一种制动系统,该制动系统包括主制动子系统110和冗余制动子系统120,该主制动子系统110包括制动主缸119;该冗余制动子系统120包括冗余增压装置122和第三隔离阀123;其中,该冗余增压装置122包括第一输入端33与第一输出端34,所述第一输入端33用于输入制动液,该冗余增压装置122的第一输出端34与该制动主缸119液压连接,该第三隔离阀123的一端与该冗余增压装置122的第一输入端33液压连接,该第三隔离阀123的另一端与该制动主缸119液压连接。
通过本申请的制动系统可以实现在制动管路上压力提供装置失效后,通过冗余制动子系统为车轮提供制动力,提高制动系统的冗余性能。并且,该冗余制动子系统结构较为简单,易于控制且成本较低。
结合第一方面,在第一方面的某些实施方式中,该冗余增压装置122还包括第二输入端35与第二输出端36,该第二输入端35与第四隔离阀124的一端液压连接,该第四隔 离阀124的另一端与该制动主缸119液压连接,该第二输出端与该制动主缸119液压连接。
结合第一方面,在第一方面的某些实施方式中,该冗余增压装置122还包括第二输入端35与第二输出端36,该第二输入端35与该第一输入端33)液压连接,该第二输出端36与第一输出端34液压连接。
结合第一方面,在第一方面的某些实施方式中,该主制动子系统还包括储液装置118,该储液装置118和该冗余增压装置122的输入端连接,该冗余增压装置122的输入端包括该第一输入端33和该第二输入端35中的至少一个。
结合第一方面,在第一方面的某些实施方式中,该冗余制动子系统120还包括第一压力传感器121,该第一压力传感器121连接于该第三隔离阀123和该制动主缸119之间的管路上,该第一压力传感器121用于感测该制动主缸119中的制动液的压力。
结合第一方面,在第一方面的某些实施方式中,所述冗余制动子系统120还包括第一单向阀127,该第一单向阀127和该第四隔离阀124并联;或者,该第一单向阀127和该第三隔离阀123并联。
结合第一方面,在第一方面的某些实施方式中,该冗余增压装置122为柱塞泵总成,该柱塞泵总成包括第一液压泵和第二液压泵,该第一液压泵的输入端为该第一输入端33,该第一液压泵的输出端为该第一输出端34,该第二液压泵的输入端为该第二输入端35,该第二液压泵的输出端为该第二输出端36。
结合第一方面,在第一方面的某些实施方式中,该冗余制动子系统120还包括第一插拔接头(1,2,3,4),所述第一插拔接头(1,2,3,4)用于连接该制动主缸119。
结合第一方面,在第一方面的某些实施方式中,该冗余制动子系统120还包括第二插拔接头(5,6),该第二插拔接头(5,6)用于连接该冗余制动子系统120和该储液装置(118)。
结合第一方面,在第一方面的某些实施方式中,该主制动子系统还包括主增压装置111,第一隔离阀116,第二隔离阀117,目标制动管路(114,115),至少一个进液阀(11、12、13、14)和至少一个出液阀(15、16、17、18);其中,该第一隔离阀116和第二隔离阀117用于阻隔该目标制动管路(114,115)中制动液;该主增压装置111用于增加该目标制动管路(114,115)中制动液的压力,通过该至少一个进液阀(11、12、13、14)为至少一个制动轮缸(23、24、25、26)提供制动力;或者,通过该至少一个出液阀(15、16、17、18)减小所述至少一个制动轮缸(23、24、25、26)中的制动力。
结合第一方面,在第一方面的某些实施方式中,该主制动子系统还包括所述踏板感觉模拟系统113,该踏板感觉模拟系统113用于采集需求制动力,该踏板感觉模拟系统113包括踏板感觉模拟器106,控制阀105和第二压力传感器104;其中,该踏板感觉模拟器106连接于该目标制动管路上,该控制阀105设置于该踏板感觉模拟器106的压力入端口和该目标制动管路之间的管路上,该控制阀105用于控制该踏板感觉模拟器106的通断;该第二压力传感器104连接在该踏板感觉模拟器106的压力入端口与该目标制动管路(115)之间的管路上,该第二压力传感器104用于感测该制动主缸119中制动液的压力。
第二方面,提供一种液压装置,其特征在于,所述液压装置包括冗余增压装置122、第三隔离阀(123)和第一连接接口(1,2,3,4);其中,所述冗余增压装置122包括第一输入端33与第一输出端34,所述第一输入端(33)用于输入制动液,所述第一输出 端(34)与所述第一连接接口(1,2,3,4)中的第一接口液压连接,所述第一接口为所述第一连接接口(1,2,3,4)中的至少一个;所述第三隔离阀(123)的一端与所述冗余增压装置122的第一输入端33液压连接,所述第三隔离阀(123)的另一端与所述第一连接接口(1,2,3,4)中的第二接口液压连接;所述第一连接接口(1,2,3,4)用于所述液压装置与制动主缸液压连接。
结合第二方面,在第二方面的某些实施方式中,所述液压装置还包括:第二输入端35与第二输出端36,所述冗余增压装置122的第二输出端与所述第一连接接口(1,2,3,4)中的第三接口液压连接,所述第三接口为所述插拔接头(1,2,3,4)中的至少一个;第四隔离阀124,所述第四隔离阀124的一端与所述冗余增压装置122的第二输入端35液压连接,所述第四隔离阀124的另一端与所述第一连接接口(1,2,3,4)中的第四接口液压连接。
结合第二方面,在第二方面的某些实施方式中,所述液压装置还包括:第二输入端35与第二输出端36,所述冗余增压装置122的第二输入端35与所述第一输入端33液压连接,所述第二输出端36与所述第一输出端34液压连接。
结合第二方面,在第二方面的某些实施方式中,所述液压装置还包括:储液装置118,所述储液装置118和所述冗余增压装置122的输入端连接,所述冗余增压装置122的输入端包括所述第一输入端33和所述第二输入端(35)中的至少一个。
结合第二方面,在第二方面的某些实施方式中,所述液压装置还包括:第二连接接口(5,6),所述第二连接接口(5,6)用于连接所述冗余增压装置122的输入端和储液装置118,所述冗余增压装置122的输入端包括所述第一输入端33和所述第二输入端35中的至少一个。
结合第二方面,在第二方面的某些实施方式中,所述液压装置还包括:第一压力传感器121,所述第一压力传感器121连接于所述第三隔离阀123和所述第二接口之间的管路上,所述第一压力传感器121用于感测所述制动主缸119中制动液的压力。
结合第二方面,在第二方面的某些实施方式中,所述液压装置还包括:第一单向阀(127),所述第一单向阀(127)和所述第四隔离阀(124)并联;或者,所述第一单向阀(127)和所述第三隔离阀(123)并联。
结合第二方面,在第二方面的某些实施方式中,所述冗余增压装置(122)为柱塞泵总成,所述柱塞泵总成包括第一液压泵和第二液压泵,所述第一液压泵的输入端所述第一输入端(33),所述第一液压泵的输出端为所述第一输出端(34),所述第二液压泵的输入端为所述第二输入端(35),所述第二液压泵的输出端为所述第二输出端(36)。
