WO2021208433A1 - 一种聚碳酸酯合金材料及其制备方法和应用 - Google Patents

一种聚碳酸酯合金材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021208433A1
WO2021208433A1 PCT/CN2020/130124 CN2020130124W WO2021208433A1 WO 2021208433 A1 WO2021208433 A1 WO 2021208433A1 CN 2020130124 W CN2020130124 W CN 2020130124W WO 2021208433 A1 WO2021208433 A1 WO 2021208433A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy material
polycarbonate alloy
titanium
particle size
temperature
Prior art date
Application number
PCT/CN2020/130124
Other languages
English (en)
French (fr)
Inventor
郭涛
黄险波
叶南飚
林荣涛
王琪
杨波
李文龙
王鹏
谢湘
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2021208433A1 publication Critical patent/WO2021208433A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the invention belongs to the field of polymer materials, and specifically relates to a polycarbonate alloy material and a preparation method and application thereof.
  • PC alloys are widely used in electroplating fields, such as automobiles, home appliances, sanitary ware, construction, etc. Due to the high coefficient of linear thermal expansion of alloy materials, when used to make larger electroplated products, it is greatly affected by the environmental temperature. When the temperature difference between summer and winter is large, the product size will fluctuate greatly, which seriously affects the later assembly. Accuracy. Compared with large-size non-electroplated products, large-size electroplated products have a difference in linear thermal expansion coefficient between the surface coating and the matrix polymer material, and the coating blistering, wrinkling, peeling, etc. are more likely to occur when the temperature difference changes, so it reduces the polymer material The coefficient of linear thermal expansion is more important for electroplating PC alloys.
  • the method of adding fillers is usually used to reduce the linear thermal expansion coefficient, but on the one hand, it needs to be added in a larger amount to have a certain effect. On the other hand, the addition of fillers will cause the mechanical properties of the material to drop significantly, and it is easy to have a negative impact on electroplating.
  • the primary purpose of the present invention is to provide a polycarbonate alloy material, which can significantly reduce the linear thermal expansion coefficient of the alloy material, and can greatly increase the coefficient of linear thermal expansion without substantially affecting the mechanical properties. Electroplating peel force.
  • Another object of the present invention is to provide a method for preparing the above polycarbonate alloy material.
  • a polycarbonate alloy material in parts by weight, including the following components:
  • the weight content of the titanium element is 1 ppm-100 ppm, preferably 5-50 ppm.
  • the method for testing the weight content of the titanium element of the present invention is as follows: accurately weigh 2g of alloy material particles in an analytical balance, pour it into a 100ml digestion bottle, and then add 5ml of 97% concentrated sulfuric acid at a preset temperature of 300°C. Heat it in the plate heating instrument for 10 minutes, then add 5ml of 68% nitric acid, keep heating for 20 minutes to completely decompose the particles and cool to room temperature, add 20ml of hydrogen peroxide to neutralize the acidity to a pH of 7, then use deionized water Dilute the above liquid, and introduce the liquid into the ICP detection instrument through the sample tube to determine the concentration of titanium element.
  • the titanium element is derived from a titanium compound, and the titanium compound is one or more of titanium dioxide, titanium trichloride or titanium tetrachloride.
  • the PC resin of the present invention can be prepared by the phosgene method or the transesterification method in the industry, or can be obtained by commercially available methods.
  • SAN acts as a "bridge" between the PC resin and the rubber particles of ABS high rubber powder, and the SAN resin
  • the rubber particles of the ABS high rubber powder are more uniformly dispersed in the matrix.
  • the linear thermal expansion coefficient of the alloy material shows an increasing trend.
  • the content of acrylonitrile AN in the acrylonitrile-styrene copolymer SAN is 21%-35%, preferably 26%-32%.
  • the ABS high rubber powder of the present invention is an acrylonitrile-butadiene-styrene terpolymer with high rubber content polymerized by an emulsion method.
