WO2021200666A1 - 固体冷凍装置 - Google Patents

固体冷凍装置 Download PDF

Info

Publication number
WO2021200666A1
WO2021200666A1 PCT/JP2021/012885 JP2021012885W WO2021200666A1 WO 2021200666 A1 WO2021200666 A1 WO 2021200666A1 JP 2021012885 W JP2021012885 W JP 2021012885W WO 2021200666 A1 WO2021200666 A1 WO 2021200666A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic refrigeration
flow path
heat medium
temperature
Prior art date
Application number
PCT/JP2021/012885
Other languages
English (en)
French (fr)
Inventor
允妙 川端
昭雄 吉本
森脇 道雄
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP21782099.2A priority Critical patent/EP4116641A4/en
Priority to CN202180024667.3A priority patent/CN115398161A/zh
Publication of WO2021200666A1 publication Critical patent/WO2021200666A1/ja
Priority to US17/947,426 priority patent/US20230019748A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0023Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with modulation, influencing or enhancing an existing magnetic field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • This disclosure relates to a solid refrigeration system.
  • a plurality of magnetic refrigeration units are connected in series to the main flow path through which the heat medium is conveyed.
  • a bypass flow path that bypasses one magnetic refrigeration unit is connected to the main flow path.
  • a valve is provided in the bypass flow path.
  • the heat medium in the main flow path reciprocates by the transfer mechanism. When the valve closes the bypass flow path, the heat medium flows through the plurality of magnetic refrigeration units in order. When the valve opens the bypass flow path, the heat medium flows through one magnetic refrigeration unit and bypasses the other magnetic refrigeration unit.
  • the heat medium accumulates in the bypass flow path.
  • the heat medium reciprocates in the main flow path, if the heat medium accumulated in the bypass flow path and the conveyed heat medium are mixed, heat loss of the heat medium occurs.
  • An object of the present disclosure is to suppress heat loss of a heat medium caused by mixing a heat medium to be conveyed and a heat medium accumulated in a bypass flow path in a solid refrigeration device, particularly a magnetic refrigeration device. be.
  • the first aspect is A plurality of solid refrigerating parts (M) having a solid refrigerant substance (11) that exerts a calorific value effect on external energy and an inducing part (12) that induces a calorific value effect on the solid refrigerant substance (11).
  • the heat medium circuit (C) is A first flow path (31, 33, 34) in which the plurality of solid freezing units (M) are connected in series and the heat medium conveyed by the transfer mechanism (20) is supplied to the first heat exchange unit (31, 33, 34).
  • the bypass mechanism (B) can switch between a flow path in which the heat medium flows through the solid freezing section (M) and a flow path in which the heat medium bypasses the solid freezing section (M).
  • the bypass mechanism (B) When the bypass mechanism (B) is provided, the heat medium accumulates in the bypass flow path.
  • the first flow path (40) for supplying the heat medium to the first heat exchange section (31,33,34) and the heat medium are supplied to the second heat exchange section (32,33,34).
  • a second flow path (50) is provided. Therefore, for example, when the heat medium is accumulated in the bypass flow path of the first flow path (40), the heat medium supplied to the second heat exchange section (32, 33, 34) and the first flow path (40).
  • the second aspect is, in the first aspect,
  • the bypass mechanism (B) is connected to both the first flow path (40) and the second flow path (50), and is provided corresponding to all of the plurality of solid freezing portions (M).
  • a bypass mechanism (B) is provided in each solid freezing section (M). Therefore, in each bypass mechanism (B), the flow path through which the heat medium flows through the solid freezing section (M) and the flow path through which the heat medium bypasses the solid freezing section (M) can be switched. Therefore, the capacity of the solid refrigeration system (1) can be finely adjusted.
  • the plurality of solid refrigerating portions impart magnetic field fluctuations to the magnetic working substance (11) as the solid refrigerant substance and the magnetic working substance (11).
  • It is a solid refrigeration apparatus characterized by being a plurality of magnetic refrigeration units (M) each having a magnetic field modulation unit (12) as an induction unit.
  • the third aspect is A plurality of magnetic refrigeration units (M) having a magnetic work material (11) and a magnetic field modulation unit (12) that imparts magnetic field fluctuations to the magnetic work material (11).
  • the heat medium circuit (C) is A first flow path (31, 33, 34) in which the plurality of magnetic refrigeration units (M) are connected in series and the heat medium conveyed by the transfer mechanism (20) is supplied to the first heat exchange unit (31, 33, 34).
  • the bypass mechanism (B) can switch between a flow path in which the heat medium flows through the magnetic refrigeration section (M) and a flow path in which the heat medium bypasses the magnetic refrigeration section (M).
  • the bypass mechanism (B) When the bypass mechanism (B) is provided, the heat medium accumulates in the bypass flow path.
  • the first flow path (40) for supplying the heat medium to the first heat exchange section (31,33,34) and the heat medium are supplied to the second heat exchange section (32,33,34).
  • a second flow path (50) is provided. Therefore, for example, when the heat medium is accumulated in the bypass flow path of the first flow path (40), the heat medium supplied to the second heat exchange section (32, 33, 34) and the first flow path (40).
  • Each of the plurality of magnetic refrigeration units (M) is a cascade type having a plurality of types of magnetic working substances (11) in which the Curie temperature increases in order from the low temperature end to the high temperature end.
  • the heat medium can be heated by the magnetic refrigeration section (M) while flowing the heat medium from the low temperature end to the high temperature end of the cascade type magnetic refrigeration section (M).
  • the magnetic heat quantity effect in each magnetic working substance (11) of the magnetic refrigeration unit (M) can be improved, and the heating capacity of the heat medium can be increased.
  • the heat medium can be cooled by the magnetic refrigeration section (M) while flowing the heat medium from the high temperature end to the low temperature end of the cascade type magnetic refrigeration section (M). In this case, the magnetic heat quantity effect in each magnetic working substance (11) of the magnetic refrigeration unit (M) can be improved, and the cooling capacity of the heat medium can be increased.
  • the fifth aspect is, in the fourth aspect, In the first flow path (40) and the second flow path (50), the plurality of magnetic refrigeration units are arranged so that the average value of the Curie temperatures of the plurality of magnetic refrigeration units (M) increases in order. (M) is connected in series.
  • the heat medium can be heated by these magnetic refrigeration parts (M) while flowing the heat medium in the order of the magnetic refrigeration part (M) having the lowest Curie temperature to the magnetic refrigeration part (M) having the highest Curie temperature. ..
  • the magnetic calorific value effect of each magnetic refrigeration unit (M) can be improved, and the heating capacity of the heat medium can be increased.
  • the heat medium can be cooled by these magnetic refrigeration units (M) while flowing the heat medium in the order of the magnetic refrigeration unit (M) having the highest average Curie temperature to the magnetic refrigeration unit (M) having the lowest Curie temperature. In this case, the magnetic calorific value effect of each magnetic refrigeration unit (M) can be improved, and the cooling capacity of the heat medium can be increased.
  • the sixth aspect is, in the third aspect,
  • the plurality of magnetic refrigeration units (M) are of a single layer type having one magnetic working substance (11).
  • the Curie temperature of each of the magnetic working substances (11) of the plurality of magnetic refrigeration units (M) is increased in order.
  • the magnetic refrigeration section (M) of is connected in series.
  • the heat medium is flowed in the order of the single-layer magnetic refrigerating section (M) having a low Curie temperature and the single-layer magnetic refrigerating section (M) having a high Curie temperature, and these magnetic refrigerating sections.
  • the heat medium can be heated with (M).
  • the magnetic calorific value effect of each magnetic refrigeration unit (M) can be improved, and the heating capacity of the heat medium can be increased.
  • the heat medium is flowed in the order of the single-layer magnetic refrigerating section (M) having a high Curie temperature and the single-layer magnetic refrigerating section (M) having a low Curie temperature in these magnetic refrigerating sections (M).
  • the heat medium can be cooled. In this case, the magnetic calorific value effect of each magnetic refrigeration unit (M) can be improved, and the cooling capacity of the heat medium can be increased.
  • the seventh aspect is, in the third aspect, Part of the operating temperature range of two adjacent magnetic refrigeration units (M) overlaps.
  • the operating temperature range referred to here is the temperature range in which the magnetic calorific value effect can be obtained as much as possible in the entire magnetic working substance (11) of the magnetic refrigeration section (M). Therefore, this operating temperature range does not depend on the method of the magnetic refrigeration part such as the single layer type and the cascade type.
  • the temperature of the heat medium flowing through the magnetic refrigeration section (M) adjacent to the magnetic refrigeration section (M) may change significantly.
  • the heat medium bypassing the magnetic refrigeration section (M) flows through the magnetic refrigeration section (M) and thus flows through the magnetic refrigeration section (M) adjacent to the magnetic refrigeration section (M).
  • the temperature of the heat medium can change significantly.
  • the temperature of the heat medium changes as the bypass operation is switched, so that the temperature of the heat medium changes. Can be prevented from deviating from the operating temperature range of the magnetic refrigeration unit (M).
  • Each of the plurality of magnetic refrigeration units (M) is a cascade type having a plurality of types of magnetic working substances (11) in which the Curie temperature increases in order from the low temperature end to the high temperature end.
  • the adjacent magnetic refrigeration portions (M) are configured to have a region in which a part or all of the operating temperature range of the magnetic working substance (11) on each end side overlaps.
  • the maximum value of the magnetic heat quantity effect in the overlapping region is 1 ⁇ 2 or more of the average value of the maximum value of the magnetic heat quantity effect in the magnetic working substance (11) on the end side of the adjacent magnetic refrigeration unit (M).
  • the overlapping region of these operating temperature ranges becomes relatively large. Therefore, it is possible to prevent the temperature of the heat medium from deviating from the operating temperature range of the magnetic refrigeration unit (M) due to the change in the temperature of the heat medium due to the switching of the bypass operation.
  • the ninth aspect is, in the seventh aspect,
  • the plurality of magnetic refrigeration units (M) are of a single layer type having one kind of magnetic working substance (11).
  • the adjacent magnetic refrigeration unit (M) is configured to have a region where a part of the operating temperature range of each magnetic working substance (11) overlaps.
  • the maximum value of the magnetic heat quantity effect in the overlapping region is 1 ⁇ 2 or more of the average value of the maximum value of the magnetic heat quantity effect in each magnetic working substance (11) of the adjacent magnetic refrigeration portions (M).
  • the tenth aspect is in the fourth or fifth aspect
  • the plurality of types of magnetic working substances (11) include an end-side magnetic working substance (11c, 11d) corresponding to their ends and an intermediate-side magnetic working substance (11b) corresponding to an intermediate portion between both ends thereof. , 11e) and
  • the width of the operating temperature range of the end-side magnetic working material (11c, 11d) is wider than the width of the operating temperature range of the intermediate-side magnetic working material (11b, 11e).
  • the width of the operating temperature range of the end side magnetic working material (11c, 11d) of each magnetic refrigeration part (M) is larger than the width of the operating temperature range of the intermediate side magnetic working material (11b, 11e). Is also wide. Therefore, due to the change in the temperature of the heat medium due to the switching of the bypass operation, the temperature of the heat medium is from the operating temperature range of the magnetic working substance (11c, 11d) on the end side of the magnetic refrigeration part (M). It is possible to prevent it from coming off.
  • the eleventh aspect is the fourth or fifth aspect in the fourth or fifth aspect.
  • the plurality of types of magnetic working substances (11) include an end-side magnetic working substance (11c, 11d) corresponding to their ends and an intermediate-side magnetic working substance (11b) corresponding to an intermediate portion between both ends thereof. , 11e) and
  • the maximum value of the magnetic calorific value effect of the end side magnetic work material (11c, 11d) is larger than the maximum value of the magnetic heat quantity effect of the intermediate side magnetic work material (11b, 11e).
  • the maximum value of the magnetic calorific value effect of the end side magnetic work material (11c, 11d) of each magnetic work material (11) is the maximum value of the magnetic calorific value effect of the intermediate side magnetic work material (11b, 11e). Greater than the value. Therefore, even if the temperature of the heat medium changes due to the switching of the bypass operation, the heat medium is magnetically operated on the end side so that the temperature of the heat medium does not deviate from the operating temperature range of the magnetic refrigeration unit (M). Can be sufficiently heated or cooled by the substance (11c, 11d).
  • the twelfth aspect is the eleventh aspect.
  • the magnetic field modulation unit (12) makes the amount of change in the magnetic flux density of the end-side magnetic work material (11c, 11d) larger than the amount of change in the magnetic flux density of the intermediate-side magnetic work material (11b, 11e). ..
  • the amount of change in the magnetic flux density of the end-side magnetic working material (11c, 11d) is made larger than the amount of change in the magnetic flux density of the intermediate-side magnetic working material (11b, 11e).
  • the magnetic calorific value effect of the side magnetic work material (11c, 11d) becomes large.
  • the thirteenth aspect is the eleventh or twelfth aspect.
  • the adiabatic temperature change or entropy change of the end side magnetic working substance (11c, 11d) is larger than the adiabatic temperature change or entropy change of the intermediate side magnetic working substance (11b, 11e).
  • the change in the adiabatic temperature of the end-side magnetic work substance (11c, 11d) is made larger than the change in the adiabatic temperature of the intermediate-side magnetic work substance (11b, 11e), so that the end-side magnetic work substance (11c, 11e) has an adiabatic temperature change.
  • the magnetic calorific value effect of 11c, 11d) becomes large.
  • the end-side magnetic work material (11c, 11d) by making the entropy change of the end-side magnetic work material (11c, 11d) larger than the adiabatic temperature change of the intermediate-side magnetic work material (11b, 11e), the end-side magnetic work material (11c, 11d) The magnetic heat effect of is increased.
  • the fourteenth aspect is in any one of the eleventh to thirteenth aspects.
  • the weight of the end-side magnetic work material (11c, 11d) is larger than the weight of the intermediate-side magnetic work material (11b, 11e).
  • the weight of the end-side magnetic work material (11c, 11d) is made larger than the weight of the intermediate-side magnetic work material (11b, 11e), thereby increasing the weight of the end-side magnetic work material (11c, 11d). ) Magnetic heat quantity effect becomes large.
  • the filling rate or volume of the end side magnetic working substance (11c, 11d) is larger than the filling rate or volume of the intermediate side magnetic working substance (11b, 11e). big.
  • the filling rate of the end side magnetic working substance (11c, 11d) is made larger than the filling rate of the intermediate side magnetic working substance (11b, 11e), so that the end side magnetic working substance (11c, 11d) is filled.
  • the weight of 11d) increases, and the magnetic calorific value effect of the end-side magnetic working material (11c, 11d) increases.
  • the weight of the end-side magnetic work material (11c, 11d) is increased by making the volume of the end-side magnetic work material (11c, 11d) larger than the volume of the intermediate-side magnetic work material (11b, 11e). Therefore, the magnetic calorific value effect of the end-side magnetic working material (11c, 11d) becomes large.
  • At least one of the first flow path (40) and the second flow path (50) has a solid freezing section, particularly the magnetism.
  • a heat storage unit (81,82,84,85) through which a heat medium that bypasses the freezing unit (M) flows is provided.
  • the heat medium bypassing the magnetic refrigeration section (M) flows through the heat storage section (81,82,84,85).
  • the heat storage section (81,82,84,85) the hot and / or cold heat of the heat medium is stored.
  • the heat storage part (81,82,84,85) suppresses the sudden temperature change of the heat medium flowing through the next magnetic refrigeration part (M). can.
  • the temperature change of the heat medium flowing through the magnetic refrigeration section (M) becomes small, it is possible to prevent the temperature of the heat medium from deviating from the operating temperature range of the magnetic refrigeration section (M).
  • the plurality of magnetic refrigeration units (M) are a third magnetic refrigeration unit (ML, MH) which is a part of the magnetic refrigeration unit and a fourth magnetic refrigeration unit which is another magnetic refrigeration unit.
  • the operating temperature range of the magnetic working material (11) of the third magnetic refrigerating part (ML, MH) includes the part (MM), and the operating temperature range of the magnetic working material (11) of the fourth magnetic refrigerating part (MM). It is a solid refrigeration system characterized by being wider than the area.
  • the magnetic working substance (11) of the third magnetic refrigeration section (ML, MH) is widened.
  • the number of can be reduced.
  • the third magnetic refrigeration section (ML, MH) can be made into a single layer type, or the number of magnetic working substances (11) in the cascade type third magnetic refrigeration section (ML, MH) can be reduced.
  • the structure of the third magnetic refrigeration unit (ML, MH) can be simplified and the cost can be reduced.
  • the eighteenth aspect is the seventeenth aspect.
  • the amount of the magnetic working substance (11) in the third magnetic refrigerating section (ML, MH) is larger than the amount of the magnetic working substance (11) in the fourth magnetic refrigerating section (MM). It is a device.
  • the magnetic calorific value effect of the third magnetic refrigeration section (ML, MH) tends to decrease.
  • the heat dissipation capacity and endothermic capacity of the third magnetic refrigeration unit (ML, MH) are increased by increasing the amount of the magnetic working substance (11) in the third magnetic refrigeration unit (ML, MH). Can be done.
  • the 19th aspect is The bypass mechanism (B) is provided corresponding to the third magnetic refrigeration unit (ML, MH).
  • the efficiency of the third magnetic refrigeration section (ML, MH) may decrease.
  • the third magnetic refrigeration unit (ML, MH) can be used as an auxiliary when necessary.
  • the heat medium bypasses the third magnetic refrigeration section (ML, MH), so that the pressure loss can be reduced.
  • the temperature of the heat medium in the operation of the solid refrigeration apparatus, is the entire operating temperature range of the third magnetic refrigeration unit (ML, MH).
  • the solid refrigeration apparatus is characterized in that the temperature of the heat medium is less than the frequency of reaching within the entire operating temperature range of the fourth magnetic refrigeration unit (MM).
  • the frequency at which the temperature of the heat medium reaches the entire operating temperature range of the third magnetic refrigeration unit (ML, MH) is relatively low. Therefore, even if the number of magnetic working substances (11) in the third magnetic refrigerating section (ML, MH) is reduced, the effect of the decrease in operating efficiency is small when considering the total operation of the solid refrigerating device. ..
  • the 21st aspect is, in any one of the 17th to 20th aspects,
  • the entire operating temperature range of the fourth magnetic refrigeration unit (MM) is a medium temperature range.
  • the entire operating temperature range of the third magnetic refrigeration unit (ML, MH) is a low temperature range or a high temperature range, which is a solid refrigeration apparatus.
  • low temperature range low temperature range
  • medium temperature range medium temperature range
  • high temperature range The operating temperature range of the plurality of magnetic refrigeration units (M) as a whole is divided into three in the same temperature range.
  • the temperature range with the lowest temperature is referred to as “low temperature range”
  • the temperature range with the highest temperature is referred to as “high temperature range”
  • the temperature range between the low temperature range and the high temperature range is referred to as “medium temperature range”.
  • the entire operating temperature range of the third magnetic refrigeration unit (ML, MH) is a low temperature range or a high temperature range.
  • the frequency with which the temperature of the heat medium reaches the entire operating temperature range of the third magnetic refrigeration section (ML, MH) is lower than that of the fourth magnetic refrigeration section (MM).
  • the third magnetic refrigeration section (ML, MH) is provided near the end of the plurality of magnetic refrigeration sections (M).
  • the third magnetic refrigeration section (ML, MH) is provided near the end of the plurality of magnetic refrigeration sections (M). As a result, the frequency with which the temperature of the heat medium reaches the entire operating temperature range of the third magnetic refrigeration unit (ML, MH) is reduced.
  • the 23rd aspect is the 22nd aspect.
  • the third magnetic refrigeration unit (ML, MH) is a solid refrigeration apparatus characterized in that the third magnetic refrigeration unit (ML, MH) is provided at both ends of each of the plurality of magnetic refrigeration units (M).
  • a third magnetic refrigeration unit (ML, MH) is provided at both ends of the plurality of magnetic refrigeration units (M). As a result, the frequency with which the temperature of the heat medium reaches the entire operating temperature range of each third magnetic refrigeration unit (ML, MH) is reduced.
  • the twenty-fourth aspect is, in any one of the 17th to 23rd aspects,
  • the third magnetic refrigeration unit (ML, MH) is an outdoor heat exchanger that constitutes at least one of the first heat exchange unit (31,33,34) and the second heat exchange unit (32,33,34). (34) It is a solid refrigeration system characterized by being installed closer to it.
  • the temperature of the heat medium flowing through the outdoor heat exchanger (34) changes significantly due to the influence of the outside air temperature.
  • the temperature of the heat medium is the overall operating temperature of the third magnetic refrigeration section (ML, MH). The frequency of reaching the area is reduced.
  • the 25th aspect is the solid refrigeration apparatus according to the 24th aspect, wherein the third magnetic refrigeration unit (ML, MH) is provided adjacent to the outdoor heat exchanger (34).
  • the third magnetic refrigeration unit (ML, MH) is provided adjacent to the outdoor heat exchanger (34).
  • the temperature of the heat medium flowing through the outdoor heat exchanger (34) changes significantly due to the influence of the outside air temperature.
  • the temperature of the heat medium is the entire temperature of the third magnetic refrigeration section (ML, MH). The frequency of reaching the operating temperature range is reduced.
  • FIG. 1 is a piping system diagram of the magnetic refrigeration device of the first embodiment.
  • FIG. 2 is a block diagram showing the relationship between the controller of the magnetic refrigeration device of the first embodiment and other devices.
  • FIG. 3 is a graph showing the characteristics of the magnetic working substance of each of the first magnetic refrigeration section and the second magnetic refrigeration section of the first embodiment.
  • FIG. 4 is a graph showing the characteristics of adjacent magnetic working substances of the first embodiment.
  • FIG. 5 is a diagram corresponding to FIG. 1 with a flow of a heat medium for the normal heating operation of the first embodiment.
  • FIG. 6 is a diagram corresponding to FIG. 1 with a flow of a heat medium for the normal cooling operation of the first embodiment.
  • FIG. 7 is a diagram corresponding to FIG.
  • FIG. 8 is a diagram corresponding to FIG. 1 with a flow of a heat medium for the second bypass heating operation of the first embodiment.
  • FIG. 9 is a diagram corresponding to FIG. 1 with a flow of a heat medium for the first bypass cooling operation of the first embodiment.
  • FIG. 10 is a diagram corresponding to FIG. 1 with a flow of the second bypass cooling operation of the first embodiment.
  • FIG. 11 is a graph showing the characteristics of the magnetic working substance of each of the first magnetic refrigeration section and the second magnetic refrigeration section of the second embodiment.
  • FIG. 12 is a piping system diagram of the magnetic refrigeration device of the third embodiment.
  • FIG. 13 is a piping system diagram of the magnetic refrigeration device according to the first modification of the third embodiment.
  • FIG. 14 is a piping system diagram of the magnetic refrigeration device according to the second modification of the third embodiment.
  • FIG. 15 is a piping system diagram of the magnetic refrigeration device according to the fourth embodiment.
  • FIG. 16 is a diagram corresponding to FIG. 15 with a flow of the heat medium of the first operation of the fourth embodiment.
  • FIG. 17 is a diagram corresponding to FIG. 15 with a flow of the heat medium of the second operation of the fourth embodiment.
  • FIG. 18 is a diagram corresponding to FIG. 15 with a flow of the heat medium of the third operation of the fourth embodiment.
  • FIG. 19 is a diagram corresponding to FIG. 15 with a flow of the heat medium of the fourth operation of the fourth embodiment.
  • FIG. 16 is a diagram corresponding to FIG. 15 with a flow of the heat medium of the first operation of the fourth embodiment.
  • FIG. 17 is a diagram corresponding to FIG. 15 with a flow
  • FIG. 20 is a piping system diagram of the magnetic refrigeration device in the modified example A.
  • FIG. 21 is a piping system diagram of the magnetic refrigeration device in the modified example B.
  • FIG. 22 is a piping system diagram of the magnetic refrigeration device in the modified example C.
  • FIG. 23 is a piping system diagram of the magnetic refrigeration device in the modified example D.
  • FIG. 24 is a piping system diagram of the magnetic refrigeration device in the modified example E.
  • FIG. 25 is a diagram corresponding to FIG. 3 of the magnetic refrigeration device in the modified example F.
  • FIG. 26 is a piping system diagram of the magnetic refrigeration device of the fifth embodiment.
  • FIG. 27 is a diagram corresponding to FIG. 26 with a flow of the heat medium of the first operation of the fifth embodiment.
  • FIG. 28 is a diagram corresponding to FIG.
  • FIG. 26 is a flow of the heat medium of the second operation of the fifth embodiment.
