WO2017047980A1 - 광촉매 기능성 부직포 및 이의 제조방법 - Google Patents

광촉매 기능성 부직포 및 이의 제조방법 Download PDF

Info

Publication number
WO2017047980A1
WO2017047980A1 PCT/KR2016/010073 KR2016010073W WO2017047980A1 WO 2017047980 A1 WO2017047980 A1 WO 2017047980A1 KR 2016010073 W KR2016010073 W KR 2016010073W WO 2017047980 A1 WO2017047980 A1 WO 2017047980A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
nonwoven fabric
photocatalytic functional
coating layer
barrier coating
Prior art date
Application number
PCT/KR2016/010073
Other languages
English (en)
French (fr)
Inventor
김하나
이동일
정승문
서주환
김효중
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to JP2018513292A priority Critical patent/JP6857173B2/ja
Priority to CN201680053230.1A priority patent/CN108026691B/zh
Publication of WO2017047980A1 publication Critical patent/WO2017047980A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • D06B1/02Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating by spraying or projecting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic Table; Zincates; Cadmates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/47Oxides or hydroxides of elements of Groups 5 or 15 of the Periodic Table; Vanadates; Niobates; Tantalates; Arsenates; Antimonates; Bismuthates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/48Oxides or hydroxides of chromium, molybdenum or tungsten; Chromates; Dichromates; Molybdates; Tungstates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles

Definitions

  • the present invention relates to a nonwoven fabric having a deodorizing, antibacterial, and antiviral function due to the catalytic action of a photocatalyst, and a method of manufacturing the same.
  • Japanese Laid-Open Patent Publication No. 2007-051263 discloses a composite material utilizing a titanium dioxide photocatalyst
  • Korean Laid-Open Patent Publication No. 10-2012-0073281 uses a thermal spraying technique on the fiber surface of a fiber filter.
  • a fiber filter comprising a titanium dioxide coating.
  • Japanese Laid-Open Patent Publication No. 2007-051263 discloses a composite material utilizing a titanium dioxide photocatalyst
  • Korean Laid-Open Patent Publication No. 10-2012-0073281 uses a thermal spraying technique on the fiber surface of a fiber filter.
  • a fiber filter comprising a titanium dioxide coating.
  • One embodiment of the present invention is a nonwoven fabric having a visible light active photocatalyst function, which can prevent degradation and decomposition of the nonwoven fabric by the photocatalyst, and the photocatalyst functional nonwoven fabric which can realize excellent antibacterial and deodorizing function by distributing the photocatalyst evenly on the nonwoven fabric.
  • Another embodiment of the present invention provides a method for producing a photocatalytic functional nonwoven fabric which can distribute the photocatalyst evenly within the nonwoven fabric and can effectively improve the adhesion between the nonwoven fabric and the photocatalyst.
  • a photocatalytic functional nonwoven fabric comprising organic fibers, some or all of the organic fibers including a barrier coating layer and a photocatalyst coating layer on the surface thereof.
  • the step of treating the oxygen (O 2 ) plasma to the raw material non-woven fabric comprising organic fibers Forming a barrier coating layer by coating a barrier coating liquid on a surface of part or all of the organic fibers; And coating a photocatalyst coating solution on the surface of the barrier coating layer to form a photocatalyst coating layer.
  • the photocatalytic functional nonwoven fabric can prevent deterioration or decomposition of the nonwoven fabric itself due to photocatalytic activity by light sources, and can exhibit excellent antibacterial, deodorizing and antiviral functions for a long time.
  • the photocatalytic functional nonwoven fabric may be utilized in various applications such as medical masks, medical tape substrates, automotive seats, air cleaners, and air conditioner filters.
  • the method of manufacturing the photocatalytic functional nonwoven fabric enables the photocatalyst to be evenly distributed in the nonwoven fabric, thereby obtaining the advantage of improving the adhesion between the photocatalyst and the nonwoven fabric.
  • FIG. 1 schematically illustrates a cross section of an organic fiber of a photocatalytic functional nonwoven fabric in accordance with one embodiment of the present invention.
  • Figure 2 schematically shows the change of some fibers in the method for producing a photocatalytic functional nonwoven fabric according to another embodiment of the present invention.
  • Figure 3 shows an SEM image taken during the process of manufacturing the photocatalytic functional nonwoven fabric in one embodiment of the present invention.
  • a photocatalytic functional nonwoven fabric comprising organic fibers, some or all of the organic fibers including a barrier coating layer and a photocatalyst coating layer on the surface thereof.
  • the photocatalytic functional nonwoven fabric includes organic fibers.
  • organic fibers themselves deteriorate or decompose during photoreaction of photocatalysts, and thus, inorganic fibers having a low risk of deterioration or degradation are used instead of the organic fibers.
  • inorganic fibers have disadvantages of poor workability compared to organic fibers, and may not be easily used in various forms.
  • the photocatalytic functional nonwoven fabric effectively prevents deterioration or decomposition of the organic fibers by the photocatalyst despite the organic fibers, and exhibits excellent processability and high utilization.
  • the photocatalytic functional nonwoven fabric is in the form of a substrate comprising organic fibers and formed by entangled strands of organic fiber strands.
  • some or all of the organic fibers may include a barrier coating layer and a photocatalyst coating layer on the surface thereof.
  • organic fibers may mean a fiber strand of some or all of the plurality of organic fiber strands constituting the nonwoven fabric, and may mean a part or all of the surface on one organic fiber strand.
  • the barrier coating layer and the photocatalyst coating layer may be formed at about 60% to about 100% of the entire surface of the organic fiber surface of the nonwoven fabric, whereby the photocatalyst of the photocatalyst coating layer is uniformly dispersed throughout the nonwoven fabric to provide excellent antibacterial and Deodorization efficiency can be shown.
  • the photocatalytic functional nonwoven fabric may prevent degradation or decomposition of the nonwoven fabric by a light source by having a barrier coating layer and a photocatalyst coating layer on a part or all of the organic fibers, and the photocatalyst may be evenly dispersed in the nonwoven fabric, and the organic fiber It can be attached to the adhesive with high adhesion.
  • FIG. 1 schematically illustrates a cross section of an organic fiber of a photocatalytic functional nonwoven fabric in accordance with one embodiment of the present invention.
  • the organic fiber 10 may have a predetermined diameter in cross section, and a barrier coating layer 11 and a photocatalyst coating layer 12 may be sequentially formed on a surface thereof.
  • the barrier coating layer 11 may be coated on the surface of the organic fiber to allow the photocatalyst of the photocatalyst coating layer to be firmly attached to the organic fiber, and effectively prevent deterioration or decomposition of the organic fiber by photoreaction of the photocatalyst. can do.
  • the barrier coating layer 11 may be formed from a barrier coating liquid including one selected from the group consisting of titanium dioxide (TiO 2 ) sol, silica sol, and a combination thereof.
  • the barrier coating layer 11 may be formed from a barrier coating liquid containing titanium dioxide (TiO 2 ) sol.
  • the barrier coating layer 11 may exhibit excellent adhesion to the organic fibers and may prevent degradation or degradation of the organic fibers. Excellent performance is obtained.
  • the barrier coating liquid is in the form of a sol, wherein the sol is a colloid having fluidity in which a dispersoid such as titanium dioxide (TiO 2 ) particles or silica particles is dispersed in a dispersion medium such as an alcohol solvent. Solution.
  • a dispersoid such as titanium dioxide (TiO 2 ) particles or silica particles
  • the barrier coating liquid may include about 1% to about 10% by weight of dispersoid particles such as titanium dioxide (TiO 2 ) or silica (silica) particles, for example, about 1.5% by weight to about 5 wt%, for example, about 2 wt% to about 3 wt%.
  • the barrier coating liquid may be evenly coated on the surface of the organic fiber in the manufacturing process of the photocatalytic functional nonwoven fabric by including the dispersoid particles of the content.
  • the photocatalyst coating layer 12 may be formed from a photocatalyst coating liquid including a binder and visible light active photocatalyst particles (A).
  • the binder is such that the visible light active photocatalyst particles (A) adhere well to the surface of the organic fiber, for example, selected from the group consisting of titanium dioxide (TiO 2 ) sol, silica sol, and combinations thereof. It may include one.
  • the binder may include titanium dioxide (TiO 2 ) sol, in which case the compatibility with the visible light active photocatalyst particles (A) is excellent, without impairing the catalytic function of the visible light active photocatalyst particles It may be to be firmly attached to the surface of the organic fiber.
  • the barrier coating solution includes titanium dioxide (TiO 2 ) sol
  • the binder of the photocatalyst coating solution includes titanium dioxide (TiO 2 ) sol
  • adhesion to each other is further improved, and the visible light active photocatalyst particles are It can be placed firmly on the surface of the organic fiber.
  • the binder may be a colloidal solution having fluidity in which a certain amount of dispersoid particles is dispersed in a dispersion medium such as an alcohol solvent.
  • the binder may include about 1% to about 10% by weight of the dispersoid particles in the total weight of the binder, for example, may include about 1% to about 3% by weight, for example , About 1% to about 2% by weight.
  • the binder may be evenly coated on the surface of the organic fiber when the photocatalyst coating liquid is coated in the manufacturing process of the photocatalytic functional nonwoven fabric, and the dispersibility of the visible light active photocatalyst particles may be improved. have.
  • the photocatalyst coating liquid may include about 1 wt% to about 10 wt% of the visible light active photocatalyst particles, and may include, for example, about 3 wt% to about 7 wt%.
  • the photocatalyst coating liquid may uniformly disperse the visible light active photocatalyst particles in the manufacturing process of the photocatalytic functional nonwoven fabric by including the visible light active photocatalyst particles in the content of the above range.
  • the visible light active photocatalyst particles generate peroxide anion or hydroxy radicals from electrons and holes generated from energy obtained by absorbing light in the visible light region, and they decompose and remove harmful substances to perform air cleaning, deodorization or antibacterial action. Particles to perform.
  • the visible light active photocatalyst particles may include metal oxides and metal particles. Specifically, the visible light active photocatalyst particles may be in the form of photo-deposition of the metal particles on the surface of the metal oxide.
  • the metal oxide may include one selected from the group consisting of titanium oxide, tungsten oxide, zinc oxide, niobium oxide, and combinations thereof.
  • the metal oxide may include tungsten oxide, and in this case, it is possible to obtain an advantage in that it is excellent in exhibiting photocatalytic properties by reacting in visible light and inexpensive price.
  • the metal particles are metals having photoactivity to visible light, and may include, for example, transition metals or precious metals.
  • the metal particles of the visible light active photocatalyst particles are tungsten, chromium, vanadium, molybdenum, copper, iron, cobalt, manganese, nickel, platinum, gold, silver, cerium, cadmium, zinc, magnesium, calcium, strontium, It may include one selected from the group consisting of barium and combinations thereof.
  • the metal particles may comprise platinum, in which case the advantage of exhibiting the highest photocatalytic performance can be obtained.
  • Each of the metal oxide and the metal particles is a spherical particle, and the term 'spherical particle' does not mean a particle having a mathematically perfect sphere shape, but means a particle having a projection image that is identical or similar to a circle or an ellipse. .
  • the metal oxide and the metal particles are each spherical particles, and as a result, the visible light active photocatalyst particles have a shape in which spherical metal particles are deposited on the surface of the spherical metal oxide particles.
  • the particle diameter of the metal particles may be several nanometers (nm), for example, about 3 nm to about 5 nm.
  • the particle diameter of the metal particles is very small compared to the particle diameter of the metal oxide, and the metal particles have a particle diameter in the above range, so that the metal particles may be photo-deposited to an appropriate content on the surface of the metal oxide, thereby exhibiting excellent photocatalytic activity.
  • the particle diameter of the visible light active photocatalyst particles may be about 20 nm to about 100 nm, and specifically about 30 nm to about 60 nm.
  • the particle diameter of the visible light active photocatalyst particles may be derived by measuring SEM or TEM photographs. When the particle diameter of the visible light active photocatalyst particles satisfies the above range, high adhesion to the surface of the organic fiber may be secured, and may be dispersed while having an appropriate dispersion degree on the surface of the organic fiber, thereby exhibiting excellent photocatalytic activity.
  • the size of the visible light active photocatalyst particles is mainly to be determined by the particle diameter of the metal oxide.
  • the visible light active photocatalyst particles may have a particle diameter in the above range, thereby being evenly distributed between the organic fibers in the nonwoven fabric in which the organic fibers are entangled.
  • the visible light active photocatalyst particles may include about 0.1 to about 5 parts by weight of the metal particles, for example, about 0.1 to about 2 parts by weight, based on 100 parts by weight of the metal oxide, for example , About 0.1 to about 0.5 parts by weight.
  • the visible light active photocatalyst particles may contain metal particles in a content in the above range, thereby stably containing photo-deposited metal particles on the metal oxide surface, and may be tightly bonded with organic fibers in the nonwoven fabric. In addition, excellent performance for the price can be realized.
  • the photocatalytic functional nonwoven fabric includes organic fibers, and the type is not particularly limited as long as it is an organic fiber.
  • organic fibers for example, polypropylene (PP) fiber, polyethylene terephthalate (PET) fiber, polyester fiber, polyethylene fiber and these It may include one selected from the group consisting of a combination of.
