WO2021206472A1 - 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테 - Google Patents

근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테 Download PDF

Info

Publication number
WO2021206472A1
WO2021206472A1 PCT/KR2021/004417 KR2021004417W WO2021206472A1 WO 2021206472 A1 WO2021206472 A1 WO 2021206472A1 KR 2021004417 W KR2021004417 W KR 2021004417W WO 2021206472 A1 WO2021206472 A1 WO 2021206472A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared emitting
metal oxide
polymer composite
emitting
near infrared
Prior art date
Application number
PCT/KR2021/004417
Other languages
English (en)
French (fr)
Inventor
김진구
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2021206472A1 publication Critical patent/WO2021206472A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C5/00Constructions of non-optical parts
    • G02C5/008Spectacles frames characterized by their material, material structure and material properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten

Definitions

  • the present invention relates to a near-infrared emitting polymer composite, and more particularly, to a near-infrared emitting polymer composite that can emit visible and near-infrared rays of a specific wavelength, does not cause single yarn during fiber formation, and exhibits excellent durability, including the same to a near-infrared emitting fiber, a near-infrared emitting nonwoven fabric, and a near-infrared emitting spectacle frame.
  • Infrared rays have a longer wavelength than visible light and refer to electromagnetic waves that fall within the range of 0.75 ⁇ m to 1mm. If classified according to the wavelength region, infrared with a wavelength of 0.75 ⁇ 3 ⁇ m is called near infrared, and those with a wavelength of 3 ⁇ 25 ⁇ m are simply called infrared, and 25 ⁇ m The above is called far-infrared rays.
  • near-infrared rays which have the shortest wavelength, have a stronger thermal action than visible rays or ultraviolet rays, have a characteristic of transferring heat only to an object without heating the air, and have high and deep penetration into biological tissues. It is widely used throughout the industry, such as for industrial use for sterilization (sterilization).
  • the treatment of such near-infrared rays has different effects depending on the wavelength, and can express effects such as treatment of joints and muscles, strengthening immunity, alleviating pain and improving blood circulation.
  • the present invention has been devised to solve the above-described problems, and can emit visible and near-infrared light in a specific wavelength band, does not cause single yarn during fiber formation, and exhibits excellent durability, a near-infrared emitting polymer composite comprising the same
  • An object of the present invention is to provide a near-infrared emitting fiber, a near-infrared emitting nonwoven fabric and a near-infrared emitting spectacle frame.
  • Nd 2 O 3 , Er 2 O 3 , Sm 2 O 3 and Pr 2 O 3 A metal oxide having a near-infrared emitting metal oxide containing; and a polymer resin in which the metal oxide is dispersed; provides a near-infrared emitting polymer composite comprising.
  • 1 to 15 parts by weight of the metal oxide may be included with respect to 100 parts by weight of the polymer resin.
  • the near-infrared emitting metal oxide may include a total of 67 to 88% by weight of Nd 2 O 3 and Er 2 O 3 .
  • the near-infrared emitting metal oxide may include a total of 12 to 33% by weight of Sm 2 O 3 and Pr 2 O 3 .
  • the metal oxide may further include a heat dissipation metal oxide including at least one of TiO 2 and WO 3 .
  • the metal oxide may further include 0.5 to 4 parts by weight of the heat dissipation metal oxide based on 100 parts by weight of the near-infrared emitting metal oxide.
  • the heat dissipation metal oxide may include TiO 2 and WO 3 in a weight ratio of 1: 0.5 to 1.5.
  • the metal oxide may have an average particle diameter of 0.5 to 4 ⁇ m.
  • the polymer resin is polyamide, polyester, polyketone, liquid crystal polymer, polyolefin, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyphenylene oxide (PPO), polyether sulfone (PES) , may include at least one selected from the group consisting of polyetherimide (PEI) and polyimide.
  • the present invention provides a near-infrared emitting fiber comprising the above-described near-infrared emitting polymer composite.
  • the present invention provides a near-infrared emitting nonwoven fabric formed including the above-described near-infrared emitting fiber.
  • the present invention provides a near-infrared emitting spectacle frame comprising the above-described near-infrared emitting polymer composite.
  • the near-infrared emitting polymer composite according to the present invention, the near-infrared emitting fiber, the near-infrared emitting nonwoven fabric and the near-infrared emitting spectacle frame comprising the same can emit visible light and near-infrared rays of a specific wavelength, do not cause single yarn during fiber formation, and have excellent durability. have.
  • Nd 2 O 3 , Er 2 O 3 , Sm 2 O 3 and Pr 2 O 3 A metal oxide having a near-infrared emitting metal oxide containing; and a polymer resin in which the metal oxide is dispersed.
  • the metal oxide includes Nd 2 O 3 , Er 2 O 3 , Sm 2 O 3 and a near-infrared emitting metal oxide including Pr 2 O 3 .
  • the Nd 2 O 3 , Er 2 O 3 , Sm 2 O 3 and Pr 2 O 3 perform a function of emitting visible light and near infrared rays in a wavelength range of 600 to 900 nm.
