WO2021200767A1 - 錠剤、医薬及びそれらの製造方法並びにキット - Google Patents

錠剤、医薬及びそれらの製造方法並びにキット Download PDF

Info

Publication number
WO2021200767A1
WO2021200767A1 PCT/JP2021/013162 JP2021013162W WO2021200767A1 WO 2021200767 A1 WO2021200767 A1 WO 2021200767A1 JP 2021013162 W JP2021013162 W JP 2021013162W WO 2021200767 A1 WO2021200767 A1 WO 2021200767A1
Authority
WO
WIPO (PCT)
Prior art keywords
tablet
active ingredient
impregnating
pharmaceutically active
binder
Prior art date
Application number
PCT/JP2021/013162
Other languages
English (en)
French (fr)
Inventor
秀祐 佐野
俊太郎 新瀬
太 志方
Original Assignee
エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーザイ・アール・アンド・ディー・マネジメント株式会社 filed Critical エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority to KR1020227030916A priority Critical patent/KR20220161285A/ko
Priority to CA3174773A priority patent/CA3174773A1/en
Priority to AU2021250160A priority patent/AU2021250160A1/en
Priority to CN202180018299.1A priority patent/CN115243723A/zh
Priority to MX2022011215A priority patent/MX2022011215A/es
Priority to US17/911,040 priority patent/US20230105591A1/en
Priority to JP2022512170A priority patent/JPWO2021200767A1/ja
Priority to BR112022018613A priority patent/BR112022018613A2/pt
Priority to EP21780021.8A priority patent/EP4129342A4/en
Publication of WO2021200767A1 publication Critical patent/WO2021200767A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing

Definitions

  • the present invention relates to tablets, pharmaceuticals, methods for producing them, and kits.
  • the produced tablet contains all the desired pharmaceutically active ingredients.
  • Non-Patent Document 1 describes a liquid-fillable tablet (LLT) containing magnesium aluminometasilicate, crospovidone, and magnesium stearate, and a cyclosporine-containing self-microemulsifying drug delivery system.
  • LLT liquid-fillable tablet
  • a method of preparing CyA-SMEDDS) and immersing LLT in an excess of CyA-SMEDDS is disclosed.
  • the initially prepared LLT does not contain the pharmaceutically active ingredient (cyclosporine), and cyclosporine is added to the LLT later.
  • the method of adding the pharmaceutically active ingredient to the tablet later has various advantages as compared with the conventional method for producing a tablet, but silica, which is a porous inorganic particle used in the prior art, has a silanol group on the surface. Since it has, it may interact with the pharmaceutically active ingredient and other compounding ingredients, and the carrier itself is insoluble. Therefore, since the pharmaceutically active ingredient adsorbed inside the carrier is released only by natural diffusion in the liquid, the release property is inferior to that of the conventional tablet released by the disintegration of the tablet or the dissolution of the component. Therefore, it is desired to develop a new tablet used for such a method without using the porous inorganic particles of silica having various problems. It is preferable that such a tablet has the properties of a normal tablet, is easily permeated by the pharmaceutically active ingredient, and has a high ability to retain the permeated pharmaceutically active ingredient.
  • an object of the present invention is to provide a tablet having excellent permeability and retention ability of a pharmaceutically active ingredient, a drug using the tablet, a method for producing the tablet and the drug, and a kit.
  • the present invention includes the following embodiments.
  • Tablets for impregnating pharmaceutically active ingredients including monosaccharides and / or disaccharides.
  • the monosaccharide and / or disaccharide comprises at least one selected from the group consisting of lactose, sucrose, trehalose, maltose, mannitol, erythritol, xylitol, sorbitol, and maltitol [1] to [1-]. 4] The tablet according to any one of.
  • the water-insoluble polymer comprises at least one selected from the group consisting of croscarmellose sodium, carmellose, crospovidone, crystalline cellulose, and low-degree-of-substitution hydroxypropyl cellulose.
  • [7] The tablet according to [5] or [6], wherein the content of the water-insoluble polymer is 0.1 to 30% by mass based on the mass of the tablet.
  • [7-1] The tablet according to [5] or [6], wherein the content of the water-insoluble polymer is 0.5 to 20% by mass based on the mass of the tablet.
  • [7-2] The tablet according to [5] or [6], wherein the content of the water-insoluble polymer is 1 to 15% by mass based on the mass of the tablet.
  • [8] The tablet according to any one of [1] to [7-2], further comprising a binder.
  • the binder comprises at least one selected from the group consisting of an organic solvent-insoluble binder, an organic solvent sparingly soluble binder, and polyvinylpyrrolidone.
  • the organic solvent is ethanol or isopropyl alcohol.
  • the binder comprises at least one selected from the group consisting of polyvinyl alcohol, pullulan, xanthan gum, and hypromellose.
  • a tablet having excellent permeability and retention ability of a pharmaceutically active ingredient a drug using the tablet, a method for producing the tablet and the drug, and a kit.
  • One embodiment of the present invention relates to a tablet for impregnating a pharmaceutically active ingredient containing a monosaccharide and / or a disaccharide (hereinafter referred to as "impregnated tablet").
  • impregnated tablet By using the monosaccharide and / or the disaccharide, the pharmaceutically active ingredient is easily permeated into the impregnating tablet, and the permeated pharmaceutically active ingredient is easily retained in the impregnating tablet.
  • the "tablet for impregnation" means a tablet for impregnating a pharmaceutical active ingredient later.
  • the impregnating tablet may not contain the pharmaceutically active ingredient, may contain a part amount of the pharmaceutically active ingredient to be impregnated later, or may contain two or more kinds of pharmaceuticals as a final product.
  • a pharmaceutically active ingredient is contained, only some kinds of pharmaceutically active ingredients may be contained.
  • the advantages of the method of adding the pharmaceutically active ingredient to the impregnating tablet are, for example, that the content of the pharmaceutically active ingredient can be easily changed, and a trace amount of highly active pharmaceutically active ingredient is surely added to each impregnating tablet in the desired amount. It can be blended in, it can be easily blended with multiple pharmaceutically active ingredients, there is a low risk that the pharmaceutically active ingredient that is unstable to heat etc. will be destroyed during the manufacturing process, and the interaction between the pharmaceutically active ingredient and other ingredients is avoided. It can be done, it is not affected by the scale effect of the manufacturing scale, and by preparing tablets for impregnation, it is possible to manufacture the minimum necessary medicines such as rare disease medicines and investigational medicines.
  • the impregnating tablet is used for producing a tablet (pharmaceutical) containing a pharmaceutically active ingredient.
  • a tablet (pharmaceutical) containing a pharmaceutical active ingredient can be obtained by contacting an impregnating tablet with a chemical solution containing a pharmaceutical active ingredient and then removing the solvent of the chemical solution by drying.
  • the impregnating tablet can absorb a certain amount of the chemical solution when it comes into contact with the chemical solution, and can hold all or a part of the absorbed chemical solution in the impregnating tablet for a certain period of time.
  • the impregnating tablet that has come into contact with the drug solution containing the pharmaceutical active ingredient does not disintegrate in appearance (while maintaining the appearance shape), absorbs a certain amount of the drug solution, and retains the drug solution until the drying process is completed. can.
  • the chemical solution to be brought into contact with the impregnating tablet so that the chemical solution containing the predetermined amount of the medicinal active ingredient does not leak from the impregnating tablet. The concentration and amount can be determined.
  • the amount of the drug solution absorbed in the impregnated tablet (the amount of the drug in the drug after drying) can be adjusted by immersing the impregnating tablet in a constant concentration of the drug solution and setting the immersion time to a certain time. ..
  • the impregnating tablet it is also possible to produce a quick-disintegrating tablet having strength (hardness, abrasion) as a normal pharmaceutical product and capable of rapidly disintegrating when in contact with water.
  • the impregnating tablet can be used to produce an orally disintegrating tablet containing a pharmaceutically active ingredient.
  • Monosaccharides and disaccharides can improve the permeability, retention, strength, and disintegration of impregnating tablets.
  • the content of the monosaccharide and / or the disaccharide is preferably 60% by mass or more, based on the mass of the impregnating tablet, from the viewpoint of ensuring excellent permeability, retention, strength, and disintegration. It is preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the upper limit of the content of the monosaccharide and / or the disaccharide is not particularly limited, but may be, for example, 100% by mass, 98% by mass, 96% by mass, or 94% by mass.
  • Monosaccharides and disaccharides are concepts that also include their respective sugar alcohols, for example, lactose, sucrose, trehalose, maltose, mannitol, erythritol, xylitol, sorbitol, and maltitol are preferable, and ⁇ -type D-mannitol is more preferable. preferable.
  • the impregnation tablet preferably further contains a water-insoluble polymer.
  • insoluble means “almost insoluble” (that is, “the amount of solvent required to dissolve 1 g or 1 mL of solute” is "10000 mL or more") as indicated by the general rules of the 17th revised Japanese Pharmacopoeia. do.
  • the permeability and disintegration property can be improved while maintaining the holding ability and strength of the impregnating tablet.
  • water-insoluble polymer examples include croscarmellose sodium, carmellose, crospovidone, crystalline cellulose, low-substituted hydroxypropyl cellulose, carmellose calcium, partially pregelatinized starch, sodium starch glycolate and the like. These are also commonly used as disintegrants.
  • croscarmellose sodium carmellose
  • crospovidone crystalline cellulose
  • low-substituted hydroxypropyl cellulose carmellose calcium
  • partially pregelatinized starch sodium starch glycolate and the like.
  • the water-insoluble polymer is insoluble or sparingly soluble in the organic solvent from the viewpoint of maintaining the shape of the impregnating tablet when the impregnating tablet is impregnated with the medicinal active ingredient dissolved or dispersed in an organic solvent such as ethanol.
  • an organic solvent such as ethanol.
  • “poorly soluble” means “extremely insoluble” (that is, “amount of solvent required to dissolve 1 g or 1 mL of solute” is "1000 mL or more and less than 10000 mL", which is indicated by the general rules of the 17th revised Japanese Pharmacopoeia.
  • the content of the water-insoluble polymer is preferably 0.1 to 30% by mass, based on the mass of the impregnating tablet, from the viewpoint of ensuring excellent permeability, retention, strength, and disintegration. It is preferably 0.5 to 20% by mass, and more preferably 1 to 15% by mass.
  • the impregnating tablet preferably further contains a binder, more preferably a binder with a water-insoluble polymer.
  • the binder can improve the permeability and disintegration while maintaining the holding ability and strength of the impregnating tablet.
  • the binder include polyvinyl alcohol (including a partially saponified product), polyvinylpyrrolidone (povidone), hypromellose, pullulan, xanthan gum, guar gum, gelatin, carrageenan, agar and the like.
  • the binder one type may be used alone, or a plurality of types may be used in combination.
  • the binder is insoluble or sparingly soluble in the organic solvent from the viewpoint of retaining the shape of the impregnating tablet when the impregnating tablet is impregnated with the pharmaceutically active ingredient dissolved or dispersed in an organic solvent such as ethanol.
  • an organic solvent such as ethanol.
  • polyvinylpyrrolidone and hypromellose are soluble in ethanol, they can be preferably used.
  • the organic solvent referred to here include ethanol, isopropyl alcohol, 1-propanol, methanol, DMF and the like.
  • the content of the binder is preferably 0.1 to 10% by mass, more preferably 0.1 to 10% by mass, based on the mass of the impregnating tablet, from the viewpoint of ensuring excellent permeability, retention, strength, and disintegration. It is 0.3 to 8% by mass, more preferably 0.6 to 6% by mass.
  • the impregnation tablet may further contain an arbitrary component as long as the effect is not adversely affected.
  • the optional component include excipients, lubricants, fluidizers, colorants and the like.
  • excipients examples include corn starch, calcium carbonate, anhydrous calcium hydrogen phosphate and the like.
  • lubricant examples include magnesium stearate, calcium stearate, talc, hydrogenated vegetable oil, sucrose fatty acid ester, polyethylene glycol, sodium lauryl sulfate and the like.
  • fluidizing agent examples include light anhydrous silicic acid, hydrous silicon dioxide, titanium oxide, synthetic aluminum silicate, magnesium aluminometasilicate, and the like.
  • Examples of the colorant include tar pigments and natural pigments.
  • the properties of impregnating tablets can be changed by adjusting the theoretical porosity.
  • the theoretical porosity is preferably 20 to 50%, more preferably 25 to 45%, and further. It is preferably 30 to 40%.
  • the theoretical porosity can be increased by compression molding with low pressure capacity using a composition with a high true density to increase the tablet volume, but the molded product has properties such as hardness and abrasion resistance that should be possessed as a tablet. Satisfaction is also required at the same time.
  • the theoretical porosity can be calculated by the following equation (1).
  • the solid volume can be calculated based on the following equation (2).
  • the tablet volume can be measured using a known body-side measuring instrument such as a 3D scanner (VL series manufactured by KEYENCE CORPORATION).
  • the tablet volume may be simply calculated based on the following formula (3).
  • the above formula (3) is a simple calculation method assuming that the impregnating tablet has a perfect cylindrical shape.
  • the impregnating tablet has a cylindrical shape having a border portion and it is necessary to calculate the volume of the border portion in detail, it can be calculated and corrected using Pappus-Guldin's theorem. If the impregnating tablet does not have a cylindrical shape, it may be simply calculated by another calculation formula.
  • the shape of the impregnating tablet is not particularly limited, but it is preferable that the tablet has a recess on its surface.
  • One embodiment of the present invention relates to a method for producing an impregnating tablet, which comprises a mixing step and a tableting step.
  • the mixing step is a step of mixing a monosaccharide and / or a disaccharide with a solvent to obtain a mixture.
  • the solvent used in the mixing step examples include water, ethanol, isopropyl alcohol, 1-propanol, methanol, DMF and the like.
  • the solvent preferably contains at least water, and it is more preferable to use a mixed solvent of water and ethanol.
  • the mass ratio of water and ethanol is preferably 1: 0.1 to 1:10, more preferably 1: 0.3 to 1: 5. More preferably, it is 1: 0.6 to 1: 3.
  • the amount of the solvent used is preferably 1 to 40% by mass, more preferably 10 to 30% by mass, still more preferably 15 to 15 to 40% by mass, based on the total mass of the components (excluding the solvent) of the impregnating tablet. It is 25% by mass.
  • any component may be further used as long as the effect of the impregnating tablet is not adversely affected. Details of the optional components are as described in the above item ⁇ Impregnating Tablets>.