第三方面,提供一种制动系统的控制方法,所述制动系统包括主制动子系统(110)和冗余制动子系统(120),所述主制动子系统110包括制动主缸119;所述冗余制动子系统120包括冗余增压装置122和第三隔离阀123;其中,所述冗余增压装置122包括第一输入端33与第一输出端34,所述第一输入端(33)用于输入制动液以使得所述冗余增压装置122输出液压,所述冗余增压装置122的第一输出端34与所述制动主缸119液压连接,所述第三隔离阀123的一端与所述冗余增压装置122的第一输入端33液压连接,所述第三隔离阀123的另一端与所述制动主缸119液压连接;所述方法包括:所述冗余控制器控制所述第三隔离阀断开;所述冗余控制器控制所述冗余增压装置122通过所述第一 输出端34为所述制动轮缸(23、24、25、26)提供液压。
结合第二方面,在第二方面的某些实施方式中,所述冗余增压装置122还包括第二输入端35与第二输出端36,所述第二输入端35与第四隔离阀124的一端液压连接,所述第四隔离阀124的另一端与所述制动主缸119液压连接,所述第二输出端与所述制动主缸119液压连接;所述方法还包括:所述冗余控制器控制所述第四隔离阀断开;所述冗余控制器控制所述冗余增压装置122通过所述第一输出端34和所述第二输出端为所述制动轮缸(23、24、25、26)提供液压。
结合第二方面,在第二方面的某些实施方式中,接收第一信息,所述第一信息指示所述主增压装置故障。
第四方面,提供一种计算机可读存储介质,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求20至22中任一项所述的方法。
附图说明
图1是本申请实施例的制动系统100的示意图。
图2是本申请实施例的另一制动系统100的示意图。
图3是本申请实施例的另一制动系统100的示意图。
图4是本申请实施例的另一制动系统100的示意图。
图5是本申请实施例的另一制动系统100的示意图。
图6是本申请实施例的制动系统中一种制动液的流动路径的示意图。
图7是本申请实施例的制动系统中另一种制动液的流动路径的示意图。
图8是本申请实施例的制动系统中另一种制动液的流动路径的示意图。
图9是本申请实施例的制动系统中另一种制动液的流动路径的示意图。
图10是本申请实施例的制动系统中另一种制动液的流动路径的示意图。
图11是本申请实施例提供的一种制动系统的控制方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的制动系统适用于自动驾驶汽车或者新能源汽车,包括具有自动驾驶功能的乘用车和商用车,以及采用新能源的乘用车和商用车。
图1是本申请实施例的制动系统100的示意图。如图1所示,该制动系统100包括主制动子系统、冗余制动子系统120。
该主制动子系统可以包括主增压装置111、机械制动输入装置112、踏板感觉模拟系统113、第一制动管路114、第二制动管路115、第一隔离阀116、第二隔离阀117、进液阀(11、12、13、14)、出液阀(15、16、17、18)、储液装置118和制动主缸119。
其中,机械制动输入装置111包括制动踏板101、踏板位移传感器102和推杆103。当驾驶员踩踏制动踏板101时,制动踏板101通过推杆103推动制动主缸119中的活塞运动,将制动主缸119液压腔中的制动液压入第一制动管路114和第二制动管路115。踏板位移传感器102用于检测制动踏板101推动活塞时产生的位移,或者说,检测活塞与制动主缸119缸体之间的相对位移。
踏板感觉模拟系统113包括踏板感觉模拟器106,踏板感觉模拟器106连接于第二制动管路115上,这样,第二制动管路115内的制动液可以流入踏板感觉模拟器106,使得踏板感觉模拟器106通过感知第二制动管路115中制动液的压力,确定制动主缸119中活塞相对于制动缸体的位移;踏板感觉模拟器106还可以将检测到的制动液的压力发送到主控制器,以便该控制器确定车轮的制动力。
可选地,在踏板感觉模拟器106的压力入端口与第二制动管路115之间,还可以设置控制阀105,当不需要踏板感觉模拟器106工作时,可以通过控制控制阀105使其处于断开状态,以隔离第二制动管路115与踏板感觉模拟器106。
可选地,在踏板感觉模拟器106的压力入端口与第二制动管路115之间,还可以设置压力传感器104,该压力传感器104用于检测制动主缸119调节的第二制动管路115中制动液的压力;该压力传感器104还用于将指示的压力信息发送到主控制器,以便主控制器基于该压力信息确定施加于汽车的车轮上的制动力。
该主增压装置111可以用于为第一制动管路114,第二制动管路115的制动液进行增压,以增加施加在汽车的第一组车轮131和第二组车轮132上的制动力。
具体地,该增压装置111可以包括电机以及液压缸,电机驱动液压缸,将液压缸内的制动液压入第一制动管路114和第二制动管路115中,以实现增加各制动管路内制动液的压力。
主增压装置111的压力出端口分别与第一制动管路114,第二制动管路115的压力入端口相连;应理解,该第一制动管路114包括两个压力出端口(7,8),该两个压力出端口(7,8)与第一组车轮的制动轮缸的压力入端口(19,20)相连;该第二制动管路115包括两个压力出端口(9,10),两个压力出端口(9,10)与第二组车轮的制动轮缸的压力入端口(21,22)相连。
通常,在增压装置111与制动主缸119的第一腔107的压力出端口设置第一隔离阀116,可以通过控制该第一隔离阀116处于导通或断开状态,控制第一腔107与第一制动管路114之间导通或断开。相应地,也可以在第二腔108的压力出端口设置第二隔离阀117,可以通过控制该第二隔离阀117处于导通或断开状态,控制第二腔108与第二制动管路115之间导通或断开。
对于制动系统而言,需要为不同的车轮施加不同的制动力。因此,可以在控制每个车轮的制动力对应的制动管路上配置进液阀(11、12、13、14),以便独立管理向每个车轮施加的制动力。即控制需要施加制动力的车轮对应的进液阀处于导通状态,控制其他不需要施加制动力的车轮对应的进液阀处于断开状态。当进液阀处于导通状态时,各制动管路内的制动液可以通过相应的制动管路流向车轮的制动轮缸,当进液阀处于断开状态时,制动管路内的制动液无法通过相应的制动管路流向车轮的制动轮缸。
例如,如图1所示,第一制动管路114可以包括第一支路1141和第二支路1142,以分别控制第一组车轮131中的两个车轮的制动力。其中,第一支路1141的压力出端口与第一组车轮131的制动轮缸23的压力入端口19相连,第二支路1142的压力出端口与第一组车轮131的制动轮缸24的压力入端口20相连。第一支路1141的压力入端口与制动轮缸19的压力入端口19之间,设置有进液阀11,当进液阀11处于导通状态时,可以通过增大第一支路1141中制动液的压力,增大施加到制动轮缸23的制动力。第二支路1142 的压力入端口与制动轮缸24的压力入端口20之间,设置有进液阀12,当进液阀12处于导通状态时,可以通过增大第二支路1142中制动液的压力,增大施加到制动轮缸24上的制动力。