  • FIG. 29 is a diagram corresponding to FIG. 26 with a flow of the heat medium of the third operation of the fifth embodiment.
  • FIG. 30 is a diagram corresponding to FIG. 26 with a flow of the heat medium of the fourth operation of the fifth embodiment.
  • FIG. 31 is a schematic view showing the relationship between the temperature range of each operation of the magnetic refrigeration apparatus according to the fifth embodiment and the characteristics of the plurality of magnetic refrigeration units.
  • FIG. 32 is a piping system diagram of the magnetic refrigeration device of the sixth embodiment.
  • FIG. 33 is a diagram corresponding to FIG. 32 with a flow of the heat medium of the first operation of the sixth embodiment.
  • FIG. 34 is a diagram corresponding to FIG.
  • FIG. 37 is a schematic view showing the temperature range of each operation of the magnetic refrigeration device in the modified example G.
  • FIG. 38 is a piping system diagram of the magnetic refrigeration device in the modified example H.
  • FIG. 39 is a schematic view showing the temperature range of each operation of the magnetic refrigeration device in the modified example H.
  • FIG. 40 is a piping system diagram of the magnetic refrigeration device in the modified example I.
  • FIG. 41 is a schematic view showing the temperature range of each operation of the magnetic refrigeration device in the modified example I.
  • Embodiment 1 The magnetic refrigeration apparatus (1) of the present embodiment adjusts the temperature of the heat medium by utilizing the magnetic calorific value effect.
  • the magnetic refrigerator (1) is applied to, for example, an air conditioner.
  • the magnetic refrigeration device (1) is a solid refrigeration device that adjusts the temperature of the heat medium by utilizing the calorific value effect.
  • the magnetic refrigerator (1) includes a heat medium circuit (C) filled with a heat medium.
  • the filled heat medium is conveyed.
  • the heat medium includes, for example, a refrigerant, water, brine and the like.
  • the magnetic refrigeration device (1) mainly includes a plurality of magnetic refrigeration units (M) as solid refrigeration units, a transfer mechanism (20), a first heat exchanger (31), and a second heat exchanger (32). ..
  • the plurality of magnetic refrigeration units (M), the transfer mechanism (20), the first heat exchanger (31), and the second heat exchanger (32) are connected to the heat medium circuit (C).
  • the plurality of magnetic refrigeration units (M) are composed of a first magnetic refrigeration unit (M1) and a second magnetic refrigeration unit (M2).
  • the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) may be collectively referred to as a magnetic refrigeration section (M).
  • the magnetic refrigeration section (M) includes a bed (10), a magnetic working substance (11) as a solid refrigerant substance, and a magnetic field modulation section (12).
  • the bed (10) is a hollow case or column.
  • the inside of the bed (10) is filled with a magnetic working substance (11).
  • an internal flow path (13) through which the heat medium reciprocates flows is formed inside the bed (10).
  • the magnetic working substance (11) generates heat when a magnetic field is applied or when the applied magnetic field becomes stronger.
  • the magnetic working substance (11) endotherms when the magnetic field is removed or the applied magnetic field weakens.
  • Examples of the material of the magnetic working substance (11) include Gd 5 (Ge 0.5 Si 0.5 ) 4 , La (Fe 1-x Si x ) 13 , La (Fe 1-x Co x Si y ) 13 , and La (Fe 1-x Si y) 13. 1-x Si x ) 13 Hy , Mn (As 0.9 Sb 0.1 ) and the like can be used.
  • the magnetic refrigeration unit (M) of this embodiment is a cascade type.
  • the magnetic refrigeration unit (M) has a plurality of types of magnetic working substances (11) having different Curie temperatures (details will be described later).
  • the magnetic field modulation section (12) is a trigger section that induces a calorific value effect on the magnetic working substance (11) as a solid refrigerant substance.
  • the magnetic field modulator (12) imparts magnetic field fluctuations to the magnetic working substance (11).
  • the magnetic field modulator (12) adjusts the strength of the magnetic field applied to the magnetic working substance (11).
  • the magnetic field modulator (12) is composed of, for example, an electromagnet capable of modulating the magnetic field.
  • the magnetic field modulation unit (12) performs the first modulation operation and the second modulation operation. In the first modulation operation, a magnetic field is applied to the magnetic working substance (11), or the applied magnetic field is strengthened. In the second modulation operation, the magnetic field applied to the magnetic working substance (11) is removed or the applied magnetic field is weakened.
  • the transport mechanism (20) reciprocally transports the heat medium of the heat medium circuit (C).
  • the transport mechanism (20) includes a reciprocating pump (21).
  • the reciprocating pump (21) is composed of a piston pump.
  • the reciprocating pump (21) has a pump case (22), a piston (23), and a drive mechanism (not shown).
  • the piston (23) is located inside the pump case (22).
  • the piston (23) divides the inside of the pump case (22) into two chambers.
  • the reciprocating pump (21) is provided with a first opening (24) and a second opening (25).
  • One chamber of the pump case (22) communicates with the first opening (24) and the other chamber communicates with the second opening (25).
  • the drive mechanism has a rod connected to the piston (23), a crank connected to the rod, and an electric motor for driving the crank.
  • the motor drives the crank to rotate, the rod moves back and forth.
  • the reciprocating motion of the piston (23) is performed in the pump case (22).
  • the transport mechanism (20) alternately repeats the first transport operation and the second transport operation.
  • the piston (23) moves to the first opening (24) side.
  • the heat medium in the pump case (22) is discharged from the first opening (24).
  • the heat medium is sucked into the pump case (22) through the second opening (25).
  • the piston (23) moves to the second opening (25) side.
  • the heat medium in the pump case (22) is discharged from the second opening (25).
  • the heat medium is sucked into the pump case (22) through the first opening (24).
  • the first heat exchanger (31) and the second heat exchanger (32) can exchange heat between the heat medium through which the heat medium circuit (C) flows and the target fluid.
  • the first heat exchanger (31) and the second heat exchanger (32) are composed of an air heat exchanger.
  • the first heat exchanger (31) and the second heat exchanger (32) exchange heat between the heat medium of the heat medium circuit (C) and air.
  • the first heat exchanger (31) constitutes a low temperature side heat exchanger.
  • the first heat exchanger (31) is a heat absorber that removes heat from the air to the heat medium.
  • the second heat exchanger (32) constitutes a high temperature side heat exchanger.
  • the second heat exchanger (32) is a radiator that discharges air from the heat medium to heat.
  • the first heat exchanger (31) corresponds to the first heat exchanger of the present disclosure.
  • the second heat exchanger (32) corresponds to the second heat exchanger of the present disclosure.
  • the heat medium circuit (C) mainly includes a first flow path (40), a second flow path (50), a first transfer flow path (61), and a second transfer flow path (62).
  • the heat medium circuit (C) includes a plurality of bypass mechanisms (B).
  • the first flow path (40) is a flow path for supplying the heat medium to the first heat exchanger (31).
  • the inflow end of the first flow path (40) is connected to the outflow end of the second heat exchanger (32).
  • the outflow end of the first flow path (40) is connected to the inflow end of the first heat exchanger (31).
  • the first flow path (40) includes a first upper flow path (41), a first intermediate path (42), and a first lower flow path (43).
  • the first flow path (40) includes an internal flow path (13) of each magnetic refrigeration unit (M1). In the first flow path (40), the first upper flow path (41), the internal flow path (13) of the first magnetic refrigeration section (M1), the first intermediate path (42), and the second magnetic refrigeration section (M2).
  • the internal flow path (13) and the first lower flow path (43) are connected in order.
  • a first check valve (CV1) is provided on the upstream side of each magnetic refrigeration section (M).
  • a second check valve (CV2) is provided on the downstream side of each magnetic refrigeration unit (M).
  • the first check valve (CV1) and the second check valve (CV2) allow the flow of heat medium from the second heat exchanger (32) side to the first heat exchanger (31) side, and vice versa. Prohibit the flow.
  • the second flow path (50) is a flow path for supplying the heat medium to the second heat exchanger (32).
  • the inflow end of the second flow path (50) is connected to the outflow end of the first heat exchanger (31).
  • the outflow end of the second flow path (50) is connected to the inflow end of the second heat exchanger (32).
  • the second flow path (50) includes a second upper flow path (51), a second intermediate path (52), and a second lower flow path (53).
  • the second flow path (50) includes an internal flow path (13) of each magnetic refrigeration unit (M).
  • the internal flow path (13) and the second lower flow path (53) are connected in order.
  • a third check valve (CV3) is provided on the upstream side of each magnetic refrigeration section (M).
  • a fourth check valve (CV4) is provided on the downstream side of each magnetic refrigeration unit (M).
  • the third check valve (CV3) and the fourth check valve (CV4) allow the flow of heat medium from the first heat exchanger (31) side to the second heat exchanger (32) side, and vice versa. Prohibit the flow.
  • First transport flow path The inflow end of the first transport flow path (61) is connected to the first opening (24) of the reciprocating pump (21).
  • the outflow end of the first transport flow path (61) is connected between the first heat exchanger (31) in the second upper flow path (51) and the inflow end of the third bypass flow path (67).
  • ⁇ Second transport flow path The inflow end of the second transport flow path (62) is connected to the second opening (25) of the reciprocating pump (21). The outflow end of the second transport flow path (62) is connected between the second heat exchanger (32) in the first upper flow path (41) and the inflow end of the first bypass flow path (63).
  • the plurality of bypass mechanisms (B) are composed of a first bypass mechanism (B1), a second bypass mechanism (B2), a third bypass mechanism (B3), and a fourth bypass mechanism (B4).
  • the bypass mechanism (B) switches between an operation in which the heat medium flows through the magnetic refrigeration section (M) and an operation in which the heat medium bypasses the magnetic refrigeration section (M) in the heat medium circuit (C).
  • the first bypass mechanism (B1) is connected to the first flow path (40).
  • the first bypass mechanism (B1) corresponds to the internal flow path (13) of the first magnetic refrigeration unit (M1).
  • the heat medium of the first flow path (40) flows through the internal flow path (13) of the first magnetic refrigeration section (M1), and the heat of the first flow path (40).
  • the medium switches between a flow path and a flow path in which the medium bypasses the internal flow path (13) of the first magnetic refrigeration unit (M1).
  • the first bypass mechanism (B1) has a first bypass flow path (63) and a first control valve (64).
  • the inflow end of the first bypass flow path (63) is the connection end of the second transport flow path (62) in the first upper flow path (41) and the first check valve on the first magnetic refrigeration section (M1) side.
  • the outflow ends of the first bypass flow path (63) are the second check valve (CV2) on the first magnetic refrigeration section (M1) side and the second magnetic refrigeration section (M2) in the first intermediate path (42). Connect to the first check valve (CV1) on the side.
  • the first bypass flow path (63) includes a first upstream portion (63a) and a first downstream portion (63b).
  • the first downstream portion (63b) of the first bypass flow path (63) also serves as the second upstream portion (65a) of the second bypass flow path (65).
  • the first control valve (64) is an on-off valve that opens and closes the first bypass flow path (63).
  • the first control valve (64) is provided in the first upstream portion (63a).
  • the second bypass mechanism (B2) is connected to the first flow path (40).
  • the second bypass mechanism (B2) corresponds to the internal flow path (13) of the second magnetic refrigeration unit (M2).
  • the heat medium of the first flow path (40) flows through the internal flow path (13) of the second magnetic refrigeration section (M2), and the heat of the first flow path (40).
  • the medium switches between a flow path and a flow path in which the medium bypasses the internal flow path (13) of the second magnetic refrigeration section (M2).
  • the second bypass mechanism (B2) has a second bypass flow path (65) and a second control valve (66).
  • the inflow ends of the second bypass flow path (65) are the second check valve (CV2) on the first magnetic refrigeration section (M1) side and the second magnetic refrigeration section (M2) side in the first intermediate path (42). It is connected to the first check valve (CV1) of.
  • the outflow end of the second bypass flow path (65) is the second check valve (CV2) on the second magnetic refrigeration section (M2) side in the first lower flow path (43) and the first heat exchanger (31). Connect in between.
  • the second bypass flow path (65) includes a second upstream portion (65a) and a second downstream portion (65b).
  • the second control valve (66) is an on-off valve that opens and closes the second bypass flow path (65).
  • the second control valve (66) is provided in the second downstream portion (65b).
  • the third bypass mechanism (B3) is connected to the second flow path (50).
  • the third bypass mechanism (B3) corresponds to the internal flow path (13) of the second magnetic refrigeration unit (M2).
  • the heat medium of the second flow path (50) flows through the internal flow path (13) of the second magnetic refrigeration section (M2), and the heat medium is the second magnetic refrigeration section (M2). Switch to the flow path that bypasses the internal flow path (13) of M2).
  • the third bypass mechanism (B3) has a third bypass flow path (67) and a third control valve (68).
  • the inflow end of the third bypass flow path (67) is the connection end of the first transfer flow path (61) in the second upper flow path (51) and the third check valve on the second magnetic refrigeration section (M2) side. Connect to (CV3).
  • the outflow ends of the third bypass flow path (67) are the fourth check valve (CV4) on the second magnetic refrigeration section (M2) side and the first magnetic refrigeration section (M1) side in the second intermediate path (52). Connect to the 3rd check valve (CV3) of.
  • the third bypass flow path (67) includes a third upstream portion (67a) and a third downstream portion (67b).
  • the third downstream portion (67b) of the third bypass flow path (67) also serves as the fourth upstream portion (69a) of the fourth bypass flow path (69).
  • the third control valve (68) is an on-off valve that opens and closes the third bypass flow path (67).
  • the third control valve (68) is provided in the third upstream portion (67a).
  • the fourth bypass mechanism (B4) is connected to the second flow path (50).
  • the fourth bypass mechanism (B4) corresponds to the internal flow path (13) of the first magnetic refrigeration unit (M1).
  • the heat medium of the second flow path (50) flows through the internal flow path (13) of the first magnetic refrigeration section (M1), and the heat of the second flow path (50).
  • the medium switches between a flow path and a flow path in which the medium bypasses the internal flow path (13) of the first magnetic refrigeration unit (M1).
  • the fourth bypass mechanism (B4) has a fourth bypass flow path (69) and a fourth control valve (70).
  • the inflow ends of the fourth bypass flow path (69) are on the side of the fourth check valve (CV4) of the second magnetic refrigeration section (M2) and the first magnetic refrigeration section (M1) in the second intermediate path (52). Connect to the third check valve (CV3).
  • the outflow ends of the fourth bypass flow path (69) are the fourth check valve (CV4) and the second heat exchanger (32) on the first magnetic refrigeration section (M1) side in the second lower flow path (53). Connect between.
  • the fourth bypass flow path (69) includes a fourth upstream portion (69a) and a fourth downstream portion (69b).
  • the fourth control valve (70) is an on-off valve that opens and closes the fourth bypass flow path (69).
  • the fourth control valve (70) is provided in the fourth downstream portion (69b).
  • the first control valve (64), the second control valve (66), the third control valve (68), and the fourth control valve (70) may be flow control valves whose flow rates can be adjusted.
  • the magnetic refrigerator (1) includes a controller (100).
  • the controller (100) controls the magnetic field modulator (12), the transport mechanism (20), and the bypass mechanism (B). More specifically, the controller (100) controls each control valve (64,66,68,70) of each bypass mechanism (B) in response to an operation command.
  • the controller (100) is configured by using a microcomputer and a memory device (specifically, a semiconductor memory) for storing software for operating the microcomputer.
  • the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) are of a cascade type, respectively.
  • the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) have a plurality of types (three in this example) of magnetic working substances (11) having different Curie temperatures.
  • the Curie temperature is the temperature at which the magnetic calorific value effect of the magnetic working substance (11) is highest.
  • the number of magnetic working substances (11) in the cascade type magnetic refrigeration unit (M) may be two or four or more.
  • the first magnetic work substance (11a), the second magnetic work substance (11b), and the third magnetic work are carried out from the low temperature end to the high temperature end.
  • the substances (11c) are arranged in order.
  • the fourth magnetic working substance (11d), the fifth magnetic working substance (11e), and the sixth magnetic working substance (11f) are arranged in this order from the low temperature end to the high temperature end. I'm out.
  • the operating temperature range of the first magnetic working substance (11a) is curved a
  • the operating temperature range of the second magnetic working substance (11b) is curved b
  • the operating temperature range of the third magnetic working substance (11c) is curved.
  • the operating temperature range of the 4th magnetic working substance (11d) is the curve d
  • the operating temperature range of the 5th magnetic working substance (11e) is the curve e
  • the operating temperature range of the 6th magnetic working substance (11f) is the curve f. Shown.
  • Tc4 the Curie temperature of the fifth magnetic working substance (11e) Tc5
  • Tc6 the Curie temperature of the sixth magnetic working substance (11f)
  • these magnetic refrigeration sections are arranged so that the average value of the Curie temperatures of the plurality of (two in this example) magnetic refrigeration sections (M) increases in order.
  • (M) is connected in series. Specifically, the average value T1 of the Curie temperature of the first magnetic refrigeration unit (M1) is higher than the average value T2 of the Curie temperature of the second magnetic refrigeration unit (M2).
  • a part of the operating temperature range of the adjacent magnetic refrigeration parts (M) overlaps.
  • the third magnetic working substance (11c) is a magnetic working substance on the end side of the second magnetic refrigeration section (M2).
  • the fourth magnetic working substance (11d) is a magnetic working substance on the end side of the first magnetic refrigeration section (M1). More specifically, the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) are configured to satisfy the following relationship.
  • the magnetic calorific value effect corresponding to the Curie temperature Tc3 of the third magnetic working substance (11c) is Em2
  • the magnetic calorific value effect corresponding to the Curie temperature Tc4 of the fourth magnetic working substance (11d) is Em1.
  • Em2 is the maximum value of the magnetic calorific value effect of the third magnetic working substance (11c).
  • Em1 is the maximum value of the magnetic calorific value effect of the fourth magnetic working substance (11d).
  • Eave be the average value of Em1 and Em2.
  • Ep be the maximum value of the magnetic heat quantity effect in the region A where the operating temperature range of the third magnetic working substance (11c) and the operating temperature range of the fourth magnetic working substance (11d) overlap. In FIG. 4, this overlapping region A is hatched.
  • the magnetic calorific value effect Ep is 1 ⁇ 2 or more of the average value Eave of Em1 and Em2.
  • the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) are configured to satisfy the following equation (1).
  • the magnetic refrigerator (1) alternately repeats the heating operation and the cooling operation.
  • the heating operation includes a normal heating operation, a first bypass heating operation, and a second bypass heating operation.
  • the cooling operation includes a normal cooling operation, a first bypass heating operation, and a second bypass heating operation.
  • the normal heating operation and the normal cooling operation are alternately and repeatedly performed.
  • the first bypass heating operation, the second bypass heating operation, the first bypass cooling operation, and the second bypass cooling operation are appropriately executed according to the heat load, operating conditions, required capacity, and the like of the magnetic refrigeration apparatus (1).
  • the first bypass heating operation, the second bypass heating operation, the first bypass cooling operation, and the second bypass cooling operation may be collectively referred to as a bypass operation.
  • each magnetic field modulation unit (12) of the first magnetic refrigeration unit (M1) and the second magnetic refrigeration unit (M2) performs the first modulation operation.
  • the transport mechanism (20) performs the first transport operation.
  • the controller (100) closes the first control valve (64), the second control valve (66), the third control valve (68), and the fourth control valve (70).
  • the heat medium flowing through the second flow path (50) is heated by the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2).
  • the heated heat medium is supplied to the second heat exchanger (32), which is a radiator.
  • the heat medium dissipates heat to the air.
  • the heat exchanger serving as the radiator is hatched.
  • the relatively low temperature heat medium discharged from the first opening (24) of the reciprocating pump (21) is the first transport flow path (61), the second upper flow path (51), and the second magnetism. It flows in order through the internal flow path (13) of the refrigeration section (M2).
  • the heat medium is heated in the order of the first magnetic working substance (11a), the second magnetic working substance (11b), and the third magnetic working substance (11c).
  • the Curie temperature of the magnetic working substance (11a, 11b, 11c) increases in order from the low temperature end to the high temperature end. Therefore, in the second magnetic refrigeration section (M2), a relatively large magnetic calorific value effect can be obtained for each magnetic working substance (11a, 11b, 11c).
  • the heat medium heated by the second magnetic refrigeration section (M2) flows in order through the second intermediate path (52) and the internal flow path (13) of the first magnetic refrigeration section (M1).
  • the heat medium is heated in the order of the fourth magnetic working substance (11d), the fifth magnetic working substance (11e), and the sixth magnetic working substance (11f).
  • the Curie temperature of the magnetic working substance (11d, 11e, 11f) increases in order from the low temperature end to the high temperature end. Therefore, in the first magnetic refrigeration unit (M1), a relatively large magnetic calorific value effect can be obtained for each magnetic working substance (11d, 11e, 11f).
  • the heat medium heated by the first magnetic refrigeration unit (M1) flows through the second lower flow path (53) and the second heat exchanger (32) in this order.
  • the heat medium dissipates heat to the air, and the air is heated.
  • the heat medium radiated by the second heat exchanger (32) flows through the second transport flow path (62) and is sucked into the second opening (25) of the reciprocating pump (21).
  • each magnetic field modulation unit (12) of the first magnetic refrigeration unit (M1) and the second magnetic refrigeration unit (M2) performs the second modulation operation.
  • the transport mechanism (20) performs the second transport operation.
  • the controller (100) closes the first control valve (64), the second control valve (66), the third control valve (68), and the fourth control valve (70).
  • the heat medium flowing through the first flow path (40) is cooled by the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2).
  • the cooled heat medium is supplied to the first heat exchanger (31), which is an endothermic device.
  • the heat medium absorbs heat from the air.
  • dots are attached to the heat exchangers that serve as heat absorbers.
  • the relatively high temperature heat medium discharged from the second opening (25) of the reciprocating pump (21) is the second transport flow path (62), the first upper flow path (41), and the first magnetism. It flows through the refrigeration section (M1) in order.
  • the heat medium is cooled in the order of the sixth magnetic working substance (11f), the fifth magnetic working substance (11e), and the fourth magnetic working substance (11d).
  • the Curie temperature of the magnetic working substance (11d, 11e, 11f) decreases in order from the high temperature end to the low temperature end. Therefore, in the first magnetic refrigeration unit (M1), a relatively large magnetic calorific value effect can be obtained for each magnetic working substance (11d, 11e, 11f).
  • the heat medium cooled by the first magnetic refrigeration section (M1) flows in order through the first intermediate path (42) and the internal flow path (13) of the second magnetic refrigeration section (M2).
  • the heat medium is cooled in the order of the third magnetic working substance (11c), the second magnetic working substance (11b), and the first magnetic working substance (11a).
  • the Curie temperature of the magnetic working substance (11a, 11b, 11c) decreases in order from the high temperature end to the low temperature end. Therefore, in the second magnetic refrigeration section (M2), a relatively large magnetic calorific value effect can be obtained for each magnetic working substance (11a, 11b, 11c).
  • the heat medium cooled by the second magnetic refrigeration section (M2) flows through the first lower flow path (43) and the first heat exchanger (31) in this order.
  • the heat medium absorbs heat from the air and the air is cooled.
  • the heat medium absorbed by the first heat exchanger (31) flows through the first transport flow path (61) and is sucked into the first opening (24) of the reciprocating pump (21).
  • First bypass heating operation In the first bypass heating operation shown in FIG. 7, the magnetic field modulation unit (12) of the first magnetic refrigeration unit (M1) performs the first modulation operation.
  • the second magnetic refrigeration section (M2) does not function substantially.
  • the transport mechanism (20) performs the first transport operation.
  • the controller (100) closes the first control valve (64), the second control valve (66), the fourth control valve (70), and opens the third control valve (68).
  • the heat medium flowing through the second flow path (50) bypasses the second magnetic refrigeration section (M2).
  • the heat medium of the second upper flow path (51) flows through the third bypass flow path (67), the second intermediate path (52), and the first magnetic refrigeration section (M1) in this order.
  • the heat medium heated by the first magnetic refrigeration unit (M1) flows through the second lower flow path (53) and dissipates heat to the air by the second heat exchanger (32).
  • the magnetic field modulation unit (12) of the second magnetic refrigeration unit (M2) performs the first modulation operation.
  • the first magnetic refrigeration section (M1) does not function substantially.
  • the transport mechanism (20) performs the first transport operation.
  • the controller (100) closes the first control valve (64), the second control valve (66), the third control valve (68), and opens the fourth control valve (70).
