WO2021203935A1 - 用于液流电池的复合电极、液流电池及电堆 - Google Patents

用于液流电池的复合电极、液流电池及电堆 Download PDF

Info

Publication number
WO2021203935A1
WO2021203935A1 PCT/CN2021/081419 CN2021081419W WO2021203935A1 WO 2021203935 A1 WO2021203935 A1 WO 2021203935A1 CN 2021081419 W CN2021081419 W CN 2021081419W WO 2021203935 A1 WO2021203935 A1 WO 2021203935A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
flow battery
composite electrode
electrode
distribution
Prior art date
Application number
PCT/CN2021/081419
Other languages
English (en)
French (fr)
Inventor
范永生
刘庆华
缪平
Original Assignee
国家能源投资集团有限责任公司
北京低碳清洁能源研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家能源投资集团有限责任公司, 北京低碳清洁能源研究院 filed Critical 国家能源投资集团有限责任公司
Priority to US17/917,994 priority Critical patent/US20230155137A1/en
Publication of WO2021203935A1 publication Critical patent/WO2021203935A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the technical field of energy storage, in particular to a composite electrode, a flow battery and an electric stack for a flow battery.
  • energy storage can increase the utilization of renewable energy and improve the stability of the power grid. It is mainly used for grid-connected renewable energy, peak-shaving and valley-filling, peak-shaving and frequency-modulation. Among them, the flow battery has become one of the main technologies for large-scale energy storage due to its advantages of long life, safety and reliability, power and capacity can be individually designed.
  • the flow battery is generally composed of a power unit and a capacity unit.
  • the energy storage and release are realized by the change of the valence state of the active material.
  • the electrolyte flows through the inside of the stack as a power unit to convert electrical energy and chemical energy, thereby realizing power input and output. Therefore, under the premise of determining the electrolyte system, the performance of the stack determines the power and efficiency of the energy storage system.
  • the electrolyte flows through the inside of the stack, and an electrochemical reaction occurs on the surface of the electrode to realize the conversion of chemical energy and electrical energy.
  • factors such as electrolyte flow distribution, concentration difference polarization, and contact resistance between the electrode and the bipolar plate have a greater impact on the electrochemical reaction, which in turn affects the functionality and efficiency of the stack.
  • a graphite felt or a carbon felt-like porous material is usually used as the electrode.
  • the electrolyte flows through the porous electrode and participates in the reaction. It can be seen that while the electrode provides an electrochemical reaction site, it also plays a role in distributing the electrolyte. Therefore, in the traditional stack design, it is necessary to balance the thickness of the electrode, electrochemical activity, porosity and conductivity. This is not good for maximizing various functions at the same time, so the stack cannot be made at a high current density. Run down.
  • the purpose of the present invention is to provide a composite electrode, a flow battery and a stack for a flow battery, which can not only realize the effective separation of the electrochemical reaction field and the electrolyte distribution field of the electrode, but also reduce the flow battery’s Internal resistance, thereby improving battery output power and energy efficiency.
  • one aspect of the present invention provides a composite electrode for a flow battery, the composite electrode comprising: a distribution layer for distributing electrolyte; a reaction layer for receiving the electrolysis of the distribution layer And a contact layer for reducing the contact resistance of the distribution layer to reduce the internal resistance of the flow battery.
  • the distribution layer is at least one of a graphite material having a flow channel structure, a composite graphite material, and a metal material.
  • the distribution layer is formed by machining, injection molding, extrusion or 3D printing.
  • the porosity of the distribution layer is greater than 40%, and the thickness is less than 4 mm.
  • the porosity of the distribution layer is greater than 50%, and the thickness ranges from 1.5 to 3 mm.
  • the reaction layer is at least one of a porous carbon fiber material, a powdered carbon material, and a porous metal material.
  • the porosity of the reaction layer is greater than 60%, and the thickness is less than 3 mm.
  • the total thickness of the reaction layer, the distribution layer and the contact layer is less than 5 mm in a free state, and the compression ratio ranges from 5% to 30%.
  • the contact layer is at least one of graphite felt, graphite paper, flexible graphite material, flexible composite graphite material, and metal fiber braided material.
  • the thickness of the contact layer is less than 1.5 mm.
  • another aspect of the present invention provides a flow battery comprising: a positive electrode, a negative electrode and a separator, wherein at least one of the positive electrode and the negative electrode is the one used for the flow battery Composite electrode.
  • another aspect of the present invention provides an electric stack, which includes a plurality of the flow batteries described above.
  • the present invention creatively separates the electrochemical reaction field and the electrolyte distribution field of the composite electrode by arranging the distribution layer, the reaction layer and the contact layer, wherein the distribution layer can greatly reduce the flow distribution.
  • the dead zone and channel flow caused by unevenness, the contact layer can greatly reduce the internal resistance of the flow battery; at the same time, special designs can be made for the distribution layer and the reaction layer (for example, using materials with higher electrochemical activity)
  • As the reaction layer a material with the characteristics of enhancing fluid flow distribution and excellent conductivity is used as the distribution layer), thereby improving the output power and energy efficiency of batteries and stacks that use the composite electrode as a positive electrode and/or negative electrode.
  • Figure 1 is a schematic diagram of a composite electrode for a flow battery provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of a flow battery provided by an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of an electric stack provided by an embodiment of the present invention.
  • Electrode frame 50 Diaphragm
  • FIG. 1 is a schematic diagram of a composite electrode 10 for a flow battery provided by an embodiment of the present invention.
  • the composite electrode 10 may include: a distribution layer 1 for distributing electrolyte; a reaction layer 2 for receiving the electrolyte of the distribution layer and providing a place for electrochemical reaction of the electrolyte; and a contact layer 3. It is used to reduce the contact resistance of the distribution layer to reduce the internal resistance of the flow battery.
  • the contact layer 3 may be a flexible material with high conductivity, such as flexible graphite.
  • the distribution layer 1 may be at least one of a graphite material having a flow channel structure, a composite graphite material, and a metal material.
