WO2021205771A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2021205771A1
WO2021205771A1 PCT/JP2021/007264 JP2021007264W WO2021205771A1 WO 2021205771 A1 WO2021205771 A1 WO 2021205771A1 JP 2021007264 W JP2021007264 W JP 2021007264W WO 2021205771 A1 WO2021205771 A1 WO 2021205771A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow cell
substrate
automatic analyzer
pressing
pressing member
Prior art date
Application number
PCT/JP2021/007264
Other languages
English (en)
French (fr)
Inventor
ゆり 梶原
想 小口
山下 太一郎
禎昭 杉村
亜依子 宮川
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to US17/915,325 priority Critical patent/US20230184793A1/en
Priority to CN202180023108.0A priority patent/CN115315629A/zh
Priority to EP21785093.2A priority patent/EP4134678A4/en
Priority to JP2022514331A priority patent/JP7310013B2/ja
Publication of WO2021205771A1 publication Critical patent/WO2021205771A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/69Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence specially adapted for fluids, e.g. molten metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00108Test strips, e.g. paper
    • G01N2035/00128Test strips, e.g. paper with pressing or squeezing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00326Analysers with modular structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • G01N2035/00792Type of components bearing the codes, other than sample carriers
    • G01N2035/00811Type of components bearing the codes, other than sample carriers consumable or exchangeable components other than sample carriers, e.g. detectors, flow cells