  • the present invention has discovered through research that the particle size of the ABS high rubber powder has a certain effect on the electroplating peeling force of the alloy material, and the compounded rubber particles with different particle size ranges are more conducive to the roughening of the material surface before electroplating to form more uniform and dense "Rivet" structure, so that the coating can be more firmly attached to the surface of the material.
  • the ABS high-rubber powder is selected from one or a mixture of ABS high-rubber powders with a butadiene rubber particle size of 100-400 nm or ABS high-rubber powders with a butadiene rubber particle size of 500-800 nm . More preferably, it is a compound of ABS high rubber powder with a butadiene rubber particle size of 100-400 nm and ABS high rubber powder with a butadiene rubber particle size of 500-800 nm in a weight ratio of 4:1-1:1.
  • the rubber particles in MBS can better promote coarsening, and the addition of MBS can further improve the electroplating peeling force of alloy materials.
  • the meta-copolymer MBS is selected from one or a mixture of MBS with a rubber particle size of 100-300 nm or MBS with a rubber particle size of 400-800 nm. More preferably, it is a compound having a rubber particle size of 100-300 nm and a rubber particle size of 400-800 nm, in a weight ratio of 0.5:1 to 3:1.
  • the compatibilizer is styrene-acrylonitrile-glycidyl methacrylate terpolymer, styrene-nitrophenyl maleimide-maleic anhydride terpolymer or styrene-maleic acid terpolymer.
  • the present invention also provides a method for preparing the above polycarbonate alloy material, which includes the following steps:
  • the conditions of the melt extrusion are: a temperature of 200-230°C in a zone, a temperature of 210-240°C in a second zone, a temperature of 220-250°C in a third zone, and a temperature of 220-250°C in a fourth zone, Five zone temperature 230-260°C, six zone temperature 230-260°C, seven zone temperature 230-260°C, eight zone temperature 230-260°C, main engine speed 300-500 rpm; twin screw extruder length to diameter ratio It is 32:1-42:1.
  • the present invention also provides the application of the above polycarbonate alloy materials in electroplating products, such as automobiles, household appliances, sanitary ware, buildings and the like.
  • the present invention has the following beneficial effects:
  • the content of titanium in the polycarbonate alloy material is controlled within the range of 1-100ppm, which can basically have no effect on the mechanical properties. Under the premise of influence, the linear thermal expansion coefficient of alloy materials can be significantly reduced.
  • the present invention can greatly improve the electroplating peeling force of polycarbonate alloy materials through the synergistic effect of PC resin, SAN, ABS high rubber powder and MBS, and by optimizing SAN, ABS high rubber powder and MBS.
  • SAN 335 AN content of 26%, Kumho, South Korea;
  • SAN 320 AN content of 24.5%, Kumho, South Korea;
  • SAN 310 AN content of 21%, Kumho, South Korea;
  • ABS high rubber powder 1 Butadiene rubber particle size is 100-400nm;
  • ABS high rubber powder 2 Butadiene rubber particle size is 500-800nm;
  • Methyl methacrylate-butadiene-styrene terpolymer MBS Methyl methacrylate-butadiene-styrene terpolymer MBS:
  • MBS1 The rubber particle size is 100-300nm
  • MBS2 The rubber particle size is 400-800nm.
  • Compatibilizer styrene-acrylonitrile-glycidyl methacrylate terpolymer, RAS-302, Jiaxing Huawen Company.
  • Titanium compounds titanium dioxide, titanium trichloride, titanium tetrachloride, commercially available;
  • Example 1-14 and Comparative Example 1-2 are identical to Example 1-14 and Comparative Example 1-2:
  • melt extrusion conditions: temperature in zone one is 200-230°C, zone two temperature is 210-240°C, zone three temperature is 220-250°C, zone four temperature is 220-250°C, zone five temperature is 230-260°C, six The zone temperature is 230-260°C, the seven zone temperature is 230-260°C, the eight zone temperature is 230-260°C, the main engine speed is 300-500 revolutions per minute; the length to diameter ratio of the twin-screw extruder is 36:1.