上述第一组车轮与第二组车轮不同,第一组车轮包括右前轮和左前轮,且第二组车轮包括右后轮和左后轮,即该主制动子系统100为H型布置。或者,第一组车轮包括右前轮和左后轮,第二组车轮包括左前轮和左后轮,即该制动系统100为X型布置。本申请对此不做限定。
其次,为了防止制动液回流,即制动液由制动轮缸流向增压装置,还可以在进液阀(11、12、13、14)的两端(压力出端口和压力入端口)并联单向阀。
对于制动系统而言,在一些情况下,还需要减小在车轮上的制动力。因此,可以在控制每个车轮的制动管路上配置出液阀(15、16、17、18),以便独立管理减小每个车轮上的制动力。即控制需要减小制动力的车轮对应的出液阀处于导通状态,控制其他不需要减小制动力的车轮对应的出液阀处于断开状态。当出液阀处于导通状态时,制动管路内的制动液可以通过出液阀流向出液管路109,并通过出液管路109流向储液装置118,以便循环利用。当出液阀处于断开状态时,出液管路109内的制动液被出液阀阻断,无法流向储液装置118。
例如,如图1所示,第一制动管路114的第一支路1141的压力入端口7与储液装置118之间,设置有出液阀15。当出液阀15处于导通状态时,第一支路1141中制动液的可以通过出液阀13流向出液管路109,最后流入储液装置118,以减小制动液对制动轮缸23的制动力;当出液阀15处于断开状态时,第一支路1141中制动液被出液阀15阻断,无法流向出液管路109。在第二支路1142的压力入端口8与储液装置118之间,设置有出液阀16。当出液阀16处于导通状态时,第二支路1142中制动液的可以通过出液阀16流向出液管路109,最后流入储液装置118,以减小制动液对制动轮缸24的制动力;当出液阀16处于断开状态时,第二支路1142中制动液被出液阀16阻断,无法流向出液管路109。
应理解,出液阀的方案和进液阀的方案可以单独配置在制动系统中使用,也可以相互配合使用在一个制动系统中,进液阀和出液阀的配合方式也可以有多种。例如,还可以将第一支路1141分继续为两个并联的独立支路,将进液阀和出液阀分别配置在这两个独立的支路上,本申请对此不做限定。
通常,该制动系统100可以通过主制动子系统实现机械制动模式、线控制动模式和主动制动模式。其中,机械制动模式为驾驶员踩动制动踏板,通过制动主缸119经由第一制动管路114和第二制动管路115向四个制动轮缸(23、24、25、26)提供制动力;线控制动模式为驾驶员踩动制动踏板,输出需求制动力,由主控制器基于该需求制动力控制主增压装置111为四个制动轮缸(23、24、25、26)提供制动力;在主动制动模式下,由主控制器通过分析环境条件、车辆状态、ADAS状态和驾驶员输入等信息,判断汽车需要进行主动制动模式并确定需求制动力,由主控制器基于该需求制动力控制主增压装置111为四个制动轮缸(23、24、25、26)提供制动力。
当上述线控制动模式或主动制动模式中主增压装置失效后,可以通过冗余制动子系统120维持制动系统100的制动性能。
该冗余制动子系统120可以包括第一压力传感器121、冗余增压装置122、第三隔离阀123、第四隔离阀124、第一冗余制动管路125、第二冗余制动管路126和第一单向阀127。
其中,第一压力传感器121用于检测制动主缸119第一腔107中制动液的压力,该第一压力传感器121还用于将指示的压力信息发送到冗余控制器,以便冗余控制器基于该压力信息确定施加于汽车的车轮上的制动力。在一种可能的设计中,该第一压力传感器121可以连接在第一冗余制动管路125的第二支路1252上。
该冗余增压装置122可以是柱塞泵总成,其可以包括电机和至少一个液压泵,本申请对柱塞泵总成的具体结构不做限定,例如,该柱塞泵总成可以包括第一液压泵以及第二液压泵,或者该柱塞泵总成还可以包括四个液压泵。在该柱塞泵总成包括第一液压泵和第二液压泵的结构中,该第一液压泵连接于第一冗余制动管路125的第一支路1251上,或者说,该第一冗余制动管路125的第一支路1251连接冗余增压装置122的第一输入端33,该第一输入端33可以理解为该第一液压泵的输入端,通过该冗余增压装置122的该第一输入端33可以输入储液装置118中的制动液,以使得该冗余增压装置122通过第一输出端34增大制动主缸119的制动液的压力;该第二液压泵连接于第二冗余制动管路126的第一支路1261上,或者说,该第二冗余制动管路126的第一支路1261连接冗余增压装置122的第二输入端35,该第二输入端35可以理解为该第二液压泵的输入端,通过该冗余增压装置122的该第二输入端33输入储液装置118中的制动液,并通过冗余增压装置122的第二输出端36输出制动液以增大制动主缸119的制动液的压力。其中,电机用于驱动第一液压泵和第二液压泵,将第一冗余制动管路125和第二冗余制动管路126中的制动液通过制动主缸119压入第一制动管路114和第二制动管路115,以实现增加各制动管路内制动液的压力。
可选地,在第一冗余制动管路125压力入端口31与制动主缸119的压力入端口28之间,设置有第三隔离阀123,可以通过控制该第三隔离阀123处于导通或断开状态,控制制动主缸119的第一腔107与储液装置118之间连接或断开;在第二冗余制动管路126的压力入端口32与制动主缸119的压力入端口30之间,设置有第四隔离阀124,可以通过控制该第四隔离阀124处于导通或断开状态,控制制动主缸119的第二腔108与储液装置118之间连接或断开。
可选地,在第四隔离阀124的两端(压力出端口和压力入端口)并联有第一单向阀127。该第一单向阀127可以防止制动液回流,即制动液由制动主缸119流向储液装置118。其次,当主缸活塞向右回位时,如果制动主缸(119)和踏板感觉模拟器(106)之间存在泄漏,或者第四隔离阀(124)卡滞,则无法对制动主缸(119)进行补液,此时可通过该第一单向阀(127)进行补液,该第一单向阀(127)也可以是与轮缸进液阀。
可选地,该冗余制动子系统120还可以包括冗余制动子系统插拔接头(1、2、3、4、5、6),该冗余制动子系统插拔接头(1、2、3、4、5、6)用于该冗余制动子系统120与主制动子系统之间的连接,该冗余制动子系统插拔接头(1、2、3、4)分别设于制动主缸119的压力入端口(27、28、29、30),或者说,设于第一冗余制动管路125的第一支路1251和第二支路1252,以及第二冗余制动管路126的第一支路1261和第二支路1262的压力出端口;该冗余制动子系统插拔接头(5、6)设于第一冗余制动管路125和第二冗余 制动管路126的压力入端口(31,32),该制动系统如图2中所示;或者,该冗余制动子系统120还可以只包括冗余制动子系统插拔接头(5、6),该制动系统如图3中所示。也就是说,该冗余制动子系统120可以和主制动子系统集成为一个系统为汽车提供制动力,也可以单独设置为汽车提供制动力,或者通过该插拔接头(1、2、3、4、5、6)连接并适配不同的主制动子系统,为汽车提供制动力。
