WO2021205665A1 - 電力変換装置及び回転機駆動システム - Google Patents

電力変換装置及び回転機駆動システム Download PDF

Info

Publication number
WO2021205665A1
WO2021205665A1 PCT/JP2020/016190 JP2020016190W WO2021205665A1 WO 2021205665 A1 WO2021205665 A1 WO 2021205665A1 JP 2020016190 W JP2020016190 W JP 2020016190W WO 2021205665 A1 WO2021205665 A1 WO 2021205665A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
phase
terminal voltage
switching
current
Prior art date
Application number
PCT/JP2020/016190
Other languages
English (en)
French (fr)
Inventor
翔太 埴岡
雅宏 家澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/911,419 priority Critical patent/US20230105607A1/en
Priority to CN202080099273.XA priority patent/CN115398785A/zh
Priority to JP2022514295A priority patent/JP7292504B2/ja
Priority to PCT/JP2020/016190 priority patent/WO2021205665A1/ja
Priority to DE112020007064.6T priority patent/DE112020007064T5/de
Publication of WO2021205665A1 publication Critical patent/WO2021205665A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a power conversion device that controls an output voltage by turning on and off a switching element, and a rotary machine drive system that drives a rotary machine with the power conversion device.
  • the terminal voltage of each phase fluctuates depending on the switching operation of the switching element. As a result, a leakage current is generated through the stray capacitance between the ground and the ground, and electromagnetic noise is generated.
  • electromagnetic noise standards are set for each product category. Therefore, it is necessary to take measures against electromagnetic noise so that the electromagnetic noise generated in the power conversion device does not exceed the regulation.
  • measures against electromagnetic noise are implemented by using a noise filter composed of passive elements, but there are problems that it is necessary to secure a space for installing the filter in the power converter device and the manufacturing cost increases. ..
  • Patent Document 1 proposes a technique for reducing electromagnetic noise by adjusting the phase of a carrier that determines on / off of a switching element.
  • Patent Document 1 the estimation of the terminal voltage during the dead time provided for preventing a short circuit due to the simultaneous on of the switching elements of the upper and lower arms is not described in detail. Therefore, the method of Patent Document 1 has a problem that the effect of reducing electromagnetic noise with respect to the synchronization shift due to the dead time is not sufficient.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device capable of reducing electromagnetic noise caused by a synchronization shift due to a dead time.
  • the power conversion device is a power conversion device that converts DC power into three-phase AC power to a load, and comprises a power converter and a control device. Be prepared.
  • a plurality of single-phase legs in which the upper arm switching element and the lower arm switching element are connected in series are connected in parallel, and the connection point between the upper arm switching element and the lower arm switching element is connected to the load.
  • the control device controls the switching operation of the upper arm switching element and the lower arm switching element.
  • the control device includes a switching signal generator.
  • the switching signal generator has a start-up time for raising the terminal voltage of the first connection point connected to the load of the first one-phase leg and a second connection connected to the load of the second one-phase leg.
  • a switching signal is generated in which the times in the first set are synchronized with the stop time at which the terminal voltage of the point is lowered.
  • the switching signal generator synchronizes the time in the second set according to the start-up time at which the terminal voltage at the first connection point is lowered and the start-up time at which the terminal voltage at the second connection point is raised.
  • the switching signal generation unit determines the time when the upper arm switching element is turned on or off and the time when the lower arm switching element is turned on or off based on the phase current at the rise time and the fall time of the terminal voltage.
  • the power conversion device According to the power conversion device according to the present disclosure, it is possible to reduce the electromagnetic noise caused by the synchronization shift due to the dead time.
  • FIG. 1 A block diagram showing a functional configuration of a control device according to an embodiment.
  • a first time chart provided for explaining the operation of the switching signal generation unit according to the embodiment.
  • a second time chart provided for explaining the operation of the switching signal generation unit according to the embodiment.
  • a third time chart provided for explaining the operation of the switching signal generation unit according to the embodiment.
  • connection without distinguishing between an electrical connection and a physical connection.
  • FIG. 1 is a diagram showing a configuration of a rotary machine drive system 100 including a power conversion device 80 according to an embodiment.
  • the rotary machine drive system 100 according to the embodiment shown in FIG. 1 includes a DC power supply 11 and a power conversion device 80.
  • the power converter 80 includes a power converter 10, a control device 30, and a current detector 16.
  • a rotary machine 20, which is a load, is connected to the rotary machine drive system 100.
  • the rotary machine 20 is driven by the electric power supplied from the rotary machine drive system 100.
  • the power conversion device 80 converts the DC power supplied from the DC power supply 11 into three-phase AC power to the rotating machine 20 and supplies the DC power to the rotating machine 20.
  • each of the three phases will be referred to as a U phase, a V phase, and a W phase.
  • FIG. 1 illustrates a rotating machine 20 having a three-phase winding 22.
  • the rotating machine 20 has a U-phase terminal 24U, a V-phase terminal 24V, and a W-phase terminal 24W.
  • the rotary machine 20 is provided with an angle detector 21 that detects the rotation angle of a rotor (not shown) in the rotary machine 20.
  • An example of the angle detector 21 is a hall sensor.
  • the power converter 10 includes switching elements 13a, 13b, 13c, 13d (hereinafter, appropriately referred to as “13a to 13d", the same applies to others), switching elements 14a to 14d, switching elements 15a to 15d, and a capacitor. It has 12a and 12b.
  • Each switching element of the power converter 10 includes an insulated gate bipolar transistor (IGBT) and a diode connected in antiparallel to the IGBT.
  • the antiparallel means that the anode side of the diode is connected to the terminal corresponding to the emitter of the IGBT, and the cathode side of the diode is connected to the terminal corresponding to the collector of the IGBT.
  • FIG. 1 illustrates a case where the transistor of each switching element is an IGBT, but the present invention is not limited to this.
  • a metal oxide semiconductor field effect transistor Metal Oxide Semiconductor Field Effect Transistor: MOSFET
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the switching elements 13a to 13d operate as U-phase switching elements
  • the switching elements 14a to 14d operate as V-phase switching elements
  • the switching elements 15a to 15d operate as W-phase switching elements.
  • the power converter 10 operates as a three-level inverter.
  • the power converter 10 shown in FIG. 1 is sometimes called a "T-type 3-level inverter" because the switching elements of each phase are connected in a T-shape.
  • the switching elements 13a, 14a, 15a are connected to the DC bus 17 on the high potential side.
  • the switching elements 13d, 14d, and 15d are connected to the DC bus 18 on the low potential side.
  • the DC bus 17 is an electric wiring connected to the positive electrode side of the DC power supply 11.
  • the DC bus 18 is an electric wiring connected to the negative electrode side of the DC power supply 11.
  • the set of switching elements 13a and 13d, the set of switching elements 14a and 14d, and the set of switching elements 15a and 15d each form a one-phase leg and are connected in parallel to each other.
  • the capacitors 12a and 12b are connected in series between the DC bus 17 and the DC bus 18 in this order.
  • the voltage between the DC bus 17 and the DC bus 18 is referred to as a "bus voltage".
  • the bus voltage is equal to the DC voltage output by the DC power supply 11. Further, the value of the bus voltage is appropriately represented by "Vdc".
  • the set of switching elements 13b and 13c, the set of switching elements 14b and 14c, and the set of switching elements 15b and 15c are connected in series and operate as a bidirectional switch element.
  • connection point 13e is a connection point between the switching element 13a and the switching element 13d.
  • connection point 12c is a connection point between the capacitor 12a and the capacitor 12b.
  • the connection point 12c is sometimes referred to as the "neutral point".
  • connection point 14e is a connection point between the switching element 14a and the switching element 14d.
  • the set of switching elements 15b and 15c is connected between the connection point 15e and the connection point 12c.
  • the connection point 15e is a connection point between the switching element 15a and the switching element 15d.
  • connection point 13e is connected to the U-phase terminal 24U of the rotating machine 20.
  • connection point 14e is connected to the V-phase terminal 24V of the rotating machine 20.
  • connection point 15e is connected to the W phase terminal 24W of the rotating machine 20.
  • a current detector 16 is arranged in each electric wiring.
  • the U-phase terminal 24U, the V-phase terminal 24V, and the W-phase terminal 24W have voltages at three levels of potentials, positive electrode potential, neutral point potential, and zero potential, depending on the switching operation of the corresponding switching elements of each phase. Is applied.
  • the power converter 10 operates as a three-level inverter.
  • the voltage applied to each of the U-phase terminal 24U, the V-phase terminal 24V, and the W-phase terminal 24W of the rotary machine 20 is referred to as a "terminal voltage", and each of the terminal voltages of each phase is appropriately referred to as "vun". Notated as "vvn" and "vwn".
  • the current detector 16 detects the phase current flowing through each phase of the rotating machine 20.
  • the detected value of the current detector 16 is input to the control device 30.
  • the control device 30 controls each switching element of the power converter 10 based on the detected values of the angle detector 21 and the current detector 16. The details of the control will be described later.
  • FIG. 2 is a block diagram showing a functional configuration of the control device 30 according to the embodiment.
  • the control device 30 includes a voltage command generation unit 40 and a switching signal generation unit 50.
  • the torque command, the bus voltage, the rotor position detected by the angle detector 21, and the phase current detected by the current detector 16 are input to the voltage command generation unit 40.
  • a current command may be used instead of the torque command.
  • the voltage command generation unit 40 calculates the phase voltage command based on the torque command, the bus voltage, the rotor position, and the phase current.
  • the phase current detected by the current detector 16 and the phase voltage command calculated by the voltage command generation unit 40 are input to the switching signal generation unit 50.
  • the switching signal generation unit 50 generates and outputs a switching signal based on the phase current and phase voltage commands.
  • FIG. 3 is a diagram showing an example of a hardware configuration that realizes the function of the control device 30 in the embodiment.
  • the above-mentioned functions and the following functions in the control device 30 can be realized by the processor 1 and the storage device 2 as shown in FIG.
  • the storage device 2 includes a volatile storage device represented by a random access memory and a non-volatile auxiliary storage device represented by a flash memory.
  • An auxiliary storage device such as a hard disk may be provided instead of the flash memory.
  • the processor 1 executes a program read from the storage device 2 and executes a part or all of the functions in the control device 30.
  • the program is read from the auxiliary storage device to the processor 1 via the volatile storage device.
  • the processor 1 may output data such as a calculation result to the volatile storage device of the storage device 2.
  • the data may be stored in the auxiliary storage device via the volatile storage device.
  • a logic circuit and an analog circuit may be used in combination for processing.
  • FIG. 4 is a voltage vector diagram provided for explaining the operation of the switching signal generation unit 50 in the embodiment.