  • Examples of the mixing method include wet granulation and dry granulation. Although not particularly limited, it is preferable to employ wet granulation in order for the impregnating tablet to have a high porosity and satisfy the properties that the tablet should have.
  • the locking step is a step of locking the mixture obtained in the mixing step.
  • the tableting step is preferably carried out on the wet mixture.
  • a method of locking for example, a single-shot locking machine (AUTOGRAPH, manufactured by Shimadzu Corporation), a rotary locking machine, a quick-breaking tablet forming machine (EMT type molding machine: Sankyo Seisakusho), or the like, which is usually used, should be used. Can be done.
  • AUTOGRAPH single-shot locking machine
  • rotary locking machine a rotary locking machine
  • quick-breaking tablet forming machine EMT type molding machine: Sankyo Seisakusho
  • the manufacturing method according to the present embodiment may further include a drying step following the locking step.
  • the drying step is a step of removing the solvent remaining in the produced impregnating tablet.
  • drying method examples include natural drying, aeration using a shelf-type dryer, a ventilation-type dryer, a transport-type dryer (EDT type dryer: Sankyo Seisakusho), or a drying method using hot air, freeze-drying, and vacuum. Microwave drying such as drying can be mentioned.
  • One embodiment of the present invention relates to a medicine in which a tablet for impregnation is impregnated (preferably dropped) with a pharmaceutically active ingredient.
  • a medicine in which the pharmaceutically active ingredient is added to the impregnating tablet later, the pharmaceutically active ingredient will be non-uniformly present in the impregnating tablet. Therefore, the medicine contains the impregnating tablet and the pharmaceutically active ingredient present in the impregnating tablet, and is expressed as a medicine in which the pharmaceutically active ingredient is non-uniformly present in the impregnating tablet. You can also.
  • the non-uniform presence of the pharmaceutically active ingredient is due to the later addition of the pharmaceutically active ingredient to the impregnating tablet.
  • a large amount of the pharmaceutically active ingredient tends to be present on the surface portion (dropping portion) of the impregnating tablet into which the pharmaceutically active ingredient is dropped. Therefore, the pharmaceutically active ingredient of the dropping portion is present in a larger amount than the pharmaceutically active ingredient of the portion corresponding to the dropping portion of the tablet in which the same content of the pharmaceutically active ingredient is uniformly present, and is separated from the dropping portion. In the portion, the amount of pharmaceutically active ingredient is reduced. Therefore, confirming the presence distribution of the pharmaceutically active ingredient can be a method for confirming the method for producing a drug.
  • non-uniformly present refers to, for example, in an impregnating tablet impregnated with a pharmaceutical active ingredient by immersion, the pharmaceutical active ingredient (hereinafter referred to as "surface ingredient") existing on the surface portion of the impregnating tablet and the impregnating tablet.
  • surface ingredient the pharmaceutical active ingredient
  • central ingredient present in the central portion of the tablet is different from that of the pharmaceutically active ingredient, and the pharmaceutically active ingredient is unevenly present in the vicinity of the surface portion. can.
  • the pharmaceutical active ingredient present in the dropping portion (hereinafter referred to as “dropping portion component”) and the pharmaceutical activity existing on the surface facing the dropping portion. It can also be mentioned that the amount of the active ingredient is different depending on the component (hereinafter referred to as “dropped relative part component”), and the pharmaceutically active ingredient is unevenly present in the dropped portion.
  • Spectral analysis using Raman spectroscopy can be mentioned as a means for confirming the uneven distribution of the surface component and the central component, or the dropping part component and the dropping relative part component.
  • An image of a cross section of a drug in which a tablet for impregnation is impregnated with a pharmaceutical active ingredient is detected by spectral analysis using Raman spectroscopy.
  • spectral analysis using Raman spectroscopy By displaying the distribution of the active ingredient in an overlapping manner, it can be confirmed that the pharmaceutical active ingredient is unevenly distributed in the vicinity of the surface portion.
  • the type of the pharmaceutically active ingredient is not particularly limited, but for example, a pharmaceutically active ingredient whose prescription amount varies depending on the weight of the patient, a pharmaceutically active ingredient taken by an elderly patient who suffers from many diseases and is prescribed various drugs, and the like. Can be mentioned.
  • the advantage of being able to dispense the appropriate dose on the spot according to the weight of the patient, and the ability to take various drugs in one tablet reduces the hassle of taking multiple tablets and improves medication compliance.
  • the advantage of being able to contribute is mentioned. Therefore, the pharmaceutically active ingredient may be one kind or a plurality of kinds.
  • the pharmaceutically active ingredient may be an active ingredient used in quasi-drugs, and in this case, the quasi-drug of the present embodiment also includes quasi-drugs.
  • the pharmaceutically active ingredient may be an ingredient involved in a health functional food or a nutritional ingredient, and in this case, the pharmaceutical of the present embodiment also includes a health functional food containing these ingredients.
  • the content of the pharmaceutically active ingredient is appropriately adjusted according to the dosage thereof.
  • the theoretical porosity of the drug is preferably 20 to 50%, more preferably 25 to 45%, and even more preferably 30 to 40% from the viewpoint of improving the rapid collapse property of the drug. Since the theoretical porosity of a drug depends on the theoretical porosity of the impregnated tablet, the theoretical porosity of the drug can be adjusted by adjusting the theoretical porosity of the impregnated tablet. The theoretical porosity of a drug can be determined in the same manner as the theoretical porosity of an impregnating tablet.
  • the medicine may have a coat layer on its surface.
  • Examples of the type of coat layer include a sugar-coated coat layer and a film coat layer.
  • One embodiment of the present invention relates to a method for producing a drug, which comprises an impregnation step.
  • the impregnation step is a step of impregnating the impregnating tablet with the pharmaceutical active ingredient.
  • the term "impregnated” means that the impregnated tablet contains a pharmaceutically active ingredient.
  • the impregnation method is not particularly limited, and for example, a method of dropping a solution or dispersion containing a pharmaceutical active ingredient onto an impregnation tablet (hereinafter referred to as "drop method"), or immersing the impregnation tablet in the solution or dispersion. Examples thereof include a method (hereinafter referred to as “immersion method”). From the viewpoint of accurately impregnating a specified amount of the pharmaceutically active ingredient, it is preferable to adopt the dropping method.
  • the solvent of the solution or dispersion containing the pharmaceutically active ingredient is not particularly limited as long as it is a pharmaceutically acceptable solvent (that is, a solvent having low toxicity).
  • a pharmaceutically acceptable solvent that is, a solvent having low toxicity.
  • the pharmaceutically acceptable solvent include ethanol, isopropanol, 1-propanol, methanol, DMF and the like. From the viewpoint of ensuring high safety, it is preferable to use ethanol.
  • the impregnating tablet used in the impregnation process has a certain level of permeability and retention.
  • concentration and amount of the solution or dispersion containing the pharmaceutically active ingredient can be appropriately adjusted according to the permeability and retention ability so that the desired pharmaceutically active ingredient is blended in the drug.
  • the dropped solution or dispersion quickly permeates and is retained in the impregnating tablet for a certain period of time (for example, the time after dropping to before the start of the drying process) without seeping out from the impregnating tablet. Manufacturing control is easy when the concentration and quantity are used.
  • the term "permeability" means the ease with which a solution or dispersion containing a pharmaceutical active ingredient can penetrate into an impregnating tablet. From the viewpoint of production efficiency, it is preferable that the solution or dispersion containing the pharmaceutically active ingredient can be rapidly permeated into the impregnating tablet.
  • the penetration time described in the following examples can be used. The shorter the permeation time is, the more advantageous it is, but it is sufficient that the solution or dispersion permeates the impregnating tablet during the process of moving to the drying step, and the permeation time can be within 120 seconds as a guide. On the other hand, even if the permeation time is as short as about 10 seconds, there is no holding ability and if it leaks immediately, it becomes difficult to control the manufacturing process conditions.
  • the term "retaining ability" means the ability to retain a solution or dispersion containing a pharmaceutically active ingredient impregnated in an impregnating tablet so as not to leak from the tablet.
  • the retention ability of the impregnating tablet is qualitative by confirming the presence or absence and degree of retention of the solution or dispersion when a certain amount of solution or dispersion is dropped onto the impregnation tablet as in the following examples. Can be evaluated.
  • An impregnating tablet that easily holds a solution or a dispersion in a quantitative manner is advantageous in that the range of adjustment of the manufacturing conditions of the drug according to the present embodiment can be widened.
  • the concentration and amount of the solution or dispersion may be adjusted to be suitable for the confirmed retention capacity, and the solution or dispersion may be used using a viscosity modifier.
  • the viscosity of the liquid may be adjusted, or other process conditions may be adjusted.
  • the holding capacity of the impregnated tablet is quantitatively determined by changing the amount of the solution or dispersion dropped onto the impregnated tablet and using the amount of liquid at which exudation has started as the holding amount (upper limit liquid amount that can be held). It is also possible to evaluate. The larger the retention amount of the impregnating tablet, the more advantageous it is in the production of the pharmaceutical product.
  • the impregnating tablet may have a hardness sufficient to withstand the impregnation step and subsequent steps, or a drug manufactured through the step to withstand the impact during distribution.
  • the production method according to the present embodiment may further include a drying step after the impregnation step.
  • the drying step is a step of removing the solvent remaining in the produced medicine.
  • drying method examples include natural drying, aeration using a shelf-type dryer, a ventilation-type dryer, and a transport-type dryer (EDT type dryer: Sankyo Seisakusho), or a drying method using hot air, freeze-drying, etc. Vacuum drying and the like can be mentioned.
  • the manufacturing method according to the present embodiment may further include a coating step following the drying step.
  • the coating step is a step of forming a coat layer on the surface of the medicine.
  • the details of the coat layer are as described in the above item ⁇ Pharmaceutical>.
  • Examples of the coating method include pan coating in which tablets are placed in a coating pan and rolled to uniformly coat the whole, and spray coating in which a coating agent is partially applied to a stationary tablet using a spray nozzle. be able to.
  • the coat layer may cover the entire tablet or only a part of the tablet.
  • the advantages of the production method according to the present embodiment are, for example, that the content of the pharmaceutically active ingredient can be easily changed, and that a trace amount of the highly active pharmaceutically active ingredient can be surely blended in each impregnating tablet in the desired amount. , It is possible to avoid the interaction between the pharmaceutically active ingredient and other ingredients, the risk that the pharmaceutically active ingredient that is unstable to heat etc. is less likely to be destroyed during the manufacturing process, and the interaction between the pharmaceutically active ingredient and other ingredients It can be avoided, it is not affected by the scale effect of the manufacturing scale, and by preparing tablets for impregnation, it is possible to manufacture the minimum necessary medicines such as rare disease medicines and investigational medicines.
  • kits comprising an impregnating tablet and a pharmaceutically active ingredient.
  • the kit may contain a solvent for dissolving or dispersing the pharmaceutically active ingredient.
  • the kit may also include instructions describing how to use it. By using the kit, the drug can be manufactured in the place where the drug is actually used.
  • the ethanol retention capacity of the impregnating tablets produced in the following Examples and Comparative Examples was measured.
  • the retention capacity was evaluated on a three-point scale from A to C by observing the state in which 50 ⁇ L of ethanol was dropped onto the tablet surface (upper part) and the ethanol was exuded from the tablet surface (lower part) after complete penetration. (A is the most preferred, C is the least preferred).
  • the hardness (N) of the impregnating tablets produced in the following Examples and Comparative Examples was measured using a Kiya-type hardness tester.
  • Example 1 ⁇ Manufacturing and testing of impregnated tablets> (Example 1) to (Example 4)
  • Granulated products were obtained by granulating for minutes. The obtained granules were wet-crushed using a sieve (JP No. 16, opening 1000 ⁇ m) to obtain wet-produced granules.
  • the obtained wet-produced granules are tableted using a single-shot tableting machine (AUTOGRAPH, manufactured by Shimadzu Corporation) so that the tablet diameter is 8 mm and the tablet mass is 150 mg, and dried at a temperature of 60 ° C. , Impregnation tablets were obtained.
  • AUTOGRAPH manufactured by Shimadzu Corporation
  • Impregnation tablets were obtained.