  • the test method for the weight content of titanium is: accurately weigh 2g of alloy material particles in an analytical balance, pour it into a 100ml digestion bottle, then add 5ml of 97% concentrated sulfuric acid, and heat the instrument at a preset temperature of 300°C. Heat for 10 minutes, then add 5ml of 68% nitric acid, and keep heating for another 20 minutes to completely decompose the particles and cool to room temperature. Add 20ml of hydrogen peroxide to neutralize the acidity to a pH of 7, and then dilute the liquid with deionized water. The liquid is introduced into the ICP detection instrument through the sample tube to determine the concentration of titanium element.
  • Electroplating peeling force Use Elko ELK-500N digital display tension meter to test the peeling force on a 10mm*80mm electroplated square plate.
  • the peeling width is 10mm
  • the peeling length is 80mm
  • the peeling speed is 0.5mm/sec. Record the average peeling force, unit : N/mm;
  • the present invention controls the content of titanium in the polycarbonate alloy material within the range of 1-100 ppm by adding a titanium compound to the polycarbonate alloy material.
  • the linear thermal expansion coefficient of polycarbonate alloy can be significantly reduced under the premise of ensuring that the mechanical properties are basically not affected; in Comparative Example 1-2, when the content of titanium in the polycarbonate alloy material is less than 1ppm or more than 100ppm, the polycarbonate alloy Carbonate alloy materials have a high linear thermal expansion coefficient.
  • Example 1 and Examples 7-9 the change of SAN resin has a significant effect on the electroplating peeling force: the lower the AN content of SAN resin is selected, the lower the electroplating peeling force of the alloy material is. This is because the higher the AN content, the higher the polarity, and the more uniform dispersion of the rubber particles of the ABS high rubber powder in the matrix. In addition, as the AN content decreases, the linear thermal expansion coefficient of the alloy material shows an increasing trend.