  • FIG. 5 is a first time chart provided for explaining the operation of the switching signal generation unit 50 in the embodiment.
  • FIG. 6 is a second time chart provided for explaining the operation of the switching signal generation unit 50 in the embodiment.
  • FIG. 7 is a third time chart provided for explaining the operation of the switching signal generation unit 50 in the embodiment.
  • FIG. 4 shows the output voltage vector of the 3-level inverter (hereinafter, simply referred to as “voltage vector”).
  • the voltage vector is represented by (u, v, w). “U” indicates the voltage output state of the U phase, “v” indicates the voltage output state of the V phase, and “w” indicates the voltage output state of the W phase.
  • a start-up time for raising the terminal voltage of each phase and a start-up time for lowering the terminal voltage of each phase are used.
  • Controls to synchronize in order to perform this control, in the present embodiment, the six voltage vectors shown in FIG. 4 in which the change in the three-phase common mode voltage becomes zero, V0 (0,0,0), V1 (1,0, -1) ), V2 (0,1, -1), V3 (-1,1,0), V4 (-1,0,1), V5 (0,-1,1), V6 (1,-1,0) ) Only.
  • the common mode voltage is a voltage that causes common mode noise.
  • the common mode voltage is defined by (vun + vvn + vwn) / 3, which is the sum of the U-phase terminal voltage vun, the V-phase terminal voltage vvn, and the W-phase terminal voltage vwn divided by 3.
  • the switching signal generation unit 50 calculates the output voltage vector, the output order and the output time of each voltage vector, based on each phase voltage command and the current switching state of each switching element.
  • FIG. 5 shows a time chart showing an output voltage vector and an output time when a voltage having a phase angle of ⁇ 30 to 30 degrees on the ⁇ axis is output.
  • the voltage vectors whose phase angles on the ⁇ axis are in the range of -30 to 30 degrees are V0 (0,0,0), V1 (1,0, -1) and V6 (1, -1, -1, There are three of 0), and these V0, V1, and V6 are used.
  • V0 is output at time T1
  • V6 is output at time T2
  • V1 is output at time T3
  • V0 is output at time T4. Since the times T1 to T4 at which each voltage vector is output are based on the conventional space vector modulation method, detailed description thereof will be omitted.
  • Ts T1 + T2 + T3 + T4 between the times T1 to T4 and the control cycle Ts.
  • the ratio of the time T1 and the time T2 determines the direction of the voltage vector on the ⁇ axis
  • the ratio of the sum of the time T1 and the time T2 to the control period Ts determines the magnitude of the voltage vector on the ⁇ axis. Needless to say.
  • the switching signal generation unit 50 determines the rise time and the fall time of the terminal voltage of each phase by determining the output order of the voltage vector and its phase.
  • the U-phase terminal voltage is determined to be "Vdc / 2" at times 0 to t1, "Vdc” at times t1 to t3, and "Vdc / 2" at times t3 to Ts.
  • the V-phase terminal voltage is determined to be “Vdc / 2" at times 0 to t1, "0" at times t1 to t2, and “Vdc / 2" at times t2 to Ts.
  • the W-phase terminal voltage is determined to be "Vdc / 2" at times 0 to t2, "0" at times t2 to t3, and "Vdc / 2" at times t3 to Ts.
  • the times t1, t2, and t3 may be rephrased as the fluctuation times of the terminal voltage.
  • times t1, t2, and t3 are defined as elapsed times based on time 0.
  • the time t1, t2, t3 has the following relationship with the above-mentioned time T1, T2, T3 at which each voltage vector is output.
  • the switching signal generation unit 50 switches between the sum of the low state times of all the phases in which the terminal voltage is lowered and changed in the order of rising and the terminal voltage rising and falling in the order of rising and falling within one control cycle.
  • the switching signal may be determined so that the sum of the high state times of all the phases is the same.
  • the waveform of the common mode voltage vcm is shown at the bottom of FIG.
  • Vdc / 2 the constant value "Vdc / 2" as shown at the bottom of FIG. Therefore, it can be seen that the example of the voltage vector set, output sequence, and output time shown in FIG. 5 can contribute to the reduction of electromagnetic noise caused by the common mode voltage.
  • FIG. 6 shows a time chart of the processing flow by the current estimation calculation.
  • the waveform shown by the broken line is the actual current
  • the waveform shown by the solid line is the sampling current.
  • the sampling current is a plot of the current value estimated by the value detected by the current detector 16.
  • the switching signal generation unit 50 has a current value based on each phase current ifh detected at time 0 in the current control cycle and each phase current ip_old detected at time 0 in the immediately preceding control cycle.
  • Time 0 is a time indicating the beginning of each control cycle.
  • the current value if_est1 is an estimated value of the current value one control cycle ahead when viewed from time 0 of the current control cycle.
  • the current value if_est2 is an estimated value of the current value two control cycles ahead when viewed from time 0 of the current control cycle.
  • the current value ip_est1 at one control cycle ahead and the current value ip_est2 at two control cycles ahead are current values reflected in the switching signal. That is, the current value iph_est1 one control cycle ahead and the current value iph_est2 two control cycle destinations reflected in the switching signal are the each phase current if detected in the current control cycle and each detected in the immediately preceding control cycle. Estimated based on the phase current if_old.
  • the time 0 of the current control cycle is the time when the calculation of the phase voltage command is started.
  • the operation of the phase voltage command is completed within the current control cycle.
  • the on time which is the time when each switching element is actually turned on
  • the off time which is the time when each switching element is turned off, are also determined within the current control cycle. Then, the generation of the switching signal based on the determined on time and off time is started with the time 0 one control cycle after the time 0 of the current control cycle as the start time.
  • the current value ip_est1 at time 0 ahead of the control cycle and the current value iph_est2 at time 0 ahead of the control cycle 2 are calculated using the following equations. Can be estimated.
  • the zero voltage vector V0 is output at time 0 when each current value is estimated.
  • each current value iph_t1, iph_t2, iph_t3 at time t1, t2, t3 can be estimated by using the following equation.
  • FIG. 7 shows an example in which the phase current is detected twice in the vicinity of time 0.
  • the first current value detected near the time 0 of the current control cycle is ifp1, and the second current value is iff2. Further, the first current value detected near time 0 before one control cycle is set to if1_old. At this time, the estimated current value ip1_est at time 0, which is one control cycle ahead, is calculated by the following equation.
  • each current value iph_t1, iph_t2, iph_t3 at time t1, t2, t3 is estimated by the following equation.
  • dltT shown on the right side of the above equation (8) is the difference in time for detecting the first current value iff1 and the second current value iff2.
  • equations (12) to (14) may be used to estimate the current values iph_t1, iph_t2, iph_t3 at time t1, t2, t3. ..
  • each current value iph_t1, iph_t2, iph_t3 is a general term for each of the three phases, that is, the U phase, the V phase, and the W phase. Therefore, for example, when representing the U phase, "ph” is replaced with “u” or "U”. Therefore, the U-phase current values at times t1, t2, and t3 are expressed as "iu_t1", “iu_t2", and "iu_t3", respectively. The same applies to the V phase and the W phase. The same notation applies to other parameters such as phase voltage command, switching signal, on time, and off time.
  • the switching signal generation unit 50 determines the current polarity based on the current values iph_t1, iph_t2, and iph_t3 at the times t1, t2, and t3 calculated above. Further, the switching signal generation unit 50 estimates the terminal voltage at the time of dead time based on the current polarity.
  • the direction of flow into the rotating machine 20 is defined as positive, and the reverse direction is defined as negative. Note that this definition is for convenience, and the opposite direction, that is, the direction in which the rotating machine 20 flows out may be defined as positive.
  • the switching signal generation unit 50 calculates the on time and the off time based on the current values iph_t1, iph_t2, and iph_t3 at the times t1, t2, and t3.
  • SW_ph2 is on, SW_ph4 is off, SW_ph1 and SW_ph3 are complementary switching (A-1): SW_ph1 is on, SW_ph3 is off (A-2): SW_ph1 is off, SW_ph3 is off (A- 3): SW_ph1 is off, SW_ph3 is on
  • Terminal voltage is "Vdc" Since the switching elements 13a, 14a, 15a are on and the diodes of the switching elements 13c, 14c, 15c are reverse biased, the positive electrode potential of the DC power supply 11 appears.
  • Terminal voltage is "Vdc / 2" Since the switching elements 13b, 13c, 14b, 14c, 15b, and 15c are turned on at the same time, a neutral point potential appears.
  • SW_ph1 is off, SW_ph3 is on, SW_ph2 and SW_ph4 are complementary switching (B-1): SW_ph2 is on, SW_ph4 is off (B-2): SW_ph2 is off, SW_ph4 is off (B-) 3): SW_ph2 is off, SW_ph4 is on
  • Terminal voltage is "Vdc / 2" Since the switching elements 13b, 13c, 14b, 14c, 15b, and 15c are turned on at the same time, a neutral point potential appears.
  • the switching signal generation unit 50 turns on the off time of the switching element that switches the terminal voltage to the low potential side and the on of the switching element that switches to the high potential side when the current polarity at the time of switching is positive. Advance the time by the dead time. When the current polarity at the time of switching is negative, the off time of the switching element for switching the terminal voltage to the high potential side and the on time of the switching element for switching to the low potential side are advanced by the dead time.
  • the U-phase terminal voltage is set to the state shown in FIG. 5, that is, "Vdc / 2" at times 0 to t1, "Vdc” at times t1 to t3, and "Vdc / 2" at times t3 to Ts.
  • the conduction state of the U-phase switching element is controlled as follows.
  • the times t1'and t3' are set as follows in consideration of the current polarity at the time of switching and the potential of the terminal voltage at the time of dead time.
  • the on time or off time of the U-phase switching element, tU1on, tU1off, tU2on, tU2off, tU3on, tU3off, tU4on, tU4off is set as follows.
  • SW_U2 Always on (tU2on, tU2off are not set) ...
  • SW_U4 Always off (tU4on, tU4off are not set) ...
  • SW_U2 is all "1” values
  • SW_U4 is all "0" values. That is, the switching element 13b is always on, and the switching element 13d is always off. Therefore, it is not necessary to set tU2on, tU2off, tU4on, and tU4off.
  • SW_U1 changes from “0” to "1” at time t1'+ td, and changes from "1" to "0” at time t3'. Therefore, it is set as in the above equation (24).
  • SW_U3 changes from "1” to "0” at time t1'and changes from" 0 "to” 1 "at time t3'+ td. Therefore, it is set as in the above equation (26).
  • V-phase terminal voltage and the W-phase terminal voltage will be described in the same manner.
  • the V-phase terminal voltage is set to the state shown in FIG. 5, that is, "Vdc / 2" at times 0 to t1, "0" at times t1 to t2, and "Vdc / 2" at times t2-Ts.
  • the conduction state of the switching element is controlled as follows.
  • the times t1'and t2' are set as follows in consideration of the current polarity at the time of switching and the potential of the terminal voltage at the time of dead time.
  • the on-time or off-time of the V-phase switching element, tV1on, tV1off, tV2on, tV2off, tV3on, tV3off, tV4on, tV4off is set as follows.
  • SW_V1 is all "0” values
  • SW_V3 is all “1” values. That is, the switching element 14a is always off, and the switching element 14c is always on. Therefore, it is not necessary to set tV1on, tV1off, tV3on, and tV3off.
  • SW_V2 changes from “1” to "0” at time t1'and changes from” 0 "to” 1 "at time t2'+ td. Therefore, it is set as in the above equation (38).
  • SW_V4 changes from "0” to "1” at time t1'+ td, and changes from "1” to "0” at time t2'. Therefore, it is set as in the above equation (40).
  • the W phase terminal voltage is set to the state shown in FIG. 5, that is, "Vdc / 2" at times 0 to t2, "0" at times t2 to t3, and "Vdc / 2" at times t3 to Ts.
  • the conduction state of the W-phase switching element is controlled as follows.
  • the times t3'and t4' are set as follows in consideration of the current polarity at the time of switching and the potential of the terminal voltage at the time of dead time.
  • the on-time or off-time of the W-phase switching element, tW1on, tW1off, tW2on, tW2off, tW3on, tW3off, tW4on, tW4off is set as follows.