  • the heat medium flowing through the second flow path (50) bypasses the first magnetic refrigeration section (M1). Specifically, the heat medium of the second upper flow path (51) is heated by the second magnetic refrigeration section (M2), and then the second intermediate path (52), the fourth bypass flow path (69), and the second. It flows through the lower flow path (53) and dissipates heat to the air through the second heat exchanger (32).
  • the heat medium flowing through the first flow path (40) bypasses the first magnetic refrigeration section (M1). Specifically, the heat medium of the first upper flow path (41) flows through the first bypass flow path (63), the first intermediate path (42), and the second magnetic refrigeration section (M2) in this order. The heat medium cooled by the second magnetic refrigeration unit (M2) flows through the first lower flow path (43) and absorbs heat from the air by the first heat exchanger (31).
  • the heat medium flowing through the first flow path (40) bypasses the second magnetic refrigeration section (M2). Specifically, the heat medium of the first upper flow path (41) is cooled by the first magnetic refrigeration section (M1), and then the first intermediate path (42), the second bypass flow path (65), and the first. It flows through the lower flow path (43) and absorbs heat from the air at the first heat exchanger (31).
  • the magnetic refrigeration apparatus (1) includes a bypass mechanism (B) that switches between a flow path through which the heat medium flows through the magnetic refrigeration section (M) and a flow path through which the heat medium bypasses the magnetic refrigeration section (M). Therefore, in the heating operation, the overall heating capacity of the magnetic refrigeration apparatus (1) can be adjusted by not heating the heat medium in a certain magnetic refrigeration unit (M). In the cooling operation, the overall cooling capacity of the magnetic refrigeration device (1) can be adjusted by not cooling the heat medium in a certain magnetic refrigeration unit (M).
  • a bypass mechanism (B) is provided corresponding to all the magnetic refrigeration units (M) in both the first flow path (40) and the second flow path (50).
  • the first flow path (40) is provided with a first bypass mechanism (B1) corresponding to the first magnetic refrigeration unit (M1).
  • the first flow path (40) is provided with a second bypass mechanism (B2) corresponding to the second magnetic refrigeration section (M2).
  • the second flow path (50) is provided with a third bypass mechanism (B3) corresponding to the second magnetic refrigeration section (M2).
  • the second flow path (50) is provided with a fourth bypass mechanism (B4) corresponding to the first magnetic refrigeration section (M1).
  • the heating operation the above-mentioned normal heating operation, the first bypass heating operation, and the second bypass heating operation can be appropriately switched, and the overall heating capacity of the magnetic refrigeration apparatus (1) can be finely adjusted.
  • the cooling operation the above-mentioned normal cooling operation, the first bypass cooling operation, and the second bypass cooling operation can be appropriately switched, and the overall cooling capacity of the magnetic refrigeration apparatus (1) can be finely adjusted.
  • the heat medium may accumulate in the bypass flow path (63,65,67,69). Specifically, for example, in the second bypass heating operation shown in FIG. 8, a relatively high temperature heat medium is accumulated in the fourth bypass flow path (69). From this state, for example, even if the normal cooling operation shown in FIG. 6 is performed, the heat medium does not flow through the second flow path (50) but flows through the first flow path (40). Therefore, in the normal cooling operation, the heat medium supplied to the first heat exchanger (31) does not mix with the heat medium accumulated in the fourth bypass flow path (69). Therefore, it is possible to suppress the occurrence of heat loss due to such mixing of heat media.
  • a relatively low temperature heat medium accumulates in the second bypass flow path (65). From this state, for example, even if the normal heating operation shown in FIG. 5 is performed, the heat medium does not flow through the first flow path (40) but flows through the second flow path (50). Therefore, in the normal heating operation, the heat medium supplied to the second heat exchanger (32) does not mix with the heat medium accumulated in the second bypass flow path (65). Therefore, it is possible to suppress the occurrence of heat loss due to such mixing of heat media.
  • ⁇ Curie temperature> In the first flow path (40) and the second flow path (50), a plurality of magnetic refrigeration units (two in this example) are subjected to magnetic refrigeration so that the average value of the Curie temperatures of the plurality of magnetic refrigeration units (M) increases in order.
  • the parts (M) are connected in series. Specifically, as shown in FIG. 3, the average value T2 of the Curie temperature of all the magnetic working substances (11) in the second magnetic refrigeration section (M2) is all the magnetism of the first magnetic refrigeration section (M1). It is higher than the average value T1 of the Curie temperature of the working substance (11).
  • the heat medium of the second flow path (50) flows through the second magnetic refrigeration section (M2) and the first magnetic refrigeration section (M1) in order, so that the heat medium flowing through each magnetic refrigeration section (M)
  • the temperature can be close to the average of those Curie temperatures. Therefore, the magnetic calorific value effect of each magnetic refrigeration unit (M) can be increased, and the heating capacity can be increased.
  • the heat medium of the first flow path (40) flows through the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) in order, so that the temperature of the heat medium flowing through each magnetic refrigeration section (M) Can approach the average value of those Curie temperatures. Therefore, the magnetic calorific value effect of each magnetic refrigeration unit (M) can be increased, and the cooling capacity can be increased.
  • Each of the magnetic refrigeration units (M) is a cascade type having a plurality of types of magnetic working substances (11) in which the Curie temperature increases in order from the low temperature end to the high temperature end. Therefore, in the heating operation, the heat medium of the second flow path (50) flows in order from the low temperature end to the high temperature end of each magnetic refrigeration unit (M), so that the temperature of the heat medium flowing through each magnetic working substance (11) Can approach those Curie temperatures. Therefore, the magnetic calorific value effect of each magnetic working substance (11) can be increased, and the heating capacity can be increased.
  • the heat medium of the first flow path (40) flows in order from the high temperature end to the low temperature end of each magnetic work substance (11), so that the temperature of the heat medium flowing through each magnetic work substance (11) is set.
  • ⁇ Operating temperature range> As shown in FIG. 4, a part of the operating temperature range of the adjacent first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) overlaps with each other. Specifically, for the region A where the operating temperature ranges of the magnetic working substances (11c, 11d) on the end side of the adjacent magnetic refrigeration portions (M) overlap, the maximum value Ep of the magnetic calorific value effect of the region A is the said. It is more than 1/2 of the average value of Eave, which is the maximum value of the magnetic calorific value effect of the magnetic working substances (11c, 11d) on the adjacent end side.
  • the first bypass heating operation shown in FIG. 7 is performed via a predetermined cooling operation.
  • the heat medium of the second flow path (50) bypasses the second magnetic refrigeration section (M2) and flows through the first magnetic refrigeration section (M1). Therefore, the temperature of the heat medium flowing through the first magnetic refrigeration section (M1) during the first bypass heating operation is lower than the temperature of the heat medium flowing through the first magnetic refrigeration section (M1) during the normal heating operation.
  • the operating temperature range of the fourth magnetic working material (11d) of the first magnetic refrigerating part (M1) is the operating temperature range of the third magnetic working material (11c) of the second magnetic refrigerating part (M2).
  • the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) satisfy the relationship of Ep ⁇ ((Em1 + Em2) / 2) ⁇ (1/2).
  • Ep ⁇ ((Em1 + Em2) / 2) ⁇ (1/2).
  • the operating temperature ranges overlap.
  • the first bypass cooling operation shown in FIG. 9 is performed via a predetermined heating operation.
  • the heat medium of the first flow path (40) bypasses the first magnetic refrigeration section (M1) and flows through the second magnetic refrigeration section (M2). Therefore, the temperature of the heat medium flowing through the second magnetic refrigeration section (M2) during the first bypass cooling operation is higher than the temperature of the heat medium flowing through the first magnetic refrigeration section (M1) during the normal cooling operation.
  • the operating temperature range of the third magnetic working material (11c) of the second magnetic refrigerating part (M2) is the operating temperature range of the fourth magnetic working material (11d) of the first magnetic refrigerating part (M1).
  • the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) satisfy the relationship of Ep ⁇ ((Em1 + Em2) / 2) ⁇ (1/2).
  • Ep ⁇ ((Em1 + Em2) / 2) ⁇ (1/2).
  • the operating temperature ranges overlap.
  • Embodiment 2 The magnetic refrigeration apparatus (1) according to the second embodiment has a different configuration of the magnetic refrigeration unit (M) in the first embodiment.
  • the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) are of a cascade type.
  • the characteristics of the magnetic working substances (11) of the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) are different.
  • the width of the operating temperature range of the magnetic work substance (11a, 11c, 11d, 11f) among the multiple types (three types in this example) of the magnetic work substance (11) is the magnetic work. It is wider than the operating temperature range of the substance (11b, 11e).
  • the width Wa of the operating temperature range of the first magnetic working substance (11a) is wider than the width Wb of the operating temperature range of the second magnetic working substance (11b). ..
  • the width Wc of the operating temperature range of the third magnetic working substance (11c) is wider than the width Wb of the operating temperature range of the second magnetic working substance (11b).
  • the third magnetic working substance (11c) of the second magnetic refrigeration section (M2) is an end-side magnetic working substance corresponding to the end on the side of another adjacent magnetic refrigeration section (first magnetic refrigeration section (M1)). Is.
  • the second magnetic working substance (11b) of the second magnetic refrigeration section (M2) is an intermediate magnetic working substance corresponding to the intermediate portion between both ends of the second magnetic refrigeration section (M2).
  • the width Wd of the operating temperature range of the fourth magnetic working substance (11d) is wider than the width We of the operating temperature range of the fifth magnetic working substance (11e).
  • the width Wf of the operating temperature range of the sixth magnetic working substance (11f) is wider than the width We of the operating temperature range of the fifth magnetic working substance (11e).
  • the fourth magnetic working substance (11d) of the first magnetic refrigeration section (M1) is an end-side magnetic working substance corresponding to the end on the side of another adjacent magnetic refrigeration section (second magnetic refrigeration section (M2)). Is.
  • the fifth magnetic working substance (11e) of the first magnetic refrigeration section (M1) is an intermediate magnetic working substance corresponding to an intermediate portion between both ends of the first magnetic refrigeration section (M1).
  • the first bypass heating operation shown in FIG. 7 is performed via a predetermined cooling operation.
  • the temperature of the heat medium flowing through the first magnetic refrigeration section (M1) is lower than the temperature of the heat medium flowing through the first magnetic refrigeration section (M1) during the normal heating operation.
  • the first magnetic refrigeration unit (M1) is in the first bypass heating operation. It is possible to prevent the temperature of the heat medium flowing through the magnet from deviating from the operating temperature range.
  • the first bypass cooling operation shown in FIG. 9 is performed via a predetermined heating operation.
  • the temperature of the heat medium flowing through the second magnetic refrigeration section (M2) during the first bypass cooling operation is the temperature of the heat medium flowing through the first magnetic refrigeration section (M1) during the normal cooling operation. Will be higher than.
  • the second magnetic refrigeration unit (M2) since the operating temperature range of the third magnetic working material (11c) of the second magnetic refrigeration unit (M2) is relatively wide, the second magnetic refrigeration unit (M2) is in the first bypass cooling operation. It is possible to sufficiently prevent the temperature of the heat medium flowing through the magnet from deviating from the operating temperature range.
  • the width Wa of the operating temperature range of the first magnetic working substance (11a) may be the same as or narrower than the width Wb of the operating temperature range of the second magnetic working substance (11b).
  • the width Wf of the operating temperature range of the sixth magnetic working substance (11f) may be the same as or narrower than the width We of the operating temperature range of the fifth magnetic working substance (11e).
  • the magnetic refrigeration unit (M) may have a plurality of intermediate magnetic working substances.
  • the operating temperature range of the end-side magnetic working material may be wider than the operating temperature range of at least one of the plurality of intermediate-side magnetic working materials.
  • the operating temperature range of the end-side magnetic work material may be wider than all the operating temperature ranges of the plurality of intermediate-side magnetic work materials.
  • the modified example of the second embodiment has a different configuration of the magnetic refrigeration unit (M) from the second embodiment.
  • Each magnetic refrigeration section (M) of the modified example of the second embodiment is a cascade type.
  • the maximum value of the magnetic calorific value effect of the end side magnetic work material (11c, 11d) is larger than the maximum value of the magnetic heat quantity effect of the intermediate side magnetic work material (11b, 11e).
  • the maximum value of the magnetic heat quantity effect of the third magnetic work material (11c) is larger than the maximum value of the magnetic heat quantity effect of the second magnetic work material (11b).
  • the maximum value of the magnetic calorific value effect of the fourth magnetic work material (11d) is larger than the maximum value of the magnetic heat quantity effect of the fifth magnetic work material (11e).
  • the first bypass heating operation shown in FIG. 7 is performed via a predetermined cooling operation.
  • the temperature of the heat medium flowing through the first magnetic refrigeration section (M1) is lower than the temperature of the heat medium flowing through the first magnetic refrigeration section (M1) during the normal heating operation.
  • the magnetic calorific value effect of the fourth magnetic working substance (11d) of the first magnetic refrigeration section (M1) is relatively large, the heat medium can be sufficiently heated by the fourth magnetic working substance (11d). As a result, it is possible to prevent the temperature of the heat medium flowing through the first magnetic refrigeration section (M1) from deviating from the operating temperature range of the first magnetic refrigeration section (M1).
  • the first bypass cooling operation shown in FIG. 9 is performed via a predetermined heating operation.
  • the temperature of the heat medium flowing through the second magnetic refrigeration section (M2) is higher than the temperature of the heat medium flowing through the second magnetic refrigeration section (M2) during the normal cooling operation.
  • the magnetic calorific value effect of the third magnetic working material (11c) of the second magnetic refrigeration unit (M2) is relatively large, the heat medium can be sufficiently cooled by the third magnetic working material (11c). As a result, it is possible to prevent the temperature of the heat medium flowing through the second magnetic refrigeration section (M2) from deviating from the operating temperature range of the second magnetic refrigeration section (M2).
  • each magnetic refrigeration section (M) the maximum value of the magnetic calorific value effect of the end side magnetic work substance (11c, 11d) is made larger than the maximum value of the magnetic calorie effect of the intermediate side magnetic work substance (11b, 11e).
  • An example is the following configuration.
  • Amount of change in magnetic flux density Make the amount of change in magnetic flux density of the end-side magnetic work material (11c, 11d) larger than the amount of change in magnetic flux density of the intermediate-side magnetic work material (11b, 11e).
  • the maximum value of the magnetic calorific value effect of the end side magnetic work material (11c, 11d) can be made larger than the maximum value of the magnetic heat quantity effect of the intermediate side magnetic work material (11b, 11e).
  • Weight of magnetic working material The weight of the magnetic working material on the end side (11c, 11d) is made larger than the weight of the magnetic working material on the intermediate side (11b, 11e). As a result, the maximum value of the magnetic calorific value effect of the end side magnetic work material (11c, 11d) can be made larger than the maximum value of the magnetic heat quantity effect of the intermediate side magnetic work material (11b, 11e).
  • volume of magnetic working material The volume of the end-side magnetic working material (11c, 11d) in the bed (10) is larger than the volume of the intermediate magnetic working material (11b, 11e) in the bed (10). Enlarge. As a result, the weight of the end-side magnetic work material (11c, 11d) can be made larger than the weight of the intermediate-side magnetic work material (11b, 11e). Strictly speaking, the volume referred to here is a "bulk volume" including voids formed in the magnetic working substance (11).
  • the magnetic refrigerator (1) shown in FIG. 12 includes two heat storage units (81,82).
  • the two heat storage units (81,82) include a first heat storage unit (81) connected to the first flow path (40) and a second heat storage unit (82) connected to the second flow path (50). Consists of.
  • Each heat storage unit (81,82) is composed of a reservoir (heat storage container) for storing a heat medium.
  • the first heat storage unit (81) is provided in the first intermediate path (42) of the first flow path (40).
  • the first heat storage unit (81) is provided between the outflow end of the first bypass flow path (63) and the inflow end of the second bypass flow path (65) in the first intermediate path (42).
  • the first heat storage unit (81) stores the heat of the heat medium flowing through the first bypass flow path (63).
  • the second heat storage unit (82) is provided in the second intermediate path (52) of the second flow path (50).
  • the second heat storage unit (82) is provided between the outflow end of the third bypass flow path (67) and the inflow end of the fourth bypass flow path (69) in the second intermediate path (52).
  • the heat storage unit (81,82) By providing the heat storage unit (81,82) in this way, the temperature of the heat medium flowing through the magnetic refrigeration unit (M) will be out of the operating temperature range of the magnetic refrigeration unit (M) during the bypass operation. Can be suppressed.
  • the heat medium heated by the second magnetic refrigeration unit (M2) in the normal heating operation immediately before that is accumulated In the second heat storage unit (82), the heat medium heated by the second magnetic refrigeration unit (M2) in the normal heating operation immediately before that is accumulated. Therefore, the temperature of the heat medium that has flowed into the second heat storage unit (82) via the third bypass flow path (67) rises. Therefore, the temperature of the heat medium flowing through the first magnetic refrigeration section (M1) is higher than the temperature of the heat medium flowing through the second bypass flow path (65). Therefore, it is possible to prevent the temperature of the heat medium flowing through the first magnetic refrigeration section (M1) from deviating from the operating temperature range of the first magnetic refrigeration section (M1).
  • the heat medium cooled by the first magnetic refrigeration unit (M1) is accumulated in the normal cooling operation immediately before that. Therefore, the temperature of the heat medium that has flowed into the first heat storage unit (81) via the first bypass flow path (63) is lowered. Therefore, the temperature of the heat medium flowing through the second magnetic refrigeration section (M2) is lower than the temperature of the heat medium flowing through the first bypass flow path (63). Therefore, it is possible to prevent the temperature of the heat medium flowing through the second magnetic refrigeration section (M2) from deviating from the operating temperature range of the second magnetic refrigeration section (M2).
  • the magnetic refrigeration apparatus (1) of the first modification of the third embodiment shown in FIG. 13 differs from the magnetic refrigeration apparatus (1) of the third embodiment in the configuration of the heat storage unit (81,82) and its surroundings.
  • the first three-way valve (91), the second three-way valve (92), the third three-way valve (93), and the fourth three-way valve (94) are connected to the heat medium circuit (C).
  • Each of the three-way valves (91,92,93,94) has three ports. Each of the three ports is configured to be openable and closable.
  • the first upstream portion (63a), the first downstream portion (63b), and the first heat storage flow path (75) are connected to the first three-way valve (91).
  • the second upstream portion (65a), the second downstream portion (65b), and the first heat storage flow path (75) are connected to the second three-way valve (92).
  • the third upstream portion (67a), the third downstream portion (67b), and the second heat storage flow path (76) are connected to the third three-way valve (93).
  • the fourth upstream portion (69a), the fourth downstream portion (69b), and the second heat storage flow path (76) are connected to the fourth three-way valve (94).
  • the third three-way valve (93) closes the port on the third upstream portion (67a) side and the port on the third downstream portion (67b) side.
  • the fourth three-way valve (94) closes the port on the fourth upstream portion (69a) side.
  • the heat medium of the second flow path (50) flows through the second magnetic refrigeration section (M2) and the first magnetic refrigeration section (M1) in this order. This heat medium does not flow through the second heat storage unit (82). Therefore, for example, at the start of the normal heating operation, it is possible to suppress that the heat dissipation capacity of the second heat exchanger (32) does not easily increase due to the influence of the heat capacity of the second heat storage unit (82).
  • the third three-way valve (93) opens the port on the third upstream portion (67a) side and the port on the second heat storage flow path (76) side, and opens the port on the third downstream portion (67b) side. Close the port.
  • the fourth three-way valve (94) opens the port on the second heat storage flow path (76) side and the port on the fourth upstream portion (69a) side, and closes the port on the fourth downstream portion (69b) side.
  • the relatively low temperature heat medium of the second flow path (50) is the third upstream part (67a), the second heat storage part (82) of the second heat storage flow path (76), and the fourth upstream part (69a) in this order. After flowing, it flows through the first magnetic refrigeration unit (M1).
  • the first three-way valve (91) closes the port on the first upstream portion (63a) side and the port on the first downstream portion (63b) side.
  • the second three-way valve (92) closes the port on the second upstream portion (65a) side.
  • the heat medium of the first flow path (40) flows through the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) in this order. This heat medium does not flow through the first heat storage unit (81). Therefore, for example, at the start of the normal cooling operation, it is possible to suppress that the cooling capacity of the first heat exchanger (31) does not easily increase due to the influence of the heat capacity of the first heat storage unit (81).
  • the first three-way valve (91) opens the port on the first upstream portion (63a) side and the port on the first heat storage flow path (75) side, and opens the port on the first downstream portion (63b) side. Close the port.
  • the second three-way valve (92) opens the port on the first heat storage flow path (75) side and the port on the second upstream portion (65a) side, and closes the port on the second downstream portion (65b) side.
  • the relatively high temperature heat medium of the first flow path (40) is the first upstream part (63a), the first heat storage part (81) of the first heat storage flow path (75), and the second upstream part (65a) in this order. After flowing, it flows through the second magnetic refrigeration section (M2).
  • the first magnetic refrigeration unit (M1) is provided with a first heat storage unit (83) and a second heat storage unit (84).
  • the first heat storage unit (83) and the second heat storage unit (84) are composed of a reservoir.
  • the first heat storage unit (83) is provided in the inflow portion on the first flow path (40) side of the first magnetic refrigeration portion (M1).
  • the second heat storage unit (84) is provided in the inflow portion on the second flow path (50) side of the first magnetic refrigeration portion (M1).
  • the second magnetic refrigeration unit (M2) is provided with a third heat storage unit (85) and a fourth heat storage unit (86).
  • the third heat storage unit (85) and the fourth heat storage unit (86) are composed of reservoirs.
  • the third heat storage unit (85) is provided in the inflow portion on the first flow path (40) side of the second magnetic refrigeration portion (M2).
  • the fourth heat storage unit (86) is provided in the inflow portion on the second flow path (50) side of the second magnetic refrigeration portion (M2).
  • the second heat storage unit (84) and the third heat storage unit (85) correspond to the heat storage unit.
  • the first heat storage unit (83) and the fourth heat storage unit (86) may be omitted.
  • the temperature of the heat medium flowing through a certain magnetic refrigeration section (M) has changed due to the switching from the bypass operation to the normal operation (the operation in which the heat medium flows through the magnetic refrigeration section (M)). In this case as well, it is possible to prevent the temperature of the heat medium from deviating from the operating temperature range of the magnetic refrigeration unit (M).
  • the heat storage unit according to the above-described third embodiment and its modified example may be a heat storage material.
  • the heat storage material is composed of a metal material having a large heat capacity and a phase change material.
  • a flow path through which a heat medium flows is formed in the heat storage material. The heat medium flowing through this flow path and the heat storage material exchange heat.
  • the heat storage unit may be a heat storage unit in which the above-mentioned heat storage material is provided in a reservoir in which a heat medium is stored.
  • the magnetic refrigeration apparatus (1) switches between a cooling operation and a heating operation.
  • the heat medium circuit (C) of the magnetic refrigerator (1) includes an indoor heat exchanger (33), an outdoor heat exchanger (34), a first four-way switching valve (35), and a second. It has a four-way switching valve (36).
  • the indoor heat exchanger (33) is installed indoors.
  • the outdoor heat exchanger (34) is installed outdoors.
  • the first four-way switching valve (35) and the second four-way switching valve (36) each have four ports (P1, P2, P3, P4).
  • the first port (P1) of the first four-way switching valve (35) is connected to the first transport flow path (61) via the first relay path (71).
  • the second port (P2) of the first four-way switching valve (35) is connected to one end of the outdoor heat exchanger (34).
  • the third port (P3) of the first four-way switching valve (35) is connected to the second transport flow path (62) via the second relay path (72).
  • the fourth port (P4) of the first four-way switching valve (35) is connected to one end of the indoor heat exchanger (33).
  • the outflow end of the second transport flow path (62) is connected to the first upper flow path (41).
  • the first port (P1) of the second four-way switching valve (36) is connected to the first lower flow path (43) of the first flow path (40).
  • the second port (P2) of the second four-way switching valve (36) is connected to the other end of the outdoor heat exchanger (34).
  • the third port (P3) of the second four-way switching valve (36) is connected to the second lower flow path (53) of the second flow path (50) via the third relay path (73).
  • the fourth port (P4) of the second four-way switching valve (36) is connected to the other end of the indoor heat exchanger (33).
  • the first four-way switching valve (35) and the second four-way switching valve (36) switch between the first state (the state shown by the solid line in FIG. 15) and the second state (the state shown by the broken line in FIG. 16), respectively.
  • the first port (P1) and the second port (P2) communicate with each other
  • the third port (P3) and the fourth port (P4) communicate with each other.
  • the first port (P1) and the fourth port (P4) communicate with each other
  • the second port (P2) and the third port (P3) communicate with each other. ..
