WO2021200777A1 - 電気化学デバイス - Google Patents

電気化学デバイス Download PDF

Info

Publication number
WO2021200777A1
WO2021200777A1 PCT/JP2021/013177 JP2021013177W WO2021200777A1 WO 2021200777 A1 WO2021200777 A1 WO 2021200777A1 JP 2021013177 W JP2021013177 W JP 2021013177W WO 2021200777 A1 WO2021200777 A1 WO 2021200777A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
current collector
conductive polymer
electrochemical device
negative electrode
Prior art date
Application number
PCT/JP2021/013177
Other languages
English (en)
French (fr)
Inventor
和也 宮藤
林 宏樹
健一 永光
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022512179A priority Critical patent/JPWO2021200777A1/ja
Priority to CN202180023545.2A priority patent/CN115380348A/zh
Priority to US17/906,418 priority patent/US20230116180A1/en
Publication of WO2021200777A1 publication Critical patent/WO2021200777A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrochemical device including an active layer containing a conductive polymer.
  • the conductive polymer as the positive electrode material is supported on the positive electrode current collector, and an electrochemical device is realized.
  • the conductive polymer has low adhesion to the positive electrode current collector, and the internal resistance tends to increase due to the interfacial resistance with the positive electrode current collector.
  • the conductive polymer is easily peeled off from the positive electrode current collector, and the internal resistance is likely to increase in long-term use.
  • one aspect of the present invention includes a positive electrode current collector, a positive electrode including a positive electrode material layer supported on the positive electrode current collector, a negative electrode, and an electrolytic solution.
  • the present invention relates to an electrochemical device containing a conductive polymer and having a surface roughness (Ra) of the positive electrode current collector of 0.7 ⁇ m or more and 1.7 ⁇ m or less.
  • the internal resistance of the electrochemical device can be reduced.
  • FIG. 1 is a vertical cross-sectional view showing the configuration of an electrochemical device according to an embodiment of the present invention.
  • the electrochemical device includes a positive electrode current collector, a positive electrode including a positive electrode material layer supported on the positive electrode current collector, a negative electrode, and an electrolytic solution.
  • the positive electrode material layer contains a conductive polymer.
  • the surface roughness (Ra) of the positive electrode current collector is 0.7 ⁇ m or more and 1.7 ⁇ m or less.
  • the electrochemical device of the present embodiment by setting the surface roughness (Ra) of the positive electrode current collector within the above range, the internal resistance (particularly, the interfacial resistance between the positive electrode current collector and the positive electrode material layer) is increased. It will be reduced.
  • the adhesion with the conductive polymer can be improved and the internal resistance can be reduced.
  • the surface roughness (Ra) of the positive electrode current collector is increased, the area of the interface between the positive electrode current collector and the conductive polymer is increased, and it becomes easier to react with the electrolytic solution at the interface. Further, the positive electrode material layer is easily peeled off from the positive electrode current collector, and the interface resistance may increase and the internal resistance may increase due to long-term use.
  • the internal resistance can be kept low even in long-term use.
  • the surface roughness (Ra) of the positive electrode current collector is the arithmetic mean roughness Ra defined in JIS B 0601: 1994, and a cross-sectional photograph of a region including the interface between the positive electrode current collector and the positive electrode material layer is taken. It is obtained based on the roughness curve obtained by scanning electron microscope or the like and derived by image analysis of cross-sectional photographs.
  • the particle size of the conductive polymer is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the particle size of the conductive polymer is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the particle size of the conductive polymer means the average particle size.
  • the average particle size is the median diameter (D50) in the volume particle size distribution obtained by the laser diffraction type particle size distribution measuring device.
  • the average particle size may be calculated by observing with a scanning electron microscope.
  • the grain boundary of the conductive polymer is obtained by image analysis from the cross-sectional photograph of the positive electrode material layer, and the diameter of a circle (equivalent circle) equal to the area of the particles in the cross section is obtained.
  • the particle size of the conductive polymer is derived by obtaining the median value of the diameter of the corresponding circle for a plurality of (for example, 100 or more) particles of the conductive polymer.
  • A be the surface roughness (Ra) of the positive electrode current collector
  • B be the particle size of the conductive polymer.
  • the ratio B / A may be 16.7 or less, preferably 1.7 or more and 16.7 or less. Within this range, the internal resistance of the electrochemical device can be significantly reduced.
  • a carbon layer may be interposed between the positive electrode current collector and the positive electrode material layer.
  • the conductive polymer adheres to the carbon layer, and the resistance between the positive electrode material layer and the positive electrode current collector can be reduced.
  • the particle size of the conductive carbon material contained in the carbon layer is preferably 0.2 ⁇ m or more and 1.0 ⁇ m or less.
  • a conductive carbon material having a particle size of 0.2 ⁇ m or more firmly meshes with the unevenness of the surface of the positive electrode current collector, and it is easy to reduce the contact resistance. Further, since it is difficult to aggregate, it is easy to prepare a carbon paste in which a conductive carbon material is dispersed.
  • the particle size is 1.0 ⁇ m or less
  • the bonding strength between the conductive polymer and the carbon layer is improved, and the bonding strength between the carbon layer and the positive electrode current collector is also improved. Therefore, the carbon layer is suppressed from peeling from the positive electrode current collector, and the internal resistance can be kept low even in long-term use.
  • the particle size of the conductive carbon material means the average particle size as well as the particle size of the conductive polymer.
  • the average particle size may be calculated by observing with a scanning electron microscope in the same manner as the particle size of the conductive polymer.
  • the conductive polymer may contain polyaniline.
  • polyaniline is difficult to adhere to the positive electrode current collector.
  • the resistance between the polyaniline and the positive electrode current collector is significantly reduced, and the internal resistance is reduced. It is considered that this is because the positive electrode current collector and the conductive polymer (polyaniline) mesh with each other in a larger area and have voids advantageous for the movement of anions. As a result, it is possible to realize an electrochemical device having a high capacity and excellent rapid charge / discharge characteristics.
  • Polyaniline is a polymer of aniline (C 6 H 5 -NH 2) and monomer.
  • Polyaniline includes polyaniline and its derivatives.
  • the polyaniline derivative means a polymer having polyaniline as a basic skeleton.
  • a derivative in which an alkyl group such as a methyl group is added to a part of a benzene ring or a derivative in which a halogen group or the like is added to a part of a benzene ring is as long as it is a polymer having an aniline as a basic skeleton. Included in the polyaniline of the present disclosure.
  • FIG. 1 is a vertical cross-sectional view showing an outline of the configuration of the electrochemical device 200 according to the embodiment of the present invention.
  • the electrochemical device 200 has an electrode body 100, a non-aqueous electrolyte solution (not shown), a metal bottomed cell case 210 accommodating the electrode body 100 and the non-aqueous electrolyte solution, and an opening of the cell case 210.
  • a sealing plate 220 for sealing is provided.
  • the electrode body 100 is configured as a columnar winding body by, for example, winding a band-shaped negative electrode and a positive electrode together with a separator interposed between them.
  • the electrode body 100 may be configured as a laminated body in which a plate-shaped positive electrode and a negative electrode are laminated via a separator.
  • the positive electrode includes a positive electrode core material (positive electrode current collector) and a positive electrode material layer supported on the positive electrode core material.
  • the negative electrode includes a negative electrode core material (negative electrode current collector) and a negative electrode material layer supported on the negative electrode core material.
  • a gasket 221 is arranged on the peripheral edge of the sealing plate 220, and the inside of the cell case 210 is sealed by crimping the open end of the cell case 210 to the gasket 221.
  • the positive electrode current collector plate 13 having the through hole 13h in the center is welded to the positive electrode core material exposed portion 11x.
  • the other end of the tab lead 15 whose one end is connected to the positive electrode current collector plate 13 is connected to the inner surface of the sealing plate 220. Therefore, the sealing plate 220 has a function as an external positive electrode terminal.
  • the negative electrode current collector plate 23 is welded to the negative electrode core material exposed portion 21x.
  • the negative electrode current collector plate 23 is directly welded to a welding member provided on the inner bottom surface of the cell case 210. Therefore, the cell case 210 has a function as an external negative electrode terminal.
  • a sheet-shaped metal material is used for the positive electrode core material.
  • the sheet-shaped metal material may be a metal foil, a metal porous body, an etched metal, or the like.
  • As the metal material aluminum, aluminum alloy, nickel, titanium and the like can be used.
  • the thickness of the positive electrode core material is, for example, 10 to 100 ⁇ m.