  • SW_W1 Always off (tW1on, tW1off are not set) ...
  • SW_W3 Always on (tW3on, tW3off are not set) ...
  • SW_W1 is all "0” values
  • SW_W3 is all “1” values. That is, the switching element 15a is always off, and the switching element 15c is always on. Therefore, it is not necessary to set tW1on, tW1off, tW3on, and tW3off.
  • SW_W2 changes from “1” to "0” at time t2'and changes from “0” to "1” at time t3'+ td. Therefore, it is set as in the above equation (51).
  • SW_W4 changes from “0” to "1” at time t2'+ td, and changes from “1” to "0” at time t3'. Therefore, it is set as in the above equation (53).
  • the switching signal generation unit 50 generates a switching signal based on the on time and the off time of each switching element determined in the above process.
  • FIG. 8 is a block diagram showing a functional configuration of the switching signal generation unit 50 according to the embodiment.
  • the switching signal generation unit 50 is divided into four functional blocks according to the above-mentioned functions.
  • the switching signal generation unit 50 includes a fluctuation time determination unit 51, a current estimation unit 52, a switching time calculation unit 53, and a switching signal output unit 54.
  • VphREF represents the above-mentioned phase voltage command
  • if represents the phase current
  • Ts represents the above-mentioned “control cycle”
  • td represents the above-mentioned “dead time”.
  • the control cycle Ts is the update cycle of the phase voltage command vphREF.
  • the fluctuation time determination unit 51 determines the fluctuation time of the terminal voltage.
  • the "terminal voltage fluctuation time” referred to here means a rise time and a fall time of the terminal voltage of each phase.
  • the fluctuation time determination unit 51 determines the rise time and the fall time of the terminal voltage of each phase by determining the output order of the voltage vector and its phase.
  • the intent is the start-up time at which the terminal voltage at the first connection point of the first one-phase leg is raised and the start-up time at which the terminal voltage at the second connection point of the second one-phase leg is lowered. It is to synchronize with the time.
  • the start-up time at which the terminal voltage at the first connection point of the first one-phase leg is lowered is synchronized with the start-up time at which the terminal voltage at the second connection point of the second one-phase leg is raised. That is.
  • the first one-phase leg is a leg of any one of the U phase, the V phase, and the W phase.
  • the second one-phase leg is a leg with a different phase than the first one-phase leg. Assuming that the first one-phase leg is, for example, "U phase” and the second one-phase leg is, for example, "V phase”, the first connection point is “connection point 13e” and the second connection point is "connection point 13e”. Connection point 14e ".
  • the time t1 in FIG. 5 is the time when the U-phase terminal voltage is raised and the time when the V-phase terminal voltage is lowered.
  • the U-phase phase current iu_t1 and the V-phase phase current iv_t1 have an opposite phase relationship. Therefore, when iu_t1> 0, iv_t1 ⁇ 0, and when iu_t1 ⁇ 0, iv_t1> 0.
  • the relationship is the above equations (20) and (34), and in the latter case, the relationship is the above equations (21) and (33). In either case, it can be seen that the times are synchronized.
  • time t2 there is a relationship between the V phase and the W phase
  • time t3 there is a relationship between the U phase and the W phase. In either case, the same explanation can be given.
  • the fluctuation time determination unit 51 determines both so that the rise time and the fall time of the terminal voltage between the two different phases are synchronized. By synchronizing the two times, the fluctuation of the neutral point potential can be suppressed. This makes it possible to suppress electromagnetic noise caused by synchronization deviation due to the dead time. Further, since the electromagnetic noise caused by the synchronization shift due to the dead time is suppressed, the noise filter can be miniaturized.
  • the first set of the terminal voltage rise time of the first one-phase leg and the terminal voltage fall time of the second one-phase leg within the control cycle and the first set.
  • the time in both sets of the second set according to the start time of the terminal voltage of the one-phase leg and the start time of the terminal voltage of the second one-phase leg are synchronized with each other, but the time is not limited to this. ..
  • the times in either set may be synchronized with each other. Even with such control, the effect of suppressing electromagnetic noise due to the synchronization shift due to the dead time can be obtained.
  • the current estimation unit 52 estimates the phase current at the time of switching based on the rise time and the fall time of the terminal voltage of each phase. Further, the current estimation unit 52 determines the current polarity of the estimated value of the phase current, and outputs the determination result to the switching time calculation unit 53.
  • the current estimation unit 52 estimates the phase current at the rise time and the fall time of the terminal voltage based on the detected value of the phase current in the past control cycle. As illustrated in FIG. 6, the phase current can be estimated based on the detected value of the phase current at least two control cycles before, or the detected value of the phase current detected at least twice within one control cycle. preferable. In this way, the accuracy of the estimated value can be improved. Further, it is possible to determine the current polarity by estimating the current at the switching time in the next control cycle from the past and present detected values.
  • phase current may be estimated based on the detected value of the phase current in the current control cycle, the voltage applied to the rotating machine 20, and the impedance of the path through which the phase current flows. In this way, it is possible to estimate the current at the switching time in the next control cycle from the current detected value and determine the current polarity.
  • phase current at the terminal voltage rise time and the phase current at the terminal voltage fall time are individually estimated for each leg of the same phase. By doing so, it is possible to determine the current polarity at the time of dead time based on the individual currents during the on operation and the off operation of the switching element, so that the current polarity can be determined more accurately. It becomes. This makes it possible to prevent deterioration of the noise suppression effect due to erroneous determination of the current polarity.
  • the switching time calculation unit 53 calculates the on time and the off time of the switching signal. Specifically, when the polarity of the phase current at the time of switching is positive, the switching time calculation unit 53 deads the off time of the switching element for switching the terminal voltage to the low potential side and the on time of the switching element for switching to the high potential side. Control to advance the time. Further, when the polarity of the phase current at the time of switching is negative, the switching time calculation unit 53 advances the off time of the switching element for switching the terminal voltage to the high potential side and the on time of the switching element for switching to the low potential side by the dead time. Take control.
  • FIG. 9 is a flowchart showing an operation flow in the control device 30 of the embodiment.
  • FIG. 9 shows the above-described processing flow in the control device 30 of the embodiment.
  • the voltage command generation unit 40 calculates a phase voltage command, which is a voltage command for each phase, for each control cycle Ts (step S101).
  • the fluctuation time determination unit 51 determines both so that the rise time and the fall time of the terminal voltages between the two different phases are synchronized (step S102).
  • the current estimation unit 52 estimates the phase current at the time of switching based on the rise time and the fall time of the terminal voltage of each phase, and determines the current polarity of the estimated value (step S103).
  • the switching time calculation unit 53 determines the on time and the off time of each switching element in consideration of the current polarity at the time of switching with respect to the rise time and the fall time of the terminal voltage of each phase (step S104).
  • the switching signal output unit 54 generates and outputs a switching signal based on the on time and the off time of each switching element determined in step S104 (step S105).
  • FIG. 10 is a comparison diagram of operation waveforms before and after application of the control method according to the embodiment.
  • the operation waveform before application is shown on the left side of the paper
  • the operation waveform after application is shown on the right side of the paper.
  • Changes in the terminal voltages vun, vvn, and vwn are shown in the upper part of each, and changes in the common mode voltage vcmn are shown in the lower part.
  • the horizontal axis represents time and the vertical axis represents voltage.
  • the waveforms of the U phase, the V phase, and the W phase are shown by solid lines, broken lines, and alternate long and short dash lines, respectively.
  • the control device has the time when the terminal voltage of the first connection point of the first one-phase leg is started and the time when the terminal voltage of the second one-phase leg is started.
  • a switching signal is generated in which the times in at least one of the sets are synchronized with each other.
  • the control device determines the time when the upper arm switching element is turned on or off and the time when the lower arm switching element is turned on or off based on the phase current at the rise time and the fall time of the terminal voltage.
  • the noise filter can be miniaturized.
  • FIG. 11 is a diagram showing a configuration of a rotary machine drive system 100A according to a first modification of the embodiment.
  • FIG. 12 is a diagram showing a configuration of a rotary machine drive system 100B according to a second modification of the embodiment.
  • FIG. 13 is a diagram showing a configuration of a rotary machine drive system 100C according to a third modification of the embodiment.
  • the power conversion device 80 shown in FIG. 1 is replaced with the power conversion device 80A.
  • the power converter 10 is replaced by the power converter 110
  • the capacitors 12a and 12b are replaced by the capacitors 12
  • the control device 30 is replaced by the control device 130.
  • the power converter 110 has a circuit configuration called a three-phase full-bridge inverter.
  • the three-phase full bridge inverter is a two-level inverter.
  • the power conversion device 80 shown in FIG. 1 is replaced with the power conversion device 80B.
  • the power converter 10 is replaced by the power converter 210
  • the capacitors 12a and 12b are replaced by the capacitors 12
  • the control device 30 is replaced by the control device 230.
  • the rotating machine 220 to be driven is a six-phase motor, which is an example of a multi-phase motor.
  • the power converter 210 uses a six-phase full-bridge inverter corresponding to the rotating machine 220.
  • the six-phase full bridge inverter is an example of a multi-phase inverter.
  • the six-phase full-bridge inverter has a circuit configuration in which two three-phase full-bridge inverters are connected in parallel with each other.
  • the power conversion device 80 shown in FIG. 1 is replaced with the power conversion device 80C.
  • the power converter 80C one power converter 10 is replaced by two power converters 310a and 310b connected in parallel to each other, capacitors 12a and 12b are replaced by capacitors 12, and the control device 30 controls. It has been replaced by device 330.
  • the power converters 310a and 310b which are three-phase full-bridge inverters, are connected to the capacitor 12 in parallel with each other.
  • a rotating machine 320a which is a driving target, is connected to the power converter 310a, and a rotating machine 320b, which is a driving target, is connected to the power converter 310b.
  • the converter that converts DC power to AC power has been mentioned, but the present invention is not limited to the converter. It can also be applied to a power converter that converts AC power to DC power, DC power to DC power, and AC power to AC power, and it is possible to obtain the same effect as the effect of the above-described embodiment. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置(80)は、直流電力を負荷への三相交流電力に変換する電力変換器(10)及び制御装置(30)を備える。制御装置(30)はスイッチング信号生成部(50)を備える。スイッチング信号生成部(50)は、第1の一相レグの第1の接続点の端子電圧を立ち上げる時刻と、第2の一相レグの第2の接続点の端子電圧を立ち下げる時刻とによる第1の組、又は第1の接続点の端子電圧を立ち下げる時刻と第2の接続点の端子電圧を立ち上げる時刻とによる第2の組のうちの少なくとも一方の組内の時刻同士を同期させたスイッチング信号を生成する。スイッチング信号生成部(50)は、端子電圧の立ち上げ時刻及び立ち下げ時刻における相電流に基づいて、上アームスイッチング素子をオン又はオフする時刻と、下アームスイッチング素子をオン又はオフする時刻とを決定する。