Definitions

  • the present invention relates to an automatic analyzer.
  • the automatic analyzer is a device that automatically analyzes samples such as blood and urine. Then, as an immunoassay method in the detection unit of the automatic analyzer, a method of introducing a reaction solution containing a sample into a flow cell and detecting the emitted light with a photodetector is known. As a detection method using such a flow cell, for example, Patent Document 1 can be mentioned.
  • the flow cell carried into the conventional detection unit is fixed to the substrate using screws so as not to be displaced from the photomultiplier tube.
  • the substrate By fixing to the substrate with screws in this way, the light-shielding property of the area surrounded by the flow path in the flow cell and the photomultiplier tube is enhanced, and the S / N ratio at the time of signal measurement by the photomultiplier tube is reduced. Can be suppressed.
  • An object of the present invention is to provide an automatic analyzer with improved workability when loading and unloading a flow cell.
  • the present invention includes a photomultiplier tube, a substrate arranged vertically below the photomultiplier tube, and a flow cell arranged vertically below the photomultiplier tube.
  • the lower surface of the substrate has a convex and / or concave portion
  • the upper surface of the flow cell has a concave and / or convex portion
  • the concave and / or convex portion of the flow cell has a convex portion and / or a concave portion of the substrate. It has a pressing member that pushes the flow cell vertically from below to above in a state of being fitted to the above.
  • Top view of the automatic analyzer The figure which shows the flow path composition of a detection unit.
  • the perspective view which shows the appearance of the detection unit.
  • the front view which shows the structure of the interlocking mechanism which interlocks the operation of a pressing member.
  • the plan view which shows how the two pressing members on the left and right press the flow cell at the same time.
  • the plan view which shows how the two front and rear pressing members press the flow cell at the same time.
  • FIG. 1 is a plan view of the automatic analyzer.
  • the automatic analyzer 100 includes a rack 108, a rack transfer line 115, a sample dispensing mechanism 116, an incubator (reaction disk) 107, a storage unit 106, a transfer mechanism 105, a reaction vessel stirring mechanism 104, and disposal. It includes a hole 102, a reagent disk 117, a reagent dispensing mechanism 110, a reaction liquid suction nozzle 113, a detection unit 114, and a control unit (not shown).
  • a sample container 103 for holding a sample (sample) is erected on the rack 108.
  • the rack transfer line 115 moves the sample container 103 erected on the rack 108 to the sample dispensing position near the sample dispensing mechanism 116.
  • the sample dispensing mechanism 116 has an arm portion that is rotationally driven and vertically driven, and a nozzle portion that sucks and discharges the sample.
  • a sample dispensing tip can be attached to and detached from the tip of the nozzle.
  • the sample dispensing mechanism 116 lowers the nozzle portion with respect to the sample container 103 at the sample dispensing position to suck a predetermined amount of sample, and then rotates the arm portion to react at a predetermined position on the incubator 107. Discharge the sample into the container 109.
  • the incubator 107 is formed with a plurality of container holding holes in which a plurality of reaction vessels 109 can be installed in the circumferential direction.
  • the incubator 107 performs a rotational operation to move each reaction vessel 109 to a predetermined position such as a reaction vessel installation position, a reagent discharge position, a sample discharge position, and a reaction vessel disposal position.
  • a plurality of unused reaction vessels 109 and sample dispensing chips are installed in the storage unit 106.
  • the transport mechanism 105 is movable in three directions of the X-axis, the Y-axis, and the Z-axis, and transports the reaction vessel 109 and the sample dispensing tip.
  • the transport mechanism 105 transports the unused reaction vessel 109 to the container holding hole at a predetermined position of the incubator 107, or transports the unused sample dispensing tip to the sample dispensing tip mounting position 101. do.
  • the transport mechanism 105 may transport the reaction vessel 109 to the reaction vessel stirring mechanism 104, or transport the used reaction vessel 109 and the sample dispensing chip to the disposal hole 102.
  • the reaction vessel stirring mechanism 104 is a mechanism for mixing the sample and the reagent in the reaction vessel 109 taken out from the incubator 107.
  • the disposal hole 102 is a hole for discarding the used reaction vessel 109 and the sample dispensing chip.
  • a plurality of reagent containers 111 are installed on the reagent disk 117.
  • a reagent disc cover 112 is provided on the upper part of the reagent disc 117, and the inside of the reagent disc 117 is kept at a predetermined temperature.
  • An opening is provided in a part of the reagent disc cover 112.
  • the reagent dispensing mechanism 110 has an arm portion that is rotationally driven and vertically driven, and a nozzle portion that sucks and discharges reagents.
  • the tip of the nozzle portion is immersed in the reagent in the reagent container 111 to suck the reagent, and the sucked reagent is discharged to the reaction container 109.
  • the reaction liquid suction nozzle 113 sucks the reaction liquid mixed in the reaction vessel 109 on the incubator 107 by rotary drive or vertical drive and sends it to the detection unit 114.
  • the detection unit 114 detects a specific component contained in the reaction liquid sucked by the reaction liquid suction nozzle 113.
  • a control unit (not shown) controls the operation of the entire automatic analyzer 100. This control unit receives an input from the operator, outputs a control signal to each mechanism, and controls its operation.
  • the transport mechanism 105 moves to the upper part of the storage unit 106, it descends, grips the unused reaction vessel 109, and rises. After that, when the transport mechanism 105 moves above the predetermined position of the incubator 107, it descends and installs the reaction vessel 109 in the vessel holding hole. Further, when the transport mechanism 105 moves to the upper part of the storage unit 106, the transport mechanism 105 lowers, grips an unused sample dispensing tip, and rises. After that, when the transport mechanism 105 moves to the upper part of the sample dispensing tip mounting position 101, the transport mechanism 105 descends and installs the sample dispensing tip at the sample dispensing tip mounting position 101. Next, the sample dispensing mechanism 116 moves to the upper side of the sample dispensing tip mounting position 101 and lowers, and the sample dispensing tip is press-fitted into the tip of the nozzle portion and mounted.
  • the reagent dispensing mechanism 110 rotates and moves above the opening of the reagent disk cover 112, lowers, immerses the tip of the nozzle portion in the reagent in the reagent container 111, and sucks a predetermined amount of reagent. Next, the reagent dispensing mechanism 110 rotates and moves above the predetermined position of the incubator 107 after ascending, and then descends to discharge the reagent into the reaction vessel 109.
  • the sample dispensing mechanism 116 equipped with the sample dispensing tip rotates and moves down to the upper part of the sample container 103 placed on the rack 108, and sucks a predetermined amount of the sample in the sample container 103. After that, the sample dispensing mechanism 116 rotates and moves down to the sample discharging position of the incubator 107, and discharges the sample into the reaction vessel 109 into which the reagent is dispensed. After that, the sample dispensing mechanism 116 rotates and moves to the upper part of the disposal hole 102, and discards the used sample dispensing tip into the disposal hole 102.
  • the reaction vessel 109 from which the sample and the reagent are discharged moves to a predetermined position by the rotation of the incubator 107, and is conveyed to the reaction vessel stirring mechanism 104 by the transfer mechanism 105.
  • the reaction vessel stirring mechanism 104 stirs and mixes the sample and the reagent in the reaction vessel 109 by applying a rotary motion to the reaction vessel 109.
  • the reaction vessel 109 is returned to a predetermined position of the incubator 107 by the transport mechanism 105.
  • reaction solution suction nozzle 113 moves above the reaction vessel 109 and descends to suck the reaction solution in the reaction vessel 109.