  • each magnetic field modulation unit (12) of the first magnetic refrigeration unit (M1) and the second magnetic refrigeration unit (M2) performs the first modulation operation.
  • the transport mechanism (20) performs the first transport operation.
  • the controller (100) closes the first control valve (64), the second control valve (66), the third control valve (68), and the fourth control valve (70).
  • the heat medium heated by the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) exchanges outdoor heat corresponding to the second heat exchange section. It is supplied to the vessel (34). In the outdoor heat exchanger (34), the heat medium dissipates heat to the outdoor air.
  • the heat medium By opening the third control valve (68) in the first operation, the heat medium bypasses the second magnetic refrigeration section (M2), and the bypass operation in which the heat medium is heated by the first magnetic refrigeration section (M1) is performed.
  • the fourth control valve (70) in the first operation By opening the fourth control valve (70) in the first operation, the heat medium is heated by the second magnetic refrigeration section (M2), and a bypass operation of bypassing the first magnetic refrigeration section (M1) is performed.
  • each magnetic field modulation unit (12) of the first magnetic refrigeration unit (M1) and the second magnetic refrigeration unit (M2) performs the second modulation operation.
  • the transport mechanism (20) performs the second transport operation.
  • the controller (100) closes the first control valve (64), the second control valve (66), the third control valve (68), and the fourth control valve (70).
  • the heat medium cooled by the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) exchanges indoor heat corresponding to the first heat exchange section. It is supplied to the vessel (33). In the indoor heat exchanger (33), the indoor air is cooled by the heat medium.
  • the heat medium bypasses the first magnetic refrigeration section (M1), and the bypass operation of cooling by the second magnetic refrigeration section (M2) is performed.
  • the second control valve (66) in the second operation the heat medium is cooled by the first magnetic refrigeration section (M1), and a bypass operation of bypassing the second magnetic refrigeration section (M2) is performed.
  • each magnetic field modulation unit (12) of the first magnetic refrigeration unit (M1) and the second magnetic refrigeration unit (M2) performs the first modulation operation.
  • the transport mechanism (20) performs the first transport operation.
  • the controller (100) closes the first control valve (64), the second control valve (66), the third control valve (68), and the fourth control valve (70).
  • the heat medium heated by the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) exchanges indoor heat corresponding to the second heat exchange section. It is supplied to the vessel (33). In the indoor heat exchanger (33), the indoor air is heated by the heat medium.
  • the heat medium bypasses the second magnetic refrigeration section (M2), and the bypass operation in which the heat medium is heated by the first magnetic refrigeration section (M1) is performed.
  • the fourth control valve (70) in the third operation the heat medium is heated by the second magnetic refrigeration section (M2), and a bypass operation of bypassing the first magnetic refrigeration section (M1) is performed.
  • each magnetic field modulation unit (12) of the first magnetic refrigeration unit (M1) and the second magnetic refrigeration unit (M2) performs the second modulation operation.
  • the transport mechanism (20) performs the second transport operation.
  • the controller (100) closes the first control valve (64), the second control valve (66), the third control valve (68), and the fourth control valve (70).
  • the heat medium cooled by the first magnetic refrigeration section (M1) and the second magnetic refrigeration section (M2) exchanges outdoor heat corresponding to the first heat exchange section. It is supplied to the vessel (34). In the outdoor heat exchanger (34), the heat medium absorbs heat from the outdoor air.
  • the heat medium bypasses the first magnetic refrigeration section (M1), and the bypass operation of cooling by the second magnetic refrigeration section (M2) is performed.
  • the second control valve (66) in the fourth operation the heat medium is cooled by the first magnetic refrigeration section (M1), and a bypass operation of bypassing the second magnetic refrigeration section (M2) is performed.
  • a control valve is added to the bypass mechanism (B) according to the modified example A in the above-described embodiment.
  • the first bypass mechanism (B1) has a fifth control valve (95).
  • the fifth control valve (95) is provided on the inflow side of the first magnetic refrigeration section (M1) in the first flow path (40).
  • the second bypass mechanism (B2) has a sixth control valve (96).
  • the sixth control valve (96) is provided on the inflow side of the second magnetic refrigeration section (M2) in the first flow path (40).
  • the third bypass mechanism (B3) has a seventh control valve (97).
  • the seventh control valve (97) is provided on the inflow side of the second magnetic refrigeration section (M2) in the second flow path (50).
  • the fourth bypass mechanism (B4) has an eighth control valve (98).
  • the eighth control valve (98) is provided on the inflow side of the first magnetic refrigeration section (M1) in the second flow path (50).
  • the first control valve (64) When performing a bypass operation by the first bypass mechanism (B1), the first control valve (64) is opened and the fifth control valve (95) is closed. As a result, the heat medium of the first flow path (40) reliably bypasses the first magnetic refrigeration section (M1).
  • the second control valve (66) When performing a bypass operation by the second bypass mechanism (B2), the second control valve (66) is opened and the sixth control valve (96) is closed. As a result, the heat medium of the first flow path (40) reliably bypasses the second magnetic refrigeration section (M2).
  • the third control valve (68) When performing a bypass operation by the third bypass mechanism (B3), the third control valve (68) is opened and the seventh control valve (97) is closed. As a result, the heat medium of the second flow path (50) reliably bypasses the second magnetic refrigeration section (M2).
  • the 4th control valve (70) When performing a bypass operation by the 4th bypass mechanism (B4), the 4th control valve (70) is opened and the 8th control valve (98) is closed. As a result, the heat medium of the second flow path (50) reliably bypasses the first magnetic refrigeration section (M1).
  • the fifth control valve (95), the sixth control valve (96), the seventh control valve (97), and the eighth control valve (98) may be an on-off valve or a flow rate control valve. good.
  • the bypass mechanism (B) according to the modified example B has a three-way valve instead of the control valve.
  • the first bypass mechanism (B1) has a fifth three-way valve (55).
  • the fifth three-way valve (55) supplies the heat medium of the first upper flow path (41) only to the first magnetic refrigeration section (M1) side and to the first bypass flow path (63) side only. Switch to the state.
  • the second bypass mechanism (B2) has a sixth three-way valve (56).
  • the sixth three-way valve (56) supplies the heat medium of the first intermediate path (42) only to the second magnetic refrigeration section (M2) side and to the second bypass flow path (65) side only. Switch to the state.
  • the third bypass mechanism (B3) has a seventh three-way valve (57).
  • the seventh three-way valve (57) supplies the heat medium of the second upper flow path (51) only to the second magnetic refrigeration section (M2) side and to the third bypass flow path (67) side only. Switch to the state.
  • the fourth bypass mechanism (B4) has an eighth three-way valve (58).
  • the eighth three-way valve (58) supplies the heat medium of the second intermediate path (52) only to the first magnetic refrigeration section (M1) side and to the fourth bypass flow path (69) side only. Switch to the state.
  • these three-way valves can adjust the ratio of the flow rate to the magnetic refrigeration part (M) side and the flow rate to the bypass flow path (63,65,67,69) side. It may be a configuration.
  • the transport mechanism (20) according to the modified example C includes a transient pump (26) and a four-way switching valve (27) which is a switching unit.
  • the four-way switching valve (27) switches between a first state (the state shown by the solid line in FIG. 22) and a second state (the state shown by the broken line in FIG. 22).
  • the four-way switching valve (27) in the first state communicates the discharge portion of the pump (26) with the first transfer flow path (61), and communicates with the suction portion of the pump (26) and the second transfer flow path (62).
  • the four-way switching valve (27) in the second state communicates the discharge portion of the pump (26) with the second transport flow path (62), and communicates with the suction portion of the pump (26) and the first transport flow path (61). Communicate.
  • the pump (26) In the first transfer operation, the pump (26) is in the operating state and the four-way switching valve (27) is in the first state. In the second transfer operation, the pump (26) is in the operating state and the four-way switching valve (27) is in the second state.
  • the transport mechanism (20) alternately repeats the first transport operation and the second transport operation.
  • Three or more magnetic refrigeration units (M) may be connected in series to the first flow path (40) and the second flow path (50).
  • three magnetic refrigeration units (M) are provided in the first flow path (40) and the second flow path (50).
  • the first flow path (40) is provided with three bypass mechanisms (B) corresponding to the three magnetic refrigeration units (M).
  • a bypass mechanism (B) is provided in the second flow path (50) so as to correspond to the three magnetic refrigeration units (M).
  • a plurality of circuits are connected in parallel to the heat medium circuit (C) according to the modified example E.
  • the plurality of circuits are composed of a first circuit (C1) and a second circuit (C2). Three or more circuits may be connected in parallel to the heat medium circuit (C).
  • the first circuit (C1) includes a first flow path (40), a second flow path (50), a plurality of magnetic refrigeration units (M), and a plurality of bypass mechanisms (B), as in the above-described embodiment. Provided.
  • the second circuit (C2) is provided with a first flow path (40), a second flow path (50), a plurality of magnetic refrigeration units (M), and a plurality of bypass mechanisms (B).
  • the first circuit (C1) and the second circuit (C2) include a first heat exchanger (31), a second heat exchanger (32), a first transfer flow path (61), and a second transfer flow path. (62) are connected respectively.
  • the heat medium of the first transport flow path (61) is divided into the first circuit (C1) and the second circuit (C2).
  • the heat medium flows through the second flow path (50) and is heated by the plurality of magnetic refrigeration units (M).
  • the heat media heated in the first circuit (C1) and the second circuit (C2) are merged and then supplied to the second heat exchanger (32).
  • the heat medium of the second transport flow path (62) is divided into the first circuit (C1) and the second circuit (C2).
  • the heat medium flows through the first flow path (40) and is cooled by the plurality of magnetic refrigeration units (M).
  • the heat media cooled in the first circuit (C1) and the second circuit (C2) are merged and then supplied to the first heat exchanger (31).
  • the bypass operation is appropriately performed by switching the bypass mechanism (B).
  • the magnetic refrigeration unit (M) may be a single-layer type having one magnetic working substance (11).
  • a plurality of magnetic refrigeration sections (M) are provided so that the Curie temperature of the magnetic working substance (11) of the plurality of magnetic refrigeration sections (M) increases in order. ) Are connected in series. Thereby, the magnetic heat quantity effect in each magnetic refrigeration unit (M) can be improved.
  • the adjacent magnetic refrigeration parts (M) overlap a part of the operating temperature range of each magnetic work substance (11). In this way, even if the temperature of the heat medium flowing into the magnetic refrigeration section (M) changes due to the switching of the bypass operation, it is possible to prevent the temperature of the heat medium from deviating from the operating temperature range of the magnetic working substance (11). can.
  • the maximum value of the magnetic heat quantity effect in the overlapping region is 1 ⁇ 2 or more of the average value of the maximum value of the magnetic heat quantity effect in each magnetic working substance (11) of the adjacent magnetic refrigeration part (M).
  • the overlapping region of the operating temperature range of the adjacent magnetic refrigeration portions increases.
  • the magnetic refrigeration device (1) according to the fifth embodiment is an air conditioner that switches between cooling and heating.
  • the magnetic refrigerator (1) has an indoor fan (14) and an outdoor fan (15).
  • the indoor fan (14) is located near the indoor heat exchanger (33).
  • the indoor fan (14) carries the indoor air that passes through the indoor heat exchanger (33).
  • the outdoor fan (15) is located near the outdoor heat exchanger (34).
  • the outdoor fan (15) carries the outdoor air that passes through the outdoor heat exchanger (34).
  • the heat medium circuit (C) has a plurality of magnetic refrigeration units (M).
  • the plurality of magnetic refrigeration units (M) include a low temperature magnetic refrigeration unit (ML), a medium temperature magnetic refrigeration unit (MM), and a high temperature magnetic refrigeration unit (MH).
  • the low-temperature magnetic refrigeration unit (ML) and the high-temperature magnetic refrigeration unit (MH) constitute a third magnetic refrigeration unit.
  • the medium temperature magnetic refrigeration unit (MM) constitutes the fourth magnetic refrigeration unit.
  • the plurality of magnetic refrigeration units (M) are connected in series with the heat medium circuit (C) so as to straddle the first flow path (40) and the second flow path (50).
  • the heat medium circuit (C) has a third four-way switching valve (37) and a fourth four-way switching valve (38).
  • the third four-way switching valve (37) and the fourth four-way switching valve (38) each have a first port (P1), a second port (P2), a third port (P3), and a fourth port (P4).
  • the third four-way switching valve (37) and the fourth four-way switching valve (38) are switched between the first state shown by the solid line in FIG. 26 and the second state shown by the broken line in FIG. 26.
  • Each of the third four-way switching valve (37) and the fourth four-way switching valve (38) in the first state communicates the first port (P1) and the second port (P2), and at the same time, communicates with the third port (P3).
  • Each of the third four-way switching valve (37) and the fourth four-way switching valve (38) in the second state communicates the first port (P1) and the fourth port (P4), and at the same time, communicates with the second port (P2). And the third port (P3) communicate with each other.
  • the first port (P1) of the third four-way switching valve (37) communicates with the outflow end of the second flow path (50).
  • the second port (P2) of the third four-way switching valve (37) communicates with one end of the outdoor heat exchanger (34).
  • the third port (P3) of the third four-way switching valve (37) communicates with the inflow end of the second flow path (50).
  • the fourth port (P4) of the third four-way switching valve (37) communicates with one end of the indoor heat exchanger (33).
  • the first port (P1) of the fourth four-way switching valve (38) communicates with the inflow end of the first flow path (40).
  • the second port (P2) of the fourth four-way switching valve (38) communicates with the other end of the outdoor heat exchanger (34).
  • the third port (P3) of the fourth four-way switching valve (38) communicates with the outflow end of the first flow path (40).
  • the fourth port (P4) of the fourth four-way switching valve (38) communicates with the other end of the indoor heat exchanger (33).
  • the first flow path (40) is provided with one fifth bypass mechanism (B5) corresponding to each magnetic refrigeration unit (M).
  • the second flow path (50) is provided with one sixth bypass mechanism (B6) corresponding to each magnetic refrigeration unit (M).
  • Each of the fifth bypass mechanism (B5) and the sixth bypass mechanism (B6) has a bypass flow path (60) and a valve (control valve (90)) for opening and closing the bypass flow path (60).
  • the third four-way switching valve (37) and the fourth four-way switching valve (38) are in the first state, respectively.
  • the outdoor fan (15) and the indoor fan (14) operate.
  • the first operation and the second operation are alternately and repeatedly performed.
  • a cooling operation for operating all the magnetic refrigeration units (M) will be described as an example.
  • the first modulation operation is performed in the low temperature magnetic refrigeration unit (ML), the medium temperature magnetic refrigeration unit (MM), and the high temperature magnetic refrigeration unit (MH).
  • the transport mechanism (20) performs the first transport operation. All control valves (90) are closed.
  • the heat medium heated by the low temperature magnetic refrigeration unit (ML), the medium temperature magnetic refrigeration unit (MM), and the high temperature magnetic refrigeration unit (MH) is used as an outdoor heat exchanger. It is supplied to (34). In the outdoor heat exchanger (34), the heat medium dissipates heat to the outdoor air.
  • the second modulation operation is performed in the high temperature magnetic refrigeration unit (MH), the medium temperature magnetic refrigeration unit (MM), and the low temperature magnetic refrigeration unit (ML).
  • the transport mechanism (20) performs the second transport operation. All control valves (90) are closed.
  • the heat medium cooled by the high temperature magnetic refrigeration section (MH), the medium temperature magnetic refrigeration section (MM), and the low temperature magnetic refrigeration section (ML) is used as the indoor heat exchanger. It is supplied to (33). In the indoor heat exchanger (33), the indoor air is cooled by the heat medium.
  • the third four-way switching valve (37) and the fourth four-way switching valve (38) are in the second state, respectively.
  • the outdoor fan (15) and the indoor fan (14) operate.
  • the third operation and the fourth operation are alternately and repeatedly performed.
  • the first heating operation for operating all the magnetic refrigeration units (M) will be described as an example.
  • the first modulation operation is performed in the low temperature magnetic refrigeration unit (ML), the medium temperature magnetic refrigeration unit (MM), and the high temperature magnetic refrigeration unit (MH).
  • the transport mechanism (20) performs the first transport operation. All control valves (90) are closed.
  • the heat medium heated by the low temperature magnetic refrigeration unit (ML), the medium temperature magnetic refrigeration unit (MM), and the high temperature magnetic refrigeration unit (MH) is used as an indoor heat exchanger. It is supplied to (33). In the indoor heat exchanger (33), the heat medium dissipates heat to the indoor air.
  • the second modulation operation is performed in the high temperature magnetic refrigeration unit (MH), the medium temperature magnetic refrigeration unit (MM), and the low temperature magnetic refrigeration unit (ML).
  • the transport mechanism (20) performs the second transport operation. All control valves (90) are closed.
  • the heat medium cooled by the high temperature magnetic refrigeration section (MH), the medium temperature magnetic refrigeration section (MM), and the low temperature magnetic refrigeration section (ML) is used as the outdoor heat exchanger. It is supplied to (34). In the outdoor heat exchanger (34), the outdoor air absorbs heat from the heat medium.
  • the minimum temperature and the maximum temperature of the heat medium are determined according to the outdoor temperature and the cooling load.
  • the minimum temperature is T1min and the maximum temperature is T1max.
  • the minimum temperature T1min is based on the room temperature and the set temperature during the rated operation of the cooling operation.
  • the maximum temperature T1max is based on the outside air temperature during the rated operation of the cooling operation.
  • the minimum temperature is T2min and the maximum temperature is T2max in the maximum range exceeding the rated operation.
  • the minimum temperature T2min is the temperature of the heat medium corresponding to the operating conditions where the cooling load is extremely high.
  • the maximum temperature T2max is the temperature of the heat medium corresponding to the operating conditions where the outside air temperature is extremely high.
  • the minimum temperature and the maximum temperature of the heat medium are determined according to the outdoor temperature and the heating load.
  • the minimum temperature is T3min and the maximum temperature is T3max.
  • the minimum temperature T3min is based on the outside air temperature during the rated operation of the heating operation.
  • the maximum temperature T3max is based on the room temperature and set temperature during the rated operation of the heating operation.
  • the minimum temperature is T4min and the maximum temperature is T4max in the maximum range exceeding the rated operation.
  • the minimum temperature T4min is the temperature of the heat medium corresponding to the operating conditions in which the outside air temperature is extremely low.
  • the maximum temperature T4max is the temperature corresponding to the operating conditions where the heating load is extremely high. In the present embodiment, the maximum temperature T4max and the maximum temperature T2max are the same temperature.
  • the first temperature range is a range from the lowest temperature T4min to the lowest temperature T3min.
  • the second temperature range is from the lowest temperature T3min to the highest temperature T1max.
  • the third temperature range is the range from the maximum temperature T1max to the maximum temperature T2max (T4max).
  • the second temperature range is a range from the lowest temperature (ie, T3min) to the highest temperature (ie, T1max), which spans both the rated operating temperature range of the cooling operation and the rated operating temperature range of the heating operation.
  • the first temperature range is a temperature range on the lower temperature side than the second temperature range.
  • the third temperature range is a temperature range on the higher temperature side than the second range.
  • the second temperature range is the temperature range in which the temperature of the heat medium frequently appears when all the operations of the magnetic refrigerator (1) are taken into consideration.
  • the first temperature range and the third temperature range are temperature ranges in which the temperature of the heat medium appears infrequently when all the operations of the magnetic air refrigerating apparatus (1) are taken into consideration.
  • the low-temperature magnetic refrigeration unit (ML), which is the third magnetic refrigeration unit, is located at the most end (strictly speaking, the low-temperature end) of the plurality of magnetic refrigeration units (M).
  • the low temperature magnetic refrigeration unit (ML) is adjacent to the indoor heat exchanger (33) which serves as an endothermic in the cooling operation.
  • the high temperature magnetic refrigeration unit (MH) is adjacent to the outdoor heat exchanger (34) which serves as an endothermic in the heating operation.
  • the low-temperature magnetic refrigeration unit (ML) of this example has two magnetic working substances (11) (low-temperature magnetic working substance (11L)).
  • the entire operating temperature range of the low temperature magnetic refrigeration unit (ML) includes the first temperature range.
  • the low temperature magnetic refrigeration unit (ML) is configured to exert a magnetic calorific value effect when the temperature of the heat medium is in the first temperature range.
  • the “total operating temperature range of the magnetic refrigeration section (M)” is not the operating temperature range of the magnetic working substance (11) alone, but the lowest temperature at which the magnetic refrigeration section (M) exerts the magnetic calorific value effect. Means the temperature range up to temperature.
  • the temperature on the low temperature side of the heat medium may reach the first temperature range.
  • the low-temperature magnetic refrigeration unit (ML) exerts a magnetic heat quantity effect on such a heat medium in the first temperature range.
  • the high-temperature magnetic refrigeration unit (MH), which is the third magnetic refrigeration unit, is located at the most end (strictly speaking, the high-temperature end) of the plurality of magnetic refrigeration units (M).
  • the high-temperature magnetic refrigeration unit (MH) is adjacent to the outdoor heat exchanger (34), which serves as a radiator in the cooling operation.
  • the high-temperature magnetic refrigeration unit (MH) is adjacent to the indoor heat exchanger (33), which serves as a radiator in the heating operation.
  • the high-temperature magnetic refrigeration unit (MH) of this example is a single-layer type and has one magnetic working substance (11) (high-temperature magnetic working substance (11H)).
  • the entire operating temperature range of the high temperature magnetic refrigeration unit (MH) includes the third temperature range.
  • the high temperature magnetic refrigeration unit (MH) is configured to exert a magnetic heat quantity effect when the temperature of the heat medium is in the third temperature range.
  • the temperature on the high temperature side of the heat medium may reach the third temperature range.
  • the high-temperature magnetic refrigeration unit (MH) exerts a magnetic heat quantity effect on a heat medium in such a third temperature range.
  • the medium-temperature magnetic refrigeration unit (MM), which is the second magnetic refrigeration unit, is located in the middle between the magnetic refrigeration units (M) at both ends. As shown in FIG. 31, the medium-temperature magnetic refrigeration unit (MM) of this example has six layers of magnetic working material (11) (medium-temperature magnetic working material (11M)).
  • the entire operating temperature range of the medium temperature magnetic refrigeration unit (MH) includes the second temperature range.
  • the medium temperature magnetic refrigeration unit (MM) is configured to exert a magnetic heat quantity effect when the temperature of the heat medium is in the second temperature range.
  • the temperature of the heat medium may reach the second temperature range.
  • the medium-temperature magnetic refrigeration unit (MH) exerts a magnetic heat quantity effect on a heat medium in such a second temperature range.
  • the frequency with which the temperature of the heat medium reaches the entire operating temperature range of the low-temperature magnetic refrigeration unit (ML) is the frequency of the heat medium.
  • the temperature is less frequent than reaching the entire operating temperature range of the medium temperature magnetic refrigeration unit (MM).
  • the frequency with which the temperature of the heat medium reaches the entire operating temperature range of the high temperature magnetic refrigeration unit (MH) is lower than the frequency with which the temperature of the heat medium reaches the entire operating temperature range of the medium temperature magnetic refrigeration unit (MM). ..
  • the operating temperature range A of one low-temperature magnetic working material (11L) of the low-temperature magnetic refrigerating section (ML) is the medium-temperature magnetic refrigerating section (1-5). It is wider than the operating temperature range B of one medium temperature magnetic working material (11M) of MM).
  • the number of layers of the low temperature magnetic refrigeration section (ML) is two, which is smaller than the number of layers of the medium temperature magnetic refrigeration section (MM) (six). Therefore, the structure of the low-temperature magnetic refrigeration unit (ML) can be simplified, and the production cost of the low-temperature magnetic refrigeration unit (ML) can be reduced.
  • the operating temperature range A of the low-temperature magnetic working material (11) in the low-temperature magnetic refrigeration section (ML) is widened and the number of layers of the low-temperature magnetic working material (11L) in the low-temperature magnetic refrigeration section (ML) is reduced, the magnetic calorific value effect is obtained. Is generally low, and efficiency tends to decrease. However, since the low-temperature magnetic refrigeration unit (ML) corresponds to the first temperature range in which the frequency of appearance is low, the effect of the decrease in efficiency is small in consideration of the overall operation of the magnetic refrigeration apparatus (1).
  • the operating temperature range C of one high-temperature side magnetic working substance (11) in the high-temperature magnetic refrigeration section (MH) is one medium-temperature side magnetic working substance (11) in the medium-temperature magnetic refrigeration section (MM). Wider than the operating temperature range B of.