Description

電力変換装置及び回転機駆動システム
 本開示は、スイッチング素子のオン及びオフによって出力電圧を制御する電力変換装置、及び電力変換装置を備えて回転機を駆動する回転機駆動システムに関する。
 電力変換装置では、スイッチング素子のスイッチング動作によって各相の端子電圧が変動する。これにより、対地間との浮遊容量を介して漏洩電流が発生し、電磁ノイズが発生する。
 電力変換装置を備えた回転機駆動システムでは、製品分類ごとに電磁ノイズの規格が定められている。このため、電力変換装置で発生する電磁ノイズが規制を超過しないように電磁ノイズ対策が必要となる。一般的には、受動素子で構成されるノイズフィルタによる電磁ノイズ対策が実施されるが、電力変換器装置内にフィルタを設置するスペースを確保する必要があると共に製造コストが上昇するといった課題が生ずる。
 このような技術的背景の下、下記特許文献1には、スイッチング素子のオン及びオフを決定するキャリアの位相を調整することで電磁ノイズを低減する技術が提案されている。
国際公開第2014/073247号
 しかしながら、特許文献1に示す手法では、上下アームのスイッチング素子の同時オンによる短絡防止のために設けられるデッドタイム中の端子電圧の推定については詳述されていない。このため、特許文献1の手法では、デッドタイム分の同期ずれに対する電磁ノイズの低減効果が充分ではないという課題がある。
 本開示は、上記に鑑みてなされたものであって、デッドタイム分の同期ずれに起因する電磁ノイズを低減することができる電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するため、本開示に係る電力変換装置は、直流電力を負荷への三相交流電力に変換する電力変換装置であり、電力変換器と、制御装置とを備える。電力変換器は、上アームスイッチング素子と下アームスイッチング素子とが直列接続された一相レグが複数並列に接続され、上アームスイッチング素子と下アームスイッチング素子との接続点が負荷に接続される。制御装置は、上アームスイッチング素子及び下アームスイッチング素子のスイッチング動作を制御する。制御装置は、スイッチング信号生成部を備える。スイッチング信号生成部は、第1の一相レグの負荷に接続される第1の接続点の端子電圧を立ち上げる立ち上げ時刻と、第2の一相レグの負荷に接続される第2の接続点の端子電圧を立ち下げる立ち下げ時刻とによる第1の組内の時刻同士を同期させたスイッチング信号を生成する。或いは、スイッチング信号生成部は、第1の接続点の端子電圧を立ち下げる立ち下げ時刻と第2の接続点の端子電圧を立ち上げる立ち上げ時刻とによる第2の組内の時刻同士を同期させたスイッチング信号を生成する。スイッチング信号生成部は、端子電圧の立ち上げ時刻及び立ち下げ時刻における相電流に基づいて、上アームスイッチング素子をオン又はオフする時刻と、下アームスイッチング素子をオン又はオフする時刻とを決定する。
 本開示に係る電力変換装置によれば、デッドタイム分の同期ずれに起因する電磁ノイズを低減することができるという効果を奏する。
実施の形態に係る電力変換装置を含む回転機駆動システムの構成を示す図 実施の形態における制御装置の機能構成を示すブロック図 実施の形態における制御装置の機能を実現するハードウェア構成の一例を示す図 実施の形態におけるスイッチング信号生成部の動作説明に供する電圧ベクトル図 実施の形態におけるスイッチング信号生成部の動作説明に供する第1のタイムチャート 実施の形態におけるスイッチング信号生成部の動作説明に供する第2のタイムチャート 実施の形態におけるスイッチング信号生成部の動作説明に供する第3のタイムチャート 実施の形態におけるスイッチング信号生成部の機能構成を示すブロック図 実施の形態の制御装置における動作の流れを示すフローチャート 実施の形態による制御手法の適用前後における動作波形の比較図 実施の形態の第1の変形例による回転機駆動システムの構成を示す図 実施の形態の第2の変形例による回転機駆動システムの構成を示す図 実施の形態の第3の変形例による回転機駆動システムの構成を示す図
 以下に添付図面を参照し、本開示の実施の形態に係る電力変換装置及び回転機駆動システムについて詳細に説明する。なお、以下では、電気的な接続と物理的な接続とを区別せずに、単に「接続」と称して説明する。
実施の形態.
 図1は、実施の形態に係る電力変換装置80を含む回転機駆動システム100の構成を示す図である。図1に示す実施の形態に係る回転機駆動システム100は、直流電源11と、電力変換装置80とを備える。電力変換装置80は、電力変換器10と、制御装置30と、電流検出器16と、を備える。回転機駆動システム100には、負荷である回転機20が接続されている。回転機20は、回転機駆動システム100から供給される電力によって駆動される。
 電力変換装置80は、直流電源11から供給される直流電力を回転機20への三相交流電力に変換して回転機20に供給する。以下、三相の各相は、U相、V相及びW相と表記する。
 図1では、三相巻線22を有する回転機20が例示されている。回転機20は、U相端子24U、V相端子24V及びW相端子24Wを有する。回転機20には、回転機20における不図示の回転子の回転角度を検出する角度検出器21が設けられている。角度検出器21の一例は、ホールセンサである。
 電力変換器10は、スイッチング素子13a,13b,13c,13d(以下、適宜「13a~13d」と表記、他のものも同じ)と、スイッチング素子14a~14dと、スイッチング素子15a~15dと、コンデンサ12a,12bと、を有する。
 電力変換器10の各スイッチング素子は、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)と、IGBTに逆並列に接続されるダイオードとを含む。逆並列とは、IGBTのエミッタに相当する端子にダイオードのアノード側が接続され、IGBTのコレクタに相当する端子にダイオードのカソード側が接続されることを意味する。
 図1では、各スイッチング素子のトランジスタがIGBTである場合を例示しているが、これに限定されない。IGBTに代えて、金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)を用いてもよい。なお、各スイッチング素子にMOSFETを用いた場合、素子内部に寄生ダイオードが存在する。このため、MOSFETを用いた場合、寄生ダイオードを使用することで、逆並列に接続されるダイオードを省略することができる。
 スイッチング素子13a~13dはU相のスイッチング素子として動作し、スイッチング素子14a~14dはV相のスイッチング素子として動作し、スイッチング素子15a~15dはW相のスイッチング素子として動作する。これらのスイッチング素子13a~13d,14a~14d,15a~15dによって、電力変換器10は、3レベルインバータとして動作する。なお、図1に示す電力変換器10は、各相のスイッチング素子がT字型に接続される構成であるため、「T型3レベルインバータ」と呼ばれることがある。
 スイッチング素子13a,14a,15aは、高電位側の直流母線17に接続される。スイッチング素子13d,14d,15dは、低電位側の直流母線18に接続される。直流母線17は、直流電源11の正極側に接続される電気配線である。直流母線18は、直流電源11の負極側に接続される電気配線である。本稿では、高電位側に位置するスイッチング素子13a,14a,15aを、適宜「上アームスイッチング素子」と呼び、低電位側に位置するスイッチング素子13d,14d,15dを、適宜「下アームスイッチング素子」と呼ぶ。
 スイッチング素子13a,13dの組、スイッチング素子14a,14dの組、及びスイッチング素子15a,15dの組は、それぞれが一相レグを構成し、互いに並列に接続される。
 コンデンサ12a,12bは、直流母線17と直流母線18との間にこの順で直列に接続される。なお、直流母線17と直流母線18との間の電圧を「母線電圧」と呼ぶ。母線電圧は、直流電源11が出力する直流電圧に等しい。また、母線電圧の値を適宜「Vdc」で表す。
 スイッチング素子13b,13cの組、スイッチング素子14b,14cの組、及びスイッチング素子15b,15cの組は、それぞれが直列に接続されて双方向スイッチ素子として動作する。
 スイッチング素子13b,13cの組は、接続点13eと接続点12cとの間に接続される。接続点13eは、スイッチング素子13aとスイッチング素子13dとの接続点である。接続点12cは、コンデンサ12aとコンデンサ12bとの接続点である。接続点12cは、「中性点」と呼ばれることがある。
 以下同様に、スイッチング素子14b,14cの組は、接続点14eと接続点12cとの間に接続される。接続点14eは、スイッチング素子14aとスイッチング素子14dとの接続点である。スイッチング素子15b,15cの組は、接続点15eと接続点12cとの間に接続される。接続点15eは、スイッチング素子15aとスイッチング素子15dとの接続点である。
 接続点13eは、回転機20のU相端子24Uに接続される。接続点14eは、回転機20のV相端子24Vに接続される。接続点15eは、回転機20のW相端子24Wに接続される。それぞれの電気配線には、電流検出器16が配置されている。
 U相において、スイッチング素子13aがオン、他のスイッチング素子がオフである場合、接続点13eには直流電源11の正極電位が現れ、この電位がU相端子24Uに印加される。また、スイッチング素子13dがオン、他のスイッチング素子がオフである場合、接続点13eには直流電源11の負極電位、即ち零電位が現れ、この電位がU相端子24Uに印加される。また、スイッチング素子13b及びスイッチング素子13cの何れかがオン、スイッチング素子13a,13dが共にオフである場合、接続点13eには接続点12cの電位である中性点電位が現れ、この電位がU相端子24Uに印加される。なお、基本的に、コンデンサ12a,12bの各容量は等しい。このため、中性点電位は、母線電圧の1/2、即ち「Vdc/2」である。
 上記の説明はU相の動作であるが、V相及びW相のスイッチング素子も同様に動作する。このため、U相端子24U、V相端子24V及びW相端子24Wには、対応する各相のスイッチング素子のスイッチング動作によって、正極電位、中性点電位及び零電位という3つのレベルの電位による電圧が印加される。これにより、電力変換器10は、3レベルインバータとして動作する。なお、以下、回転機20のU相端子24U、V相端子24V及びW相端子24Wのそれぞれに印加される電圧を「端子電圧」と呼び、各相の端子電圧のそれぞれを適宜「vun」、「vvn」及び「vwn」と表記する。
 電流検出器16は、回転機20の各相に流れる相電流を検出する。電流検出器16の検出値は、制御装置30に入力される。制御装置30は、角度検出器21及び電流検出器16の各検出値に基づいて、電力変換器10の各スイッチング素子を制御する。制御の詳細については、後述する。
 次に、制御装置30の構成について説明する。図2は、実施の形態における制御装置30の機能構成を示すブロック図である。制御装置30は、電圧指令生成部40と、スイッチング信号生成部50とを備える。
 図2に示すように、電圧指令生成部40には、トルク指令、母線電圧、角度検出器21によって検出された回転子位置、及び電流検出器16によって検出された相電流が入力される。なお、トルク指令に代えて電流指令を用いてもよい。電圧指令生成部40は、トルク指令、母線電圧、回転子位置及び相電流に基づいて相電圧指令を演算する。
 また、図2に示すように、スイッチング信号生成部50には、電流検出器16によって検出された相電流及び電圧指令生成部40が演算した相電圧指令が入力される。スイッチング信号生成部50は、相電流及び相電圧指令に基づいてスイッチング信号を生成して出力する。
 図3は、実施の形態における制御装置30の機能を実現するハードウェア構成の一例を示す図である。制御装置30における上述した機能及び下述する機能は、図3に示すような、プロセッサ1と、記憶装置2とによって実現することができる。図示は省略しているが、記憶装置2は、ランダムアクセスメモリに代表される揮発性記憶装置と、フラッシュメモリに代表される不揮発性の補助記憶装置とを備える。なお、フラッシュメモリの代わりに、ハードディスクなどの補助記憶装置を備えていてもよい。
 プロセッサ1は、記憶装置2から読み出されたプログラムを実行し、制御装置30における機能の一部又は全部を遂行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ1にプログラムが読み出される。プロセッサ1は、演算結果などのデータを記憶装置2の揮発性記憶装置に出力してもよい。或いは、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。また、プロセッサ1及び記憶装置2に加え、ロジック回路、アナログ回路を併用して処理してもよい。
