WO2021203291A1 - 无透镜显微成像系统、方法及生化物质检测系统、方法 - Google Patents

无透镜显微成像系统、方法及生化物质检测系统、方法 Download PDF

Info

Publication number
WO2021203291A1
WO2021203291A1 PCT/CN2020/083738 CN2020083738W WO2021203291A1 WO 2021203291 A1 WO2021203291 A1 WO 2021203291A1 CN 2020083738 W CN2020083738 W CN 2020083738W WO 2021203291 A1 WO2021203291 A1 WO 2021203291A1
Authority
WO
WIPO (PCT)
Prior art keywords
microbeads
image
light source
image sensor
microbead
Prior art date
Application number
PCT/CN2020/083738
Other languages
English (en)
French (fr)
Inventor
谢青
汪为茂
章文蔚
沈梦哲
Original Assignee
深圳华大生命科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大生命科学研究院 filed Critical 深圳华大生命科学研究院
Priority to EP20930394.0A priority Critical patent/EP4134725A4/en
Priority to US17/913,958 priority patent/US12099177B2/en
Priority to CN202080094159.8A priority patent/CN115004076B/zh
Priority to JP2022559628A priority patent/JP7478248B2/ja
Priority to PCT/CN2020/083738 priority patent/WO2021203291A1/zh
Publication of WO2021203291A1 publication Critical patent/WO2021203291A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/005Adaptation of holography to specific applications in microscopy, e.g. digital holographic microscope [DHM]