  • the operating temperature range C of the high-temperature magnetic working substance (11H) and the operating temperature range A of the low-temperature magnetic working substance (11L) are substantially the same. With this configuration, it is possible to obtain a magnetic calorific value effect in a predetermined temperature range (third temperature range) while reducing the number of layers of the magnetic working substance (11) in the high-temperature magnetic refrigeration unit (MH).
  • the number of layers of the high-temperature magnetic refrigeration section (MH) is one, which is greater than the number of layers of the medium-temperature magnetic refrigeration section (MM) (6) and the number of layers of the low-temperature magnetic refrigeration section (ML) (2). There are few. Therefore, the structure of the high-temperature magnetic refrigeration unit (MH) can be simplified, and the production cost of the high-temperature magnetic refrigeration unit (MH) can be reduced.
  • the operating temperature range C of the high-temperature magnetic working substance (11H) in the high-temperature magnetic refrigeration section (MH) is widened and the number of layers of the magnetic working substance (11) in the high-temperature magnetic refrigeration section (MH) is reduced, the magnetic calorific value effect is obtained. It tends to be lower overall and less efficient.
  • the high-temperature magnetic refrigeration unit (MH) operates only in the third temperature range where the frequency of appearance is low, the effect of the decrease in efficiency is small in consideration of the operation of the entire magnetic refrigeration apparatus (1).
  • the amount of magnetic working substance (11) in the low temperature magnetic refrigerating section (ML) is larger than the amount of magnetic working substance (11) in the medium temperature magnetic refrigerating section (MM).
  • the amount of each low temperature magnetic working substance (11L) is larger than the amount of each medium temperature magnetic working substance (11M).
  • the heating capacity (heat dissipation capacity) and cooling capacity (endothermic capacity) in the low-temperature magnetic refrigeration unit (ML) can be increased.
  • the amount of magnetic working substance (11) in the high-temperature magnetic refrigeration section (MH) is larger than the amount of magnetic working substance (11) in the medium-temperature magnetic refrigeration section (MM). Strictly speaking, the amount of high temperature magnetic working material (11H) is higher than the amount of each medium temperature magnetic working material (11M). As described above, the high-temperature magnetic refrigeration section (MH) has one layer, so that the magnetic heat quantity effect tends to decrease. However, by increasing the amount of the magnetic working substance (11) in the high-temperature magnetic refrigeration unit (MH), the heating capacity (heat dissipation capacity) and cooling capacity (heating capacity) in the high-temperature magnetic refrigeration unit (MH) can be increased.
  • the controller (100) executes an operation in which the heat medium bypasses the third magnetic refrigeration unit (ML, MH) according to the operating conditions.
  • (1-7-1) Rated operation of heating operation and cooling operation
  • the controller (100) is the first in the low temperature magnetic refrigeration section (ML) and the high temperature magnetic refrigeration section (MH). Neither the modulation operation nor the second modulation operation is executed, and only the medium temperature magnetic refrigeration unit (MM) executes the first modulation operation and the second modulation operation. This is because in these operations, the temperature of the heat medium does not reach the first temperature range or the third temperature range, so that it is not necessary to operate the low temperature magnetic refrigeration unit (ML) and the high temperature magnetic refrigeration unit (MH).
  • the controller (100) executes a bypass operation in which the heat medium bypasses the low temperature magnetic refrigeration section (ML) and the high temperature magnetic refrigeration section (MH).
  • the control valve (90) of the bypass flow path (60) corresponding to the low temperature magnetic refrigeration section (ML) and the high temperature magnetic refrigeration section (MH) is opened, and the bypass flow corresponding to the medium temperature magnetic refrigeration section (MM) is opened. Close the control valve (90) on the road (60).
  • the heat medium flows only through the operating medium-temperature magnetic refrigeration unit (MM). In this way, it is possible to suppress an increase in pressure loss due to the heat medium flowing through the low temperature magnetic refrigeration section (ML) and the high temperature magnetic refrigeration section (MH).
  • the first condition in which the heating operation and the cooling operation are rated operations can be determined based on at least one of the outside air temperature, the room temperature, and the temperature of the heat medium.
  • the controller (100) operates only the medium-temperature magnetic refrigeration unit (MM), which is the fourth magnetic refrigeration unit.
  • the controller (100) causes the heat medium to bypass the low-temperature magnetic refrigeration section (ML) and the high-temperature magnetic refrigeration section and execute an operation of flowing through the medium-temperature magnetic refrigeration section (MM). ..
  • Heating operation including the first temperature range In the heating operation under the condition that the outside air temperature is extremely low, the second condition that the heat medium on the low temperature side reaches the first temperature range is satisfied.
  • the controller (100) does not execute either the first modulation operation or the second modulation operation in the high temperature magnetic refrigeration unit (MH), and the low temperature side magnetic refrigeration unit (M) and the medium temperature magnetic refrigeration unit (MM).
  • the first modulation operation and the second modulation operation are executed in.
  • the controller (100) executes a bypass operation in which the heat medium bypasses the high temperature magnetic refrigeration unit (MH). Specifically, the control valve (90) of the bypass flow path (60) corresponding to the high temperature magnetic refrigeration section (MH) is opened, and the bypass flow corresponding to the low temperature magnetic refrigeration section (ML) and the medium temperature magnetic refrigeration section (MM) is opened. Close the control valve (90) on the road (60). As a result, the heat medium flows through the low-temperature magnetic refrigeration unit (ML) and the medium-temperature magnetic refrigeration unit (MM) that are in the operating state. In this way, it is possible to suppress an increase in pressure loss due to the heat medium flowing through the high temperature magnetic refrigeration unit (MH).
  • the second condition for the heat medium on the low temperature side to reach the first temperature range can be determined based on at least one of the outside air temperature and the temperature of the heat medium.
  • the controller (100) operates the low-temperature magnetic refrigeration unit (ML) and the medium-temperature magnetic refrigeration unit (MM).
  • the heat medium bypasses the high temperature magnetic refrigeration section (MH), and the heat medium causes the low temperature magnetic refrigeration section (ML) and the medium temperature magnetic refrigeration section (MM). Perform a flowing action.
  • Cooling operation and heating operation including the third temperature range In the cooling operation under the condition where the outside air temperature is extremely high and the heating operation where the heating load is extremely high, the heat medium on the high temperature side is the third.
  • the third condition up to the temperature range is satisfied.
  • the controller (100) does not execute either the first modulation operation or the second modulation operation in the low temperature magnetic refrigeration unit (ML), but in the medium temperature magnetic refrigeration unit (MM) and the high temperature magnetic refrigeration unit (MH).
  • the first modulation operation and the second modulation operation are executed.
  • the controller (100) executes a bypass operation in which the heat medium bypasses the low temperature magnetic refrigeration unit (ML). Specifically, the control valve (90) of the bypass flow path (60) corresponding to the low temperature magnetic refrigeration section (ML) is opened, and the bypass flow corresponding to the medium temperature magnetic refrigeration section (MM) and the high temperature magnetic refrigeration section (MH) is opened. Close the control valve (90) on the road (60). As a result, the heat medium flows through the medium-temperature magnetic refrigeration unit (MM) and the high-temperature magnetic refrigeration unit (MH) that are in the operating state. In this way, it is possible to suppress an increase in pressure loss due to the heat medium flowing through the low temperature magnetic refrigeration unit (ML).
  • the third condition for the heat medium on the high temperature side to reach the third temperature range can be determined based on at least one of the outside air temperature, the room temperature, and the temperature of the heat medium.
  • the controller (100) operates the medium-temperature magnetic refrigeration unit (MM) and the high-temperature magnetic refrigeration unit (MH).
  • the controller (100) operates so that the heat medium bypasses the low-temperature magnetic refrigeration section and the heat medium flows through the medium-temperature magnetic refrigeration section (MM) and the high-temperature magnetic refrigeration section (MH). Let it run.
  • the heat medium circuit (C) of the sixth embodiment includes two units (U1, U2) including the first flow path (40) and the second flow path (50) according to the fifth embodiment.
  • the two units (U1 and U2) are composed of a first unit (U1) and a second unit (U2) that are connected in parallel with each other. These units (U1, U2) have the same configuration as each other.
  • Each unit (U1, U2) has a first flow path (40), a second flow path (50), a low temperature magnetic refrigeration section (ML), a medium temperature magnetic refrigeration section (MM), and a high temperature magnetic refrigeration section, as in the fifth embodiment. It has a part (MH), a check valve (CV), a fifth bypass mechanism (B5), and a sixth bypass mechanism (B6).
  • the configuration of the transport mechanism (20) is different from that of the fifth embodiment in the sixth embodiment.
  • the transport mechanism (20) of the sixth embodiment includes a transient pump (26), a ninth three-way valve (28), and a tenth three-way valve (29).
  • the pump (26) transports the heat medium in only one direction.
  • the pump (26) is connected to the flow path between the second port (P2) of the third four-way switching valve (37) and the outdoor heat exchanger (34).
  • the pump (26) discharges the heat medium to the outdoor heat exchanger (34) side.
  • the 9th three-way valve (28) and the 10th three-way valve (29) have ports 1 to 3.
  • the ninth three-way valve (28) and the tenth three-way valve (29) switch between the first state shown by the solid line in FIG. 32 and the second state shown by the broken line in FIG. 32.
  • the ninth three-way valve (28) and the tenth three-way valve (29) in the first state communicate the first port and the third port.
  • the ninth three-way valve (28) and the tenth three-way valve (29) in the second state communicate with the first port and the second port.
  • the first port of the ninth three-way valve (28) communicates with the first port (P1) of the third four-way switching valve (37).
  • the second port of the ninth three-way valve (28) communicates with the outflow end of the second flow path (50) of the first unit (U1).
  • the third port of the ninth three-way valve (28) communicates with the outflow end of the second flow path (50) of the second unit (U2).
  • the first port of the tenth three-way valve (29) communicates with the first port (P1) of the fourth four-way switching valve (38).
  • the second port of the tenth three-way valve (29) communicates with the inflow end of the first flow path (40) of the first unit (U1).
  • the third port of the tenth three-way valve (29) communicates with the inflow end of the first flow path (40) of the second unit (U2).
  • the third four-way switching valve (37) and the fourth four-way switching valve (38) are in the first state, respectively.
  • the outdoor fan (15) and the indoor fan (14) operate.
  • the first operation and the second operation are alternately and repeatedly performed.
  • a cooling operation for operating all the magnetic refrigeration units (M) will be described as an example.
  • the first modulation operation is performed in the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) of the first unit (U1).
  • the second modulation operation is performed in the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) of the second unit (U2).
  • the pump (26) of the transport mechanism (20) operates.
  • the ninth three-way valve (28) is in the second state, and the tenth three-way valve (29) is in the first state.
  • the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) are heated in this order in the second flow path (50) of the first unit (U1).
  • the heat medium is supplied to the outdoor heat exchanger (34).
  • the outdoor heat exchanger (34) the heat medium dissipates heat to the outdoor air.
  • the heat medium cooled in the order of the high temperature magnetic refrigeration section (MH), the medium temperature magnetic refrigeration section (MM), and the low temperature magnetic refrigeration section (ML) is It is supplied to the indoor heat exchanger (33).
  • the heat medium absorbs heat from the indoor air.
  • the first modulation operation is performed in the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) of the second unit (U2).
  • the second modulation operation is performed in the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) of the first unit (U1).
  • the pump (26) of the transport mechanism (20) operates.
  • the ninth three-way valve (28) is in the first state, and the tenth three-way valve (29) is in the second state.
  • the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) are heated in this order in the second flow path (50) of the second unit (U2).
  • the heat medium is supplied to the outdoor heat exchanger (34).
  • the outdoor heat exchanger (34) the heat medium dissipates heat to the outdoor air.
  • the heat medium cooled in the order of the high temperature magnetic refrigeration section (MH), the medium temperature magnetic refrigeration section (MM), and the low temperature magnetic refrigeration section (ML) is It is supplied to the indoor heat exchanger (33).
  • the indoor heat exchanger (33) the heat medium absorbs heat from the indoor air.
  • the third four-way switching valve (37) and the fourth four-way switching valve (38) are in the second state, respectively.
  • the outdoor fan (15) and the indoor fan (14) operate.
  • the third operation and the fourth operation are alternately and repeatedly performed.
  • a heating operation for operating all the magnetic refrigeration units (M) will be described as an example.
  • the first modulation operation is performed in the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) of the first unit (U1).
  • the second modulation operation is performed in the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) of the second unit (U2).
  • the pump (26) of the transport mechanism (20) operates.
  • the ninth three-way valve (28) is in the second state, and the tenth three-way valve (29) is in the first state.
  • the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) are heated in this order in the second flow path (50) of the first unit (U1).
  • the heat medium is supplied to the indoor heat exchanger (33).
  • the indoor heat exchanger (33) the heat medium dissipates heat to the indoor air.
  • the heat medium cooled in the order of the high temperature magnetic refrigeration section (MH), the medium temperature magnetic refrigeration section (MM), and the low temperature magnetic refrigeration section (ML) is It is supplied to the outdoor heat exchanger (34).
  • the heat medium absorbs heat from the outdoor air.
  • the first modulation operation is performed in the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) of the second unit (U2).
  • the second modulation operation is performed in the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) of the first unit (U1).
  • the pump (26) of the transport mechanism (20) operates.
  • the ninth three-way valve (28) is in the first state, and the tenth three-way valve (29) is in the second state.
  • the low temperature magnetic refrigeration section (ML), the medium temperature magnetic refrigeration section (MM), and the high temperature magnetic refrigeration section (MH) are heated in this order in the second flow path (50) of the second unit (U2).
  • the heat medium is supplied to the indoor heat exchanger (33).
  • the indoor heat exchanger (33) the heat medium dissipates heat to the indoor air.
  • the heat medium cooled in the order of the high temperature magnetic refrigeration section (MH), the medium temperature magnetic refrigeration section (MM), and the low temperature magnetic refrigeration section (ML) is It is supplied to the outdoor heat exchanger (34).
  • the heat medium absorbs heat from the outdoor air.
  • the bypass operation is performed as in the fifth embodiment.
  • the controller (100) has a bypass flow path (60) corresponding to the low temperature magnetic refrigeration unit (ML). Open the control valve (90).
  • the controller (100) is the bypass flow path (60) corresponding to the high temperature magnetic refrigeration section (MH). Open the control valve (90).
  • the effects are the same as those in the fifth embodiment.
  • the magnetic refrigeration apparatus (1) according to the modified example G has a different frequency of appearance of the heat medium from the fifth and sixth embodiments.
  • the magnetic refrigerator (1) has four temperature ranges of "rare”, “low”, “medium”, and “high” in ascending order of appearance frequency.
  • the first temperature range is “rare”
  • the second and sixth temperature ranges are “low”
  • the third and fifth temperature ranges are “medium”
  • the fourth temperature range is "high”.
  • the magnetic refrigeration device (1) is provided with six magnetic refrigeration units (M) corresponding to these temperature ranges.
  • the magnetic refrigeration section (M) corresponding to the first temperature range is the magnetic refrigeration section A1
  • the magnetic refrigeration section (M) corresponding to the second temperature range is the magnetic refrigeration section A2
  • the magnetic refrigeration section (M) corresponding to the third temperature range Is the magnetic refrigeration section A3, the magnetic refrigeration section (M) corresponding to the fourth temperature range is the magnetic refrigeration section A4
  • the magnetic refrigeration section (M) corresponding to the fifth temperature range is the magnetic refrigeration section A5, the sixth temperature range.
  • the corresponding magnetic refrigeration section (M) is referred to as a magnetic refrigeration section A6.
  • the operating temperature range of the magnetic working substance (11) is widened as the frequency of appearance of the heat medium decreases in the plurality of magnetic refrigeration units (M).
  • the operating temperature range of the magnetic working substance (11) of the magnetic refrigerating section A1 is the widest
  • the operating temperature range of the magnetic working substance (11) of the magnetic refrigerating section A2 and the magnetic refrigerating section A6 is the next widest.
  • the operating temperature range of the magnetic working substance (11) of the magnetic refrigerating section A3 and the magnetic refrigerating section A5 becomes the next widest
  • the operating temperature range of the magnetic working substance (11) of the magnetic refrigerating section A4 becomes the smallest.
  • the number of layers of the magnetic working substance (11) in the plurality of magnetic refrigeration units (M) decreases as the frequency of appearance of the heat medium decreases.
  • the total amount of the magnetic working substance (11) of the plurality of magnetic refrigeration units (M) increases as the frequency of appearance of the heat medium decreases.
  • the magnetic refrigeration device (1) according to the modified example H is applied to an air conditioner dedicated to cooling. As shown in FIG. 38, in the magnetic refrigeration apparatus (1), the third four-way switching valve (37) and the fourth four-way switching valve (38) of the fifth embodiment are omitted.
  • the cooling operation of the modified example H is the same as that of the fifth embodiment.
  • the appearance frequency is "medium” in the first temperature range
  • the appearance frequency is "high” in the second temperature range
  • the appearance frequency is "low”.
  • the low temperature magnetic refrigeration section (ML) corresponds to the first temperature range
  • the medium temperature magnetic refrigeration section (MM) corresponds to the second temperature range
  • the high temperature magnetic refrigeration section (MH) corresponds to the third temperature range.
  • the operating temperature range of the high temperature magnetic working material (11H) is the widest
  • the operating temperature range of the low temperature magnetic working material (11L) is the next widest
  • the medium temperature magnetic working material (11M) Minimize the width of the operating temperature range of.
  • the number of layers of the high temperature magnetic refrigeration section (MH) is the smallest
  • the number of layers of the low temperature magnetic refrigeration section (ML) is the next smallest
  • the number of layers of the medium temperature magnetic refrigeration section (MM) is the largest.
  • the amount of the high temperature magnetic working substance (11H) in the high temperature magnetic refrigeration section (MH) is the largest
  • the amount of the low temperature magnetic working substance (11L) in the low temperature magnetic refrigeration section (ML) is the next largest
  • the medium temperature Minimize the amount of medium temperature magnetic working material (11M) in the magnetic refrigeration section (MM).
  • ⁇ Modification example I-Example of dedicated heating machine> The magnetic refrigeration device (1) according to the modified example I is applied to an air conditioner dedicated to heating. As shown in FIG. 40, in the magnetic refrigeration apparatus (1), the third four-way switching valve (37) and the fourth four-way switching valve (38) of the fifth embodiment are omitted. The heating operation of the modified example I is the same as that of the fifth embodiment.
  • the appearance frequency is "low” in the first temperature range
  • the appearance frequency is "high” in the second temperature range
  • the appearance frequency is "medium”.
  • the low temperature magnetic refrigeration section (ML) corresponds to the first temperature range
  • the medium temperature magnetic refrigeration section (MM) corresponds to the second temperature range
  • the high temperature magnetic refrigeration section (MH) corresponds to the third temperature range.
  • the operating temperature range of the low temperature magnetic working material (11L) is the widest
  • the operating temperature range of the high temperature magnetic working material (11H) is the next widest
  • the operating temperature range of the medium temperature magnetic working material (11M) is widened. Minimize the width of the operating temperature range of.
  • the number of layers of the low temperature magnetic refrigeration section (ML) is the smallest
  • the number of layers of the high temperature magnetic refrigeration section (MH) is the next smallest
  • the number of layers of the medium temperature magnetic working substance (MM) is the largest.
  • the low temperature magnetic refrigeration section (ML) has the highest amount of low temperature magnetic work material (11L)
  • the high temperature magnetic refrigeration section (MH) has the next highest amount of high temperature magnetic work substance (11H)
  • the medium temperature Minimize the amount of medium temperature magnetic working material (11M) in the magnetic refrigeration section (MM). These reasons are as described above.
  • the low-temperature magnetic refrigeration section (ML) and high-temperature magnetic refrigeration section (MH), which are the third magnetic refrigeration sections, do not necessarily have to be adjacent to the outdoor heat exchanger (34), but are closer to the outdoor heat exchanger (34). It suffices if it is arranged.
  • the operating temperature range of the multiple magnetic refrigeration units (M) as a whole is divided into three with the same temperature range, the lowest temperature range is the "low temperature range", and the highest temperature range is the "high temperature range”.
  • the area between the low temperature range and the high temperature range is defined as the "medium temperature range”.
  • the third magnetic refrigeration unit may be provided in either the low temperature region or the high temperature region, and the fourth magnetic refrigeration unit may be provided in the medium temperature region. In other words, these may be configured so that the third magnetic refrigeration unit exerts a magnetic heat quantity effect in a low temperature region or a high temperature region, and the fourth magnetic refrigeration unit exerts a magnetic heat quantity effect in a medium temperature region.
  • the magnetic field modulator (12) may be one of a linear drive type using a permanent magnet, a rotation drive type using a permanent magnet, a stationary type using an electromagnet, and a static type using an electromagnet and a permanent magnet. ..
  • the first heat exchange unit and the second heat exchange unit of the present disclosure may have a configuration other than the air heat exchanger. Specifically, it may be a heat exchanger that exchanges heat between the heat medium of the heat medium circuit (C) and another heat medium (water, brine, refrigerant, etc.) flowing through the secondary side flow path.
  • C heat medium of the heat medium circuit
  • another heat medium water, brine, refrigerant, etc.
  • Solid refrigeration equipment is applied to coolers, air conditioners, heat pump type chillers, hot water supply equipment, etc. that cool the inside of the refrigerator.
  • the solid refrigerating device may be a method other than the magnetic refrigerating device that induces a magnetic calorific value effect on the magnetic working substance (11).
  • the solid refrigerating apparatus has a solid refrigerant substance that exerts a calorific value effect on external energy, and an inducing unit that induces a calorific value effect on the solid refrigerant substance.
  • the solid refrigerant substance referred to here also includes substances having properties intermediate between liquid and solid, such as flexible crystals.
  • solid refrigeration equipment include 1) a method of inducing an electric calorific value effect in a solid refrigerant substance, 2) a method of inducing a pressure calorific value effect in a solid refrigerant substance, and 3) an elastic calorific value effect in a solid refrigerant substance. The method can be mentioned.
  • the inducing part imparts electric field fluctuation to the solid refrigerant substance.
  • the solid refrigerant substance undergoes a phase transition from the ferroelectric substance to the normal dielectric substance, and the solid refrigerant substance generates heat or absorbs heat.
  • the inducing part applies a pressure fluctuation to the solid refrigerant substance, so that the solid refrigerant substance undergoes a phase transition and generates heat or endothermic.
  • the inducing part imparts stress fluctuation to the solid refrigerant substance, so that the solid refrigerant substance undergoes a phase transition and generates heat or endothermic.
  • the present disclosure is useful for solid refrigeration equipment, especially magnetic refrigeration equipment.