 次に、実施の形態におけるスイッチング信号生成部50の動作について、図4から図7の図面を参照して説明する。図4は、実施の形態におけるスイッチング信号生成部50の動作説明に供する電圧ベクトル図である。図5は、実施の形態におけるスイッチング信号生成部50の動作説明に供する第1のタイムチャートである。図6は、実施の形態におけるスイッチング信号生成部50の動作説明に供する第2のタイムチャートである。図7は、実施の形態におけるスイッチング信号生成部50の動作説明に供する第3のタイムチャートである。
 図4には、3レベルインバータの出力電圧ベクトル(以下、単に「電圧ベクトル」と呼ぶ)が示されている。電圧ベクトルは(u,v,w)で表される。「u」は、U相の電圧出力状態を示し、「v」は、V相の電圧出力状態を示し、「w」は、W相の電圧出力状態を示している。
 本実施の形態では、デッドタイム分の同期ずれに起因する電磁ノイズを低減するための手法として、各相の端子電圧を立ち上げる立ち上げ時刻と、各相の端子電圧を立ち下げる立ち下げ時刻とを同期させる制御を行う。この制御を行うため、本実施の形態では、三相のコモンモード電圧の変化がゼロになる図4に示す6つの電圧ベクトル、V0(0,0,0)、V1(1,0,-1)、V2(0,1,-1)、V3(-1,1,0)、V4(-1,0,1)、V5(0,-1,1)、V6(1,-1,0)のみを使用する。
 なお、各電圧ベクトルにおける括弧内の数値のうち、“1”は端子電圧がVdc、“0”は端子電圧がVdc/2、“-1”は端子電圧が0であることを示している。
 また、コモンモード電圧は、コモンモードノイズの原因となる電圧である。本稿において、コモンモード電圧は、U相端子電圧vun、V相端子電圧vvn、W相端子電圧vwnの和を3で除した、(vun+vvn+vwn)/3で定義する。
 スイッチング信号生成部50は、各相電圧指令及び各スイッチング素子の現在のスイッチング状態に基づいて、出力する電圧ベクトルと、各電圧ベクトルの出力順序及び出力時間とを計算する。図5には、具体例として、αβ軸上における位相角が、-30~30度の電圧を出力する場合の出力電圧ベクトルと出力時間とがタイムチャートで示されている。
 図4において、αβ軸上における位相角が、-30~30度の範囲にある電圧ベクトルは、V0(0,0,0)、V1(1,0,-1)V6(1,-1,0)の3つであり、これらのV0,V1,V6が使用される。図5の例では、V0を時間T1、V6を時間T2、V1を時間T3、V0を時間T4の順で出力する。各電圧ベクトルを出力する時間T1~T4に関しては、従来の空間ベクトル変調方式に準ずるため、詳細な説明は省略する。なお、時間T1~T4と、制御周期Tsとの間には、Ts=T1+T2+T3+T4の関係がある。また、時間T1と時間T2との比率によってαβ軸上における電圧ベクトルの方向が決まり、制御周期Tsに対する時間T1と時間T2との和の比率によってαβ軸上における電圧ベクトルの大きさが決まることは言うまでもない。
 次に、スイッチング信号生成部50は、電圧ベクトルの出力順序とその位相を決定することで、各相の端子電圧の立ち上げ時刻と立ち下げ時刻とを決定する。
 図5に示す例によれば、U相端子電圧は、時刻0~t1では「Vdc/2」、時刻t1~t3では「Vdc」、t3~Tsでは「Vdc/2」と決定される。V相端子電圧は、時刻0~t1では「Vdc/2」、時刻t1~t2では「0」、t2~Tsでは「Vdc/2」と決定される。W相端子電圧は、時刻0~t2は「Vdc/2」、時刻t2~t3では「0」、時刻t3~Tsでは「Vdc/2」と決定される。
 以上の説明のように、時刻t1,t2,t3は、端子電圧の変動時刻と言い替えてもよい。なお、本稿において、時刻t1,t2,t3は、時刻0を基準とする経過時間であると定義する。このように定義すると、時刻t1,t2,t3は、各電圧ベクトルが出力される前述の時間T1,T2,T3との間において、以下の関係が成り立つ。
 t1=T1
 t2=T1+T2
 t3=T1+T2+T3
 図5に示す例によれば、時刻0から制御周期Tsの間において、端子電圧を立ち下がり、立ち上がりの順で変化させるV相及びW相におけるロー状態の時間の和は、端子電圧が立ち上がり、立ち下がりの順で切り替わるU相のハイ状態の時間の和に等しくなっている。従って、スイッチング信号生成部50は、1制御周期内で、端子電圧を立ち下がり、立ち上がりの順で変化させる全ての相のロー状態の時間の和と、端子電圧が立ち上がり、立ち下がりの順で切り替わる全ての相のハイ状態の時間の和とが、同じになるようにスイッチング信号を決定すればよい。
 なお、図5の最下部には、コモンモード電圧vcmの波形が示されている。上記に定義したコモンモード電圧vcmの式にあてはめて計算すれば、図5の最下部に示すように、一定値「Vdc/2」となる。従って、図5に示す電圧ベクトルの組、出力順序及び出力時間の例は、コモンモード電圧に起因する電磁ノイズの低減に寄与できることが分かる。
 次に、実施の形態のスイッチング信号生成部50における電流推定演算について説明する。図6には、電流推定演算による処理の流れがタイムチャートで示されている。図6において、破線で示される波形は実電流であり、実線で示される波形はサンプリング電流である。サンプリング電流は、電流検出器16の検出値によって推定される電流値をプロットしたものである。
 図6において、スイッチング信号生成部50は、現在の制御周期の時刻0で検出された各相電流iphと、直前の制御周期の時刻0で検出された各相電流iph_oldとに基づいて、電流値iph_est1,iph_est2を推定する。時刻0は、各制御周期の初めを示す時刻である。電流値iph_est1は、現在の制御周期の時刻0から見て1制御周期先の電流値の推定値である。電流値iph_est2は、現在の制御周期の時刻0から見て2制御周期先の電流値の推定値である。
 また、1制御周期先の電流値iph_est1及び2制御周期先の電流値iph_est2は、スイッチング信号に反映される電流値である。即ち、スイッチング信号に反映される1制御周期先の電流値iph_est1及び2制御周期先の電流値iph_est2は、現在の制御周期で検出された各相電流iphと、直前の制御周期で検出された各相電流iph_oldとに基づいて推定される。
 なお、図6にも示すように、現在の制御周期の時刻0は、相電圧指令の演算を開始する時刻である。相電圧指令の演算は、現在の制御周期内で完了する。また、実際に各スイッチング素子をオン動作させる時刻であるオン時刻と、各スイッチング素子をオフ動作させる時刻であるオフ時刻についても、現在の制御周期内で決定される。そして、現在の制御周期の時刻0から1制御周期後の時刻0を開始時刻として、決定されたオン時刻及びオフ時刻に基づくスイッチング信号の生成が開始される。
 各相電流は制御周期内で線形に変化するものと仮定される場合、1制御周期先の時刻0における電流値iph_est1及び2制御周期先の時刻0における電流値iph_est2は、次式を使用して推定することができる。
 iph_est1=iph+(iph-iph_old)…(1)
 iph_est2=iph+2(iph-iph_old)…(2)
 図5に示すように、各電流値を推定する時刻0では、ゼロ電圧ベクトルV0が出力される。ゼロ電圧ベクトルV0の出力時において、回転機20が低速で回転している場合、回転機20に発生する誘起電圧は低いので、相電流の値は殆ど変化しないと見なせる。このような場合、時刻t1,t2,t3における各電流値iph_t1,iph_t2,iph_t3は、次式を使用して推定することができる。
 iph_t1=iph_est1…(3)
 iph_t2=iph_est1+(iph_est2-iph_est1)×(T2/(T2+T3))…(4)
 iph_t3=iph_est2…(5)
 一方、スイッチング動作に伴う電流脈動が大きい場合は、時刻0付近で複数回の電流検出を行うことで電流の変化量を推定することも有効である。図7には、時刻0付近において、相電流を2回検出する場合の例が示されている。
 図7に示すように、現在の制御周期の時刻0付近で検出する1回目の電流値をiph1、2回目の電流値をiph2とする。また、1制御周期前の時刻0付近で検出する1回目の電流値をiph1_oldとする。このとき、1制御周期先の時刻0における電流の推定値iph1_estを次式で算出する。
 iph_dlt1=iph1_old-iph1…(6)
 iph1_est=iph1-iph_dlt1…(7)
 電流リプルの傾きが制御周期内で同一であると仮定すると、時刻t1,t2,t3における各電流値iph_t1,iph_t2,iph_t3は、次式で推定される。
 iph_dlt2=(iph2-iph1)/dltT…(8)
 iph_t1=iph1_est+T1×iph_dlt2…(9)
 iph_t3=iph1_est-iph_dlt1-T4×iph_dlt2…(10)
 iph_t2=iph_t1+T2×(iph_t3-iph_t1)/(t3-t2)…(11)
 なお,上記(8)式の右辺に示されるdltTは、1回目の電流値iph1と2回目の電流値iph2を検出する時間の差である。
 また、上記(8)~(11)式に代えて、以下の(12)~(14)式を用いて、時刻t1,t2,t3における各電流値iph_t1,iph_t2,iph_t3を推定してもよい。
 iph_t1=iph_est1+E/R(1-e(-T1/τ))…(12)
 iph_t2=iph_t1+E/R(1-e(-T2/τ))…(13)
 iph_t3=iph_t2+E/R(1-e(-T3/τ))…(14)
 上記(12)~(14)式において、「R」は、電力変換器10から回転機20を見たときの、回転機20の抵抗値である。「τ」は時定数であり、τ=L/Rで与えられる。「L」は、電力変換器10から回転機20を見たときの、回転機20のインダクタンス値である。「E」は回転機20の各相端子に生起する電圧であり、E=vph-vind-Vdc/2で与えられる。「vph」は回転機20への印加電圧であり、「vind」は回転機20に発生する誘起電圧であり、「Vdc」は前述した母線電圧である。
 なお、各電流値iph_t1,iph_t2,iph_t3における「ph」は、三相の各相、即ちU相、V相及びW相を総称する表記である。このため、例えば、U相を表す場合には「ph」を「u」又は「U」に置き替える。従って、時刻t1,t2,t3におけるU相電流値は、それぞれ「iu_t1」、「iu_t2」及び「iu_t3」と表記される。V相及びW相についても同様に表記される。また、相電圧指令、スイッチング信号、オン時刻、オフ時刻といった他のパラメータについても同様な表記を適用する。
 スイッチング信号生成部50は、上記で算出した時刻t1,t2,t3における各電流値iph_t1,iph_t2,iph_t3に基づいて電流極性を判定する。また、スイッチング信号生成部50は、電流極性に基づいて、デッドタイム時の端子電圧を推定する。なお、本稿においては、回転機20に流れ込む方向を正と定義し、逆方向を負と定義する。なお、この定義は、便宜的なものであり、逆向き、即ち回転機20から流れ出す方向を正と定義してもよい。
 次に、実施の形態のスイッチング信号生成部50におけるスイッチング時刻の演算処理について説明する。まず、スイッチング信号生成部50は、時刻t1,t2,t3における各電流値iph_t1,iph_t2,iph_t3に基づいてオン時刻及びオフ時刻を計算する。
 ここで、図1に示す電力変換器10の回路構成の場合、各スイッチング素子の導通状態は、以下の(A)又は(B)の状態が起こり得る。なお、以下の記載において、「SW_ph1」~「SW_ph4」は、スイッチング素子13a~13d,14a~14d,15a~15dの導通、即ちオン又はオフに制御するスイッチング信号を表している。また、「td」は、前述した「デッドタイム」を表している。
(状態A):SW_ph2がオン、SW_ph4がオフであり、SW_ph1,SW_ph3が相補スイッチング
 (A-1):SW_ph1がオン、SW_ph3がオフ
 (A-2):SW_ph1がオフ、SW_ph3がオフ
 (A-3):SW_ph1がオフ、SW_ph3がオン
 以下、上記(A-1)~(A-3)について補足する。
 (A-1):端子電圧は「Vdc」
 スイッチング素子13a,14a,15aがオンであり、スイッチング素子13c,14c,15cのダイオードが逆バイアスとなるので、直流電源11の正極電位が現れる。
 (A-2):
 iph_t<0の場合:端子電圧は「Vdc」
 iph_tは、スイッチング素子13a,14a,15aのダイオードを介して流れるので、直流電源11の正極電位が現れる。
 iph_t>0の場合:端子電圧は「Vdc/2」