Definitions

  • This application relates to the field of biochemical substance detection, in particular to lensless microscopic imaging systems and methods in biochemical substance detection, and biochemical substance detection systems and methods.
  • a reagent capable of specifically capturing target macromolecules is attached to the solid surface.
  • These immobilized molecules can be used to capture target macromolecules from complex samples by various means such as hybridization (for example, in DNA, RNA-based assays) or antigen-antibody interactions (in immunoassays).
  • the detection molecule is incubated with the complex of the capture molecule and the target and binds to the complex, thereby emitting a signal, such as fluorescence or other electromagnetic signals. Then the amount of target is quantified by the intensity of the signal.
  • Multiplex assays can be performed by using multiple capture agents, each of which has specificity for different target macromolecules.
  • each type of capture agent is attached to a predetermined position on the chip.
  • the amount of multiple targets in a complex sample is determined by measuring the signal of the detection molecule at each location corresponding to one type of capture agent.
  • particles/magnetic beads are suspended in a measurement solution, and these particles/magnetic beads contain identification elements that can be embedded, printed or otherwise produced by one or more elements of the particles/magnetic beads.
  • Each type of capture agent is fixed to a particle with the same ID, and the signal emitted from the detection molecule on the surface of the particle with a specific ID reflects the amount of the corresponding target.
  • various particles/magnetic beads can be identified, so that the molecular signal detected by the capture agent can be correlated with the ID, and multiple determinations can be realized.
  • the present application provides a lensless microscopic imaging system, which is used for imaging microbeads with graphic coding
  • the lensless microscopic imaging system includes an illumination system and an imaging system
  • the illumination system includes an illumination light source and an excitation light source
  • the imaging system includes an image sensor
  • the illumination light source is used to emit illumination light to illuminate the microbeads to make the microbeads image on the image sensor
  • the excitation light source Used to emit excitation light to excite the microbeads to make the microbeads emit a specific signal
  • the image sensor is used to collect images of the microbeads and the specific signal to generate an image
  • the imaging system is not provided with a lens system .
  • the illumination light source illuminates the microbeads, so that the projection of the microbeads is projected on the image sensor for imaging.
  • the illuminating light emitted by the illuminating light source irradiates the microbeads to form interference fringes on the image sensor, and the interference fringes are collected by the image sensor.
  • the illumination light source is a monochromatic light source, or a monochromatic laser light source, or a monochromatic LED light source.
  • a pinhole is provided on the light path from the illumination light source to the microbead.
  • the illumination light source is used to emit the illumination light to illuminate the microbeads from a first orientation toward a second orientation
  • the excitation light source is used to emit the excitation light from the first orientation toward the second orientation Light
  • the illumination system further includes a total reflection device, the total reflection device includes a total reflection surface, and the total reflection surface is used to reflect the excitation light emitted by the excitation light source onto the microbeads.
  • the total reflection surface is arranged in the second orientation, and is used to reflect the excitation light from the second orientation toward the first orientation.
  • the illumination light source is used for emitting the illumination light from a first orientation toward a second orientation to illuminate the microbeads
  • the excitation light source is used for emitting the excitation from the second orientation toward the first orientation.
  • the filter device is arranged in front of the image sensor or the filter device is arranged on the image sensor.
  • the present application provides a lensless microscopic imaging method, the imaging method is used for imaging microbeads with image coding, the microbeads are used to capture specific biochemical substances, and the method includes:
  • the microbeads By receiving the microbeads between the illumination light source and the image sensor, the microbeads can be irradiated by the illumination light emitted by the illumination light source and imaged on the image sensor;
  • the specific biochemical substance captured by the microbeads is excited to emit a specific signal, or the biochemical substance generated during the capture process is excited to emit a specific signal;
  • the image sensor simultaneously collects the image of the microbeads and the image of the specific signal to generate at least two channels of images.
  • the illumination light emitted by the illumination light source irradiates the microbeads, so that the projection of the microbeads is projected on the image sensor.
  • the illuminating light emitted by the illuminating light source irradiates the beads to form interference fringes on the image sensor, and the interference fringes are collected by the image sensor.
  • this application provides a biochemical substance detection device, including:
  • the recognition and detection device is used to receive the image output by the image sensor, identify the microbeads in the image and the identification number of each microbead and the specific biochemical substance captured by each type of microbead In which, all magnetic beads with the same ID number are classified into the same category.
  • the identification and detection device includes an identification and detection system
  • the identification and detection system includes a bead identification module and a biochemical substance detection module
  • the bead identification module is used to identify the beads in the image and identify
  • the graphic code of each bead and the identification number of each bead are identified according to the permutation and combination of the graphic codes of each bead
  • the biochemical substance detection module is used to detect the emission of each type of bead in the image
  • the intensity of the specific signal and the amount of the specific biochemical substance captured by each type of microbeads are detected based on the intensity of the specific signal.
  • the recognition and detection system further includes an image reconstruction module configured to reconstruct the image output by the image sensor, and output the reconstructed image to the micro
  • the bead identification module allows the bead identification module to perform identification.
  • the image reconstruction module uses digital holographic reconstruction technology to reconstruct the image.
  • the recognition and detection system further includes a machine learning module, the machine learning module is used to automatically learn each recognition result of the recognition module and extract various feature values for the recognition module to perform subsequent recognition. .
  • the present application also provides a biochemical substance detection method, the biochemical substance detection method includes:
  • Receive the image identify the microbeads in the image, identify the identity number of each microbead, and detect the amount of specific biochemical substances captured by each type of microbead, wherein all magnetic beads with the same identity number are returned For the same category.
  • identifying the microbeads in the image and the identification number of each microbead and the amount of specific biochemical substances captured by each type of microbead further includes: identifying the microbeads in the image Of the microbeads, the graphic code to identify each bead, and the identification number of each bead according to the arrangement and combination of the graphic code of each bead, and the detection of the bead emitted by each type of microbead in the image The intensity of the specific signal and the amount of the specific biochemical substance captured by each type of microbeads are detected based on the intensity of the specific signal.
  • the biochemical substance detection method before “identifying the microbeads in the image and the identity number of each microbead and the amount of specific biochemical substances captured by each type of microbead", it further includes: The image output by the image sensor is reconstructed, or digital holographic reconstruction technology is used to reconstruct the image output by the image sensor.
  • biochemical substance detection method further includes: automatically learning various recognition results and detection results in the recognition and detection, and extracting various characteristic values.
  • the lensless microscopy imaging system, method, and identification and detection system replaces the traditional optical microscope for detecting pattern-encoded beads, and avoids the need for lens focusing when using traditional optical microscopes.
  • the imaging speed is faster during the process and the process of repeatedly shifting the field of view. It only requires image processing to achieve the optimal imaging results and achieve ultra-high resolution; because the optical lens system is omitted, the lensless microscopic imaging system is more compact as a whole. Lower cost; larger field of view, no need to move the field of view through components such as a sliding table, you can traverse all the graphic coded beads in the reaction vessel.
  • FIG. 1 is a schematic diagram of the structure of a biochemical substance detection system provided by Embodiment 1 of the present application.
  • FIG. 2 is a schematic diagram of the structure of the biochemical substance detection system provided in the second embodiment of the present application.
  • FIG. 3 is a schematic diagram of the structure of the biochemical substance detection system provided in the third embodiment of the present application.
  • FIG. 4 is a schematic diagram of the identification and detection device of the biochemical substance detection system provided in the fourth embodiment of the present application.
  • FIG. 5 is a schematic diagram of the identification and detection device of the biochemical substance detection system provided in the sixth embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for detecting biochemical substances provided in Example 7 of the present application.
  • Fluorescence reaction container 16 Processor 131, 431, 531
  • microbeads such as magnetic beads, mark opaque or fluorescent substances inside the microbeads, and engrave graphic codes of different depths, shapes and/or intervals around the bead, all or part of the graphic codes are combined
  • the identification number of the microbead is formed, and the identification number of the microbead can be obtained by identifying the graphic code engraved on the microbead and its combination after microscopic imaging, and the specific number can be obtained by exciting the fluorescent substance to emit light and detecting the fluorescence intensity.
  • the amount of biochemical substances such as magnetic beads, mark opaque or fluorescent substances inside the microbeads, and engrave graphic codes of different depths, shapes and/or intervals around the bead, all or part of the graphic codes are combined
  • the identification number of the microbead is formed, and the identification number of the microbead can be obtained by identifying the graphic code engraved on the microbead and its combination after microscopic imaging, and the specific number can be obtained by exciting the fluorescent substance to emit light
  • FIG. 1 is a schematic diagram of the biochemical substance detection system in the first embodiment of this application.
  • the biochemical substance detection system 1 is used to detect the graphic coded microbeads to obtain the amount of specific biochemical substances captured by the graphic coded microbeads.
  • the biochemical substance detection system includes a lensless microscopic imaging system 11 and an identification and detection device 13 .
  • the lensless microscopic imaging system 11 is used to simultaneously obtain images of the microbeads and the signals emitted by the microbeads by performing microscopic imaging of the microbeads, and the identification and detection device 13 is used to identify the images from the images.
  • the microbeads and the identification numbers of the microbeads, and the amount of specific biochemical substances captured by each type of microbeads are detected from the image.
  • the lensless microscopic imaging system 11 includes an illumination system 11 a and an imaging system 11 b, the illumination system 11 a includes an illumination light source 111 and an excitation light source 112, and the imaging system 11 b includes an image sensor 113.
  • the illuminating light source 111 is used to emit illuminating light to illuminate the microbeads 15 so as to project them onto the image sensor 113 for imaging.
  • the excitation light source 112 is used to emit excitation light to illuminate the microbeads 15, and the emission signals of specific biochemical substances captured by the excitation microbeads 15 are projected onto the image sensor 113 for imaging.
  • a filter device 114 that matches the wavelength of the excitation light is further provided in front of the image sensor 113, and the filter device 114 may be a filter or a filter.
  • the imaging system 11b is not provided with a lens system, that is, no lens system is provided between the image sensor 113 and the bead 15.
  • the microbead 15 is a pattern coded magnetic bead made of transparent material.
  • the microbeads 15 are placed in the fluorescence reaction container 16.
  • multiple types of microbeads 15 are placed in the fluorescence reaction container 16.
  • the microbeads 15 have the same ID number, and different types of microbeads 15 have different ID numbers.
  • Each type of microbead 15 captures specific biochemical substances, and different types of microbeads 15 capture different biochemical substances.
  • the specific biochemical substance captured by the microbead 15 is excited by the excitation light emitted by the excitation light source 112 to generate a fluorescent signal.
  • the intensity of the fluorescent signal emitted by each type of microbeads 15 the amount of specific biochemical substances captured by the type of microbeads 15 can be obtained.
  • the bead 15 is used as a boundary to distinguish the first orientation and the second orientation
  • the illumination light source 111 and the excitation light source 112 are both arranged in the first orientation of the bead 15, and the filter 114 and the image sensor 113 are arranged in the microbead.
  • the illumination light source 111 is a point light source or a light source array with limited spatial coherence (ie, low spatial coherence).
  • the imaging method implemented by the lensless microscopic imaging system 11 is as follows: the illumination light source 111 is activated to illuminate the beads 15 from the first orientation toward the second direction, the projection of the beads 15 is projected onto the image sensor 113, and the excitation light source is activated at the same time 112 emits excitation light from the first orientation toward the second direction to illuminate the microbeads 15, causing the microbeads 15 to emit fluorescent signals and project them onto the image sensor 113.
  • the image sensor 113 collects the projection and fluorescent signals of the microbeads 15 to generate the microbeads. 15 images and images of fluorescent signal images.
  • the image is output to the recognition and detection device 13, and the recognition and detection device 13 recognizes the image to obtain the identity number of each type of microbead 15 and detects the amount of specific biochemical substances captured by each type of microbead 15.
  • the identification and detection device 13 is a computer device, and the identification and detection device 13 includes a processor 131, a memory 132, and a computer program that is stored in the memory 132 and can run on the processor 131, such as identification and detection.
  • System 134, the identification and detection system 134 is divided into a plurality of functional modules according to the functions it performs, for example, a bead identification module 135 and a biochemical substance detection module 136.
  • the bead identification module 135 is used to identify the bead and the identification number of the bead in the image. Specifically, the bead recognition module 135 recognizes the bead according to the pre-modeling or preset feature value, and then recognizes the graphic code of the bead according to the pre-modeling or preset feature value, and finally according to the graphic code of the bead The permutation and combination of the codes identify the identification number of the beads.
  • the biochemical substance detection module 136 is used to detect the intensity of the signal corresponding to each type of microbead in the image, and detect the amount of specific biochemical substance captured by each type of microbead according to the intensity of the signal.
  • the biochemical substance detection system 1 and the detection method thereof in this embodiment are suitable for detecting graphic coded beads with a size of 500 ⁇ -1 mm and a distance between the feature points of the graphic code of 50 ⁇ m or more. Assuming that the distance between the illuminating light source 111 and the microbead 15 is z1, the distance between the microbead 15 and the image sensor 113 is z2, and the propagation distance z2 of the light field carrying the information of the microbead 15 is captured by the image sensor 113.
  • the image sensor The pixel size of 113 is generally relatively large (currently the smallest pixel size is about 0.8 ⁇ m), so in this embodiment, the image sensor 113 collects projection imaging (using bead projection imaging, called projection imaging, the same below).
  • the identification and detection device 13 can only rely on the projection information of the bead 15 to analyze the identity number of the bead 15 without reconstructing the microbead 15 from the acquired under-sampled image. Focusing information of Bead 15.
  • FIG. 2 is a schematic diagram of the biochemical substance detection system in the second embodiment of this application.
  • the biochemical substance detection system 2 is used to detect the graphic coded microbeads to obtain the amount of specific biochemical substances captured by the graphic coded microbeads.
  • the biochemical substance detection system 2 includes a lensless microscopic imaging system 21 and an identification and detection device twenty three.
  • the lensless microscopic imaging system 21 is used for obtaining images of the microbeads and the signals emitted by the microbeads by performing microscopic imaging of the microbeads, and the identification and detection device 23 is used for identifying the microbeads from the image And the identification number of the microbeads and the amount of specific biochemical substances captured by each type of microbeads.
  • the lensless microscopic imaging system 21 includes an illumination system 21a and an imaging system 21b.
  • the illumination system 21a includes an illumination light source 211 and an excitation light source 212.
  • the imaging system 21b includes an image sensor 213 and a filter disposed in front of the image sensor 213. ⁇ 214 ⁇ Light device 214.