  • the organic fiber may include polypropylene (PP) fiber or polyethylene terephthalate (PET) fiber, and in this case, excellent adhesion with the barrier coating layer, may be advantageous in terms of processability and versatility.
  • PP polypropylene
  • PET polyethylene terephthalate
  • the photocatalytic functional nonwoven fabric includes organic fibers, but part or all of the organic fibers contain the barrier coating layer and the photocatalyst coating layer on the surface thereof, thereby ensuring antibacterial and deodorizing performance and damaging the organic fibers by photoreaction. The advantage of effectively preventing this can be obtained.
  • the organic fibers in the photocatalytic functional nonwoven can be in the form of continuous fibers.
  • Continuous fiber refers to a fiber having a continuous length in the product as opposed to a fiber having a shape cut into a predetermined length.
  • the photocatalytic functional nonwoven fabric can secure tough characteristics that are not easily hedged or broken by including organic fibers in the form of continuous fibers, and can be used in various applications to implement excellent long-term durability.
  • the organic fiber may have a diameter of about 0.5 ⁇ m to about 15 ⁇ m in cross section, for example, about 0.5 ⁇ m to about 5 ⁇ m, and for example, about 0.5 ⁇ m to about 2.5 ⁇ m. That is, the thickness of the organic fiber may satisfy the above range.
  • the organic fiber may have a diameter of about 0.5 ⁇ m to about 2 ⁇ m in one embodiment.
  • the organic fiber may be a mixture of a first organic fiber having a diameter of about 1 ⁇ m to about 3 ⁇ m and a second organic fiber having a diameter of about 9 ⁇ m to about 11 ⁇ m. Can be.
  • the photocatalytic functional nonwoven fabric can improve the dispersibility and adhesion of visible light active photocatalyst particles having a particle size in the above-described range by including organic fibers having a cross-sectional diameter in the above range, and can be applied to a final product to implement excellent durability. Can be.
  • a barrier coating layer and a photocatalyst coating layer may be uniformly formed on the surface of the organic fiber.
  • the photocatalytic functional nonwoven fabric exhibits catalytic activity in the visible light region, and thus can be installed indoors without a separate light source to exhibit excellent catalytic activity.
  • the photocatalytic functional nonwoven fabric may exhibit catalytic activity by light in the visible range of about 400 nm to about 800 nm, and may exhibit excellent antibacterial and deodorizing performance.
  • the photocatalytic functional nonwoven fabric can be used, for example, for medical masks, substrates for medical bands, water treatment filters, or air filters, and can perform excellent antibacterial and antiviral functions even if not replaced for a long time, and can realize improved long-term durability. Can be.
  • the step of treating the oxygen (O 2 ) plasma to the raw material non-woven fabric comprising organic fibers Forming a barrier coating layer by coating a barrier coating liquid on a surface of part or all of the organic fibers; And coating a photocatalyst coating solution on the surface of the barrier coating layer to form a photocatalyst coating layer.
  • a photocatalytic functional nonwoven fabric including a barrier coating layer and a photocatalyst coating layer may be prepared on the surface of part or all of the organic fibers, and effectively prevents deterioration and decomposition due to the photocatalytic effect,
  • the nonwoven fabric which implements a deodorizing effect can be manufactured.
  • the method for producing a photocatalytic functional nonwoven fabric includes treating oxygen (O 2 ) plasma to a raw material nonwoven fabric including organic fibers.
  • the raw material nonwoven fabric is a nonwoven fabric prepared in advance using organic fibers, and the matters relating to the organic fibers are as described above.
  • the raw nonwoven fabric may include polypropylene (PP) fibers or polyethylene terephthalate (PET) fibers as organic fibers.
  • Figure 2 schematically shows the change of some fibers in the method for producing a photocatalytic functional nonwoven fabric according to another embodiment of the present invention.
  • the surface of the organic fiber of the raw material nonwoven fabric is modified through an oxygen (O 2 ) plasma treatment, and specifically, a hydrophilic functional group is formed on the surface of the organic fiber through the oxygen (O 2 ) plasma treatment. Can be formed.
  • the hydrophilic functional group may include, for example, one selected from the group consisting of a hydroxy group, a peroxide group, a carboxyl group, and a combination thereof.
  • the raw material nonwoven fabric treated with the oxygen (O 2 ) plasma may have a contact angle with respect to water of about 20 ° or less, for example, about 10 ° to about 5 °. Since the raw material nonwoven fabric treated with the oxygen (O 2 ) plasma has a contact angle within the above range, adhesion between the barrier coating liquid and the organic fibers of the raw material nonwoven fabric may be improved, and the barrier coating liquid may be uniformly coated. .
  • the oxygen (O 2 ) plasma treatment may have a feed rate of oxygen (O 2 ) gas of about 30 mL / min to about 60 mL / min, for example, about 40 mL / min to about 55 mL / min Can be.
  • a feed rate of oxygen (O 2 ) gas of about 30 mL / min to about 60 mL / min, for example, about 40 mL / min to about 55 mL / min Can be.
  • an appropriate amount of hydrophilic functional group can be imparted to the surface of the organic fiber, and the barrier coating layer subsequently produced has excellent adhesion and coating on the surface of the organic fiber. It can represent sex.
  • the oxygen (O 2 ) plasma treatment may be performed for about 200 seconds to about 400 seconds under a power of about 100W to about 200W. Since the power and time of the oxygen (O 2 ) plasma treatment satisfy the above range, it is possible to give the required level of hydrophilic functional groups without damaging the organic fibers.
  • the method of manufacturing the photocatalytic functional nonwoven fabric includes forming a barrier coating layer by coating a barrier coating liquid on a surface of part or all of the organic fibers. Matters regarding the barrier coating liquid are as described above.
  • the manufacturing method includes forming a photocatalyst coating layer by coating a photocatalyst coating liquid on the surface of the barrier coating layer. Details regarding the photocatalyst coating liquid are as described above.
  • the step of forming the barrier coating layer has the oxygen (O 2) may be performed subsequent to the step of processing the plasma, the surface of the modified organic fiber due to the oxygen (O 2) plasma treatment
  • the barrier coating layer may be formed on the substrate.
  • the forming of the photocatalyst coating layer may be performed subsequent to forming the barrier coating layer, and the photocatalyst coating layer may be formed on the surface of the barrier coating layer.
  • Conventional photocatalyst coating is mainly performed on top of a substrate including a glass substrate, a film, a resin sheet, or the like, and forms a kind of layer on the substrate by using a spin coating method or a bar coating method. It was done in a way. However, in the case of the nonwoven substrate formed by entangled fibers, surface curvature is severe and it has pores, so that it is difficult to evenly perform a photocatalytic coating on the top by using a spin coating method or a bar coating method. have.
  • the photocatalyst is coated in the form of being interposed between the fibers inside the nonwoven fabric substrate.
  • a spin coating method or a bar (bar) is advantageous. In the case of using the coating method, it is difficult to distribute the photocatalyst evenly in the nonwoven substrate.
  • the barrier coating layer may be coated on the surface of some or all of the organic fibers by spraying the barrier coating liquid by a spray coating method.
  • the barrier coating liquid may penetrate into the inside of the raw material nonwoven fabric, and the strands of the organic fibers may each have a barrier coating layer on the surface thereof.
  • the barrier coating liquid is in the form of a sol, wherein the sol is a colloid having fluidity in which a dispersoid such as titanium dioxide (TiO 2 ) particles or silica particles is dispersed in a dispersion medium such as an alcohol solvent. Solution.
  • a dispersoid such as titanium dioxide (TiO 2 ) particles or silica particles
  • the barrier coating liquid may include about 1% to about 10% by weight of the dispersoid particles, for example, about 1.5% to about 5% by weight, for example, about 2 Weight percent to about 3 weight percent.
  • the barrier coating liquid may contain the dispersoid particles of the above content, so that the barrier coating liquid may be evenly sprayed when the coating is applied by the spray coating method, and may be closely coated on the surface of the organic fiber.
  • the photocatalyst coating layer may be formed on the surface of the barrier coating layer by spraying the photocatalyst coating liquid with a spray coating method.
  • the photocatalyst coating solution includes a binder and visible light active photocatalyst particles, and the binder may be a fluid colloidal solution in which a certain amount of dispersoid particles are dispersed in a dispersion medium such as an alcohol solvent.
  • the binder may comprise about 1% to about 10% by weight of the dispersoid particles in the total weight of the binder, for example, about 1% to about 3% by weight, for example about 1 Wt% to about 2% by weight.
  • the photocatalyst coating liquid may include about 1% to about 10% by weight of the visible light active photocatalyst particles, for example, about 3% to about 7% by weight.
  • the photocatalyst coating liquid includes the binder and the visible light active photocatalyst particles, dispersibility and coating property may be improved during the spray coating process of the photocatalyst coating liquid, and as a result, high adhesion of the photocatalyst coating liquid to the barrier coating layer may be achieved.
  • a photocatalyst coating layer may be formed.
  • the barrier coating liquid and the photocatalyst coating liquid each include a dispersion medium, and an alcohol solvent may be used as the dispersion medium.
  • an alcohol solvent may be used as the dispersion medium.
  • the method of manufacturing the photocatalytic functional nonwoven fabric may include forming the barrier coating layer and then heat-treating at about 80 ° C. to about 100 ° C. after coating the barrier coating liquid.
  • the step of forming the photocatalyst coating layer may be a step of heat treatment at about 80 °C to about 100 °C after coating the photocatalyst coating liquid.
  • the heat treatment is to perform a drying process at a temperature in the range, by performing a heat treatment at a temperature in the range can remove the dispersion medium without damaging the organic fiber or visible light active photocatalyst particles, each coating layer is firmly interface Can be attached to the As a result, the catalyst efficiency of the visible light active photocatalyst particles can be improved, and the physical strength and toughness characteristics of the photocatalytic functional nonwoven fabric can also be ensured.
  • a raw material nonwoven fabric containing polyethylene terephthalate (PET) fibers was prepared.
  • the fiber of the raw material nonwoven fabric was a mixture of PET fibers having a cross section diameter of 2 ⁇ m to 4 ⁇ m and PET fibers having a cross section diameter of 12 ⁇ m to 13 ⁇ m, and the raw material nonwoven fabric had a thickness of 128 ⁇ m.
  • the oxygen (O 2 ) plasma was treated for 360 seconds with a power of 150 W relative to the raw material nonwoven fabric.
  • the oxygen gas supply rate of the oxygen (O 2 ) plasma was 50 mL / min.
  • TiO 2 titanium dioxide
  • IPA isopropyl alcohol
  • TiO 2 titanium dioxide
  • a photocatalyst coating liquid including 5 wt% of visible light active photocatalyst particles (Pt / WO 3 ) and titanium dioxide (TiO 2 ) sol binder having photo-deposited platinum nanoparticles on the surface of tungsten oxide particles was prepared, and the binder was iso One containing 98.75% by weight of propyl alcohol (IPA) and 1.25% by weight of titanium dioxide (TiO 2 ) particles was used.
  • the photocatalyst coating liquid was sprayed onto the raw material nonwoven fabric by a spray coating method to form a photocatalyst coating layer on the surface of the barrier coating layer.
  • the photocatalyst coating solution was sprayed and then heat treated at 80 ° C. for 30 minutes. This produced a photocatalytic functional nonwoven fabric.
  • PET fibers having a cross section diameter of 1 ⁇ m to 3 ⁇ m and PET fibers having a cross section diameter of 10 ⁇ m are mixed, and the thickness is
  • a photocatalytic functional nonwoven fabric was prepared in the same manner as in Example 1, except that a polyethylene terephthalate (PET) raw material nonwoven fabric having a thickness of 60 ⁇ m was used.
  • PET polyethylene terephthalate
  • the polypropylene (PP) raw material nonwoven fabric containing a PP fiber having a cross-sectional diameter of 0.5 ⁇ m to 2 ⁇ m and having a thickness of 180 ⁇ m A photocatalytic functional nonwoven fabric was prepared in the same manner as in Example 1 except that.
  • Example 1-3 Each of the raw material nonwoven fabrics of Example 1-3 was referred to as Comparative Example 1-3.
  • the harmful gas decomposition performance of the nonwoven fabrics of Examples 1 to 3 and Comparative Examples 1 to 3 was measured by a small chamber test method (ISO 18560-1: 2014). Specifically, after placing the nonwoven fabric in the chamber and injecting acetaldehyde harmful gas at a concentration of 0.1 ppm, a 1000 lux white LED was used as the light source. The results are as described in Table 1 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