  • four types of impregnating tablets were obtained by adjusting the tableting pressure in order to prepare tablets having different theoretical porosities. These impregnating tablets are designated as Examples 1 to 4 in order from the one having the smallest theoretical porosity.
  • Example 5 5.7 g of ⁇ -type D-mannitol (Merck, Parteck Delta M) and 0.3 g of low-substituted hydroxypropyl cellulose (Shin-Etsu Chemical, LH-31) were placed in a mortar and mixed for 3 minutes using a pestle. A total amount of a mixed solvent of 0.6 g of purified water and 0.6 g of absolute ethanol (manufactured by Kanto Chemical Co., Inc.) was added to the obtained mixed product, and granulation was performed for 3 minutes using a milk stick to obtain a granulated product. The obtained granules were wet-crushed using a sieve (JP No.
  • Example 5 Permeability, retention, hardness, and disintegration time were evaluated for Example 5. In addition, the theoretical porosity was also calculated. The results are shown in Table 1. As a result, in Example 5 containing hydroxypropyl cellulose (LH-31) having a lower degree of substitution than in Examples 1 to 4, improvement in permeability was observed while maintaining good retention ability (A). And showed better results. In addition, the disintegration time was shortened, and the hardness was also good.
  • LH-31 hydroxypropyl cellulose
  • Example 6 6 g of polyvinyl alcohol (partially saponified product) (Gosenol EG-05, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was dissolved in 30 g of purified water to obtain a 16.7% polyvinyl alcohol solution. 0.36 g of 16.7% polyvinyl alcohol solution was mixed with 0.3 g of purified water and 0.6 g of absolute ethanol (manufactured by Kanto Chemical Co., Inc.) to obtain a binding solution.
  • polyvinyl alcohol partially saponified product
  • the obtained wet-produced granules are tableted using a single-shot tableting machine (AUTOGRAPH, manufactured by Shimadzu Corporation) so that the tablet diameter is 8 mm and the tablet mass is 150 mg, and dried at a temperature of 60 ° C. Impregnation tablets were obtained.
  • AUTOGRAPH manufactured by Shimadzu Corporation
  • Example 7 0.6 g of popidone (Plaston K29-32 manufactured by ISP) was dissolved in 1.2 g of a mixed solution of purified water and absolute ethanol (50% mixed solution) to obtain a binding solution. According to the composition table of Table 1, an impregnating tablet was produced using the above-mentioned binding liquid under the same conditions as in Example 6.
  • Example 8 The low-substituted hydroxypropyl cellulose (LH-31) of Example 6 was replaced with the low-substituted hydroxypropyl cellulose (LH-11), and the impregnating tablet was prepared under the same conditions as in Example 6 according to the composition table of Table 1. Manufactured.
  • Example 9 The low-substituted hydroxypropyl cellulose (LH-31) of Example 6 was replaced with the low-substituted hydroxypropyl cellulose (LH-21), and the impregnating tablet was prepared under the same conditions as in Example 6 according to the composition table of Table 1. Manufactured.
  • Example 10 The low-substituted hydroxypropyl cellulose of Example 6 was replaced with croscarmellose sodium (manufactured by FMC International Inc., Ac-Di-Sol), and according to the composition table of Table 1, impregnation tablets under the same conditions as in Example 6. Manufactured.
  • Example 11 The low-degree-of-substitution hydroxypropyl cellulose of Example 6 was replaced with carmellose (manufactured by Gotoku Yakuhin, NS-300), and impregnated tablets were produced under the same conditions as in Example 6 according to the composition table of Table 1.
  • Example 12 The low-substituted hydroxypropyl cellulose of Example 6 was replaced with crospovidone (Polyplusdone XL-10 manufactured by ISP), and an impregnating tablet was produced under the same conditions as in Example 6 according to the composition table of Table 1. ..
  • Example 13 The low-substituted hydroxypropyl cellulose of Example 6 was replaced with crystalline cellulose (manufactured by Asahi Kasei Chemicals, Japanese Pharmacopoeia Theoras PH-101), and impregnated tablets were produced under the same conditions as in Example 6 according to the composition table of Table 1. bottom.
  • Example 14 0.6 g of hypromellose 2910 (manufactured by Shin-Etsu Chemical Co., Ltd., TC-5E Japanese Pharmacopoeia hypromellose) was dissolved in 1.2 g of sterilized purified water and absolute ethanol mixed solution (50% mixed solution) to obtain a binding solution. According to the composition table of Table 1, an impregnating tablet was produced using the above-mentioned binding liquid under the same conditions as in Example 6.
  • Example 15 0.6 g of pullulan (manufactured by Hayashibara, Japanese Pharmacopoeia pullulan) was dissolved in 1.2 g of sterilized purified water and absolute ethanol mixed solution (50% mixed solution) to obtain a binding solution. According to the composition table of Table 1, an impregnating tablet was produced using the above-mentioned binding liquid under the same conditions as in Example 6.
  • Example 16 0.6 g of xanthan gum (Grindsted Xanthan J, manufactured by Danisco) was dissolved in 1.2 g of sterilized purified water and absolute ethanol mixed solution (50% mixed solution) to obtain a binding solution. According to the composition table of Table 1, an impregnating tablet was produced using the above-mentioned binding liquid under the same conditions as in Example 6.
  • Example 17 The input amount of ⁇ -type D-mannitol in Example 6 was changed to 5.34 g and the input amount of low-substituted hydroxypropyl cellulose was changed to 0.6 g, and according to the composition table in Table 1, impregnation tablets under the same conditions as in Example 6. Manufactured.
  • Example 20 The amount of ⁇ -type D-mannitol input in Example 6 was changed to 5.94 g, low-substituted hydroxypropyl cellulose was removed, and impregnation tablets were produced under the same conditions as in Example 6 according to the composition table in Table 1. ..
  • Example 17 and 20 were evaluated for permeability, retention, hardness, and disintegration time. In addition, the theoretical porosity was also calculated. The results are shown in Table 1. As a result, when considered together with Example 6, the content of the water-insoluble polymer when the binder is contained is 5% and 10% of the total mass of the impregnating tablet, and has good permeability and retention. It showed the ability (A), and also showed good results in the disintegration time and hardness. In addition, in Example 20 containing no water-insoluble polymer, good results were shown in good permeability, disintegration time, and hardness. However, a small amount of exudation was observed (retention capacity (B)).
  • Example 18 A mixture of 0.72 g of 16.7% polyvinyl alcohol solution and 0.6 g of absolute ethanol was used as the binder. Further, the amount of ⁇ -type D-mannitol input in Example 6 was changed to 5.58 g, and impregnation tablets were produced under the same conditions as in Example 6 according to the composition table in Table 1.
  • Example 18 Permeability, retention, hardness, and disintegration time of Example 18 were evaluated. In addition, the theoretical porosity was also calculated. The results are shown in Table 1. As a result, when considered together with Examples 5 and 6, the content of the binder when the water-insoluble polymer is contained is 0%, 1%, or 2% of the total mass of the impregnating tablet. Also showed good permeability and retention (A), and also showed good values in disintegration time and hardness.
  • Example 19 A mixture of 0.3 g of 16.7% polyvinyl alcohol solution, 0.25 g of purified water and 0.5 g of absolute ethanol was used as the binder. Further, the input amount of ⁇ -type D-mannitol in Example 6 was changed to 4.7 g and the input amount of low-substituted hydroxypropyl cellulose was changed to 0.25 g, and impregnation was performed under the same conditions as in Example 6 according to the composition table in Table 1. Mannitol was manufactured.
  • Example 21 A mixture of 0.3 g of 16.7% polyvinyl alcohol solution and 0.75 g of purified water was used as the binder. Further, the input amount of ⁇ -type D-mannitol in Example 6 was changed to 4.7 g and the input amount of low-substituted hydroxypropyl cellulose was changed to 0.25 g, and impregnation was performed under the same conditions as in Example 6 according to the composition table in Table 1. Mannitol was manufactured.
  • Example 19 and 21 Permeability, retention and hardness of Examples 19 and 21 and Comparative Example 1 were evaluated. In addition, the theoretical porosity was also calculated. The results are shown in Table 1. As a result, in Example 19 using a mixed solvent of sterile purified water and absolute ethanol, good permeability, retention ability (A), and hardness were shown. In addition, Example 21 in which the solvent was only sterilized purified water also showed good results in terms of permeability and hardness. However, a small amount of exudation was observed (retention capacity (B)). On the other hand, in Comparative Example 1 in which the solvent was only absolute ethanol, the hardness, which is a property to be provided as a tablet, was extremely low, and the tablet was fragile and unsuitable as an impregnation tablet.
  • Example 22 The ⁇ -type D-mannitol of Example 6 was replaced with sorbitol (manufactured by Rocket Japan, Neosorb P650), and tablets were produced under the same conditions as in Example 6 according to the composition table of Table 1.
  • Example 23 The ⁇ -type D-mannitol of Example 6 was replaced with lactose hydrate (manufactured by DMV, Pharmatose 200M), and tablets were prepared under the same conditions as in Example 6 according to the composition table of Table 1.
  • Example 24 Replace ⁇ -type D-mannitol (Merck, Parteck Delta M) in Example 6 with ⁇ -type D-mannitol (Merck, Partech M100), and tablet according to the composition table in Table 1 under the same conditions as in Example 6. Manufactured.
  • the obtained wet-produced granules are tableted using a single-shot tableting machine (AUTOGRAPH, manufactured by Shimadzu Corporation) so that the tablet diameter is 8 mm and the tablet mass is 150 mg, and dried at a temperature of 60 ° C. Impregnation tablets were obtained.
  • AUTOGRAPH manufactured by Shimadzu Corporation
  • Comparative Test Example 2 The permeability, retention ability, and hardness of Comparative Example 2 were evaluated. In addition, the theoretical porosity was also calculated. The results are shown in Table 1. As a result, in Comparative Example 2 using crystalline cellulose which does not contain monosaccharides and disaccharides and is a polysaccharide, most of the dropped ethanol leaked out (retention ability (C)) and was used as an impregnating tablet. It wasn't possible.
  • Example 25 32.5 g of polyvinyl alcohol (partially saponified) was added to 650 g of warmed sterilized purified water (manufactured by Yoshida Pharmaceutical Co., Ltd.) and dissolved by stirring with an air motor to obtain a polyvinyl alcohol aqueous solution. 25 g of absolute ethanol was added to 105 g of a polyvinyl alcohol aqueous solution and stirred to obtain 130 g of a binder. This was repeated 4 times to obtain a total of 520 g of binder.
  • Impregnation tablets were produced by drying at 60 ° C. using a machine.
  • An acetaminophen solution was obtained by dissolving 100 mg of acetaminophen in 800 mg of ethanol. 42 mg of the obtained acetaminophen solution was added dropwise to the above-mentioned impregnation tablet, and the solution was allowed to permeate the tablet. Subsequently, the tablets were dried in a constant temperature layer at 50 ° C. to obtain 5 mg of acetaminophen-impregnated tablets.
  • Example 26 A cimetidine solution was obtained by dissolving 100 mg of cimetidine in 600 mg of methanol. A 35 mg cimetidine solution was added dropwise to the tablets prepared in Example 25, and the solution was allowed to permeate the tablets. Subsequently, the tablets were dried in a constant temperature bath at 50 ° C. to obtain 5 mg of cimetidine-impregnated tablets.
  • Example 27 A famotidine solution was obtained by dissolving 100 mg of famotidine in 600 mg of DMF. A 35 mg famotidine solution was added dropwise to the tablets prepared in Example 25, and the solution was allowed to permeate the tablets. Subsequently, the tablets were dried in a constant temperature bath at 50 ° C. to obtain 5 mg of famotidine-impregnated tablets.
  • Test Examples 25 to 27 100 mg each of acetaminophen, cimetidine, and famotidine were weighed in a 100 mL flask, dissolved in 50% methanol, and then messed up to prepare the standard solution.
  • the impregnated tablets prepared in Examples 25 to 27 were placed in a volumetric flask one by one, 50% methanol was added, and the tablets were stirred with a stirrer to disintegrate the tablets.
  • the obtained dispersion was centrifuged at 10000 rpm for 10 minutes using a centrifuge, and the supernatant was used as the test solution.
  • the absorbances of the standard solution and the test solution were measured using an ultraviolet-visible spectrophotometer, and the content was calculated from the absorbance ratio.
  • the measurement wavelengths of acetaminophen, cimetidine, and famotidine were 246, 218, and 287 nm, respectively.
  • the background measurement wavelength was 650 nm.
  • the contents of acetaminophen-impregnated tablets, cimetidine-impregnated tablets, and famotidine-impregnated tablets were 99.3%, 97.6%, and 100.0%, respectively, for which three impregnated tablets were evaluated and the average value was calculated.
  • Example 28 An acetaminophen solution was prepared by dissolving 500 mg of acetaminophen in 500 ⁇ L of absolute ethanol. 20 ⁇ L of the acetaminophen solution was added dropwise to the impregnation tablet prepared in Example 25, and the tablet was dried at 1000 W for 1 minute using a microwave oven (manufactured by Sanyo Electric Co., Ltd., EMO-FZ40) to obtain an acetaminophen-impregnated tablet.
  • a microwave oven manufactured by Sanyo Electric Co., Ltd., EMO-FZ40
  • Example 28 An optical image and a Raman microscope image of a cross section of the acetaminophen-impregnated tablet prepared in Example 28 were obtained using a Raman spectroscopic microscope (manufactured by Renishaw, inVia). An image diagram was created using the baseline of the scattering intensity of 1595-1635 cm -1 and the signal intensity ratio, with the laser wavelength of 785 nm, the exposure time of 1 second, and the number of integrations once (Fig. 1). The white part in the figure indicates the location of acetaminophen.
  • the image diagram is a cross section in the direction perpendicular to the surface of the impregnating tablet into which the acetaminophen solution is dropped, the upper side of the image diagram is the dropping surface, and the lower side of the image is the surface facing the dropping surface.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pain & Pain Management (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、医薬活性成分の浸透性及び保持能に優れた錠剤等を提供することを課題とする。前記課題は、単糖及び/又は二糖を含む、医薬活性成分を含浸させるための錠剤によって解決することができる。