  • a carbon layer may be formed on the positive electrode core material. The carbon layer is interposed between the positive electrode core material and the positive electrode material layer, for example, to reduce the resistance between the positive electrode core material and the positive electrode material layer, and to collect current from the positive electrode material layer to the positive electrode core material. It has a function to improve.
  • the positive electrode core material used has a surface roughness (Ra) in the range of 0.7 ⁇ m or more and 1.7 ⁇ m or less.
  • the surface roughness (Ra) can be controlled to a desired value by, for example, etching the surface of the positive electrode core material.
  • the carbon layer is formed, for example, by depositing a conductive carbon material on the surface of the positive electrode core material, or forming a coating film of a carbon paste containing the conductive carbon material and drying the coating film.
  • the carbon paste includes, for example, a conductive carbon material, a polymeric material, and water or an organic solvent.
  • the thickness of the carbon layer may be, for example, 1 to 20 ⁇ m.
  • the conductive carbon material graphite, hard carbon, soft carbon, carbon black or the like can be used. Among them, carbon black can form a thin carbon layer having excellent conductivity.
  • the polymer material fluororesin, acrylic resin, polyvinyl chloride, styrene-butadiene rubber (SBR) and the like can be used.
  • the particle size of the conductive carbon material is preferably 0.2 ⁇ m or more and 1.0 ⁇ m or less.
  • the positive electrode material layer contains a conductive polymer as a positive electrode active material.
  • the positive electrode material layer may contain a conductive agent, a binder, and the like in addition to the positive electrode active material.
  • the conductive agent include carbon black and carbon fiber.
  • the binder include fluororesin, acrylic resin, rubber material, cellulose derivative and the like.
  • the conductive polymer contributes to charging and discharging by doping the conductive polymer with anions in the electrolytic solution during charging and moving the anions doped with the conductive polymer into the electrolytic solution during discharging.
  • the weight average molecular weight of the conductive polymer is not particularly limited, but is, for example, 1000 to 100,000.
  • the positive electrode material layer for example, a positive electrode active material, a conductive agent, a binder, and the like are mixed together with a dispersion medium to prepare a positive electrode mixture paste, the positive electrode mixture paste is applied to the positive electrode core material, and then dried.
  • a positive electrode mixture paste is applied to the positive electrode core material, and then dried.
  • the thickness of the positive electrode material layer is, for example, 10 to 300 ⁇ m per one side.
  • the conductive polymer contains polyaniline.
  • the ratio of polyaniline to all the conductive polymers constituting the positive electrode material layer may be 90% by mass or more.
  • the positive electrode material layer may contain a conductive polymer other than polyaniline.
  • a ⁇ -conjugated polymer is preferable.
  • the ⁇ -conjugated polymer for example, polypyrrole, polythiophene, polyfuran, polythiophene vinylene, polypyridine, or derivatives thereof can be used.
  • the weight average molecular weight of the conductive polymer is not particularly limited, but is, for example, 1000 to 100,000.
  • the raw material monomer of the conductive polymer used together with polyaniline for example, pyrrole, thiophene, furan, thiophene vinylene, pyridine or a derivative thereof can be used.
  • the raw material monomer may contain an oligomer.
  • polypyrrole, polythiophene, polyfuran, polythiophene vinylene, and polypyridine mean polymers having polypyrrole, polythiophene, polyfuran, polythiophene vinylene, and polypyridine as basic skeletons, respectively.
  • polythiophene derivatives include poly (3,4-ethylenedioxythiophene) (PEDOT) and the like.
  • the particle size of the conductive polymer is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the positive electrode material layer containing the conductive polymer may be formed on the positive electrode core material (or on the carbon layer) by electrolytic polymerization or chemical polymerization.
  • Electrolytic polymerization is formed, for example, by immersing a positive electrode core material provided with a carbon layer in a reaction solution containing a raw material monomer of a conductive polymer, and reacting the raw material monomer in the presence of the positive electrode core material. At this time, by performing electrolytic polymerization with the positive electrode core material as the anode, the positive electrode material layer containing the conductive polymer is formed so as to cover the carbon layer.
  • the thickness of the positive electrode material layer can be controlled by the electrolytic current density, the polymerization time, and the like.
  • the particle size of the conductive polymer can be controlled by the stirring speed of the polymerization solution and the concentration of the raw material monomer in the case of chemical polymerization, and the viscosity of the polymerization solution and the concentration of the raw material monomer in the case of electrolytic polymerization.
  • a positive electrode material layer containing a conductive polymer may be formed by chemical polymerization of the raw material monomer. Further, the positive electrode material layer may be formed by using a conductive polymer synthesized in advance or a dispersion thereof.
  • the positive electrode core material may be immersed in a reaction solution containing a dopant, an oxidizing agent, and a raw material monomer, and then withdrawn from the reaction solution and dried.
  • the positive electrode core material and the counter electrode may be immersed in a reaction solution containing the dopant and the raw material monomer, the positive electrode core material may be used as an anode, and the counter electrode may be used as a cathode, and a current may be passed between them.
  • Water may be used as the solvent of the reaction solution, but a non-aqueous solvent may be used in consideration of the solubility of the monomer.
  • a non-aqueous solvent it is desirable to use alcohols such as ethyl alcohol, methyl alcohol, isopropyl alcohol, ethylene glycol and propylene glycol.
  • alcohols such as ethyl alcohol, methyl alcohol, isopropyl alcohol, ethylene glycol and propylene glycol.
  • the dispersion medium or solvent of the conductive polymer include water and the above-mentioned non-aqueous solvent.
  • the dopant may be a polymer ion.
  • high molecular weight ions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic sulfonic acid, polymethacrylic sulfonic acid, poly (2-acrylamide-2-methylpropanesulfonic acid), polyisoprene sulfonic acid, and polyacrylic.
  • Examples include ions such as acid. These may be homopolymers or copolymers of two or more kinds of monomers. These may be used alone or in combination of two or more.
  • the positive electrode current collector plate is a metal plate having a substantially disk shape. It is preferable to form a through hole serving as a passage for the non-aqueous electrolyte in the central portion of the positive electrode current collector plate.
  • the material of the positive electrode current collector plate is, for example, aluminum, aluminum alloy, titanium, stainless steel, or the like. The material of the positive electrode current collector plate may be the same as the material of the positive electrode core material.
  • a sheet-shaped metal material is also used for the negative electrode core material.
  • the sheet-shaped metal material may be a metal foil, a metal porous body, an etched metal, or the like.
  • As the metal material copper, copper alloy, nickel, stainless steel and the like can be used.
  • the thickness of the negative electrode core material is, for example, 10 to 100 ⁇ m.
  • the negative electrode material layer comprises a material that electrochemically occludes and releases lithium ions as a negative electrode active material. At the time of charging, the lithium ions in the electrolytic solution are occluded in the negative electrode material, and at the time of discharging, the lithium ions released from the negative electrode material move into the electrolytic solution, thereby contributing to charging / discharging.
  • Examples of such materials include carbon materials, metal compounds, alloys, ceramic materials and the like.
  • the carbon material graphite, non-graphitized carbon (hard carbon), and easily graphitized carbon (soft carbon) are preferable, and graphite and hard carbon are particularly preferable.
  • the metal compound include silicon oxide and tin oxide.
  • Examples of the alloy include a silicon alloy and a tin alloy.
  • Examples of the ceramic material include lithium titanate and lithium manganate. These may be used alone or in combination of two or more. Among them, the carbon material is preferable in that the potential of the negative electrode can be lowered.
  • the negative electrode material layer may contain a conductive agent, a binder, etc. in addition to the negative electrode active material.
  • a conductive agent include carbon black and carbon fiber.
  • the binder include fluororesin, acrylic resin, rubber material, cellulose derivative and the like.
  • the negative electrode material layer is prepared by mixing, for example, a negative electrode active material with a conductive agent and a binder together with a dispersion medium to prepare a negative electrode mixture paste, applying the negative electrode mixture paste to the negative electrode core material, and then drying. It is formed by doing.
  • the thickness of the negative electrode material layer is, for example, 10 to 300 ⁇ m per one side.
  • a metallic lithium layer serving as a lithium ion supply source is formed on the surface of the negative electrode material layer, and the negative electrode having the metallic lithium layer is an electrolytic solution having lithium ion conductivity (for example, non-lithium ion conductivity). It proceeds by impregnating with a water electrolyte). At this time, lithium ions are eluted from the metallic lithium layer into the non-aqueous electrolytic solution, and the eluted lithium ions are occluded in the negative electrode active material.
  • graphite or hard carbon is used as the negative electrode active material, lithium ions are inserted between the graphite layers and the pores of the hard carbon.