  • Example 1 and Examples 10-11 From the data of Example 1 and Examples 10-11, it can be illustrated that when ABS high rubber powder 1 or ABS high rubber powder 2 is added separately, the electroplating peel force of the material is lower than that of the two kinds of ABS high rubber powder with rubber particle size. It shows that the compounded rubber particles in different particle size ranges are more conducive to the roughening of the material surface before electroplating to form more uniform and dense "rivet" structures, so that the coating can be more firmly attached to the surface of the material.
  • Example 1 From the data of Example 1 and Examples 12-14, it can be illustrated that without adding MBS, the electroplating peel force of the material will decrease, indicating that the rubber particles in MBS can better promote coarsening.
  • MBS1 or MBS2 is added separately, the electroplating peeling force of the material is lower than that of the MBS of the two rubber particle sizes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种聚碳酸酯合金材料及其制备方法和应用,包括组分:PC树脂47份~74份;丙烯腈-苯乙烯共聚物SAN 18份~28份;ABS高胶粉7份~12份;甲基丙烯酸甲酯-丁二烯-苯乙烯三元共聚物MBS 0份~10份;相容剂1份~3份;其中,基于聚碳酸酯合金材料的总重量,钛元素的重量含量为1ppm-100ppm。本发明制备得到的聚碳酸酯合金材料在对力学性能基本没有影响的前提下,能明显降低合金材料的线性热膨胀系数,且能大幅提高电镀剥离力。

Description

一种聚碳酸酯合金材料及其制备方法和应用 技术领域
本发明属于高分子材料领域,具体涉及一种聚碳酸酯合金材料及其制备方法和应用。
背景技术
PC合金广泛应用于电镀领域,如汽车、家电、卫浴、建筑等。由于合金材料的线性热膨胀系数较高,用于制作尺寸较大的电镀制品时,受环境温度的影响较大,夏季和冬季温差较大时制品尺寸出现很大波动,严重影响了后期装配时的精度。相比大尺寸非电镀制品,大尺寸电镀制品由于表面镀层和基体高分子材料存在线性热膨胀系数差异,在温差变化时较容易发生镀层起泡、发皱、剥落等现象,所以降低高分子材料的线性热膨胀系数对于电镀PC合金更具有重要意义。
目前通常是采用添加填料的方式降低线性热膨胀系数,但一方面需要添加较大用量才有一定效果,另一方面填料的加入会导致材料的力学性能出现大幅下降,且容易对电镀产生负面影响。
发明内容
为了克服上述现有技术存在的不足,本发明的首要目的在于提供一种聚碳酸酯合金材料,在对力学性能基本没有影响的前提下,能明显降低合金材料的线性热膨胀系数,且能大幅提高电镀剥离力。
本发明的另一目的在于提供上述聚碳酸酯合金材料的制备方法。
本发明是通过以下技术方案实现的:
一种聚碳酸酯合金材料,按重量份数计,包括以下组分:
Figure PCTCN2020130124-appb-000001
优选的,基于聚碳酸酯合金材料的总重量,钛元素的重量含量为1ppm-100ppm,优选为5-50ppm。
本发明所述钛元素的重量含量的测试方法为:在分析天平中精确称量合金材料的颗粒2g,倒入100ml消解瓶中,然后加入97%的浓硫酸5ml,在预设温度300℃铁板加热仪器中 加热10分钟,然后再加入68%的硝酸5ml,再保持加热20分钟,使颗粒物完全分解后冷却至室温,加入20ml的双氧水中和酸性至pH值为7后,用去离子水稀释上述液体,将液体通过进样管导入ICP检测仪器中测定钛元素的浓度。
优选的,所述钛元素来源于钛的化合物,所述钛的化合物为二氧化钛、三氯化钛或四氯化钛中的一种或几种。
本发明所述的PC树脂可采用行业内的光气法或酯交换法制备得到,也可以通过市购方式获得。
本发明通过研究发现,不同AN含量的SAN在合金材料中对电镀剥离力和线性热膨胀系数有一定影响,SAN在PC树脂和ABS高胶粉的橡胶粒子之间起“桥梁”作用,SAN树脂中AN含量越高则极性越高,ABS高胶粉的橡胶粒子在基体中的分散更均匀,合金材料的电镀剥离力越高,SAN树脂AN含量越低,合金材料的电镀剥离力越低。另外,随着AN含量降低,合金材料的线性热膨胀系数呈现升高的趋势。因此,优选的,基于丙烯腈-苯乙烯共聚物SAN的总重量,所述丙烯腈-苯乙烯共聚物SAN中丙烯腈AN的含量为21%~35%,优选为26%-32%。