유기 섬유를 포함하고, 상기 유기 섬유의 일부 또는 전부는 그 표면에 배리어 코팅층 및 광촉매 코팅층을 포함하는 광촉매 기능성 부직포 및 이의 제조방법을 제공한다. 상기 광촉매 기능성 부직포는 광원에 의한 광촉매 촉매 활성이 우수하면서도, 이러한 광반응으로 유기 섬유가 손상 또는 분해되지 않는 이점을 가질 수 있다.

Description

광촉매 기능성 부직포 및 이의 제조방법
광촉매 기능성 부직포로서, 광촉매의 촉매 작용에 의해 탈취, 향균, 항바이러스 기능을 갖는 부직포 및 이의 제조방법에 관한 것이다.
의료용 마스크, 필터 등에 사용되는 일반적인 부직포는 세균이나 가스상의 물질들을 붙잡아 거르는 기능을 갖고 있다. 다만, 이러한 일반적인 부직포의 경우 세균 또는 가스상의 물질들을 자체적으로 분해하는 기능을 갖고 있지는 않다. 따라서, 이러한 의료용 마스크, 필터 등에 사용되는 일반적인 부직포는 일회용이거나, 일정 기간 사용한 후에는 교체해주어야 한다. 하지만, 종일 마스크를 사용해야 하는 경우에는 하나의 일회용 마스크를 사용한다는 것이 매우 번거롭고, 교체 없이 사용할 경우 인체에 해로운 영향을 줄 수 있으며, 에어컨 또는 공기 청정기 등에 사용되는 필터는 주기적으로 교체해주지 않으면 세균이나 곰팡이 번식 등에 의해 호흡기 질환을 유발할 수 있다.
이러한 문제점에 기인하여 종래의 다양한 가공 제품들은 광촉매를 활용하여 향균 기능을 나타내도록 제조되고 있다. 예를 들어, 일본 공개특허공보 제2007-051263호에는 이산화티타늄 광촉매를 활용한 복합재료가 개시되어 있고, 대한민국 공개특허공보 제10-2012-0073281호에는 섬유 필터의 섬유 표면에 용사기술에 의해 성막된 이산화티타늄피막을 포함하는 섬유 필터가 개시되어 있다.
다만, 광촉매를 부직포 등의 재료에 접목시킴에 있어서 제조 과정 및 사용 중에 개선해야 할 점들이 있고, 이들을 위한 연구가 더 필요한 실정이다.의료용 마스크, 필터 등에 사용되는 일반적인 부직포는 세균이나 가스상의 물질들을 붙잡아 거르는 기능을 갖고 있다. 다만, 이러한 일반적인 부직포의 경우 세균 또는 가스상의 물질들을 자체적으로 분해하는 기능을 갖고 있지는 않다. 따라서, 이러한 의료용 마스크, 필터 등에 사용되는 일반적인 부직포는 일회용이거나, 일정 기간 사용한 후에는 교체해주어야 한다. 하지만, 종일 마스크를 사용해야 하는 경우에는 하나의 일회용 마스크를 사용한다는 것이 매우 번거롭고, 교체 없이 사용할 경우 인체에 해로운 영향을 줄 수 있으며, 에어컨 또는 공기 청정기 등에 사용되는 필터는 주기적으로 교체해주지 않으면 세균이나 곰팡이 번식 등에 의해 호흡기 질환을 유발할 수 있다.
이러한 문제점에 기인하여 종래의 다양한 가공 제품들은 광촉매를 활용하여 향균 기능을 나타내도록 제조되고 있다. 예를 들어, 일본 공개특허공보 제2007-051263호에는 이산화티타늄 광촉매를 활용한 복합재료가 개시되어 있고, 대한민국 공개특허공보 제10-2012-0073281호에는 섬유 필터의 섬유 표면에 용사기술에 의해 성막된 이산화티타늄피막을 포함하는 섬유 필터가 개시되어 있다.
다만, 광촉매를 부직포 등의 재료에 접목시킴에 있어서 제조 과정 및 사용 중에 개선해야 할 점들이 있고, 이들을 위한 연구가 더 필요한 실정이다.
본 발명의 일 구현예는 가시광 활성 광촉매 기능을 갖는 부직포로서, 광촉매에 의한 부직포의 열화 및 분해를 방지할 수 있고, 광촉매가 부직포에 고르게 분포되어 장시간 우수한 향균 및 탈취 기능을 구현할 수 있는 광촉매 기능성 부직포를 제공한다.
본 발명의 다른 구현예는 상기 광촉매 기능성 부직포를 제조하는 방법으로서 광촉매를 부직포 내에 고르게 분포시킬 수 있고, 부직포와 광촉매의 부착성을 효과적으로 향상시킬 수 있는 광촉매 기능성 부직포의 제조방법을 제공한다.
본 발명의 일 구현예에서, 유기 섬유를 포함하고, 상기 유기 섬유의 일부 또는 전부는 그 표면에 배리어 코팅층 및 광촉매 코팅층을 포함하는 광촉매 기능성 부직포를 제공한다.
본 발명의 다른 구현예에서, 유기 섬유를 포함하는 원료 부직포에 산소(O2) 플라즈마를 처리하는 단계; 상기 유기 섬유의 일부 또는 전부의 표면에 배리어 코팅액을 코팅하여 배리어 코팅층을 형성하는 단계; 및 상기 배리어 코팅층의 표면에 광촉매 코팅액을 코팅하여 광촉매 코팅층을 형성하는 단계;를 포함하는 광촉매 기능성 부직포의 제조방법을 제공한다.
상기 광촉매 기능성 부직포는 광원에 따른 광촉매 활성 작용에 의한 부직포 자체의 열화 또는 분해 등을 방지할 수 있고, 장시간 우수한 향균, 탈취 및 항바이러스 기능을 나타낼 수 있다. 또한, 상기 광촉매 기능성 부직포는 의료용 마스크, 의료용 테이프 기재, 자동차용 시트, 공기청정기 및 에어컨용 필터 등의 다양한 용도에 활용될 수 있다.
상기 광촉매 기능성 부직포의 제조방법은 광촉매가 부직포 내게 고르게 분포되는 것을 가능하게 하며, 이를 통하여 광촉매와 부직포의 부착성을 향상시키는 이점을 얻을 수 있다.
도 1은 본 발명의 일 구현예에 따른 광촉매 기능성 부직포의 유기 섬유의 단면을 개략적으로 도시한 것이다.
도 2는 본 발명의 다른 구현예에 따른 광촉매 기능성 부직포의 제조 방법에 있어서 일부 섬유의 변화를 개략적으로 도시한 것이다.
도 3은 본 발명의 일 구현예에서, 광촉매 기능성 부직포를 제조하는 과정 중에 촬영한 SEM 사진을 나타낸 것이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 후술하는 실시예들을 참조하면 명확해질 것이다 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 본 명세서에서 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상부에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 아울러, 층, 막, 영역, 판 등의 부분이 다른 부분 "아래에" 또는 "하부에" 있다고 할 때, 이는 다른 부분 "바로 아래에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 아래에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
본 발명의 일 구현예에서, 유기 섬유를 포함하고, 상기 유기 섬유의 일부 또는 전부는 그 표면에 배리어 코팅층 및 광촉매 코팅층을 포함하는 광촉매 기능성 부직포를 제공한다.
상기 광촉매 기능성 부직포는 유기 섬유를 포함하는 것이다. 일반적으로 유기 섬유로 구성된 제품에 광촉매를 부여하는 경우 광촉매의 광반응 시에 유기 섬유 자체가 열화 또는 분해되는 문제가 있어 이러한 유기 섬유 대신에 열화 또는 분해의 위험이 적은 무기 섬유를 사용하였다. 다만, 무기 섬유는 유기 섬유에 비하여 가공성이 좋지 못한 단점을 갖고 있고, 다양한 형태로 변형이 용이하지 못하여 활용도가 떨어질 수 있다. 상기 광촉매 기능성 부직포는 유기 섬유를 포함함에도 불구하고 광촉매에 의한 유기 섬유의 열화 또는 분해를 효과적으로 방지하며, 이와 함께 우수한 가공성을 나타내어 높은 활용도를 나타낼 수 있다.
상기 광촉매 기능성 부직포는 유기 섬유를 포함하며 복수의 유기 섬유 가닥가닥이 얽혀서 형성된 기재의 형태이다. 이때, 상기 유기 섬유의 일부 또는 전부는 그 표면에 배리어 코팅층 및 광촉매 코팅층을 포함할 수 있다.
상기 유기 섬유의 일부 또는 전부의 의미는 부직포를 구성하는 복수의 유기 섬유 가닥 중 일부 또는 전부의 섬유 가닥을 의미할 수도 있고, 하나의 유기 섬유 가닥에 있어서 표면 상의 일부 또는 전부를 의미할 수도 있다.
예를 들어, 상기 부직포의 유기 섬유 표면의 전면적 대비 약 60% 내지 약 100%에 상기 배리어 코팅층 및 상기 광촉매 코팅층이 형성될 수 있고, 이로써 상기 광촉매 코팅층의 광촉매가 부직포 전체에 고르게 분산되어 우수한 향균 및 탈취 효율을 나타낼 수 있다.
상기 광촉매 기능성 부직포는 상기 유기 섬유의 일부 또는 전부가 그 표면에 배리어 코팅층 및 광촉매 코팅층을 가짐으로써 광원에 의한 부직포의 열화 또는 분해를 방지할 수 있으며, 광촉매가 부직포 내에 고르게 분산될 수 있고, 유기 섬유에 높은 밀착성으로 부착되도록 할 수 있다.
도 1은 본 발명의 일 구현예에 따른 광촉매 기능성 부직포의 유기 섬유의 단면을 개략적으로 도시한 것이다.
도 1을 참조할 때, 상기 유기 섬유(10)는 단면이 소정의 직경을 갖는 것으로서 그 표면에 배리어 코팅층(11) 및 광촉매 코팅층(12)이 순차적으로 형성된 것일 수 있다. 상기 배리어 코팅층(11)은 상기 유기 섬유의 표면 상에 코팅되어 상기 광촉매 코팅층의 광촉매가 상기 유기 섬유에 단단하게 부착되도록 할 수 있고, 상기 광촉매의 광반응에 의한 유기 섬유의 열화 또는 분해를 효과적으로 방지할 수 있다.
구체적으로, 상기 배리어 코팅층(11)은 이산화티타늄(TiO2) 졸, 실리카(silica) 졸 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는 배리어 코팅액으로부터 형성될 수 있다. 예를 들어, 상기 배리어 코팅층(11)은 이산화티타늄(TiO2) 졸을 포함하는 배리어 코팅액으로부터 형성될 수 있으며, 이 경우 상기 유기 섬유와 우수한 밀착성을 나타내고, 유기 섬유의 열화 또는 분해를 방지하는 배리어 성능이 뛰어난 장점을 얻을 수 있다.
상기 배리어 코팅액은 졸(sol)의 형태로서, 상기 졸(sol)은 이산화티타늄(TiO2) 입자 또는 실리카(silica) 입자와 같은 분산질이, 알코올 용매와 같은 분산매에 분산되어 있는 유동성을 가진 콜로이드 용액일 수 있다.
이 때, 상기 배리어 코팅액은 상기 이산화티타늄(TiO2) 또는 실리카(silica) 입자와 같은 분산질 입자를 약 1 중량% 내지 약 10 중량% 포함할 수 있고, 예를 들어, 약 1.5 중량% 내지 약 5 중량% 포함할 수 있으며, 예를 들어, 약 2 중량% 내지 약 3 중량% 포함할 수 있다. 상기 배리어 코팅액이 상기 함량의 분산질 입자를 포함함으로써 상기 광촉매 기능성 부직포의 제조 과정에서 상기 유기 섬유의 표면에 고르게 코팅될 수 있다.
상기 광촉매 코팅층(12)은 바인더 및 가시광 활성 광촉매 입자(A)를 포함하는 광촉매 코팅액으로부터 형성될 수 있다.
상기 바인더는 상기 가시광 활성 광촉매 입자(A)가 상기 유기 섬유의 표면에 잘 부착되도록 하는 것으로, 예를 들어, 이산화티타늄(TiO2) 졸, 실리카(silica) 졸 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. 예를 들어, 상기 바인더는 이산화티타늄(TiO2) 졸을 포함할 수 있고, 이 경우 상기 가시광 활성 광촉매 입자(A)와의 상용성이 우수하고, 상기 가시광 활성 광촉매 입자의 촉매 기능을 손상시키지 않으면서 상기 유기 섬유의 표면에 단단하게 부착되도록 할 수 있다.