  • the reaction liquid sucked by the reaction liquid suction nozzle 113 is analyzed by the detection unit 114.
  • the configuration of the detection unit 114 will be described with reference to FIG.
  • fluorescence, chemiluminescence and electrochemical luminescence methods are used as analytical methods for measuring the presence and concentration of a very small amount (10-14 mol or less) of an object to be measured in a reaction solution.
  • electrochemical luminescence method for detecting the light emitted from the reaction solution when a voltage is applied to the reaction solution will be described.
  • the electrochemical luminescence method binds a luminescent reagent to a measurement target such as a hormone by an antigen-antibody reaction to quantify the luminescence derived from the luminescent reagent, and the measurement is performed while flowing the reaction solution through the flow cell.
  • the detection unit 114 includes a flow cell 209 into which the reaction solution is introduced, a magneto-optical trap means for capturing the magnetic particles contained in the reaction solution, and a photomultiplier tube 211 for detecting the light generated in the flow cell 209. There is.
  • the inlet side of the flow path is connected to the reaction liquid suction nozzle 113 via the pipe 205, and the outlet side of the flow path provides a pressure difference for sucking the reaction liquid or the like. It is connected to the syringe 204 for generating and the drain 203 for discharging the reaction solution and the like.
  • the outlet side of the flow path of the flow cell 209 is branched by the flow path switching valve 201 on the way, and one reaches the syringe 204 and the other reaches the drain 203.
  • the flow cell 209 is housed in a case 202 located below the photomultiplier tube 211 and fixed to the cell frame 210.
  • the magneto-optical trap means is composed of a magnet 208 for capturing magnetic particles, a magnet arm 207, and a motor 206 for driving a magnet.
  • the magnet arm 207 is rotated by driving the magnet driving motor 206, and the magnetic particle capturing magnet 208 is moved away from the operating position (the position close to the flow cell 209) and the retracting position (the position away from the flow cell 209). Position) and.
  • the photomultiplier tube 211 is a photodetector arranged above the flow cell 209. Further, a voltage applying means (not shown) is connected to the flow cell 209, and when a voltage is applied by the voltage applying means, a light emitting phenomenon occurs in the magnetic particles captured in the flow cell 209. The photomultiplier tube 211 measures the intensity of light generated in the flow cell 209.
  • the flow path switching valve 201 is switched while the reaction liquid suction nozzle 113 is immersed in the reaction liquid in the reaction vessel 109, so that the flow path on the drain 203 side is closed and the flow path on the flow cell 209 side is closed. To open. Then, when the syringe 204 operates on the suction side, the reaction liquid in the reaction vessel 109 is sucked, and the reaction liquid flows into the flow cell 209 via the pipe 205.
  • the reaction solution is a mixture of a sample containing an object to be measured and a reagent (a reagent containing a luminescent label and a reagent containing magnetic particles) to form an immune complex.
  • the reaction liquid suction nozzle 113 moves to the container containing the luminescence reaction auxiliary liquid, and the syringe 204 operates on the suction side in a state of being immersed in the luminescence reaction auxiliary liquid.
  • the luminescence reaction auxiliary solution flows into the flow cell 209, and the residual reaction solution in the flow cell 209 is replaced with the luminescence reaction auxiliary solution while the immune complex is magnetically captured.
  • the magnet driving motor 206 is driven in the opposite direction, and the magnet arm 207 rotates 90 degrees in the reverse direction, so that the magnetic particle capturing magnet 208 is separated from the flow cell 209 (to the retracted position). Moving).
  • the photomultiplier tube 211 measures the dark current output signal in the flow cell 209 through the light transmission window formed on the upper surface of the flow cell 209. Then, by applying a voltage into the flow cell 209 by the voltage applying means, the electrochemical luminescence reaction of the luminescence label contained in the immune complex is induced. At this time, the photomultiplier tube 211 measures the intensity of light through the light transmission window and quantifies the object to be measured contained in the immune complex.
  • the reaction liquid suction nozzle 113 moves to the container containing the cleaning liquid, and the syringe 204 operates on the suction side in a state of being immersed in the cleaning liquid.
  • the cleaning liquid flows into the pipe 205 and the flow cell 209, the reaction liquid and the luminescence reaction auxiliary liquid remaining in the pipe 205 and the flow cell 209 are removed, and the pipe 205 and the flow cell 209 are washed.
  • FIG. 3 is a perspective view showing the appearance of the detection unit 114.
  • the detection unit 114 includes a flow cell 209, a photomultiplier tube 211, and the like.
  • the photomultiplier tube 211 receives very weak light due to the luminescence reaction of the luminescence label contained in the immune complex in the flow cell 209 under low noise, and receives an electric signal. Take out as. Therefore, in order to block external light, which is a main factor in reducing the S / N ratio during signal measurement by the photomultiplier tube 211, the housing 300 and the lid 301 of the detection unit 114 are formed of light-shielding members. Moreover, it has a highly airtight structure.
  • the lid 301 is connected to the housing 300 via a hinge 303, and a tightening jig 304 is provided on the lid 301 as a position fixing member for fixing the lid 301 in the closed state. Therefore, when opening and closing the lid 301, it is not necessary to attach or remove screws, and the work of loading and unloading the flow cell 209 can be easily performed in a short time.
  • a sealing member is provided on the entire circumference of the peripheral edge of the opening 302 of the housing 300, that is, the front end of the side wall of the housing 300.
  • the material of the sealing member is not limited as long as it is a material having cushioning and heat insulating properties such as black soft rubber and soft polyurethane.
  • the sealing member may be provided on the back side of the lid 301 at a position facing the front end of the side wall of the housing 300. As described above, since the detection unit 114 has a sealing member, the sealing property is improved, and it is possible to prevent the intrusion of outside light and the temperature change due to the intrusion of outside air.
  • the tightening jig 304 may be another fixing member such as a hook as long as the lid 301 is pressed against the sealing member between the housing 300 and the lid 301 to fix the position of the lid 301. Further, the tightening jig 304 may be provided in the housing 300 and may be displaced and locked with respect to the lid 301 from the housing 300 side. However, in the case of a structure in which the lid 301 is fixed in a closed state by a magnetic force, immunoassay by an electrochemical luminescence method using a magnetic trap means or a photomultiplier tube 211 may be given. .. Therefore, it is desirable that the fixing member is made of a non-magnetic material and mechanically tightens the lid 301 and the housing 300.
  • FIG. 4 is a perspective view showing the internal structure of the detection unit 114, and shows a state in which the flow cell 209 is attached.
  • the detection unit 114 includes a photomultiplier tube 211, a substrate 401 arranged vertically below the photomultiplier tube 211, and a flow cell 209 arranged vertically below the substrate. I have. Further, since the lower surface of the flow cell 209 is pressed vertically from below to above by the pressing member 402, the flow cell 209 and the photomultiplier tube 211 are in close contact with each other, and the flow path in the flow cell 209 and the photomultiplier tube are in close contact with each other. The light blocking effect of the area surrounded by 211 is improved.
  • the pressing member 402 presses the flow cell 209 at a plurality of places, the airtightness between the flow cell 209 and the photomultiplier tube 211 is further enhanced. Further, by fixing the flow cell 209 to the substrate 401 by the pressing member 402, the installation work and the removal work of the flow cell 209 become easier than in the case of fixing with screws or the like.
  • FIG. 5 is a cross-sectional perspective view of the flow cell 209.