在本申请的制动系统中,当主制动子系统失效后,可以通过冗余制动子系统120维持该制动系统的制动性能,该冗余制动子系统120结构较简单,易于控制且成本低。
应理解,本申请的冗余制动子系统120可适配多种形式的主制动子系统。例如,主制动子系统中制动主缸119为串联双腔式制动主缸。该制动主缸119还可以为其他形式,例如,解耦设计的制动主缸,如图4中的制动主缸119所示,该解耦设计的制动主缸119包括第一腔107、第二腔108和第三腔109,当主制动子系统中为该解耦设计制动主缸时,该第二冗余制动管路126的第一支路1261和第二支路1262压力出端口可以分别连接于制动主缸119的第二腔108和第三腔109。该制动系统100如图4中所示。
再例如,该主制动子系统中还可以为单腔制动主缸,如图5中的制动主缸119所示。此时,可以理解为将第一制动管路114和第二制动管路115的压力入端口合并,或者说,该主制动子系统仅包括第一制动管路114,该第一制动管路114包括四条支路(1141、1142、1151、1152),该四条支路的压力出端口为(7、8、9、10),该四条支路的压力出端口(7、8、9、10)分别与第一组车轮的制动轮缸的压力入端口(19、20),第二组车轮的制动轮缸的压力入端口(21、22)相连。该制动系统100如图5中所示,其中,该冗余制动子系统120可以包括第一压力传感器121、冗余增压装置122、第三隔离阀123、第一冗余制动管路125和第一单向阀127。
该第一单向阀127并联在第三隔离阀123的两端(压力出端口和压力入端口);第一冗余制动管路125还可以包括第三支路1253,该第三支路1253通过冗余增压装置122第二液压泵连接储液装置118和制动主缸119,该第三支路1253的一端连接在冗余增压装置122第一液压泵与储液装置118之间,该第三支路1253的另一端连接在冗余增压装置122第二液压泵与制动主缸119之间。冗余增压装置122的电机工作驱动第一液压泵和第二液压泵,将制动液通过第一冗余制动管路125的三条支路压入制动主缸119,通过增加第三制动管路内制动液的压力,以实现增大施加到各制动轮缸上的制动力。
上文结合图1至图5介绍了制动系统100内制动元件之间的连接方式,下文结合图6至图10介绍制动系统100的多种制动模式。需要说明的是,本申请对这多种制动模式之间的优先级不做具体限定。
制动系统100可以包括三种制动模式:机械制动模式、线控制动模式和主动制动模式。其中,机械制动模式可以理解为通过制动主缸119经由第一制动管路114和第二制动管路115向4个制动轮缸(23、24、25、26)提供制动力,此时,可以仅由主制动子系统110为车轮提供制动力;线控制动模式可以理解为,由控制器(冗余控制器或主控制器)基于驾驶员踩踏制动踏板101控制主增压装置111或冗余增压装置122为车轮提供制动力;主动制动模式可以理解为由控制器(冗余控制器或主控制器)控制主增压装置111或冗余增压装置122为车轮提供制动力,主动制动模式与线控制动模式的区别在于,在主动制动模式下可以不需要驾驶员操作制动踏板101。主动制动模式可以应用于自适应巡航控制、避 障等由高级驾驶辅助系统(advanced driving assistant system)控制的情况中。
应理解,上述不同制动模式中的部分功能的实现方式可能是相同的。例如,不同模式中使用的踏板制动力需求计算方案有可能是相同的。下面详细介绍制动系统100中不同的制动模式。
假设制动系统100中,第一隔离阀116、第二隔离阀117为常开阀,进液阀(11、12、13、13)为常开阀,出液阀(15、16、17、18)为常闭阀,第三隔离阀123、第四隔离阀124为常开阀,控制阀105为常闭阀。
需要说明的是,常开可以理解为该隔离阀或控制阀处于导通状态,常闭为该隔离阀或控制阀处于断开状态;其次,上述常开、常闭状态为未给该隔离阀或控制阀供电时,该隔离阀或控制阀的默认状态。当需要调整该隔离阀或控制阀的状态时,可以为待调整状态的隔离阀或控制阀供电,以控制该隔离阀或控制阀处于断开状态或导通状态。
(1)线控制动模式
线控制动模式可以包括主增压线控制动模式和冗余增压线控制动模式。
在主增压线控制动模式下,主控制器控制第一隔离阀116和第二隔离阀117处于断开状态,控制阀105处于导通状态,使得踏板感觉模拟器106与第二制动管路115连通,制动系统100中的其他控制阀保持上述默认状态。
如此,驾驶员踩下制动踏板101,使得制动主缸119的活塞相对于制动主缸119发生位移,将制动主缸119内的制动液压入第二制动管路115和第一制动管路114,两条制动管路内的制动液被阻断在隔离阀第一隔离阀116和第二隔离阀117处,其中,第二制动管路115的制动液会通过控制阀105压入踏板感觉模拟器106;压力传感器104测量第二制动管路115内制动液的压力,确定驾驶员需求的制动力,再将制动力反馈给主增压装置111;主增压装置111按照需求制动力为制动轮缸(23、24、25、26)提供制动力。其中,制动系统中制动液流动的路径参见图6。
需要说明的是,上述关于踏板感觉模拟的两种方案都不会直接影响制动防抱死系统(antilock brake system,ABS)、牵引力控制系统(traction control system,TCS)和电子稳定系统(electronic stability system,ESC)等动力学功能的实现。实现TCS、ABS和ESC等动力学控制算法,需要对单个制动轮缸进行控制,此时可以在主增压装置111的辅助下,通过控制单个进液阀和出液阀实现单个制动轮缸的增压、保压和减压操作。
当驾驶员松开制动踏板101后,制动主缸119的活塞在回位弹簧的作用下返回初始位置,踏板感觉模拟器106中的制动液由控制阀105沿相反方向回流至第二腔108,最后流入储液装置118;主增压装置111中的液压缸反向工作,使得制动轮缸(23、24、25、26)内的压力大于主增压装置111中液压缸内的压力,制动液由制动轮缸(23、24、25、26)分别通过各自对应的进液阀(11、12、13、13)和单向阀沿制动管路分别返回主增压装置111液压缸。
可选地,还可以控制第一隔离阀116和第二隔离阀117处于导通状态,使制动液由制动轮缸(23、24、25、26)通过第一隔离阀116和第二隔离阀117、第二腔222和第一腔212返回储液装置118中。或者,当需要快速减压时,还可以进一步控制出液阀(15、16、17、18)导通,使制动轮缸(23、24、25、26)内的制动液回流至储液装置118中。
当主增压线控制动模式失效时,制动系统可以工作在冗余增压线控制动模式下。应理 解,主增压线控制动模式失效包括但不限于主增压装置111故障。
在冗余增压线控制动模式下,制动系统100中的其他控制阀保持上述默认状态。