예를 들어, 상기 배리어 코팅액이 이산화티타늄(TiO2) 졸을 포함하고, 상기 광촉매 코팅액의 바인더가 이산화티타늄(TiO2) 졸을 포함하는 경우 서로 밀착성이 더욱 향상되며, 상기 가시광 활성 광촉매 입자를 상기 유기 섬유의 표면 상에 단단하게 위치시킬 수 있다.
상기 바인더는 상기 배리어 코팅액에 관하여 전술한 바와 같이, 알코올 용매와 같은 분산매에 일정 함량의 분산질 입자가 분산된 유동성을 갖는 콜로이드 용액일 수 있다.
이 때, 상기 바인더는 바인더 전체 중량 중의 상기 분산질 입자를 약 1 중량% 내지 약 10 중량% 포함할 수 있고, 예를 들어, 약 1 중량% 내지 약 3 중량% 포함할 수 있으며, 예를 들어, 약 1 중량% 내지 약 2 중량% 포함할 수 있다. 상기 바인더가 상기 함량의 분산질 입자를 포함함으로써 상기 광촉매 기능성 부직포의 제조 과정에서 상기 광촉매 코팅액을 코팅할 때 상기 유기 섬유의 표면에 고르게 코팅될 수 있고, 상기 가시광 활성 광촉매 입자의 분산성을 높일 수 있다.
상기 광촉매 코팅액은 상기 가시광 활성 광촉매 입자를 약 1 중량% 내지 약 10 중량% 포함할 수 있고, 예를 들어, 약 3 중량% 내지 약 7 중량% 포함할 수 있다. 상기 광촉매 코팅액은 가시광 활성 광촉매 입자를 상기 범위의 함량으로 포함함으로써 상기 광촉매 기능성 부직포의 제조과정에서 상기 가시광 활성 광촉매 입자를 고르게 분산시킬 수 있다.
상기 가시광 활성 광촉매 입자는 가시광 영역의 빛을 흡수하여 얻은 에너지로부터 생성된 전자와 정공이 퍼옥사이드 음이온 또는 하이드록시 라디칼 등을 생성하고, 이들이 유해 물질을 분해 및 제거하여 공기 청정, 탈취 또는 향균 작용을 수행하는 입자이다.
상기 가시광 활성 광촉매 입자는 금속 산화물 및 금속 입자를 포함할 수 있다. 구체적으로, 상기 가시광 활성 광촉매 입자는 상기 금속 산화물의 표면에 상기 금속 입자가 광-증착(photo-deposition)된 형태일 수 있다.
상기 금속 산화물은 산화티탄, 산화텅스텐, 산화아연, 산화니오븀 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. 예를 들어, 상기 금속 산화물은 산화텅스텐을 포함할 수 있고, 이 경우 가시광에서 반응하여 광촉매 특성을 나타내는 정도가 우수하고, 가격이 저렴한 장점을 얻을 수 있다.
상기 금속 입자는 가시광선에 대한 광활성을 갖는 금속으로서, 예를 들어 전이 금속 또는 귀금속을 포함할 수 있다. 구체적으로, 상기 가시광 활성 광촉매 입자의 금속 입자는 텅스텐, 크롬, 바나듐, 몰리브데넘, 구리, 철, 코발트, 망간, 니켈, 백금, 금, 은, 세륨, 카드늄, 아연, 마그네슘, 칼슘, 스트론튬, 바륨 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. 예를 들어, 상기 금속 입자는 백금을 포함할 수 있고, 이 경우 가장 높은 광촉매 성능을 나타낸다는 장점을 얻을 수 있다.
상기 금속 산화물 및 금속 입자 각각은 구형의 입자로서, '구형의 입자'란 수학적으로 완전한 구의 형상을 갖는 입자를 의미하는 것은 아니고, 투영상이 원 또는 타원과 동일 또는 유사한 형상을 나타내는 입자를 의미한다. 상기 금속 산화물 및 상기 금속 입자가 각각 구형의 입자이며, 그 결과 상기 가시광 활성 광촉매 입자는 구형의 금속 산화물 입자 표면에 구형의 금속 입자가 증착된 형상을 갖게 된다.
이때, 상기 금속 입자의 입경(particle diameter)은 수 나노미터(㎚)로서, 예를 들어 약 3㎚ 내지 약 5㎚일 수 있다. 상기 금속 입자의 입경은 상기 금속 산화물의 입경에 비해 매우 작으며, 상기 금속 입자가 상기 범위의 입경을 가짐으로써 상기 금속 산화물의 표면에 적절한 함량으로 광-증착되어 우수한 광촉매 활성을 나타낼 수 있다.
상기 가시광 활성 광촉매 입자의 입경(particle diameter)은 약 20㎚ 내지 약 100㎚ 일 수 있고, 구체적으로 약 30nm 내지 약 60nm일 수 있다. 상기 가시광 활성 광촉매 입자의 입경은 SEM 또는 TEM 사진을 측정함으로써 도출될 수 있다. 상기 가시광 활성 광촉매 입자의 입경이 상기 범위를 만족함으로써 상기 유기 섬유의 표면에 대한 높은 부착성을 확보할 수 있고, 상기 유기 섬유 표면에 적절한 분산도를 가지면서 분산되어 우수한 광촉매 활성을 나타낼 수 있다.
상기 금속 입자의 입경이 상기 금속 산화물의 입경에 비하여 배우 작은 점을 고려할 때, 상기 가시광 활성 광촉매 입자의 크기, 즉 상기 가시광 활성 광촉매 입자의 입경은 주로 상기 금속 산화물의 입경에 의해 결정되는 것으로 이해될 수 있다. 즉, 상기 가시광 활성 광촉매 입자가 상기 범위의 입경을 갖는 경우, 상기 가시광 활성 광촉매 입자의 금속 산화물은 상기 범위에서 수 나노미터(㎚), 예를 들어 약 3㎚ 내지 약 5㎚의 오차 범위 내의 입경을 가질 수 있다. 이 경우, 상기 금속 산화물의 표면에 광-증착된 금속 입자의 양이 충분할 수 있고, 우수한 촉매 활성 효율을 나타낼 수 있다. 또한, 상기 가시광 활성 광촉매 입자가 상기 범위의 입경을 가짐으로써 유기 섬유가 얽혀있는 부직포 내에서 상기 유기 섬유의 사이사이에 고르게 분포될 수 있다.
상기 가시광 활성 광촉매 입자는 상기 금속 산화물 100 중량부에 대하여, 상기 금속 입자를 약 0.1 내지 약 5 중량부 포함할 수 있고, 예를 들어, 약 0.1 내지 약 2 중량부 포함할 수 있고, 예를 들어, 약 0.1 내지 약 0.5 중량부 포함할 수 있다. 상기 가시광 활성 광촉매 입자가 금속 입자를 상기 범위의 함량으로 포함함으로써, 금속 산화물 표면에 안정적으로 광-증착된 금속 입자를 함유할 수 있고, 상기 부직포 내에서 유기 섬유와 단단하게 결합할 수 있다. 또한, 가격 대비 우수한 성능을 구현할 수 있다.
상기 광촉매 기능성 부직포는 유기 섬유를 포함하며, 유기 섬유라면 그 종류가 특별히 제한되지 아니하나, 예를 들어, 폴리프로필렌(PP) 섬유, 폴리에틸렌테레프탈레이트(PET) 섬유, 폴리에스터 섬유, 폴리에틸렌 섬유 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
예를 들어, 상기 유기 섬유는 폴리프로필렌(PP) 섬유 또는 폴리에틸렌테레프탈레이트(PET) 섬유를 포함할 수 있고, 이 경우 상기 배리어 코팅층과 부착성이 뛰어나며, 가공성 및 범용성 측면에서 유리할 수 있다.
상기 광촉매 기능성 부직포는 유기 섬유를 포함하면서도, 상기 유기 섬유의 일부 또는 전부가 그 표면에 상기 배리어 코팅층 및 상기 광촉매 코팅층을 함유하므로 향균 및 탈취 성능을 확보함과 동시에, 광반응에 의한 유기 섬유의 손상을 효과적으로 방지하는 이점을 얻을 수 있다.
상기 광촉매 기능성 부직포 내에서 상기 유기 섬유는 연속 섬유의 형태일 수 있다. '연속 섬유'란 소정의 길이로 절단된 형상을 갖는 섬유와 대비되는 개념으로 제품 내에서 연속적인 길이를 갖는 섬유를 의미한다. 상기 광촉매 기능성 부직포는 연속 섬유 형태의 유기 섬유를 포함함으로써 쉽게 헤지거나 끊어지지 않는 질긴 특성을 확보할 수 있고, 다양한 용도에 활용되어 우수한 장기 내구성을 구현할 수 있다.
상기 유기 섬유는 단면의 직경이 약 0.5㎛ 내지 약 15㎛일 수 있고, 예를 들어, 약 0.5㎛ 내지 약 5㎛일 수 있고, 예를 들어, 약 0.5㎛ 내지 약 2.5㎛일 수 있다. 즉, 상기 유기 섬유의 굵기가 상기 범위를 만족할 수 있다.
예를 들어, 상기 유기 섬유는 일 구현예에서 단면의 직경이 약 0.5㎛ 내지 약 2㎛일 수 있다. 또한, 상기 유기 섬유는 다른 일 구현예에서, 단면의 직경이 약 1㎛ 내지 약 3㎛인 제1 유기 섬유와 단면의 직경이 약 9㎛ 내지 약 11㎛인 제2 유기 섬유가 혼합된 형태일 수 있다.
상기 광촉매 기능성 부직포가 상기 범위의 단면 직경을 갖는 유기 섬유를 포함함으로써 전술한 범위의 입자 크기를 갖는 가시광 활성 광촉매 입자의 분산성 및 부착성을 향상시킬 수 있고, 최종 제품에 적용되어 우수한 내구성을 구현할 수 있다. 또한, 상기 유기 섬유의 굵기가 상기 범위를 만족함으로써, 후술하는 바에 따라 상기 광촉매 기능성 부직포를 제조하는 과정에서, 상기 유기 섬유의 표면에 배리어 코팅층 및 광촉매 코팅층을 균일하게 형성할 수 있다.
상기 광촉매 기능성 부직포는 가시광선의 영역에서 촉매 활성을 나타내며, 이로써 별도의 광원 없이도 실내에 설치되어 우수한 촉매 활성을 나타낼 수 있다. 예를 들어, 상기 광촉매 기능성 부직포는 약 400㎚ 내지 약 800㎚의 가시광선 영역의 빛에 의해 촉매 활성을 나타낼 수 있고, 우수한 향균 및 탈취 성능을 나타낼 수 있다.
상기 광촉매 기능성 부직포는 예를 들어, 의료용 마스크, 의료용 밴드의 기재, 수처리 필터 또는 에어 필터의 용도로 사용될 수 있고, 장시간 교체되지 않아도 우수한 향균 및 항바이러스 기능을 수행할 수 있으며, 향상된 장기 내구성을 구현할 수 있다.
본 발명의 다른 구현예에서, 유기 섬유를 포함하는 원료 부직포에 산소(O2) 플라즈마를 처리하는 단계; 상기 유기 섬유의 일부 또는 전부의 표면에 배리어 코팅액을 코팅하여 배리어 코팅층을 형성하는 단계; 및 상기 배리어 코팅층의 표면에 광촉매 코팅액을 코팅하여 광촉매 코팅층을 형성하는 단계;를 포함하는 광촉매 기능성 부직포의 제조방법을 제공한다.
상기 광촉매 기능성 부직포의 제조방법을 통하여 상기 유기 섬유의 일부 또는 전부의 표면에 배리어 코팅층 및 광촉매 코팅층을 포함하는 광촉매 기능성 부직포를 제조할 수 있고, 광촉매 작용에 의한 열화 및 분해를 효과적으로 방지하면서 우수한 향균 및 탈취 효과를 구현하는 부직포를 제조할 수 있다.
상기 광촉매 기능성 부직포의 제조방법은 유기 섬유를 포함하는 원료 부직포에 산소(O2) 플라즈마를 처리하는 단계를 포함한다.
상기 원료 부직포는 유기 섬유를 이용하여 미리 제조된 부직포로서, 상기 유기 섬유에 관한 사항은 전술한 바와 같다. 예를 들어, 상기 원료 부직포는 유기 섬유로서 폴리프로필렌(PP) 섬유 또는 폴리에틸렌테레프탈레이트(PET) 섬유를 포함할 수 있다.
도 2는 본 발명의 다른 구현예에 따른 광촉매 기능성 부직포의 제조 방법에 있어서 일부 섬유의 변화를 개략적으로 도시한 것이다.
도 2를 참조할 때, 상기 원료 부직포의 유기 섬유는 산소(O2) 플라즈마 처리를 통해 표면이 개질되며, 구체적으로, 상기 산소(O2) 플라즈마 처리를 통해 상기 유기 섬유의 표면에 친수성 작용기를 형성할 수 있다.