  • the near-infrared emitting metal oxide may include Nd 2 O 3 and Er 2 O 3 in an amount of 67 to 88 wt%, preferably 70 to 85 wt%. If the Nd 2 O 3 and Er 2 O 3 are included in a total amount of less than 67% by weight, it is impossible to emit visible light and near infrared rays with a wavelength of 600 to 900 nm to a desired level, and Nd 2 O 3 and Er 2 O 3 are When it exceeds 88% by weight, the wavelength region of emitted visible light and near-infrared light is excessively narrowed, and the intensity of the emitted visible light and near-infrared light is also reduced.
  • the Sm 2 O 3 and Pr 2 O 3 functions to extend the wavelength range of the emitted visible light and near-infrared light.
  • the near-infrared emitting metal oxide may include Sm 2 O 3 and Pr 2 O 3 in a total amount of 12 to 33% by weight, preferably 15 to 30% by weight. If the Sm 2 O 3 and Pr 2 O 3 are included in a total amount of less than 12% by weight, the wavelength region of emitted visible light and near-infrared light is excessively narrowed, and the intensity of the emitted visible light and near-infrared light may also decrease.
  • the metal oxide may further include a heat dissipation metal oxide including at least one of TiO 2 and WO 3 .
  • the heat dissipation metal oxide may include any one or more of TiO 2 and WO 3 as described above, and preferably include both TiO 2 and WO 3 .
  • the TiO 2 and WO 3 perform a function of implying and emitting heat generated for a predetermined reason, such as near-infrared emission, in the near-infrared emitting polymer composite.
  • the heat dissipation metal oxide may be further included in the metal oxide in an amount of 0.5 to 4 parts by weight, preferably 1 to 3 parts by weight, based on 100 parts by weight of the near-infrared emitting metal oxide. If the heat dissipation metal oxide is less than 0.5 parts by weight with respect to 100 parts by weight of the near-infrared emitting metal oxide, the desired level of heat dissipation properties cannot be exhibited, and when it exceeds 4 parts by weight, the intensity of visible light and near-infrared emission of 600 to 900 nm wavelength There may be a problem in that a reduction or excessive narrowing of the wavelength range of the emitted visible light and near-infrared light may occur.
  • the heat dissipation metal oxide may include the TiO 2 and WO 3 in a weight ratio of 1: 0.5 to 1.5, preferably, in a weight ratio of 1: 0.7 to 1.3. If the weight ratio of TiO 2 and WO 3 contained in the heat dissipation metal oxide is out of the above range, there may be a problem in that a desired level of heat dissipation characteristics cannot be expressed.
  • the metal oxide according to the present invention may have an average particle diameter of 0.5 to 4 ⁇ m, and preferably, an average particle diameter of 1 to 3 ⁇ m. If the average particle diameter of the metal oxide is less than 0.5 ⁇ m, the metal oxide burrowing on the surface may occur, and thus the desired level of visible and near-infrared emission and heat dissipation characteristics may not be expressed. When the particle diameter exceeds 4 ⁇ m, the surface properties may be poor as there may be metal oxides protruding from the surface, and the occurrence of single yarns of the fibers may increase or the durability of the polymer molded body may be reduced.
  • the polymer resin performs a function of accommodating the metal oxide so that the above-described metal oxide is dispersed.
  • the polymer resin can be used without limitation as long as it supports the metal oxide and does not inhibit the emission of visible and near infrared rays, preferably polyamide, polyester, polyketone, liquid crystal polymer, polyolefin, polyphenylene sulfide (PPS) , polyether ether ketone (PEEK), polyphenylene oxide (PPO), polyether sulfone (PES), polyether imide (PEI) and may include at least one selected from the group consisting of polyimide, more preferably may include any one or more of polyester and polyolefin, and more preferably include any one or more of polyethylene terephthalate (PET) and polypropylene (PP).
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • PPO polyphenylene oxide
  • PES polyether sulfone
  • PEI polyether imide
  • PEI polyether imide
  • the polyamide may be a known polyamide-based compound such as nylon 6, nylon 66, nylon 11, nylon 610, nylon 12, nylon 46, nylon 9T (PA-9T), Kiana and aramid.
  • the polyester may be a known polyester-based compound such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), or polycarbonate.
  • PET polyethylene terephthalate
  • PTT polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • polycarbonate polycarbonate
  • the polyolefin may be a known polyolefin-based compound such as polyethylene, polypropylene, polystyrene, polyisobutylene, or ethylene vinyl alcohol.
  • the liquid crystal polymer may be used without limitation in the case of a polymer exhibiting liquid crystallinity in a solution or dissolved state, and may be a known type, so that the present invention is not particularly limited thereto.
  • the near-infrared emitting polymer composite according to the present invention may contain 1 to 15 parts by weight of the metal oxide, preferably 2 to 14 parts by weight, based on 100 parts by weight of the polymer resin. If the amount of the metal oxide is less than 1 part by weight based on 100 parts by weight of the polymer resin, visible light and near-infrared rays cannot be emitted to a desired level and heat dissipation properties may be deteriorated, and the metal oxide may be used with respect to 100 parts by weight of the polymer resin. If it exceeds 15 parts by weight, single yarn may occur during formation of fibers and/or molded articles such as eyeglass frames, or a problem of reduced durability may occur.
  • the present invention also provides a near-infrared emitting fiber, a near-infrared emitting nonwoven fabric and a near-infrared emitting spectacle frame comprising the above-described near-infrared emitting polymer composite according to the present invention.