本发明所述的ABS高胶粉是是乳液法聚合的高橡胶含量的丙烯腈-丁二烯-苯乙烯三元共聚物。本发明通过研究发现,ABS高胶粉的粒径对合金材料的电镀剥离力具有一定的影响,不同粒径范围复配的橡胶粒子更有利于材料表面电镀前的粗化形成更多均匀致密的“铆钉”结构,从而镀层可以更牢固地附着在材料表面。优选的,所述ABS高胶粉选自丁二烯橡胶粒径为100~400nm的ABS高胶粉或丁二烯橡胶粒径为500~800nm的ABS高胶粉中一种或两种的混合。更优选为丁二烯橡胶粒径为100~400nm的ABS高胶粉与丁二烯橡胶粒径为500~800nm的ABS高胶粉按重量比为4:1-1:1的复配物。
本发明进一步研究发现,MBS中的橡胶粒子能够更好地促进粗化,MBS的加入能进一步提高合金材料的电镀剥离力,优选的,所述甲基丙烯酸甲酯-丁二烯-苯乙烯三元共聚物MBS选自橡胶粒径为100~300nm的MBS或橡胶粒径为400~800nm的MBS中一种或两种的混合。更优选为橡胶粒径为100~300nm的MBS与橡胶粒径为400~800nm的MBS按重量比为0.5:1-3:1的复配物。
优选的,所述相容剂为苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯三元共聚物、苯乙烯-氮苯基马来酰亚胺-马来酸酐三元共聚物或苯乙烯-马来酸酐中的一种或两种的混合。
本发明还提供了上述聚碳酸酯合金材料的制备方法,包括如下步骤:
(1)按重量百分比称取各组分,将各组分在高混机里混合1-5min,混合均匀后在第一段处 加入双螺杆挤出机;
(2)将钛的化合物在双螺杆的侧喂料加入;
(3)经过熔融挤出,造粒干燥,即得聚碳酸酯合金材料。
优选的,步骤(3)中,所述熔融挤出的条件为:一区温度200-230℃,二区温度210-240℃,三区温度220-250℃,四区温度220-250℃,五区温度230-260℃,六区温度230-260℃,七区温度230-260℃,八区温度230-260℃,主机转速300-500转/分钟;双螺杆挤出机的长径比为32:1-42:1。
本发明还提供了上述聚碳酸酯合金材料在电镀制品中的应用,如汽车、家电、卫浴、建筑等。
与现有技术相比,本发明具有如下有益效果:
(1)本发明通过研究意外的发现,在聚碳酸酯合金材料中通过添加钛的化合物,将聚碳酸酯合金材料中钛元素的含量控制在1-100ppm范围内,能够在对力学性能基本没有影响的前提下,可以明显降低合金材料的线性热膨胀系数。
(2)本发明通过PC树脂与SAN、ABS高胶粉以及MBS的协同作用,并通过对SAN、ABS高胶粉以及MBS的优化,能大幅提高聚碳酸酯合金材料的电镀剥离力。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,单不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
现对实施例及对比例所用的原材料做如下说明,但不限于这些材料:
PC树脂,市购;
丙烯腈-苯乙烯共聚物SAN:
SAN 350,AN含量为32%,韩国锦湖;
SAN 335,AN含量为26%,韩国锦湖;
SAN 320,AN含量为24.5%,韩国锦湖;
SAN 310,AN含量为21%,韩国锦湖;
ABS高胶粉1:丁二烯橡胶粒径为100-400nm;
ABS高胶粉2:丁二烯橡胶粒径为500-800nm;
甲基丙烯酸甲酯-丁二烯-苯乙烯三元共聚物MBS:
MBS1:橡胶粒径为100-300nm;
MBS2:橡胶粒径为400-800nm。
相容剂:苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯三元共聚物,RAS-302,嘉兴华雯公司。
钛的化合物:二氧化钛,三氯化钛,四氯化钛,市购;
实施例1-14和对比例1-2:
(1)按表1配比称取各组分,将各组分在高混机里混合3min,混合均匀后在第一段处加入双螺杆挤出机;
(2)钛的化合物在双螺杆的第三段侧喂料加入;
(3)经过熔融挤出,造粒干燥,即得聚碳酸酯合金材料。
其中,熔融挤出的条件为:一区温度200-230℃,二区温度210-240℃,三区温度220-250℃,四区温度220-250℃,五区温度230-260℃,六区温度230-260℃,七区温度230-260℃,八区温度230-260℃,主机转速300-500转/分钟;双螺杆挤出机的长径比为36:1。
各性能测试条件:
钛元素的重量含量的测试方法为:在分析天平中精确称量合金材料的颗粒2g,倒入100ml消解瓶中,然后加入97%的浓硫酸5ml,在预设温度300℃铁板加热仪器中加热10分钟,然后再加入68%的硝酸5ml,再保持加热20分钟,使颗粒物完全分解后冷却至室温,加入20ml的双氧水中和酸性至pH值为7后,用去离子水稀释上述液体,将液体通过进样管导入ICP检测仪器中测定钛元素的浓度。