  • a graphite material having a flow channel structure compared with graphite felt and metal fiber braided materials, graphite materials, composite graphite materials and metal materials have rigid characteristics and are very easy to obtain through processing, so the cost is lower.
  • the distribution layer 1 may be formed by machining, injection molding, extrusion or 3D printing.
  • graphite materials, composite graphite materials, and metal materials use the rapid flow distribution of electrolyte, which can be uniformly distributed in a short time through special design (described in the next paragraph), thereby avoiding factors such as concentration difference polarization. The impact on electrochemical reactions.
  • the porosity, thickness or fiber diameter of the distribution layer 1 has been designed and studied.
  • the porosity of the distribution layer 1 is greater than 40% and the thickness is less than 4 mm, the distribution layer 1 can simultaneously ensure higher electrical conductivity and excellent fluid distribution characteristics.
  • the porosity of the distribution layer 1 is greater than 50% and the thickness is in the range of 1.5 to 3 mm, the areal resistance of the distribution layer 1 can be reduced by more than 20%, and the electrolyte is in the distribution layer 1.
  • the flow resistance can be reduced by more than 20%.
  • the reaction layer 2 may be at least one of a porous carbon fiber material, a powdered carbon material, and a porous metal material.
  • the porosity and thickness of the reaction layer 2 are designed and studied. When the porosity of the reaction layer 2 is greater than 60% and the thickness is less than 3 mm, higher electrochemical activity of the reaction layer 2 can be ensured. In contrast, when the porosity of the reaction layer 2 is 70% and the thickness is in the range of 0.5 to 2 mm, the reaction layer 2 has higher electrochemical activity and can significantly reduce the surface resistance by more than 20%. So as to provide an extremely excellent place for electrode reaction.
  • the contact layer 3 may be at least one of graphite felt, graphite paper, flexible graphite material, flexible composite graphite material, and metal fiber braided material.
  • the thickness of the contact layer may be less than 1.5 mm.
  • the total thickness and compression ratio of the distribution layer 1, the reaction layer 2 and the contact layer 3 in a free state were designed and studied.
  • the total thickness of the reaction layer 2 is less than 5 mm in the free state, and the compression ratio is in the range of 5% to 30%, the electrolyte can be uniformly distributed while reducing The concentration difference in the reaction layer 2 is polarized.
  • the distribution layer 1 and the contact layer 3 are in the free state in the range of 2 to 4.5 mm, and the compression ratio is in the range of 10% to 20%, it can ensure The distribution of the electrolyte in the distribution layer 1 can significantly reduce the concentration polarization in the reaction layer 2 at the same time.
  • the present invention creatively separates the electrochemical reaction field and the electrolyte distribution field of the composite electrode by providing a distribution layer, a reaction layer, and a contact layer.
  • the distribution layer can greatly reduce the flow distribution.
  • the dead zone and channel flow caused by unevenness, the contact layer can greatly reduce the internal resistance of the flow battery; at the same time, special designs can be made for the distribution layer and the reaction layer (for example, using materials with higher electrochemical activity)
  • As the reaction layer a material with the characteristics of enhancing fluid flow distribution and excellent conductivity is used as the distribution layer), thereby improving the output power and energy efficiency of batteries and stacks that use the composite electrode as a positive electrode and/or negative electrode.
  • FIG. 2 is a schematic diagram of a flow battery 100 provided by an embodiment of the present invention.
  • the flow battery 100 may include a positive electrode 20, a negative electrode 30, and a separator 50, wherein at least one of the positive electrode 20 and the negative electrode 30 is the composite electrode 10 for a flow battery.
  • the positive electrode 20 and the negative electrode 30 in the flow battery 100 are both composite electrodes 10, as shown in FIG. 3.
  • the positive electrode 20 and the negative electrode 30 may respectively provide a place for the positive electrode reaction and the negative electrode reaction for the flow battery 100.
  • the positive electrode reaction may include: the mutual conversion of pentavalent vanadium ions and tetravalent vanadium ions, the mutual conversion of trivalent iron ions and divalent iron ions, and other electric pair redox reactions.
  • the negative electrode reaction may include: the mutual conversion of trivalent vanadium ions and tetravalent vanadium ions, the mutual conversion of trivalent chromium ions and divalent chromium ions, and other electric pair oxidation-reduction reactions.
  • the separator 50 may be located at an intermediate position between the positive electrode 20 and the negative electrode 30 to allow the conductive ions reacted by the positive electrode and the negative electrode to pass through, and prevent other ions and solvents from passing through.
  • Conducting the above ions may include, but are not limited to H +, Na +, K + , Li +, Cl -, OH - plasma.
  • the material of the diaphragm 50 may be at least one of a sulfonic acid type diaphragm material, a polymer porous membrane material, an organic/inorganic composite material, and an inorganic diaphragm material.
  • the reaction layer 2 is on both sides of the diaphragm 50
  • the distribution layer 1 is on the outside of the reaction layer 2
  • the contact layer 3 is on the outside of the distribution layer 1.
  • the flow battery 100 may further include: a bipolar plate 110, an electrode frame 40, and a flow pipe (not shown).
  • a bipolar plate 110 both the positive electrode 20 and the negative electrode 30 are on the inner side of the bipolar plate 110
  • a current lead-out plate (not shown) for deriving the current of the positive electrode 20 and the negative electrode 30 .
  • the two ends of the bipolar plate 110 are designed with electrode frames 40, as shown in FIG. 2.
  • the flow pipeline is used to introduce the electrolyte into the electrode frame 40, so as to flow into the flow battery 100 through the electrode frame 40, and then perform the battery charging process.
  • the electrode frame 40 has a fluid channel through which the electrolyte can flow into the distribution layer 1 of the composite electrode 10.
  • the electrolyte is rapidly and uniformly distributed in the distribution layer 1, and then transferred from the distribution layer 1 to the reaction layer 2.
  • the electrochemical reaction is carried out, and then, the reacted product is transferred to the distribution layer 1 and leaves the battery 100 with the flow of the electrolyte.
  • the electrode frame 40 can be made of a polymer material, the polymer material can be polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF) and other materials and At least one of its modified materials, or a material compounded with other polymer fibers.