 iph_tは、スイッチング素子13c,14c,15cのダイオードを介して流れるので、中性点電位が現れる。
 (A-3):端子電圧は「Vdc/2」
 スイッチング素子13b,13c,14b,14c,15b,15cが同時オンとなるので、中性点電位が現れる。
(状態B):SW_ph1がオフ、SW_ph3がオンであり、SW_ph2,SW_ph4が相補スイッチング
 (B-1):SW_ph2がオン、SW_ph4がオフ
 (B-2):SW_ph2がオフ、SW_ph4がオフ
 (B-3):SW_ph2がオフ、SW_ph4がオン
 以下、上記(B-1)~(B-3)について補足する。
 (B-1):端子電圧は「Vdc/2」
 スイッチング素子13b,13c,14b,14c,15b,15cが同時オンとなるので、中性点電位が現れる。
 (B-2):
 iph_t<0の場合:端子電圧は「Vdc/2」
 iph_tは、スイッチング素子13b,14b,15bのダイオードを介して流れるので、中性点電位が現れる。
 iph_t>0の場合:端子電圧は「0」
 iph_tは、スイッチング素子13d,14d,15dのダイオードを介して流れるので、直流電源11の負極電位が現れる。
 (B-3):端子電圧は「0」
 スイッチング素子13d,14d,15dがオンであり、スイッチング素子13b,14b,15bのダイオードが逆バイアスとなるので、直流電源11の負極電位が現れる。
 上述したスイッチング素子の導通状態を踏まえ、スイッチング信号生成部50は、スイッチング時の電流極性が正の場合、端子電圧を低電位側に切り替えるスイッチング素子のオフ時刻及び高電位側に切り替えるスイッチング素子のオン時刻をデッドタイム分早める。また、スイッチング時の電流極性が負の場合、端子電圧を高電位側に切り替えるスイッチング素子のオフ時刻及び低電位側に切り替えるスイッチング素子のオン時刻をデッドタイム分早める。
 従って、U相端子電圧を図5に示される状態、即ち、時刻0~t1では「Vdc/2」、時刻t1~t3では「Vdc」、時刻t3~Tsでは「Vdc/2」とするため、U相スイッチング素子の導通状態を以下の通りに制御する。
 時刻0~t1’:
 (SW_U1,SW_U2,SW_U3,SW_U4)=(0110)…(15)
 時刻t1’~t1’+td:
 (SW_U1,SW_U2,SW_U3,SW_U4)=(0100)…(16)
 時刻t1’+td~t3’:
 (SW_U1,SW_U2,SW_U3,SW_U4)=(1100)…(17)
 時刻t3’~t3’+td:
 (SW_U1,SW_U2,SW_U3,SW_U4)=(0100)…(18)
 時刻t3’+td~Ts:
 (SW_U1,SW_U2,SW_U3,SW_U4)=(0110)…(19)
 上記の記載において、括弧内の数値はスイッチング素子の導通状態を示しており、“0”はスイッチング素子がオフであること、“1”はスイッチング素子がオンであることを意味している。
 時刻t1’,t3’は、スイッチング時の電流極性及びデッドタイム時の端子電圧の電位を考慮して、以下の通りに設定される。
 iu_t1>0の場合、t1’=t1-td…(20)
 iu_t1<0の場合、t1’=t1…(21)
 iu_t3>0の場合、t3’=t3…(22)
 iu_t3<0の場合、t3’=t3-td…(23)
 上記(20)~(23)式について補足する。上記の(A-1)及び(A-2)について着目すると、iph_t<0の場合、(A-1)から(A-2)に状態が変化しても、端子電圧は「Vdc」で変化しない。一方、iph_t>0の場合、(A-1)から(A-2)に状態が変化すると、端子電圧は「Vdc」から「Vdc/2」に変化する。このため、端子電圧が変化しないiph_t<0の場合には、算出した時刻t1をそのまま用いる。また、端子電圧が変化するiph_t>0の場合には、時刻t1よりも前にデッドタイムtdを設定する。電圧ベクトルが変化する時刻t3についても同様に説明できる。なお、説明が重複するので、ここでの説明は割愛する。
 従って、U相スイッチング素子のオン時刻又はオフ時刻である、tU1on,tU1off,tU2on,tU2off,tU3on,tU3off,tU4on,tU4offは、以下の通りに設定される。
 SW_U1:tU1on=t1’+td,tU1off=t3’ …(24)
 SW_U2:常時オン(tU2on,tU2offは設定なし)…(25)
 SW_U3:tU3off=t1’,tU3on=t3’+td…(26)
 SW_U4:常時オフ(tU4on,tU4offは設定なし)…(27)
 上記(24)~(27)式について補足する。上記(15)~(19)式における右辺の括弧内の数値に着目すると、SW_U2は全てが“1”の値であり、SW_U4は全てが“0”の値である。即ち、スイッチング素子13bは常時オン、スイッチング素子13dは常時オフである。このため、tU2on,tU2off,tU4on,tU4offの設定は不要である。また、SW_U1は時刻t1’+tdにおいて“0”から“1”に変化し、時刻t3’において“1”から“0”に変化する。このため、上記(24)式のように設定される。また、SW_U3は時刻t1’において“1”から“0”に変化し、時刻t3’+tdにおいて“0”から“1”に変化する。このため、上記(26)式のように設定される。
 以下、V相端子電圧及びW相端子電圧についても同様に説明する。
 V相端子電圧を図5に示される状態、即ち、時刻0~t1では「Vdc/2」、時刻t1~t2では「0」、時刻t2~Tsでは「Vdc/2」とするため、V相スイッチング素子の導通状態を以下の通りに制御する。
 時刻0~t1’:
 (SW_V1,SW_V2,SW_V3,SW_V4)=(0110)…(28)
 時刻t1’~t1’+td:
 (SW_V1,SW_V2,SW_V3,SW_V4)=(0010)…(29)
 時刻t1’+td~t2’:
 (SW_V1,SW_V2,SW_V3,SW_V4)=(0011)…(30)
 時刻t2’~t2’+td:
 (SW_V1,SW_V2,SW_V3,SW_V4)=(0010)…(31)
 時刻t2’+td~Ts:
 (SW_V1,SW_V2,SW_V3,SW_V4)=(0110)…(32)
 時刻t1’,t2’は、スイッチング時の電流極性及びデッドタイム時の端子電圧の電位を考慮して、以下の通りに設定される。
 iv_t1>0の場合、t1’=t1…(33)
 iv_t1<0の場合、t1’=t1-td…(34)
 iv_t2>0の場合、t2’=t2-td…(35)
 iv_t2<0の場合、t2’=t2…(36)
 上記(33)~(36)式について補足する。上記の(B-2)及び(B-3)について着目すると、iph_t>0の場合、(B-2)から(B-3)に状態が変化しても、端子電圧は「0」で変化しない。一方、iph_t<0の場合、(B-2)から(B-3)に状態が変化すると、端子電圧は「Vdc/2」から「0」に変化する。このため、端子電圧が変化しないiph_t>0の場合には、算出した時刻t1をそのまま用いる。また、端子電圧が変化するiph_t<0の場合には、時刻t1よりも前にデッドタイムtdを設定する。電圧ベクトルが変化する時刻t2についても同様に説明できる。なお、説明が重複するので、ここでの説明は割愛する。
 従って、V相スイッチング素子のオン時刻又はオフ時刻である、tV1on,tV1off,tV2on,tV2off,tV3on,tV3off,tV4on,tV4offは、以下の通りに設定される。
 SW_V1:常時オフ(tV1on,tV1offは設定なし)…(37)
 SW_V2:tV2off=t1’,tV2on=t2’+td…(38)
 SW_V3:常時オン(tV3on,tV3offは設定なし)…(39)
 SW_V4:tV4on=t1’+td,tV4off=t2’…(40)
 上記(37)~(40)式について補足する。上記(28)~(32)式における右辺の括弧内の数値に着目すると、SW_V1は全てが“0”の値であり、SW_V3は全てが“1”の値である。即ち、スイッチング素子14aは常時オフ、スイッチング素子14cは常時オンである。このため、tV1on,tV1off,tV3on,tV3offの設定は不要である。また、SW_V2は時刻t1’において“1”から“0”に変化し、時刻t2’+tdにおいて“0”から“1”に変化する。このため、上記(38)式のように設定される。また、SW_V4は時刻t1’+tdにおいて“0”から“1”に変化し、時刻t2’において“1”から“0”に変化する。このため、上記(40)式のように設定される。
 また、W相端子電圧を図5に示される状態、即ち、時刻0~t2では「Vdc/2」、時刻t2~t3では「0」、時刻t3~Tsでは「Vdc/2」とするため、W相スイッチング素子の導通状態を以下の通りに制御する。
 時刻0~t2’:
 (SW_W1,SW_W2,SW_W3,SW_W4)=(0110)…(41)
 時刻t2’~t2’+td:
 (SW_W1,SW_W2,SW_W3,SW_W4)=(0010)…(42)
 時刻t2’+td~t3’:
 (SW_W1,SW_W2,SW_W3,SW_W4)=(0011)…(43)
 時刻t3’~t3’+td:
 (SW_W1,SW_W2,SW_W3,SW_W4)=(0010)…(44)
 時刻t3’+td~Ts:
 (SW_W1,SW_W2,SW_W3,SW_W4)=(0110)…(45)
 時刻t3’,t4’は、スイッチング時の電流極性及びデッドタイム時の端子電圧の電位を考慮して、以下の通りに設定される。
 iw_t2>0の場合、t2’=t2…(46)
 iw_t2<0の場合、t2’=t2-td…(47)
 iw_t3>0の場合、t3’=t3-td…(48)
 iw_t3<0の場合、t3’=t3…(49)
 上記(46)~(49)式について補足する。上記の(B-2)及び(B-3)について着目すると、iph_t>0の場合、(B-2)から(B-3)に状態が変化しても、端子電圧は「0」で変化しない。一方、iph_t<0の場合、(B-2)から(B-3)に状態が変化すると、端子電圧は「Vdc/2」から「0」に変化する。このため、端子電圧が変化しないiph_t>0の場合には、算出した時刻t2をそのまま用いる。また、端子電圧が変化するiph_t<0の場合には、時刻t2よりも前にデッドタイムtdを設定する。電圧ベクトルが変化する時刻t3についても同様に説明できる。なお、説明が重複するので、ここでの説明は割愛する。
 従って、W相スイッチング素子のオン時刻又はオフ時刻である、tW1on,tW1off,tW2on,tW2off,tW3on,tW3off,tW4on,tW4offは、以下の通りに設定される。
 SW_W1:常時オフ(tW1on,tW1offは設定なし)…(50)
 SW_W2:tW2off=t2’,tW2on=t3’+td…(51)
 SW_W3:常時オン(tW3on,tW3offは設定なし)…(52)
 SW_W4:tW4on=t2’+td,tW4off=t3’…(53)
 上記(50)~(53)式について補足する。上記(41)~(45)式における右辺の括弧内の数値に着目すると、SW_W1は全てが“0”の値であり、SW_W3は全てが“1”の値である。即ち、スイッチング素子15aは常時オフ、スイッチング素子15cは常時オンである。このため、tW1on,tW1off,tW3on,tW3offの設定は不要である。また、SW_W2は時刻t2’において“1から“0”に変化し、時刻t3’+tdにおいて“0”から“1”に変化する。このため、上記(51)式のように設定される。また、SW_W4は時刻t2’+tdにおいて“0”から“1”に変化し、時刻t3’において“1”から“0”に変化する。このため、上記(53)式のように設定される。
 スイッチング信号生成部50は、上記の処理で決定された各スイッチング素子のオン時刻及びオフ時刻に基づいてスイッチング信号を生成する。
 なお、上記の説明では、特定の電圧ベクトルを出力する例を示したが、この例に限定されない。任意の電圧ベクトルを出力する場合においても、上述した実施の形態の手法を適用してスイッチング信号を生成することが可能である。
 図8は、実施の形態におけるスイッチング信号生成部50の機能構成を示すブロック図である。スイッチング信号生成部50は、上述した機能に従って、4つの機能ブロックに分けられている。具体的に、スイッチング信号生成部50は、変動時刻決定部51と、電流推定部52と、スイッチング時刻演算部53と、スイッチング信号出力部54と、を備える。
 なお、図8において、各部への入力信号は記号で示されている。「vphREF」は前述した相電圧指令を表し、「iph」は相電流を表している。「Ts」は前述した「制御周期」、「td」は前述した「デッドタイム」を表している。制御周期Tsは、相電圧指令vphREFの更新周期である。