电镀剥离力:采用伊莱科ELK-500N型数显拉力计在10mm*80mm电镀方形板上进行剥离力测试,剥离宽度10mm,剥离长度80mm,剥离速度0.5mm/sec,记录平均剥离力,单位:N/mm;
线性热膨胀系数:ISO 11359,测试范围:-30℃-80℃,升温速率10℃/min,单位:μm/(m·℃);
拉伸强度:ISO 527;
弯曲强度:ISO 178;
悬臂梁缺口冲击强度:ISO 180。
表1:各实施例及对比例中各组份的具体配比(重量份)
Figure PCTCN2020130124-appb-000002
续表1:
Figure PCTCN2020130124-appb-000003
由实施例与对比例1-2的数据可以看出,本发明通过在聚碳酸酯合金材料中添加钛的化合物,将聚碳酸酯合金材料中钛元素的含量控制在1-100ppm范围内,在保证对力学性能基本没有影响的前提下,可以明显降低聚碳酸酯合金的线性热膨胀系数;对比例1-2中,聚碳酸酯合金材料中钛元素的含量低于1ppm或高于100ppm时,聚碳酸酯合金材料的线性热膨胀系数较高。
由实施例1与实施例7-9可以看出,SAN树脂的变化对电镀剥离力的影响较显著:选择AN含量越低的SAN树脂,合金材料的电镀剥离力越低。这是因为AN含量越高则极性越高,ABS高胶粉的橡胶粒子在基体中的分散更均匀。另外,随着AN含量降低,合金材料的线性热膨胀系数呈现升高的趋势。
由实施例1与实施例10-11的数据可以说明,单独加入ABS高胶粉1或ABS高胶粉2时,材料的电镀剥离力低于两种橡胶粒径的ABS高胶粉同时加入。说明不同粒径范围复配的橡胶粒子更有利于材料表面电镀前的粗化形成更多均匀致密的“铆钉”结构,从而镀层可 以更牢固地附着在材料表面。
由实施例1与实施例12-14的数据可以说明,不加入MBS,材料的电镀剥离力会有所下降,说明MBS中的橡胶粒子能够更好地促进粗化。单独加入MBS1或MBS2时,材料的电镀剥离力低于两种橡胶粒径的MBS同时加入。

Claims (11)

  1. 一种聚碳酸酯合金材料,其特征在于,按重量份数计,包括以下组分:
    Figure PCTCN2020130124-appb-100001
  2. 根据权利要求1所述的聚碳酸酯合金材料,其特征在于,其中,基于聚碳酸酯合金材料的总重量,钛元素的重量含量为1ppm-100ppm,优选为5-50ppm。
  3. 根据权利要求2所述的聚碳酸酯合金材料,其特征在于,所述钛元素的重量含量的测试方法为:在分析天平中精确称量合金材料的颗粒2g,倒入100ml消解瓶中,然后加入97%的浓硫酸5ml,在预设温度300℃铁板加热仪器中加热10分钟,然后再加入68%的硝酸5ml,再保持加热20分钟,使颗粒物完全分解后冷却至室温,加入20ml的双氧水中和酸性至pH值为7后,用去离子水稀释上述液体,将液体通过进样管导入ICP检测仪器中测定钛元素的浓度。
  4. 根据权利要求2所述的聚碳酸酯合金材料,其特征在于,所述钛元素来源于钛的化合物,所述钛的化合物为二氧化钛、三氯化钛或四氯化钛中的一种或几种。
  5. 根据权利要求1所述的聚碳酸酯合金材料,其特征在于,基于丙烯腈-苯乙烯共聚物SAN的总重量,所述丙烯腈-苯乙烯共聚物中丙烯腈AN的含量为21%-35%,优选为26%~32%。
  6. 根据权利要求1所述所述的聚碳酸酯合金材料,其特征在于,所述ABS高胶粉选自丁二烯橡胶粒径为100~400nm的ABS高胶粉或丁二烯橡胶粒径为500~800nm的ABS高胶粉中一种或两种的混合,优选为丁二烯橡胶粒径为100~400nm的ABS高胶粉与丁二烯橡胶粒径为500~800nm的ABS高胶粉按重量比为4:1-1:1的复配物。
  7. 根据权利要求1所述的聚碳酸酯合金材料,其特征在于,所述甲基丙烯酸甲酯-丁二烯-苯乙烯三元共聚物MBS选自橡胶粒径为100~300nm的MBS或橡胶粒径为400~800nm的MBS中一种或两种的混合,优选为橡胶粒径为100~300nm的MBS与橡胶粒径为400~800nm的MBS按重量比为0.5:1-3:1的复配物。
  8. 根据权利要求1所述的聚碳酸酯合金材料,其特征在于,所述相容剂为苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯三元共聚物、苯乙烯-氮苯基马来酰亚胺-马来酸酐三元共聚物或苯乙烯-马来酸酐中的一种或两种的混合。
  9. 根据权利要求1~8任一项所述的聚碳酸酯合金材料的制备方法,其特征在于,包括如下 步骤:
    (1)按重量百分比称取各组分,将各组分在高混机里混合1-5min,混合均匀后在第一段处加入双螺杆挤出机;
    (2)将钛的化合物在双螺杆的侧喂料加入;
    (3)经过熔融挤出,造粒干燥,即得聚碳酸酯合金材料。
  10. 根据权利要求9所述的聚碳酸酯合金材料的制备方法,其特征在于,步骤(3)中,所述熔融挤出的条件为:一区温度200-230℃,二区温度210-240℃,三区温度220-250℃,四区温度220-250℃,五区温度230-260℃,六区温度230-260℃,七区温度230-260℃,八区温度230-260℃,主机转速300-500转/分钟;双螺杆挤出机的长径比为32:1-42:1。
  11. 权利要求1~8任一项所述的聚碳酸酯合金材料在电镀制品中的应用。