  • the illuminating light source 211 adopts a point light source or a light source array with limited spatial coherence, and is used to emit illuminating light to illuminate the microbeads 25 so as to project them onto the image sensor 213 for imaging.
  • the beads 25 are made of opaque materials, or the wavelength of light that the beads 25 can transmit is not within the detection range of the image sensor 213.
  • the first orientation and the second orientation are distinguished by the bead 25, the illumination light source 211 is arranged in the first orientation, the excitation light source 212, the image sensor 213 and the filter device 214 are arranged in the second orientation, and the illumination light emitted by the illumination light source 211 is from The first direction illuminates the beads 25 toward the second direction, so that the projection of the beads 25 is projected onto the image sensor 213.
  • the excitation light source 212 illuminates the microbeads 25 from the second orientation toward the first orientation, and the excitation microbeads 25 generate fluorescent signals and project them onto the image sensor 213.
  • the imaging system 21b is not provided with a lens system, that is, there is no lens system between the image sensor 213 and the beads 25, and the image sensor 213 directly collects the projection and fluorescence signals of the beads 25, and generates images and fluorescence signals including the beads 25
  • the image of the video is output to the recognition and detection device 23, which recognizes the image to obtain the identity number of each type of microbeads 25 and detects the amount of specific biochemical substances captured by each type of microbeads 25.
  • the configuration of the identification and detection device 23 can refer to the first embodiment, which will not be repeated here.
  • the biochemical substance detection system 2 and the detection method in this embodiment are also applicable to the detection of graphic coded beads with a size of 500 ⁇ -1 mm and a distance between the feature points of the graphic code of 50 ⁇ m or more.
  • FIG. 3 is a schematic diagram of the biochemical substance detection system in the third embodiment of this application.
  • the biochemical substance detection system 3 is used to detect the amount of specific biochemical substances captured by the graphic coded beads by detecting the pattern coded beads.
  • the biochemical substance detection system 3 includes a lensless microscopic imaging system 31 and identification and detection. ⁇ 33 ⁇ Device 33.
  • the lensless microscopic imaging system 31 is used to obtain the identity number of the microbeads and the image of the signal emitted by the microbead by performing microscopic imaging of the microbeads
  • the identification and detection device 33 is used to obtain the image from the image Identify the microbeads and their ID numbers and detect the amount of specific biochemical substances captured by each type of microbeads.
  • the lensless microscopic imaging system 31 includes an illumination system 31a and an imaging system 31b.
  • the illumination system 31a includes an illumination light source 311, an excitation light source 312, and a total reflection device 317.
  • the imaging system 31b includes an image sensor 313 and a filter device. 314.
  • the illumination light source 311 adopts a point light source or a light source array with limited spatial coherence.
  • the bead 35 is a graphic coded bead made of an opaque material, or the wavelength of light that the bead 35 can project is not within the detection range of the image sensor 313.
  • the first position and the second position are distinguished by the bead 35, the illumination light source 311 and the excitation light source 312 are arranged in the first position, and the image sensor 313, the filter device 314 and the total reflection device 317 are arranged in the second position.
  • the filter device 314 is arranged in front of the image sensor 313, and the total reflection device 317 is arranged in front of the filter device 314.
  • the illuminating light source 311 emits illuminating light from the first orientation to the second orientation to illuminate the microbeads 35, so that the microbeads 35 are projected onto the image sensor 313.
  • the excitation light source 312 emits excitation light from the first orientation to the second orientation to illuminate the microbeads 35, so that the microbeads 35 emit fluorescence signals to the image sensor 313.
  • the total reflection device 317 is arranged behind the bead 35, and the total reflection device 317 has a total reflection surface 3171.
  • the total reflection surface 3171 reflects the excitation light wavelength and transmits the illuminating light, so that the excitation light is irradiated to the side of the microbead 35 facing the image sensor 313, so that the capture agent on this side generates a fluorescent signal.
  • the fluorescent signal emitted from the bead 35 is projected to the image sensor 313, and an image is imaged on the image sensor 313.
  • the image sensor 313 generates an image including the image of the microbead 35 and the image of the fluorescence signal.
  • the image is output to the recognition and detection device 33, and the recognition and detection device 33 recognizes the image to obtain the identity number of each type of bead 35 and detects the amount of specific biochemical substances captured by each type of bead 35.
  • the configuration of the identification and detection device 33 can refer to the first embodiment, which will not be repeated here.
  • all parts of the total reflection device 317 are not required to be located behind the bead 35, and it is only required that at least a part of the total reflection surface 3171 thereof is located behind the bead 35.
  • the distance z2 between the bead 35 and the image sensor 313 is a key factor in imaging quality.
  • the excitation light source 32 is set in the first position in this embodiment, which can reduce the distance z2 between the bead 35 and the image sensor 33. , So as to make the projection of the microbead 35 and the imaging of the fluorescence signal clearer.
  • the biochemical substance detection system 3 and the detection method in this embodiment are also suitable for detecting pattern coded magnetic beads with a size of 500 ⁇ -1 mm and a characteristic point distance of the pattern code above 50 ⁇ m.
  • the lensless microscopy imaging system uses an illumination source with good spatial and temporal coherence (that is, high spatial and temporal coherence) to illuminate the beads to form interference fringes on the image sensor, and the image The sensor collects the interference fringes and the fluorescent signal generated under the excitation of the excitation light source, generates an image and transmits it to the identification and detection device.
  • the identification and detection device 43 includes a processor 431, a memory 432, and a computer program stored in the memory 432 and capable of running on the processor 431, such as an identification and detection system 434.
  • the recognition and detection system 434 includes a bead recognition module 435, a biochemical substance detection module 436, and an image reconstruction module 437.
  • the image reconstruction module 437 is used to perform image reconstruction on the image output by the image sensor to obtain a reconstructed higher resolution image
  • the bead recognition module 435 is used to recognize the reconstructed image.
  • the biochemical substance detection module 436 is used to detect the intensity of the signal corresponding to each type of microbead in the reconstructed image, and detect the amount of specific biochemical substance captured by each type of microbead according to the intensity of the signal.
  • the interference fringes are calculated by the image reconstruction module 437 to obtain the intensity information and phase information of the beads on the gathering plane, so as to obtain the identity number of the beads.
  • the focusing plane refers to the plane where a clear image of the microbeads can be obtained, and is an imaginary plane, not a focusing plane in the sense of a traditional lens.
  • the image U (x, y) collected by the image sensor is the light (object light) U 0 (x, y) scattered on the beads and the reference light U R ( Interference occurs between x, y):
  • AR and A 0 (x, y) are the amplitude information of the reference light and the object light (beads) respectively; It is the phase information of the object light (beads).
  • the image reconstruction module 437 uses digital holographic reconstruction technology to restore the object light (beads) through the light intensity information I (x, y) directly collected by the image sensor. Amplitude and phase information.
  • the transparent substrate refers to the medium between the total reflection device and the filter device.
  • the image reconstruction module 437 uses digital holographic reconstruction technology to reconstruct the image obtained by the image sensor through an algorithm.
  • the reconstruction steps may mainly include: (1) Phase recovery or conjugate image elimination, which is mainly used to eliminate the diffraction effect caused by the distance between the microbead and the sensor.
  • (2) Pixel super-resolution is mainly used to overcome the reduction in resolution caused by the pixel size of the image sensor, so as to achieve lensless sub-pixel resolution.
  • These two steps can be carried out in sequence, or the phasor propagation method can be used to realize the two steps at the same time.
  • the phasor propagation method can realize the pixel super-resolution and phase recovery of the lensless microscope image, and then realize the image reconstruction.
  • the spatial resolution of the reconstructed image can be further improved by adding a point spread function deconvolution method based on the phasor propagation method.
  • the technical means that can be used to obtain an illumination light source with good spatial and temporal coherence are as follows:
  • the arrangement position of the illumination light source and the arrangement positions and functions of other components in the lensless microscopy imaging system in this embodiment can refer to any of the foregoing embodiments, for example, for the transparent material micro-imaging system.
  • an illumination light source with better spatial and temporal coherence is used to illuminate the beads to generate interference fringes, and then Using digital holographic reconstruction imaging technology to obtain the identification number of the microbeads, the resolution is higher and the recognition is more accurate.
  • the configuration of the lensless microscopic imaging system in this embodiment can refer to Embodiments 1 to 3, and the difference lies mainly in the identification and detection device and the imaging method.
  • Fourier stack imaging is used to replace the above-mentioned projection imaging method to identify the identity number of the beads.
  • the excitation light source is used to excite the beads to emit fluorescent signals, and the fluorescent signals are collected by the image sensor. Finally, it is recognized by a specific computer device to obtain the amount of the captured specific molecule.
  • each step in order to identify the graphic code of the microbeads, and therefore the identification number of the microbeads, each step needs to be accurately modeled.
  • the above-mentioned "each step” generally includes steps such as the placement of optical elements, the modeling of light sources and illumination, the modeling of the detected object, and the modeling of the imaging process.
  • the biochemical substance detection system in the embodiment in addition to performing biochemical substance detection in the same manner as any of the biochemical substance detection systems in the first to fifth embodiments above, the biochemical substance detection system in the embodiment also includes a machine learning function for automatic learning Each test result extracts different characteristic values, which can be used by the biochemical substance detection system for subsequent detection.
  • the identification and detection device 53 includes a processor 531, a memory 532, and a computer program stored in the memory 532 and capable of running on the processor 531, such as an identification and detection system 534.
  • the identification and detection system 534 includes a bead identification module 535, a biochemical substance detection module 536, and a machine learning module 537.
  • the bead identification module 535 and the biochemical substance detection module 536 respectively have substantially the same functions as the bead identification module 135 and the biochemical substance detection module 136 in the first embodiment, and will not be repeated here.
  • the machine learning module 537 is used for applying machine learning methods.
  • Supervised learning methods and unsupervised learning methods can be used, and a large number of data sets are used for training to achieve the extraction of a large number of feature values encoding microbeads and their images.
  • the biochemical substance detection system is used to automatically learn each detection result to obtain the characteristic value, thereby avoiding the precise modeling of each step in the entire imaging process, and realizing the recognition, segmentation, and segmentation of microbeads under a large field of view. Extraction and counting, as well as the identification and counting of the identification number on the beads.
  • the supervised learning method roughly includes the processes of data preprocessing, neural network construction, and network training and saving the optimal solution.
  • FIG. 6 is a schematic flowchart of the biochemical substance detection method provided by the seventh embodiment of this application.
  • the order of some steps in the flowchart can be changed, and some steps can be omitted.
  • only the parts related to the embodiments of the present application are shown.
  • the biochemical substance detection method is used to image microbeads with image coding, and the microbeads are used to capture specific biochemical substances.
  • the biochemical substance detection methods include lensless microscopic imaging methods and identification and detection methods.
  • lensless microscopy imaging methods include:
  • Step S61 by receiving the microbeads between the illumination light source and the image sensor, the microbeads can be irradiated by the illumination light emitted by the illumination light source and imaged on the image sensor.
  • step S62 the illuminating light source emits the illuminating light by activating the illuminating light source.
  • Step S63 by starting the excitation light source to emit excitation light to irradiate the microbeads, the specific biochemical substance captured by the microbeads is excited to emit a specific signal, or the biochemical substance generated during the capture process is excited to emit a specific signal.
  • the above capture process generally triggers a series of biochemical reaction processes, including but not limited to one-step method, sandwich method, quenching method, etc.
  • step S64 the image of the microbead and the image of the specific signal are respectively collected by the image sensor to generate images of at least two channels.
  • the identification and detection methods include:
  • Step S65 receiving the image, identifying the microbeads in the image, identifying the identity number of each microbead, and detecting the amount of specific biochemical substances captured by each type of microbead, wherein all the microbeads with the same identity number Magnetic beads are classified into the same category.
  • Step S65 can also be specifically: receiving the image, one of the channels recognizes the microbeads in the image and the identification number of each microbead, the position and intensity of the fluorescent signal are detected in the other channel, and the The fluorescent signal position is registered with the bead position, or the two-channel image is registered as a whole, and the identity number of each bead and the corresponding capture of the specific signal and the amount of the signal are detected, and they will have the same identity All the numbered microbeads are classified into the same type, and the signal intensity and distribution of this type of microbeads after multiple samplings can be obtained through the signals corresponding to multiple microbeads in the same type of microbeads.
  • the lensless microscopic imaging method in the biochemical substance detection method further includes: configuring the illumination light source as a point light source or a light source array with low spatial coherence.
  • the lensless microscopic imaging method in the biochemical substance detection method further includes: illuminating the microbeads with the illumination light emitted by the illumination light source, so that the projection of the microbeads is projected on the image On the sensor.
  • the lensless microscopic imaging method in the biochemical substance detection method further includes: configuring the illumination light source so that the illumination light source has high temporal coherence and high spatial coherence.
  • the lensless microscopic imaging method in the biochemical substance detection method further includes: illuminating the microbeads with the illumination light emitted by the illumination light source to form interference fringes on the image sensor, and The interference fringes are collected by the image sensor.
  • the identification and detection methods in the biochemical substance detection method are specifically: identifying the microbeads in the image, identifying the graphic code of each bead, and recognizing the graphic code of each microbead.
  • the permutation and combination conditions identify the identity number of each microbead, and detect the intensity of the specific signal emitted by each type of microbead in the image, and detect the specific signal captured by each type of microbead according to the intensity of the specific signal The amount of specific biochemical substances.
  • the identification in the biochemical substance detection method further includes: reconstructing the image output by the image sensor, or reconstructing the image output by the image sensor using digital holographic reconstruction technology.
  • the identification and detection method in the biochemical substance detection method further includes: automatically learning various identification results and detection results obtained in the identification and detection, and extracting various feature values.
  • the filter device can be installed on the image sensor so that the pixels of the filter device correspond to the pixels of the image sensor one by one, thereby reducing the amount of beads from the image sensor.
  • the lensless microscopic imaging system, method, and biochemical substance detection system and method replace the traditional optical microscope to detect pattern-encoded beads, and avoid the lens necessary when using traditional optical microscopes.
  • the focusing process and the process of repeatedly shifting the field of view, the imaging speed is faster, and only the image processing is required to achieve the optimal imaging result and achieve ultra-high resolution; because the optical lens system is omitted, the lensless microscopic imaging system is more compact as a whole , The cost is lower; the field of view is larger, no need to move the field of view through the sliding table and other parts, you can traverse all the graphic coded beads in the reaction vessel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种无透镜显微成像系统(11),用于对具有图形编码的微珠(15)成像,包括照明系统(11a)与成像系统(11b),照明系统(11a)包括照明光源(111)与激发光源(112);成像系统(11b)包括图像传感器(113);照明光源(111)用于发出照明光照射微珠(15),使其投影至图像传感器(113)上成像;激发光源(112)用于发出激发光激发微珠(15)使微珠(15)发出特定信号,图像传感器(113)用于采集微珠(15)及特定信号的影像以生成图像,成像系统(11)内未设置透镜系统。提升微珠(15)检测效率。