  • the near-infrared emitting fiber may be prepared by radiating the near-infrared emitting polymer composite, but is not limited thereto.
  • the near-infrared emitting polymer composite by radiating the near-infrared emitting polymer composite, it is possible to prepare a near-infrared emitting nonwoven fabric including a plurality of the near-infrared emitting fibers.
  • the entire spectacle frame is formed through the above-described near-infrared emitting polymer composite through injection, or some parts of the spectacle frame (nose support, upper rim, lower rim, bridge, temple) and leg tips) only may be formed through the above-described near-infrared emitting polymer composite.
  • the near-infrared emitting polymer composite according to the present invention a near-infrared emitting fiber, a near-infrared emitting nonwoven fabric, and a near-infrared emitting spectacle frame comprising the same can emit near-infrared rays of a specific wavelength, do not cause single yarn during fiber formation, and have excellent durability. have.
  • a near-infrared emitting polymer composite was prepared by mixing 10 parts by weight of a metal oxide with respect to 100 parts by weight of polyethylene terephthalate (PET) as a polymer resin.
  • the metal oxide includes Nd 2 O 3 and Er 2 O 3 in a weight ratio of 1:1 to a total of 77.5% by weight and Sm 2 O 3 and Pr 2 O 3 in a weight ratio of 1:1 to a total of 22.5% by weight.
  • the emitting metal oxide and the heat dissipating metal oxide containing TiO 2 and WO 3 in a weight ratio of 1:1 with respect to 100 parts by weight of the near-infrared emitting metal oxide were included in an amount of 2.04 parts by weight.
  • the total average particle diameter of the metal oxide was 2 ⁇ m.
  • Visible light and near-infrared emission were evaluated for the near-infrared emitting polymer composites according to Examples and Comparative Examples.
  • each section (1st section less than 500nm ⁇ 600nm, second section 600nm ⁇ less than 700nm, 3rd section 700nm ⁇ less than 800nm, 4th section 800nm ⁇ less than 900nm, and 5th section 900nm ⁇
  • the near-infrared intensity at 1,000 nm is shown in Tables 1 to 3 below on the basis of Example 1 as 100.
  • the near-infrared emitting polymer composite according to Examples and Comparative Examples was spun by a melt spinning method to form a near-infrared emitting fiber having an average fiber diameter of 250 ⁇ m, and when single yarn did not occur in the spinning process - ⁇ , In the case of occurrence of single yarn - ⁇ , the prevention of single yarn generation was evaluated and shown in Tables 1 to 3 below.
  • the tensile strength was measured at a rate of 5 mm/min through a universal test machine (ZWICK-Z50, GERMANY), and the tensile strength of Example 1 was set to 100. Durability was evaluated by measuring the relative ratio of tensile strength with respect to other examples and comparative examples based on the standard.
  • Example 1 Example 3
  • Example 4 Example 5 metal oxide near infrared Release metal oxide Total content of Nd 2 O 3 and Er 2 O 3 (wt%) 77.5 64 70 85 91 Total content of Sm 2 O 3 and Pr 2 O 3 (wt%) 22.5 36 30 15 9 Content (parts by weight) 10 10 10 10 10 10 Average particle diameter ( ⁇ m) 2 2 2 2 2 Section 1 500nm to less than 600nm 100 117 109 94 62 Section 2 600nm to less than 700nm 100 42 96 101 108 Section 3 700nm to less than 800nm 100 22 91 105 120 Section 4 800nm to less than 900nm 100 13 84 107 124 Section 5 900nm ⁇ 1000nm 100 61 98 102 109 Single-fault prevention evaluation ⁇ ⁇ ⁇ ⁇ ⁇ Durability evaluation 100 99 99 100 100 100
  • Example 7 Example 8
  • Example 9 Example 10 metal oxide near infrared Release metal oxide Nd 2 O 3 and Er 2 O 3 Total content (wt%) 77.5 77.5 77.5 77.5 Sm 2 O 3 and Pr 2 O 3 Total content (wt%) 22.5 22.5 22.5 22.5 Content (parts by weight) 0.5 2 14 17 10 Average particle diameter ( ⁇ m) 2 2 2 2 0.1 Section 1 500nm to less than 600nm 61 91 102 103 78 Section 2 600nm to less than 700nm 53 90 102 105 75 Section 3 700nm to less than 800nm 50 92 105 106 76 Section 4 800nm to less than 900nm 48 93 108 108 77 Section 5 900nm ⁇ 1000nm 54 92 104 104 76 Single-fault prevention evaluation ⁇ ⁇ ⁇ ⁇ Durability evaluation 106 102 96 74 104
  • Example 12 Example 13 comparative example One comparative example 2 metal oxide near infrared Release metal oxide Nd 2 O 3 and Er 2 O 3 Total content (wt%) 77.5 77.5 77.5 - 100 Sm 2 O 3 and Pr 2 O 3 Total content (wt%) 22.5 22.5 22.5 100 - Content (parts by weight) 10 10 10 10 10 10 Average particle diameter ( ⁇ m) One 3 5 2 2 Section 1 500nm to less than 600nm 98 95 90 137 33 Section 2 600nm to less than 700nm 97 91 85 12 114 Section 3 700nm to less than 800nm 96 92 91 6 122 Section 4 800nm to less than 900nm 95 96 80 3 126 Section 5 900nm ⁇ 1000nm 93 94 89 14 116 Single-fault prevention evaluation ⁇ ⁇ ⁇ ⁇ ⁇ Durability evaluation 103 94 51 101 97
  • Examples 1, 3, 4, 7, 8, 11 and 12 satisfy all of the composition, total content, and average particle diameter of the metal oxide according to the present invention, one of Compared to Examples 2, 5, 6, 9, 10, 13, and Comparative Examples 1 and 2, which are omitted, the wavelength range of the emitted near-infrared light is wider, but it can emit near-infrared light with a wavelength of 600 to 900 nm with high intensity, and the durability is lower. It is excellent, and it can be confirmed that all of the effects of not generating single yarns during fiber formation can be expressed simultaneously.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 근적외선 방출 고분자 복합체에 관한 것으로, 더욱 상세하게는 특정파장대의 가시광선과 근적외선을 방출할 수 있고, 섬유 형성 시 단사가 발생하지 않으며, 내구성이 우수한 효과를 발현하는 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테에 관한 것이다.