Description

錠剤、医薬及びそれらの製造方法並びにキット
 本発明は、錠剤、医薬及びそれらの製造方法並びにキットに関する。
 従来の錠剤の製造方法としては、医薬活性成分、賦形剤、結合剤等を混合し、混合物を打錠する方法等が知られている。このような方法では、製造された錠剤に目的とする医薬活性成分が全て含まれることになる。
 錠剤の新たな製造方法として、例えば非特許文献1には、マグネシウムアルミノメタシリケートと、クロスポビドンと、ステアリン酸マグネシウムとを含む液体充填可能錠(LLT)、及びシクロスポリン含有自己ミクロ乳化薬物送達システム(CyA-SMEDDS)を調製し、LLTを過剰量のCyA-SMEDDSに浸漬する方法が開示されている。このような方法では、最初に調製されたLLTに医薬活性成分(シクロスポリン)は含まれておらず、後からLLTにシクロスポリンを加えることになる。
AAPS PharmSciTech,Vol.10,No.4,pp.1388-1395(2009)
 錠剤に、医薬活性成分を後から加える方法は、従来の錠剤の製造方法と比較して、様々な利点を有するが、前記先行技術で用いる多孔性無機粒子であるシリカは、表面にシラノール基を有するため医薬活性成分や他の配合成分との相互作用が生じる可能性があり、さらに、担体自体は不溶性である。そのため、当該担体内部に吸着した医薬活性成分は液体中では自然拡散によってのみ放出されるため、錠剤の崩壊や成分の溶解によって放出される従来の錠剤に比べて放出性に劣る。そこで、種々の課題を有するシリカの多孔性無機粒子を用いずに、このような方法に使用する新たな錠剤の開発が望まれる。このような錠剤は、通常の錠剤が持つ性質を有し、更に、医薬活性成分が浸透しやすく、かつ、浸透した医薬活性成分を保持する性能が高いことが好ましい。
 そのため、本発明は、医薬活性成分の浸透性及び保持能に優れた錠剤、これを利用した医薬、及び前記錠剤及び前記医薬の製造方法、並びにキットを提供することを目的とする。
 本発明者等が鋭意検討した結果、単糖及び/又は二糖を含む錠剤が、医薬活性成分の浸透性及び保持能に優れることを見出した。
 本発明は以下の実施形態を含む。
[1]
 単糖及び/又は二糖を含む、医薬活性成分を含浸させるための錠剤。
[1-1]
 前記単糖及び/又は二糖の含有量が、前記錠剤の質量を基準として、60~100質量%である、[1]に記載の錠剤。
[1-2]
 前記単糖及び/又は二糖の含有量が、前記錠剤の質量を基準として、70~98質量%である、[1]に記載の錠剤。
[1-3]
 前記単糖及び/又は二糖の含有量が、前記錠剤の質量を基準として、80~96質量%である、[1]に記載の錠剤。
[1-4]
 前記単糖及び/又は二糖の含有量が、前記錠剤の質量を基準として、90~94質量%である、[1]に記載の錠剤。
[2]
 前記単糖及び/又は二糖が、乳糖、ショ糖、トレハロース、マルトース、マンニトール、エリスリトール、キシリトール、ソルビトール、及びマルチトールからなる群から選択される少なくとも1種を含む、[1]~[1-4]のいずれかに記載の錠剤。
[2-1]
 前記単糖及び/又は二糖が、乳糖、マンニトール、及びソルビトールからなる群から選択される少なくとも1種を含む、[2]に記載の錠剤。
[2-2]
 前記単糖及び/又は二糖が、マンニトールを含む、[2]又は[2-1]に記載の錠剤。
[3]
 前記単糖及び/又は二糖が、マンニトールであり、前記マンニトールが、δ型D-マンニトールを含む、[1]~[2-2]のいずれかに記載の錠剤。
[4]
 理論空隙率が20~50%である、[1]~[3]のいずれかに記載の錠剤。
[4-1]
 理論空隙率が25~45%である、[1]~[3]のいずれかに記載の錠剤。
[4-2]
 理論空隙率が30~40%である、[1]~[3]のいずれかに記載の錠剤。
[5]
 水不溶性高分子を更に含む、[1]~[4-2]のいずれかに記載の錠剤。
[6]
 前記水不溶性高分子が、クロスカルメロースナトリウム、カルメロース、クロスポビドン、結晶セルロース、及び低置換度ヒドロキシプロピルセルロースからなる群から選択される少なくとも1種を含む、[5]に記載の錠剤。
[7]
 前記水不溶性高分子の含有量が、前記錠剤の質量を基準として、0.1~30質量%である、[5]又は[6]に記載の錠剤。
[7-1]
 前記水不溶性高分子の含有量が、前記錠剤の質量を基準として、0.5~20質量%である、[5]又は[6]に記載の錠剤。
[7-2]
 前記水不溶性高分子の含有量が、前記錠剤の質量を基準として、1~15質量%である、[5]又は[6]に記載の錠剤。
[8]
 結合剤を更に含む、[1]~[7-2]のいずれかに記載の錠剤。
[9]
 前記結合剤が、有機溶媒不溶性結合剤、有機溶媒難溶性結合剤、及びポリビニルピロリドンからなる群から選択される少なくとも1種を含む、[8]に記載の錠剤。
[10]
 前記有機溶媒が、エタノール又はイソプロピルアルコールである、[9]に記載の錠剤。
[11]
 前記結合剤が、ポリビニルアルコール、プルラン、キサンタンガム、及びヒプロメロースからなる群から選択される少なくとも1種を含む、[8]に記載の錠剤。
[12]
 前記結合剤の含有量が、前記錠剤の質量を基準として、0.1~10質量%である、[8]~[11]のいずれかに記載の錠剤。
[12-1]
 前記結合剤の含有量が、前記錠剤の質量を基準として、0.3~8質量%である、[8]~[11]のいずれかに記載の錠剤。
[12-2]
 前記結合剤の含有量が、前記錠剤の質量を基準として、0.6~6質量%である、[8]~[11]のいずれかに記載の錠剤。
[13]
 単糖及び/又は二糖と溶媒とを混合して、混合物を得る混合工程、及び
 前記混合物を打錠する打錠工程、
を含む、医薬活性成分を含浸させるための錠剤の製造方法。
[13-1]
 前記溶媒の使用量が、前記錠剤の構成成分(溶媒は除く)の全質量を基準として、1~40質量%である、[13]に記載の製造方法。
[13-2]
 前記溶媒の使用量が、前記錠剤の構成成分(溶媒は除く)の全質量を基準として、10~30質量%である、[13]に記載の製造方法。
[13-3]
 前記溶媒の使用量が、前記錠剤の構成成分(溶媒は除く)の全質量を基準として、15~25質量%である、[13]に記載の製造方法。
[14]
 前記打錠工程が、湿潤状態の前記混合物に対して実施される、[13]~[13-3]のいずれかに記載の製造方法。
[15]
 前記溶媒が、少なくとも水を含む、[13]~[14]のいずれかに記載の製造方法。
[16]
 前記溶媒が、有機溶媒を更に含む、[15]に記載の製造方法。
[16-1]
 前記有機溶媒がエタノールである、[16]に記載の製造方法。
[17]
 前記溶媒中における水と有機溶媒との質量比が、1:0.1~1:10である、[16]又は[16-1]に記載の製造方法。
[17-1]
 前記溶媒中における水と有機溶媒との質量比が、1:0.3~1:5である、[16]又は[16-1]に記載の製造方法。
[17-2]
 前記溶媒中における水と有機溶媒との質量比が、1:0.6~1:3である、[16]又は[16-1]に記載の製造方法。
[18]
 前記混合物が、水不溶性高分子を更に含む、[13]~[17-2]のいずれかに記載の製造方法。
[19]
 前記混合物が、結合剤を更に含む、[13]~[18]のいずれかに記載の製造方法。
[20]
 [1]~[12-2]のいずれかに記載の錠剤に、医薬活性成分を含浸させる含浸工程を含む、医薬の製造方法。
[21]
 前記含浸工程が、前記錠剤に、前記医薬活性成分を滴下することを含む、[20]に記載の製造方法。
[22]
 [1]~[12-2]のいずれかに記載の錠剤に、医薬活性成分が含浸されている医薬。
[23]
 [1]~[12-2]のいずれかに記載の錠剤と、
 前記錠剤中に存在する医薬活性成分と、
を含み、
 前記医薬活性成分が、前記錠剤中に不均一に存在している、医薬。
[24]
 [1]~[12-2]のいずれかに記載の錠剤と、
 医薬活性成分と、
を含むキット。
 本発明によれば、医薬活性成分の浸透性及び保持能に優れた錠剤、これを利用した医薬、及び前記錠剤及び前記医薬の製造方法、並びにキットを提供することができる。
アセトアミノフェン錠の断面のラマンケミカルイメージング像を示す。
<含浸用錠剤>
 本発明の一実施形態は、単糖及び/又は二糖を含む、医薬活性成分を含浸させるための錠剤(以下「含浸用錠剤」という。)に関する。単糖及び/又は二糖を使用することにより、含浸用錠剤に医薬活性成分が浸透しやすくなり、かつ、浸透した医薬活性成分が含浸用錠剤中に保持されやすくなる。
 本明細書において、「含浸用錠剤」とは、医薬活性成分を後から含浸させるための錠剤を意味する。含浸用錠剤は、医薬活性成分を含んでいなくともよいし、後から含浸させる医薬活性成分の一部の量を予め含んでいてもよいし、あるいは、最終製品としての医薬が2種以上の医薬活性成分を含む場合には、一部の種類の医薬活性成分のみを含んでいてもよい。予め製造された含浸用錠剤に医薬活性成分を加えることによって、医薬として使用することが可能となる。含浸用錠剤に医薬活性成分を加える方法の利点としては、例えば、医薬活性成分の含有量の変更が容易であること、高活性の微量の医薬活性成分を各含浸用錠剤に目的の量で確実に配合できること、複数の医薬活性成分を容易に配合できること、熱等に対して不安定な医薬活性成分が製造プロセス中に壊れるおそれが低いこと、医薬活性成分とその他の成分との相互作用を回避できること、製造スケールのスケールエフェクトを受けないこと、含浸用錠剤を用意しておくことで、希少疾患医薬品や治験薬などの必要最小限の医薬を製造できること等が挙げられる。
 含浸用錠剤は、医薬活性成分を含む錠剤(医薬)を製造するために用いられる。含浸用錠剤に、医薬活性成分を含む薬液を接触させたのち、その薬液の溶媒を乾燥により除去することにより、医薬活性成分を含む錠剤(医薬)とすることができる。
 含浸用錠剤は、薬液と接触した際に、一定量の薬液を吸収でき、かつ、吸収した薬液の全部もしくはその一部を一定時間、含浸用錠剤中に保持することができる。
 医薬活性成分を含む薬液に接触した含浸用錠剤は、外観上崩壊せず(外観形状を維持したまま)薬液の一定量を吸収し、乾燥工程が終了するまでの間、薬液を保持することができる。
 含浸用錠剤中に、予め決めた量の医薬活性成分を包含させるためには、予め決めた量の医薬活性成分を含む薬液が含浸用錠剤から漏出しないように、含浸用錠剤に接触させる薬液の濃度と量を決定することができる。あるいは、一定濃度の薬液中に含浸用錠剤を浸漬させ、その浸漬時間を一定時間とすることにより、含浸用錠剤に吸収させる薬液量(乾燥後の医薬中の薬物量)を調整することもできる。
 含浸用錠剤を用いて、通常の医薬品としての強度(硬度、摩損)を有し、さらに、水と接触することにより速やかに崩壊することができる速崩錠を製造することもできる。あるいは、含浸用錠剤を用いて、医薬活性成分を含む口腔内崩壊錠を製造することもできる。
 単糖及び二糖は、含浸用錠剤の浸透性、保持能、強度、及び崩壊性を向上させることができる。単糖及び/又は二糖の含有量は、優れた浸透性、保持能、強度、及び崩壊性を確保する観点から、含浸用錠剤の質量を基準として、好ましくは60質量%以上であり、より好ましくは70質量%以上であり、更に好ましくは80質量%以上であり、特に好ましくは90質量%以上である。単糖及び/又は二糖の含有量の上限は、特に限定されないが、例えば、100質量%、98質量%、96質量%、又は94質量%としてもよい。
 単糖及び二糖は、それぞれの糖アルコールをも含む概念であり、例えば、乳糖、ショ糖、トレハロース、マルトース、マンニトール、エリスリトール、キシリトール、ソルビトール、及びマルチトールが好ましく、δ型D-マンニトールがより好ましい。
 含浸用錠剤は、水不溶性高分子を更に含むことが好ましい。本明細書において、「不溶性」とは、第十七改正日本薬局方の通則で示す「ほとんど溶けない」(つまり、「溶質1g又は1mLを溶かすに要する溶媒量」が「10000mL以上」)を意味する。水不溶性高分子を含むことで、含浸用錠剤の保持能及び強度を維持したまま、浸透性及び崩壊性を向上させることができる。水不溶性高分子としては、例えば、クロスカルメロースナトリウム、カルメロース、クロスポビドン、結晶セルロース、低置換度ヒドロキシプロピルセルロース、カルメロースカルシウム、部分アルファー化デンプン、デンプングリコール酸ナトリウム等を挙げることができる。これらは一般的に崩壊剤としても使用される。水不溶性高分子は、1種を単独で使用してもよいし、複数種を組み合わせて使用してもよい。
 水不溶性高分子は、例えば、エタノール等の有機溶媒に溶解又は分散させた医薬活性成分を含浸用錠剤に含浸させる際に含浸用錠剤の形状を保持する観点から、その有機溶媒に不溶性又は難溶性であることが好ましい。本明細書において、「難溶性」とは、第十七改正日本薬局方の通則で示す「極めて溶けにくい」(つまり、「溶質1g又は1mLを溶かすに要する溶媒量」が「1000mL以上10000mL未満」)、「溶けにくい」(つまり、「溶質1g又は1mLを溶かすに要する溶媒量」が「100mL以上1000mL未満」)、もしくは「やや溶けにくい」(つまり、「溶質1g又は1mLを溶かすに要する溶媒量」が「30mL以上100mL未満」)を意味する。
 なお、ここでいう有機溶媒としては、エタノールのほか、イソプロピルアルコール、1-プロパノール、メタノール、DMFなどが挙げられる。
 水不溶性高分子の含有量は、優れた浸透性、保持能、強度、及び崩壊性を確保する観点から、含浸用錠剤の質量を基準として、好ましくは0.1~30質量%であり、より好ましくは0.5~20質量%であり、更に好ましくは1~15質量%である。
 含浸用錠剤は、結合剤を更に含むことが好ましく、結合剤を水不溶性高分子と共に含むことがより好ましい。結合剤は、含浸用錠剤の保持能及び強度を維持したまま、浸透性及び崩壊性を向上させることができる。結合剤としては、例えば、ポリビニルアルコール(部分けん化物を含む)、ポリビニルピロリドン(ポビドン)、ヒプロメロース、プルラン、キサンタンガム、グァーガム、ゼラチン、カラギーナン、寒天等を挙げることができる。結合剤は、1種を単独で使用してもよいし、複数種を組み合わせて使用してもよい。結合剤は、例えば、エタノール等の有機溶媒に溶解又は分散させた医薬活性成分を含浸用錠剤に含浸させる際に含浸用錠剤の形状を保持する観点から、その有機溶媒に不溶性又は難溶性であることが好ましい。なお、ポリビニルピロリドン及びヒプロメロースは、エタノールに溶解性であるものの、好適に使用することができる。
 なお、ここでいう有機溶媒としては、エタノールのほか、イソプロピルアルコール、1-プロパノール、メタノール、DMFなどが挙げられる。
 結合剤の含有量は、優れた浸透性、保持能、強度、及び崩壊性を確保する観点から、含浸用錠剤の質量を基準として、好ましくは0.1~10質量%であり、より好ましくは0.3~8質量%であり、更に好ましくは0.6~6質量%である。
 含浸用錠剤は、その効果に悪影響を与えない範囲で任意成分を更に含んでいてもよい。任意成分としては、例えば、賦形剤、滑沢剤、流動化剤、着色剤等を挙げることができる。
 賦形剤としては、例えば、トウモロコシデンプン、炭酸カルシウム、無水リン酸水素カルシウム等を挙げることができる。
 滑沢剤としては、例えば、ステアリン酸マグネシウム、ステアリン酸カルシウム、タルク、水素添加植物油、ショ糖脂肪酸エステル、ポリエチレングリコール、ラウリル硫酸ナトリウム等を挙げることができる。
 流動化剤としては、例えば、軽質無水ケイ酸、含水二酸化ケイ素、酸化チタン、合成ケイ酸アルミニウム、メタケイ酸アルミン酸マグネシウム等を挙げることができる。
 着色剤としては、例えば、タール色素、天然色素等を挙げることができる。
 含浸用錠剤は、その理論空隙率を調節することによって、性質を変化させることができる。例えば、含浸用錠剤の浸透性、保持能、強度、及び崩壊性を更に向上させる観点からは、理論空隙率は、好ましくは20~50%であり、より好ましくは25~45%であり、更に好ましくは30~40%である。