Description

无透镜显微成像系统、方法及生化物质检测系统、方法 技术领域
本申请涉及生化物质检测领域,尤其涉及生化物质检测中的无透镜显微成像系统、方法及生化物质检测系统、方法。
背景技术
目前,复杂大分子样品的许多测定一般由两个步骤组成。在第一步骤中,将能够特异性地捕获目标大分子的试剂附接至固相表面。这些固定的分子可用于通过诸如杂交(例如,在基于DNA、RNA的测定中)或抗原-抗体相互作用(在免疫测定中)的各种方式从复杂样品中捕获目标大分子。在第二步骤中,检测分子与捕获分子和靶标的复合物一起孵育并且结合至所述复合物,从而发射信号,如荧光或其他电磁信号。之后通过信号的强度来定量靶标的量。
多重测定可通过利用多种捕获剂来进行,每种捕获剂对不同的目标大分子具有特异性。在基于芯片的阵列多重测定中,使每种类型的捕获剂附接至芯片上的预定位置。通过在对应于一种类型的捕获剂的每个位置处测量检测分子的信号来测定复杂样品中的多重靶标的量。在悬浮阵列多重测定中,微粒/磁珠悬浮于测定溶液中,这些微粒/磁珠含有可通过微粒/磁珠的一个或多个元件嵌入、印刷或以其他方式产生的辨识元件。每种类型的捕获剂被固定至具有相同ID的颗粒,并且从具有特定ID的颗粒表面上检测分子发射的信号反映相应的靶标的量。通过显微镜和图像识别算法,能够把各种微粒/磁珠识别出来,从而将捕获剂检测到的分子信号与ID关联起来,实现多重测定。
微粒/磁珠的尺寸越小,单次检测中获得的ID数量就越多,同时检测需要的显微镜放大倍数也就越大。这就要求成像系统实现大视场、高 分辨率成像。传统光学显微镜由于其光学设计原理限制,空间带宽积一般总是限制在百万像素量级,从而无法同时兼顾高分辨率与大视场。
总之,对于一般的显微镜,虽然能够做到微珠/磁珠的清晰成像和相应的信号(如荧光信号)成像,但是受显微镜的视场所限,不能一次看完全部显微成像视野中的微珠/磁珠,而要遍历所有种类的微芯片微珠/磁珠,或保证同种类的微珠/磁珠有足够数量,必须反复移动视野;且传统的光学显微镜,必须有透镜对焦过程,不但费时费工,而且不容易找到焦面;由于要具有光学透镜系统及移动视野的滑台,传统光学显微镜成本高且体积大。
发明内容
有鉴于此,有必要提供一种无透镜显微成像系统、方法及生化物质检测系统、方法,以解决现有技术中的至少一个存在的问题。
第一方面,本申请提供一种无透镜显微成像系统,所述无透显微成像系统用于对具有图形编码的微珠成像,所述无透镜显微成像系统包括照明系统与成像系统,所述照明系统包括照明光源与激发光源,所述成像系统包括图像传感器,所述照明光源用于发出照明光照射所述微珠使所述微珠在所述图像传感器上成像,所述激发光源用于发出激发光激发所述微珠使所述微珠发出特定信号,所述图像传感器用于采集所述微珠及所述特定信号的影像以生成图像,所述成像系统内未设置透镜系统。
进一步地,所述照明光源照射所述微珠,使所述微珠的投影投射在所述图像传感器上成像。
进一步地,所述照明光源发出的照明光照射所述微珠,在所述图像传感器上形成干涉条纹,所述干涉条纹被所述图像传感器采集。
进一步地,所述照明光源为单色光源、或单色激光光源、或单色LED光源。
进一步地,所述照明光源至所述微珠的光路上设有针孔。
进一步地,所述照明光源用于从第一方位朝向第二方位发射所述照明光照射所述微珠,所述激发光源用于从所述第一方位朝向所述第二方位发射所述激发光。
进一步地,所述照明系统还包括全反射装置,所述全反射装置包括一全反射表面,所述全反射表面用于将所述激发光源发出的所述激发光反射至所述微珠上。
进一步地,所述全反射表面设置于所述第二方位,用于从所述第二方位朝向所述第一方位反射所述激发光。
进一步地,所述照明光源用于从第一方位朝向第二方位发射所述照明光照射所述微珠,所述激发光源用于从所述第二方位朝向所述第一方位发射所述激发光。
进一步地,还包括滤光装置,所述滤光装置设置于所述图像传感器之前或者所述滤光装置设置于所述图像传感器上。
第二方面,本申请提供一种无透镜显微成像方法,所述成像方法用于对带有图像编码的微珠进行成像,所述微珠用于捕获特定生化物质,所述方法包括:
通过接收所述微珠于照明光源与图像传感器之间,使所述微珠能被所述照明光源发出的照明光照射并成像于所述图像传感器上;
通过启动所述照明光源使所述照明光源发出所述照明光;
通过启动激发光源发出激发光照射所述微珠,激发所述微珠捕获的所述特定生化物质发出特定信号,或者,激发捕获过程中产生的生化物质发出特定信号;
通过所述图像传感器同时采集所述微珠的影像及所述特定信号的影像以生成至少两通道的图像。
进一步地,在所述无透镜显微成像方法中,所述照明光源发出的照明光照射所述微珠,使所述微珠的投影投射于所述图像传感器上。
进一步地,在所述无透镜显微成像方法中,所述照明光源发出的照 明光照射所述微珠,在所述图像传感器上形成干涉条纹,所述干涉条纹被所述图像传感器采集。
第三方面,本申请提供一种生化物质检测装置,包括:
上述的无透镜显微成像系统;及
识别及检测装置,所述识别及检测装置用于接收所述图像传感器输出的图像,识别所述图像中的微珠及每一微珠的身份编号及每类微珠所捕获的特定生化物质的量,其中,具有相同身份编号的所有磁珠归为同一类。
进一步地,所述识别及检测装置包括识别及检测系统,所述识别及检测系统包括微珠识别模块与生化物质检测模块,所述微珠识别模块用于识别所述图像中的微珠、识别每一微珠的图形编码、及根据每一微珠的图形编码的排列组合情况识别出每一微珠的身份编号,所述生化物质检测模块用于检测所述图像中每类微珠发出的所述特定信号的强度、及根据所述特定信号的强度检测出每类微珠捕获的所述特定生化物质的量。
进一步地,所述识别及检测系统还包括图像重构模块,所述图像重构模块用于对所述图像传感器输出的所述图像进行重构,并将重构后的图像输出至所述微珠识别模块以便所述微珠识别模块进行识别。
进一步地,所述图像重构模块采用数字全息重构技术重构所述图像。
进一步地,所述识别及检测系统还包括机器学习模块,所述机器学习模块用于自动学习所述识别模块每次的识别结果并提炼各类特征值,以供所述识别模块后续执行识别使用。
第四方面,本申请还提供一种生化物质检测方法,所述生化物质检测方法包括:
执行上述的无透镜显微成像方法以输出图像;及
接收所述图像,识别所述图像中的微珠、识别每一微珠的身份编号、及检测出每类微珠所捕获的特定生化物质的量,其中,具有相同身份编号的所有磁珠归为同一类。
进一步地,所述生化物质检测方法中,“识别所述图像中的微珠及每一微珠的身份编号及每类微珠所捕获的特定生化物质的量”进一步包括:识别所述图像中的微珠、识别每一微珠的图形编码、及根据每一微珠的图形编码的排列组合情况识别出每一微珠的身份编号,及检测所述图像中每类微珠发出的所述特定信号的强度、及根据所述特定信号的强度检测出每类微珠捕获的所述特定生化物质的量。
进一步地,所述生化物质检测方法中,在“识别所述图像中的微珠及每一微珠的身份编号及每类微珠所捕获的特定生化物质的量”之前还包括:对所述图像传感器输出的所述图像进行重构,或者采用数字全息重构技术对所述图像传感器输出的所述图像进行重构。
进一步地,所述生化物质检测方法还包括:对所述识别及检测中的各类识别结果、检测结果进行自动学习并提炼各类特征值。
本申请实施方式提供的无透镜显微成像系统、方法及识别及检测系统生化物质检测系统、方法,取代了传统光学显微镜对图形编码微珠进行检测,避免了使用传统光学显微镜时必须的透镜对焦过程和反复转移视场的过程,成像速度更快,仅需要通过图像处理实现最优化的成像结果,达到超高分辨率;由于省去了光学透镜系统,无透镜显微成像系统整体更紧凑,成本更低;视野更大,不需要通过滑台等部件移动视野,即可遍历反应容器中所有的图形编码微珠。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的生化物质检测系统的构成示意图。
图2是本申请实施例二提供的生化物质检测系统的构成示意图。
图3是本申请实施例三提供的生化物质检测系统的构成示意图。
图4是本申请实施例四提供的生化物质检测系统的识别及检测装置的示意图。
图5是本申请实施例六提供的生化物质检测系统的识别及检测装置的示意图。
图6是本申请实施例七提供的一种生化物质检测方法的流程示意图。
如下具体实施方式将结合上述附图进一步说明本申请。
主要元件符号说明
生化物质检测  1、2、3          照明系统        11a、21a、31a
系统
无透镜显微成  11、21、31       成像系统        11b、21b、31b
像系统
识别及检测装  13、23、33、43、 照明光源        111、211、311
置            53
激发光源      112、212、312    图像传感器      113、213、313
微珠          15、25、35       滤光装置        114、214、314
荧光反应容器  16               处理器          131、431、531
存储器        132、432、532    识别及检测系统  134、434、534
微珠识别模块  135、435、535    生化物质检测模  136、436、536
                               块
全反射装置    317              全反射表面      3171
图像重构模块  437              机器学习模块    537
步骤          S61-S65
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案 进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本文所使用的术语“及/或”包括一个或多个相关的所列项目的所有的和任意的组合。