Description

근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테
본 발명은 근적외선 방출 고분자 복합체에 관한 것으로, 더욱 상세하게는 특정파장대의 가시광선과 근적외선을 방출할 수 있고, 섬유 형성 시 단사가 발생하지 않으며, 내구성이 우수한 효과를 발현하는 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테에 관한 것이다.
적외선은 가시광선보다 파장이 길며, 0.75㎛에서 1mm 범위에 속하는 전자기파를 말하며, 파장의 영역에 따라 분류하면 0.75 ~ 3㎛ 파장의 적외선을 근적외선, 3 ~ 25㎛ 파장의 것을 단순히 적외선이라 하며, 25㎛ 이상의 것을 원적외선이라 한다.
이 중에서 파장이 가장 짧은 근적외선은 가시광선이나 자외선에 비해 강한 열작용을 가지고 있고, 공기를 데우지 않고 물체에만 열을 전달하는 특성과 생체 조직에 대해 높고 깊은 침투성을 지니고 있어 인체와 관련된 의료 분야를 비롯하여 소독이나 살균(멸균)을 위한 공업용 등 산업 전반에서 다양하게 이용되고 있다.
이러한 근적외선의 처리는 파장에 따라 그 효능이 상이하며, 관절과 근육의 치료, 면역증강, 통증완화 및 혈행개선 등의 효능을 발현할 수 있다.
한편, 종래의 근적외선 방출 고분자의 경우 특정파장대의 근적외선을 방출할 수 있고, 섬유 형성 시 단사가 발생하지 않으며, 내구성이 우수한 효과를 동시에 발현할 수 없는 문제가 있었다.
이에 따라 특정파장대의 가시광선과 근적외선을 방출할 수 있고, 섬유 형성 시 단사가 발생하지 않으며, 내구성이 우수한 효과를 모두 동시에 발현할 수 있는 고분자 복합체의 개발이 시급한 실정이다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 특정파장대의 가시광선과 근적외선을 방출할 수 있고, 섬유 형성 시 단사가 발생하지 않으며, 내구성이 우수한 효과를 발현하는 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테를 제공하는데 목적이 있다.
상술한 과제를 해결하기 위해 본 발명은, Nd2O3, Er2O3, Sm2O3 및 Pr2O3를 포함하는 근적외선 방출 금속산화물을 구비하는 금속산화물; 및 상기 금속산화물이 분산되어 구비되는 고분자 수지;를 포함하는 근적외선 방출 고분자 복합체를 제공한다.
본 발명의 일 실시예에 의하면, 상기 고분자 수지 100 중량부에 대하여 금속산화물을 1 ~ 15 중량부로 포함할 수 있다.
또한, 상기 근적외선 방출 금속산화물은 Nd2O3 및 Er2O3를 총 67 ~ 88 중량%로 포함할 수 있다.
또한, 상기 근적외선 방출 금속산화물은 Sm2O3 및 Pr2O3를 총 12 ~ 33 중량%로 포함할 수 있다.
또한, 상기 금속산화물은 TiO2 및 WO3 중에서 어느 하나 이상을 포함하는 방열 금속산화물을 더 포함할 수 있다.
또한, 상기 금속산화물은 상기 근적외선 방출 금속산화물 100 중량부에 대하여 상기 방열 금속산화물을 0.5 ~ 4 중량부로 더 포함할 수 있다.
또한, 상기 방열 금속산화물은 TiO2 및 WO3를 1 : 0.5 ~ 1.5의 중량비로 포함할 수 있다.
또한, 상기 금속산화물은 평균입경이 0.5 ~ 4㎛일 수 있다.
또한, 상기 고분자 수지는 폴리아미드, 폴리에스테르, 폴리케톤, 액정고분자, 폴리올레핀, 폴리페닐렌설파이드(PPS), 폴리에테르에테르케톤(PEEK), 폴리페닐렌옥사이드(PPO), 폴리에테르술폰(PES), 폴리에테르이미드(PEI) 및 폴리이미드로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
또한, 본 발명은 상술한 근적외선 방출 고분자 복합체;를 포함하는 근적외선 방출 섬유를 제공한다.
또한, 본 발명은 상술한 근적외선 방출 섬유;를 포함하여 형성된 근적외선 방출 부직포를 제공한다.
또한, 본 발명은 상술한 근적외선 방출 고분자 복합체;를 포함하는 근적외선 방출 안경테를 제공한다.
본 발명에 따른 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테는 특정파장대의 가시광선과 근적외선을 방출할 수 있고, 섬유 형성 시 단사가 발생하지 않으며, 내구성이 우수한 효과가 있다.
이하 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 따른 근적외선 방출 고분자 복합체는, Nd2O3, Er2O3, Sm2O3 및 Pr2O3를 포함하는 근적외선 방출 금속산화물을 구비하는 금속산화물; 및 상기 금속산화물이 분산되어 구비되는 고분자 수지;를 포함하여 구현된다.
먼저, 상기 금속산화물에 대하여 설명한다.
상기 금속산화물은 상술한 바와 같이 Nd2O3, Er2O3, Sm2O3 및 Pr2O3를 포함하는 근적외선 방출 금속산화물을 구비한다.
이때, 상기 Nd2O3, Er2O3, Sm2O3 및 Pr2O3는 600 ~ 900㎚ 파장대의 가시광선과 근적외선을 방출하는 기능을 수행한다.
상기 근적외선 방출 금속산화물은 Nd2O3 및 Er2O3를 총 67 ~ 88 중량%로, 바람직하게는 70 ~ 85 중량%로 포함할 수 있다. 만일 상기 Nd2O3및 Er2O3를 총 67 중량% 미만으로 포함하면 목적하는 수준으로 600 ~ 900㎚ 파장의 가시광선과 근적외선을 방출할 수 없고, Nd2O3및 Er2O3를 총 88 중량%를 초과하여 포함하면 방출하는 가시광선과 근적외선의 파장 영역이 과도하게 좁아지고, 방출되는 가시광선과 근적외선의 강도 또한 감소한다.
또한, 상기 Sm2O3 및 Pr2O3는 방출되는 가시광선과 근적외선의 파장 영역을 확장하는 기능을 수행한다.