  • a concave portion 209a is formed in a circular shape on the inner peripheral side
  • a convex portion 209b is formed in a circular shape on the outer peripheral side thereof.
  • Two positioning holes are formed on the outer peripheral side of the convex portion 209b of the flow cell 209 at a specific position in the circumferential direction.
  • FIG. 6 is a perspective view showing the internal structure of the detection unit 114, and shows a state before mounting the flow cell 209.
  • a convex portion 404 is formed in a circular shape on the inner peripheral side
  • a concave portion 405 is formed in a circular shape on the outer peripheral side thereof.
  • a positioning pin 403 which is further outside the recess 405 and extends downward in the vertical direction from a specific position in the circumferential direction is provided. Two positioning pins 403 are provided at target positions with respect to the center of the convex portion 404.
  • the concave portion 209a of the flow cell 209 is fitted into the convex portion 404 of the substrate 401, and the convex portion 209b of the flow cell 209 is fitted into the concave portion 405 of the substrate 401. .. Then, the positioning hole of the flow cell 209 is inserted into the positioning pin 403 of the substrate 401, so that the flow cell 209 is positioned with respect to the substrate 401. After that, as shown in FIG. 4, the plurality of pressing members 402 press the lower surface of the flow cell 209, so that the flow cell 209 is fixed to the substrate 401 in a state of being aligned with the photomultiplier tube 211.
  • FIG. 7 is a front view showing the configuration of the interlocking mechanism 501 that interlocks the operations of the two left and right pressing members 402.
  • the interlocking mechanism 501 includes an operation knob 502, a connecting plate 503, and an arm 506.
  • the respective pressing members 402 move symmetrically at the same time via the connecting plate 503 and the arm 506, and the two pressing members 402 simultaneously press the flow cell 209. .
  • the two pressing members 402 can be pressed or separated by simply moving the operation knob 502, which facilitates the work.
  • the pressing member 402 has a pressing portion on the upper surface of the tip thereof, and the lower surface of the flow cell 209 is pressed by this pressing portion.
  • the pressing member 402 is formed of a material having excellent wear resistance and slidability represented by a polyacetal resin.
  • the spring force of the pressing spring 508 attached to the SUS shaft 505 connecting the arm 506 and the pressing member 402 is used.
  • FIG. 8 is a plan view showing how the two left and right pressing members 402 simultaneously press the flow cell 209. 8 (1) shows the pressing member 402 in the retracted state, FIG. 8 (2) shows the pressing member 402 in the locking operation, and FIG. 8 (3) shows the locking operation by the pressing member 402. Is shown when is in the completed state.
  • FIG. 9 is a perspective view of how the two left and right pressing members 402 simultaneously press the flow cell 209 as viewed from below.
  • 9 (1) shows the pressing member 402 in the retracted state
  • FIG. 9 (2) shows the pressing member 402 in the locking operation
  • FIG. 9 (3) shows the locking operation by the pressing member 402. Is shown when is in the completed state.
  • the flow cell 209 is mounted from below the substrate 401 so as to fit into the unevenness of the contact surface, and is fitted into the positioning hole of the flow cell 209.
  • the positioning pin 403 of the board 401 is inserted.
  • the operation knob 502 when the operation knob 502 is slid to the right side, it goes through the locked operation state of FIGS. 8 (2) and 9 (2), and as shown in FIGS. 8 (3) and 9 (3), the flow cell 209 The lower surface of the is pressed by the two pressing members 402, and the lock is completed.
  • the push spring 508 pushes up the pressing member 402.
  • the left pressing member 402 presses the left side against the center of the flow cell 209
  • the right pressing member 402 presses the right side against the center of the flow cell 209.
  • the pressing force of the flow cell 209 from becoming unbalanced on the left and right sides, and the light-shielding property of the region surrounded by the flow path in the flow cell 209 and the photomultiplier tube 211 is improved. Further, the fact that the left and right pressing members 402 simultaneously press the flow cell 209 also suppresses the imbalance of the pressing force, prevents the misalignment, and contributes to the improvement of the light-shielding property.
  • the flow cell 209 can be attached and detached without taking out the substrate 401.
  • guide members 804 that guide the positioning holes of the flow cell 209 to the positions of the positioning pins 403 of the substrate 401 are provided on the left and right sides of the detection unit 114. These guide members 804 are curved in the horizontal direction along the outer shape of the flow cell 209, and serve to facilitate the alignment of the flow cell 209.
  • FIG. 10 is a plan view showing how the two front and rear pressing members 809 (leaf springs 805) simultaneously press the flow cell 209.
  • FIG. 10 (1) shows when the pressing member 809 is in the retracted state
  • FIG. 10 (2) shows when the locking operation by the pressing member 809 is completed.
  • FIG. 11 is a perspective view of the two front and rear pressing members 809 pressing the flow cell 209 at the same time, and a front view seen from the front.
  • 11 (1-a) and 11 (1-b) show that when the pressing member 809 is in the retracted state
  • FIGS. 11 (2-a) and 11 (2-b) show that the pressing member 809 is locked
  • 11 (3-a) and 11 (3-b) show the state in which the locking operation by the pressing member 809 is completed, respectively.
  • the flow cell 209 is inserted along the guide member 804 from the lower front of the substrate 401.
  • the positioning pin 403 of the substrate 401 is inserted into the positioning hole of the flow cell 209. Since the guide member 804 comes into contact with the flow cell 209, it is desirable that the guide member 804 is formed of a material having excellent wear resistance and slidability represented by a polyacetal resin so as not to give chipping.
  • FIGS. 11 (2-a) and 11 (2-b) the lock operation states of FIGS. 11 (2-a) and 11 (2-b) are performed.
  • FIGS. 10 (2), 11 (3-a) and 11 (3-b) the lower surface of the flow cell 209 is pressed by the two pressing members 809 to complete the locking. If it is known that the flow cell 209 will not be removed for a long period of time, as shown in FIG. 11 (3-a), the flow cell 209 can be fixed at the fixing position 904 with a screw in the locked state. It is possible to make it more stable.
  • the operation lever 803 is connected to the front leaf spring 805 via the rotation shaft 807, and the front leaf spring 805 and the rear leaf spring 805 are connected by the bearing portion 806, so that the operation lever 803 rotates.
  • the front and rear pressing members 809 move at the same time.
  • the pressing force of the pressing member 809 the spring force of the leaf spring 805 is used.
  • the pressing member 809 comes into contact with the flow cell 209, it is desirable that the pressing member 809 is molded of a material having excellent wear resistance and slidability represented by a polyacetal resin so as not to give chipping.
  • the front pressing member 809 presses the front side against the center of the flow cell 209
  • the rear pressing member 809 presses the rear side against the center of the flow cell 209. Therefore, it is possible to prevent the pressing force of the flow cell 209 from becoming unbalanced in the front-rear direction, and the light-shielding property of the region surrounded by the flow path in the flow cell 209 and the photomultiplier tube 211 is improved. Further, the front and rear pressing members 809 simultaneously pressing the flow cell 209 also suppresses the imbalance of the pressing force, prevents the misalignment, and contributes to the improvement of the light-shielding property.
  • the detection unit 114 used for immunoassay by chemiluminescence method has been described as an example, but the present invention also applies to the detection unit used for other analysis methods such as fluorescence method and chemiluminescence method.
  • the hinge structure of the embodiment is applicable. Further, the number and position of the pressing members are merely examples, and are not limited to the above-described embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本発明の目的は、フローセルを搬出入するときの作業性を高めた自動分析装置を提供することにある。本発明の自動分析装置は、光電子増倍管と、前記光電子増倍管の鉛直方向下方に配置される基板と、前記基板の鉛直方向下方に配置されるフローセルと、を備え、前記基板の下面に凸部および/または凹部を有し、前記フローセルの上面に凹部および/または凸部を有し、前記フローセルの前記凹部および/または凸部が、前記基板の凸部および/または凹部に嵌合した状態で、前記フローセルを鉛直方向に下方から上方へ押し付ける押付部材、を有する。