  • the amount of lithium ions to be pre-doped can be controlled by the mass of the metallic lithium layer.
  • the amount of lithium to be pre-doped may be, for example, about 50% to 95% of the maximum amount that can be occluded in the negative electrode material layer.
  • the step of pre-doping the negative electrode with lithium ions may be performed before assembling the electrode group, or the electrode group may be housed in the case of the electrochemical device together with the non-aqueous electrolyte solution, and then the pre-doping may proceed.
  • the negative electrode current collector plate is a metal plate having a substantially disk shape.
  • the material of the negative electrode current collector plate is, for example, copper, copper alloy, nickel, stainless steel, or the like.
  • the material of the negative electrode current collector plate may be the same as the material of the negative electrode core material.
  • separator As the separator, a non-woven fabric made of cellulose fiber, a non-woven fabric made of glass fiber, a microporous film made of polyolefin, a woven fabric, a non-woven fabric, or the like can be used.
  • the thickness of the separator is, for example, 10 to 300 ⁇ m, preferably 10 to 40 ⁇ m.
  • the electrolytic solution has lithium ion conductivity and contains a lithium salt and a solvent for dissolving the lithium salt.
  • the lithium salt anion can reversibly repeat doping and dedoping of the positive electrode.
  • lithium ions derived from the lithium salt are reversibly occluded and released to the negative electrode.
  • lithium salt examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiFSO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , LiCl, LiBr, LiI. , LiBCl 4 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2, and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • a lithium salt having an oxoacid anion containing a halogen atom suitable as an anion it is desirable to use at least one selected from the group consisting of a lithium salt having an oxoacid anion containing a halogen atom suitable as an anion and a lithium salt having an imide anion. It is preferable to use an electrolytic solution containing lithium hexafluorophosphate from the viewpoint that the ionic conductivity of the electrolytic solution is enhanced and corrosion of metal parts such as a current collector and leads can be suppressed.
  • the concentration of the lithium salt in the electrolytic solution in the charged state (charging rate (SOC) 90 to 100%) is, for example, 0.2 to 5 mol / L.
  • the solvent may be a non-aqueous solvent.
  • Non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, and fats such as methyl formate, methyl acetate, methyl propionate and ethyl propionate.
  • Group carboxylic acid esters, lactones such as ⁇ -butyrolactone (GBL), ⁇ -valerolactone, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), etc.
  • Chain ethers such as tetrahydrofuran and 2-methyltetraxide, dimethylsulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propionitrile, nitromethane, ethylmonoglime, trimethoxymethane, sulfolane , Methyl sulfolane, 1,3-propanesartone and the like can be used. These may be used alone or in combination of two or more.
  • the non-aqueous electrolyte solution may contain an additive in a non-aqueous solvent, if necessary.
  • an unsaturated carbonate such as vinylene carbonate, vinylethylene carbonate, or divinylethylene carbonate may be added as an additive (coating agent) for forming a film having high lithium ion conductivity on the surface of the negative electrode.
  • cylindrical wound-type electrochemical device has been described, but the scope of application of the present invention is not limited to the above, and the present invention is also applied to a square-shaped wound-type or laminated electrochemical device. be able to.
  • Electrochemical devices A1 to A7, B1, B2 >> (1) Preparation of Positive Electrode An aluminum foil having a thickness of 30 ⁇ m was prepared as a positive electrode current collector. As the aluminum foil, a foil whose surface was roughened by etching was prepared.
  • polyaniline weight average molecular weight 130000
  • CMC carboxycellulose
  • SBR styrene-butadiene rubber
  • a positive mixture paste was prepared by mixing at a mass ratio of 10.
  • the polyaniline those classified into a desired particle size were used.
  • the positive electrode mixture paste was applied to both sides of the positive electrode current collector and dried to obtain a positive electrode having a positive electrode material layer having a thickness of 35 ⁇ m on both sides.
  • a copper foil having a thickness of 20 ⁇ m was prepared as a negative electrode current collector.
  • a negative electrode mixture paste prepared by kneading a mixed powder obtained by mixing 97 parts by mass of hard carbon, 1 part by mass of carboxycellulose, and 2 parts by mass of styrene-butadiene rubber and water at a weight ratio of 40:60. bottom.
  • the negative electrode mixture paste was applied to both sides of the negative electrode current collector and dried to obtain a negative electrode having a negative electrode material layer having a thickness of 35 ⁇ m on both sides.
  • a metallic lithium foil in an amount calculated so that the negative electrode potential in the electrolytic solution after the completion of pre-doping was 0.2 V or less with respect to metallic lithium was attached to the negative electrode material layer.
  • Electrolyte Solution 0.2% by mass of vinylene carbonate was added to a mixture of propylene carbonate and dimethyl carbonate in a volume ratio of 1: 1 to prepare a solvent. LiPF 6 as a lithium salt was dissolved in the obtained solvent at a predetermined concentration to prepare a non-aqueous electrolyte solution.
  • Electrochemical Device Preparation of Electrochemical Device
  • the electrode group and the electrolytic solution were housed in a bottomed container having an opening, and the electrochemical device as shown in FIG. 2 was assembled. Then, while applying a charging voltage of 3.8 V between the terminals of the positive electrode and the negative electrode, aging was performed at 25 ° C. for 24 hours to allow pre-doping of lithium ions into the negative electrode. In this way, an electrochemical device was produced.
  • the surface roughness (Ra) A of the aluminum foil in the positive electrode current collector and / or the particle size B of polyaniline, which is a conductive polymer, is changed, and the combination of the surface roughness A and the particle size B of polyaniline is different.
  • Various types of electrochemical devices A1 to A7, B1 and B2 were prepared. Table 1 shows a list of surface roughness A, polyaniline particle size B, and ratio B / A in the electrochemical devices A1 to A7, B1, and B2.
  • Electrochemical device B3 In the preparation of the positive electrode, an unetched aluminum foil was used as the positive electrode current collector. Except for this, the electrochemical device B3 was produced in the same manner as the electrochemical device A1.
  • Electrochemical devices A8 to A12 In the preparation of the positive electrode, an etched aluminum foil having a thickness of 30 ⁇ m was prepared as a positive electrode current collector. Next, the carbon paste obtained by kneading carbon black with water was applied to the entire front and back surfaces of the positive electrode current collector, and then dried by heating to form a carbon layer. The thickness of the carbon layer was 2 ⁇ m per side.
  • the positive electrode mixture paste was applied to the carbon layers on both sides of the positive electrode current collector and dried to obtain a positive electrode having a positive electrode material layer having a thickness of 35 ⁇ m on both sides. Except for this, the electrochemical device B2 was produced in the same manner as the electrochemical device A1.
  • a plurality of types of electrochemical devices A9 to A13 having different particle sizes of carbon black in the carbon paste were produced.
  • Table 2 shows a list of surface roughness A, polyaniline particle size B, and carbon black particle size C in the electrochemical devices A9 to A12.
  • Electrochemical device B4 In the preparation of the positive electrode, an unetched aluminum foil was used as the positive electrode current collector. Except for this, the electrochemical device B4 was produced in the same manner as the electrochemical device A10.
  • DCR Internal resistance
  • the initial internal resistance (DCR) is based on the amount of voltage drop when the electrochemical device is charged with a voltage of 3.6 V in an environment of 25 ° C. and then discharged for a predetermined time (0.05 seconds to 0.2 seconds). R 1 was calculated.
  • Table 1 in the electrochemical device A1 ⁇ A8, B1 ⁇ B3, shows the results of evaluation of the initial internal resistance (DCR) R 1 and DCR retention.
  • Table 2 in the electrochemical device A9 ⁇ A11, B4 ⁇ B6, shows the results of evaluation of the initial internal resistance (DCR) R 1 and DCR retention.
  • the initial internal resistance (DCR) R 1 and the DCR retention rate are shown as relative values with the electrochemical device B3 as 100, respectively.
  • the electrochemical devices A1 to A8 having a surface roughness (Ra) of 0.7 ⁇ m to 1.7 ⁇ m of the aluminum foil in the positive electrode current collector have initial internal resistances as compared with the electrochemical devices B1 to B3.
  • R 1 can be reduced, and an increase in internal resistance due to long-term use can be suppressed.
  • the initial internal resistance R The decrease of 1 and the improvement of the DCR maintenance rate are remarkable.
  • the particle size of the conductive carbon material in the following electrochemical device A8 ⁇ A11 1.0 .mu.m a decrease in the initial internal resistance R 1 And the improvement of DCR maintenance rate is remarkable.
  • the particle size is smaller than 0.1 ⁇ m, the conductive carbon material tends to aggregate, which may make it difficult to prepare a carbon paste.
  • the electrochemical devices A9 to A11 having a particle size of 0.2 ⁇ m or more and 1.0 ⁇ m or less are preferable.
  • the electrochemical device according to the present invention has low internal resistance, it has excellent rapid charge / discharge characteristics and can be suitably used as various power sources.
  • Electrode body 10 Positive electrode 11x: Positive electrode core material exposed part 13: Positive electrode current collector 15: Tab lead 20: Negative electrode 21x: Negative electrode core material exposed part 23: Negative electrode current collector 30: Separator 200: Electrochemical device 210: Cell Case 220: Seal plate 221: Gasket