目前一些微珠,如磁珠,是将不透明物质或荧光物质标记在微珠内部,而在微珠的四周刻制不同深度、不同形状及/或不同间隔的图形编码,所有或者部分图形编码组合形成微珠的身份编号,通过显微成像后识别刻制于微珠上的图形编码及其组合,即可获得微珠的身份编号,而通过激发荧光物质发光、检测荧光强度,即可获得特定生化物质的量
实施例一
请参阅图1所示,为本申请第一种实施方式中的生化物质检测系统的示意图。所述生化物质检测系统1用于对图形编码微珠进行检测以获得图形编码微珠捕获的特定生化物质的量,所述生化物质检测系统包括无透镜显微成像系统11与识别及检测装置13。所述无透镜显微成像系统11用于通过对微珠进行显微成像以同时获得微珠及微珠发射的信号的影像,所述识别及检测装置13用于从所述影像中识别所述微珠及所述微珠的身份编号、及从所述影像中检测出每类微珠所捕获的特定生化物质的量。
所述无透镜显微成像系统11包括照明系统11a与成像系统11b,所述照明系统11a包括照明光源111与激发光源112;所述成像系统11b包括图像传感器113。所述照明光源111用于发出照明光照射微珠15,使其投影至图像传感器113上成像。所述激发光源112用于发出激发光照射微珠15、激发微珠15捕获的特定生化物质发射信号投射至图像传感器113上成像。为防止部分激发光泄露至图像传感器113,在本实施 方式中,所述图像传感器113前还设置了与激发光波长相匹配的滤光装置114,所述滤光装置114可以是滤波器或滤波片。所述成像系统11b未设置透镜系统,也就是说,所述图像传感器113与微珠15之间未设置透镜系统。
在本实施方式中,微珠15为透明材质的图形编码磁珠。微珠15被放置于荧光反应容器16内,通常,为实现多重测定,所述荧光反应容器16内放置多类微珠15,每类微珠15具有相同的图形编码排列顺序,因此,每类微珠15具有相同的身份编号,不同类微珠15具有不同的身份编号。每类微珠15捕获特定生化物质,不同类微珠15捕获不同生化物质。在一类微珠15捕获了特定生化物质后,微珠15捕获的特定生化物质被激发光源112发出的激发光激发产生荧光信号。通过检测每类微珠15发出的荧光信号的强度,即可获得该类微珠15捕获的特定生化物质的量。
在本实施方式中,以微珠15为界区分第一方位与第二方位,照明光源111与激发光源112均设置于微珠15的第一方位,滤光装置114与图像传感器113设置于微珠15的第二方位。照明光源111为空间相干性有限(即低空间相干性)的点光源或光源阵列。采用所述无透镜显微成像系统11实施的成像方法如下:启动照明光源111从第一方位朝向第二方向照射微珠15,使微珠15的投影投射至图像传感器113上,同时启动激发光源112从所述第一方位朝向第二方向发射激发光照射微珠15,使微珠15发出荧光信号投射至图像传感器113上,图像传感器113采集微珠15的投影及荧光信号,生成包括微珠15影像与荧光信号影像的图像。所述图像输出至所述识别及检测装置13,所述识别及检测装置13识别所述图像获得每类微珠15的身份编号及检测出每类微珠15所捕获的特定生化物质的量。具体地,所述识别及检测装置13为计算机装置,所述识别及检测装置13包括处理器131、存储器132及存储于存储器132中且可在处理器131上运行的计算机程序,如识别及检测系统134,所述 识别及检测系统134根据其所执行功能被切分为多个功能模块,例如,微珠识别模块135及生化物质检测模块136。其中,所述微珠识别模块135用于识别所述图像中的微珠及微珠的身份编号。具体地,所述微珠识别模块135根据预先的建模或预先设置的特征值识别微珠,再根据预先的建模或预先设置的特征值识别微珠的图形编码,最后根据微珠的图形编码的排列组合识别出微珠的身份编号。所述生化物质检测模块136用于检测出所述图像中对应每类微珠的信号的强度,并根据所述信号的强度检测出每类微珠捕获的特定生化物质的量。
本实施方式中的生化物质检测系统1及其检测方法适用于检测大小为500μ-1mm、图形编码的特征点距离在50μm以上的图形编码微珠。假设照明光源111到微珠15的距离为z1,微珠15到图像传感器113的距离为z2,携带微珠15信息的光场传播距离z2被图像传感器113捕获,由于现在的半导体工艺,图像传感器113的像素尺寸一般都比较大(目前最小的像素尺寸大概是0.8μm),所以本实施方式中图像传感器113采集投影式成像(利用微珠投影成像,称投影式成像,以下同)时存在像素化,而且直接获得的是微珠15的离焦信息,识别及检测装置13可仅依赖微珠15的投影信息分析微珠15的身份编号而不需从采集的欠采样图像中重构出微珠15的聚焦信息。
实施例二
请参阅图2所示,为本申请第二种实施方式中的生化物质检测系统的示意图。所述生化物质检测系统2用于对图形编码微珠进行检测以获得图形编码微珠捕获的特定生化物质的量,所述生化物质检测系统2包括无透镜显微成像系统21与识别及检测装置23。所述无透镜显微成像系统21用于通过对微珠进行显微成像以同时获得微珠及微珠发射的信号的影像,所述识别及检测装置23用于从所述影像中识别微珠及微珠的身份编号及检测出每类微珠所捕获的特定生化物质的量。
所述无透镜显微成像系统21包括照明系统21a与成像系统21b,所 述照明系统21a包括照明光源211与激发光源212,所述成像系统21b包括图像传感器213及设置于图像传感器213之前的滤光装置214。所述照明光源211采用空间相干性有限的点光源或光源阵列,用于发出照明光照射微珠25,使其投影至图像传感器213上成像。本实施方式中,微珠25采用不透明材质,或者,所述微珠25所能透射的光波长不在图像传感器213的探测范围内。以微珠25为界区分第一方位与第二方位,照明光源211设置于第一方位,激发光源212、图像传感器213及滤光装置214设置于第二方位,照明光源211出射的照明光从第一方位朝向第二方位照射微珠25,使微珠25的投影投射至图像传感器213上。同时激发光源212从第二方位朝向第一方位照射微珠25,激发微珠25产生荧光信号投射至图像传感器213上。成像系统21b中未设置透镜系统,也就是说,图像传感器213与微珠25之间未设置透镜系统,图像传感器213直接采集微珠25的投影及荧光信号,生成包括微珠25影像与荧光信号影像的图像。所述图像输出至识别及检测装置23,所述识别及检测装置23识别所述图像获得每类微珠25的身份编号及检测出每类微珠25所捕获的特定生化物质的量。识别及检测装置23的设置可以参考实施例一,在此不做赘述。
本本实施方式中的生化物质检测系统2及检测方法同样适用于检测大小为500μ-1mm、图形编码的特征点距离在50μm以上的图形编码微珠。
实施例三
请参阅图3所示,为本申请第三种实施方式中的生化物质检测系统的示意图。所述生化物质检测系统3用于通过对图形编码微珠进行检测以获得图形编码微珠捕获的特定生化物质的量,所述生化物质检测系统3包括无透镜显微成像系统31与识别及检测装置33。所述无透镜显微成像系统31用于通过对微珠进行显微成像以同时获得微珠的身份编号及微珠发射的信号的影像,所述识别及检测装置33用于从所述影像中识别 微珠及微珠的身份编号及检测出每类微珠所捕获的特定生化物质的量。
所述无透镜显微成像系统31包括照明系统31a与成像系统31b,所述照明系统31a包括照明光源311、激发光源312与全反射装置317,所述成像系统31b包括图像传感器313与滤光装置314。所述照明光源311采用空间相干性有限的点光源或光源阵列。微珠35为不透明材质的图形编码微珠,或者,微珠35所能投射的光波长不在图像传感器313的探测范围内。以微珠35为界区分第一方位与第二方位,照明光源311与激发光源312设置于第一方位,图像传感器313、滤光装置314及全反射装置317设置于第二方位。所述滤光装置314设置于图像传感器313前方、全反射装置317设置于滤光装置314前方。照明光源311从第一方位朝向第二方位发出照明光照射微珠35,使微珠35投影至图像传感器313上。激发光源312从第一方位朝向第二方位发出激发光照射微珠35,使微珠35发出荧光信号至图像传感器313。全反射装置317设置于微珠35的后方,所述全反射装置317具有一全反射表面3171。在本实施方式中,所述全反射表面3171针对激发光波长反射而透过照明光,使激发光照射至微珠35面向图像传感器313的一侧,使该侧的捕获剂产生荧光信号。从微珠35发出的荧光信号投射至图像传感器313,在图像传感器313上成像。所述图像传感器313生成包括微珠35影像与荧光信号影像的图像。所述图像输出至识别及检测装置33,所述识别及检测装置33识别所述图像获得每类微珠35的身份编号及检测出每类微珠35所捕获的特定生化物质的量。识别及检测装置33的设置可以参考实施例一,在此不做赘述。
可以理解,在其他实施方式中,并不要求全反射装置317所有部位均位于微珠35的后方,仅需其至少部分全反射表面3171位于微珠35后方即可。
微珠35至图像传感器313的距离z2是成像质量的关键因素,本实施方式与第二实施方式相比,将激发光源32设置于第一方位,可减少微 珠35至图像传感器33的距离z2,从而使微珠35投影及荧光信号的成像更清晰。
本本实施方式中的生化物质检测系统3及检测方法同样适用于检测大小为500μ-1mm、图形编码的特征点距离在50μm以上的图形编码磁珠。
实施例四