상기 근적외선 방출 금속산화물은 Sm2O3 및 Pr2O3를 총 12 ~ 33 중량%로, 바람직하게는 15 ~ 30 중량%로 포함할 수 있다. 만일 상기 Sm2O3 및 Pr2O3를 총 12 중량% 미만으로 포함하면 방출하는 가시광선과 근적외선의 파장 영역이 과도하게 좁아지고, 방출되는 가시광선과 근적외선의 강도 또한 감소하는 문제가 발생할 수 있고, Sm2O3및 Pr2O3를 총 33 중량% 초과하여 포함하면 목적하는 수준으로 600 ~ 900㎚ 파장의 가시광선과 근적외선을 방출할 수 없으며, 600 ~ 900㎚ 파장의 가시광선과 근적외선의 강도가 저감되는 문제가 발생할 수 있다.
한편, 상기 금속산화물은 TiO2 및 WO3 중에서 어느 하나 이상을 포함하는 방열 금속산화물을 더 포함할 수 있다.
상기 방열 금속산화물은 상기와 같이 TiO2 및 WO3 중에서 어느 하나 이상을 포함할 수 있고, 바람직하게는 TiO2 및 WO3를 모두 포함할 수 있다.
상기 TiO2 및 WO3는 근적외선 방출 고분자 복합체에서 근적외선 방출 등 소정의 이유로 발생하는 열을 함축 및 방출하는 기능을 수행한다.
상기 방열 금속산화물은, 상기 근적외선 방출 금속산화물 100 중량부에 대하여 0.5 ~ 4 중량부로, 바람직하게는 1 ~ 3 중량부로 상기 금속산화물에 더 포함될 수 있다. 만일 상기 근적외선 방출 금속산화물 100 중량부에 대하여 상기 방열 금속산화물이 0.5 중량부 미만이면 목적하는 수준의 방열 특성을 나타낼 수 없고, 4 중량부를 초과하면 600 ~ 900㎚ 파장의 가시광선과 근적외선 방출의 강도의 저감을 유발하거나, 방출하는 가시광선과 근적외선의 파장 영역이 과도하게 좁아지는 문제가 발생할 수 있다.
이때, 상기 방열 금속산화물은 상기 TiO2 및 WO3를 1 : 0.5 ~ 1.5의 중량비로, 바람직하게는 1 : 0.7 ~ 1.3의 중량비로 포함할 수 있다. 만일 상기 방열 금속산화물에 포함되는 상기 TiO2 및 WO3의 중량비가 상기 범위를 벗어나면 목적하는 수준의 방열 특성을 발현하지 못하는 문제가 발생할 수 있다.
한편, 본 발명에 따른 금속산화물은 평균입경이 0.5 ~ 4㎛일 수 있고, 바람직하게는 평균입경이 1 ~ 3㎛일 수 있다. 만일 상기 금속산화물의 평균입경이 0.5㎛ 미만이면 표면에 묻어나오는 금속산화물이 발생할 수 있음에 따라 목적하는 수준의 가시광선과 근적외선 방출 및 방열 특성을 발현하지 못할 수 있고, 비용 측면에서 바람직하지 않으며, 평균입경이 4㎛를 초과하면 표면에 돌출되는 금속산화물이 있을 수 있음에 따라 표면특성이 좋지 않을 수 있고, 섬유의 단사 발생이 증가하거나 고분자 성형체의 내구성이 저하될 수 있다.
다음, 상기 고분자 수지에 대하여 설명한다.
상기 고분자 수지는 상술한 금속산화물이 분산되어 구비되도록 상기 금속산화물을 수용하는 기능을 수행한다.
상기 고분자 수지는 상기 금속산화물을 담지하면서 가시광선과 근적외선 방출을 저해하지 않는 수지라면 제한 없이 사용할 수 있고, 바람직하게는 폴리아미드, 폴리에스테르, 폴리케톤, 액정고분자, 폴리올레핀, 폴리페닐렌설파이드(PPS), 폴리에테르에테르케톤(PEEK), 폴리페닐렌옥사이드(PPO), 폴리에테르술폰(PES), 폴리에테르이미드(PEI) 및 폴리이미드로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 보다 바람직하게는 폴리에스테르 및 폴리올레핀 중 어느 하나 이상을 포함할 수 있으며, 더욱 바람직하게는 폴리에틸렌테레프탈레이트(PET) 및 폴리프로필렌(PP) 중 어느 하나 이상을 포함할 수 있다.
일예로, 상기 폴리아미드는 나일론6, 나일론66, 나일론11, 나일론610, 나일론12, 나일론46, 나일론9T(PA-9T), 키아나 및 아라미드 등 공지된 폴리아미드계 화합물일 수 있다.
또한, 다른 일 예로, 상기 폴리에스테르는 폴리에틸렌테레프탈레이트(PET), 폴리트리메틸렌테레프탈레이트(PTT), 폴리부틸렌테레프탈레이트(PBT), 폴리카보네이트 등 공지된 폴리에스테르계 화합물일 수 있다.
또한, 또 다른 일 예로, 상기 폴리올레핀은 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리아이소뷰틸렌, 에틸렌비닐알코올 등 공지된 폴리올레핀계 화합물일 수 있다.
상기 액정고분자는 용액 혹은 용해된 상태에서 액정성을 나타내는 고분자의 경우 제한 없이 사용될 수 있으며, 공지된 종류일 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다.
한편, 본 발명에 따른 근적외선 방출 고분자 복합체는, 상기 고분자 수지 100 중량부에 대하여 상기 금속산화물을 1 ~ 15 중량부로, 바람직하게는 2 ~ 14 중량부로 포함할 수 있다. 만일 상기 고분자 수지 100 중량부에 대하여 상기 금속산화물이 1 중량부 미만이면 목적하는 수준으로 가시광선과 근적외선을 방출할 수 없고 방열특성이 저하될 수 있으며, 상기 고분자 수지 100 중량부에 대하여 상기 금속산화물이 15 중량부를 초과하면 섬유 형성 및/또는 안경테 등 성형체 형성 시 단사가 발생하거나, 내구성이 저하되는 문제가 발생할 수 있다.
또한 본 발명은, 본 발명에 따른 상술한 근적외선 방출 고분자 복합체를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테를 제공한다.
상술한 근적외선 방출 고분자 복합체를 통해 근적외선 방출 섬유를 형성하는 경우, 근적외선 방출 고분자 복합체를 방사시켜서 근적외선 방출 섬유를 제조할 수 있으나, 이에 제한되는 것은 아니다.
또한, 근적외선 방출 고분자 복합체를 방사시킴에 따라, 복수개의 상기 근적외선 방출 섬유를 포함하는 근적외선 방출 부직포를 제조할 수 있다.
그리고, 상술한 근적외선 방출 고분자 복합체를 통해 안경테를 형성하는 경우, 사출을 통해 안경테 전체를 상술한 근적외선 방출 고분자 복합체를 통해 형성하거나, 안경테의 일부 부품(코받침, 상부림, 하부림, 브릿지, 템플 및 다리팁 등)만을 상술한 근적외선 방출 고분자 복합체를 통해 형성할 수도 있다.