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本願発明の電気化学デバイスは、正極集電体と、正極集電体に担持された正極材料層を含む正極と、負極と、電解液と、を備えた電気化学デバイスであって、正極材料層は、導電性高分子を含み、正極集電体の表面粗さ(Ra)は、0.7μm以上1.7μm以下である。

Description

電気化学デバイス
 本発明は、導電性高分子を含む活性層を具備する電気化学デバイスに関する。
 近年、リチウムイオン二次電池と電気二重層キャパシタの中間的な性能を有する電気化学デバイスが注目を集めており、例えば導電性高分子を正極材料として用いることが検討されている(例えば、特許文献1)。正極材料として導電性高分子を含む電気化学デバイスは、アニオンの吸着(ドープ)と脱離(脱ドープ)により充放電を行うため、反応抵抗が小さく、一般的なリチウムイオン二次電池に比べると高い出力を有している。
特開2014-35836号公報
 正極材料としての導電性高分子は、正極集電体に担持され、電気化学デバイスが実現される。しかしながら、導電性高分子は、正極集電体への密着性が低く、正極集電体との界面抵抗により内部抵抗が大きくなり易い。また、導電性高分子が正極集電体から剥がれやすく、長期の使用において内部抵抗が増大し易い。
 上記に鑑み、本発明の一局面は、正極集電体と、前記正極集電体に担持された正極材料層を含む正極と、負極と、電解液と、を備え、前記正極材料層は、導電性高分子を含み、前記正極集電体の表面粗さ(Ra)は、0.7μm以上1.7μm以下である、電気化学デバイスに関する。
 本開示によれば、電気化学デバイスの内部抵抗を低減できる。
図1は、本発明の一実施形態に係る電気化学デバイスの構成を示す縦断面図である。
 本開示の実施形態に係る電気化学デバイスは、正極集電体と、正極集電体に担持された正極材料層を含む正極と、負極と、電解液と、を備える。正極材料層は、導電性高分子を含む。正極集電体の表面粗さ(Ra)は、0.7μm以上1.7μm以下である。
 本実施形態の電気化学デバイスによれば、正極集電体の表面粗さ(Ra)を上記の範囲とすることにより、内部抵抗(特に、正極集電体と正極材料層との界面抵抗)が低減される。
 正極集電体の表面粗さ(Ra)を0.7μm以上とすることで、導電性高分子との密着性が向上し、内部抵抗を低減できる。一方で、正極集電体の表面粗さ(Ra)を大きくするに伴い、正極集電体と導電性高分子との界面の面積が増大し、界面において電解液と反応し易くなる。また、正極材料層が正極集電体から剥離し易く、長期使用によって界面抵抗が増大し、内部抵抗が上昇する場合がある。正極集電体の表面粗さ(Ra)を1.7μm以下とすることで、導電性高分子と電解液との副反応が抑制され、且つ、正極材料層の剥離が抑制される。よって、長期使用においても内部抵抗を低く維持できる。
 なお、正極集電体の表面粗さ(Ra)は、JIS B 0601:1994に規定される算術平均粗さRaであり、正極集電体と正極材料層との界面を含む領域の断面写真を走査型電子顕微鏡などで取得し、断面写真の画像解析により導出された粗さ曲線に基づき求められる。
 導電性高分子の粒子径は、2μm以上20μm以下であることが好ましい。導電性高分子の粒子径を20μm以下とすることで、正極集電体と導電性高分子との接触面積を高めることができ、抵抗が減少する。また、導電性高分子の粒子径を2μm以上とすることで、導電性高分子と電解液との副反応が抑制され、長期使用においても内部抵抗を低く維持できる。
 なお、上記において、導電性高分子の粒子径は、平均粒径を意味する。平均粒径は、レーザー回折式の粒度分布測定装置により求められる体積粒度分布におけるメディアン径(D50)である。平均粒径は、走査型電子顕微鏡で観察することにより、算出してもよい。正極材料層の断面写真から画像解析により導電性高分子の粒界を求め、断面における粒子の面積と等しい円(相当円)の直径を求める。導電性高分子の粒子径は、複数(例えば、100個以上)の導電性高分子の粒子に対して、相当円の直径のメディアン値を求めることにより導出される。
 正極集電体の表面粗さ(Ra)をAとし、導電性高分子の粒子径をBとする。比B/Aは、16.7以下であってもよく、好ましくは、1.7以上16.7以下であってもよい。この範囲において、電気化学デバイスの内部抵抗を顕著に低減させることができる。
 正極集電体と正極材料層との間に、カーボン層が介在していてもよい。正極集電体上にカーボン層を形成することで、導電性高分子がカーボン層に密着し、正極材料層と正極集電体との間の抵抗を低減することができる。この場合において、カーボン層に含まれる導電性炭素材料の粒子径は、0.2μm以上1.0μm以下であることが好ましい。粒子径が0.2μm以上の導電性炭素材料は、正極集電体の表面の凹凸としっかり咬み合い、接触抵抗を低減し易い。また、凝集し難いため導電性炭素材料を分散させたカーボンペーストの作製が容易である。一方、粒子径を1.0μm以下とすることで、導電性高分子とカーボン層との接合強度が向上し、且つカーボン層と正極集電体との接合強度も向上する。よって、カーボン層が正極集電体から剥離することが抑制され、長期使用においても内部抵抗を低く維持できる。
 なお、導電性炭素材料の粒子径は、導電性高分子の粒子径と同様、平均粒径を意味する。平均粒径は、導電性高分子の粒子径と同様、走査型電子顕微鏡で観察することにより、算出してもよい。
 導電性高分子は、ポリアニリンを含むものであってもよい。導電性高分子の中でもポリアニリンは、正極集電体に密着させ難い。また、電気化学デバイスの内部抵抗を低減させ難い。後者については、ポリアニリンと正極集電体との界面で副反応を生じ易く、特に、負極で電解液の反応により生じ得るアルコール成分によりポリアニリンが劣化し易いことが理由として考えられる。
 しかしながら、上記の構成により、ポリアニリンと正極集電体との間の抵抗が顕著に低減され、内部抵抗が低減される。これは、正極集電体と導電性高分子(ポリアニリン)とがより大きな面積で咬み合うとともに、アニオンの移動に有利な空隙を有した状態になるためと考えられる。結果、高容量であり、急速充放電特性に優れた電気化学デバイスを実現できる。
 ポリアニリンは、アニリン(C-NH)をモノマーとする高分子である。ポリアニリンには、ポリアニリンおよびその誘導体が含まれる。ポリアニリンの誘導体とは、ポリアニリンを基本骨格とする高分子を意味する。例えば、ベンゼン環の一部にメチル基などのアルキル基が付加されたものや、ベンゼン環の一部にハロゲン基等が付加された誘導体なども、アニリンを基本骨格とする高分子である限り、本開示のポリアニリンに含まれる。
 ≪電気化学デバイス≫
 以下、本発明に係る電気化学デバイスの構成について、図面を参照しながら、より詳細に説明する。
 図1は、本発明の一実施形態に係る電気化学デバイス200の構成の概略を示す縦断面図である。電気化学デバイス200は、電極体100と、非水電解液(図示せず)と、電極体100および非水電解液を収容する金属製の有底のセルケース210と、セルケース210の開口を封口する封口板220とを具備する。