상기 친수성 작용기는 예를 들어, 히드록시기, 퍼옥사이드기, 카르복실기 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
상기 원료 부직포에 산소(O2) 플라즈마를 처리하여, 상기 유기 섬유의 표면에 친수성 작용기를 부여함으로써 후속하여 배리어 코팅층을 형성할 때, 상기 배리어 코팅액과 상기 유기 섬유의 부착성을 향상시킬 수 있다.
상기 산소(O2) 플라즈마가 처리된 원료 부직포는 물에 대한 접촉각이 약 20°이하일 수 있고, 예를 들어, 약 10°내지 약 5°일 수 있다. 상기 산소(O2) 플라즈마가 처리된 원료 부직포가 상기 범위의 접촉각을 가짐으로써 상기 배리어 코팅액과 상기 원료 부직포의 유기 섬유 사이의 부착성이 향상될 수 있고, 상기 배리어 코팅액이 균일하게 코팅될 수 있다.
상기 산소(O2) 플라즈마 처리는 산소(O2) 가스의 공급 속도가 약 30 mL/min 내지 약 60 mL/min일 수 있고, 예를 들어, 약 40 mL/min 내지 약 55 mL/min일 수 있다. 상기 산소 플라즈마 처리의 산소 가스 공급 속도가 상기 범위를 만족하는 경우에 유기 섬유의 표면에 적절한 양의 친수성 작용기가 부여될 수 있고, 후속하여 제조되는 배리어 코팅층이 유기 섬유의 표면에 우수한 부착성 및 코팅성을 나타낼 수 있다.
또한, 상기 산소(O2) 플라즈마 처리는 약 100W 내지 약 200W의 전력 하에 약 200초 내지 약 400초 동안 수행될 수 있다. 상기 산소(O2) 플라즈마 처리의 전력 및 시간이 상기 범위를 만족함으로써 유기 섬유의 손상 없이 요구되는 수준의 친수성 작용기를 부여할 수 있다.
상기 광촉매 기능성 부직포의 제조방법은 상기 유기 섬유의 일부 또는 전부의 표면에 배리어 코팅액을 코팅하여 배리어 코팅층을 형성하는 단계를 포함한다. 상기 배리어 코팅액에 관한 사항은 전술한 바와 같다.
또한, 상기 제조방법은 상기 배리어 코팅층의 표면에 광촉매 코팅액을 코팅하여 광촉매 코팅층을 형성하는 단계를 포함한다. 상기 광촉매 코팅액에 관한 사항은 전술한 바와 같다.
도 2를 참조할 때, 상기 배리어 코팅층을 형성하는 단계는 상기 산소(O2) 플라즈마를 처리하는 단계에 후속하여 수행될 수 있고, 상기 산소(O2) 플라즈마 처리로 인해 개질된 유기 섬유의 표면 상에 상기 배리어 코팅층이 형성될 수 있다.
또한, 도 2를 참조할 때, 상기 광촉매 코팅층을 형성하는 단계는 상기 배리어 코팅층을 형성하는 단계에 후속하여 수행될 수 있고, 상기 배리어 코팅층의 표면 상에 광촉매 코팅층이 형성될 수 있다.
종래의 광촉매 코팅은 주로 유리 기판이나 필름, 또는 수지 시트 등을 포함하는 기재의 상부에 수행되었고, 스핀(spin) 코팅 방법이나, 바(bar) 코팅 방법을 이용하여 상기 기재 상부에 일종의 층을 형성하는 방법으로 수행되었다. 그러나, 섬유들이 얽혀서 형성된 부직포 기재의 경우에는 표면 굴곡이 심하고, 기공을 갖고 있어서 스핀(spin) 코팅 방법이나, 바(bar) 코팅 방법을 이용하여 그 상부에 광촉매 코팅을 고르게 수행하는 것이 어려운 면이 있다.
또한, 부직포를 의료용 마스크 또는 필터 등의 용도로 사용하는 경우를 고려할 때, 광촉매가 부직포 기재 내부의 섬유 사이사이에 삽입되는 형태로 코팅되는 것이 유리하나, 스핀(spin) 코팅 방법이나, 바(bar) 코팅 방법을 이용하는 경우에는 이와 같이 광촉매를 부직포 기재 내부에 고르게 분포시키기 어려운 한계가 있다.
상기 광촉매 기능성 부직포의 제조방법에서, 상기 배리어 코팅층은 상기 배리어 코팅액을 스프레이(spray) 코팅 방법으로 분사함으로써 상기 유기 섬유의 일부 또는 전부의 표면에 코팅될 수 있다. 상기 배리어 코팅액을 스프레이 코팅 방법으로 분사함으로써 상기 원료 부직포의 내부까지 배리어 코팅액이 침투할 수 있고, 상기 유기 섬유의 가닥들이 각각 표면에 배리어 코팅층을 가질 수 있다.
상기 배리어 코팅액은 졸(sol)의 형태로서, 상기 졸(sol)은 이산화티타늄(TiO2) 입자 또는 실리카(silica) 입자와 같은 분산질이, 알코올 용매와 같은 분산매에 분산되어 있는 유동성을 가진 콜로이드 용액일 수 있다.
이 때, 상기 배리어 코팅액은 상기 분산질 입자를 약 1 중량% 내지 약 10 중량% 포함할 수 있고, 예를 들어, 약 1.5 중량% 내지 약 5 중량% 포함할 수 있으며, 예를 들어, 약 2 중량% 내지 약 3 중량% 포함할 수 있다. 상기 배리어 코팅액은 상기 함량의 분산질 입자를 포함함으로써, 이를 스프레이 코팅 방법으로 코팅할 때 고르게 분사될 수 있고, 상기 유기 섬유의 표면에 밀착 코팅될 수 있다.
상기 광촉매 기능성 부직포의 제조방법에서, 상기 광촉매 코팅층은 상기 광촉매 코팅액을 스프레이(spray) 코팅 방법으로 분사함으로써 상기 배리어 코팅층의 표면에 형성될 수 있다.
상기 광촉매 코팅액은 바인더 및 가시광 활성 광촉매 입자를 포함하며, 상기 바인더는 전술한 바와 같이 알코올 용매와 같은 분산매에 일정 함량의 분산질 입자가 분산된 유동성 있는 콜로이드 용액일 수 있다.
상기 바인더가 바인더 전체 중량 중의 상기 분산질 입자를 약 1 중량% 내지 약 10 중량% 포함할 수 있고, 예를 들어, 약 1 중량% 내지 약 3 중량% 포함할 수 있으며, 예를 들어, 약 1 중량% 내지 약 2 중량% 포함할 수 있다.
또한, 상기 광촉매 코팅액은 상기 가시광 활성 광촉매 입자를 약 1 중량% 내지 약 10 중량% 포함할 수 있고, 예를 들어, 약 3 중량% 내지 약 7 중량% 포함할 수 있다.
상기 광촉매 코팅액이 상기 바인더 및 가시광 활성 광촉매 입자를 포함함으로써 상기 광촉매 코팅액의 스프레이 코팅 과정에서 분산성 및 코팅성이 향상될 수 있고, 그 결과 상기 광촉매 코팅액의 스프레이 코팅으로 상기 배리어 코팅층에 대하여 밀착성이 높은 광촉매 코팅층이 형성될 수 있다.
상기 광촉매 기능성 부직포의 제조방법에서, 상기 배리어 코팅액 및 상기 광촉매 코팅액은 각각 분산매를 포함하며, 상기 분산매로는 알코올 용매가 사용될 수 있다. 이때, 상기 알코올 용매는 상기 배리어 코팅층 및 상기 광촉매 코팅층에 잔류할 경우 광촉매 성능을 저하시키는 문제를 일으킬 수 있다.
이에, 상기 광촉매 기능성 부직포의 제조방법은 상기 배리어 코팅층을 형성하는 단계가 상기 배리어 코팅액을 코팅한 후 약 80℃ 내지 약 100℃에서 열처리하는 단계일 수 있다. 또한, 상기 광촉매 코팅층을 형성하는 단계가 상기 광촉매 코팅액을 코팅한 후 약 80℃ 내지 약 100℃에서 열처리하는 단계일 수 있다.
상기 열처리는 상기 범위의 온도에서 건조 과정을 수행하는 것으로서, 상기 범위의 온도에서 열처리를 수행함으로써 유기 섬유 또는 가시광 활성 광촉매 입자를 손상시키지 않으면서 분산매를 제거할 수 있고, 각각의 코팅층이 단단하게 계면에 부착되도록 할 수 있다. 그 결과, 상기 가시광 활성 광촉매 입자의 촉매 효율을 향상시킬 수 있고, 상기 광촉매 기능성 부직포의 물리적 강도 및 질긴 특성도 확보할 수 있다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
<실시예 및 비교예>
실시예 1
폴리에틸렌테레프탈레이트(PET) 섬유를 포함하는 원료 부직포를 준비하였다. 상기 원료 부직포의 섬유는 단면 직경이 2㎛ 내지 4㎛인 PET 섬유 및 단면 직경이 12㎛ 내지 13㎛인 PET 섬유가 혼합된 형태이고, 상기 원료 부직포의 두께는 128㎛였다. 상기 원료 부직포에 대하여 150W의 전력으로, 360초 동안 산소(O2) 플라즈마를 처리하였다. 상기 산소(O2) 플라즈마의 산소 가스 공급 속도는 50 mL/min이었다. 이어서, 배리어 코팅액으로서 이소프로필 알코올(IPA) 97.5 중량% 및 이산화티타늄(TiO2) 입자 2.5 중량%를 포함하는 이산화티타늄(TiO2) 졸을 제조하였고, 상기 배리어 코팅액을 스프레이 코팅 방법에 의해 상기 원료 부직포에 분사하여 상기 PET 섬유의 표면에 배리어 코팅층을 형성하였다. 상기 배리어 코팅액을 분사한 후 80℃에서 30분 동안 열처리하였다. 이어서, 산화텅스텐 입자 표면에 백금 나노입자가 광-증착된 가시광 활성 광촉매 입자(Pt/WO3) 5 중량% 및 이산화티타늄(TiO2) 졸 바인더를 포함하는 광촉매 코팅액을 제조하였고, 상기 바인더는 이소프로필 알코올(IPA) 98.75 중량% 및 이산화티타늄(TiO2) 입자 1.25 중량%를 포함하는 것을 사용하였다. 상기 광촉매 코팅액을 스프레이 코팅 방법에 의해 상기 원료 부직포에 분사하여 상기 배리어 코팅층의 표면에 광촉매 코팅층을 형성하였다. 상기 광촉매 코팅액을 분사한 후 80℃에서 30분 동안 열처리하였다. 이로써 광촉매 기능성 부직포를 제조하였다.
실시예 2
상기 실시예 1의 폴리에틸렌테레프탈레이트(PET) 섬유를 포함하는 원료 부직포 대신에, 섬유의 단면 직경이 1㎛ 내지 3㎛인 PET 섬유와 단면의 직경이 10㎛인 PET 섬유가 혼합되어 있고, 두께는 60㎛인 폴리에틸렌테레프탈레이트(PET) 원료 부직포를 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 광촉매 기능성 부직포를 제조하였다.
실시예 3
상기 실시예 1의 폴리에틸렌테레프탈레이트(PET) 섬유를 포함하는 원료 부직포 대신, 섬유의 단면 직경이 0.5㎛ 내지 2㎛인 PP 섬유를 포함하고, 두께는 180㎛인 폴리프로필렌(PP) 원료 부직포를 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 광촉매 기능성 부직포를 제조하였다.
비교예 1-3
상기 실시예 1-3의 원료 부직포 각각을 비교예 1-3으로 하였다.
<평가>
실험예 1: 유해 가스 분해 성능의 측정
상기 실시예 1 내지 3 및 상기 비교예 1 내지 3의 부직포에 대하여, 스몰 챔버 테스트 방법(ISO 18560-1:2014)에 의하여 유해 가스 분해 성능을 측정하였다. 구체적으로, 챔버에 부직포를 위치시키고 아세트알데히드 유해 가스를 0.1ppm의 농도로 주입한 후, 광원으로서 1000lux의 백색 LED를 사용하였다. 그 결과는 하기 표 1에 기재된 바와 같다.
아세트알데히드 제거율(%)
실시예 1 87
실시예 2 93
실시예 3 83
비교예 1 1
비교예 2 1
비교예 3 1
실험예 2: 가시광 활성 광촉매 입자의 분산성 측정
상기 실시예 1-3의 광촉매 기능성 부직포 제조 과정에서 (a) 배리어 코팅층이 형성된 후의 SEM 사진 및 (b) 광촉매 코팅층이 형성된 후의 SEM 사진을 촬영하였다. 그 결과는 하기 도 3에 나타내었다.
<부호의 설명>
10: 유기 섬유
11: 배리어 코팅층
12: 광촉매 코팅층
A: 가시광 활성 광촉매 입자