Description

自動分析装置
 本発明は、自動分析装置に関する。
 自動分析装置は、血液や尿などの検体(サンプル)を自動的に分析する装置である。そして、自動分析装置の検出ユニットにおける免疫分析法として、検体を含む反応液をフローセル内へ導入し、発光させた光を光検出器で検出する方法が知られている。このようなフローセルを用いた検出方法として、例えば、特許文献1が挙げられる。
 一般に、従来の検出ユニットに搬入されるフローセルは、光電子増倍管との位置ずれが生じないよう、ネジを用いて基板に固定されている。このように、ネジを用いて基板に固定することで、フローセル内の流路と光電子増倍管で囲まれる領域の遮光性が高まり、光電子増倍管による信号測定時のS/N比の減少が抑制できる。
特開2014-149305号公報
 しかし、フローセルをネジで基板に固定する場合、フローセルを搬出入する度に、ネジを取付けたり取り外したりする必要があるため、作業性が高くない。
 本発明の目的は、フローセルを搬出入するときの作業性を高めた自動分析装置を提供することにある。
 上記課題を解決するため、本発明は、光電子増倍管と、前記光電子増倍管の鉛直方向下方に配置される基板と、前記基板の鉛直方向下方に配置されるフローセルと、を備え、前記基板の下面に凸部および/または凹部を有し、前記フローセルの上面に凹部および/または凸部を有し、前記フローセルの前記凹部および/または凸部が、前記基板の凸部および/または凹部に嵌合した状態で、前記フローセルを鉛直方向に下方から上方へ押し付ける押付部材、を有する。
 本開示によれば、フローセルを搬出入するときの作業性を高めた自動分析装置を提供することができる。
自動分析装置の平面図。 検出ユニットの流路構成を示す図。 検出ユニットの外観を示す斜視図。 検出ユニットの内部構造を示す斜視図(フローセルを装着した状態)。 フローセルの断面斜視図。 検出ユニットの内部構造を示す斜視図(フローセルを装着する前の状態)。 押付部材の動作を連動させる連動機構の構成を示す正面図。 左右2つの押付部材が、フローセルを同時に押し付ける様子を示す平面図。 左右2つの押付部材が、フローセルを同時に押し付ける様子を、下方から見た斜視図。 前後2つの押付部材が、フローセルを同時に押し付ける様子を示す平面図。 前後2つの押付部材が、フローセルを同時に押し付ける様子を、下方から見た斜視図と、前方から見た正面図。
 以下、図面を参照して、本発明の実施形態を説明する。
 まず、図1を参照して、自動分析装置の全体構成について説明する。図1は、自動分析装置の平面図である。
 本自動分析装置100は、ラック108と、ラック搬送ライン115と、検体分注機構116と、インキュベータ(反応ディスク)107と、収納ユニット106と、搬送機構105と、反応容器撹拌機構104と、廃棄孔102と、試薬ディスク117と、試薬分注機構110と、反応液吸引ノズル113と、検出ユニット114と、図示しない制御部と、を備える。
 ラック108には、検体(サンプル)を保持する検体容器103が架設されている。
 ラック搬送ライン115は、ラック108に架設された検体容器103を、検体分注機構116の近傍の検体分注位置まで移動させる。
 検体分注機構116は、回転駆動及び上下駆動するアーム部と、検体を吸引・吐出するノズル部と、を有する。ノズル部の先端には、検体分注チップが着脱可能となっている。この検体分注機構116は、検体分注位置にある検体容器103に対してノズル部を下降させて所定量の検体を吸引した後、アーム部を回転させてインキュベータ107上の所定位置にある反応容器109に検体を吐出する。
 インキュベータ107には、複数の反応容器109を設置可能な容器保持孔が、円周方向に複数形成されている。このインキュベータ107は、各反応容器109を、反応容器設置位置,試薬吐出位置,検体吐出位置,反応容器廃棄位置,等の所定位置まで移動させる回転動作を行う。
 収納ユニット106には、未使用の反応容器109と検体分注チップが複数設置されている。
 搬送機構105は、X軸,Y軸,Z軸の3方向に移動可能であり、反応容器109および検体分注チップの搬送を行う。例えば、搬送機構105は、未使用の反応容器109を、インキュベータ107の所定位置にある容器保持孔に搬送したり、未使用の検体分注チップを、検体分注チップ装着位置101に搬送したりする。また、例えば、この搬送機構105は、反応容器109を反応容器撹拌機構104へ搬送したり、使用済みの反応容器109や検体分注チップを廃棄孔102へ搬送したりもする。
 反応容器撹拌機構104は、インキュベータ107から取り出された反応容器109内の検体と試薬とを混合する機構である。
 廃棄孔102は、使用済みの反応容器109や検体分注チップを廃棄するための孔である。
 試薬ディスク117には、複数の試薬容器111が設置されている。試薬ディスク117の上部には試薬ディスクカバー112が設けられ、試薬ディスク117内部は所定の温度に保温される。試薬ディスクカバー112の一部には、開口部が設けられている。
 試薬分注機構110は、回転駆動及び上下駆動するアーム部と、試薬を吸引・吐出するノズル部を有する。この試薬分注機構110は、ノズル部の先端を試薬容器111内の試薬に浸漬して試薬を吸引するとともに、吸引した試薬を反応容器109に吐出する。
 反応液吸引ノズル113は、回転駆動や上下駆動により、インキュベータ107上の反応容器109で混合された反応液を吸引して検出ユニット114へ送る。
 検出ユニット114は、反応液吸引ノズル113で吸引された反応液に含まれる特定の成分の検出を行う。
 図示しない制御部は、自動分析装置100全体の動作を制御する。この制御部は、操作者からの入力を受けて、各機構等に制御信号を出力し、その動作の制御を行う。
 次に、自動分析装置100の動作について説明する。
 まず、搬送機構105は、収納ユニット106の上方まで移動すると下降し、未使用の反応容器109を把持して上昇する。その後、搬送機構105は、インキュベータ107の所定位置の上方まで移動すると、下降して反応容器109を容器保持孔に設置する。また、搬送機構105は、収納ユニット106の上方まで移動すると下降し、未使用の検体分注チップを把持して上昇する。その後、搬送機構105は、検体分注チップ装着位置101の上方まで移動すると、下降して検体分注チップを検体分注チップ装着位置101に設置する。次に、検体分注機構116は、検体分注チップ装着位置101の上方まで移動すると下降し、ノズル部の先端に検体分注チップを圧入して装着する。
 試薬分注機構110は、試薬ディスクカバー112の開口部の上方まで回転移動すると下降し、ノズル部の先端を試薬容器111内の試薬に浸漬して、所定量の試薬を吸引する。次いで、試薬分注機構110は、上昇した後に、インキュベータ107の所定位置の上方まで回転移動すると下降して、反応容器109に試薬を吐出する。
 また、検体分注チップを装着した検体分注機構116は、ラック108に載置された検体容器103の上方まで回転移動して下降し、検体容器103内の検体を所定量吸引する。その後、検体分注機構116は、インキュベータ107の検体吐出位置まで回転移動して下降し、試薬が分注された反応容器109に検体を吐出する。その後、検体分注機構116は、廃棄孔102の上方まで回転移動し、使用済みの検体分注チップを廃棄孔102へと廃棄する。
 その後、検体と試薬とが吐出された反応容器109は、インキュベータ107の回転によって所定位置に移動し、搬送機構105によって反応容器撹拌機構104へと搬送される。反応容器撹拌機構104は、反応容器109に対して回転運動を加えることで反応容器109内の検体と試薬を撹拌し、混和する。その後、反応容器109は、搬送機構105によって、インキュベータ107の所定位置に戻される。
 次に、この所定位置で一定の反応時間が経過すると、反応液吸引ノズル113は、反応容器109の上方へ移動して下降し、反応容器109内の反応液を吸引する。反応液吸引ノズル113で吸引された反応液は、検出ユニット114で分析される。
 ここで、検出ユニット114の構成について、図2を用いて説明する。免疫分析の分野では、反応液中の極微量(10-14mol以下)の測定対象物の存在および濃度を測定するための分析法として、蛍光法、化学発光法および電気化学発光法が利用されている。本実施形態では、反応液に電圧を印加したときに反応液から発せられる光を検出する、電気化学発光法を利用した例について説明する。