 電極体100は、例えば、それぞれ帯状の負極と正極とを、これらの間に介在するセパレータとともに巻回することにより、柱状の巻回体として構成される。あるいは、電極体100は、それぞれ板状の正極と負極とをセパレータを介して積層した積層体として構成してもよい。正極は、正極芯材(正極集電体)および正極芯材に担持された正極材料層を具備する。負極は、負極芯材(負極集電体)および負極芯材に担持された負極材料層を具備する。
 封口板220の周縁部にはガスケット221が配されており、セルケース210の開口端部をガスケット221にかしめることでセルケース210の内部が密閉されている。中央に貫通孔13hを有する正極集電板13は、正極芯材露出部11xと溶接されている。正極集電板13に一端が接続されているタブリード15の他端は、封口板220の内面に接続されている。よって、封口板220は、外部正極端子としての機能を有する。一方、負極集電板23は、負極芯材露出部21xと溶接されている。負極集電板23は、セルケース210の内底面に設けられた溶接用部材に直接溶接されている。よって、セルケース210は、外部負極端子としての機能を有する。
 (正極芯材)
 正極芯材には、シート状の金属材料が用いられる。シート状の金属材料は、金属箔、金属多孔体、エッチングメタルなどであればよい。金属材料としては、アルミニウム、アルミニウム合金、ニッケル、チタンなどを用い得る。正極芯材の厚みは、例えば10~100μmである。正極芯材には、カーボン層を形成してもよい。カーボン層は、正極芯材と正極材料層との間に介在して、例えば、正極芯材と正極材料層との間の抵抗を低減し、正極材料層から正極芯材への集電性を向上させる機能を有する。
 正極芯材は、表面粗さ(Ra)が0.7μm以上1.7μm以下の範囲のものが用いられる。表面粗さ(Ra)は、例えば正極芯材の表面をエッチングすることにより、所望の値に制御が可能である。
 (カーボン層)
 カーボン層は、例えば、正極芯材の表面に導電性炭素材料を蒸着し、もしくは、導電性炭素材料を含むカーボンペーストの塗膜を形成し、塗膜を乾燥することで形成される。カーボンペーストは、例えば、導電性炭素材料と、高分子材料と、水または有機溶媒とを含む。カーボン層の厚みは、例えば1~20μmであればよい。導電性炭素材料には、黒鉛、ハードカーボン、ソフトカーボン、カーボンブラックなどを用い得る。中でも、カーボンブラックは、薄くて導電性に優れたカーボン層を形成し得る。高分子材料には、フッ素樹脂、アクリル樹脂、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)などを用い得る。導電性炭素材料の粒子径は、0.2μm以上1.0μm以下であれば好ましい。
 (正極材料層)
 正極材料層は、導電性高分子を、正極活物質として含む。正極材料層には、正極活物質の他に、導電剤、結着剤などを含ませ得る。導電剤としては、カーボンブラック、炭素繊維などが挙げられる。結着剤としては、フッ素樹脂、アクリル樹脂、ゴム材料、セルロース誘導体などが挙げられる。
 導電性高分子は、充電時には電解液中のアニオンが導電性高分子にドープされ、放電時には導電性高分子にドープされたアニオンが電解液中に移動することによって、充放電に寄与する。導電性高分子の重量平均分子量は、特に限定されないが、例えば1000~100000である。
 正極材料層は、例えば、正極活物質と、導電剤および結着剤などとを、分散媒とともに混合して正極合剤ペーストを調製し、正極合剤ペーストを正極芯材に塗布した後、乾燥することにより形成され得る。正極材料層の厚みは、片面あたり、例えば10~300μmである。
 本実施形態において、導電性ポリマーは、ポリアニリンを含む。正極材料層がポリアニリンを導電性ポリマーとして含む場合、正極材料層を構成する全ての導電性ポリマーに対するポリアニリンの割合は、90質量%以上であってもよい。
 正極材料層は、ポリアニリン以外の導電性高分子を含んでいてもよい。ポリアニリンと共に用いることのできる導電性高分子としては、π共役系高分子が好ましい。π共役系高分子としては、例えば、ポリピロール、ポリチオフェン、ポリフラン、ポリチオフェンビニレン、ポリピリジン、または、これらの誘導体を用いることができる。導電性高分子の重量平均分子量は、特に限定されないが、例えば1000~100000である。ポリアニリンと共に用いられる導電性高分子の原料モノマーとしては、例えばピロール、チオフェン、フラン、チオフェンビニレン、ピリジンまたはこれらの誘導体を用いることができる。原料モノマーは、オリゴマーを含んでもよい。
 なお、ポリピロール、ポリチオフェン、ポリフラン、ポリチオフェンビニレン、ポリピリジンの誘導体とは、それぞれ、ポリピロール、ポリチオフェン、ポリフラン、ポリチオフェンビニレン、ポリピリジンを基本骨格とする高分子を意味する。例えば、ポリチオフェン誘導体には、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)などが含まれる。
 導電性高分子の粒子径は、2μm以上20μm以下であることが好ましい。
 導電性高分子を含む正極材料層は、電解重合または化学重合により、正極芯材上に(または、カーボン層上に)形成してもよい。電解重合は、例えば、カーボン層を備える正極芯材を導電性高分子の原料モノマーを含む反応液に浸漬し、正極芯材の存在下で原料モノマーを反応させることにより形成される。このとき、正極芯材をアノードとして電解重合を行うことにより、導電性高分子を含む正極材料層がカーボン層を覆うように形成される。正極材料層の厚みは、電解電流密度、重合時間等により制御され得る。導電性高分子の粒子径は、化学重合の場合重合液の攪拌速度や原料モノマー濃度など、電解重合の場合重合液の粘度や原料モノマー濃度など、により制御され得る。
 原料モノマーの化学重合により導電性高分子を含む正極材料層を形成してもよい。また、予め合成された導電性高分子もしくはその分散体を用いて正極材料層を形成してもよい。
 電解重合または化学重合は、ドーパントを含む反応液を用いて行うことが望ましい。導電性高分子の分散液や溶液もまた、ドーパントを含むことが望ましい。π電子共役系高分子は、ドーパントをドープすることで、優れた導電性を発現する。例えば、化学重合では、ドーパントと酸化剤と原料モノマーとを含む反応液に正極芯材を浸漬し、その後、反応液から引き揚げて乾燥させればよい。また、電解重合では、ドーパントと原料モノマーとを含む反応液に正極芯材と対向電極とを浸漬し、正極芯材をアノードとし、対向電極をカソードとして、両者の間に電流を流せばよい。
 反応液の溶媒には、水を用いてもよいが、モノマーの溶解度を考慮して非水溶媒を用いてもよい。非水溶媒としては、エチルアルコール、メチルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコールなどアルコール類などを用いることが望ましい。導電性高分子の分散媒あるいは溶媒としても、水や上記非水溶媒が挙げられる。