Claims (17)

  1. 유기 섬유를 포함하고,
    상기 유기 섬유의 일부 또는 전부는 그 표면에 배리어 코팅층 및 광촉매 코팅층을 포함하는
    광촉매 기능성 부직포.
  2. 제1항에 있어서,
    상기 배리어 코팅층은 이산화티타늄(TiO2) 졸, 실리카(silica) 졸 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는 배리어 코팅액으로부터 형성되는
    광촉매 기능성 부직포.
  3. 제1항에 있어서,
    상기 광촉매 코팅층은 바인더 및 가시광 활성 광촉매 입자를 포함하는 광촉매 코팅액으로부터 형성되는
    광촉매 기능성 부직포.
  4. 제3항에 있어서,
    상기 바인더는 이산화티타늄(TiO2) 졸, 실리카(silica) 졸 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는
    광촉매 기능성 부직포.
  5. 제3항에 있어서,
    상기 가시광 활성 광촉매 입자는 입경(particle diameter)이 20㎚ 내지 100㎚인
    광촉매 기능성 부직포.
  6. 제3항에 있어서,
    상기 가시광 활성 광촉매 입자는 금속 산화물 및 금속 입자를 포함하는
    광촉매 기능성 부직포.
  7. 제6항에 있어서,
    상기 금속 산화물은 산화티탄, 산화텅스텐, 산화아연, 산화니오븀 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는
    광촉매 기능성 부직포.
  8. 제6항에 있어서,
    상기 금속 입자는 텅스텐, 크롬, 바나듐, 몰리브데넘, 구리, 철, 코발트, 망간, 니켈, 백금, 금, 은, 세륨, 카드늄, 아연, 마그네슘, 칼슘, 스트론튬, 바륨 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는
    광촉매 기능성 부직포.
  9. 제6항에 있어서,
    상기 가시광 활성 광촉매 입자는 금속 산화물 100 중량부에 대하여, 금속 입자 0.1 내지 5 중량부를 포함하는
    광촉매 기능성 부직포.
  10. 제1항에 있어서,
    상기 유기 섬유는 폴리프로필렌(PP) 섬유, 폴리에틸렌테레프탈레이트(PET) 섬유, 폴리에스터 섬유, 폴리에틸렌 섬유 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는
    광촉매 기능성 부직포.
  11. 제10항에 있어서,
    상기 유기 섬유는 단면의 직경이 0.5㎛ 내지 15㎛인
    광촉매 기능성 부직포.
  12. 유기 섬유를 포함하는 원료 부직포에 산소(O2) 플라즈마를 처리하는 단계;
    상기 유기 섬유의 일부 또는 전부의 표면에 배리어 코팅액을 코팅하여 배리어 코팅층을 형성하는 단계; 및
    상기 배리어 코팅층의 표면에 광촉매 코팅액을 코팅하여 광촉매 코팅층을 형성하는 단계;를 포함하는
    광촉매 기능성 부직포의 제조방법.
  13. 제12항에 있어서,
    상기 배리어 코팅층은 상기 배리어 코팅액을 스프레이(spray) 코팅 방법으로 분사함으로써 형성되는
    광촉매 기능성 부직포의 제조방법.
  14. 제12항에 있어서,
    상기 광촉매 코팅층은 상기 광촉매 코팅액을 스프레이(spray) 코팅 방법으로 분사함으로써 형성되는
    광촉매 기능성 부직포의 제조방법.
  15. 제12항에 있어서,
    상기 산소(O2) 플라즈마를 처리하는 단계에서 산소(O2) 가스의 공급 속도는 30 mL/min 내지 60 mL/min인
    광촉매 기능성 부직포의 제조방법.
  16. 제12항에 있어서,
    상기 배리어 코팅층을 형성하는 단계는,
    상기 배리어 코팅액을 코팅한 후 80℃ 내지 100℃에서 열처리하는 단계인
    광촉매 기능성 부직포의 제조방법.
  17. 제12항에 있어서,
    상기 광촉매 코팅층을 형성하는 단계는,
    상기 광촉매 코팅액을 코팅한 후 80℃ 내지 100℃에서 열처리하는 단계인
    광촉매 기능성 부직포의 제조방법.
PCT/KR2016/010073 2015-09-14 2016-09-08 광촉매 기능성 부직포 및 이의 제조방법 WO2017047980A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018513292A JP6857173B2 (ja) 2015-09-14 2016-09-08 光触媒機能性不織布およびこの製造方法
CN201680053230.1A CN108026691B (zh) 2015-09-14 2016-09-08 光催化剂功能性无纺布及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0129695 2015-09-14
KR1020150129695A KR101946383B1 (ko) 2015-09-14 2015-09-14 광촉매 기능성 부직포 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2017047980A1 true WO2017047980A1 (ko) 2017-03-23