在本实施方式中,无透镜显微成像系统采用空间相干性与时间相干性较好(即高空间相干性与高时间相干性)的照明光源照射微珠,在图像传感器上形成干涉条纹,图像传感器采集所述干涉条纹及在激发光源激发下产生的荧光信号,生成图像传送给识别及检测装置。如图4所示,所述识别及检测装置43包括处理器431、存储器432及存储于存储器432中且可在处理器431上运行的计算机程序,如识别及检测系统434。在本实施方式中,所述识别及检测系统434包括微珠识别模块435、生化物质检测模块436与图像重构模块437。其中,所述图像重构模块437用于对图像传感器输出的图像进行图像重构以获得重构后的更高分辨率的图像,所述微珠识别模块435用于识别所述重构后的图像中的微珠及微珠的身份编号。所述生化物质检测模块436用于检测出所述重构后的图像中对应每类微珠的信号的强度,并根据所述信号的强度检测出每类微珠捕获的特定生化物质的量。
具体地,所述干涉条纹被图像重构模块437计算获得微珠在聚集平面的强度信息和相位信息,从而获得微珠的身份编号。所述聚集平面是指能够获取微珠清晰图像的那个平面,为一虚构平面,并不是传统透镜意义上的聚焦平面。
其中,由图像传感器采集的图像U(x,y)是由微珠上散射的光(物光)U 0(x,y)与未受干扰直接通过透明基板和滤波片的参考光U R(x,y)之间产生干涉:
Figure PCTCN2020083738-appb-000001
式中:A R和A 0(x,y)分别为参考光和物光(微珠)的振幅信息;
Figure PCTCN2020083738-appb-000002
是物光(微珠)的相位信息,本实施例中图像重构模块437利用数字全息重构技术,通过图像传感器直接采集到的光强信息I(x,y)恢复物光(微珠)的振幅和相位信息。所述透明基板是指全反射装置与滤光装置之间的介质。
图像重构模块437利用数字全息重构技术,将图像传感器获得的图像通过算法进行重构。重构步骤主要可以包括:(1)相位恢复或共轭像消除,主要用于消除由于微珠和传感器之间的间距产生的衍射效应。(2)像素超分辨,主要用于克服图像传感器像素尺寸引起的分辨率降低,从而实现无透镜亚像素分辨率。这两大步骤可以按序进行,也可以用相量传播方法,实现两步骤同时进行。相量传播方法可以实现无透镜显微镜图像的实现像素超分辨率和相位恢复,进而实现图像重构。对于空间相干性较差的LED光源,可以通过相量传播方法基础上,加上点扩散函数反卷积的方式,进一步提高重构图像的空间分辨率。
本实施方式中,获得空间相干性和时间相干性较好的照明光源可以采用的技术手段例举如下:
1、采用单色激光或单色均匀激光作为照明光源;
2、采用单色LED或单色光源作为照明光源,提高时间相干性;
3、在单色激光、单色LED或单色光源发出的光路上设置针孔,提高空间相干性;
4、提高照明光源的光强并提升光源至微珠的距离。
以上技术手段可以根据需要进行组合。
除采用的照明光源不同外,本实施例中无透镜显微成像系统中的照明光源的设置位置、及其他部件的设置位置、作用均可参考前述的任一实施例,例如,针对透明材质微珠,可以参考前述实施例一的方式设置照明光源、激发光源、图像传感器、滤光装置;针对不透明材质微珠或者微珠所能透射的光波长不在图像传感器的探测范围内的情况时,可以 参考前述实施例二的方式设置照明光源、激发光源、图像传感器及滤光装置,或者参考前述实施例三的方式设置照明光源、激发光源、图像传感器、滤光装置及全反射装置。
相比前述实施方式中采用空间相干性有限的点光源或光源阵列照射微珠进行投影式成像,本实施方式中,采用空间和时间相干性较好的照明光源照射微珠,产生干涉条纹,再利用数字全息重构成像技术获得微珠的身份编号,分辨率更高,识别更准确。
实施例五
本实施方式中的无透镜显微成像系统的设置可以参考实施例一至三,不同主要在于识别及检测装置及成像方法。
本实施方式中利用傅里叶叠层成像取代上述的投影式成像方式,对微珠的身份编号进行识别,本实施方式中,利用激发光源激发微珠发出荧光信号,荧光信号被图像传感器采集,最后被特定计算机装置识别获得所捕获的特定分子的量。
实施例六
如上述实施方式一至四,为识别出微珠的图形编码,并因此识别出微珠的身份编号,需对每个步骤进行精确建模。上述“每个步骤”一般包括光学元件的放置、光源和照射的建模、被检测物体的建模、成像过程的建模等步骤。本实施方式中,除可采用与上述实施方式一至五中的任一生化物质检测系统相同的方式执行生化物质检测外,所实施方式中的生化物质检测系统还包括机器学习功能,用于自动学习每次的检测结果并提炼出不同的特征值,以供生化物质检测系统后续执行检测使用。
请参阅图5所示,所述识别及检测装置53包括处理器531、存储器532及存储于存储器532中且可在处理器531上运行的计算机程序,如识别及检测系统534。在本实施方式中,所述识别及检测系统534包括微珠识别模块535、生化物质检测模块536及机器学习模块537。其中,微珠识别模块535、生化物质检测模块536分别与实施例一中的微珠识 别模块135、生化物质检测模块136的作用实质相同,在此不做赘述。所述机器学习模块537用于应用机器学习方法,可采用监督学习方法和无监督学习方法,通过大量的数据集进行训练,实现对微珠及其图像编码的大量特征值的提取。通过加入机器学习模块537,利用生化物质检测系统对每次检测结果进行自动学习获得特征值,从而避免整个成像过程中每个步骤的精确建模,大视场下实现微珠的识别、分割、提取和计数,以及微珠上的身份编号的识别、计数等。其中,监督学习方法大致包括数据预处理、神经网络搭建以及网络训练并保存最优解等过程。
实施例七
请参阅图6,为本申请第七种实施方式提供的生化物质检测方法的流程示意图。该流程图中某些步骤的顺序可以改变,某些步骤可以省略。为了便于说明,仅示出了与本申请实施例相关的部分。
在本实施方式中,所述生化物质检测方法用于对带有图像编码的微珠进行成像,所述微珠用于捕获特定生化物质。所述生化物质检测方法包括无透镜显微成像方法与识别及检测方法。
其中,无透镜显微成像方法包括:
步骤S61,通过接收所述微珠于照明光源与图像传感器之间,使所述微珠能被所述照明光源发出的照明光照射并成像于所述图像传感器上。
步骤S62,通过启动所述照明光源使所述照明光源发出所述照明光。
步骤S63,通过启动激发光源发出激发光照射所述微珠,激发所述微珠捕获的所述特定生化物质发出特定信号,或者,激发捕获过程中产生的生化物质发出特定信号。上述捕获过程一般会引发一系列生化反应过程,包括但不限于一步法、夹心法、淬灭法等。
步骤S64,通过所述图像传感器分别采集所述微珠的影像及所述特定信号的影像以生成至少两通道的图像。
其中,识别及检测方法包括:
步骤S65,接收所述图像,识别所述图像中的微珠、识别每一微珠的 身份编号、及检测出每类微珠所捕获的特定生化物质的量,其中,具有相同身份编号的所有磁珠归为同一类。
对于步骤S65还可以具体为,接收所述图像,其中一个通道识别所述图像中的微珠、并识别每一微珠的身份编号,在另一个通道中检测得到荧光信号的位置和强度,将荧光信号位置与微珠位置进行配准,或将两通道的图像进行整体配准,检测出每个微珠的身份编号及其对应捕获的特定信号的有无和信号的量,将具有相同身份编号的所有微珠归为同一类,通过同类微珠中的多个微珠对应的信号,得知该类微珠多次采样后的信号强度和分布。
在另一实施方式中,所述生化物质检测方法中的无透镜显微成像方法还包括:配置所述照明光源为低空间相干性的点光源或光源阵列。
在另一实施方式中,所述生化物质检测方法中的无透镜显微成像方法还包括:所述照明光源发出的照明光照射所述微珠,使所述微珠的投影投射于所述图像传感器上。
在另一实施方式中,所述生化物质检测方法中的无透镜显微成像方法还包括:配置所述照明光源使所述照明光源具有高时间相干性和高空间相干性。
在另一实施方式中,所述生化物质检测方法中的无透镜显微成像方法还包括:所述照明光源发出的照明光照射所述微珠,在所述图像传感器上形成干涉条纹,所述干涉条纹被所述图像传感器采集。
在另一实施方式中,所述生化物质检测方法中的识别及检测方法具体为:识别所述图像中的微珠、识别每一微珠的图形编码、及根据每一微珠的图形编码的排列组合情况识别出每一微珠的身份编号,及检测所述图像中每类微珠发出的所述特定信号的强度、及根据所述特定信号的强度检测出每类微珠捕获的所述特定生化物质的量。
在另一实施方式中,在“识别所述图像中的微珠及每一微珠的身份编号及每类微珠所捕获的特定生化物质的量”之前,所述生化物质检测方法 中的识别及检测方法还包括:对所述图像传感器输出的所述图像进行重构,或者采用数字全息重构技术对所述图像传感器输出的所述图像进行重构。
在另一实施方式中,所述生化物质检测方法中的识别及检测方法还包括:对所述识别及检测中获得的各类识别结果、检测结果进行自动学习并提炼各类特征值。
以上实施例一至七中,为进一步提高成像的分辨率,视需要还可采取如下技术手段或其组合:
1、减少滤光装置与图像传感器之间的距离,如,可将滤光装置设置于图像传感器上,使滤光装置的像素与图像传感器的像素一一对应,从而减少微珠至图像传感器的距离z2;
2、使用紧密排列的光纤阵列来中继激发光;
3、将纳米结构的掩模设置于靠近待测物体微珠的位置,此时整个光学系统的点扩散函数不再具有空间不变性而依赖于纳米结构掩模;具体地,能够让点扩散函数形成特定的模式和规则,让图像处理更加方便,定位更加精确。
4、利用位置精确且紧密排列的激发点和塔尔博特效应来提高分辨率;
5、在图像重构过程中利用反卷积计算方法,如利用Lucy-Richardson算法来提高分辨率。
综上所述,本申请实施方式提供的无透镜显微成像系统、方法及生化物质检测系统、方法,取代了传统光学显微镜对图形编码微珠进行检测,避免了使用传统光学显微镜时必须的透镜对焦过程和反复转移视场的过程,成像速度更快,仅需要通过图像处理实现最优化的成像结果,达到超高分辨率;由于省去了光学透镜系统,无透镜显微成像系统整体更紧凑,成本更低;视野更大,不需要通过滑台等部件移动视野,即可遍历反应容器中所有的图形编码微珠。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (22)