 ドーパントとしては、硫酸イオン、硝酸イオン、燐酸イオン、硼酸イオン、ベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、トルエンスルホン酸イオン、メタンスルホン酸イオン(CF3SO3 )、過塩素酸イオン(ClO4 )、テトラフルオロ硼酸イオン(BF4 )、ヘキサフルオロ燐酸イオン(PF6 )、フルオロ硫酸イオン(FSO3 )、ビス(フルオロスルホニル)イミドイオン(N(FSO22 )、ビス(トリフルオロメタンスルホニル)イミドイオン(N(CF3SO22 )などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ドーパントは、高分子イオンであってもよい。高分子イオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸などのイオンが挙げられる。これらは単独重合体であってもよく、2種以上のモノマーの共重合体であってもよい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (正極集電板)
 正極集電板は、概ね円盤状の金属板である。正極集電板の中央部には非水電解質の通路となる貫通孔を形成することが好ましい。正極集電板の材質は、例えばアルミニウム、アルミニウム合金、チタン、ステンレス鋼などである。正極集電板の材質は、正極芯材の材質と同じでもよい。
 (負極芯材)
 負極芯材にもシート状の金属材料が用いられる。シート状の金属材料は、金属箔、金属多孔体、エッチングメタルなどであればよい。金属材料としては、銅、銅合金、ニッケル、ステンレス鋼などを用い得る。負極芯材の厚みは、例えば10~100μmである。
 (負極材料層)
 負極材料層は、負極活物質として、電気化学的にリチウムイオンを吸蔵および放出する材料を備える。充電時には、電解液中のリチウムイオンが負極材料に吸蔵され、放電時には、負極材料から放出されたリチウムイオンが電解液中へ移動することによって、充放電に寄与する。このような材料としては、炭素材料、金属化合物、合金、セラミックス材料などが挙げられる。炭素材料としては、黒鉛、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)が好ましく、特に黒鉛やハードカーボンが好ましい。金属化合物としては、ケイ素酸化物、錫酸化物などが挙げられる。合金としては、ケイ素合金、錫合金などが挙げられる。セラミックス材料としては、チタン酸リチウム、マンガン酸リチウムなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、炭素材料は、負極の電位を低くすることができる点で好ましい。
 負極材料層には、負極活物質の他に、導電剤、結着剤などを含ませ得る。導電剤としては、カーボンブラック、炭素繊維などが挙げられる。結着剤としては、フッ素樹脂、アクリル樹脂、ゴム材料、セルロース誘導体などが挙げられる。
 負極材料層は、例えば、負極活物質と、導電剤および結着剤などとを、分散媒とともに混合して負極合剤ペーストを調製し、負極合剤ペーストを負極芯材に塗布した後、乾燥することにより形成される。負極材料層の厚みは、片面あたり、例えば10~300μmである。
 負極材料層には、予めリチウムイオンをプレドープすることが望ましい。これにより、負極の電位が低下するため、正極と負極の電位差(すなわち電圧)が大きくなり、電気化学デバイスのエネルギー密度が向上する。
 リチウムイオンの負極へのプレドープは、例えば、リチウムイオン供給源となる金属リチウム層を負極材料層の表面に形成し、金属リチウム層を有する負極を、リチウムイオン伝導性を有する電解液(例えば、非水電解液)に含浸させることにより進行する。このとき、金属リチウム層からリチウムイオンが非水電解液中に溶出し、溶出したリチウムイオンが負極活物質に吸蔵される。例えば負極活物質として黒鉛やハードカーボンを用いる場合には、リチウムイオンが黒鉛の層間やハードカーボンの細孔に挿入される。プレドープさせるリチウムイオンの量は、金属リチウム層の質量により制御することができる。プレドープされるリチウム量は、例えば、負極材料層に吸蔵可能な最大量の50%~95%程度であってもよい。
 負極にリチウムイオンをプレドープする工程は、電極群を組み立てる前に行なってもよく、非水電解液とともに電極群を電気化学デバイスのケースに収容してからプレドープを進行させてもよい。
 (負極集電板)
 負極集電板は、概ね円盤状の金属板である。負極集電板の材質は、例えば銅、銅合金、ニッケル、ステンレス鋼などである。負極集電板の材質は、負極芯材の材質と同じでもよい。
 (セパレータ)
 セパレータとしては、セルロース繊維製の不織布、ガラス繊維製の不織布、ポリオレフィン製の微多孔膜、織布もしくは不織布などを用い得る。セパレータの厚みは、例えば10~300μmであり、10~40μmが好ましい。
 (電解液)
 電解液は、リチウムイオン伝導性を有し、リチウム塩と、リチウム塩を溶解させる溶媒とを含む。このとき、リチウム塩のアニオンは、正極へのドープと脱ドープとを、可逆的に繰り返すことが可能である。一方、リチウム塩に由来するリチウムイオンは、可逆的に負極に吸蔵および放出される。
 リチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiFSO3、LiCF3CO2、LiAsF6、LiB10Cl10、LiCl、LiBr、LiI、LiBCl4、LiN(FSO22、LiN(CF3SO22などが挙げられる。これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。なかでも、アニオンとして好適なハロゲン原子を含むオキソ酸アニオンを有するリチウム塩およびイミドアニオンを有するリチウム塩よりなる群から選択される少なくとも1種を用いることが望ましい。電解液のイオン伝導性が高まるとともに、集電体やリードなどの金属部品の腐食を抑制することができる観点から、六フッ化リン酸リチウムを含む電解液を用いることが好ましい。
 充電状態(充電率(SOC)90~100%)における電解液中のリチウム塩の濃度は、例えば、0.2~5mol/Lである。
 溶媒は、非水溶媒であってもよい。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトンなどのラクトン類、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)などの鎖状エーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピオニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、スルホラン、メチルスルホラン、1,3-プロパンサルトンなどを用いることができる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非水電解液に、必要に応じて非水溶媒に添加剤を含ませてもよい。例えば、負極表面にリチウムイオン伝導性の高い被膜を形成する添加剤(被膜形成剤)として、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートなどの不飽和カーボネートを添加してもよい。