  • the flow battery 100 may further include a sealing member 60 for sealing the electrolyte inside.
  • the material of the sealing member 60 may be at least one of EPDM, nitrile rubber, fluorine rubber and other materials.
  • the present invention creatively adopts composite electrodes as the positive electrode and/or negative electrode of the flow battery. Because the composite electrode can effectively separate the distribution layer and the reaction layer, the distribution layer can greatly reduce the factors. The dead zone and channel flow caused by uneven flow distribution, the contact layer can greatly reduce the internal resistance of the flow battery; at the same time, special designs can be made for the distribution layer and the reaction layer (for example, the use of higher electrochemical activity) As the reaction layer, the material with the characteristics of enhancing fluid flow distribution and excellent conductivity is used as the distribution layer), thereby improving the output power and energy efficiency of the flow battery.
  • FIG. 3 is a schematic diagram of an electric stack 200 provided by an embodiment of the present invention.
  • the electric stack 200 may include a plurality of the flow batteries 100 described above.
  • the flow battery 100 includes a positive electrode, a negative electrode and a separator.
  • the stack 200 further includes a plurality of and bipolar plates 110 for connecting the plurality of flow batteries in series, as shown in FIG. 3.
  • electrode frames 40 are designed at both ends of the bipolar plate 110, so that the electrode frames 40 connect each flow battery 100 in parallel in terms of electrolyte circulation.
  • the stack 200 may further include: an end plate 120 for fixing the plurality of flow batteries 100.
  • a current lead plate (not shown) is designed between the bipolar plate of the flow battery on the leftmost side and the rightmost side of the stack 200 and the end plate 120 to derive the current of all positive electrodes and all negative electrodes.
  • the stack 200 may further include: a flow pipe (not shown, only the interface 130 of the flow pipe is shown) for introducing the electrolyte into the electrode frame 40 in the flow battery 100, thereby It flows into the flow battery 100 through the electrode frame 40, and then the battery charging process is performed.
  • the electric stack 200 is formed by a plurality of flow batteries 100 connected in series through a bipolar plate 110, and superimposed and fastened into a whole.
  • the electrolyte enters the electrode frame 40 of each flow battery 100 through a flow pipe (not shown), and then enters the distribution layer 1 of the composite electrode 10 through the fluid channel of the electrode frame 40, and the electrolyte flows rapidly in the distribution layer 1
  • the electrolyte is basically uniformly distributed, and then the electrolyte is transferred from the distribution layer 1 to the reaction layer 2 for electrochemical reaction, and the reacted product is transferred to the distribution layer 1 and leaves the battery as the electrolyte flows.
  • the flow battery 100 can work in a charged state or a discharged state, and can switch between the two states.
  • the structure of the cell stack 200 composed of the flow battery 100 provided in the first embodiment is shown in FIG. 3. Specifically, a 2mm thick carbon felt is used as the reaction layer 2 of the positive electrode 20 and the negative electrode 30 of the flow battery 100, and a 2mm thick composite graphite material with a flow channel structure is used as the positive electrode 20 and the negative electrode 30 of the flow battery 100.
  • the distribution layer 1 and flexible graphite with a thickness of 1 mm are used as the contact layer 3 of the positive electrode 20 and the negative electrode 30, and the electrode size is 200 mm x 200 mm.
  • a flat carbon-plastic composite bipolar plate is used as the bipolar plate 110, an electrode frame 40 with fluid distribution channels, and a seal 60 made of EPDM rubber are used.
  • the porosity of the carbon felt in Example 1 is 90%, the activated carbon felt has a fiber diameter of 10 ⁇ m; the porosity of the composite graphite material is 50%, and the surface resistance is less than 0.1 ⁇ *cm 2 .
  • the difference between the stack 200 provided in the second embodiment and the first embodiment is that 1.5 mm thick carbon felt is used as the reaction layer 2 of the positive electrode 20 and the negative electrode 30 of the flow battery 100, and 1 mm thick flexible graphite is used as the positive electrode 20. And the contact layer 3 of the negative electrode 30.
  • the difference between the stack 200 provided in the third embodiment and the first embodiment is that a 1mm thick multilayer carbon paper is used as the reaction layer 2 of the positive electrode 20 and the negative electrode 30 of the flow battery 100, and a 1mm thick flexible graphite is used as the positive electrode. 20 and the contact layer 3 of the negative electrode 30.
  • the porosity of the carbon paper in Example 3 is greater than 70%.
  • the difference between the stack provided in this embodiment and Embodiment 1 is that carbon felt with a thickness of 5 mm is used as the positive electrode and the negative electrode of the flow battery.
  • the porosity of the carbon felt in this embodiment is 90%, and the activated carbon felt has a fiber diameter of 10 ⁇ m.
  • the initial concentration of the positive electrode electrolyte in the above embodiments is 0.8mol L -1 V 4+ (tetravalent vanadium)+0.8mol L -1 V 5+ (5-valent vanadium)+3mol L -1 H 2 SO 4
  • the negative electrode The initial concentration of the electrolyte is 0.8 mol L -1 V 2+ (divalent vanadium) + 0.8 mol L -1 V 3+ (trivalent vanadium) + 3 mol L -1 H 2 SO 4 .
  • the output performance test of the stack in the foregoing embodiments is measured by a potentiostat.
  • the present invention creatively adopts a plurality of flow batteries (the flow battery uses composite electrodes as the positive and/or negative electrodes of the flow battery) to form a stack, because the composite electrodes can achieve the effective distribution layer and reaction layer Separation, wherein the distribution layer can greatly reduce the dead zone and channeling caused by uneven flow distribution, and the contact layer can greatly reduce the internal resistance of the flow battery; at the same time, it can separately target the distribution layer Special design with the reaction layer (for example, use a material with higher electrochemical activity as the reaction layer, and use a material with enhanced fluid flow distribution and excellent conductivity as the distribution layer) to increase the output power and energy of the stack efficient.
  • the reaction layer for example, use a material with higher electrochemical activity as the reaction layer, and use a material with enhanced fluid flow distribution and excellent conductivity as the distribution layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及储能技术领域,公开了一种用于液流电池的复合电极、液流电池及电堆。所述复合电极包括:分布层,用于分布电解液;反应层,用于接收所述分布层的所述电解液,并为该电解液提供电化学反应的场所;以及接触层,用于减小所述分布层的接触电阻,以降低所述液流电池的内阻。本发明通过设置分布层、反应层及接触层,有效地分离复合电极的电化学反应场和电解液分布场,其中分布层可在很大程度上减少因流动不均匀带来的死区和沟流,接触层可极大地降低该液流电池的内阻;同时可分别针对分布层与反应层进行特殊设计,从而提高将该复合电极作为正极和/或负极的电池与电堆的输出功率和能量效率。