 理論空隙率は、真密度の大きい組成を用いて、低圧能で圧縮成形し錠剤体積を大きくすることによって、大きくすることができるが、成形物が硬度・耐摩損性といった錠剤として持つべき性質を満たしていることも同時に求められる。
 理論空隙率は、下式(1)にて算出することができる。
Figure JPOXMLDOC01-appb-M000001
 固体体積は下式(2)に基づき算出することができる。
Figure JPOXMLDOC01-appb-M000002
 錠剤体積は、3Dスキャナ(キーエンス社製VLシリーズ)等の公知の体側計測器を用いて計測することができる。なお、錠剤体積を下式(3)に基づいて簡易的に算出してもよい。
Figure JPOXMLDOC01-appb-M000003
 上記の式(3)は、含浸用錠剤が完全な円柱形状であると仮定した簡易的な算出方法である。含浸用錠剤がフチ角部分を有する円柱形状の場合であって、フチ角部分の体積について詳細に算出する必要があるときは、パップス・ギュルダンの定理を用いて算出及び補正をすることもできる。含浸用錠剤が円柱形状でない場合には、別の計算式にて簡易的に算出してもよい。
 含浸用錠剤の形状は特に限定されないが、その表面に凹部を有していることが好ましい。当該凹部に、医薬活性成分を含む溶液又は分散液を滴下することによって、当該溶液又は分散液が含浸用錠剤からこぼれ落ちる等の問題を回避することができる。
<含浸用錠剤の製造方法>
 本発明の一実施形態は、混合工程と打錠工程とを含む、含浸用錠剤の製造方法に関する。
 混合工程は、単糖及び/又は二糖と溶媒とを混合して、混合物を得る工程である。混合工程では、水不溶性高分子を更に混合すること及び/又は結合剤を更に混合することが好ましく、水不溶性高分子及び結合剤を更に混合することがより好ましい。単糖及び二糖、水不溶性高分子、並びに結合剤の詳細は、前記<含浸用錠剤>の項目において説明したとおりである。また、混合工程では、混合物を造粒することが好ましい。
 混合工程で使用する溶媒としては、例えば、水、エタノール、イソプロピルアルコール、1-プロパノール、メタノール、DMF等を挙げることができる。特に限定するものではないが、保持能及び強度を向上させる観点からは、溶媒として、少なくとも水を含むものが好ましく、水とエタノールとの混合溶媒を使用することがより好ましい。水とエタノールとの混合溶媒を使用する場合、水とエタノールとの質量比は、好ましくは1:0.1~1:10であり、より好ましくは1:0.3~1:5であり、更に好ましくは1:0.6~1:3である。
 溶媒の使用量は、含浸用錠剤の構成成分(溶媒は除く)の全質量を基準として、好ましくは1~40質量%であり、より好ましくは10~30質量%であり、更に好ましくは15~25質量%である。
 混合工程では、含浸用錠剤の効果に悪影響を与えない範囲で、任意成分を更に使用してもよい。任意成分の詳細は、前記<含浸用錠剤>の項目において説明したとおりである。
 混合方法としては、例えば、湿式造粒、乾式造粒等を挙げることができる。特に限定するものではないが、含浸用錠剤が高空隙率でかつ錠剤として持つべき性質を満たすためには、湿式造粒を採用することが好ましい。
 湿式造粒の方法としては、攪拌混合造粒((株)カワタ製、SMV-20A)、流動層造粒など通常用いられる装置・技術を用いることができる。
 打錠工程は、混合工程で得た混合物を打錠する工程である。打錠工程は、湿潤状態の混合物に対して実施されることが好ましい。
 打錠の方法としては、例えば、単発打錠機(AUTOGRAPH,島津製作所製)、ロータリー打錠機、速崩錠成形機(EMT型成形機:三共製作所)など通常用いられる装置・技術を用いることができる。
 本実施形態に係る製造方法は、打錠工程に続いて、乾燥工程を更に含んでいてもよい。乾燥工程は、製造された含浸用錠剤に残存する溶媒を除去する工程である。
 乾燥の方法としては、例えば、自然乾燥や、棚式乾燥機、通気式乾燥機および搬送式乾燥機(EDT型乾燥機:三共製作所)等を用いた通気もしくは熱風による乾燥方法、凍結乾燥、真空乾燥等、マイクロウェーブ乾燥を挙げることができる。
<医薬>
 本発明の一実施形態は、含浸用錠剤に医薬活性成分が含浸(好ましくは滴下)されている医薬に関する。含浸用錠剤に医薬活性成分を後から加えた医薬では、医薬活性成分が含浸用錠剤中に不均一に存在することになる。そのため、前記医薬は、含浸用錠剤と、前記含浸用錠剤中に存在する医薬活性成分とを含み、前記医薬活性成分が、前記含浸用錠剤中に不均一に存在している医薬と表現することもできる。
 医薬活性成分の不均一な存在は、含浸用錠剤に医薬活性成分を後から加えることに起因する。例えば、医薬活性成分が滴下されている医薬の場合、医薬活性成分を滴下した含浸用錠剤の表面部分(滴下部)では医薬活性成分の量が多く存在しやすい。したがって、前記滴下部の医薬活性成分は、同一含量の医薬活性成分が均一に存在している錠剤の前記滴下部に相当する部分の医薬活性成分と比較して多く存在し、滴下部から離れた部分では、医薬活性成分の量が少なくなる。そのため、医薬活性成分の存在分布を確認することは、医薬の製造方法を確認するための一手法となり得る。
 「不均一に存在」としては、例えば、浸漬により医薬活性成分を含浸させた含浸用錠剤では、含浸用錠剤の表面部分に存在する医薬活性成分(以下「表面成分」という。)と、含浸用錠剤の中心部分に存在する前記医薬活性成分(以下「中心成分」という。)とで、その存在する量が異なり、表面部分近傍に偏って医薬活性成分が存在している状況等を挙げることができる。
 あるいは、例えば、滴下により医薬活性成分を含浸させた含浸用錠剤では、滴下部に存在する医薬活性成分(以下「滴下部成分」という。)と、滴下部に相対する表面に存在する前記医薬活性成分(以下「滴下相対部成分」という。)とで、その存在する量が異なり、滴下された部分に偏って医薬活性成分が存在している状況等も挙げることができる。
 表面成分と中心成分、あるいは滴下部成分と滴下相対部成分との偏在を確認する手段として、ラマン分光法を用いたスペクトル解析が挙げられる。含浸用錠剤に医薬活性成分が含浸されている医薬の断面(薬液を適下した表面に対して垂直方向の断面)の画像に対して、ラマン分光法を用いたスペクトル解析によって検出された当該医薬活性成分の分布を重ねて表示させることで、当該医薬活性成分が表面部分近傍に偏在していることが確認できる。
 医薬活性成分の種類は特に限定されないが、例えば、患者の体重によって処方量が細かく変わる医薬活性成分や、多くの疾病を患い多種の薬剤を処方される高齢の患者が服用する医薬活性成分等を挙げることができる。患者の体重に合わせて、その場で適切な投与量を調剤できるとの利点や、多種の薬剤を一つの錠剤で服用できることで、多数の錠剤を服用する煩わしさを軽減したり、服薬コンプライアンスに貢献できるとの利点が挙げられる。このため、医薬活性成分は、1種であってもよいし、複数種であってもよい。医薬活性成分としては、医薬部外品で用いられる有効成分であってもよく、この場合、本実施形態の医薬には、医薬部外品も含まれる。また、医薬活性成分としては、保健機能食品の関与成分や栄養成分であってもよく、この場合、本実施形態の医薬には、これらの成分を含む保健機能食品も含まれる。医薬活性成分の含有量は、その用法用量に従って適宜調節される。
 医薬の理論空隙率は、医薬の速崩性を向上させる観点から、好ましくは20~50%であり、より好ましくは25~45%であり、更に好ましくは30~40%である。医薬の理論空隙率は、含浸用錠剤の理論空隙率に依存するため、含浸用錠剤の理論空隙率を調節することによって、医薬の理論空隙率を調節することができる。医薬の理論空隙率は、含浸用錠剤の理論空隙率と同様の方法で決定することができる。
 医薬は、その表面にコート層を有していてもよい。コート層の種類として、例えば、糖衣コート層、フィルムコート層等を挙げることができる。
<医薬の製造方法>
 本発明の一実施形態は、含浸工程を含む、医薬の製造方法に関する。
 含浸工程は、含浸用錠剤に、医薬活性成分を含浸させる工程である。本明細書において、「含浸」とは、含浸用錠剤に医薬活性成分を含ませることを意味する。含浸の方法は特に限定されないが、例えば、医薬活性成分を含む溶液又は分散液を含浸用錠剤に滴下する方法(以下「滴下法」という。)、前記溶液又は分散液に含浸用錠剤を浸漬する方法(以下「浸漬法」という。)等が挙げられる。規定量の医薬活性成分を正確に含浸させる観点からは、滴下法を採用することが好ましい。
 医薬活性成分を含む溶液又は分散液の溶媒は、医薬的に許容される溶媒(すなわち、毒性の少ない溶媒)であれば特に限定されない。医薬的に許容される溶媒としては、例えば、エタノール、イソプロパノール、1―プロパノール、メタノール、DMF等を挙げることができる。高い安全性を確保する観点からは、エタノールを使用することが好ましい。
 含浸工程で用いられる含浸用錠剤は一定の浸透性、保持能を有している。医薬活性成分を含む溶液又は分散液は、医薬中に所望の医薬活性成分が配合されるよう、前記浸透性、保持能に応じて、その濃度や液量を適宜調整することができる。滴下法の場合、滴下した溶液や分散液が速やかに浸透し、含浸用錠剤から染み出さずに、一定時間(たとえば滴下後から乾燥工程開始前までの時間)含浸用錠剤に保持されるような濃度と量にすると製造管理しやすい。
 本明細書において「浸透性」とは、含浸用錠剤への医薬活性成分を含む溶液又は分散液の浸透のしやすさを意味する。製造効率の観点から、医薬活性成分を含む溶液または分散液を、含浸用錠剤内に速やかに浸透させることができるとよい。浸透性の指標として、下記の実施例で記載の浸透時間を用いることができる。浸透時間は、短いほど有利であるが、乾燥工程に移動する間に溶液又は分散液が含浸用錠剤に浸透していればよく、120秒以内を目安とすることができる。一方、浸透時間が10秒程度と短くても、保持能がなく、すぐに漏れ出てしまう場合には、製造工程条件のコントロールが難しくなる。
 本明細書において「保持能」とは、含浸用錠剤に含浸された医薬活性成分を含む溶液又は分散液を、当該錠剤から漏れ出ないように保持する能力を意味する。含浸用錠剤の保持能は、下記の実施例のように、一定量の溶液又は分散液を含浸用錠剤に滴下した際に、前記溶液又は分散液の保持の有無や程度を確認することで定性的に評価できる。溶液又は分散液を量的に保持しやすい含浸用錠剤は、本実施形態に係る医薬の製造条件の調整幅を広げることができる点で有利である。製造条件の設定の際に、確認された保持能に対して好適となるように、溶液や分散液の濃度や量を調整してもよいし、さらには粘度調整剤を使用して溶液や分散液の粘度を調整してもよいし、その他の工程条件を調整してもよい。含浸用錠剤の保持能は、含浸用錠剤に滴下する溶液又は分散液の液量を変化させ、染み出しを開始した液量を保持量(保持が可能な上限の液量)として、定量的に評価することも可能である。含浸用錠剤は、保持量が大きいほど医薬の製造上有利であるが、溶液や分散液の条件等で医薬活性成分の配合量を管理できるため、ある程度の保持能を有していればよい。
 前記含浸用錠剤は、含浸工程や、その後の工程において耐えられる程度に硬度、あるいは、前記工程を経て製造された医薬が流通時の衝撃に耐えられる程度に硬度を有していればよい。
 本実施形態に係る製造方法は、含浸工程に続いて、乾燥工程を更に含んでいてもよい。乾燥工程は、製造された医薬に残存する溶媒を除去する工程である。
 乾燥の方法としては、例えば、自然乾燥や、棚式乾燥機、通気式乾燥機、および搬送式乾燥機(EDT型乾燥機:三共製作所)等を用いた通気もしくは熱風による乾燥方法、凍結乾燥、真空乾燥等を挙げることができる。
 本実施形態に係る製造方法は、乾燥工程に続いて、コーティング工程を更に含んでいてもよい。コーティング工程は、医薬の表面にコート層を形成する工程である。コート層の詳細は、前記<医薬>の項目において説明したとおりである。
 コーティングの方法としては、例えば、コーティングパン中に錠剤を入れ転動させ全体を均一にコーティングするパンコーティング、静置した錠剤にスプレーノズルを用いてコーティング剤を部分的に塗布するスプレーコーティング等を挙げることができる。コート層は、錠剤の全体を覆っていてもよいし、一部のみを覆っていてもよい。
 本実施形態に係る製造方法の利点としては、例えば、医薬活性成分の含有量の変更が容易であること、高活性の微量の医薬活性成分を各含浸用錠剤に目的の量で確実に配合できること、医薬活性成分とその他の成分との相互作用を回避できること、熱等に対して不安定な医薬活性成分が製造プロセス中に壊れるおそれが低いこと、医薬活性成分とその他の成分との相互作用を回避できること、製造スケールのスケールエフェクトを受けないこと、含浸用錠剤を用意しておくことで、希少疾患医薬品や治験薬などの必要最小限の医薬を製造できること等が挙げられる。
<キット>
 本発明の一実施形態は、含浸用錠剤と医薬活性成分とを含むキットに関する。キットは、医薬活性成分を溶解又は分散させるための溶媒を含んでいてもよい。また、キットは、その使用方法を記載した説明書を含んでいてもよい。キットを使用することにより、医薬が実際に使用される場所において、医薬を製造することができる。
 以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。
<含浸用錠剤の評価>
(浸透性)
 下記実施例及び比較例で製造した含浸用錠剤について、エタノールの浸透性(滴下エタノールの浸透時間)を測定した。浸透時間は、錠剤表面(上部)にエタノール50 μLを滴下してから、錠剤表面からエタノールの液滴が完全に見えなくなるまでの時間とした。
(保持能)
 下記実施例及び比較例で製造した含浸用錠剤について、エタノールの保持能を測定した。保持能は、錠剤表面(上部)にエタノール50 μLを滴下し、完全に浸透した後に、錠剤表面(下部)からエタノールが浸み出している状況を観察し、AからCの三段階で評価した(Aが最も好ましく、Cが最も好ましくない)。
(理論空隙率)
 下記実施例及び比較例で製造した含浸用錠剤について、上記の式(1)~式(3)に基づいて理論空隙率を算出した。
(硬度)
 下記実施例及び比較例で製造した含浸用錠剤について、木屋式硬度計を用いて、硬度(N)を測定した。
(崩壊時間)
 下記実施例及び比較例で製造した含浸用錠剤について、崩壊時間を測定した。崩壊時間は、日本薬局方一般試験法崩壊試験法に準じて、精製水を用いて実施した。
<含浸用錠剤の製造及び試験>
(実施例1)~(実施例4)
 精製水(RO水)0.6 gと無水エタノール(関東化学製)0.6 gを混合し、乳鉢に投入したδ型D-マンニトール(メルク製、Parteck Delta M)6.0 gと混合し、乳棒を用いて3分間造粒することで造粒物を得た。得られた造粒物は篩(JP 16号,目開き1000 μm)を用いて湿式解砕を行い、湿製造粒物を得た。得られた湿製造粒物を単発打錠機(AUTOGRAPH,島津製作所製)を用いて、錠剤径8 mmで錠剤質量が150 mgとなるように打錠し、温度60°Cで乾燥することで、含浸用錠剤を得た。
 前記打錠を行う際、異なる理論空隙率を持つ錠剤を作成するため打錠圧を調整して行うことで、四種類の含浸用錠剤を得た。これら含浸用錠剤は理論空隙率が小さいものから順に、実施例1乃至4とする。
(試験例1~4)
 前記実施例1乃至4について、浸透性、保持能、硬度、崩壊時間について評価した。また、合わせて理論空隙率も算出した。その結果を表1に示す。
 結果としては、実施例1乃至4のいずれにおいても、良好な浸透性、保持能(A)を示した。また、錠剤として備えるべき性質である硬度、崩壊時間も兼ね備えていた。理論空隙率の観点から見ると、理論空隙率が高いほうが、浸透性で優れていると言える。
(実施例5)
 乳鉢にδ型D-マンニトール(メルク製、Parteck Delta M)5.7 g及び低置換度ヒドロキシプロピルセルロース(信越化学工業製、LH-31)0.3 gを投入し、乳棒を用いて3分間混合した。得られた混合品に、精製水0.6 g及び無水エタノール(関東化学製)0.6 gの混合溶媒を全量添加し,乳棒を用いて3分間造粒することで造粒物を得た。得られた造粒物は篩(JP 16号,目開き1000 μm)を用いて湿式解砕を行い、湿製造粒物を得た。得られた湿製造粒物を単発打錠機(AUTOGRAPH,島津製作所製)を用いて、錠剤径8 mmで錠剤質量が150 mgとなるように打錠し、温度60°Cで乾燥することで含浸用錠剤を得た。