 上記の実施形態では、円筒形状の捲回型の電気化学デバイスについて説明したが、本発明の適用範囲は上記に限定されず、角形形状の捲回型や積層型の電気化学デバイスにも適用することができる。
 [実施例]
 以下、実施例に基づいて、本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。
 《電気化学デバイスA1~A7、B1、B2》
 (1)正極の作製
 厚さ30μmのアルミニウム箔を正極集電体として準備した。アルミニウム箔は、表面がエッチングにより粗面化されているものを用意した。
 導電性高分子としてポリアニリン(重量平均分子量130000)、導電剤の分散液、カルボキシセルロース(CMC)の溶液、および、スチレンブタジエンゴム(SBR)の分散液を、100:17.5:3.0:10の質量比で混合することによって正極合剤ペーストを調製した。導電剤の分散液は、カーボンブラックと水とで構成され、導電剤:水=20:80の質量比とした。CMCの溶液は、CMCと水とで構成され、CMC:水=5:95の質量比とした。SBRの分散液は、SBRと水とで構成され、SBR:水=40:60の質量比とした。ポリアニリンは、所望の粒子径に分級したものを用いた。正極合剤ペーストを正極集電体の両面に塗布し、乾燥して、厚さ35μmの正極材料層を両面に有する正極を得た。
 (2)負極の作製
 厚さ20μmの銅箔を負極集電体として準備した。一方、ハードカーボン97質量部、カルボキシセルロース1質量部、および、スチレンブタジエンゴム2質量部とを混合した混合粉末と水とを重量比で40:60の割合で混錬した負極合剤ペーストを調製した。負極合剤ペーストを負極集電体の両面に塗布し、乾燥して、厚さ35μmの負極材料層を両面に有する負極を得た。次に、負極材料層に、プレドープ完了後の電解液中での負極電位が金属リチウムに対して0.2V以下となるように計算された分量の金属リチウム箔を貼り付けた。
 (3)電極群の作製
 正極と負極にそれぞれリードタブを接続した後、図3に示すように、セルロース製不織布のセパレータ(厚さ35μm)と、正極、負極とを、それぞれ、交互に重ね合わせた積層体を捲回して、電極群を形成した。
 (4)電解液の調製
 プロピレンカーボネートとジメチルカーボネートとの体積比1:1の混合物に、ビニレンカーボネートを0.2質量%添加して、溶媒を調製した。得られた溶媒にリチウム塩としてLiPF6を所定濃度で溶解させ、非水電解液を調製した。
 (5)電気化学デバイスの作製
 開口を有する有底の容器に、電極群と電解液とを収容し、図2に示すような電気化学デバイスを組み立てた。その後、正極と負極との端子間に3.8Vの充電電圧を印加しながら25℃で24時間エージングし、リチウムイオンの負極へのプレドープを進行させた。このようにして、電気化学デバイスを作製した。
 正極集電体におけるアルミニウム箔の表面粗さ(Ra)A、および/または、導電性高分子であるポリアニリンの粒径Bを変更し、表面粗さA、ポリアニリンの粒径Bの組み合わせが異なる複数種類の電気化学デバイスA1~A7、B1、B2を作製した。表1に、電気化学デバイスA1~A7、B1、B2における表面粗さA、ポリアニリンの粒径B、および、比B/Aの一覧を示す。
 《電気化学デバイスB3》
 正極の作製において、エッチングされていないアルミニウム箔を正極集電体として用いた。これ以外については、電気化学デバイスA1と同様にして、電気化学デバイスB3を作製した。
 《電気化学デバイスA8~A12》
 正極の作製において、厚さ30μmのエッチングされたアルミニウム箔を正極集電体として準備した。次に、カーボンブラックを水と混錬して得られたカーボンペーストを、正極集電体の裏表の全面に塗布した後、加熱により乾燥して、カーボン層を形成した。カーボン層の厚さは、片面あたり2μmであった。
 正極合剤ペーストを正極集電体の両面のカーボン層に塗布し、乾燥させて、厚さ35μmの正極材料層を両面に有する正極を得た。これ以外については、電気化学デバイスA1と同様にして、電気化学デバイスB2を作製した。
 カーボンペーストにおけるカーボンブラックの粒径が異なる複数種類の電気化学デバイスA9~A13を作製した。表2に、電気化学デバイスA9~A12における表面粗さA、ポリアニリンの粒径B、および、カーボンブラックの粒径Cの一覧を示す。
 《電気化学デバイスB4》
 正極の作製において、エッチングされていないアルミニウム箔を正極集電体として用いた。これ以外については、電気化学デバイスA10と同様にして、電気化学デバイスB4を作製した。
 (評価)
 (1)内部抵抗(DCR)
 25℃の環境下で、電気化学デバイスを3.6Vの電圧で充電し、その後、所定時間(0.05秒~0.2秒)放電した際の電圧降下量から、初期内部抵抗(DCR)Rを求めた。
 (2)DCR維持率
 電気化学デバイスを、25℃の環境下で、3.45Vの電圧を印加した状態を1000時間維持した。その後、電気化学デバイスを3.6Vの電圧で充電した後放電させ、初期内部抵抗Rと同様にして、フロート試験後の内部抵抗(DCR)Rを求めた。RのRに対する比X=R/RをDCR維持率として評価した。
 表1に、電気化学デバイスA1~A8、B1~B3において、初期内部抵抗(DCR)RおよびDCR維持率の評価結果を示す。表2に、電気化学デバイスA9~A11、B4~B6において、初期内部抵抗(DCR)RおよびDCR維持率の評価結果を示す。初期内部抵抗(DCR)RおよびDCR維持率は、それぞれ、電気化学デバイスB3を100とした相対値で示されている。
 表1より、正極集電体におけるアルミニウム箔の表面粗さ(Ra)を0.7μm~1.7μmとした電気化学デバイスA1~A8は、電気化学デバイスB1~B3と比較して、初期内部抵抗Rを低減でき、且つ、長期使用による内部抵抗の上昇を抑制できる。特に、表面粗さ(Ra)Aに対する導電性高分子の粒径Bの比B/Aが1.7以上16.7以下である電気化学デバイスA1~A3、A5、A6において、初期内部抵抗Rの減少およびDCR維持率の改善が顕著である。
 表2より、カーボン層上に導電性高分子を含む正極材料層を形成する場合、導電性炭素材料の粒子径が1.0μm以下の電気化学デバイスA8~A11において、初期内部抵抗Rの減少およびDCR維持率の改善が顕著である。しかしながら、粒子径が0.1μmより小さくなると、導電性炭素材料が凝集し易く、カーボンペーストの作製が困難になる場合がある。この点で、粒子径が0.2μm以上1.0μm以下の電気化学デバイスA9~A11が好ましい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明に係る電気化学デバイスは、内部抵抗が低いことから急速充放電特性に優れ、各種電源として好適に利用できる。
 100:電極体
  10:正極
  11x:正極芯材露出部
  13:正極集電板
  15:タブリード
  20:負極
  21x:負極芯材露出部
  23:負極集電板
  30:セパレータ
 200:電気化学デバイス
  210:セルケース
  220:封口板
  221:ガスケット