Description

用于液流电池的复合电极、液流电池及电堆
相关申请的交叉引用
本申请要求2020年04月10日提交的中国专利申请202010281604.3的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及储能技术领域,具体地涉及一种用于液流电池的复合电极、液流电池及电堆。
背景技术
储能作为提高能源利用率的关键技术,能够提高可再生能源的利用率,提高电网稳定性,主要用于可再生能源并网、削峰填谷、调峰调频等方面。其中,液流电池因其长寿命、安全可靠、功率和容量可单独设计等优点,成为大规模储能的主要技术之一。
液流电池一般是由功率单元和容量单元组成。作为容量单元的电解液,以活性物质的价态变化实现能量的储存和释放。工作时,电解液流经作为功率单元的电堆内部,进行电能和化学能的转换,从而实现功率的输入和输出。因此,在电解液体系确定的前提下,电堆的性能决定储能系统的做功的能力和效率。
具体地,电解液流经电堆内部,在电极表面发生电化学反应,以实现化学能与电能的转换。在这个过程中,电解液流动分布、浓度差 极化、以及电极与双极板的接触电阻等因素,都对电化学反应产生较大的影响,进而影响电堆的做功能力和效率。在现有技术所公开的液流电池中,通常采用石墨毡或碳毡类的多孔材料为电极,工作时,电解液流过多孔电极,并参与反应。由此可见,电极在提供电化学反应场所的同时,还要起到分布电解液的作用。因此,在传统的电堆设计中,需要在电极的厚度、电化学活性、孔隙率及导电能力之间进行平衡,这不利与将各项功能同时最大化,故不能使电堆在高电流密度下运行。
发明内容
本发明的目的是提供一种用于液流电池的复合电极、液流电池及电堆,其不仅可实现电极的电化学反应场和电解液分布场的有效分离,还可降低液流电池的内阻,从而提高电池输出功率和能量效率。
为了实现上述目的,本发明一方面提供一种用于液流电池的复合电极,所述复合电极包括:分布层,用于分布电解液;反应层,用于接收所述分布层的所述电解液,并为该电解液提供电化学反应的场所;以及接触层,用于减小所述分布层的接触电阻,以降低所述液流电池的内阻。
优选地,所述分布层为具有流道结构的石墨材料、复合石墨材料及金属材料中的至少一者。
优选地,所述分布层由机械加工、注塑、挤出或3D打印形成。
优选地,所述分布层的孔隙率大于40%,且厚度小于4mm。
优选地,所述分布层的孔隙率大于50%,且厚度的范围为1.5至3mm。
优选地,所述反应层为多孔碳纤维材料、粉末碳材料及多孔金属材料中的至少一者。
优选地,所述反应层的孔隙率大于60%,且厚度小于3mm。
优选地,所述反应层、所述分布层及所述接触层的总厚度在自由状态下小于5mm,且压缩比的范围为5%至30%。
优选地,所述接触层为石墨毡、石墨纸、柔性石墨材料、柔性复合石墨材料及金属纤维编织材料中的至少一者。
优选地,所述接触层的厚度小于1.5mm。
相应地,本发明另一方面提供一种液流电池,该液流电池包括:正极、负极和隔膜,其中,所述正极与所述负极中的至少一者为所述的用于液流电池的复合电极。
相应地,本发明又一方面提供一种电堆,该电堆包括:多个所述的液流电池。
通过上述技术方案,本发明创造性地通过设置分布层、反应层及接触层,有效地分离复合电极的电化学反应场和电解液分布场,其中所述分布层可在很大程度上减少流动分布不均匀带来的死区和沟流,所述接触层可极大地降低该液流电池的内阻;同时可分别针对分布层与反应层进行特殊设计(例如,采用电化学活性较高的材料作为反应层,采用具有强化流体流动分布的特征和导电性能优异的材料作为分布层),从而提高将该复合电极作为正极和/或负极的电池与电堆的 输出功率和能量效率。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
图1是本发明实施例提供的用于液流电池的复合电极的示意图;
图2是本发明实施例提供的液流电池的示意图;以及
图3是本发明实施例提供的电堆的示意图。
附图标记说明
1       分布层         2      反应层
3       接触层         10     复合电极
20      正极           30     负极
40      电极框         50     隔膜
60      密封件         100    液流电池
110     双极板         120    端板
130     接口           200    电堆
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
图1是本发明实施例提供的用于液流电池的复合电极10的示意图。所述复合电极10可包括:分布层1,用于分布电解液;反应层2,用于接收所述分布层的所述电解液,并为该电解液提供电化学反应的场所;以及接触层3,用于减小所述分布层的接触电阻,以降低所述液流电池的内阻。其中,所述接触层3可为高电导率的柔性材料,例如柔性石墨。