 電気化学発光法は、ホルモン等の測定対象物に抗原抗体反応により発光試薬を結合させ、発光試薬由来の発光を定量するもので、フローセル中に反応液を流しながら測定が行われる。
 検出ユニット114は、反応液が導入されるフローセル209と、反応液に含まれる磁性粒子を補足する磁気トラップ手段と、フローセル209内で発生した光を検出する光電子増倍管211と、を備えている。
 図2に示すように、フローセル209は、流路の入口側が、配管205を介して反応液吸引ノズル113に接続されており、流路の出口側が、反応液等を吸引するための圧力差を発生させるシリンジ204と、反応液等を排出するドレイン203と、に接続されている。なお、フローセル209の流路の出口側は、途中で流路切替弁201によって分岐され、一方がシリンジ204に、他方がドレイン203に至る。また、フローセル209は、光電子増倍管211の下方に位置するケース202内に収納され、セルフレーム210に固定される。
 磁気トラップ手段は、磁性粒子捕捉用磁石208と、磁石アーム207と、磁石駆動用モータ206と、で構成されている。この磁気トラップ手段は、磁石駆動用モータ206を駆動することにより、磁石アーム207を回転させ、磁性粒子捕捉用磁石208を作動位置(フローセル209に近づけた位置)と退避位置(フローセル209から遠ざけた位置)とに変位させる。
 光電子増倍管211は、フローセル209の上方に配置される光検出器である。また、フローセル209には、図示しない電圧印加手段が接続されており、この電圧印加手段により電圧が印加されると、フローセル209内に捕捉された磁性粒子に発光現象が起こる。この光電子増倍管211は、フローセル209内で発生した光の強度を計測する。
 次に、検出ユニット114における光強度の測定方法について説明する。
 まず、反応液吸引ノズル113が反応容器109内の反応液に浸漬された状態で、流路切替弁201が切替えられることで、ドレイン203側の流路を閉鎖しつつ、フローセル209側の流路を開放する。そして、シリンジ204が吸引側に動作すると、反応容器109内の反応液が吸引され、配管205を経由してフローセル209内に反応液が流入する。なお、反応液は、測定対象物を含む検体と、試薬(発光標識を含む試薬と、磁性粒子を含む試薬)と、が混合されたものであり、免疫複合体が形成されている。
 このとき、磁石駆動用モータ206が駆動し、磁石アーム207が90度回転するため、磁石アーム207の先端にある磁性粒子捕捉用磁石208が、フローセル209の直下に近接する(作動位置に移動する)。これにより、フローセル209を通過する反応液中の磁性粒子が、フローセル209に磁気的に捕捉される。
 その後、反応液吸引ノズル113が、発光反応補助液を含む容器まで移動し、発光反応補助液に浸漬された状態で、シリンジ204が吸引側に動作する。これにより、発光反応補助液がフローセル209内に流入し、免疫複合体が磁気的に捕捉された状態のまま、フローセル209内の残留反応溶液が発光反応補助液に置換される。
 次いで、シリンジ204の駆動が停止した後、磁石駆動用モータ206が反対方向に駆動し、磁石アーム207が90度逆回転するため、磁性粒子捕捉用磁石208がフローセル209から離間する(退避位置に移動する)。
 次に、光電子増倍管211は、フローセル209の上面に形成された光透過窓を介して、フローセル209内の暗電流出力信号を測定する。その後、電圧印加手段によりフローセル209内に電圧を印加することで、免疫複合体に含まれる発光標識の電気化学発光反応が誘起される。このとき、光電子増倍管211が、光透過窓を介して光の強度を測定し、免疫複合体に含まれる測定対象物を定量する。
 光強度の測定後は、反応液吸引ノズル113が、洗浄液を含む容器まで移動し、洗浄液に浸漬された状態で、シリンジ204が吸引側に動作する。これにより、洗浄液が配管205内およびフローセル209内に流入し、配管205内およびフローセル209内に残留する反応液および発光反応補助液が除去され、配管205およびフローセル209が洗浄される。
 最後に、流路切替弁201が切替えられることで、フローセル209側の流路を閉鎖しつつ、ドレイン203側の流路を開放する。そして、シリンジ204が吐出側に動作すると、シリンジ204内に残留する反応液、発光反応補助溶液および洗浄液が、ドレイン203へ排出される。
 そして、上述の動作が繰り返し行われることで、複数の検体に対して、複数の分析項目の分析が実施される。
 図3は、検出ユニット114の外観を示す斜視図である。検出ユニット114には、フローセル209および光電子増倍管211などが内蔵されている。ここで、電気化学発光法による免疫分析では、光電子増倍管211が、フローセル209内の免疫複合体に含まれる発光標識の発光反応による非常に微弱な光を低ノイズ下で受光し、電気信号として取り出す。したがって、光電子増倍管211による信号測定時のS/N比減少の主要因となる外光を遮断するために、検出ユニット114の筐体300および蓋301は、遮光性を有する部材で形成され、かつ、密閉性の高い構造となっている。
 蓋301は、ヒンジ303を介して筐体300と接続されており、蓋301を閉状態で固定する位置固定部材として締め治具304が、蓋301に設けられている。このため、蓋301を開閉する際に、ネジの取り付けや取り外しなどの作業が不要となり、フローセル209を搬出入する作業が短時間で容易に行える。
 また、筐体300の開口部302の周縁、すなわち、筐体300の側壁の前端には、全周に亘って密閉部材が設けられている。この密閉部材の材料は、黒色の軟質ゴムや軟質ポリウレタン等、クッション性かつ断熱特性を有する材料であれば、限定されない。なお、密閉部材は、蓋301の裏側で、筐体300の側壁の前端と対向する位置に設けても良い。このように、検出ユニット114は、密閉部材を有するので、密閉性が向上し、外光の侵入や、外気の侵入による温度変化を防ぐことが可能となっている。
 締め治具304は、筐体300と蓋301との間にある密閉部材に対して、蓋301を押し付けて蓋301の位置を固定するものであれば、フックなど他の固定部材でも良い。また、締め治具304は、筐体300に設けられ、筐体300側から蓋301に対して変位して係止するようなものであっても構わない。ただし、磁力によって蓋301を閉状態で固定するような構造の場合、磁気トラップ手段や光電子増倍管211を使った電気化学発光法による免疫分析電気化学発光法による免疫分析を与える可能性がある。このため、固定部材は、非磁性体で形成され、蓋301と筐体300とを機械的に締め付けるものであることが望ましい。
 図4は、検出ユニット114の内部構造を示す斜視図であり、フローセル209を装着した状態を示している。図4に示すように、検出ユニット114は、光電子増倍管211と、光電子増倍管211の鉛直方向下方に配置される基板401と、基板の鉛直方向下方に配置されるフローセル209と、を備えている。また、フローセル209の下面は、押付部材402によって、鉛直方向に下方から上方へ押し付けられているため、フローセル209と光電子増倍管211とが密着し、フローセル209内の流路と光電子増倍管211で囲まれる領域の遮光性が向上している。特に、押付部材402が、フローセル209を複数個所で押し付けているため、フローセル209と光電子増倍管211との密閉性がより高められている。また、押付部材402によりフローセル209を基板401に固定することで、ネジ等により固定する場合と比べて、フローセル209の取付作業や取外作業が容易となる。
 図5は、フローセル209の断面斜視図である。図5に示すように、フローセル209の上面には、内周側に凹部209aが円形状に形成され、その外周側に凸部209bが円周状に形成されている。なお、フローセル209の凸部209bの外周側であって、周方向のうち特定の位置には、位置決め孔が2か所形成されている。
 図6は、検出ユニット114の内部構造を示す斜視図であり、フローセル209を装着する前の状態を示している。図6に示すように、基板401の下面には、内周側に凸部404が円形状に形成され、その外周側に凹部405が円周状に形成されている。また、基板401の下面には、凹部405のさらに外側であって、周方向のうち特定の位置から、鉛直方向下方に向けて延びる位置決めピン403が設けられている。なお、位置決めピン403は、凸部404の中心に対して、対象の位置に2か所設けられている。