Claims (5)

  1.  正極集電体と、前記正極集電体に担持された正極材料層を含む正極と、
     負極と、
     電解液と、を備え、
     前記正極材料層は、導電性高分子を含み、
     前記正極集電体の表面粗さ(Ra)は、0.7μm以上1.7μm以下である、電気化学デバイス。
  2.  前記導電性高分子の粒子径は、2μm以上20μm以下である、請求項1に記載の電気化学デバイス。
  3.  前記正極集電体の表面粗さ(Ra)Aに対する、前記導電性高分子の粒子径Bの比B/Aは、16.7以下である、請求項2に記載の電気化学デバイス。
  4.  前記正極集電体と前記正極材料層との間に、カーボン層が介在し、
     前記カーボン層に含まれる導電性炭素材料の粒子径は、0.2μm以上1.0μm以下である、請求項1~3のいずれか1項に記載の電気化学デバイス。
  5.  前記導電性高分子は、ポリアニリンを含む、請求項1~4のいずれか1項に記載の電気化学デバイス。
PCT/JP2021/013177 2020-03-30 2021-03-29 電気化学デバイス WO2021200777A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022512179A JPWO2021200777A1 (ja) 2020-03-30 2021-03-29
CN202180023545.2A CN115380348A (zh) 2020-03-30 2021-03-29 电化学装置
US17/906,418 US20230116180A1 (en) 2020-03-30 2021-03-29 Electrochemical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-061353 2020-03-30
JP2020061353 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200777A1 true WO2021200777A1 (ja) 2021-10-07

Family

ID=77929464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013177 WO2021200777A1 (ja) 2020-03-30 2021-03-29 電気化学デバイス

Country Status (4)

Country Link
US (1) US20230116180A1 (ja)
JP (1) JPWO2021200777A1 (ja)
CN (1) CN115380348A (ja)
WO (1) WO2021200777A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162470A (ja) * 1997-11-25 1999-06-18 Toyo Alum Kk 集電体用アルミニウム箔とその製造方法、集電体、二次電池および電気二重層コンデンサ
JP2000294251A (ja) * 1999-04-06 2000-10-20 Hitachi Cable Ltd Liイオン電池の負極集電体用銅材およびその製造方法
JP2009253168A (ja) * 2008-04-09 2009-10-29 Nippon Zeon Co Ltd 電気化学素子電極の製造方法
JP2013175396A (ja) * 2012-02-27 2013-09-05 Nippon Zeon Co Ltd 複合粒子、その製造方法、電極の製造方法および電気化学素子
JP2014086615A (ja) * 2012-10-25 2014-05-12 Meidensha Corp 積層型電気二重層キャパシタおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162470A (ja) * 1997-11-25 1999-06-18 Toyo Alum Kk 集電体用アルミニウム箔とその製造方法、集電体、二次電池および電気二重層コンデンサ
JP2000294251A (ja) * 1999-04-06 2000-10-20 Hitachi Cable Ltd Liイオン電池の負極集電体用銅材およびその製造方法
JP2009253168A (ja) * 2008-04-09 2009-10-29 Nippon Zeon Co Ltd 電気化学素子電極の製造方法
JP2013175396A (ja) * 2012-02-27 2013-09-05 Nippon Zeon Co Ltd 複合粒子、その製造方法、電極の製造方法および電気化学素子
JP2014086615A (ja) * 2012-10-25 2014-05-12 Meidensha Corp 積層型電気二重層キャパシタおよびその製造方法

Also Published As

Publication number Publication date
JPWO2021200777A1 (ja) 2021-10-07
US20230116180A1 (en) 2023-04-13
CN115380348A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2020111094A1 (ja) 電気化学デバイス用負極および電気化学デバイス、並びに電気化学デバイス用負極の製造方法および電気化学デバイスの製造方法
WO2018143048A1 (ja) 電気化学デバイス用正極および電気化学デバイス、ならびにこれらの製造方法
WO2017130855A1 (ja) 電気化学デバイス用正極活物質、電気化学デバイス用正極および電気化学デバイスならびに電気化学デバイス用正極活物質の製造方法
US11621424B2 (en) Electrochemical device and method for manufacturing electrochemical device
JP7033700B2 (ja) 電気化学デバイス
CN110462887B (zh) 电化学装置用正极和具备其的电化学装置
WO2020158547A1 (ja) 電気化学デバイス
JP7285401B2 (ja) 電気化学デバイス
WO2021200777A1 (ja) 電気化学デバイス
WO2013172223A1 (ja) デュアルモード型蓄電デバイス
WO2020262440A1 (ja) 電気化学デバイス
WO2021200778A1 (ja) 電気化学デバイス
US20230129000A1 (en) Electrochemical device
JP7153840B2 (ja) 電気化学デバイス
JP7213409B2 (ja) 電気化学デバイス
WO2021193838A1 (ja) 電気化学デバイス用負極および電気化学デバイス
WO2022004166A1 (ja) 電気化学デバイス
JP7203303B2 (ja) 電気化学デバイス用正極およびそれを備える電気化学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779528

Country of ref document: EP

Kind code of ref document: A1