  • Magnetic refrigeration equipment (solid refrigeration equipment) 11 Magnetic work substance (solid refrigerant substance) 11b Second magnetic work material (intermediate magnetic work material) 11c Third magnetic work material (end side magnetic work material) 11d 4th magnetic work material (end side magnetic work material) 11e Fifth magnetic work material (intermediate magnetic work material) 12 Magnetic field modulation section (modulation section) 20 Conveyance mechanism 31 1st heat exchanger (1st heat exchanger) 32 Second heat exchanger (second heat exchanger) 33 Indoor heat exchanger (1st heat exchange part, 2nd heat exchange part) 34 Outdoor heat exchanger (2nd heat exchange section, 1st heat exchange section) 40 1st flow path 50 2nd flow path 81 1st heat storage section (heat storage section) 82 Second heat storage section (heat storage section) 84 Second heat storage unit (heat storage unit) 85 4th heat storage unit (heat storage unit) B Bypass mechanism M Magnetic refrigeration section (solid freezing section) ML low temperature magnetic refrigeration section (third magnetic refrigeration section) MM Medium temperature magnetic refrigeration section (4th magnetic refrigeration section)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

熱媒体回路(C)は、複数の固体冷凍部(M)がそれぞれ直列に接続されるとともに搬送機構(20)により搬送された熱媒体を第1熱交換部(31,33,34)に供給する第1流路(40)と、複数の固体冷凍部(M)がそれぞれ直列に接続されるとともに搬送機構(20)により搬送された熱媒体を第2熱交換部(32,33,34)に供給する第2流路(50)と、第1流路(40)及び第2流路(50)の少なくとも一方に接続されるとともに、熱媒体が磁気冷凍部(M)を流れる動作と、熱媒体が磁気冷凍部(M)をバイパスする動作とを切り換える少なくとも1つのバイパス機構(B)とを有する。

Description

固体冷凍装置
 本開示は、固体冷凍装置に関する。  
 特許文献1の磁気冷凍装置は、熱媒体が搬送される主流路に複数の磁気冷凍部が直列に接続される。主流路には、1つの磁気冷凍部をバイパスするバイパス流路が接続される。バイパス流路には、弁が設けられる。磁気冷凍装置では、主流路の熱媒体が搬送機構によって往復流動する。弁がバイパス流路を閉じる状態では、熱媒体が複数の磁気冷凍部を順に流れる動作が行われる。弁がバイパス流路を開ける状態では、熱媒体が1つの磁気冷凍部を流れ、他の1つの磁気冷凍部をバイパスする動作が行われる。
特開2012-255642号公報
 特許文献1に記載の磁気冷凍装置では、バイパス流路に熱媒体が溜まり込む。主流路において熱媒体が往復流動する際、バイパス流路に溜まった熱媒体と、搬送された熱媒体とが混合すると、熱媒体の熱ロスが生じてしまう。
 本開示の目的は、固体冷凍装置、特に磁気冷凍装置において、搬送される熱媒体と、バイパス流路に溜まった熱媒体とが混合することに起因する、熱媒体の熱ロスを抑制することである。
 第1の態様は、
 外部エネルギーに対する熱量効果を発揮する固体冷媒物質(11)と、該固体冷媒物質(11)に熱量効果を誘発させる誘発部(12)とを有する複数の固体冷凍部(M)と、
 前記複数の固体冷凍部(M)が接続される熱媒体回路(C)と、
 前記熱媒体回路(C)の熱媒体を搬送する搬送機構(20)とを備えた固体冷凍装置であって、
 前記熱媒体回路(C)は、
  前記複数の固体冷凍部(M)がそれぞれ直列に接続されるとともに前記搬送機構(20)により搬送された熱媒体を第1熱交換部(31,33,34)に供給する第1流路(40)と、
  前記複数の固体冷凍部(M)がそれぞれ直列に接続されるとともに前記搬送機構(20)により搬送された熱媒体を第2熱交換部(32,33,34)に供給する第2流路(50)と、
  前記第1流路(40)及び第2流路(50)の少なくとも一方に接続されるとともに、前記熱媒体が前記固体冷凍部(M)を流れる動作と、該熱媒体が該固体冷凍部(M)をバイパスする動作とを切り換える少なくとも1つのバイパス機構(B)とを有する
 ことを特徴とする固体冷凍装置である。
 第1の態様では、バイパス機構(B)により、熱媒体が固体冷凍部(M)を流れる流路と、熱媒体が固体冷凍部(M)をバイパスする流路とを切り換えることができる。バイパス機構(B)を設けると、熱媒体がバイパス流路に溜まり込む。第1の態様では、熱媒体を第1熱交換部(31,33,34)に供給する第1流路(40)と、熱媒体を第2熱交換部(32,33,34)に供給する第2流路(50)とを設けている。このため、例えば第1流路(40)のバイパス流路に熱媒体が溜まった場合において、第2熱交換部(32,33,34)に供給される熱媒体と、第1流路(40)のバイパス流路に溜まった熱媒体とが混合することはない。同様に、例えば第2流路(50)のバイパス流路に熱媒体が溜まった場合において、第1熱交換部(31,33,34)に供給される熱媒体と、第2流路(50)のバイパス流路に溜まった熱媒体とが混合することがない。したがって、搬送される熱媒体と、バイパス流路に溜まった熱媒体とが混合することに起因する、熱媒体の熱ロスを抑制できる。
 第2の態様は、第1の態様において、
 前記バイパス機構(B)は、前記第1流路(40)及び前記第2流路(50)の双方に接続されるとともに前記複数の固体冷凍部(M)の全てに対応して設けられる。
 第2の態様では、全ての固体冷凍部(M)にバイパス機構(B)がそれぞれ設けられる。このため、各バイパス機構(B)において、熱媒体が固体冷凍部(M)を流れる流路と、該熱媒体が固体冷凍部(M)をバイパスする流路とをそれぞれ切り換えることができる。したがって、固体冷凍装置(1)の能力を細かく調節できる。
 第3の態様は、第1または第2の態様において、前記複数の固体冷凍部は、前記固体冷媒物質としての磁気作業物質(11)と、該磁気作業物質(11)に磁場変動を付与する前記誘発部としての磁場変調部(12)とをそれぞれ有する複数の磁気冷凍部(M)である
 ことを特徴とする固体冷凍装置である。
 換言すると、第3の態様は、
 磁気作業物質(11)と、該磁気作業物質(11)に磁場変動を付与する磁場変調部(12)とを有する複数の磁気冷凍部(M)と、
 前記磁気冷凍部(M)が接続される熱媒体回路(C)と、
 前記熱媒体回路(C)の熱媒体を搬送する搬送機構(20)とを備えた磁気冷凍装置であって、
 前記熱媒体回路(C)は、
  前記複数の磁気冷凍部(M)がそれぞれ直列に接続されるとともに前記搬送機構(20)により搬送された熱媒体を第1熱交換部(31,33,34)に供給する第1流路(40)と、
  前記複数の磁気冷凍部(M)がそれぞれ直列に接続されるとともに前記搬送機構(20)により搬送された熱媒体を第2熱交換部(32,33,34)に供給する第2流路(50)と、
  前記第1流路(40)及び第2流路(50)の少なくとも一方に接続されるとともに、前記熱媒体が前記磁気冷凍部(M)を流れる動作と、該熱媒体が該磁気冷凍部(M)をバイパスする動作とを切り換える少なくとも1つのバイパス機構(B)とを有する。
 第3の態様では、バイパス機構(B)により、熱媒体が磁気冷凍部(M)を流れる流路と、熱媒体が磁気冷凍部(M)をバイパスする流路とを切り換えることができる。バイパス機構(B)を設けると、熱媒体がバイパス流路に溜まり込む。第1の態様では、熱媒体を第1熱交換部(31,33,34)に供給する第1流路(40)と、熱媒体を第2熱交換部(32,33,34)に供給する第2流路(50)とを設けている。このため、例えば第1流路(40)のバイパス流路に熱媒体が溜まった場合において、第2熱交換部(32,33,34)に供給される熱媒体と、第1流路(40)のバイパス流路に溜まった熱媒体とが混合することはない。同様に、例えば第2流路(50)のバイパス流路に熱媒体が溜まった場合において、第1熱交換部(31,33,34)に供給される熱媒体と、第2流路(50)のバイパス流路に溜まった熱媒体とが混合することがない。したがって、搬送される熱媒体と、バイパス流路に溜まった熱媒体とが混合することに起因する、熱媒体の熱ロスを抑制できる。
 第4の態様は、第3の態様において、
 前記複数の磁気冷凍部(M)の各々は、それらの低温端から高温端に向かって、キュリー温度が順に高くなる複数種の磁気作業物質(11)を有するカスケード式である。
 第4の態様では、熱媒体を、カスケード式の磁気冷凍部(M)の低温端から高温端に向かって流しながら、この磁気冷凍部(M)で熱媒体を加熱できる。この場合、磁気冷凍部(M)の各磁気作業物質(11)における磁気熱量効果を向上でき、熱媒体の加熱能力を増大できる。あるいは、熱媒体を、カスケード式の磁気冷凍部(M)の高温端から低温端に向かって流しながら、この磁気冷凍部(M)で熱媒体を冷却できる。この場合、磁気冷凍部(M)の各磁気作業物質(11)における磁気熱量効果を向上でき、熱媒体の冷却能力を増大できる。
 第5の態様は、第4の態様において、
 前記第1流路(40)及び前記第2流路(50)には、前記複数の磁気冷凍部(M)のそれぞれのキュリー温度の平均値が順に高くなるように、該複数の磁気冷凍部(M)が直列に接続される。
 第5の態様では、熱媒体を、キュリー温度の平均値が低い磁気冷凍部(M)から高い磁気冷凍部(M)の順に流しながら、これらの磁気冷凍部(M)で熱媒体を加熱できる。この場合、各磁気冷凍部(M)の磁気熱量効果を向上でき、熱媒体の加熱能力を増大できる。あるいは、熱媒体を、キュリー温度の平均値が高い磁気冷凍部(M)から低い磁気冷凍部(M)の順に流しながら、これらの磁気冷凍部(M)で熱媒体を冷却できる。この場合、各磁気冷凍部(M)の磁気熱量効果を向上でき、熱媒体の冷却能力を増大できる。
 第6の態様は、第3の態様において、
 前記複数の磁気冷凍部(M)は、1つの磁気作業物質(11)を有する単層式であり、
 前記第1流路(40)及び前記第2流路(50)には、前記複数の磁気冷凍部(M)の各々の磁気作業物質(11)のキュリー温度が順に高くなるように、該複数の磁気冷凍部(M)が直列に接続される。
 第6の態様では、熱媒体を、キュリー温度が低い単層式の磁気冷凍部(M)、該キュリー温度が高い単層式の磁気冷凍部(M)の順に流しながら、これらの磁気冷凍部(M)で熱媒体を加熱できる。この場合、各磁気冷凍部(M)の磁気熱量効果を向上でき、熱媒体の加熱能力を増大できる。あるいは、熱媒体を、キュリー温度が高い単層式の磁気冷凍部(M)、該キュリー温度が低い単層式の磁気冷凍部(M)の順に流しながら、これらの磁気冷凍部(M)で熱媒体を冷却できる。この場合、各磁気冷凍部(M)の磁気熱量効果を向上でき、熱媒体の冷却能力を増大できる。
 第7の態様は、第3の態様において、
 隣り合う2つの磁気冷凍部(M)の動作温度域の一部が重なる。
 なお、ここでいう動作温度域は、磁気冷凍部(M)の磁気作業物質(11)の全体において、磁気熱量効果を少しでも得られる温度範囲をいう。したがって、この動作温度域は、単層式、カスケード式などの磁気冷凍部の方式に依らない。
 熱媒体が磁気冷凍部(M)をバイパスすることに起因して、この磁気冷凍部(M)に隣接する磁気冷凍部(M)を流れる熱媒体の温度が大きく変化する可能性がある。加えて、磁気冷凍部(M)をバイパスしていた熱媒体がこの磁気冷凍部(M)を流れることに起因して、この磁気冷凍部(M)に隣接する磁気冷凍部(M)を流れる熱媒体の温度が大きく変化する可能性がある。第7の態様では、隣り合う2つの磁気冷凍部(M)の動作温度域の一部が重なるため、バイパス動作の切換に伴い熱媒体の温度が変化することに起因して、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 第8の態様は、第7の態様において、
 前記複数の磁気冷凍部(M)の各々は、それらの低温端から高温端に向かって、キュリー温度が順に高くなる複数種の磁気作業物質(11)を有するカスケード式であり、
 隣り合う磁気冷凍部(M)は、各々の端部側の磁気作業物質(11)の動作温度域の一部又は全部が重なる領域を有するように構成され、
 前記重なる領域の磁気熱量効果の最大値が、隣り合う磁気冷凍部(M)の前記端部側の磁気作業物質(11)における磁気熱量効果の最大値の平均値の1/2以上である。
 第8の態様では、隣り合うカスケード式の磁気冷凍部(M)の端部側の磁気作業物質(11)において、これらの動作温度域の重なる領域が比較的大きくなる。このため、バイパス動作の切換に伴い熱媒体の温度が変化することに起因して、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 第9の態様は、第7の態様において、
 前記複数の磁気冷凍部(M)は、1種の磁気作業物質(11)を有する単層式であり、
 隣り合う磁気冷凍部(M)は、各々の磁気作業物質(11)の動作温度域の一部が重なる領域を有するように構成され、
 前記重なる領域の磁気熱量効果の最大値が、前記隣り合う磁気冷凍部(M)の各々の磁気作業物質(11)における磁気熱量効果の最大値の平均値の1/2以上である。
 第9の態様では、隣り合う単層式の磁気冷凍部(M)の各磁気作業物質(11)において、これらの動作温度域が重なる領域が比較的大きくなる。このため、バイパス動作の切換に伴い熱媒体の温度が変化することに起因して、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 第10の態様は、
 第4又は第5の態様において、
 前記複数種の磁気作業物質(11)は、それらの端部に対応する端部側磁気作業物質(11c,11d)と、それらの両端の間の中間部に対応する中間側磁気作業物質(11b,11e)とを含み、
 前記端部側磁気作業物質(11c,11d)の動作温度域の幅が、前記中間側磁気作業物質(11b,11e)の動作温度域の幅よりも広い。
 第10の態様では、各磁気冷凍部(M)の端部側磁気作業物質(11c,11d)の動作温度域の幅が、中間側磁気作業物質(11b,11e)の動作温度域の幅よりも広い。このため、バイパス動作の切換に伴い熱媒体の温度が変化することに起因して、熱媒体の温度が磁気冷凍部(M)の端部側磁気作業物質(11c,11d)の動作温度域から外れてしまうことを抑制できる。
 第11の態様は、第4又は第5の態様において、
 前記複数種の磁気作業物質(11)は、それらの端部に対応する端部側磁気作業物質(11c,11d)と、それらの両端の間の中間部に対応する中間側磁気作業物質(11b,11e)とを含み、
 前記端部側磁気作業物質(11c,11d)の磁気熱量効果の最大値が、前記中間側磁気作業物質(11b,11e)の磁気熱量効果の最大値よりも大きい。
 第11の態様では、各磁気作業物質(11)の端部側磁気作業物質(11c,11d)の磁気熱量効果の最大値が、中間側磁気作業物質(11b,11e)の磁気熱量効果の最大値より大きい。このため、バイパス動作の切換に伴い熱媒体の温度が変化しても、この熱媒体の温度が磁気冷凍部(M)の動作温度域を外れないように、該熱媒体を端部側磁気作業物質(11c,11d)によって十分に加熱または冷却できる。
 第12の態様は、第11の態様において、
 前記磁場変調部(12)は、前記端部側磁気作業物質(11c,11d)の磁束密度の変化量を、前記中間側磁気作業物質(11b,11e)の磁束密度の変化量よりも大きくする。
 第12の態様では、端部側磁気作業物質(11c,11d)の磁束密度の変化量を、中間側磁気作業物質(11b,11e)の磁束密度の変化量よりも大きくすることにより、端部側磁気作業物質(11c,11d)の磁気熱量効果が大きくなる。
 第13の態様は、第11又は第12の態様において、
 前記端部側磁気作業物質(11c,11d)の断熱温度変化、又はエントロピー変化が、前記中間側磁気作業物質(11b,11e)の断熱温度変化、又はエントロピー変化よりも大きい。
 第13の態様では、端部側磁気作業物質(11c,11d)の断熱温度変化を中間側磁気作業物質(11b,11e)の断熱温度変化よりも大きくすることにより、端部側磁気作業物質(11c,11d)の磁気熱量効果が大きくなる。あるいは、端部側磁気作業物質(11c,11d)のエントロピー変化を、中間側磁気作業物質(11b,11e)の断熱温度変化よりも大きくすることにより、端部側磁気作業物質(11c,11d)の磁気熱量効果が大きくなる。
 第14の態様は、第11~13のいずれか1つの態様において、
 前記端部側磁気作業物質(11c,11d)の重量が、前記中間側磁気作業物質(11b,11e)の重量よりも大きい。
 第14の態様では、端部側磁気作業物質(11c,11d)の重量を、中間側磁気作業物質(11b,11e)の重量よりも大きくすることにより、端部側磁気作業物質(11c,11d)の磁気熱量効果が大きくなる。
 第15の態様は、第14の態様において、端部側磁気作業物質(11c,11d)の充填率、又は容積が、前記中間側磁気作業物質(11b,11e)の充填率、又は容積よりも大きい。
 第15の態様では、端部側磁気作業物質(11c,11d)の充填率を中間側磁気作業物質(11b,11e)の充填率よりも大きくすることにより、端部側磁気作業物質(11c,11d)の重量が大きくなり、端部側磁気作業物質(11c,11d)の磁気熱量効果が大きくなる。あるいは、端部側磁気作業物質(11c,11d)の容積を中間側磁気作業物質(11b,11e)の容積よりも大きくすることにより、端部側磁気作業物質(11c,11d)の重量が大きくなり、端部側磁気作業物質(11c,11d)の磁気熱量効果が大きくなる。
 第16の態様は、第1~第15のいずれか1つの態様において、前記第1流路(40)及び前記第2流路(50)の少なくとも一方には、前記固体冷凍部、特に前記磁気冷凍部(M)をバイパスした熱媒体が流れる蓄熱部(81,82,84,85)が設けられる。
 第16の態様では、磁気冷凍部(M)をバイパスした熱媒体が、蓄熱部(81,82,84,85)を流れる。蓄熱部(81,82,84,85)では、熱媒体の温熱及び/又は冷熱が蓄えられる。これにより、バイパスの切換に伴い熱媒体の温度が変化をしても、次の磁気冷凍部(M)を流れる熱媒体の急激な温度変化を蓄熱部(81,82,84,85)により抑制できる。磁気冷凍部(M)を流れる熱媒体の温度変化が小さくなると、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 第17の態様は、複数の磁気冷凍部(M)は、一部の磁気冷凍部である第3磁気冷凍部(ML,MH)と、それ以外の他の磁気冷凍部である第4磁気冷凍部(MM)とを含み、前記第3磁気冷凍部(ML,MH)の磁気作業物質(11)の動作温度域が前記第4磁気冷凍部(MM)の磁気作業物質(11)の動作温度域よりも広い
 ことを特徴とする固体冷凍装置である。
 第17の態様では、第3磁気冷凍部(ML,MH)の磁気作業物質(11)の動作温度域を広くすることで、第3磁気冷凍部(ML,MH)の磁気作業物質(11)の数を減らすことができる。具体的には、第3磁気冷凍部(ML,MH)を単層式としたり、カスケード式の第3磁気冷凍部(ML,MH)の磁気作業物質(11)の数を減らしたりできる。これにより、第3磁気冷凍部(ML,MH)の構造の簡素化、低コスト化を図ることができる。
 第18の態様は、第17の態様において、
 前記第3磁気冷凍部(ML,MH)の磁気作業物質(11)の量が、前記第4磁気冷凍部(MM)の磁気作業物質(11)の量よりも大きい
 ことを特徴とする固体冷凍装置である。
 第3磁気冷凍部(ML,MH)の磁気作業物質(11)の動作温度域を広くすると、第3磁気冷凍部(ML,MH)の磁気熱量効果が低下する傾向にある。第18の態様では、第3磁気冷凍部(ML,MH)の磁気作業物質(11)の量を大きくすることで、第3磁気冷凍部(ML,MH)の放熱能力や吸熱能力を高めることができる。
 第19の態様は、第17又は第18において、
 前記バイパス機構(B)は、前記第3磁気冷凍部(ML,MH)に対応して設けられる。
 第3磁気冷凍部(ML,MH)の磁気作業物質(11)の数を減らすと、第3磁気冷凍部(ML,MH)の効率が低下する可能性がある。第19の態様では、第3磁気冷凍部(ML,MH)に対応するバイパス機構(B)を設けることで、必要なときに第3磁気冷凍部(ML,MH)を補助的に利用できる。第3磁気冷凍部(ML,MH)を作動させないときには、熱媒体が第3磁気冷凍部(ML,MH)をバイパスすることで、圧力損失を低減できる。
 第20の態様は、第17~第19のいずれか1つの態様において、前記固体冷凍装置の運転において、前記熱媒体の温度が前記第3磁気冷凍部(ML,MH)の全体の動作温度域に至る頻度が、前記熱媒体の温度が前記第4磁気冷凍部(MM)の全体の動作温度域内に至る頻度よりも少ない
 ことを特徴とする固体冷凍装置である。
 第20の態様では、固体冷凍装置の運転において、熱媒体の温度が第3磁気冷凍部(ML,MH)の全体の動作温度域に至る頻度が比較的少ない。このため、第3磁気冷凍部(ML,MH)の磁気作業物質(11)の数を減らしたとしても、固体冷凍装置の全運転を考慮した場合には、運転効率の低下の影響は小さくなる。
 第21の態様は、第17~20のいずれか1つの態様において、
 前記第4磁気冷凍部(MM)の全体の動作温度域は、中温域であり、
 前記第3磁気冷凍部(ML,MH)の全体の動作温度域は、低温域または高温域である
 ことを特徴とする固体冷凍装置である。
 ここで、「低温域」、「中温域」、および「高温域」は、以下のように定義される。複数の磁気冷凍部(M)の全体としての動作温度域を、同じ温度幅において3つに区分する。この場合に、温度が最も低い温度域を「低温域」、温度が最も高い温度域を「高温域」、低温域と高温域との間の温度域を「中温域」とする。
 第21の態様では、第3磁気冷凍部(ML,MH)の全体の動作温度域が、低温域または高温域である。これにより、熱媒体の温度が第3磁気冷凍部(ML,MH)の全体の動作温度域に至る頻度は、第4磁気冷凍部(MM)のそれよりも少なくなる。
 第22の態様は、第17~第21のいずれか1つの態様において、前記第3磁気冷凍部(ML,MH)は、前記複数の磁気冷凍部(M)の端部寄りに設けられる。
 第22の態様では、第3磁気冷凍部(ML,MH)が複数の磁気冷凍部(M)の端部寄りに設けられる。これにより、熱媒体の温度が第3磁気冷凍部(ML,MH)の全体の動作温度域に至る頻度は少なくなる。
 第23の態様は、第22の態様において、
 前記第3磁気冷凍部(ML,MH)は、前記複数の磁気冷凍部(M)の両端にそれぞれ設けられる
 ことを特徴とする固体冷凍装置である。
 第23の態様では、第3磁気冷凍部(ML,MH)が複数の磁気冷凍部(M)の両端にそれぞれ設けられる。これにより、熱媒体の温度が各々の第3磁気冷凍部(ML,MH)の全体の動作温度域に至る頻度は少なくなる。
 第24の態様は、第17~第23のいずれか1つの態様において、
 前記第3磁気冷凍部(ML,MH)は、前記第1熱交換部(31,33,34)および前記第2熱交換部(32,33,34)の少なくとも一方を構成する室外熱交換器(34)寄りに設けられる
 ことを特徴とする固体冷凍装置である。
 室外熱交換器(34)を流れる熱媒体の温度は、外気温度の影響により大きく変化する。第24の態様では、第3磁気冷凍部(ML,MH)が室外熱交換器(34)寄りに設けられるので、熱媒体の温度が第3磁気冷凍部(ML,MH)の全体の動作温度域に至る頻度が少なくなる。
 第25の態様は、第24の態様において、前記第3磁気冷凍部(ML,MH)は、前記室外熱交換器(34)に隣接して設けられる
 ことを特徴とする固体冷凍装置である。
 室外熱交換器(34)を流れる熱媒体の温度は、外気温度の影響により大きく変化する。第25の態様では、第3磁気冷凍部(ML,MH)が室外熱交換器(34)に隣接して設けられるため、熱媒体の温度が第3磁気冷凍部(ML,MH)の全体の動作温度域に至る頻度が少なくなる。