한편, 본 발명에 따른 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테는 특정파장대의 근적외선을 방출할 수 있고, 섬유 형성 시 단사가 발생하지 않으며, 내구성이 우수한 효과가 있다.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
<실시예 1>
고분자 수지로 폴리에틸렌테레프탈레이트(PET) 100 중량부에 대하여 금속산화물을 10 중량부로 혼합하여 근적외선 방출 고분자 복합체를 제조하였다. 이때, 상기 금속산화물은 Nd2O3와 Er2O3를 1 : 1의 중량비로 총 77.5 중량% 및 Sm2O3 및 Pr2O3를 1 : 1의 중량비로 총 22.5 중량% 포함하는 근적외선 방출 금속산화물과, 상기 근적외선 방출 금속산화물 100 중량부에 대하여 TiO2 및 WO3를 1 : 1의 중량비로 포함하는 방열 금속산화물을 2.04 중량부로 포함하였다. 또한, 상기 금속산화물의 총 평균입경은 2㎛였다.
<실시예 2 ~ 13 및 비교예 1 ~ 2>
실시예 1과 동일하게 실시하여 제조하되, 금속산화물의 조성, 총 함량 및 평균입경 등을 변경하여 하기 표 1 내지 표 3과와 같은 근적외선 방출 고분자 복합체를 제조하였다.
<실험예 1: 가시광선과 근적외선 방출 평가>
실시예 및 비교예에 따른 근적외선 방출 고분자 복합체에 대하여 가시광선과 근적외선 방출을 평가하였다.
구체적으로 근적외선 방출 고분자 복합체에 각각 514㎚ 파장, 633㎚ 파장 및 785㎚ 파장의 빛을 여기시킨 후, 방출되는 500 ~ 1000㎚ 파장의 가시광선과 근적외선을 구간별로 측정하였다. 이때 각 구간(제1구간 500㎚ ~ 600㎚ 미만, 제2구간 600㎚ ~ 700㎚ 미만, 제3구간 700㎚ ~ 800㎚ 미만, 제4구간 800㎚ ~ 900㎚ 미만 및 제5구간 900㎚ ~ 1,000㎚)에서의 근적외선 강도를 실시예 1을 100으로 기준하여 하기 표 1 내지 표 3에 나타내었다.
<실험예 2: 단사발생 방지 평가>
실시예 및 비교예에 따른 근적외선 방출 고분자 복합체를, 용융방사(melt spinning) 방법으로 방사하여 섬유평균직경이 250㎛인 근적외선 방출 섬유를 형성하였으며, 방사하는 과정에서 단사가 발생하지 않는 경우 - ○, 단사가 발생하는 경우 - ×로 하여, 단사발생 방지를 평가하여 하기 표 1 내지 표 3에 나타내었다.
<실험예 3: 내구성 평가>
실시예 및 비교예에 따른 근적외선 방출 고분자 복합체에 대하여 만능시험장비(Universal test machine, ZWICK-Z50, GERMANY)를 통해 5mm/분의 속도로 인장강도를 측정하였으며, 실시예 1의 인장강도를 100으로 기준하여 다른 실시예 및 비교예에 대한 인장강도의 상대적인 비율을 측정하여 내구성을 평가하였다.
구분 실시예
1
실시예
2
실시예
3
실시예
4
실시예
5
금속
산화물
근적외선
방출
금속산화물
Nd2O3와 Er2O3 총함량(중량%) 77.5 64 70 85 91
Sm2O3와 Pr2O3 총함량(중량%) 22.5 36 30 15 9
함량(중량부) 10 10 10 10 10
평균입경(㎛) 2 2 2 2 2
제1구간 500㎚~600㎚ 미만 100 117 109 94 62
제2구간 600㎚~700㎚ 미만 100 42 96 101 108
제3구간 700㎚~800㎚ 미만 100 22 91 105 120
제4구간 800㎚~900㎚ 미만 100 13 84 107 124
제5구간 900㎚~1000㎚ 100 61 98 102 109
단사발생 방지 평가
내구성 평가 100 99 99 100 100
구분 실시예
6
실시예
7
실시예
8
실시예
9
실시예
10
금속
산화물
근적외선
방출
금속산화물
Nd2O3와 Er2O3
총함량(중량%)
77.5 77.5 77.5 77.5 77.5
Sm2O3와 Pr2O3
총함량(중량%)
22.5 22.5 22.5 22.5 22.5
함량(중량부) 0.5 2 14 17 10
평균입경(㎛) 2 2 2 2 0.1
제1구간 500㎚~600㎚ 미만 61 91 102 103 78
제2구간 600㎚~700㎚ 미만 53 90 102 105 75
제3구간 700㎚~800㎚ 미만 50 92 105 106 76
제4구간 800㎚~900㎚ 미만 48 93 108 108 77
제5구간 900㎚~1000㎚ 54 92 104 104 76
단사발생 방지 평가 ×
내구성 평가 106 102 96 74 104
구분 실시예
11
실시예
12
실시예
13
비교예
1
비교예
2
금속
산화물
근적외선
방출
금속산화물
Nd2O3와 Er2O3
총함량(중량%)
77.5 77.5 77.5 - 100
Sm2O3와 Pr2O3
총함량(중량%)
22.5 22.5 22.5 100 -
함량(중량부) 10 10 10 10 10
평균입경(㎛) 1 3 5 2 2
제1구간 500㎚~600㎚ 미만 98 95 90 137 33
제2구간 600㎚~700㎚ 미만 97 91 85 12 114
제3구간 700㎚~800㎚ 미만 96 92 91 6 122
제4구간 800㎚~900㎚ 미만 95 96 80 3 126
제5구간 900㎚~1000㎚ 93 94 89 14 116
단사발생 방지 평가 ×
내구성 평가 103 94 51 101 97
상기 표 1 내지 표 3에서 알 수 있듯이, 본 발명에 따른 금속산화물의 조성, 총 함량 및 평균입경 등을 모두 만족하는 실시예 1, 3, 4, 7, 8, 11 및 12가, 이 중에서 하나라도 누락된 실시예 2, 5, 6, 9, 10, 13 및 비교예 1 ~ 2에 비하여 방출되는 근적외선의 파장 영역대가 넓으면서도 600 ~ 900㎚ 파장의 근적외선을 고강도로 방출할 수 있고, 내구성이 우수하며, 섬유 형성 시 단사가 발생하지 않는 효과를 모두 동시에 발현할 수 있다는 것을 확인할 수 있다.
이상에서 본 발명의 일 실시 예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (12)