Family

ID=58289521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010073 WO2017047980A1 (ko) 2015-09-14 2016-09-08 광촉매 기능성 부직포 및 이의 제조방법

Country Status (4)

Country Link
JP (1) JP6857173B2 (ko)
KR (1) KR101946383B1 (ko)
CN (1) CN108026691B (ko)
WO (1) WO2017047980A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109183411A (zh) * 2018-08-20 2019-01-11 蚌埠市维光塑胶制品有限公司 一种无纺布袋用透气吸油非织造布的制备方法
WO2021249365A1 (zh) * 2020-06-10 2021-12-16 南通纺织丝绸产业技术研究院 一种防丙烯口罩及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102521461B1 (ko) * 2016-01-08 2023-04-12 닛신 엔지니어링 가부시키가이샤 부정비 산화티탄 미립자의 제조 방법
US11224860B2 (en) * 2019-02-28 2022-01-18 The Hong Kong Polytechnic University Nanofiber surfaces
CN112195648A (zh) * 2020-08-28 2021-01-08 无锡市宇寿医疗器械有限公司 一种光催化自清洁的无纺布、制备方法及采用其制备得到的口罩

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176718A (ja) * 1997-09-11 1999-03-23 Sharp Corp 除塵フィルター及びその製造方法及び空気調和機及び空気清浄機
JP3088896U (ja) * 2002-03-13 2002-10-04 實慶 孫 繊維、有機物或いは金属の光触媒被覆構造
KR200302608Y1 (ko) * 2002-10-28 2003-02-05 주식회사 엘지화학 광촉매를 함유하는 기능성 벽지
KR101255551B1 (ko) * 2011-09-29 2013-04-17 한국생산기술연구원 수리특성이 개선된 다축 지오컴포지트의 제조방법 및 그로부터 제조된 다축 지오컴포지트
KR20150055206A (ko) * 2013-11-12 2015-05-21 (주)엘지하우시스 가시광 활성 광촉매 코팅 조성물, 가시광 활성 광촉매 코팅 조성물의 제조 방법 및 가시광 활성 광촉매층을 형성하는 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388896U (ko) * 1989-12-27 1991-09-11
JP3088896B2 (ja) * 1994-03-04 2000-09-18 シャープ株式会社 無線呼出受信機及び無線呼出方法
EP1955768A1 (en) * 1995-06-19 2008-08-13 Nippon Soda Co., Ltd. Photocatalyst-carrying structure and photocatalyst coating material
JP4560778B2 (ja) * 2004-10-04 2010-10-13 日本エクスラン工業株式会社 光触媒活性を有する機能性繊維
KR101450389B1 (ko) * 2012-05-25 2014-10-14 (주)엘지하우시스 광촉매재, 그 제조 방법 및 광촉매 장치
KR101465299B1 (ko) * 2012-05-25 2014-12-04 (주)엘지하우시스 광촉매재, 그 제조 방법 및 광촉매 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176718A (ja) * 1997-09-11 1999-03-23 Sharp Corp 除塵フィルター及びその製造方法及び空気調和機及び空気清浄機
JP3088896U (ja) * 2002-03-13 2002-10-04 實慶 孫 繊維、有機物或いは金属の光触媒被覆構造
KR200302608Y1 (ko) * 2002-10-28 2003-02-05 주식회사 엘지화학 광촉매를 함유하는 기능성 벽지
KR101255551B1 (ko) * 2011-09-29 2013-04-17 한국생산기술연구원 수리특성이 개선된 다축 지오컴포지트의 제조방법 및 그로부터 제조된 다축 지오컴포지트
KR20150055206A (ko) * 2013-11-12 2015-05-21 (주)엘지하우시스 가시광 활성 광촉매 코팅 조성물, 가시광 활성 광촉매 코팅 조성물의 제조 방법 및 가시광 활성 광촉매층을 형성하는 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109183411A (zh) * 2018-08-20 2019-01-11 蚌埠市维光塑胶制品有限公司 一种无纺布袋用透气吸油非织造布的制备方法
WO2021249365A1 (zh) * 2020-06-10 2021-12-16 南通纺织丝绸产业技术研究院 一种防丙烯口罩及其制备方法

Also Published As

Publication number Publication date
CN108026691A (zh) 2018-05-11
KR20170032528A (ko) 2017-03-23
KR101946383B1 (ko) 2019-02-12
JP2018528072A (ja) 2018-09-27
JP6857173B2 (ja) 2021-04-14
CN108026691B (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2017047980A1 (ko) 광촉매 기능성 부직포 및 이의 제조방법
CN109675450B (zh) 一种抗菌复合纳米纤维膜及其制备方法和应用
KR100928232B1 (ko) 나노섬유 웹을 포함하는 방진, 방취 및 항균용 필터
KR100843191B1 (ko) 은 나노입자 함유 나노섬유 필터여재 및 그 제조방법
KR102058075B1 (ko) 망간계 촉매를 이용한 필터를 포함하는 마스크
US20060144403A1 (en) Facemask with filtering closure
WO2020032519A1 (ko) 플라즈모닉스 발현층의 제조방법 및 그가 적용된 플라즈모닉스 항균/살균 필터
CN112921502A (zh) 一种抗菌抗病毒熔喷布及其制备方法
KR102161587B1 (ko) 나노섬유필터 및 그 제조방법
WO2016137192A1 (ko) 가시광 활성 광촉매 코팅 조성물 및 공기정화용 필터
WO2022145604A1 (ko) 나노섬유를 이용한 세척가능한 미세먼지필터 모듈
WO2017007267A1 (ko) 기능성 나노섬유 필터의 제조방법 및 이에 의해 제조된 기능성 나노섬유 필터
Natsathaporn et al. Functional fiber membranes with antibacterial properties for face masks
CN113457477A (zh) 一种纳米纤维过滤膜及其制备方法和应用
JP4965628B2 (ja) 抗菌性を有する部材の製造方法
JP5022561B2 (ja) 環境浄化用部材
WO2018194432A2 (ko) 다공성 기재 층 및 cnt/키토산 나노 하이브리드 코팅층을 포함하는 멤브레인 및 이를 포함하는 정전식 집진 시스템
JP4585188B2 (ja) 抗菌性を有する部材
KR102026232B1 (ko) 광촉매 기능성 부직포 및 이의 제조방법
WO2022098795A1 (en) Antipathogenic personal protective equipment (ppe)
CN107715571A (zh) 一种抗菌抑菌、吸尘及过滤粉尘的复合材料及其制备方法
KR20220005756A (ko) 금속 나노 와이어를 포함한 마스크
WO2018143712A1 (ko) 에어 필터 및 이를 포함하는 공기 정화 모듈
WO2021002679A1 (ko) 항균성 조성물, 이를 이용한 필터 및 필터를 포함하는 가전기기
CN215962550U (zh) 一种空气过滤材料及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018513292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846801

Country of ref document: EP

Kind code of ref document: A1