PCT/CN2020/130124 2020-04-13 2020-11-19 一种聚碳酸酯合金材料及其制备方法和应用 WO2021208433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010285613.X 2020-04-13
CN202010285613.XA CN111500043B (zh) 2020-04-13 2020-04-13 一种聚碳酸酯合金材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021208433A1 true WO2021208433A1 (zh) 2021-10-21

Family

ID=71870906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130124 WO2021208433A1 (zh) 2020-04-13 2020-11-19 一种聚碳酸酯合金材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111500043B (zh)
WO (1) WO2021208433A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819971A (zh) * 2022-12-29 2023-03-21 贵州凯宏汇达冷却系统有限公司 一种低压配电柜制作用防火材料及制备工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500043B (zh) * 2020-04-13 2022-03-29 金发科技股份有限公司 一种聚碳酸酯合金材料及其制备方法和应用
CN112080120B (zh) * 2020-08-26 2022-10-14 武汉金发科技有限公司 一种聚碳酸酯合金材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114103A1 (en) * 2006-11-13 2008-05-15 General Electric Company Thermoplastic Polycarbonate Compositions With Improved Static Resistance
CN102134366A (zh) * 2010-01-25 2011-07-27 王广武 具有低线膨胀系数pc/abs或pvc/abs合金及其制备方法
CN105419142A (zh) * 2015-12-18 2016-03-23 深圳华力兴新材料股份有限公司 一种电镀pc/abs合金材料及其制备方法
CN106633769A (zh) * 2016-12-14 2017-05-10 上海锦湖日丽塑料有限公司 高耐热高结合力电镀pc/abs合金材料及其制备方法
CN107793724A (zh) * 2016-11-29 2018-03-13 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN110885507A (zh) * 2019-12-13 2020-03-17 天津金发新材料有限公司 一种解决油漆咬底现象的复合材料
CN111500043A (zh) * 2020-04-13 2020-08-07 金发科技股份有限公司 一种聚碳酸酯合金材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2584064B1 (en) * 2009-12-17 2015-07-29 BYD Company Limited Surface metallizing method, method for preparing plastic article and plastic article made therefrom
US9085687B2 (en) * 2012-02-03 2015-07-21 Sabic Global Technologies B.V. Polycarbonate blends having improved electroplate adhesion
CN103059547B (zh) * 2013-01-30 2015-05-06 上海俊尔新材料有限公司 一种电镀pc/abs合金材料及其制备方法
CN104045962B (zh) * 2014-05-30 2019-03-29 金发科技股份有限公司 一种适于电镀的增强abs树脂组合物及其制备方法与应用
CN108250660B (zh) * 2017-12-22 2021-03-09 万华化学集团股份有限公司 一种电镀级pc/abs合金材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114103A1 (en) * 2006-11-13 2008-05-15 General Electric Company Thermoplastic Polycarbonate Compositions With Improved Static Resistance