  1. Nd2O3, Er2O3, Sm2O3 및 Pr2O3를 포함하는 근적외선 방출 금속산화물을 구비하는 금속산화물; 및
    상기 금속산화물이 분산되어 구비되는 고분자 수지;를 포함하는 근적외선 방출 고분자 복합체.
  2. 제1항에 있어서,
    상기 고분자 수지 100 중량부에 대하여 금속산화물을 1 ~ 15 중량부로 포함하는 근적외선 방출 고분자 복합체.
  3. 제1항에 있어서,
    상기 근적외선 방출 금속산화물은 Nd2O3 및 Er2O3를 총 67 ~ 88 중량%로 포함하는 근적외선 방출 고분자 복합체.
  4. 제1항에 있어서,
    상기 근적외선 방출 금속산화물은 Sm2O3 및 Pr2O3를 총 12 ~ 33 중량%로 포함하는 근적외선 방출 고분자 복합체.
  5. 제1항에 있어서,
    상기 금속산화물은 TiO2 및 WO3 중에서 어느 하나 이상을 포함하는 방열 금속산화물을 더 포함하는 근적외선 방출 고분자 복합체.
  6. 제5항에 있어서,
    상기 금속산화물은 상기 근적외선 방출 금속산화물 100 중량부에 대하여 상기 방열 금속산화물을 0.5 ~ 4 중량부로 더 포함하는 근적외선 방출 고분자 복합체.
  7. 제5항에 있어서,
    상기 방열 금속산화물은 TiO2 및 WO3를 1 : 0.5 ~ 1.5의 중량비로 포함하는 근적외선 방출 고분자 복합체.
  8. 제1항에 있어서,
    상기 금속산화물은 평균입경이 0.5 ~ 4㎛인 근적외선 방출 고분자 복합체.
  9. 제1항에 있어서,
    상기 고분자 수지는 폴리아미드, 폴리에스테르, 폴리케톤, 액정고분자, 폴리올레핀, 폴리페닐렌설파이드(PPS), 폴리에테르에테르케톤(PEEK), 폴리페닐렌옥사이드(PPO), 폴리에테르술폰(PES), 폴리에테르이미드(PEI) 및 폴리이미드로 이루어진 군에서 선택된 1종 이상을 포함하는 근적외선 방출 고분자 복합체.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 근적외선 방출 고분자 복합체;를 포함하는 근적외선 방출 섬유.
  11. 제10항에 따른 근적외선 방출 섬유;를 포함하여 형성된 근적외선 방출 부직포.
  12. 제1항 내지 제9항 중 어느 한 항에 따른 근적외선 방출 고분자 복합체;를 포함하는 근적외선 방출 안경테.
PCT/KR2021/004417 2020-04-10 2021-04-08 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테 WO2021206472A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200043992A KR102167106B1 (ko) 2020-04-10 2020-04-10 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테
KR10-2020-0043992 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021206472A1 true WO2021206472A1 (ko) 2021-10-14