所述分布层1可为具有流道结构的石墨材料、复合石墨材料及金属材料中的至少一者。一方面,与石墨毡及金属纤维编织材料相比,由于石墨材料、复合石墨材料及金属材料具有刚性特性,其非常容易通过加工获得,故成本较低。具体地,所述分布层1可由机械加工、注塑、挤出或3D打印形成。另一方面,石墨材料、复合石墨材料及金属材料有利用电解液的快速流动分布,通过特别设计(在下一段进行描述)可在较短时间内实现均匀分布,从而可避免浓度差极化等因素对电化学反应产生的影响。
为了在易制造且低成本的基础上保证所述分布层1具有较高的电导率和优秀的流体分布特性,对所述分布层1的孔隙率、厚度或纤维直径进行了设计及研究。当所述分布层1的孔隙率大于40%,且厚度小于4mm时,可同时确保分布层1的较高的电导率和优秀的流体分布特性。与之相比,当所述分布层1的孔隙率大于50%,且厚度的范围为1.5至3mm时,所述分布层1的面电阻可降低20%以上,且电解液在该分布层1中流动阻力可降低20%以上。
所述反应层2可为多孔碳纤维材料、粉末碳材料及多孔金属材料 中的至少一者。为了保证所述反应层2具有较高的电化学活性,对所述反应层2的孔隙率及厚度进行了设计及研究。当所述反应层2的孔隙率大于60%,且厚度小于3mm时,可确保反应层2的较高的电化学活性。与之相比,当所述反应层2的孔隙率为70%,且厚度的范围为0.5至2mm时,所述反应层2具有较高电化学活性同时,可明显降低面电阻20%以上,从而为电极反应提供极为优异的场所。
所述接触层3可为石墨毡、石墨纸、柔性石墨材料、柔性复合石墨材料及金属纤维编织材料中的至少一者。为了有效地降低所述分布层1与双极板110之间的接触电阻,所述接触层的厚度可小于1.5mm。
另外,为了降低电极电阻和改善电极中电解液流动分布性能,对所述分布层1、所述反应层2以及接触层3的自由状态下的总厚度及压缩比进行了设计及研究。当所述反应层2、所述分布层1以及接触层3的总厚度在自由状态下小于5mm,且压缩比的范围为5%至30%时,可确保电解液流动分布均匀的同时,降低反应层2中的浓差极化。与之相比,当所述反应层2、所述分布层1以及接触层3的总厚度的范围在自由状态下2至4.5mm,且压缩比的范围为10%至20%时,可以确保电解液在分布层1中的分布,同时可明显降低反应层2中的浓差极化。
综上所述,本发明创造性地通过设置分布层、反应层及接触层,有效地分离复合电极的电化学反应场和电解液分布场,其中所述分布层可在很大程度上减少流动分布不均匀带来的死区和沟流,所述接触层可极大地降低该液流电池的内阻;同时可分别针对分布层与反应层 进行特殊设计(例如,采用电化学活性较高的材料作为反应层,采用具有强化流体流动分布的特征和导电性能优异的材料作为分布层),从而提高将该复合电极作为正极和/或负极的电池与电堆的输出功率和能量效率。
相应地,图2是本发明实施例提供的液流电池100的示意图。所述液流电池100可包括:正极20、负极30和隔膜50,其中,所述正极20与所述负极30中的至少一者为所述的用于液流电池的复合电极10。优选地,所述液流电池100中的正极20及负极30均为复合电极10,如图3所示。
所述正极20和所述负极30可分别为所述液流电池100提供正极反应和负极反应的场所。其中,正极反应可包括:五价钒离子和四价钒离子的相互转化、三价铁离子和二价铁离子的相互转化等其他电对的氧化还原反应。负极反应可包括:三价钒离子和四价钒离子相互转化、三价铬离子和二价铬离子的相互转化等其他电对的氧化还原反应。
如图2所示,所述隔膜50可位于正极20和负极30之间的中间位置,允许正极和负极反应的传导离子通过,且阻止其他离子和溶剂通过。以上传导离子可包含但不限于H +、Na +、K +、Li +、Cl -、OH -等离子。所述隔膜50的材料可为磺酸型隔膜材料、高分子多孔膜材料、有机/无机复合材料、无机隔膜材料的至少一者。如图3所示,以隔膜50为参考,反应层2处于隔膜50的两侧,分布层1处于反应层2的外侧,接触层3处于分布层1的外侧。
所述液流电池100还可包括:双极板110、电极框40及流动管路(未示出)。其中,所述双极板110的外侧(正极20及负极30均处于所述双极板110的内侧)设计有电流导出板(未示出),用于导出所述正极20及负极30的电流。所述双极板110的两端设计有电极框40,如图2所示。所述流动管路用于将电解液导入所述电极框40内,从而通过电极框40流动到该液流电池100内部,进而进行电池的充电过程。具体地,所述电极框40具有流体通道,电解液可通过该流体通道流动进入复合电极10的分布层1,电解液在分布层1中快速均匀分布,然后由分布层1传递至反应层2进行电化学反应,接着,反应后的产物传递至分布层1随电解液流动离开该电池100。所述电极框40可由高分子材料制备而成,所述高分子材料可以是聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚偏二氟乙烯(PVDF)等材料及其改性材料的至少一者、或与其他高分子纤维复合而成的材料。