 変動時刻決定部51は、端子電圧の変動時刻を決定する。ここで言う「端子電圧の変動時刻」とは、各相の端子電圧の立ち上げ時刻と立ち下げ時刻とを意味する。図5に示すように、変動時刻決定部51は、電圧ベクトルの出力順序とその位相を決定することで、各相の端子電圧の立ち上げ時刻と立ち下げ時刻とを決定する。このときの着意事項は、第1の一相レグの第1の接続点の端子電圧を立ち上げる立ち上げ時刻と、第2の一相レグの第2の接続点の端子電圧を立ち下げる立ち下げ時刻とを同期させることである。或いは、第1の一相レグの第1の接続点の端子電圧を立ち下げる立ち下げ時刻と、第2の一相レグの第2の接続点の端子電圧を立ち上げる立ち上げ時刻とを同期させることである。
 上記の説明において、第1の一相レグは、U相、V相及びW相のうちの何れか1つの相のレグである。第2の一相レグは、第1の一相レグとは異なる相のレグである。第1の一相レグを例えば「U相」とし、第2の一相レグを例えば「V相」とすると、第1の接続点は「接続点13e」であり、第2の接続点は「接続点14e」である。
 図5における時刻t1は、U相の端子電圧を立ち上げる時刻であり、V相の端子電圧を立ち下げる時刻である。時刻t1において、U相の相電流iu_t1と、V相の相電流iv_t1とは逆位相の関係になる。このため、iu_t1>0の場合、iv_t1<0となり、iu_t1<0の場合、iv_t1>0となる。前者の場合は上記の(20)、(34)式の関係になり、後者の場合は上記の(21)、(33)式の関係になる。何れの場合も、時刻が同期していることが分かる。時刻t2の場合はV相とW相との関係となり、時刻t3の場合はU相とW相との関係となるが、何れの場合も同様に説明できる。
 上記のように、変動時刻決定部51は、異なる二相間の端子電圧の立ち上げ時刻と立ち下げ時刻とが同期するように両者を決定する。両者の時刻を同期させることにより、中性点電位の変動を抑制することができる。これにより、デッドタイム分の同期ずれに起因する電磁ノイズを抑制することができる。また、デッドタイム分の同期ずれに起因する電磁ノイズが抑制されるので、ノイズフィルタの小型化が可能になる。
 なお、本実施の形態では、制御周期内において、第1の一相レグの端子電圧の立ち上げ時刻と第2の一相レグの端子電圧の立ち下げ時刻とによる第1の組と、第1の一相レグの端子電圧の立ち下げ時刻と第2の一相レグの端子電圧の立ち上げ時刻とによる第2の組の双方の組内の時刻同士を同期させているが、これに限定されない。何れか一方の組内の時刻同士を同期させることでもよい。このような制御でも、デッドタイム分の同期ずれに起因する電磁ノイズの抑制効果が得られる。
 電流推定部52は、各相の端子電圧の立ち上げ時刻及び立ち下げ時刻に基づいてスイッチング時の相電流を推定する。また、電流推定部52は、相電流の推定値の電流極性を判定し、判定結果を、スイッチング時刻演算部53に出力する。
 電流推定部52は、過去の制御周期における相電流の検出値に基づいて、端子電圧の立ち上げ時刻及び立ち下げ時刻における相電流を推定する。相電流の推定は、図6にも例示するように、少なくとも2制御周期前の相電流の検出値、もしくは1制御周期内で少なくとも2回検出される相電流の検出値に基づいて行うことが好ましい。このようにすれば、推定値の精度を高めることができる。また、次の制御周期でのスイッチング時刻における電流を過去及び現在の検出値から推定して、電流極性を判定することが可能となる。
 また、相電流の推定は、現在の制御周期における相電流の検出値、回転機20への印加電圧及び相電流が流れる経路のインピーダンスに基づいて行ってもよい。このようにすれば、次の制御周期でのスイッチング時刻における電流を現在の検出値から推定して、電流極性を判定することが可能となる。
 また、相電流の推定に際しては、同一相の各レグにおいて、端子電圧の立ち上げ時刻における相電流と、端子電圧の立ち下げ時刻における相電流とが個別に推定されることが好ましい。このようにすれば、スイッチング素子のオン動作時及びオフ動作時において、個別の電流に基づいてデッドタイム時の電流極性を判定することができるので、電流極性の判定をより正確に行うことが可能となる。これにより、電流極性の誤判定によるノイズ抑制効果の悪化を防止することが可能となる。
 スイッチング時刻演算部53は、スイッチング信号のオン時刻及びオフ時刻を演算する。具体的に、スイッチング時刻演算部53は、スイッチング時の相電流の極性が正の場合は、端子電圧を低電位側に切り替えるスイッチング素子のオフ時刻及び高電位側に切り替えるスイッチング素子のオン時刻をデッドタイム分早める制御を行う。また、スイッチング時刻演算部53は、スイッチング時の相電流の極性が負の場合は端子電圧を高電位側に切り替えるスイッチング素子のオフ時刻及び低電位側に切り替えるスイッチング素子のオン時刻をデッドタイム分早める制御を行う。
 上記の制御を行えば、デッドタイム時の同期ずれを補償したスイッチング信号が生成される。これにより、デッドタイム分の同期ずれに起因する電磁ノイズを低減することが可能となる。
 図9は、実施の形態の制御装置30における動作の流れを示すフローチャートである。図9には、実施の形態の制御装置30における、上述した処理の流れが示されている。
 電圧指令生成部40は、制御周期Tsごとに各相の電圧指令である相電圧指令を計算する(ステップS101)。変動時刻決定部51は、異なる二相間の端子電圧の立ち上げ時刻と立ち下げ時刻とが同期するように両者を決定する(ステップS102)。
 電流推定部52は、各相の端子電圧の立ち上げ時刻及び立ち下げ時刻に基づいてスイッチング時の相電流を推定し、且つ、推定値の電流極性を判定する(ステップS103)。スイッチング時刻演算部53は、各相の端子電圧の立ち上げ時刻及び立ち下げ時刻に対し、スイッチング時の電流極性を考慮して各スイッチング素子のオン時刻及びオフ時刻を決定する(ステップS104)。
 そして、スイッチング信号出力部54は、ステップS104で決定された各スイッチング素子のオン時刻及びオフ時刻に基づいて、スイッチング信号を生成して出力する(ステップS105)。
 図10は、実施の形態による制御手法の適用前後における動作波形の比較図である。図10において、紙面の左側には適用前の動作波形が示され、紙面の右側には適用後の動作波形が示されている。それぞれの上段部には、端子電圧vun,vvn,vwnの変化が示され、下段部には、コモンモード電圧vcmnの変化が示されている。横軸は時間を表し、縦軸は電圧を表している。また、上段部では、U相、V相及びW相の波形をそれぞれ、実線、破線及び一点鎖線で示している。
 適用前の波形を見ると、パルス状の波形の後半部に同期ずれが生じている。これにより、下段部に示すようなコモンモード電圧の変動が生じている。これに対し、適用後の波形を見ると、同期ずれが解消され、コモンモード電圧の変動が小さくなっている。この結果は、本実施の形態の制御手法の有用性を説明している。
 以上説明したように、実施の形態に係る電力変換装置によれば、制御装置は、第1の一相レグの第1の接続点の端子電圧を立ち上げる時刻と、第2の一相レグの第2の接続点の端子電圧を立ち下げる時刻とによる第1の組、又は第1の接続点の端子電圧を立ち下げる時刻と第2の接続点の端子電圧を立ち上げる時刻とによる第2の組のうちの少なくとも一方の組内の時刻同士を同期させたスイッチング信号を生成する。制御装置は、端子電圧の立ち上げ時刻及び立ち下げ時刻における相電流に基づいて、上アームスイッチング素子をオン又はオフする時刻と、下アームスイッチング素子をオン又はオフする時刻とを決定する。このような制御により、中性点電位の変動を抑制することができる。これにより、デッドタイム分の同期ずれに起因する電磁ノイズを抑制することが可能となる。また、デッドタイム分の同期ずれに起因する電磁ノイズが抑制されるので、ノイズフィルタの小型化が可能になる。
 なお、本実施の形態では、電力変換装置80がT型3レベルインバータの構成である場合を例示したが、この構成に限定されない。図11から図13に示すように、他の種類のインバータを用いて構成されていてもよい。図11は、実施の形態の第1の変形例による回転機駆動システム100Aの構成を示す図である。図12は、実施の形態の第2の変形例による回転機駆動システム100Bの構成を示す図である。図13は、実施の形態の第3の変形例による回転機駆動システム100Cの構成を示す図である。
 図11に示す回転機駆動システム100Aでは、図1に示す電力変換装置80が電力変換装置80Aに置き替えられている。電力変換装置80Aでは、電力変換器10が電力変換器110に置き替えられ、コンデンサ12a,12bがコンデンサ12に置き替えられ、制御装置30が制御装置130に置き替えられている。電力変換器110は、三相フルブリッジインバータと呼ばれる回路構成を有している。三相フルブリッジインバータは、2レベルインバータである。
 上記のような電力変換器110を備えた回転機駆動システム100Aであっても、上述した実施の形態の制御手法の適用が可能である。従って、制御装置130に、上述したスイッチング信号生成部50の機能を組み込むことで、上述した実施の形態の効果を得ることが可能である。
 また、図11に示す回転機駆動システム100Bでは、図1に示す電力変換装置80が電力変換装置80Bに置き替えられている。電力変換装置80Bでは、電力変換器10が電力変換器210に置き替えられ、コンデンサ12a,12bがコンデンサ12に置き替えられ、制御装置30が制御装置230に置き替えられている。駆動対象である回転機220は、多相モータの一例である六相モータである。電力変換器210は、回転機220に対応させて、六相フルブリッジインバータが用いられている。六相フルブリッジインバータは、多相インバータの一例である。六相フルブリッジインバータは、2つの三相フルブリッジインバータが互いに並列に接続される回路構成を有している。
 上記のような電力変換器210を備えた回転機駆動システム100Bであっても、上述した実施の形態の制御手法の適用が可能である。従って、制御装置230に、上述したスイッチング信号生成部50の機能を組み込むことで、上述した実施の形態の効果を得ることが可能である。
 また、図13に示す回転機駆動システム100Cでは、図1に示す電力変換装置80が電力変換装置80Cに置き替えられている。電力変換装置80Cでは、1つの電力変換器10が、互いに並列に接続される2つの電力変換器310a,310bに置き替えられ、コンデンサ12a,12bがコンデンサ12に置き替えられ、制御装置30が制御装置330に置き替えられている。三相フルブリッジインバータである電力変換器310a,310bは、コンデンサ12に対して互いに並列に接続されている。電力変換器310aには、駆動対象である回転機320aが接続され、電力変換器310bには、駆動対象である回転機320bが接続されている。
 上記のような電力変換器310a,310bを備えた回転機駆動システム100Cであっても、上述した実施の形態の制御手法の適用が可能である。従って、制御装置330に、上述したスイッチング信号生成部50の機能を組み込むことで、上述した実施の形態の効果を得ることが可能である。
 また、本実施の形態では、直流電力を交流電力に変換する変換器について言及してきたが、当該変換器に限定されるものではない。交流電力から直流電力、直流電力から直流電力、及び交流電力から交流電力に変換する電力変換器への適用も可能であり、上述した実施の形態の効果と同様の効果を得ることが可能である。
 なお、本稿には、様々な例示的な実施例が記載されているが、1つ又は複数の記載された様々な特徴、態様、及び機能は特定の実施例の適用に限られるのではなく、単独で、又は様々な組み合わせで適用可能である。従って、例示されていない無数の変形例が、本稿に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合又は省略する場合、更には、少なくとも1つの構成要素を抽出し、他の実施例の構成要素と組み合わせる場合が含まれるものとする。
 1 プロセッサ、2 記憶装置、10,110,210,310a,310b 電力変換器、11 直流電源、12,12a,12b コンデンサ、12c,13e,14e,15e 接続点、13a,13b,13c,13d,14a,14b,14c,14d,15a,15b,15c,15d スイッチング素子、16 電流検出器、17 直流母線、18 直流母線、20,220,320a,320b 回転機、21 角度検出器、22 三相巻線、24U U相端子、24V V相端子、24W W相端子、30,130,230,330 制御装置、40 電圧指令生成部、50 スイッチング信号生成部、51 変動時刻決定部、52 電流推定部、53 スイッチング時刻演算部、54 スイッチング信号出力部、80,80A,80B,80C 電力変換装置、100,100A,100B,100C 回転機駆動システム。