如此,驾驶员踩下制动踏板101,通过推杆103推动制动主缸119的活塞相对于制动主缸119发生位移,将制动主缸119内的制动液压入第二制动管路115和第一制动管路114;冗余控制器根据踏板位移传感器102测量踏板位移,确定驾驶员的需求制动力,并将需求制动力反馈给冗余增压装置122;冗余增压装置122按照需求制动力驱动电机,通过第一液压泵和第二液压泵压缩制动液,使得制动液通过第一制动管路114和第二制动管路115为制动轮缸(23、24、25、26)提供制动力。其中,制动液流动的路径参见图7。
当驾驶员松开制动踏板101时,制动主缸119的活塞在回位弹簧的作用下返回初始位置,制动液由制动轮缸(23、24、25、26)通过第一隔离阀116和第二隔离阀117返回制动主缸118中,通过冗余增压装置122第一液压泵和第二液压泵反向工作使得制动液回流至储液装置118。或者,当需要快速减压时,还可以进一步打开出液阀(15、16、17、18),使制动轮缸(23、24、25、26)内的制动液回流至储液装置118中。
(2)主动制动模式
主动制动模式可以包括主增压主动制动模式和冗余增压主动制动模式。
在主增压主动制动模式下,主控制器通过分析环境条件、车辆状态、ADAS状态和驾驶员输入等信息,判断汽车需要进行主动制动模式并确定需求制动力,则主控制器控制第一隔离阀116和第二隔离阀117处于断开状态,制动系统100中的其他控制阀保持上述默认状态。
主控制器将需求制动力发送给主增压装置111;主增压装置111基于制动力为制动轮缸(23、24、25、26)提供制动压力。在主增压主动制动模式下,制动系统100中制动液流动的路径参见图8。
当需要减压时,主增压装置111的液压缸在电机的作用下反向工作,使得制动液由制动轮缸(23、24、25、26)分别通过各自的进液阀(11、12、13、13)和单向阀沿制动管路分别返回主增压装置111液压缸。可选地,当需要快速减压时,还可以进一步打开出液阀(15、16、17、18),使制动轮缸(23、24、25、26)内的制动液回流至储液装置118中。
当主增压主动制动模式失效时,制动系统工作在冗余增压主动制动模式下。应理解,主增压主动制动模式失效包括但不限于主增压装置111故障。
在冗余增压主动制动模式下,冗余控制器控制第三隔离阀123和第四隔离阀124处于断开状态,其他控制阀保持上述默认状态。冗余控制器将需求制动力发送给冗余增压装置122;冗余增压装置122按照需求制动力驱动电机,通过第一液压泵和第二液压泵压缩制动液,使得制动液通过制动主缸119,第一制动管路114和第二制动管路115为制动轮缸(23、24、25、26)提供制动力。其中,需求制动力的确定和主增压主动制动模式中类似,为了简洁,不再描述。在冗余增压主动制动模式下,制动系统100中制动液流动的路径参见图9。
当需要减压时,冗余增压装置122的液压泵在电机的作用下反向工作,使得制动液返回储液装置118。可选地,当需要快速减压时,还可以进一步打开出液阀(15、16、17、18),使制动轮缸(23、24、25、26)内的制动液回流至储液装置118中。
(3)机械制动模式
在机械制动模式下,制动系统100中的所有隔离阀或控制阀均处于默认状态,驾驶员踩下制动踏板101,将第二腔108内的制动液推入第二制动管路115,将第一腔107内的制动液推入第一制动管路114,通过进液阀(11、12、13、13)流入制动轮缸(23、24、25、26),实现人力制动。
当驾驶员松开制动踏板101时,制动主缸119的活塞在回位弹簧的作用下返回初始位置,同时通过推杆使制动踏板101返回初始位置。此时,制动液由制动轮缸(23、24、25、26)通过进液阀(11、12、13、13)和单向阀沿相反方向回流至第二腔108和第一腔107,最后流入储液装置118。机械制动模式下的制动液流动路径可以参见图10。
应理解,通过该机械制动模式,可以保证在线控制动模式和主动制动模式均失效的情况下,车辆的可靠制动。
以上介绍了制动系统100及其多种制动模式,下面结合图11介绍本申请实施例提供的基于上述制动系统的控制方法。该方法可以由冗余控制器执行,该方法可以包括以下几个步骤。其中,为了简洁,将上述第一制动管路114和第二制动管路115中的任一条制动管路称为“目标制动管路”。
可选地,该方法可以包括S1110,确定制动系统中目标制动管路上的压力提供装置故障。
应理解,该制动系统100可以为图1至图5中所示的任一个制动系统100,该压力提供装置可以包括主增压装置111。该制动系统100中目标制动管路上的压力提供装置故障失效可以为由冗余控制器确定,或者还可以由冗余控制器通过其他单元确定,例如,冗余控制器通过主控制器或者制动系统中的其他部件,例如制动系统中的检测阀确定。
S1120,控制冗余增压装置122工作,使得目标制动管路中的液压上升。
可选地,在确定控制冗余增压装置122工作之前,该方法还可以包括,确定制动系统100的工作模式。若该制动系统100工作主动控制动模式,该方法还包括,冗余控制器控制第三隔离阀123和第四隔离阀124处于断开状态。通过控制第三隔离阀123和第四隔离阀124处于断开状态,可以防止在制动的过程中制动主缸119中的制动液回流至储液装置118内。
在一种可能的实现方式中,控制冗余增压装置122工作包括控制冗余增压装置122按照需求制动力驱动电机,通过第一液压泵和第二液压泵压缩制动液,使得制动液通过第一制动管路114和第二制动管路115为制动轮缸(23、24、25、26)提供制动力。
在本申请实施例中,冗余控制器通过控制冗余增压装置工作,使得目标制动管路中的液压上升,通过制动液的压力为制动轮缸提供制动力,有利于提高制动系统的冗余性能。
本申请实施例中所述的控制器或冗余控制器可以为独立的控制器,或者为同一个控制器。该控制器可以为整车域控制器或智能驾驶域控制器,本申请不对控制器的形式进行限定。
本申请提供的制动系统100可以应用于汽车中,该汽车包括第一组车轮131,第二组车轮132以及上文中介绍的任意一种制动系统100。为了简洁,不再详细介绍制动系统100。
需要说明的是,本申请中涉及的“进液阀”,“出液阀”仅仅基于控制阀在制动系统 中的功能来区分的。用于控制进液管路连通或者断开的控制阀可以称为“进液阀”或者“增压阀”。用于控制回液管路连通或者断开的控制器可以称为“出液阀”或者“减压阀”。用于隔离两级制动子系统的控制阀可以称为“隔离阀”。其中,上述控制阀可以是现有的制动系统中常用的阀,例如,电磁阀等,对此本申请实施例不作具体限定。
另外,当控制阀连接至制动管路后,控制阀与制动管路的连接端口可以通过第一端和第二端表示,本申请对制动液在第一端和第二端之间的流向不作限定。例如,当控制阀处于导通状态时,制动液可以从控制阀的第一端流至控制阀的第二端,或者,当控制阀处于断开状态时,制动液可以从控制阀的第二端流至控制阀的第一端。