所述液流电池100还可包括密封件60,用于密封内部的电解液。所述密封件60的材料可以三元乙丙橡胶、丁腈橡胶、氟橡胶等材料中的至少一者。
综上所述,本发明创造性地采用复合电极作为液流电池的正极和/或负极,由于复合电极可实现分布层与反应层的有效分离,其中所述分布层可在很大程度上减少因流动分布不均匀带来的死区和沟流,所述接触层可极大地降低该液流电池的内阻;同时可分别针对分布层与反应层进行特殊设计(例如,采用电化学活性较高的材料作为反应层,采用具有强化流体流动分布的特征和导电性能优异的材料作为分 布层),从而提高该液流电池的输出功率和能量效率。
相应地,图3是本发明实施例提供的电堆200的示意图。所述电堆200可包括:多个所述的液流电池100。其中,所述液流电池100包括正极、负极和隔膜。所述电堆200还包括:多个以及双极板110,用于串联所述多个液流电池,如图3所示。其中,所述双极板110的两端设计电极框40,从而电极框40将每个液流电池100在电解液流通方面并联起来。
如图3所示,所述电堆200还可包括:端板120,用于固定所述多个液流电池100。所述电堆200的最左侧、最右侧的液流电池的双极板与端板120之间设计有电流导出板(未示出),用于导出所有正极及所有负极的电流。所述电堆200还可包括:流动管路(未示出,仅示出了该流动管路的接口130),用于将电解液导入所述液流电池100中的电极框40内,从而通过电极框40流动到该液流电池100内部,进而进行电池的充电过程。
现以图3所示的电堆200为例,对本发明的技术方案进行说明。
电堆200由多个液流电池100通过双极板110串联,并叠加紧固成一个整体而形成。电解液由流动管路(未示出)进入每个液流电池100的电极框40,再由电极框40的流体通道进入复合电极10的分布层1,电解液在该分布层1内快速流动基本呈均匀分布,接着电解液由分布层1传递至反应层2进行电化学反应,反应后的产物传递至分布层1随电解液流动离开该电池。所述液流电池100可以在充电状态或者放电状态下工作,并可以在两种状态之间进行转换。
接下来,以三个实施例及对比例为例对正、负电极均采用复合电极10的电池100形成的电堆200进行解释和说明。
实施例1
本实施1例提供的液流电池100组成的电堆200的结构展示在图3中。具体地,采用2mm厚的碳毡作为液流电池100的正极20和负极30的反应层2,采用2mm厚的具有流道结构的复合石墨材料作为液流电池100的正极20和负极30的的分布层1,及采用1mm厚的柔性石墨作为正极20和负极30的接触层3,且电极尺寸为200mm x200mm。采用平板型碳塑复合双极板作为双极板110,采用具有流体分布流道的电极框40,三元乙丙橡胶材质的密封件60。外侧有端板120和接口130,使用螺栓和压紧板锁紧以上部件。本实施例1中的碳毡的孔隙率为90%,活化碳毡,纤维直径为10μm;复合石墨材料的孔隙率为50%,面电阻小于0.1Ω*cm 2
实施例2
本实施例2提供的电堆200与实施例1的区别是:采用1.5mm厚的碳毡作为液流电池100的正极20和负极30的反应层2,及采用1mm厚的柔性石墨作为正极20和负极30的接触层3。
实施例3
本实施例3提供的电堆200与实施例1的区别是:采用1mm厚的多层炭纸作为液流电池100的正极20和负极30的反应层2,及采用1mm厚的柔性石墨作为正极20和负极30的接触层3。本实施例3中的炭纸的孔隙率大于70%。
对比例
本实施例提供的电堆与实施例1的区别是:采用5mm厚的碳毡作为液流电池的正极和负极。本实施例中的碳毡的孔隙率为90%,活化碳毡,纤维直径为10μm。
表1各个实施例与对比例的实验结果
Figure PCTCN2021081419-appb-000001
由上述表1可以看出,分布层和接触层的引入有效地降低了流动阻力,提高电池的输出功率密度,优选的实施实例2和3中分布层、反应层以及接触层的组合,使得电池具有更好的性能。
上述各实施例中的正极电解液初始浓度为0.8mol L -1V 4+(4价钒)+0.8mol L -1V 5+(5价钒)+3mol L -1H 2SO 4,负极电解液初始浓度为0.8mol L -1V 2+(2价钒)+0.8mol L -1V 3+(3价钒)+3mol L -1H 2SO 4。此外,上述各实施例中的电堆的输出性能测试通过恒电位仪进行测量。
综上所述,本发明创造性地采用多个液流电池(该液流电池采用复合电极作为液流电池的正极和/或负极)组成电堆,由于复合电极可实现分布层与反应层的有效分离,其中所述分布层可在很大程度上减少因流动分布不均匀带来的死区和沟流,所述接触层可极大地降低 该液流电池的内阻;同时可分别针对分布层与反应层进行特殊设计(例如,采用电化学活性较高的材料作为反应层,采用具有强化流体流动分布的特征和导电性能优异的材料作为分布层),从而提高该电堆的输出功率和能量效率。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (12)