(試験例5)
 前記実施例5ついて、浸透性、保持能、硬度、および崩壊時間、について評価した。また、合わせて理論空隙率も算出した。その結果を表1に示す。
 結果としては、実施例1乃至4と比べて、さらに低置換度ヒドロキシプロピルセルロース (LH-31)を含む実施例5では、良好な保持能(A)を保ちつつ、浸透性での向上が見られ、より良好な結果を示した。また、崩壊時間も短くなり、さらに、硬度でも良好な結果を示した。
(実施例6)
 精製水30 gにポリビニルアルコール(部分けん化物)(日本合成化学工業製、ゴーセノールEG-05)6 gを溶解し、16.7% ポリビニルアルコール溶液を得た。16.7% ポリビニルアルコール溶液0.36gに精製水0.3 g及び無水エタノール(関東化学製)0.6 gを混和し、結合液を得た。乳鉢にδ型D-マンニトール(メルク製、Parteck Delta M)5.64 g及び低置換度ヒドロキシプロピルセルロース(信越化学工業製、LH-31)0.3 gを投入し、乳棒を用いて3分間混合した。得られた混合品に、上記結合液を全量添加し、乳棒を用いて3分間造粒することで造粒物を得た。得られた造粒物は篩(JP 16号,目開き1000 μm)を用いて湿式解砕を行い、湿製造粒物を得た。得られた湿製造粒物を単発打錠機(AUTOGRAPH,島津製作所製)を用いて、錠剤径8 mmで錠剤質量が150 mgとなるように打錠し、温度60°Cで乾燥することで含浸用錠剤を得た。
(実施例7)
 精製水及び無水エタノール混液(50%混合溶液)1.2 gにポピドン(ISP社製,プラスドン K29-32)0.6 gを溶解し、結合液を得た。表1の組成表に従い、上記の結合液を用いて、実施例6と同様の条件にて含浸用錠剤を製造した。
(試験例6及び7)
 前記実施例6および7ついて、浸透性、保持能、硬度、および崩壊時間について評価した。また、合わせて理論空隙率も算出した。その結果を表1に示す。
 結果としては、実施例5と比べて、さらに結合剤を含む実施例6、7では、良好な浸透性、保持能(A)を保ちつつ、崩壊時間がより短くなり、より良好な結果を示した。また、硬度でも良好な結果を示した。
(実施例8)
 実施例6の低置換度ヒドロキシプロピルセルロース(LH-31)を低置換度ヒドロキシプロピルセルロース(LH-11)に置き換え、表1の組成表に従い、実施例6と同様の条件にて含浸用錠剤を製造した。
(実施例9)
 実施例6の低置換度ヒドロキシプロピルセルロース(LH-31)を低置換度ヒドロキシプロピルセルロース(LH-21)に置き換え、表1の組成表に従い、実施例6と同様の条件にて含浸用錠剤を製造した。
(実施例10)
 実施例6の低置換度ヒドロキシプロピルセルロースをクロスカルメロースナトリウム(FMC International Inc.製,Ac-Di-Sol)に置き換え、表1の組成表に従い、実施例6と同様の条件にて含浸用錠剤を製造した。
(実施例11)
 実施例6の低置換度ヒドロキシプロピルセルロースをカルメロース(五徳薬品製,NS-300)に置き換え、表1の組成表に従い、実施例6と同様の条件にて含浸用錠剤を製造した。
(実施例12)
 実施例6の低置換度ヒドロキシプロピルセルロースをクロスポビドン(ISP社製,ポリプラスドンXL-10)に置き換え、表1の組成表に従い、実施例6と同様の条件にて含浸用錠剤を製造した。
(実施例13)
 実施例6の低置換度ヒドロキシプロピルセルロースを結晶セルロース(旭化成ケミカルズ製,日本薬局方セオラスPH-101)に置き換え、表1の組成表に従い、実施例6と同様の条件にて含浸用錠剤を製造した。
(試験例8~13)
 前記実施例8乃至13ついて、浸透性、保持能、硬度、および崩壊時間について評価した。また、合わせて理論空隙率も算出した。その結果を表1に示す。
 結果としては、実施例6の低置換度ヒドロキシプロピルセルロース (LH-31)とは異なる水不溶性高分子を含む実施例8乃至13でも、良好な浸透性、保持能(A)を示した。また、崩壊時間、硬度でも良好な結果を示した。
(実施例14)
 滅菌精製水及び無水エタノール混液(50%混合溶液)1.2 gにヒプロメロース2910(信越化学工業製,TC-5E  日本薬局方ヒプロメロース)0.6 gを溶解し、結合液を得た。表1の組成表に従い、上記の結合液を用いて、実施例6と同様の条件にて含浸用錠剤を製造した。
(実施例15)
 滅菌精製水及び無水エタノール混液(50%混合溶液)1.2 gにプルラン(林原製,日本薬局方プルラン)0.6 gを溶解し、結合液を得た。表1の組成表に従い、上記の結合液を用いて、実施例6と同様の条件にて含浸用錠剤を製造した。
(実施例16)
 滅菌精製水及び無水エタノール混液(50%混合溶液)1.2 gにキサンタンガム(ダニスコ製,Grindsted Xanthan J)0.6 gを溶解し、結合液を得た。表1の組成表に従い、上記の結合液を用いて、実施例6と同様の条件にて含浸用錠剤を製造した。
(試験例14~16)
 前記実施例14乃至16ついて、浸透性、保持能、硬度、崩壊時間について評価した。また、合わせて理論空隙率も算出した。その結果を表1に示す。
 結果としては、実施例6のポリビニルアルコールとは異なる結合剤を含む実施例14乃至16でも、良好な浸透性、保持能(A)を示した。また、崩壊時間、硬度でも良好な結果を示した。
(実施例17)
 実施例6のδ型D-マンニトール投入量を5.34 g及び低置換度ヒドロキシプロピルセルロースの投入量を0.6 gに変更し、表1の組成表に従い、実施例6と同様の条件にて含浸用錠剤を製造した。
(実施例20)
 実施例6のδ型D-マンニトールの投入量を5.94 gに変更し、低置換度ヒドロキシプロピルセルロースを除き、表1の組成表に従い、実施例6と同様の条件にて含浸用錠剤を製造した。
(試験例17及び20)
 前記実施例17及び20ついて、浸透性、保持能、硬度、および崩壊時間について評価した。また、合わせて理論空隙率も算出した。その結果を表1に示す。
 結果としては、実施例6とも併せて考えると、結合剤を含んだ場合の、水不溶性高分子の含有量としては含浸用錠剤の全質量の5%、10%で、良好な浸透性、保持能(A)を示し、また、崩壊時間、および硬度でも良好な結果を示した。
 また、水不溶性高分子を含まない実施例20では、良好な浸透性、崩壊時間、および、硬度で良好な結果を示した。しかし、僅かな量の染み出しが観察された(保持能(B))。
(実施例18)
 16.7% ポリビニルアルコール溶液0.72 gと無水エタノール0.6 gの混液を結合液とした。また、実施例6のδ型D-マンニトール投入量を5.58 gに変更し、表1の組成表に従い、実施例6と同様の条件にて含浸用錠剤を製造した。
(試験例18)
 前記実施例18について、浸透性、保持能、硬度、および、崩壊時間について評価した。また、合わせて理論空隙率も算出した。その結果を表1に示す。
 結果としては、実施例5、6とも併せて考えると、水不溶性高分子を含んだ場合の、結合剤の含有量としては含浸用錠剤の全質量の0%、1%、2%のいずれにおいても、良好な浸透性、保持能(A)を示し、また、崩壊時間、硬度でも良好な値を示した。
(実施例19)
 16.7% ポリビニルアルコール溶液0.3 gと精製水0.25 gおよび無水エタノール0.5 gの混液を結合液とした。また、実施例6のδ型D-マンニトール投入量を4.7 g及び低置換度ヒドロキシプロピルセルロースの投入量を0.25 gに変更し、表1の組成表に従い、実施例6と同様の条件にて含浸用錠剤を製造した。
(実施例21)
 16.7% ポリビニルアルコール溶液0.3 gと精製水0.75 gの混液を結合液とした。また、実施例6のδ型D-マンニトール投入量を4.7 g及び低置換度ヒドロキシプロピルセルロースの投入量を0.25 gに変更し、表1の組成表に従い、実施例6と同様の条件にて含浸用錠剤を製造した。
(比較例1)
 乳鉢にδ型D-マンニトール(メルク製、Parteck Delta M)4.7 g、低置換度ヒドロキシプロピルセルロース(信越化学工業製、LH-31)0.25 gおよびポリビニルアルコール(部分けん化物)0.05 gを投入し、乳棒を用いて3分間混合した。得られた混合品に、無水エタノールを1.0 gを添加し、乳棒を用いて3分間造粒することで造粒物を得た。得られた造粒物は篩(JP 16号,目開き1000 μm)を用いて湿式解砕を行い、湿製造粒物を得た。成形と乾燥は実施6と同様の条件で行い錠剤を製造した。
(試験例19及び21、比較試験例1)
 前記実施例19、21、および比較例1について、浸透性、保持能、硬度について評価した。また、合わせて理論空隙率も算出した。その結果を表1に示す。
 結果としては、滅菌精製水と無水エタノールの混合溶媒を用いた実施例19では、良好な浸透性、保持能(A)、硬度を示した。
 また、溶媒が滅菌精製水のみである実施例21も、浸透性、硬度で良好な結果を示した。しかし、僅かな量の染み出しが観察された(保持能(B))。
 一方、溶媒が無水エタノールのみである比較例1では、錠剤として備えるべき性質である硬度が著しく低く、脆弱であり含浸用錠剤として不適格であった。
(実施例22)
 実施例6のδ型D-マンニトールをソルビトール(ロケットジャパン製,Neosorb P650)に置き換え、表1の組成表に従い、実施例6と同様の条件にて錠剤を製造した。
(実施例23)
 実施例6のδ型D-マンニトールを乳糖水和物(DMV製,Pharmatose 200M)に置き換え、表1の組成表に従い、実施例6と同様の条件にて錠剤を製造した。
(実施例24)
 実施例6のδ型D-マンニトール(メルク製,Parteck Delta M)をβ型D-マンニトール(メルク製,Partech M100)に置き換え、表1の組成表に従い、実施例6と同様の条件にて錠剤を製造した。
(試験例22~24)
 前記実施例22~24について、浸透性、保持能、硬度、および、崩壊時間について評価した。また、合わせて理論空隙率も算出した。その結果を表1に示す。
 結果としては、δ型D-マンニトールの代わりに、ソルビトール、乳糖水和物、β型D-マンニトールを用いた実施例22~24においては、いずれも、浸透性、硬度、崩壊時間で良好な値を示した。保持能については、実施例22、23、24で僅かな量の染み出しが観察された(保持能(B))。
(比較例2)
 精製水30 gにポリビニルアルコール(部分けん化物)(日本合成化学工業製、ゴーセノールEG-05)3 gを溶解し、9.1% ポリビニルアルコール溶液を得た。9.1% ポリビニルアルコール溶液0.66gに無水エタノール(関東化学製)0.6 gを混和し、結合液を得た。乳鉢に多糖である結晶セルロース(旭化成製、セオラスPH-101)5.94 gを投入し、上記結合液を全量添加し、乳棒を用いて3分間造粒することで造粒物を得た。得られた造粒物は篩(JP 16号,目開き1000 μm)を用いて湿式解砕を行い、湿製造粒物を得た。得られた湿製造粒物を単発打錠機(AUTOGRAPH,島津製作所製)を用いて、錠剤径8 mmで錠剤質量が150 mgとなるように打錠し、温度60°Cで乾燥することで含浸用錠剤を得た。
(比較試験例2)
 前記比較例2について、浸透性、保持能、硬度について評価した。また、合わせて理論空隙率も算出した。その結果を表1に示す。
 結果としては、単糖及び二糖を含まず、多糖である結晶セルロースを用いた比較例2においては、滴下したエタノールの多くが漏れ出してしまい(保持能(C))、含浸用錠剤として使用できるものではなかった。
<医薬の製造及び試験>
(実施例25
 加温した滅菌精製水(吉田製薬製)650 gにポリビニルアルコール(部分けん化)32.5 gを添加し、エアモーターで攪拌して溶解させポリビニルアルコール水溶液を得た。ポリビニルアルコール水溶液105 gに無水エタノール25 gを加えて攪拌し、結合液130 gを得た。これを4回繰り返し、合計520 gの結合液を得た。攪拌造粒機(川田製作所製、スーパーミキサー SMV-20)にδ型D-マンニトール 2350 gと低置換度ヒドロキシプロピルセルロース 125 gを投入し、インペラー回転数800 rpmで3分間混合した。引き続き攪拌しながら、結合液130 gを投入し、1分間攪拌した。これを4回繰り返して造粒品を得た。造粒品を解砕整粒機(深江パウテック製、 TC-150型)を用いてインペラー回転数800 rpm、スクリーンサイズ4.0 mmφで解砕して湿製顆粒を得た。湿性打錠機(三共製作所製、EMT/ETD-18)を用いて打錠用顆粒を直径8.0 mm、乾燥後の質量が160 mgになるように成形圧50-350Nで成形し、棚式乾燥機を用いて60℃で乾燥させることで含浸用錠剤を製造した。
 アセトアミノフェン100 mgをエタノール800 mgに溶解させてアセトアミノフェン溶液を得た。得られたアセトアミノフェン溶液42 mgを上記の含浸用錠剤に滴下し、溶液を錠剤に浸透させた。引き続き、錠剤を50℃の恒温層内で乾燥させてアセトアミノフェン含浸錠5 mgを得た。
(実施例26)
 シメチジン 100 mgをメタノール 600 mgに溶解させてシメチジン溶液を得た。実施例25で製造した錠剤に1錠あたり35 mgのシメチジン溶液を滴下し、溶液を錠剤に浸透させた。引き続き、錠剤を50℃の恒温槽内で乾燥させてシメチジン含浸錠5 mgを得た。
(実施例27)
 ファモチジン 100 mgをDMF 600 mgに溶解させてファモチジン溶液を得た。実施例25で製造した錠剤に1錠あたり35 mgのファモチジン溶液を滴下し、溶液を錠剤に浸透させた。引き続き、錠剤を50℃の恒温槽内で乾燥させてファモチジン含浸錠5 mgを得た。
(試験例25~27)
 アセトアミノフェン、シメチジン、ファモチジンをそれぞれ 100 mgを100 mLフラスコにはかりとり、50%メタノールで溶解後メスアップしたものをそれぞれの標準溶液とした。実施例25~27で調整した含浸錠を1錠ずつメスフラスコに入れ、50%メタノールを加えたのちにスターラーで攪拌し、錠剤を崩壊させた。得られた分散液を遠心分離機を用いて10000回転で10分間遠心した後の上澄みを試験液とした。紫外可視分光光度計を用いて標準液および試験液の吸光度を測定し、吸光度の比率から含量を算出した。アセトアミノフェン、シメチジン、ファモチジンのそれぞれの測定波長は、246、218、287 nmとした。バックグランドの測定波長は650 nmとした。各含浸錠で3錠ずつ評価を行い平均値を求めた、アセトアミノフェン含浸錠、シメチジン含浸錠、ファモチジン含浸錠の含量は、それぞれ99.3%、97.6%、100.0%であった。
(実施例28)
 アセトアミノフェン500 mgを無水エタノール500 μLに溶解させてアセトアミノフェン溶液を調製した。アセトアミノフェン溶液20 μLを実施例25で調整した含浸用錠剤に滴下し、電子レンジ(三洋電機製、EMO-FZ40)を用い1000Wで1分間乾燥させアセトアミノフェン含浸錠を得た。
(試験例28)
 ラマン分光顕微鏡(Renishaw製、inVia)を用いて実施例28で調製したアセトアミノフェン含浸錠の断面の光学像およびラマン顕微鏡像を得た。レーザー波長785 nm、露光時間1秒、積算回数1回とし、1595-1635 cm-1の散乱強度のベースラインとシグナルの強度比を使ってイメージ図を作成した(図1)。図中に白色で示した部分がアセトアミノフェンの存在する場所を示している。イメージ図は、アセトアミノフェン溶液を滴下した含浸用錠剤の表面に対して垂直方向の断面であり、イメージ図の上側が滴下表面であり、イメージの下側が滴下表面に相対する表面である。滴下表面から相対表面に向かってアセトアミノフェンが移行した結果、アセトアミノフェンが不均一に存在していることが示されている。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005