Claims (9)

  1.  直流電力を負荷への三相交流電力に変換する電力変換装置であって、
     上アームスイッチング素子と下アームスイッチング素子とが直列接続された一相レグが複数並列に接続され、前記上アームスイッチング素子と前記下アームスイッチング素子との接続点が前記負荷に接続される電力変換器と、
     前記上アームスイッチング素子及び前記下アームスイッチング素子のスイッチング動作を制御する制御装置と、
     を備え、
     前記制御装置は、第1の一相レグの前記負荷に接続される第1の接続点の端子電圧を立ち上げる立ち上げ時刻と、第2の一相レグの前記負荷に接続される第2の接続点の端子電圧を立ち下げる立ち下げ時刻とによる第1の組、又は前記第1の接続点の端子電圧を立ち下げる立ち下げ時刻と前記第2の接続点の端子電圧を立ち上げる立ち上げ時刻とによる第2の組のうちの少なくとも一方の組内の時刻同士を同期させたスイッチング信号を生成するスイッチング信号生成部を備え、
     前記スイッチング信号生成部は、前記端子電圧の立ち上げ時刻及び立ち下げ時刻における相電流に基づいて、前記上アームスイッチング素子をオン又はオフする時刻と、前記下アームスイッチング素子をオン又はオフする時刻とを決定する
     ことを特徴とする電力変換装置。
  2.  前記スイッチング信号生成部は、過去の制御周期における前記相電流の検出値に基づいて前記端子電圧の立ち上げ時刻及び立ち下げ時刻における相電流を推定する電流推定部を備えたことを特徴とする請求項1に記載の電力変換装置。
  3.  前記電流推定部は、少なくとも2制御周期前の前記相電流の検出値に基づいて前記端子電圧の立ち上げ時刻及び立ち下げ時刻における相電流を推定する
     ことを特徴とする請求項2に記載の電力変換装置。
  4.  前記電流推定部は、1制御周期内で少なくとも2回検出される前記相電流の検出値に基づいて前記端子電圧の立ち上げ時刻及び立ち下げ時刻における相電流を推定する
     ことを特徴とする請求項2又は3に記載の電力変換装置。
  5.  前記スイッチング信号生成部は、現在の制御周期における相電流の検出値、前記負荷への印加電圧及び前記相電流が流れる経路のインピーダンスに基づいて前記端子電圧の立ち上げ時刻及び立ち下げ時刻における相電流を推定する電流推定部を備えたことを特徴とする請求項1に記載の電力変換装置。
  6.  前記電流推定部は、同一相の各レグにおいて、前記端子電圧の立ち上げ時刻における相電流と、前記端子電圧の立ち下げ時刻における相電流とを個別に推定する
     ことを特徴とする請求項2から5の何れか1項に記載の電力変換装置。
  7.  前記スイッチング信号生成部は、スイッチング時の前記相電流の極性が正の場合は、端子電圧を低電位側に切り替えるスイッチング素子のオフ時刻及び高電位側に切り替えるスイッチング素子のオン時刻をデッドタイム分早め、スイッチング時の前記相電流の極性が負の場合は端子電圧を高電位側に切り替えるスイッチング素子のオフ時刻及び低電位側に切り替えるスイッチング素子のオン時刻をデッドタイム分早めるスイッチング時刻演算部を備えたことを特徴とする請求項1から6の何れか1項に記載の電力変換装置。
  8.  前記スイッチング信号生成部は、1制御周期内で、前記端子電圧を立ち下がり、立ち上がりの順で変化させる全ての相のロー状態の時間の和と、前記端子電圧が立ち上がり、立ち下がりの順で切り替わる全ての相のハイ状態の時間の和とが、同じになるように前記スイッチング信号を決定する
     ことを特徴とする請求項1から7の何れか1項に記載の電力変換装置。
  9.  前記負荷は回転機であり、
     請求項1から8の何れか1項に記載の電力変換装置を備え、
     前記回転機が前記電力変換装置から供給される電力によって駆動される
     回転機駆動システム。
PCT/JP2020/016190 2020-04-10 2020-04-10 電力変換装置及び回転機駆動システム WO2021205665A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/911,419 US20230105607A1 (en) 2020-04-10 2020-04-10 Power conversion device and rotary machine drive system
CN202080099273.XA CN115398785A (zh) 2020-04-10 2020-04-10 电力变换装置以及旋转机驱动系统
JP2022514295A JP7292504B2 (ja) 2020-04-10 2020-04-10 電力変換装置及び回転機駆動システム
PCT/JP2020/016190 WO2021205665A1 (ja) 2020-04-10 2020-04-10 電力変換装置及び回転機駆動システム
DE112020007064.6T DE112020007064T5 (de) 2020-04-10 2020-04-10 Leistungsumwandlungsvorrichtung und rotationsmaschinenantriebssystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/016190 WO2021205665A1 (ja) 2020-04-10 2020-04-10 電力変換装置及び回転機駆動システム

Publications (1)

Publication Number Publication Date
WO2021205665A1 true WO2021205665A1 (ja) 2021-10-14

Family

ID=78022903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016190 WO2021205665A1 (ja) 2020-04-10 2020-04-10 電力変換装置及び回転機駆動システム

Country Status (5)

Country Link
US (1) US20230105607A1 (ja)
JP (1) JP7292504B2 (ja)
CN (1) CN115398785A (ja)
DE (1) DE112020007064T5 (ja)
WO (1) WO2021205665A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043125A1 (ja) * 2022-08-26 2024-02-29 パナソニックIpマネジメント株式会社 電力変換装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023760A (ja) * 1996-07-04 1998-01-23 Hitachi Ltd 電圧形pwm変換器の制御方法
JP2000083387A (ja) * 1998-06-30 2000-03-21 Railway Technical Res Inst 三相電圧形インバータの制御方法
JP2007295786A (ja) * 2006-03-31 2007-11-08 Fujitsu General Ltd 電力変換装置
CN109302119A (zh) * 2018-10-10 2019-02-01 山东大学 全周期低共模电压运行的控制方法、控制器及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073247A1 (ja) 2012-11-07 2014-05-15 三菱電機株式会社 電力変換装置
WO2019180763A1 (ja) * 2018-03-19 2019-09-26 三菱電機株式会社 電力変換装置および回転機駆動システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023760A (ja) * 1996-07-04 1998-01-23 Hitachi Ltd 電圧形pwm変換器の制御方法
JP2000083387A (ja) * 1998-06-30 2000-03-21 Railway Technical Res Inst 三相電圧形インバータの制御方法
JP2007295786A (ja) * 2006-03-31 2007-11-08 Fujitsu General Ltd 電力変換装置
CN109302119A (zh) * 2018-10-10 2019-02-01 山东大学 全周期低共模电压运行的控制方法、控制器及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043125A1 (ja) * 2022-08-26 2024-02-29 パナソニックIpマネジメント株式会社 電力変換装置

Also Published As

Publication number Publication date
JP7292504B2 (ja) 2023-06-16
JPWO2021205665A1 (ja) 2021-10-14
CN115398785A (zh) 2022-11-25
DE112020007064T5 (de) 2023-01-19
US20230105607A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US7075267B1 (en) Space vector-based current controlled PWM inverter for motor drives
JP4866216B2 (ja) 電力変換装置
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
US9871483B2 (en) Controller for rotary electric machine drive apparatus
KR101198566B1 (ko) 다상 인버터 및 그 제어 방법, 및 송풍기 및 다상 전류출력 시스템
EP3876419B1 (en) Demagnetization sensing for permanent magnet synchronous motor drive and method
JPWO2019008676A1 (ja) インバータ装置、及び、電動パワーステアリング装置
JP2010011540A (ja) モータ制御装置
US20040000884A1 (en) Motor drive method and motor driver
JP2018153028A (ja) 集積回路
JP2016208664A (ja) インバータの制御装置
JP6697788B1 (ja) 電力変換装置、発電電動機の制御装置、および、電動パワーステアリング装置
JP6685452B1 (ja) 回転電機の制御装置
WO2021205665A1 (ja) 電力変換装置及び回転機駆動システム
CN111656669B (zh) 控制装置
US11677309B2 (en) Inverter device
JP5104083B2 (ja) 電力変換装置および電力変換方法
JP7494321B2 (ja) 三相3レベルインバータの駆動制御装置および駆動制御方法
JP3590541B2 (ja) 直流ブラシレスモータの駆動装置
JP3788346B2 (ja) 電圧形pwmインバータの制御装置
CN114270695A (zh) 推测装置以及交流电动机的驱动装置
JP6324615B2 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
JP7504230B2 (ja) 電力変換装置
Ahirwal et al. A novel approach of rotor position detection of a sensorless BLDC motor with improved back EMF
WO2023190173A1 (ja) モータ制御装置、モータモジュール、モータ制御プログラム、およびモータ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514295

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20930056

Country of ref document: EP

Kind code of ref document: A1