  1. 一种用于液流电池的复合电极,其特征在于,所述复合电极包括:
    分布层,用于分布电解液;
    反应层,用于接收所述分布层的所述电解液,并为该电解液提供电化学反应的场所;以及
    接触层,用于减小所述分布层的接触电阻,以降低所述液流电池的内阻。
  2. 根据权利要求1所述的用于液流电池的复合电极,其特征在于,所述分布层为具有流道结构的石墨材料、复合石墨材料及金属材料中的至少一者。
  3. 根据权利要求1所述的用于液流电池的复合电极,其特征在于,所述分布层由机械加工、注塑、挤出或3D打印形成。
  4. 根据权利要求1所述的用于液流电池的复合电极,其特征在于,所述分布层的孔隙率大于40%,且厚度小于4mm。
  5. 根据权利要求1所述的用于液流电池的复合电极,其特征在于,所述分布层的孔隙率大于50%,且厚度的范围为1.5至3mm。
  6. 根据权利要求1所述的用于液流电池的复合电极,其特征在于,所述反应层为石墨毡、碳毡材料、多孔碳纤维材料、粉末碳材料、多孔金属材料及金属纤维编织材料中的至少一者。
  7. 根据权利要求1所述的用于液流电池的复合电极,其特征在于,所述反应层的孔隙率大于60%,且厚度小于3mm。
  8. 根据权利要求1所述的用于液流电池的复合电极,其特征在于,所述反应层、所述分布层及所述接触层的总厚度在自由状态下小于5mm,且压缩比的范围为5%至30%。
  9. 根据权利要求1所述的用于液流电池的复合电极,其特征在于,所述接触层为石墨毡、石墨纸、柔性石墨材料、柔性复合石墨材料及金属纤维编织材料中的至少一者。
  10. 根据权利要求1所述的用于液流电池的复合电极,其特征在于,所述接触层的厚度小于1.5mm。
  11. 一种液流电池,其特征在于,该液流电池包括:正极、负极和隔膜,其中,所述正极与所述负极中的至少一者为根据权利要求1-10中任一项所述的用于液流电池的复合电极。
  12. 一种电堆,其特征在于,该电堆包括:多个根据权利要求11所述的液流电池。
PCT/CN2021/081419 2020-04-10 2021-03-18 用于液流电池的复合电极、液流电池及电堆 WO2021203935A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/917,994 US20230155137A1 (en) 2020-04-10 2021-03-18 Composite electrode for flow cell, flow cell, and pile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281604.3 2020-04-10
CN202010281604.3A CN113517452A (zh) 2020-04-10 2020-04-10 用于液流电池的复合电极、液流电池及电堆