另外,本申请中涉及的“第一制动管路114”、“第二制动管路115”、“第一冗余制动管路125”、“第二冗余制动管路126”、以及其他制动管路等可以理解为实现某一功能的一段或多段制动管路。例如,第一制动管路114可以包括用于连接制动主缸119第一腔107与第一隔离阀116的多段制动管路。
另外,本申请在结合附图介绍制动系统、车辆等架构时,附图中示意性地示出了每个控制阀可以实现的两种工作状态(断开或连通),并不限定控制阀当前的工作状态如图所示。
另外,本申请在结合附图介绍各制动单元、制动系统等架构时,各个实施例对应的附图中功能相同的部件使用的编号相同,为了简洁,各部件的功能不会在每个实施例中说明,可以参见全文中关于各部件功能的介绍。
另外,本申请中的液压调节单元可以是制动系统中用于调节制动液压力的单元,包括上文中涉及的一条或多条制动管路,以及制动管路中控制阀、单向阀等元件。可选地,上述液压调节单元还可以包括液压调节装置中的液压缸、活塞、推杆等元件。当上述液压调节单元安装于制动系统后,制动系统还可以包括制动轮缸、储液装置、制动踏板中的一种或多种元件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种制动系统,其特征在于,所述制动系统包括主制动子系统(110)和冗余制动子系统(120),所述主制动子系统(110)包括制动主缸(119);
    所述冗余制动子系统(120)包括冗余增压装置(122)和第三隔离阀(123);
    其中,所述冗余增压装置(122)包括第一输入端(33)与第一输出端(34),所述第一输入端(33)用于输入制动液,所述冗余增压装置(122)的第一输出端(34)与所述制动主缸(119)液压连接,所述第三隔离阀(123)的一端与所述冗余增压装置(122)的第一输入端(33)液压连接,所述第三隔离阀(123)的另一端与所述制动主缸(119)液压连接。
  2. 根据权利要求1所述的制动系统,其特征在于,所述冗余增压装置(122)还包括:
    第二输入端(35)与第二输出端(36),所述第二输入端(35)与第四隔离阀(124)的一端液压连接,所述第四隔离阀(124)的另一端与所述制动主缸(119)液压连接,所述第二输出端与所述制动主缸(119)液压连接。
  3. 根据权利要求1所述的制动系统,其特征在于,所述冗余增压装置(122)还包括:
    第二输入端(35)与第二输出端(36),所述第二输入端(35)与所述第一输入端(33)液压连接,所述第二输出端(36)与第一输出端(34)液压连接。
  4. 根据权利要求1至3中任一项所述的制动系统,其特征在于,所述主制动子系统还包括储液装置(118),所述储液装置(118)和所述冗余增压装置(122)的输入端连接,所述冗余增压装置(122)的输入端包括所述第一输入端(33)和所述第二输入端(35)中的至少一个。
  5. 根据权利要求1至4中任一项所述的制动系统,其特征在于,所述冗余制动子系统(120)还包括:
    第一压力传感器(121),所述第一压力传感器(121)连接于所述第三隔离阀(123)和所述制动主缸(119)之间的管路上,所述第一压力传感器(121)用于感测所述制动主缸(119)中的制动液的压力。
  6. 根据权利要求2至5中任一项所述的制动系统,其特征在于,所述冗余制动子系统(120)还包括:
    第一单向阀(127),所述第一单向阀(127)和所述第四隔离阀(124)并联;或者,
    所述第一单向阀(127)和所述第三隔离阀(123)并联。
  7. 根据权利要求1至6中任一项所述的制动系统,其特征在于,所述冗余增压装置(122)为柱塞泵总成,所述柱塞泵总成包括第一液压泵和第二液压泵,所述第一液压泵的输入端所述第一输入端(33),所述第一液压泵的输出端为所述第一输出端(34),所述第二液压泵的输入端为所述第二输入端(35),所述第二液压泵的输出端为所述第二输出端(36)。
  8. 根据权利要求1至7中任一项所述的制动系统,其特征在于,所述冗余制动子系统(120)还包括:
    第一插拔接头(1,2,3,4),所述第一插拔接头(1,2,3,4)用于连接所述制动 主缸(119)。
  9. 根据权利要求1至8中任一项所述的制动系统,其特征在于,所述冗余制动子系统(120)还包括:
    第二插拔接头(5,6),所述第二插拔接头(5,6)用于连接所述冗余制动子系统(120)和所述储液装置(118)。
  10. 根据权利要求1至9中任一项所述的制动系统,其特征在于,所述主制动子系统还包括主增压装置(111),第一隔离阀(116),第二隔离阀(117),目标制动管路(114,115),至少一个进液阀(11、12、13、14)和至少一个出液阀(15、16、17、18);
    其中,所述第一隔离阀(116)和第二隔离阀(117)用于阻隔所述目标制动管路(114,115)中制动液;
    所述主增压装置(111)用于增加所述目标制动管路(114,115)中制动液的压力,通过所述至少一个进液阀(11、12、13、14)为至少一个制动轮缸(23、24、25、26)提供制动力;或者,
    通过所述至少一个出液阀(15、16、17、18)减小所述至少一个制动轮缸(23、24、25、26)中的制动力。
  11. 根据权利要求1至10中任一项所述的制动系统,其特征在于,所述主制动子系统还包括所述踏板感觉模拟系统(113),所述踏板感觉模拟系统(113)用于采集需求制动力,所述踏板感觉模拟系统(113)包括踏板感觉模拟器(106),控制阀(105)和第二压力传感器(104);
    其中,所述踏板感觉模拟器(106)连接于所述目标制动管路(115)上,所述控制阀(105)设置于所述踏板感觉模拟器(106)的压力入端口和所述目标制动管路115之间的管路上,所述控制阀(105)用于控制所述踏板感觉模拟器(106)的通断;
    所述第二压力传感器(104)连接在所述踏板感觉模拟器(106)的压力入端口与所述目标制动管路(115)之间的管路上,所述第二压力传感器(104)用于感测所述制动主缸(119)中制动液的压力。
  12. 一种液压装置,其特征在于,所述液压装置包括冗余增压装置(122)、第三隔离阀(123)和第一连接接口(1,2,3,4);
    其中,所述冗余增压装置(122)包括第一输入端(33)与第一输出端(34),所述第一输入端(33)用于输入制动液,所述第一输出端(34)与所述第一连接接口(1,2,3,4)中的第一接口液压连接,所述第一接口为所述第一连接接口(1,2,3,4)中的至少一个;
    所述第三隔离阀(123)的一端与所述冗余增压装置(122)的第一输入端(33)液压连接,所述第三隔离阀(123)的另一端与所述第一连接接口(1,2,3,4)中的第二接口液压连接;
    所述第一连接接口(1,2,3,4)用于所述液压装置与制动主缸液压连接。
  13. 根据权利要求12所述的液压装置,其特征在于,所述液压装置还包括:
    第二输入端(35)与第二输出端(36),所述冗余增压装置(122)的第二输出端与所述第一连接接口(1,2,3,4)中的第三接口液压连接,所述第三接口为所述插拔接头(1,2,3,4)中的至少一个;
    第四隔离阀(124),所述第四隔离阀(124)的一端与所述冗余增压装置(122)的第二输入端(35)液压连接,所述第四隔离阀(124)的另一端与所述第一连接接口(1,2,3,4)中的第四接口液压连接。
  14. 根据权利要求12所述的液压装置,其特征在于,所述液压装置还包括:
    第二输入端(35)与第二输出端(36),所述冗余增压装置(122)的第二输入端(35)与所述第一输入端(33)液压连接,所述第二输出端(36)与所述第一输出端(34)液压连接。
  15. 根据权利要求12至14中任一项所述的液压装置,其特征在于,所述液压装置还包括:
    储液装置(118),所述储液装置(118)和所述冗余增压装置(122)的输入端连接,所述冗余增压装置(122)的输入端包括所述第一输入端(33)和所述第二输入端(35)中的至少一个。
  16. 根据权利要求12至14中任一项所述的液压装置,其特征在于,所述液压装置还包括:
    第二连接接口(5,6),所述第二连接接口(5,6)用于连接所述冗余增压装置(122)的输入端和储液装置(118),所述冗余增压装置(122)的输入端包括所述第一输入端(33)和所述第二输入端(35)中的至少一个。
  17. 根据权利要求12至16中任一项所述的液压装置,其特征在于,所述液压装置还包括:
    第一压力传感器(121),所述第一压力传感器(121)连接于所述第三隔离阀(123)和所述第二接口之间的管路上,所述第一压力传感器(121)用于感测所述制动主缸(119)中制动液的压力。
  18. 根据权利要求13至17中任一项所述的液压装置,其特征在于,所述液压装置还包括:
    第一单向阀(127),所述第一单向阀(127)和所述第四隔离阀(124)并联;或者,
    所述第一单向阀(127)和所述第三隔离阀(123)并联。
  19. 根据权利要求12至18中任一项所述的液压装置,其特征在于,所述冗余增压装置(122)为柱塞泵总成,所述柱塞泵总成包括第一液压泵和第二液压泵,所述第一液压泵的输入端所述第一输入端(33),所述第一液压泵的输出端为所述第一输出端(34),所述第二液压泵的输入端为所述第二输入端(35),所述第二液压泵的输出端为所述第二输出端(36)。
  20. 一种制动系统的控制方法,其特征在于,所述制动系统包括主制动子系统(110)和冗余制动子系统(120),所述主制动子系统(110)包括制动主缸(119);
    所述冗余制动子系统(120)包括冗余增压装置(122)和第三隔离阀(123);
    其中,所述冗余增压装置(122)包括第一输入端(33)与第一输出端(34),所述第一输入端(33)用于输入制动液以使得所述冗余增压装置(122)输出液压,所述冗余增压装置(122)的第一输出端(34)与所述制动主缸(119)液压连接,所述第三隔离阀(123)的一端与所述冗余增压装置(122)的第一输入端(33)液压连接,所述第三隔离阀(123)的另一端与所述制动主缸(119)液压连接;
    所述方法包括:
    获取第一信号,所述第一信号用于指示所述制动系统的故障信息;
    根据所述第一信号,控制所述第三隔离阀断开,所述冗余增压装置(122)通过所述第一输出端(34)为所述制动轮缸(23、24、25、26)提供液压。
  21. 根据权利要求20所述的控制方法,其特征在于,所述冗余增压装置(122)还包括第二输入端(35)与第二输出端(36),所述第二输入端(35)与第四隔离阀(124)的一端液压连接,所述第四隔离阀(124)的另一端与所述制动主缸(119)液压连接,所述第二输出端与所述制动主缸(119)液压连接;
    所述方法还包括:
    控制所述第四隔离阀断开,所述冗余增压装置(122)通过所述第一输出端(34)和所述第二输出端为所述制动轮缸(23、24、25、26)提供液压。
  22. 根据权利要求20或21所述的控制方法,其特征在于,所述方法还包括:
    所述第一信号用于指示所述主增压装置故障。
  23. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求20至22中任一项所述的方法。
PCT/CN2021/103896 2021-06-30 2021-06-30 制动系统及制动系统的控制方法 WO2023272668A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180099802.0A CN117561189A (zh) 2021-06-30 2021-06-30 制动系统及制动系统的控制方法
EP21947621.5A EP4349673A1 (en) 2021-06-30 2021-06-30 Braking system and method for controlling braking system
PCT/CN2021/103896 WO2023272668A1 (zh) 2021-06-30 2021-06-30 制动系统及制动系统的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103896 WO2023272668A1 (zh) 2021-06-30 2021-06-30 制动系统及制动系统的控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/400,381 Continuation US20240132037A1 (en) 2023-12-29 Braking System and Method for Controlling Braking System

Publications (1)

Publication Number Publication Date
WO2023272668A1 true WO2023272668A1 (zh) 2023-01-05

Family

ID=84692177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103896 WO2023272668A1 (zh) 2021-06-30 2021-06-30 制动系统及制动系统的控制方法

Country Status (3)

Country Link
EP (1) EP4349673A1 (zh)
CN (1) CN117561189A (zh)