  1. 一种无透镜显微成像系统,其特征在于,所述无透显微成像系统用于对具有图形编码的微珠成像,所述无透镜显微成像系统包括照明系统与成像系统,所述照明系统包括照明光源与激发光源,所述成像系统包括图像传感器,所述照明光源用于发出照明光照射所述微珠使所述微珠在所述图像传感器上成像,所述激发光源用于发出激发光激发所述微珠使所述微珠发出特定信号,所述图像传感器用于采集所述微珠及所述特定信号的影像以生成图像,所述成像系统内未设置透镜系统。
  2. 如权利要求1所述的无透镜显微成像系统,其特征在于,所述照明光源照射所述微珠,使所述微珠的投影投射在所述图像传感器上成像。
  3. 如权利要求1所述的无透镜显微成像系统,其特征在于,所述照明光源发出的照明光照射所述微珠,在所述图像传感器上形成干涉条纹,所述干涉条纹被所述图像传感器采集。
  4. 如权利要求3所述的无透镜显微成像系统,其特征在于,所述照明光源为单色光源、或单色激光光源、或单色LED光源。
  5. 如权利要求4所述的无透镜显微成像系统,其特征在于,所述照明光源至所述微珠的光路上设有针孔。
  6. 如权利要求1所述的无透镜显微成像系统,其特征在于,所述照明光源用于从第一方位朝向第二方位发射所述照明光照射所述微珠,所述激发光源用于从所述第一方位朝向所述第二方位发射所述激发光。
  7. 如权利要求6所述的无透镜显微成像系统,其特征在于,所述照明系统还包括全反射装置,所述全反射装置包括一全反射表面,所述全反射表面用于将所述激发光源发出的所述激发光反射至所述微珠上。
  8. 如权利要求7所述的无透镜显微成像系统,其特征在于,所述全反射表面设置于所述第二方位,用于从所述第二方位朝向所述第一方位反射所述激发光。
  9. 如权利要求1所述的无透镜显微成像系统,其特征在于,所述照明光源用于从第一方位朝向第二方位发射所述照明光照射所述微珠,所述激发光源用于从所述第二方位朝向所述第一方位发射所述激发光。
  10. 如权利要求1所述的无透镜显微成像系统,其特征在于,还包括滤光装置,所述滤光装置设置于所述图像传感器之前或者所述滤光装置设置于所述图像传感器上。
  11. 一种无透镜显微成像方法,其特征在于,所述成像方法用于对带有图像编码的微珠进行成像,所述微珠用于捕获特定生化物质,所述方法包括:
    通过接收所述微珠于照明光源与图像传感器之间,使所述微珠能被所述照明光源发出的照明光照射并成像于所述图像传感器上;
    通过启动所述照明光源使所述照明光源发出所述照明光;
    通过启动激发光源发出激发光照射所述微珠,激发所述微珠捕获的所述特定生化物质发出特定信号,或者,激发捕获过程中产生的生化物质发出特定信号;
    通过所述图像传感器同时采集所述微珠的影像及所述特定信号的影像以生成至少两通道的图像。
  12. 如权利要求11所述的无透镜显微成像方法,其特征在于,所述照明光源发出的照明光照射所述微珠,使所述微珠的投影投射于所述图像传感器上。
  13. 如权利要求11所述的无透镜显微成像方法,其特征在于,所述照明光源发出的照明光照射所述微珠,在所述图像传感器上形成干涉条纹,所述干涉条纹被所述图像传感器采集。
  14. 一种生化物质检测装置,其特征在于,包括:
    如权利要求1-10任一项所述的无透镜显微成像系统;及
    识别及检测装置,所述识别及检测装置用于接收所述图像传感器输出的图像,识别所述图像中的微珠及每一微珠的身份编号及每类微珠所捕获的特定生化物质的量,其中,具有相同身份编号的所有磁珠归为同一类。
  15. 如权利要求14所述的生化物质检测装置,其特征在于,所述识别及检测装置包括识别及检测系统,所述识别及检测系统包括微珠识别模块与生化物质检测模块,所述微珠识别模块用于识别所述图像中的微珠、识别每一微珠的图形编码、及根据每一微珠的图形编码的排列组合情况识别出每一微珠的身份编号,所述生化物质检测模块用于检测所述图像中每类微珠发出的所述特定信号的强度、及根据所述特定信号的强度检测出每类微珠捕获的所述特定生化物质的量。
  16. 如权利要求15所述的生化物质检测装置,其特征在于,所述识别及检测系统还包括图像重构模块,所述图像重构模块用于对所述图像传感器输出的所述图像进行重构,并将重构后的图像输出至所述微珠识别模块 以便所述微珠识别模块进行识别。
  17. 如权利要求16所述的生化物质检测装置,其特征在于,所述图像重构模块采用数字全息重构技术重构所述图像。
  18. 如权利要求14所述的生化物质检测装置,其特征在于,所述识别及检测系统还包括机器学习模块,所述机器学习模块用于自动学习所述识别模块每次的识别结果并提炼各类特征值,以供所述识别模块后续执行识别使用。
  19. 一种生化物质检测方法,其特征在于,包括:
    执行如权利要求11-13任一项所述的无透镜显微成像方法以输出图像;及
    接收所述图像,识别所述图像中的微珠、识别每一微珠的身份编号、及检测出每类微珠所捕获的特定生化物质的量,其中,具有相同身份编号的所有磁珠归为同一类。
  20. 如权利要求19所述的生化物质检测方法,其特征在于,“识别所述图像中的微珠及每一微珠的身份编号及每类微珠所捕获的特定生化物质的量”进一步包括:识别所述图像中的微珠、识别每一微珠的图形编码、及根据每一微珠的图形编码的排列组合情况识别出每一微珠的身份编号,及检测所述图像中每类微珠发出的所述特定信号的强度、及根据所述特定信号的强度检测出每类微珠捕获的所述特定生化物质的量。
  21. 如权利要求20所述的生化物质检测方法,其特征在于,在“识别所述图像中的微珠及每一微珠的身份编号及每类微珠所捕获的特定生化物质的量”之前还包括: 对所述图像传感器输出的所述图像进行重构,或者采用数字全息重构技术对所述图像传感器输出的所述图像进行重构。
  22. 如权利要求20所述的生化物质检测方法,其特征在于,对所述识别及检测中的各类识别结果、检测结果进行自动学习并提炼各类特征值。
PCT/CN2020/083738 2020-04-08 2020-04-08 无透镜显微成像系统、方法及生化物质检测系统、方法 WO2021203291A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20930394.0A EP4134725A4 (en) 2020-04-08 2020-04-08 LENS-FREE MICROSCOPIC IMAGING SYSTEM AND METHOD AND SYSTEM AND METHOD FOR DETECTING BIOCHEMICAL SUBSTANCES
US17/913,958 US12099177B2 (en) 2020-04-08 Lens-free microscopic imaging system and method, and biochemical substance detection system and method
CN202080094159.8A CN115004076B (zh) 2020-04-08 2020-04-08 无透镜显微成像系统、方法及生化物质检测系统、方法
JP2022559628A JP7478248B2 (ja) 2020-04-08 2020-04-08 レンズレス顕微撮像システムとその方法、及び生化学物質検出システムとその方法
PCT/CN2020/083738 WO2021203291A1 (zh) 2020-04-08 2020-04-08 无透镜显微成像系统、方法及生化物质检测系统、方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083738 WO2021203291A1 (zh) 2020-04-08 2020-04-08 无透镜显微成像系统、方法及生化物质检测系统、方法