CN102134366A (zh) * 2010-01-25 2011-07-27 王广武 具有低线膨胀系数pc/abs或pvc/abs合金及其制备方法
CN105419142A (zh) * 2015-12-18 2016-03-23 深圳华力兴新材料股份有限公司 一种电镀pc/abs合金材料及其制备方法
CN107793724A (zh) * 2016-11-29 2018-03-13 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN106633769A (zh) * 2016-12-14 2017-05-10 上海锦湖日丽塑料有限公司 高耐热高结合力电镀pc/abs合金材料及其制备方法
CN110885507A (zh) * 2019-12-13 2020-03-17 天津金发新材料有限公司 一种解决油漆咬底现象的复合材料
CN111500043A (zh) * 2020-04-13 2020-08-07 金发科技股份有限公司 一种聚碳酸酯合金材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819971A (zh) * 2022-12-29 2023-03-21 贵州凯宏汇达冷却系统有限公司 一种低压配电柜制作用防火材料及制备工艺
CN115819971B (zh) * 2022-12-29 2024-03-15 贵州凯宏汇达冷却系统有限公司 一种低压配电柜制作用防火材料及制备工艺

Also Published As

Publication number Publication date
CN111500043A (zh) 2020-08-07
CN111500043B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2021208433A1 (zh) 一种聚碳酸酯合金材料及其制备方法和应用
WO2021208434A1 (zh) 一种pc/abs合金材料及其制备方法和应用
WO2022095365A1 (zh) 一种玻纤增强的聚碳酸酯组合物及其制备方法和应用
CN100549087C (zh) 聚碳酸酯/丙烯腈-丁二烯-苯乙烯三元共聚树脂/聚对苯二甲酸丁二醇酯合金材料
CN112080120B (zh) 一种聚碳酸酯合金材料及其制备方法和应用
EP3176193B1 (en) Method for preparing modified acrylonitrile-butadiene-styrene-based resin, and modified acrylonitrile-butadiene-styrene-based resin prepared thereby
CN105419142B (zh) 一种电镀pc/abs合金材料及其制备方法
WO2023174284A1 (zh) 一种pbt组合物及其制备方法与应用
CN112457645B (zh) 一种聚碳酸酯合金组合物及其制备方法和应用
CN105566839A (zh) 一种高性能耐老化abs/gf复合材料及其制备方法
CN112480626B (zh) 一种玻纤增强聚碳酸酯组合物及其制备方法和应用
CN105385031B (zh) 一种基于长玻纤改性聚丙烯的高抗冲高压水泵壳体材料及其制备方法
CN112375362B (zh) 一种pc/abs组合物及其制备方法和应用
CN106947233B (zh) 一种pc/pa6/石墨烯复合材料及其制备方法
CN111073553A (zh) 一种高强度高流动性的聚丙烯粘接树脂及其制备方法
CN103509319A (zh) 玻璃纤维增强pc/abs复合材料及其制备方法
CN110003631A (zh) 导电母粒、高导电率聚碳酸酯复合材料及二者的制备方法
CN104629294A (zh) 一种力学性能优异的pc/abs改性合金
CN114957874A (zh) 一种高硬度耐划伤聚苯乙烯复合材料及其制备方法与应用
KR20080047012A (ko) 친수기로 개질된 아크릴계 수지, 이를 포함하는 무기 나노입자 코팅액, 및 상기 코팅액으로 제조된 무기 나노 입자필름
CN109627621B (zh) 一种高光、高表面硬度asa材料及其制备方法
CN107141587B (zh) 一种抗静电高韧性pp/pa6复合材料的制备方法
CN109867845A (zh) 一种抗老化防静电的塑料及其制备方法
CN109705463A (zh) 一种高分子聚丙烯薄膜及其制备方法
CN109401132A (zh) 耐磨木塑复合板材组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/03/2023).

122 Ep: pct application non-entry in european phase

Ref document number: 20931436

Country of ref document: EP

Kind code of ref document: A1