 そして、フローセル209を基板401に装着する際には、まず、フローセル209の凹部209aが基板401の凸部404に嵌合され、フローセル209の凸部209bが基板401の凹部405に嵌合される。そして、フローセル209の位置決め孔が、基板401の位置決めピン403に挿入されることで、フローセル209が、基板401に対して位置決めされる。その後、図4に示すように、複数の押付部材402がフローセル209の下面を押し付けることで、フローセル209は、光電子増倍管211との軸合わせがされた状態で、基板401に固定される。
 図7は、左右2つの押付部材402の動作を連動させる連動機構501の構成を示す正面図である。連動機構501は、操作つまみ502と、連結板503と、アーム506と、で構成されている。作業者が操作つまみ502を掴んで所定の方向に水平スライドさせると、連結板503およびアーム506を介して、それぞれの押付部材402が同時に対称に動き、2つの押付部材402がフローセル209を同時に押し付ける。フローセル209を着脱する際には、操作つまみ502を動かすだけで、2つの押付部材402を押し付けたり、離したりできるので、作業が容易となる。
 また、押付部材402は、その先端上面に押え部を有しており、この押え部でフローセル209の下面を押し付ける。押付時にフローセル209に対するチッピングと称される欠き傷を抑制するため、押付部材402は、ポリアセタール樹脂に代表される耐摩耗性、摺動性に優れる材料で成形されることが望ましい。なお、押付部材402の押付力は、アーム506と押付部材402とを連結するSUS軸505に取付けられた、押し圧ばね508のばね力が利用される。
 次に、押付部材402によるフローセル209のロック動作について、具体的に説明する。
 図8は、左右2つの押付部材402が、フローセル209を同時に押し付ける様子を示す平面図である。図8(1)は、押付部材402が退避状態にあるとき、図8(2)は、押付部材402がロック動作中の状態にあるとき、図8(3)は、押付部材402によるロック動作が完了した状態にあるとき、をそれぞれ示している。
 図9は、左右2つの押付部材402が、フローセル209を同時に押し付ける様子を、下方から見た斜視図である。図9(1)は、押付部材402が退避状態にあるとき、図9(2)は、押付部材402がロック動作中の状態にあるとき、図9(3)は、押付部材402によるロック動作が完了した状態にあるとき、をそれぞれ示している。
 まず、図8(1)および図9(1)の退避状態のときに、フローセル209が、基板401の下方から、当接面の凹凸に嵌合する形で装着され、フローセル209の位置決め孔に基板401の位置決めピン403が挿入される。
 その後、操作つまみ502が右側にスライドされると、図8(2)および図9(2)のロック動作中の状態を経て、図8(3)および図9(3)のように、フローセル209の下面が、2つの押付部材402で押し付けられ、ロックが完了する。なお、操作つまみ502が水平方向に右側へスライドされるにつれ、押ばね508が押付部材402を押し上げる。このとき、左側の押付部材402が、フローセル209の中心に対して左側を押し付け、右側の押付部材402が、フローセル209の中心に対して右側を押し付ける。したがって、フローセル209の押付力が左右で不均衡となるのを抑制でき、フローセル209内の流路と光電子増倍管211で囲まれる領域の遮光性が向上する。さらに、左右の押付部材402が同時にフローセル209を押し付けることも、押付力の不均衡を抑制するとともに、位置ずれを防止し、遮光性の向上に寄与する。
 このように、本実施形態によれば、ネジを使わないので、基板401を取り出さなくても、フローセル209の着脱が可能となる。
 ここで、変形例について、図10および図11を用いて説明する。変形例では、フローセル209の位置決め孔を、基板401の位置決めピン403の位置へ案内するガイド部材804が、検出ユニット114の左右に設けられている。これらのガイド部材804は、フローセル209の外郭形状に沿って、水平方向に湾曲しており、フローセル209の位置合わせをし易くする働きをしている。
 次に、変形例の押付部材809によるフローセル209のロック動作について、具体的に説明する。
 図10は、前後2つの押付部材809(板ばね805)が、フローセル209を同時に押し付ける様子を示す平面図である。図10(1)は、押付部材809が退避状態にあるとき、図10(2)は、押付部材809によるロック動作が完了した状態にあるとき、をそれぞれ示している。
 図11は、前後2つの押付部材809が、フローセル209を同時に押し付ける様子を、下方から見た斜視図と、前方から見た正面図である。図11(1-a)および図11(1-b)は、押付部材809が退避状態にあるとき、図11(2-a)および図11(2-b)は、押付部材809がロック動作中の状態にあるとき、図11(3-a)および図11(3-b)は、押付部材809によるロック動作が完了した状態にあるとき、をそれぞれ示している。
 まず、図10(1)、図11(1-a)および図11(1-b)の退避状態のときに、フローセル209が、基板401の下方の前方から、ガイド部材804に沿って挿入され、フローセル209の位置決め孔に基板401の位置決めピン403が挿入される。なお、ガイド部材804は、フローセル209に接触するため、チッピングを与えないように、ポリアセタール樹脂に代表される耐摩耗性、摺動性に優れる材料で成形されることが望ましい。
 その後、前後2つの押付部材809の動作を連動させる連動機構の操作レバー803が回転操作されると、図11(2-a)および図11(2-b)のロック動作中の状態を経て、図10(2)、図11(3-a)および図11(3-b)のように、フローセル209の下面が、2つの押付部材809で押し付けられ、ロックが完了する。また、フローセル209を長期間外さないことが分かっている場合には、図11(3-a)に示すように、ロックが完了した状態で、固定位置904にてねじを用いて固定すれば、より安定させることが可能である。
 ここで、操作レバー803は、回転軸807を介して前方の板ばね805と連結され、前方の板ばね805と後方の板ばね805が軸受部806で連結されているので、操作レバー803の回転動作により、前後の押付部材809が同時に移動するようになっている。なお、押付部材809の押付力は、板ばね805のばね力が利用される。また、押付部材809は、フローセル209に接触するため、チッピングを与えないように、ポリアセタール樹脂に代表される耐摩耗性、摺動性に優れる材料で成形されることが望ましい。
 変形例によれば、前側の押付部材809が、フローセル209の中心に対して前側を押し付け、後側の押付部材809が、フローセル209の中心に対して後側を押し付ける。したがって、フローセル209の押付力が前後で不均衡となるのを抑制でき、フローセル209内の流路と光電子増倍管211で囲まれる領域の遮光性が向上する。さらに、前後の押付部材809が同時にフローセル209を押し付けることも、押付力の不均衡を抑制するとともに、位置ずれを防止し、遮光性の向上に寄与する。
 上記の実施形態では、電気化学発光法による免疫分析に用いられる検出ユニット114を例に挙げて説明したが、蛍光法や化学発光法など他の分析方法に用いられる検出ユニットに対しても、本実施形態のヒンジ構造は適用できる。また、押付部材の個数や位置などは、あくまで一例であり、上述の実施形態に限定されるものではない。
100 自動分析装置101 検体分注チップ装着位置102 廃棄孔103 検体容器104 反応容器撹拌機構105 搬送機構106 収納ユニット107 インキュベータ108 ラック109 反応容器110 試薬分注機構111 試薬容器112 試薬ディスクカバー113 反応液吸引ノズル114 検出ユニット115 ラック搬送ライン116 検体分注機構117 試薬ディスク201 流路切替弁202 ケース203 ドレイン204 シリンジ205 配管206 磁石駆動用モータ207 磁石アーム208 磁性粒子捕捉用磁石209 フローセル209a 凹部209b 凸部211 光電子増倍管301 蓋302 開口部303 ヒンジ304 締め治具401 基板402 押付部材403 位置決めピン404 凸部405 凹部501 連動機構502 操作つまみ503 連結板504 押圧ばね505 SUS軸506 アーム803 操作レバー804 ガイド部材805 板ばね806 軸受部807 回転軸809 押付部材904 固定位置