Claims (24)

  1.  単糖及び/又は二糖を含む、医薬活性成分を含浸させるための錠剤。
  2.  前記単糖及び/又は二糖が、乳糖、ショ糖、トレハロース、マルトース、マンニトール、エリスリトール、キシリトール、ソルビトール、及びマルチトールからなる群から選択される少なくとも1種を含む、請求項1に記載の錠剤。
  3.  前記単糖及び/又は二糖が、マンニトールであり、前記マンニトールが、δ型D-マンニトールを含む、請求項1又は2に記載の錠剤。
  4.  理論空隙率が20~50%である、請求項1~3のいずれか一項に記載の錠剤。
  5.  水不溶性高分子を更に含む、請求項1~4のいずれか一項に記載の錠剤。
  6.  前記水不溶性高分子が、クロスカルメロースナトリウム、カルメロース、クロスポビドン、結晶セルロース、及び低置換度ヒドロキシプロピルセルロースからなる群から選択される少なくとも1種を含む、請求項5に記載の錠剤。
  7.  前記水不溶性高分子の含有量が、前記錠剤の質量を基準として、0.1~30質量%である、請求項5又は6に記載の錠剤。
  8.  結合剤を更に含む、請求項1~7のいずれか一項に記載の錠剤。
  9.  前記結合剤が、有機溶媒不溶性結合剤、有機溶媒難溶性結合剤、及びポリビニルピロリドンからなる群から選択される少なくとも1種を含む、請求項8に記載の錠剤。
  10.  前記有機溶媒が、エタノール又はイソプロピルアルコールである、請求項9に記載の錠剤。
  11.  前記結合剤が、ポリビニルアルコール、プルラン、キサンタンガム、及びヒプロメロースからなる群から選択される少なくとも1種を含む、請求項8に記載の錠剤。
  12.  前記結合剤の含有量が、前記錠剤の質量を基準として、0.1~10質量%である、請求項8~11のいずれか一項に記載の錠剤。
  13.  単糖及び/又は二糖と溶媒とを混合して、混合物を得る混合工程、及び
     前記混合物を打錠する打錠工程、
    を含む、医薬活性成分を含浸させるための錠剤の製造方法。
  14.  前記打錠工程が、湿潤状態の前記混合物に対して実施される、請求項13に記載の製造方法。
  15.  前記溶媒が、少なくとも水を含む、請求項13又は14に記載の製造方法。
  16.  前記溶媒が、有機溶媒を更に含む、請求項15に記載の製造方法。
  17.  前記溶媒中における水と有機溶媒との質量比が、1:0.1~1:10である、請求項16に記載の製造方法。
  18.  前記混合物が、水不溶性高分子を更に含む、請求項13~17のいずれか一項に記載の製造方法。
  19.  前記混合物が、結合剤を更に含む、請求項13~18のいずれか一項に記載の製造方法。
  20.  請求項1~12のいずれか一項に記載の錠剤に、医薬活性成分を含浸させる含浸工程を含む、医薬の製造方法。
  21.  前記含浸工程が、前記錠剤に、前記医薬活性成分を滴下することを含む、請求項20に記載の製造方法。
  22.  請求項1~12のいずれか一項に記載の錠剤に、医薬活性成分が含浸されている医薬。
  23.  請求項1~12のいずれか一項に記載の錠剤と、
     前記錠剤中に存在する医薬活性成分と、
    を含み、
     前記医薬活性成分が、前記錠剤中に不均一に存在している、医薬。
  24.  請求項1~12のいずれか一項に記載の錠剤と、
     医薬活性成分と、
    を含むキット。
PCT/JP2021/013162 2020-03-31 2021-03-29 錠剤、医薬及びそれらの製造方法並びにキット WO2021200767A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020227030916A KR20220161285A (ko) 2020-03-31 2021-03-29 정제, 의약, 이들의 생산 방법, 및 키트
CA3174773A CA3174773A1 (en) 2020-03-31 2021-03-29 Tablet, medicine, methods for producing these, and kit
AU2021250160A AU2021250160A1 (en) 2020-03-31 2021-03-29 Tablet, medicine, and method and kit for manufacturing said tablet and medicine
CN202180018299.1A CN115243723A (zh) 2020-03-31 2021-03-29 片剂、药物、以及生产所述片剂和药物的方法及试剂盒
MX2022011215A MX2022011215A (es) 2020-03-31 2021-03-29 Comprimido, medicamento, metodos para producirlos y kit.
US17/911,040 US20230105591A1 (en) 2020-03-31 2021-03-29 Tablet, medicine, methods for producing these, and kit
JP2022512170A JPWO2021200767A1 (ja) 2020-03-31 2021-03-29
BR112022018613A BR112022018613A2 (pt) 2020-03-31 2021-03-29 Comprimido, medicamento, métodos para a produção destes e kit
EP21780021.8A EP4129342A4 (en) 2020-03-31 2021-03-29 TABLET, DRUG, AND METHOD AND KIT FOR MANUFACTURING SAID TABLET AND DRUG

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-062818 2020-03-31
JP2020062818 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200767A1 true WO2021200767A1 (ja) 2021-10-07

Family

ID=77929439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013162 WO2021200767A1 (ja) 2020-03-31 2021-03-29 錠剤、医薬及びそれらの製造方法並びにキット

Country Status (11)

Country Link
US (1) US20230105591A1 (ja)
EP (1) EP4129342A4 (ja)
JP (1) JPWO2021200767A1 (ja)
KR (1) KR20220161285A (ja)
CN (1) CN115243723A (ja)
AU (1) AU2021250160A1 (ja)
BR (1) BR112022018613A2 (ja)
CA (1) CA3174773A1 (ja)
MX (1) MX2022011215A (ja)
TW (1) TW202203971A (ja)
WO (1) WO2021200767A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163175A (en) * 1979-06-01 1980-12-18 Dudzik Joachim Pellet
JPH08104650A (ja) * 1994-03-01 1996-04-23 Asahi Chem Ind Co Ltd 医薬品組成物
JP2001213765A (ja) * 2000-01-19 2001-08-07 Yung Shin Pharmaceutical Industry Co Ltd 活性成分を添加できる医薬錠剤
JP2009522315A (ja) * 2006-01-05 2009-06-11 ライフサイクル ファーマ エー/エス 崩壊性の充填可能な錠剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134202A1 (en) * 2004-12-22 2006-06-22 Hack Jacob C Homeopathic sublingual dosage forms and methods thereof
PT2209501E (pt) * 2007-10-12 2012-02-03 Astrazeneca Ab Composição de zibotentan contendo manitol e celulose microcristalina

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163175A (en) * 1979-06-01 1980-12-18 Dudzik Joachim Pellet
JPH08104650A (ja) * 1994-03-01 1996-04-23 Asahi Chem Ind Co Ltd 医薬品組成物
JP2001213765A (ja) * 2000-01-19 2001-08-07 Yung Shin Pharmaceutical Industry Co Ltd 活性成分を添加できる医薬錠剤
JP2009522315A (ja) * 2006-01-05 2009-06-11 ライフサイクル ファーマ エー/エス 崩壊性の充填可能な錠剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AAPS PHARMSCITECH, vol. 10, no. 4, 2009, pages 1388 - 1395
See also references of EP4129342A4

Also Published As

Publication number Publication date
TW202203971A (zh) 2022-02-01
BR112022018613A2 (pt) 2022-11-08
EP4129342A1 (en) 2023-02-08
MX2022011215A (es) 2022-10-07
EP4129342A4 (en) 2024-03-06
KR20220161285A (ko) 2022-12-06
CN115243723A (zh) 2022-10-25
CA3174773A1 (en) 2021-10-07
JPWO2021200767A1 (ja) 2021-10-07
AU2021250160A1 (en) 2022-10-06
US20230105591A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
Basak et al. Formulation and Release Behaviour of Sustained Release Ambroxol Hydrochloride HPMC Matrix Tablet.
TWI397409B (zh) 含菲索特羅定之安定化醫藥組成物
Sun et al. Particle engineering for enabling a formulation platform suitable for manufacturing low-dose tablets by direct compression
KR20080013907A (ko) 드록시도파를 함유하는 안정한 정제
JP2019534887A (ja) レナリドミドの経口用錠剤組成物
JP2021155437A (ja) Ed−71の固体分散体および油分分散体を含む医薬組成物
US20150157628A1 (en) Pharmaceutical compositions of Lurasidone and Process for preparation thereof
US20090209587A1 (en) Repaglinide formulations
JPWO2011074660A1 (ja) 溶出安定性製剤
JP2011162531A (ja) フェキソフェナジン含有フイルムコーテイング経口製剤
WO2021200767A1 (ja) 錠剤、医薬及びそれらの製造方法並びにキット
JPWO2017170854A1 (ja) 有効成分の化学的安定性に優れたフィルムコーティング錠
US10864165B2 (en) Super-rapid disintegrating tablet, and method for producing same
EP3238712B1 (en) Very rapidly disintegrating tablet, and method for producing same
KR101434316B1 (ko) 고체 분산체의 필름 코팅방법
Derakhshandeh et al. Formulation and in vitro evaluation of nifedipine-controlled release tablet: Influence of combination of hydrophylic and hydrophobic matrix forms
TW202038918A (zh) 醫藥組合物
JP2010001242A (ja) レバミピド固形製剤及びその製造方法
TW201607567A (zh) 含有崩解性粒子組成物之口腔內崩解錠劑
Gul et al. Formulation of improved norfloxacin HCl tablets: quality control assessment and comparison study of acidic and basic form of norfloxacin in tablet formulation
JP2015071556A (ja) 錠剤及びその製造方法
Nouh et al. Formulation and bioavailability of controlled release salbutamol sulphate tablets using natural additives.
Mathivanan et al. Effect of microcrystalline cellulose on the improvement of mechanical strength of orally disintegrating tablets using co-processed excipient systems
Yaseen et al. INFLUENCE OF INCREASING CONCENTRATIONS OF MAGNESIUM STEARATE AND TALCUM ON DISSOLUTION PROFILE AND PHYSICAL PARAMETERS OF METOPROLOL TARTRATE EXTENDED RELEASE MATRIX TABLETS.
WO2023149546A1 (ja) 経口固形製剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512170

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3174773

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022018613

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021250160

Country of ref document: AU

Date of ref document: 20210329

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022124362

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021780021

Country of ref document: EP

Effective date: 20221031

ENP Entry into the national phase

Ref document number: 112022018613

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220916