図1は、実施形態1の磁気冷凍装置の配管系統図である。 図2は、実施形態1の磁気冷凍装置の制御器と、他の機器との関係を示すブロック図である。 図3は、実施形態1の第1磁気冷凍部及び第2磁気冷凍部のそれぞれの、磁気作業物質の特性を示すグラフである。 図4は、実施形態1の隣り合う磁気作業物質の特性を示すグラフである。 図5は、実施形態1の通常加熱動作の熱媒体の流れを付した、図1に対応する図である。 図6は、実施形態1の通常冷却動作の熱媒体の流れを付した、図1に対応する図である。 図7は、実施形態1の第1バイパス加熱動作の熱媒体の流れを付した、図1に対応する図である。 図8は、実施形態1の第2バイパス加熱動作の熱媒体の流れを付した、図1に対応する図である。 図9は、実施形態1の第1バイパス冷却動作の熱媒体の流れを付した、図1に対応する図である。 図10は、実施形態1の第2バイパス冷却動作の流れを付した、図1に対応する図である。 図11は、実施形態2の第1磁気冷凍部及び第2磁気冷凍部のそれぞれの、磁気作業物質の特性を示すグラフである。 図12は、実施形態3の磁気冷凍装置の配管系統図である。 図13は、実施形態3の変形例1における磁気冷凍装置の配管系統図である。 図14は、実施形態3の変形例2における磁気冷凍装置の配管系統図である。 図15は、実施形態4における磁気冷凍装置の配管系統図である。 図16は、実施形態4の第1動作の熱媒体の流れを付した、図15に対応する図である。 図17は、実施形態4の第2動作の熱媒体の流れを付した、図15に対応する図である。 図18は、実施形態4の第3動作の熱媒体の流れを付した、図15に対応する図である。 図19は、実施形態4の第4動作の熱媒体の流れを付した、図15に対応する図である。 図20は、変形例Aにおける磁気冷凍装置の配管系統図である。 図21は、変形例Bにおける磁気冷凍装置の配管系統図である。 図22は、変形例Cにおける磁気冷凍装置の配管系統図である。 図23は、変形例Dにおける磁気冷凍装置の配管系統図である。 図24は、変形例Eにおける磁気冷凍装置の配管系統図である。 図25は、変形例Fにおける磁気冷凍装置の図3に相当する図である。 図26は、実施形態5の磁気冷凍装置の配管系統図である。 図27は、実施形態5の第1動作の熱媒体の流れを付した、図26に対応する図である。 図28は、実施形態5の第2動作の熱媒体の流れを付した、図26に対応する図である。 図29は、実施形態5の第3動作の熱媒体の流れを付した、図26に対応する図である。 図30は、実施形態5の第4動作の熱媒体の流れを付した、図26に対応する図である。 図31は、実施形態5に係る磁気冷凍装置の各運転の温度範囲と、複数の磁気冷凍部の特性との関係を示した模式図である。 図32は、実施形態6の磁気冷凍装置の配管系統図である。 図33は、実施形態6の第1動作の熱媒体の流れを付した、図32に対応する図である。 図34は、実施形態6の第2動作の熱媒体の流れを付した、図32に対応する図である。 図35は、実施形態6の第3動作の熱媒体の流れを付した、図32に対応する図である。 図36は、実施形態6の第4動作の熱媒体の流れを付した、図32に対応する図である。 図37は、変形例Gにおける磁気冷凍装置の各運転の温度範囲を示した模式図である。 図38は、変形例Hにおける磁気冷凍装置の配管系統図である。 図39は、変形例Hにおける磁気冷凍装置の各運転の温度範囲を示した模式図である。 図40は、変形例Iにおける磁気冷凍装置の配管系統図である。 図41は、変形例Iにおける磁気冷凍装置の各運転の温度範囲を示した模式図である。
 以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《実施形態1》
 本実施形態の磁気冷凍装置(1)は、磁気熱量効果を利用して熱媒体の温度を調節する。磁気冷凍装置(1)は、例えば空気調和装置に適用される。磁気冷凍装置(1)は、熱量効果を利用して熱媒体の温度を調節する固体冷凍装置である。
 図1に示すように、磁気冷凍装置(1)は、熱媒体が充填される熱媒体回路(C)を備える。熱媒体回路(C)では、充填された熱媒体が搬送される。熱媒体は、例えば冷媒、水、ブラインなどを含む。
 磁気冷凍装置(1)は、主として、固体冷凍部としての複数の磁気冷凍部(M)、搬送機構(20)、第1熱交換器(31)、及び第2熱交換器(32)を備える。複数の磁気冷凍部(M)、搬送機構(20)、第1熱交換器(31)、及び第2熱交換器(32)は、熱媒体回路(C)に接続される。
 〈磁気冷凍部〉
 複数の磁気冷凍部(M)は、第1磁気冷凍部(M1)と第2磁気冷凍部(M2)とで構成される。なお、以下の説明においては、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)を総称して、単に磁気冷凍部(M)と述べる場合もある。
 磁気冷凍部(M)は、ベッド(10)と、固体冷媒物質としての磁気作業物質(11)と、磁場変調部(12)とを備える。ベッド(10)は、中空状のケースないしカラムである。ベッド(10)の内部には、磁気作業物質(11)が充填される。ベッド(10)の内部には、熱媒体が往復流動する内部流路(13)が形成される。
 磁気作業物質(11)は、磁場が印加される、あるいは印加された磁場が強くなることにより、発熱する。磁気作業物質(11)は、磁場が除去される、あるいは印加された磁場が弱くなると吸熱する。磁気作業物質(11)の材料としては、例えば、Gd5(Ge0.5Si0.54、La(Fe1-xSix13、La(Fe1-xCoxSiy13、La(Fe1-xSix13y、Mn(As0.9Sb0.1)等を用いることができる。
 本実施形態の磁気冷凍部(M)は、カスケード式である。磁気冷凍部(M)は、キュリー温度が異なる複数種の磁気作業物質(11)を有する(詳細は後述する)。
 磁場変調部(12)は、固体冷媒物質としての磁気作業物質(11)に熱量効果を誘発させる誘発部である。磁場変調部(12)は、磁気作業物質(11)に磁場変動を付与する。磁場変調部(12)は、磁気作業物質(11)に付与される磁場の強さを調節する。磁場変調部(12)は、例えば磁場を変調可能な電磁石で構成される。磁場変調部(12)は、第1変調動作と第2変調動作とを行う。第1変調動作では、磁気作業物質(11)に磁場を印加する、あるいは印加された磁場を強くする。第2変調動作では、磁気作業物質(11)に印加された磁場を取り除く、あるいは印加された磁場を弱くする。
 〈搬送機構〉
 搬送機構(20)は、熱媒体回路(C)の熱媒体を往復的に搬送する。搬送機構(20)は、往復式ポンプ(21)を含む。往復式ポンプ(21)は、ピストンポンプで構成される。往復式ポンプ(21)は、ポンプケース(22)と、ピストン(23)と、駆動機構(図示省略)とを有する。ピストン(23)は、ポンプケース(22)の内部に配置される。ピストン(23)は、ポンプケース(22)の内部を2つの室に区画する。往復式ポンプ(21)には、第1開口(24)と第2開口(25)とが設けられる。ポンプケース(22)の一方の室が第1開口(24)と連通し、他方の室が第2開口(25)と連通する。
 駆動機構は、ピストン(23)に連結するロッドと、該ロッドに連結するクランクと、該クランクを駆動する電動機とを有する。電動機がクランクを回転駆動すると、ロッドが進退する。これにより、ポンプケース(22)内でピストン(23)の往復運動が行われる。
 搬送機構(20)は、第1搬送動作と第2搬送動作とを交互に繰り返し行う。図5に示す第1搬送動作では、ピストン(23)が第1開口(24)側に移動する。すると、ポンプケース(22)内の熱媒体が第1開口(24)から吐出される。同時に熱媒体が第2開口(25)からポンプケース(22)内に吸い込まれる。図6に示す第2搬送動作では、ピストン(23)が第2開口(25)側に移動する。すると、ポンプケース(22)内の熱媒体が第2開口(25)から吐出される。同時に熱媒体が第1開口(24)からポンプケース(22)内に吸い込まれる。
 〈第1熱交換器及び第2熱交換器〉
 第1熱交換器(31)及び第2熱交換器(32)は、熱媒体回路(C)が流れる熱媒体と、対象となる流体とを熱交換せる。本実施形態では、第1熱交換器(31)及び第2熱交換器(32)が、空気熱交換器で構成される。第1熱交換器(31)及び第2熱交換器(32)は、熱媒体回路(C)の熱媒体と空気とを熱交換させる。
 第1熱交換器(31)は、低温側熱交換器を構成する。言い換えると、第1熱交換器(31)は、空気から熱媒体に熱を奪う吸熱器である。第2熱交換器(32)は、高温側熱交換器を構成する。言い換えると、第2熱交換器(32)は、熱媒体から熱へ空気を放出する放熱器である。第1熱交換器(31)は、本開示の第1熱交換部に対応する。第2熱交換器(32)は、本開示の第2熱交換部に対応する。
 〈熱媒体回路〉
 熱媒体回路(C)は、主として、第1流路(40)、第2流路(50)、第1搬送流路(61)、及び第2搬送流路(62)を備える。熱媒体回路(C)は、複数のバイパス機構(B)を備える。
 〈第1流路〉
 第1流路(40)は、熱媒体を第1熱交換器(31)へ供給する流路である。第1流路(40)の流入端は、第2熱交換器(32)の流出端に接続する。第1流路(40)の流出端は、第1熱交換器(31)の流入端に接続する。第1流路(40)は、第1上流路(41)、第1中間路(42)、及び第1下流路(43)を含む。第1流路(40)は、各磁気冷凍部(M1)の内部流路(13)を含む。第1流路(40)では、第1上流路(41)、第1磁気冷凍部(M1)の内部流路(13)、第1中間路(42)、第2磁気冷凍部(M2)の内部流路(13)、及び第1下流路(43)が順に接続する。
 第1流路(40)では、各磁気冷凍部(M)の上流側に第1逆止弁(CV1)がそれぞれ設けられる。第1流路(40)では、各磁気冷凍部(M)の下流側に第2逆止弁(CV2)がそれぞれ設けられる。第1逆止弁(CV1)及び第2逆止弁(CV2)は、第2熱交換器(32)側から第1熱交換器(31)側の熱媒体の流れを許容し、その逆の流れを禁止する。
 〈第2流路〉
 第2流路(50)は、熱媒体を第2熱交換器(32)へ供給する流路である。第2流路(50)の流入端は、第1熱交換器(31)の流出端に接続する。第2流路(50)の流出端は、第2熱交換器(32)の流入端に接続する。第2流路(50)は、第2上流路(51)、第2中間路(52)、及び第2下流路(53)を含む。第2流路(50)は、各磁気冷凍部(M)の内部流路(13)を含む。第2流路(50)では、第2上流路(51)、第2磁気冷凍部(M2)の内部流路(13)、第2中間路(52)、第1磁気冷凍部(M1)の内部流路(13)、及び第2下流路(53)が順に接続する。
 第2流路(50)では、各磁気冷凍部(M)の上流側に第3逆止弁(CV3)がそれぞれ設けられる。第2流路(50)では、各磁気冷凍部(M)の下流側に第4逆止弁(CV4)がそれぞれ設けられる。第3逆止弁(CV3)及び第4逆止弁(CV4)は、第1熱交換器(31)側から第2熱交換器(32)側の熱媒体の流れを許容し、その逆の流れを禁止する。
 第1流路(40)及び第2流路(50)は、互いに逆向きの熱媒体の流れのみが許容されている。
 〈第1搬送流路〉
 第1搬送流路(61)の流入端は、往復式ポンプ(21)の第1開口(24)に接続する。第1搬送流路(61)の流出端は、第2上流路(51)における第1熱交換器(31)と、第3バイパス流路(67)の流入端との間に接続する。
 〈第2搬送流路〉
 第2搬送流路(62)の流入端は、往復式ポンプ(21)の第2開口(25)に接続する。第2搬送流路(62)の流出端は、第1上流路(41)における第2熱交換器(32)と、第1バイパス流路(63)の流入端との間に接続する。
 〈バイパス機構〉
 複数のバイパス機構(B)は、第1バイパス機構(B1)、第2バイパス機構(B2)、第3バイパス機構(B3)、及び第4バイパス機構(B4)で構成される。バイパス機構(B)は、熱媒体回路(C)において、熱媒体が磁気冷凍部(M)を流れる動作と、熱媒体が磁気冷凍部(M)をバイパスする動作とを切り換える。
 〈第1バイパス機構〉
 第1バイパス機構(B1)は、第1流路(40)に接続される。第1バイパス機構(B1)は、第1磁気冷凍部(M1)の内部流路(13)に対応する。第1バイパス機構(B1)は、第1流路(40)の熱媒体が第1磁気冷凍部(M1)の内部流路(13)を流れる流路と、第1流路(40)の熱媒体が第1磁気冷凍部(M1)の内部流路(13)をバイパスする流路とを切り換える。
 具体的には、第1バイパス機構(B1)は、第1バイパス流路(63)と第1制御弁(64)とを有する。第1バイパス流路(63)の流入端は、第1上流路(41)における、第2搬送流路(62)の接続端と、第1磁気冷凍部(M1)側の第1逆止弁(CV1)との間に接続する。第1バイパス流路(63)の流出端は、第1中間路(42)における、第1磁気冷凍部(M1)側の第2逆止弁(CV2)と、第2磁気冷凍部(M2)側の第1逆止弁(CV1)との間に接続する。
 第1バイパス流路(63)は、第1上流部(63a)と、第1下流部(63b)とを含む。第1バイパス流路(63)の第1下流部(63b)は、第2バイパス流路(65)の第2上流部(65a)を兼用する。第1制御弁(64)は、第1バイパス流路(63)を開閉する開閉弁である。第1制御弁(64)は、第1上流部(63a)に設けられる。
 〈第2バイパス機構〉
 第2バイパス機構(B2)は、第1流路(40)に接続される。第2バイパス機構(B2)は、第2磁気冷凍部(M2)の内部流路(13)に対応する。第2バイパス機構(B2)は、第1流路(40)の熱媒体が第2磁気冷凍部(M2)の内部流路(13)を流れる流路と、第1流路(40)の熱媒体が第2磁気冷凍部(M2)の内部流路(13)をバイパスする流路とを切り換える。
 具体的には、第2バイパス機構(B2)は、第2バイパス流路(65)と第2制御弁(66)とを有する。第2バイパス流路(65)の流入端は、第1中間路(42)における第1磁気冷凍部(M1)側の第2逆止弁(CV2)と、第2磁気冷凍部(M2)側の第1逆止弁(CV1)との間に接続する。第2バイパス流路(65)の流出端は、第1下流路(43)における第2磁気冷凍部(M2)側の第2逆止弁(CV2)と第1熱交換器(31)との間に接続する。
 第2バイパス流路(65)は、第2上流部(65a)と、第2下流部(65b)とを含む。第2制御弁(66)は、第2バイパス流路(65)を開閉する開閉弁である。第2制御弁(66)は、第2下流部(65b)に設けられる。
 〈第3バイパス機構〉
 第3バイパス機構(B3)は、第2流路(50)に接続される。第3バイパス機構(B3)は、第2磁気冷凍部(M2)の内部流路(13)に対応する。第3バイパス機構(B3)は、第2流路(50)の熱媒体が第2磁気冷凍部(M2)の内部流路(13)を流れる流路と、熱媒体が第2磁気冷凍部(M2)の内部流路(13)をバイパスする流路とを切り換える。
 具体的には、第3バイパス機構(B3)は、第3バイパス流路(67)と第3制御弁(68)とを有する。第3バイパス流路(67)の流入端は、第2上流路(51)における、第1搬送流路(61)の接続端と、第2磁気冷凍部(M2)側の第3逆止弁(CV3)との間に接続する。第3バイパス流路(67)の流出端は、第2中間路(52)における第2磁気冷凍部(M2)側の第4逆止弁(CV4)と、第1磁気冷凍部(M1)側の第3逆止弁(CV3)との間に接続する。
 第3バイパス流路(67)は、第3上流部(67a)と、第3下流部(67b)とを含む。第3バイパス流路(67)の第3下流部(67b)は、第4バイパス流路(69)の第4上流部(69a)を兼用する。第3制御弁(68)は、第3バイパス流路(67)を開閉する開閉弁である。第3制御弁(68)は、第3上流部(67a)に設けられる。
 〈第4バイパス機構〉
 第4バイパス機構(B4)は、第2流路(50)に接続される。第4バイパス機構(B4)は、第1磁気冷凍部(M1)の内部流路(13)に対応する。第4バイパス機構(B4)は、第2流路(50)の熱媒体が第1磁気冷凍部(M1)の内部流路(13)を流れる流路と、第2流路(50)の熱媒体が第1磁気冷凍部(M1)の内部流路(13)をバイパスする流路とを切り換える。
 具体的には、第4バイパス機構(B4)は、第4バイパス流路(69)と第4制御弁(70)とを有する。第4バイパス流路(69)の流入端は、第2中間路(52)における第2磁気冷凍部(M2)の第4逆止弁(CV4)と、第1磁気冷凍部(M1)側の第3逆止弁(CV3)との間に接続する。第4バイパス流路(69)の流出端は、第2下流路(53)における、第1磁気冷凍部(M1)側の第4逆止弁(CV4)と第2熱交換器(32)との間に接続する。
 第4バイパス流路(69)は、第4上流部(69a)と、第4下流部(69b)とを含む。第4制御弁(70)は、第4バイパス流路(69)を開閉する開閉弁である。第4制御弁(70)は、第4下流部(69b)に設けられる。
 第1制御弁(64)、第2制御弁(66)、第3制御弁(68)、及び第4制御弁(70)は、流量が調節可能な流量調節弁であってもよい。
 〈制御器〉
 図2に示すように、磁気冷凍装置(1)は、制御器(100)を備える。制御器(100)は、磁場変調部(12)と、搬送機構(20)と、バイパス機構(B)とを制御する。より詳細には、制御器(100)は、運転指令に応じて、各バイパス機構(B)の各制御弁(64,66,68,70)を制御する。制御器(100)は、マイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを用いて構成されている。
 〈磁気作業物質の詳細〉
 第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)は、それぞれカスケード式である。第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)は、キュリー温度が異なる複数種(本例では3つ)の磁気作業物質(11)を有する。キュリー温度は、磁気作業物質(11)の磁気熱量効果が最も高くなる温度である。カスケード式の磁気冷凍部(M)における磁気作業物質(11)の数は、2つ又は4つ以上であってもよい。
 図3に示すように、第2磁気冷凍部(M2)では、その低温端から高温端に向かって、第1磁気作業物質(11a)、第2磁気作業物質(11b)、及び第3磁気作業物質(11c)が順に並んでいる。第1磁気冷凍部(M1)は、その低温端から高温端に向かって、第4磁気作業物質(11d)、第5磁気作業物質(11e)、及び第6磁気作業物質(11f)が順に並んでいる。図3は、第1磁気作業物質(11a)の動作温度域を曲線a、第2磁気作業物質(11b)の動作温度域を曲線b、第3磁気作業物質(11c)の動作温度域を曲線c、第4磁気作業物質(11d)の動作温度域を曲線d、第5磁気作業物質(11e)の動作温度域を曲線e、第6磁気作業物質(11f)の動作温度域を曲線fとして示している。
 第1磁気作業物質(11a)のキュリー温度Tc1、第2磁気作業物質(11b)のキュリー温度Tc2、第3磁気作業物質(11c)のキュリー温度Tc3、第4磁気作業物質(11d)のキュリー温度をTc4、第5磁気作業物質(11e)のキュリー温度Tc5、第6磁気作業物質(11f)のキュリー温度をTc6とすると、Tc1<Tc2<Tc3<Tc4<Tc5<Tc6の関係を満たす。
 第1流路(40)及び第2流路(50)では、複数(本例では2つ)の磁気冷凍部(M)のキュリー温度の平均値が順に高くなるように、これらの磁気冷凍部(M)が直列に接続される。具体的には、第1磁気冷凍部(M1)のキュリー温度の平均値T1は、第2磁気冷凍部(M2)のキュリー温度の平均値T2よりも高い。本例において、T1は、T1=(Tc4+Tc5+Tc6)/3の関係式で表される。T2は、T2=(Tc1+Tc2+Tc3)/3の関係式で表される。
 熱媒体回路(C)では、隣り合う磁気冷凍部(M)の動作温度域の一部が重なる。具体的には、第2磁気冷凍部(M2)の第3磁気作業物質(11c)の動作温度域と、第1磁気冷凍部(M1)の第4磁気作業物質(11d)の動作温度域の一部が重なる。第3磁気作業物質(11c)は、第2磁気冷凍部(M2)の端部側の磁気作業物質である。第4磁気作業物質(11d)は、第1磁気冷凍部(M1)の端部側の磁気作業物質である。より詳細には、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)は、以下の関係を満たすように構成される。
 第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)において、互いに隣り合う端部側の磁気作業物質(第3磁気作業物質(11c)と第4磁気作業物質(11d))に注目する。第3磁気作業物質(11c)のキュリー温度Tc3に対応する磁気熱量効果をEm2、第4磁気作業物質(11d)のキュリー温度Tc4に対応する磁気熱量効果をEm1とする。Em2は、第3磁気作業物質(11c)の磁気熱量効果の最大値である。Em1は、第4磁気作業物質(11d)の磁気熱量効果の最大値である。Em1とEm2の平均値をEaveとする。第3磁気作業物質(11c)の動作温度域と、第4磁気作業物質(11d)の動作温度域との重なる領域Aにおける磁気熱量効果の最大値をEpとする。図4において、この重なる領域Aにハッチングを付している。
 本例において、磁気熱量効果Epは、Em1とEm2の平均値Eaveの1/2以上である。言い換えると、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)は、下記の(1)式を満たすように構成される。
 Ep≧((Em1+Em2)/2)×(1/2)・・・・(1)
 本例では、隣り合う端部側の磁気作業物質(11c,11d)の動作温度域の一部が互いに重なっている。しかしながら、隣り合う端部側の磁気作業物質(11c,11d)の動作温度域の全部が互いに重なってもよい。この場合にも、隣り合う磁気冷凍部(M)は、上記(1)式を満たすことになる。
 -運転動作-
 磁気冷凍装置(1)の運転動作について図5~図10を参照しながら説明する。なお、図5以降の図面においては、磁場変調部(12)の図示を省略している。磁気冷凍装置(1)は、加熱動作と冷却動作とを交互に繰り返し行う。加熱動作は、通常加熱動作、第1バイパス加熱動作、第2バイパス加熱動作を含む。冷却動作は、通常冷却動作、第1バイパス加熱動作、第2バイパス加熱動作を含む。磁気冷凍装置(1)の通常の運転では、通常加熱動作と、通常冷却動作とが交互に繰り返し行われる。第1バイパス加熱動作、第2バイパス加熱動作、第1バイパス冷却動作、及び第2バイパス冷却動作は、磁気冷凍装置(1)の熱負荷、運転条件、必要能力などに応じて適宜実行される。なお、以下の説明では、第1バイパス加熱動作、第2バイパス加熱動作、第1バイパス冷却動作、及び第2バイパス冷却動作を総称して、バイパス動作と述べる場合もある。
 〈通常加熱動作〉
 図5に示す通常加熱動作では、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)の各磁場変調部(12)が、第1変調動作を行う。搬送機構(20)が第1搬送動作を行う。制御器(100)は、第1制御弁(64)、第2制御弁(66)、第3制御弁(68)、及び第4制御弁(70)を閉じる。
 通常加熱動作では、第2流路(50)を流れる熱媒体が、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)により加熱される。加熱された熱媒体は、放熱器である第2熱交換器(32)に供給される。第2熱交換器(32)では、熱媒体が空気に放熱する。なお、図面において、放熱器となる熱交換器にはハッチングを付している。
 より詳細には、往復式ポンプ(21)の第1開口(24)から吐出された比較的低温の熱媒体は、第1搬送流路(61)、第2上流路(51)、第2磁気冷凍部(M2)の内部流路(13)を順に流れる。第2磁気冷凍部(M2)では、第1磁気作業物質(11a)、第2磁気作業物質(11b)、及び第3磁気作業物質(11c)の順で、熱媒体が加熱される。第2磁気冷凍部(M2)では、低温端から高温端に向かって順に、磁気作業物質(11a,11b,11c)のキュリー温度が高い。このため、第2磁気冷凍部(M2)では、各磁気作業物質(11a,11b,11c)において、比較的大きな磁気熱量効果を得ることができる。
 第2磁気冷凍部(M2)で加熱された熱媒体は、第2中間路(52)、第1磁気冷凍部(M1)の内部流路(13)を順に流れる。第1磁気冷凍部(M1)では、第4磁気作業物質(11d)、第5磁気作業物質(11e)、及び第6磁気作業物質(11f)の順で、熱媒体が加熱される。第1磁気冷凍部(M1)では、低温端から高温端に向かって順に、磁気作業物質(11d,11e,11f)のキュリー温度が高い。このため、第1磁気冷凍部(M1)では、各磁気作業物質(11d,11e,11f)において、比較的大きな磁気熱量効果を得ることができる。
 第1磁気冷凍部(M1)で加熱された熱媒体は、第2下流路(53)、第2熱交換器(32)を順に流れる。第2熱交換器(32)では、熱媒体が空気へ放熱し、空気が加熱される。第2熱交換器(32)で放熱した熱媒体は、第2搬送流路(62)を流れ、往復式ポンプ(21)の第2開口(25)に吸い込まれる。