Publications (1)

Publication Number Publication Date
WO2021203935A1 true WO2021203935A1 (zh) 2021-10-14

Family

ID=78022930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081419 WO2021203935A1 (zh) 2020-04-10 2021-03-18 用于液流电池的复合电极、液流电池及电堆

Country Status (3)

Country Link
US (1) US20230155137A1 (zh)
CN (1) CN113517452A (zh)
WO (1) WO2021203935A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096370B (zh) * 2023-10-17 2024-01-09 江苏恒安储能科技有限公司 一种新型液流电池端电极及其装配的液流电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633330A (zh) * 2012-08-29 2014-03-12 中国科学院大连化学物理研究所 一种液流电池用复合电极及液流储能电池
US20150221959A1 (en) * 2012-09-10 2015-08-06 Korea Institute Of Energy Research Integrated complex electrode cell having inner seal structure and redox flow cell comprising same
CN105140527A (zh) * 2015-07-29 2015-12-09 上海电气集团股份有限公司 一种全钒液流电池用三合一复合电极及其制备方法
US20160036060A1 (en) * 2014-07-30 2016-02-04 Concurrent Technologies Corporation Composite electrode for flow battery
CN206878104U (zh) * 2017-05-10 2018-01-12 北京普能世纪科技有限公司 新型流场的液流电池电极

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614169A (ja) * 1984-06-18 1986-01-10 Sumitomo Electric Ind Ltd レドツクスフロ−電池
TWI415326B (zh) * 2011-01-28 2013-11-11 Univ Fu Jen Catholic 全釩液流電池之電極結構
KR101370851B1 (ko) * 2012-11-05 2014-03-07 한국과학기술원 레독스 흐름전지용 다층구조 전극 및 이를 포함한 레독스 흐름전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633330A (zh) * 2012-08-29 2014-03-12 中国科学院大连化学物理研究所 一种液流电池用复合电极及液流储能电池
US20150221959A1 (en) * 2012-09-10 2015-08-06 Korea Institute Of Energy Research Integrated complex electrode cell having inner seal structure and redox flow cell comprising same
US20160036060A1 (en) * 2014-07-30 2016-02-04 Concurrent Technologies Corporation Composite electrode for flow battery
CN105140527A (zh) * 2015-07-29 2015-12-09 上海电气集团股份有限公司 一种全钒液流电池用三合一复合电极及其制备方法
CN206878104U (zh) * 2017-05-10 2018-01-12 北京普能世纪科技有限公司 新型流场的液流电池电极

Also Published As

Publication number Publication date
US20230155137A1 (en) 2023-05-18
CN113517452A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
KR101335544B1 (ko) 레독스 흐름전지
WO2021203932A1 (zh) 用于液流电池的复合电极、液流电池及电堆
CN103053057A (zh) 燃料电池
CN101719556A (zh) 氧化还原液流电池的电堆结构
CN108428902A (zh) 一种铁-铬液流电池
TW201830760A (zh) 氧化還原液流電池
WO2021203935A1 (zh) 用于液流电池的复合电极、液流电池及电堆
CN108598543B (zh) 一种液流电池
WO2013149512A1 (zh) 集流板和包括该集流板的双极集流板、单电池和液流电池
WO2013097595A1 (zh) 一种质子交换膜在铁-铬系液相流体电池中的应用
JP6663923B2 (ja) レドックス電池
US20150072261A1 (en) High power high efficiency flow type battery
CN102170008B (zh) 非流动型钒素二次电池
JP2017134938A (ja) レドックス二次電池システム
CN102593495B (zh) 一种氧化还原液流电池
TWI415326B (zh) 全釩液流電池之電極結構
TWI703759B (zh) 分散式液流電池儲能模組
TWI524585B (zh) 電化學液流電池單元組件及其雙極板
KR102335259B1 (ko) 연신을 통한 레독스 흐름 전지용 분리막의 제조방법 및 그로부터 제조되는 레독스 흐름 전지용 분리막
JP2013137957A (ja) レドックスフロー二次電池
US10403920B2 (en) Fuel battery cell
JP2015213074A (ja) レドックスフロー二次電池
CN202050021U (zh) 一种非流动型钒素二次电池
US11081717B2 (en) Storage module of distributed flow battery
JP2013137958A (ja) レドックスフロー二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 01.12.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 21784466

Country of ref document: EP

Kind code of ref document: A1