Family

ID=73035441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004417 WO2021206472A1 (ko) 2020-04-10 2021-04-08 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테

Country Status (2)

Country Link
KR (1) KR102167106B1 (ko)
WO (1) WO2021206472A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102167106B1 (ko) * 2020-04-10 2020-10-16 경북대학교 산학협력단 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238646A (ja) * 2007-03-28 2008-10-09 Toray Ind Inc ハードコートフィルムおよび反射防止フィルム
JP2013151675A (ja) * 2011-12-27 2013-08-08 Fujifilm Corp 赤外線吸収性組成物、これを用いた赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
JP2014194446A (ja) * 2013-03-28 2014-10-09 Fujifilm Corp 熱線遮蔽材、合わせガラス用中間膜および合わせガラス
WO2016088851A1 (ja) * 2014-12-05 2016-06-09 コニカミノルタ株式会社 遮熱フィルムおよびその製造方法、ならびにこれを用いた遮熱体
KR20190011072A (ko) * 2017-07-24 2019-02-01 주식회사 아모그린텍 절연성 방열복합재
KR102167106B1 (ko) * 2020-04-10 2020-10-16 경북대학교 산학협력단 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950013659B1 (ko) 1993-08-13 1995-11-13 서순기 적외선 방출 온돌장치
JP2012097183A (ja) * 2010-11-02 2012-05-24 Hiraoka & Co Ltd 遮熱性採光シート
JP2018015898A (ja) * 2014-12-05 2018-02-01 コニカミノルタ株式会社 遮熱フィルム
JP2018054641A (ja) * 2015-02-20 2018-04-05 コニカミノルタ株式会社 遮熱フィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238646A (ja) * 2007-03-28 2008-10-09 Toray Ind Inc ハードコートフィルムおよび反射防止フィルム
JP2013151675A (ja) * 2011-12-27 2013-08-08 Fujifilm Corp 赤外線吸収性組成物、これを用いた赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
JP2014194446A (ja) * 2013-03-28 2014-10-09 Fujifilm Corp 熱線遮蔽材、合わせガラス用中間膜および合わせガラス
WO2016088851A1 (ja) * 2014-12-05 2016-06-09 コニカミノルタ株式会社 遮熱フィルムおよびその製造方法、ならびにこれを用いた遮熱体
KR20190011072A (ko) * 2017-07-24 2019-02-01 주식회사 아모그린텍 절연성 방열복합재
KR102167106B1 (ko) * 2020-04-10 2020-10-16 경북대학교 산학협력단 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테

Also Published As

Publication number Publication date
KR102167106B1 (ko) 2020-10-16

Similar Documents

Publication Publication Date Title
US9982368B2 (en) Flame-retardant fiber, method for producing same, fabric using flame-retardant fiber, and resin composite material using flame-retardant fiber
WO2021206472A1 (ko) 근적외선 방출 고분자 복합체, 이를 포함하는 근적외선 방출 섬유, 근적외선 방출 부직포 및 근적외선 방출 안경테
EP2221335B1 (en) Nonflammable transparent fiber-reinforced resin sheet and process for production of the same
WO2014069935A1 (ko) 복합기능성 폴리에스터 섬유의 제조방법 및 그에 의해서 제조된 복합기능성폴리에스터 섬유{preparation method of functional polyester fiber and functional polyester fiber prepared thereby}
WO2014017690A1 (ko) 항균성 온열 보존 섬유의 제조방법, 이로부터 제조되는 섬유 및 이를 사용한 원단
WO2011115320A1 (ko) 난연성 및 일광견뢰도가 우수한 복합섬유 및 이를 활용한 인테리어 원단
KR100861061B1 (ko) 난연성 폴리에스테르계 인공 모발용 섬유
WO2012157800A1 (ko) 염색성 및 일광견뢰도가 우수한 폴리페닐렌 설파이드 원단
WO2019022310A1 (ko) 고강도 폴리에틸렌 섬유로 형성되는 폴리에틸렌 물품
KR20150103101A (ko) 내열 포백
CN103233285A (zh) 一种抗静电、吸湿、可染皮芯型复合纤维及制得的布料
WO2017065564A1 (ko) 약액 여과용 필터여재, 이의 제조방법 및 이를 포함하는 약액 여과용 필터모듈
WO2017047980A1 (ko) 광촉매 기능성 부직포 및 이의 제조방법
JP6173053B2 (ja) 高視認性を有する難燃布帛
JP2007146306A (ja) 人工毛髪用繊維
KR20040098594A (ko) 방진복
WO2022080953A1 (ko) 고흡수성 복합섬유, 고흡수성 부직포 및 이를 포함하는 물품
WO2022080561A1 (ko) 정전 필터 기능이 향상된 다층 편직물 및 이의 용도
WO2018025817A1 (ja) 高視認性を有する難燃布帛
JP2020117827A (ja) 紫外線遮蔽ポリエステル繊維
AU2021232724B2 (en) A fire resistant spun yarn, fabric, garment and fire resistant workwear
WO2012081819A1 (ko) 복합 방사 고흡수성 멜트블라운 부직포의 제조방법
JP6278755B2 (ja) 高視認性を有する難燃布帛
JP4955476B2 (ja) 遮蔽繊維およびそれからなる布帛
WO2021210956A1 (ko) 항바이러스 필터여재, 이를 포함하는 에어필터 유닛 및 공조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784943

Country of ref document: EP

Kind code of ref document: A1