Claims (6)

  1. 光電子増倍管と、前記光電子増倍管の鉛直方向下方に配置される基板と、前記基板の鉛直方向下方に配置されるフローセルと、を備え、前記基板の下面に凸部および/または凹部を有し、前記フローセルの上面に凹部および/または凸部を有し、前記フローセルの前記凹部および/または凸部が、前記基板の凸部および/または凹部に嵌合した状態で、前記フローセルを鉛直方向に下方から上方へ押し付ける押付部材、を有する自動分析装置。
  2. 請求項1に記載の自動分析装置において、前記押付部材は、前記フローセルを複数個所で押し付けることを特徴とする自動分析装置。
  3. 請求項1に記載の自動分析装置において、前記押付部材は、前記フローセルの中心に対して一方側および他方側を押し付けることを特徴とする自動分析装置。
  4. 請求項1に記載の自動分析装置において、前記押付部材を複数有し、複数の前記押付部材の動作を連動させる連動機構を備え、前記連動機構により、複数の前記押付部材が、前記フローセルを同時に押し付けることを特徴とする自動分析装置。
  5. 請求項1に記載の自動分析装置において、前記フローセルの前記凹部および/または凸部と、前記基板の前記凸部および/または凹部と、は円周状に形成され、前記基板は、周方向のうち特定の位置から鉛直方向下方に向けて延びる位置決めピンを有し、前記フローセルは、周方向のうち特定の位置に前記位置決めピンが挿入される位置決め孔を有することを特徴とする自動分析装置。
  6. 請求項5に記載の自動分析装置において、前記フローセルの前記位置決め孔を、前記基板の前記位置決めピンの位置へ案内するガイド部材が、水平方向に形成されていることを特徴とする自動分析装置。
PCT/JP2021/007264 2020-04-08 2021-02-26 自動分析装置 WO2021205771A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/915,325 US20230184793A1 (en) 2020-04-08 2021-02-26 Automatic analyzer
CN202180023108.0A CN115315629A (zh) 2020-04-08 2021-02-26 自动分析装置
EP21785093.2A EP4134678A4 (en) 2020-04-08 2021-02-26 AUTOMATIC ANALYSIS DEVICE
JP2022514331A JP7310013B2 (ja) 2020-04-08 2021-02-26 自動分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-069652 2020-04-08
JP2020069652 2020-04-08

Publications (1)

Publication Number Publication Date
WO2021205771A1 true WO2021205771A1 (ja) 2021-10-14

Family

ID=78023331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007264 WO2021205771A1 (ja) 2020-04-08 2021-02-26 自動分析装置

Country Status (5)

Country Link
US (1) US20230184793A1 (ja)
EP (1) EP4134678A4 (ja)
JP (1) JP7310013B2 (ja)
CN (1) CN115315629A (ja)
WO (1) WO2021205771A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184628A (zh) * 2021-11-29 2022-10-14 南京诺唯赞医疗科技有限公司 自动抛卡机构及荧光免疫分析仪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189446A (ja) * 1988-12-01 1990-07-25 Avl Ag 液状又はガス状媒体の化学及び物理パラメータの測定装置
JP2008268069A (ja) * 2007-04-23 2008-11-06 Hitachi Ltd 化学発光検出装置
JP2010539987A (ja) * 2007-10-05 2010-12-24 アプライド バイオシステムズ, エルエルシー 生体分析システム、生体分析装置及び生体分析方法
JP2014149305A (ja) 2014-04-10 2014-08-21 Hitachi High-Technologies Corp 自動分析装置
JP2014153178A (ja) * 2013-02-08 2014-08-25 F. Hoffmann-La Roche Ag 自動分析装置
CN206292169U (zh) * 2016-12-30 2017-06-30 国家海洋局第二海洋研究所 一种可应用于海水中痕量铵氮分析的便携式荧光检测器
JP2018534567A (ja) * 2015-10-29 2018-11-22 ベイジン ユニジャ テクノロジー インコーポレイティド 電気化学発光免疫測定システム及びそのフロースルーセルユニット
JP2019515257A (ja) * 2016-04-21 2019-06-06 インストゥルメンテーション ラボラトリー カンパニー 光学フローセルおよびテストヘッド装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428746B2 (ja) * 1994-11-11 2003-07-22 ロッシュ ディアグノスティクス ゲゼルシャフト ミット ベシュレンクテル ハフツング 免疫分析方法およびその分析装置
US5993740A (en) * 1995-01-20 1999-11-30 Hitachi, Ltd. Immunoassay method and analyzer using magnetic particles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189446A (ja) * 1988-12-01 1990-07-25 Avl Ag 液状又はガス状媒体の化学及び物理パラメータの測定装置
JP2008268069A (ja) * 2007-04-23 2008-11-06 Hitachi Ltd 化学発光検出装置
JP2010539987A (ja) * 2007-10-05 2010-12-24 アプライド バイオシステムズ, エルエルシー 生体分析システム、生体分析装置及び生体分析方法
JP2014153178A (ja) * 2013-02-08 2014-08-25 F. Hoffmann-La Roche Ag 自動分析装置
JP2014149305A (ja) 2014-04-10 2014-08-21 Hitachi High-Technologies Corp 自動分析装置
JP2018534567A (ja) * 2015-10-29 2018-11-22 ベイジン ユニジャ テクノロジー インコーポレイティド 電気化学発光免疫測定システム及びそのフロースルーセルユニット
JP2019515257A (ja) * 2016-04-21 2019-06-06 インストゥルメンテーション ラボラトリー カンパニー 光学フローセルおよびテストヘッド装置
CN206292169U (zh) * 2016-12-30 2017-06-30 国家海洋局第二海洋研究所 一种可应用于海水中痕量铵氮分析的便携式荧光检测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4134678A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184628A (zh) * 2021-11-29 2022-10-14 南京诺唯赞医疗科技有限公司 自动抛卡机构及荧光免疫分析仪
CN115184628B (zh) * 2021-11-29 2024-01-23 南京诺唯赞医疗科技有限公司 自动抛卡机构及荧光免疫分析仪

Also Published As

Publication number Publication date
EP4134678A1 (en) 2023-02-15
JPWO2021205771A1 (ja) 2021-10-14
US20230184793A1 (en) 2023-06-15
JP7310013B2 (ja) 2023-07-18
CN115315629A (zh) 2022-11-08
EP4134678A4 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP6449158B2 (ja) 自動分析装置
JP3839349B2 (ja) 化学発光酵素免疫測定装置
EP2109504B1 (en) A system with a magnetic array for manipulating magnetic particles in a sample, and methods using the magnetic array
US20150198621A1 (en) Analyzing apparatus, solid-liquid separation device and solid-liquid separation method
US11754580B2 (en) Sample measurement method and sample measurement device
CN108008122B (zh) 测定用盒体以及送液方法
CN110940818A (zh) 化学发光检测设备及其运作方法
WO2021205771A1 (ja) 自動分析装置
CN111656198B (zh) 样本测定装置、试剂容器以及样本测定方法
WO2012105504A1 (ja) 分析装置
WO2011001647A1 (ja) 自動分析装置および測定方法
JP5368574B2 (ja) 生物学的試料の準備及び/又は処理のためのデバイス
US9114970B2 (en) Dispensing device and nucleic acid analyzer
WO2021176924A1 (ja) 自動分析装置
JP2018080980A (ja) 反応部と光学検出部を備えた測定機構
CN109187513A (zh) 化学发光检测装置及方法
CN211955223U (zh) 测量室及具有其的样本分析仪
JPH0720132A (ja) 試薬供給装置の試薬ボトル蓋構造
JP5286299B2 (ja) 分析装置
CN209148549U (zh) 化学发光检测装置
WO2019154334A1 (zh) 全自动化学发光免疫分析仪
JP3866857B2 (ja) 全血血球免疫測定装置における反応液攪拌機構
JP2001033462A (ja) 生化学自動分析装置
US20210382079A1 (en) Cartridge capable of centrifugal separation and automatic analysis
CN219016055U (zh) 一种分析仪用遮光快门一体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021785093

Country of ref document: EP

Effective date: 20221108