Publications (1)

Publication Number Publication Date
WO2021203291A1 true WO2021203291A1 (zh) 2021-10-14

Family

ID=78022666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083738 WO2021203291A1 (zh) 2020-04-08 2020-04-08 无透镜显微成像系统、方法及生化物质检测系统、方法

Country Status (4)

Country Link
EP (1) EP4134725A4 (zh)
JP (1) JP7478248B2 (zh)
CN (1) CN115004076B (zh)
WO (1) WO2021203291A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139773A (ja) * 2001-10-31 2003-05-14 Ebara Corp アフィニティー反応プローブビーズ及び検出システム
CN101809444A (zh) * 2007-08-08 2010-08-18 麦克斯韦尔传感器有限公司 数字磁珠分析的装置和方法
CN102508356A (zh) * 2011-09-30 2012-06-20 浙江大学 基于光学投影的无透镜显微成像方法及其装置
CN108362651A (zh) * 2018-01-26 2018-08-03 杭州炬像科技有限公司 一种便携式无透镜多光谱显微成像系统和方法
CN109112176A (zh) * 2018-09-04 2019-01-01 武汉尚码生物科技有限公司 一种微球编码载体及其应用
CN109884018A (zh) * 2019-03-22 2019-06-14 华中科技大学 一种基于神经网络的亚微米级无透镜显微成像方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685538B2 (ja) * 2008-09-24 2015-03-18 ストラウス ホールディングス インコーポレイテッド 分析物を検出するためのキットおよび装置
EP2602608B1 (en) 2011-12-07 2016-09-14 Imec Analysis and sorting of biological cells in flow
FR3002634B1 (fr) 2013-02-28 2015-04-10 Commissariat Energie Atomique Procede d'observation d'au moins un objet, tel qu'une entite biologique, et systeme d'imagerie associe
US10564362B2 (en) 2014-12-29 2020-02-18 Imec Vzw Light coupler with microstructures asymmetrically distributed along longitudinal axis
WO2017066102A1 (en) 2015-10-15 2017-04-20 The Regents Of The University Of California System and method for droplet formation and manipulation using ferrofluids
JP6621844B2 (ja) 2015-12-16 2019-12-18 オリンパス株式会社 蛍光観察装置および蛍光観察システム、インキュベータ
CN107069391B (zh) * 2017-02-10 2020-07-17 北京大学 飞秒脉冲激光调制器及具有其的微型双光子显微成像装置
EP3432194A1 (en) * 2017-07-16 2019-01-23 IMEC vzw Cell recognition
CN109001900A (zh) * 2018-09-05 2018-12-14 南京大学 一种明场和荧光双模态的显微成像系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139773A (ja) * 2001-10-31 2003-05-14 Ebara Corp アフィニティー反応プローブビーズ及び検出システム
CN101809444A (zh) * 2007-08-08 2010-08-18 麦克斯韦尔传感器有限公司 数字磁珠分析的装置和方法
CN102508356A (zh) * 2011-09-30 2012-06-20 浙江大学 基于光学投影的无透镜显微成像方法及其装置
CN108362651A (zh) * 2018-01-26 2018-08-03 杭州炬像科技有限公司 一种便携式无透镜多光谱显微成像系统和方法
CN109112176A (zh) * 2018-09-04 2019-01-01 武汉尚码生物科技有限公司 一种微球编码载体及其应用
CN109884018A (zh) * 2019-03-22 2019-06-14 华中科技大学 一种基于神经网络的亚微米级无透镜显微成像方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4134725A4 *

Also Published As

Publication number Publication date
EP4134725A4 (en) 2024-01-03
JP7478248B2 (ja) 2024-05-02
CN115004076B (zh) 2024-05-10
EP4134725A1 (en) 2023-02-15
JP2023519423A (ja) 2023-05-10
CN115004076A (zh) 2022-09-02
US20230124060A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
US11842483B2 (en) Systems for cell shape estimation
US11047806B2 (en) Defect discovery and recipe optimization for inspection of three-dimensional semiconductor structures
Bolte et al. A guided tour into subcellular colocalization analysis in light microscopy
EP2737454B1 (en) Method for providing images of a tissue section
CN104272185B (zh) 使用系统性缺陷过滤器的光罩缺陷检验
US20110007955A1 (en) Apparatus and Method for Barcoded Magnetic Beads Analysis
US20200232934A1 (en) Multi-perspective wafer analysis
US20060094109A1 (en) Device and method for analytical cell imaging
JP2003207459A (ja) 自動フォトマスク検査装置及び方法
WO2007075496A2 (en) System and method for conducting adaptive fourier filtering
US7680316B2 (en) Imaging device and methods to derive an image on a solid phase
CN108693098B (zh) 细胞样本的细胞计数分析方法
JP2005524833A (ja) 分析細胞イメージング用のデバイスおよび方法
US11815470B2 (en) Multi-perspective wafer analysis
WO2019122452A1 (en) Fast and robust fourier domain-based cell differentiation
US10921252B2 (en) Image processing apparatus and method of operating image processing apparatus
WO2021203291A1 (zh) 无透镜显微成像系统、方法及生化物质检测系统、方法
US12099177B2 (en) Lens-free microscopic imaging system and method, and biochemical substance detection system and method
CN112611701B (zh) 一种基于动态相干光学成像技术的循环肿瘤细胞检测装置
DK2737454T3 (en) PROCEDURE TO PROVIDE PICTURES OF A TISSUE SECTION.
CN116368377A (zh) 多视角晶片分析

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020930394

Country of ref document: EP

Effective date: 20221108