WO (1) WO2023272668A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0124035A2 (en) * 1983-04-23 1984-11-07 Nissan Motor Co., Ltd. Anti-skid control system for automotive brake system with sample control for sampling input timing of sensor signal pulses with required process identification and method for sampling
US5979997A (en) * 1996-07-02 1999-11-09 Toyota Jidosha Kabushiki Kaisha Hydraulic brake control apparatus
CN104859625A (zh) * 2015-05-18 2015-08-26 浙江万向精工有限公司 车辆集成电控液压制动系统
CN110341674A (zh) * 2019-07-23 2019-10-18 芜湖伯特利汽车安全系统股份有限公司 一种液压控制单元双补液单向阀串联式冗余结构及改进结构
CN110550008A (zh) * 2018-05-30 2019-12-10 株式会社万都 电子制动系统
CN212637472U (zh) * 2020-04-30 2021-03-02 芜湖伯特利电子控制系统有限公司 一种冗余设计的制动系统
CN212709356U (zh) * 2020-06-08 2021-03-16 苏州卡泰汽车科技有限公司 一种具有冗余隔离阀的车辆线控制动系统
CN212709358U (zh) * 2020-06-12 2021-03-16 苏州卡泰汽车科技有限公司 一种具备自检冗余功能的线控制动系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0124035A2 (en) * 1983-04-23 1984-11-07 Nissan Motor Co., Ltd. Anti-skid control system for automotive brake system with sample control for sampling input timing of sensor signal pulses with required process identification and method for sampling
US5979997A (en) * 1996-07-02 1999-11-09 Toyota Jidosha Kabushiki Kaisha Hydraulic brake control apparatus
CN104859625A (zh) * 2015-05-18 2015-08-26 浙江万向精工有限公司 车辆集成电控液压制动系统
CN110550008A (zh) * 2018-05-30 2019-12-10 株式会社万都 电子制动系统
CN110341674A (zh) * 2019-07-23 2019-10-18 芜湖伯特利汽车安全系统股份有限公司 一种液压控制单元双补液单向阀串联式冗余结构及改进结构
CN212637472U (zh) * 2020-04-30 2021-03-02 芜湖伯特利电子控制系统有限公司 一种冗余设计的制动系统
CN212709356U (zh) * 2020-06-08 2021-03-16 苏州卡泰汽车科技有限公司 一种具有冗余隔离阀的车辆线控制动系统
CN212709358U (zh) * 2020-06-12 2021-03-16 苏州卡泰汽车科技有限公司 一种具备自检冗余功能的线控制动系统

Also Published As

Publication number Publication date
CN117561189A (zh) 2024-02-13
EP4349673A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
CN110944889B (zh) 制动系统
CN112585044B (zh) 用于解耦制动系统的触觉反馈
CN109455174B (zh) 一种采用高压蓄能器的线控液压制动系统及其制动控制方法
CN111038470B (zh) 车辆的制动装置及其控制方法
WO2021063159A1 (zh) 汽车的制动系统、汽车及制动系统的控制方法
CN106864442B (zh) 电子液压制动系统
CN113147704B (zh) 一种车辆线控制动系统及其制动方法
CN110182187B (zh) 具有失效保护能力的能量回馈式主动制动系统及控制方法
KR20140122671A (ko) 차량용 브레이크 시스템, 및 브레이크 시스템의 작동 방법
WO2021098345A1 (zh) 汽车制动系统中的液压调节单元、汽车及控制方法
WO2021208594A1 (zh) 汽车中制动系统的液压调节单元、制动系统及控制方法
CN113561954B (zh) 汽车中制动系统的液压调节单元、制动系统及控制方法
CN112572381B (zh) 汽车的分布式制动系统、汽车及其控制方法
WO2023272668A1 (zh) 制动系统及制动系统的控制方法
WO2022021106A1 (zh) 液压调节单元、制动系统、车辆及控制方法
CN111873969B (zh) 一种具有独立双回路的电子液压线控制动系统
US20240132037A1 (en) Braking System and Method for Controlling Braking System
CN112512884B (zh) 一种用于车辆制动的制动系统和自动驾驶车辆
CN112519739A (zh) 一种分体式电子液压制动系统及方法
CN106740787A (zh) 基于分时串行与同时并行控制的线控制动系统
WO2023272667A1 (zh) 线控制动系统及控制方法
CN115402281B (zh) 一种电子液压制动系统及方法
CN112638728A (zh) 制动控制装置、制动控制系统及控制方法
US20240132039A1 (en) Brake-by-wire system and control method
CN218907206U (zh) 冗余线控液压制动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947621

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021947621

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947621

Country of ref document: EP

Effective date: 20240105