 〈通常冷却動作〉
 図6に示す通常冷却動作では、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)の各磁場変調部(12)が、第2変調動作を行う。搬送機構(20)が第2搬送動作を行う。制御器(100)は、第1制御弁(64)、第2制御弁(66)、第3制御弁(68)、及び第4制御弁(70)を閉じる。
 通常冷却動作では、第1流路(40)を流れる熱媒体が、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)により冷却される。冷却された熱媒体は、吸熱器である第1熱交換器(31)に供給される。第1熱交換器(31)では、熱媒体が空気から吸熱する。なお、図面において、吸熱器となる熱交換器にはドットを付している。
 より詳細には、往復式ポンプ(21)の第2開口(25)から吐出された比較的高温の熱媒体は、第2搬送流路(62)、第1上流路(41)、第1磁気冷凍部(M1)を順に流れる。第1磁気冷凍部(M1)では、第6磁気作業物質(11f)、第5磁気作業物質(11e)、及び第4磁気作業物質(11d)の順で、熱媒体が冷却される。第1磁気冷凍部(M1)では、高温端から低温端に向かって順に、磁気作業物質(11d,11e,11f)のキュリー温度が低い。このため、第1磁気冷凍部(M1)では、各磁気作業物質(11d,11e,11f)において、比較的大きな磁気熱量効果を得ることができる。
 第1磁気冷凍部(M1)で冷却された熱媒体は、第1中間路(42)、第2磁気冷凍部(M2)の内部流路(13)を順に流れる。第2磁気冷凍部(M2)では、第3磁気作業物質(11c)、第2磁気作業物質(11b)、及び第1磁気作業物質(11a)の順で、熱媒体が冷却される。第2磁気冷凍部(M2)では、高温端から低温端に向かって順に、磁気作業物質(11a,11b,11c)のキュリー温度が低い。このため、第2磁気冷凍部(M2)では、各磁気作業物質(11a,11b,11c)において、比較的大きな磁気熱量効果を得ることができる。
 第2磁気冷凍部(M2)で冷却された熱媒体は、第1下流路(43)、第1熱交換器(31)を順に流れる。第1熱交換器(31)では、熱媒体が空気から吸熱し、空気が冷却される。第1熱交換器(31)で吸熱した熱媒体は、第1搬送流路(61)を流れ、往復式ポンプ(21)の第1開口(24)に吸い込まれる。
 〈第1バイパス加熱動作〉
 図7に示す第1バイパス加熱動作では、第1磁気冷凍部(M1)の磁場変調部(12)が、第1変調動作を行う。第2磁気冷凍部(M2)は実質的に機能しない。搬送機構(20)が第1搬送動作を行う。制御器(100)は、第1制御弁(64)、第2制御弁(66)、第4制御弁(70)を閉じ、第3制御弁(68)を開ける。
 第1バイパス加熱動作では、第2流路(50)を流れる熱媒体が、第2磁気冷凍部(M2)をバイパスする。具体的には、第2上流路(51)の熱媒体は、第3バイパス流路(67)、第2中間路(52)、第1磁気冷凍部(M1)を順に流れる。第1磁気冷凍部(M1)で加熱された熱媒体は、第2下流路(53)を流れ、第2熱交換器(32)で空気へ放熱する。
 第1バイパス加熱動作において、第3制御弁(68)を開けた状態では、第2上流路(51)の熱媒体が第2磁気冷凍部(M2)を流れることはほとんどない。第2磁気冷凍部(M2)の内部流路(13)には磁気作業物質(11)が充填されるため、内部流路(13)の流路抵抗が極めて高いからである。
 〈第2バイパス加熱動作〉
 図8に示す第2バイパス加熱動作では、第2磁気冷凍部(M2)の磁場変調部(12)が、第1変調動作を行う。第1磁気冷凍部(M1)は実質的に機能しない。搬送機構(20)が第1搬送動作を行う。制御器(100)は、第1制御弁(64)、第2制御弁(66)、第3制御弁(68)を閉じ、第4制御弁(70)を開ける。
 第2バイパス加熱動作では、第2流路(50)を流れる熱媒体が、第1磁気冷凍部(M1)をバイパスする。具体的には、第2上流路(51)の熱媒体は、第2磁気冷凍部(M2)で加熱された後、第2中間路(52)、第4バイパス流路(69)、第2下流路(53)を流れ、第2熱交換器(32)で空気へ放熱する。
 第2バイパス加熱動作において、第4制御弁(70)を開けた状態では、第2中間路(52)の熱媒体が第1磁気冷凍部(M1)を流れることはほとんどない。第1磁気冷凍部(M1)の内部流路(13)には磁気作業物質(11)が充填されるため、内部流路(13)の流路抵抗が極めて高いからである。
 〈第1バイパス冷却動作〉
 図9に示す第1バイパス冷却動作では、第2磁気冷凍部(M2)の磁場変調部(12)が、第2変調動作を行う。第1磁気冷凍部(M1)は実質的に停止する。搬送機構(20)が第2搬送動作を行う。制御器(100)は、第2制御弁(66)、第3制御弁(68)、第4制御弁(70)を閉じ、第1制御弁(64)を開ける。
 第1バイパス冷却動作では、第1流路(40)を流れる熱媒体が、第1磁気冷凍部(M1)をバイパスする。具体的には、第1上流路(41)の熱媒体は、第1バイパス流路(63)、第1中間路(42)、第2磁気冷凍部(M2)を順に流れる。第2磁気冷凍部(M2)で冷却された熱媒体は、第1下流路(43)を流れ、第1熱交換器(31)で空気から吸熱する。
 第1バイパス冷却動作において、第1制御弁(64)を開けた状態では、第1上流路(41)の熱媒体が第1磁気冷凍部(M1)を流れることはほとんどない。第1磁気冷凍部(M1)の内部流路(13)には磁気作業物質(11)が充填されるため、内部流路(13)の流路抵抗が極めて高いからである。
 〈第2バイパス冷却動作〉
 図10に示す第2バイパス冷却動作では、第1磁気冷凍部(M1)の磁場変調部(12)が、第2変調動作を行う。第2磁気冷凍部(M2)は実質的に停止する。搬送機構(20)が第2搬送動作を行う。制御器(100)は、第1制御弁(64)、第3制御弁(68)、第4制御弁(70)を閉じ、第2制御弁(66)を開ける。
 第2バイパス冷却動作では、第1流路(40)を流れる熱媒体が、第2磁気冷凍部(M2)をバイパスする。具体的には、第1上流路(41)の熱媒体は、第1磁気冷凍部(M1)で冷却された後、第1中間路(42)、第2バイパス流路(65)、第1下流路(43)を流れ、第1熱交換器(31)で空気から吸熱する。
 第2バイパス冷却動作において、第2制御弁(66)を開けた状態では、第1中間路(42)の熱媒体が第2磁気冷凍部(M2)を流れることはほとんどない。第2磁気冷凍部(M2)の内部流路(13)には磁気作業物質(11)が充填されるため、内部流路(13)の流路抵抗が極めて高いからである。
 -実施形態1の効果-
 実施形態1においては以下の作用効果を奏する。
 〈バイパス機構〉
 磁気冷凍装置(1)は、熱媒体が磁気冷凍部(M)を流れる流路と、熱媒体が磁気冷凍部(M)をバイパスする流路とを切り換えるバイパス機構(B)を備える。このため、加熱動作において、ある磁気冷凍部(M)で熱媒体を加熱しないことで、磁気冷凍装置(1)の全体の加熱能力を調節できる。冷却動作において、ある磁気冷凍部(M)で熱媒体を冷却しないことで、磁気冷凍装置(1)の全体の冷却能力を調節できる。
 磁気冷凍装置(1)では、第1流路(40)及び第2流路(50)の双方において、全ての磁気冷凍部(M)に対応してバイパス機構(B)を設けている。具体的には、第1流路(40)には、第1磁気冷凍部(M1)に対応する第1バイパス機構(B1)が設けられる。第1流路(40)には、第2磁気冷凍部(M2)に対応する第2バイパス機構(B2)が設けられる。第2流路(50)には、第2磁気冷凍部(M2)に対応する第3バイパス機構(B3)が設けられる。第2流路(50)には、第1磁気冷凍部(M1)に対応する第4バイパス機構(B4)が設けられる。このため、加熱動作においては、上述した通常加熱動作、第1バイパス加熱動作、及び第2バイパス加熱動作を適宜切り換えることができ、磁気冷凍装置(1)の全体の加熱能力を細かく調節できる。冷却動作においては、上述した通常冷却動作、第1バイパス冷却動作、第2バイパス冷却動作を適宜切り換えることができ、磁気冷凍装置(1)の全体の冷却能力を細かく調節できる。
 〈第1流路及び第2流路〉
 バイパス機構(B)を設けると、バイパス流路(63,65,67,69)に熱媒体が溜まることがある。具体的には、例えば図8に示す第2バイパス加熱動作では、第4バイパス流路(69)に比較的高温の熱媒体が溜まる。この状態から、例えば図6に示す通常冷却動作を行ったとしても、熱媒体は第2流路(50)を流れず、第1流路(40)を流れる。このため、通常冷却動作において、第1熱交換器(31)に供給される熱媒体が、第4バイパス流路(69)に溜まった熱媒体と混合することがない。このため、このような熱媒体の混合に起因して、熱ロスが生じることを抑制できる。
 同様に、例えば図10に示す第2バイパス冷却動作では、第2バイパス流路(65)に比較的低温の熱媒体が溜まる。この状態から、例えば図5に示す通常加熱動作を行ったとしても、熱媒体は第1流路(40)を流れず、第2流路(50)を流れる。このため、通常加熱動作において、第2熱交換器(32)に供給される熱媒体が、第2バイパス流路(65)に溜まった熱媒体と混合することがない。このため、このような熱媒体の混合に起因して、熱ロスが生じることを抑制できる。
 〈キュリー温度〉
 第1流路(40)及び第2流路(50)には、複数(本例では2つ)の磁気冷凍部(M)のキュリー温度の平均値が順に高くなるように、複数の磁気冷凍部(M)が直列に接続される。具体的には、図3に示すように、第2磁気冷凍部(M2)の全ての磁気作業物質(11)のキュリー温度の平均値T2は、第1磁気冷凍部(M1)の全ての磁気作業物質(11)のキュリー温度の平均値T1よりも高い。通常加熱動作では、第2流路(50)の熱媒体が第2磁気冷凍部(M2)、第1磁気冷凍部(M1)を順に流れるため、各磁気冷凍部(M)を流れる熱媒体の温度を、それらのキュリー温度の平均値に近づけることができる。このため、各磁気冷凍部(M)の磁気熱量効果を増大でき、加熱能力を増大できる。
 冷却動作では、第1流路(40)の熱媒体が第1磁気冷凍部(M1)、第2磁気冷凍部(M2)を順に流れるため、各磁気冷凍部(M)を流れる熱媒体の温度を、それらのキュリー温度の平均値に近づけることができる。このため、各磁気冷凍部(M)の磁気熱量効果を増大でき、冷却能力を増大できる。
 各磁気冷凍部(M)の各々は、それらの低温端から高温端に向かって、キュリー温度が順に高くなる複数種の磁気作業物質(11)を有するカスケード式である。このため、加熱動作では、第2流路(50)の熱媒体が各磁気冷凍部(M)の低温端から高温端を順に流れることで、各磁気作業物質(11)を流れる熱媒体の温度を、それらのキュリー温度に近づけることができる。このため、各磁気作業物質(11)の磁気熱量効果を増大でき、加熱能力を増大できる。
 冷却動作では、第1流路(40)の熱媒体が各磁気作業物質(11)の高温端から低温端を順に流れることで、各磁気作業物質(11)を流れる熱媒体の温度を、それらのキュリー温度に近づけることができる。このため、各磁気作業物質(11)の磁気熱量効果を増大でき、冷却能力を増大できる。
 〈動作温度域〉
 図4に示すように、隣り合う第1磁気冷凍部(M1)と第2磁気冷凍部(M2)とでは、それらの動作温度域の一部が重なる。具体的には、隣り合う磁気冷凍部(M)の端部側の磁気作業物質(11c,11d)の動作温度域の重なる領域Aについて、その領域Aの磁気熱量効果の最大値Epが、該隣り合う端部側の磁気作業物質(11c,11d)の磁気熱量効果の最大値の平均値Eave の1/2以上である。このため、通常動作(熱媒体が磁気冷凍部(M)を流れる動作)からバイパス動作への切換に起因して、ある磁気冷凍部(M)を流れる熱媒体の温度が変化した場合にも、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 具体的には、例えば図5に示す通常加熱動作の後、所定の冷却動作を介して、図7に示す第1バイパス加熱動作が行われたとする。この場合、第2流路(50)の熱媒体は、第2磁気冷凍部(M2)をバイパスし、第1磁気冷凍部(M1)を流れる。このため、第1バイパス加熱動作中に第1磁気冷凍部(M1)を流れる熱媒体の温度は、通常加熱動作中に第1磁気冷凍部(M1)を流れる熱媒体の温度よりも低くなる。これに対し、第1磁気冷凍部(M1)の第4磁気作業物質(11d))の動作温度域は、第2磁気冷凍部(M2)の第3磁気作業物質(11c)の動作温度域と重なるため、第1バイパス加熱動作中において、第1磁気冷凍部(M1)を流れる熱媒体の温度が、その動作温度域から外れてしまうことを抑制できる。特に、本実施形態では、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)が、Ep≧((Em1+Em2)/2)×(1/2)の関係を満たすように、両者の動作温度域が重なる。これにより、第1バイパス加熱動作中において、第1磁気冷凍部(M1)を流れる熱媒体の温度が、その動作温度域から外れてしまうことを十分に抑制できる。
 同様に、例えば図6に示す通常冷却動作の後、所定の加熱動作を介して、図9に示す第1バイパス冷却動作が行われたとする。この場合、第1流路(40)の熱媒体は、第1磁気冷凍部(M1)をバイパスし、第2磁気冷凍部(M2)を流れる。このため、第1バイパス冷却動作中に第2磁気冷凍部(M2)を流れる熱媒体の温度は、通常冷却動作中に第1磁気冷凍部(M1)を流れる熱媒体の温度よりも高くなる。これに対し、第2磁気冷凍部(M2)の第3磁気作業物質(11c))の動作温度域は、第1磁気冷凍部(M1)の第4磁気作業物質(11d))の動作温度域と重なるため、第1バイパス冷却動作中において、第2磁気冷凍部(M2)を流れる熱媒体の温度が、その動作温度域から外れてしまうことを抑制できる。特に、本実施形態では、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)が、Ep≧((Em1+Em2)/2)×(1/2)の関係を満たすように、両者の動作温度域が重なる。これにより、第1バイパス冷却動作中において、第2磁気冷凍部(M2)を流れる熱媒体の温度が、その動作温度域から外れてしまうことを十分に抑制できる。
 加えて、本構成により、バイパス動作から通常動作への切換に起因して、ある磁気冷凍部(M)を流れる熱媒体の温度が変化した場合にも、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 《実施形態2》
 実施形態2に係る磁気冷凍装置(1)は、上記実施形態1において、磁気冷凍部(M)の構成が異なる。
 図11に示すように、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)は、カスケード式である。実施形態2では、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)の各磁気作業物質(11)の特性が異なる。各磁気冷凍部(M)では、複数種(本例では3種)の磁気作業物質(11)のうち、磁気作業物質(11a,11c,11d,11f)の動作温度域の幅が、磁気作業物質(11b,11e)の動作温度域の幅よりも広い。
 具体的には、第2磁気冷凍部(M2)では、第1磁気作業物質(11a)の動作温度域の幅Waが、第2磁気作業物質(11b)の動作温度域の幅Wbよりも広い。第3磁気作業物質(11c)の動作温度域の幅Wcが、第2磁気作業物質(11b)の動作温度域の幅Wbよりも広い。
 第2磁気冷凍部(M2)の第3磁気作業物質(11c)は、隣接する他の磁気冷凍部(第1磁気冷凍部(M1))側の端部に対応する、端部側磁気作業物質である。第2磁気冷凍部(M2)の第2磁気作業物質(11b)は、該第2磁気冷凍部(M2)の両端の間の中間部に対応する、中間側磁気作業物質である。
 第1磁気冷凍部(M1)では、第4磁気作業物質(11d)の動作温度域の幅Wdが、第5磁気作業物質(11e)の動作温度域の幅Weよりも広い。第6磁気作業物質(11f)の動作温度域の幅Wfが、第5磁気作業物質(11e)の動作温度域の幅Weよりも広い。
 第1磁気冷凍部(M1)の第4磁気作業物質(11d)は、隣接する他の磁気冷凍部(第2磁気冷凍部(M2))側の端部に対応する、端部側磁気作業物質である。第1磁気冷凍部(M1)の第5磁気作業物質(11e)は、該第1磁気冷凍部(M1)の両端の間の中間部に対応する中間側磁気作業物質である。
 このように、端部側磁気作業物質(11c,11d)の動作温度域の幅を、中間側磁気作業物質(11b,11e)の動作温度域の幅よりも広くすることで、バイパス動作において、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 具体的には、例えば図5に示す通常加熱動作の後、所定の冷却動作を介して、図7に示す第1バイパス加熱動作が行われたとする。この場合、上述したように、第1磁気冷凍部(M1)を流れる熱媒体の温度は、通常加熱動作中に第1磁気冷凍部(M1)を流れる熱媒体の温度よりも低くなる。これに対し、第1磁気冷凍部(M1)の第4磁気作業物質(11d)の動作温度域を比較的広くしているため、第1バイパス加熱動作中において、第1磁気冷凍部(M1)を流れる熱媒体の温度が、その動作温度域から外れてしまうことを抑制できる。
 同様に、例えば図6に示す通常冷却動作の後、所定の加熱動作を介して、図9に示す第1バイパス冷却動作が行われたとする。この場合、上述したように、第1バイパス冷却動作中に第2磁気冷凍部(M2)を流れる熱媒体の温度は、通常冷却動作中に第1磁気冷凍部(M1)を流れる熱媒体の温度よりも高くなる。これに対し、第2磁気冷凍部(M2)の第3磁気作業物質(11c)の動作温度域を比較的広くしているため、第1バイパス冷却動作中において、第2磁気冷凍部(M2)を流れる熱媒体の温度が、その動作温度域から外れてしまうことを十分に抑制できる。
 加えて、本構成により、バイパス動作から通常動作への切換に起因して、ある磁気冷凍部(M)を流れる熱媒体の温度が変化した場合にも、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 なお、本例において、第1磁気作業物質(11a)の動作温度域の幅Waを第2磁気作業物質(11b)の動作温度域の幅Wbと同じ、または狭くしてもよい。第6磁気作業物質(11f)の動作温度域の幅Wfを第5磁気作業物質(11e)の動作温度域の幅Weと同じ、または狭くしてもよい。
 なお、本例において、磁気冷凍部(M)は、複数の中間側磁気作業物質を有してもよい。この場合には、端部側磁気作業物質の動作温度域を、複数の中間側磁気作業物質の少なくとも1つの動作温度域よりも広くするとよい。好ましくは、端部側磁気作業物質の動作温度域を、複数の中間側磁気作業物質の全ての動作温度域よりも広くするとよい。
 《実施形態2の変形例》
 実施形態2の変形例は、実施形態2と磁気冷凍部(M)の構成が異なる。実施形態2の変形例の各磁気冷凍部(M)は、カスケード式である。各磁気冷凍部(M)では、端部側磁気作業物質(11c,11d)の磁気熱量効果の最大値が、中間側磁気作業物質(11b,11e)の磁気熱量効果の最大値より大きい。具体的には、第3磁気作業物質(11c)の磁気熱量効果の最大値が、第2磁気作業物質(11b)の磁気熱量効果の最大値よりも大きい。第4磁気作業物質(11d)の磁気熱量効果の最大値が、第5磁気作業物質(11e)の磁気熱量効果の最大値よりも大きい。
 このように、端部側磁気作業物質(11c,11d)の磁気熱量効果の最大値を、中間側磁気作業物質(11b,11e)の磁気熱量効果の最大値よりも大きくすることで、バイパス動作において、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 具体的には、例えば図5に示す通常加熱動作の後、所定の冷却動作を介して、図7に示す第1バイパス加熱動作が行われたとする。この場合、上述したように、第1磁気冷凍部(M1)を流れる熱媒体の温度は、通常加熱動作中に第1磁気冷凍部(M1)を流れる熱媒体の温度よりも低くなる。これに対し、第1磁気冷凍部(M1)の第4磁気作業物質(11d)の磁気熱量効果は、比較的大きいため、第4磁気作業物質(11d)により熱媒体を十分に加熱できる。この結果、第1磁気冷凍部(M1)を流れる熱媒体の温度が、第1磁気冷凍部(M1)の動作温度域から外れてしまうことを抑制できる。
 例えば図6に示す通常冷却動作の後、所定の加熱動作を介して、図9に示す第1バイパス冷却動作が行われたとする。この場合、上述したように、第2磁気冷凍部(M2)を流れる熱媒体の温度は、通常冷却動作中に第2磁気冷凍部(M2)を流れる熱媒体の温度よりも高くなる。これに対し、第2磁気冷凍部(M2)の第3磁気作業物質(11c)の磁気熱量効果は、比較的大きいため、第3磁気作業物質(11c)により熱媒体を十分に冷却できる。この結果、第2磁気冷凍部(M2)を流れる熱媒体の温度が、第2磁気冷凍部(M2)の動作温度域から外れてしまうことを抑制できる。
 加えて、本構成により、バイパス動作から通常動作への切換に起因して、ある磁気冷凍部(M)を流れる熱媒体の温度が変化した場合にも、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 各磁気冷凍部(M)において、端部側磁気作業物質(11c,11d)の磁気熱量効果の最大値を、中間側磁気作業物質(11b,11e)の磁気熱量効果の最大値より大きくする具体例として、以下の構成が挙げられる。
 1)磁束密度の変化量
 端部側磁気作業物質(11c,11d)の磁束密度の変化量を、中間側磁気作業物質(11b,11e)の磁束密度の変化量よりも大きくする。これにより、端部側磁気作業物質(11c,11d)の磁気熱量効果の最大値を、中間側磁気作業物質(11b,11e)の磁気熱量効果の最大値より大きくできる。
 2)磁気作業物質の断熱温度変化ΔTad
 端部側磁気作業物質(11c,11d)の断熱温度変化ΔTadを、中間側磁気作業物質(11b,11e)の断熱温度変化ΔTadよりも大きくする。これにより、端部側磁気作業物質(11c,11d)の磁気熱量効果の最大値を、中間側磁気作業物質(11b,11e)の磁気熱量効果の最大値より大きくできる。
 3)磁気作業物質のエントロピー変化ΔSm
 端部側磁気作業物質(11c,11d)のエントロピー変化ΔSmを、中間側磁気作業物質(11b,11e)のエントロピー変化ΔSmよりも大きくする。これにより、端部側磁気作業物質(11c,11d)の磁気熱量効果の最大値を、中間側磁気作業物質(11b,11e)の磁気熱量効果の最大値よりも大きくできる。
 4)磁気作業物質の重量
 端部側磁気作業物質(11c,11d)の重量を、中間側磁気作業物質(11b,11e)の重量よりも大きくする。これにより、端部側磁気作業物質(11c,11d)の磁気熱量効果の最大値を、中間側磁気作業物質(11b,11e)の磁気熱量効果の最大値よりも大きくできる。
 端部側磁気作業物質(11c,11d)の重量を、中間側磁気作業物質(11b,11e)の重量よりも大きくする具体例として、以下の構成がある。
 4-1)磁気作業物質の充填率
 ベッド(10)内の端部側磁気作業物質(11c,11d)の充填率を、ベッド(10)内の中間側磁気作業物質(11b,11e)の充填率よりも大きくする。これにより、端部側磁気作業物質(11c,11d)の重量を、中間側磁気作業物質(11b,11e)の重量よりも大きくできる。
 4-2)磁気作業物質の容積
 ベッド(10)内の端部側磁気作業物質(11c,11d)の容積を、ベッド(10)内の中間側磁気作業物質(11b,11e)の容積よりも大きくする。これにより、端部側磁気作業物質(11c,11d)の重量を、中間側磁気作業物質(11b,11e)の重量よりも大きくできる。ここでいう容積は、厳密には、磁気作業物質(11)内に形成される空隙を含んだ「かさ容積」である。
 《実施形態3》
 図12に示す磁気冷凍装置(1)は、2つの蓄熱部(81,82)を備える。2つの蓄熱部(81,82)は、第1流路(40)に接続される第1蓄熱部(81)と、第2流路(50)に接続される第2蓄熱部(82)とで構成される。各蓄熱部(81,82)は、熱媒体を貯留するリザーバ(蓄熱容器)で構成される。
 第1蓄熱部(81)は、第1流路(40)の第1中間路(42)に設けられる。第1蓄熱部(81)は、第1中間路(42)における、第1バイパス流路(63)の流出端と第2バイパス流路(65)の流入端との間に設けられる。第1蓄熱部(81)は、第1バイパス流路(63)を流れた熱媒体の熱を蓄える。第2蓄熱部(82)は、第2流路(50)の第2中間路(52)に設けられる。第2蓄熱部(82)は、第2中間路(52)における、第3バイパス流路(67)の流出端と第4バイパス流路(69)の流入端との間に設けられる。
 このように蓄熱部(81,82)を設けることで、バイパス動作時において、磁気冷凍部(M)を流れる熱媒体の温度が、磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 通常加熱動作から第1バイパス加熱動作に切り換えると、比較的低温の熱媒体が第3バイパス流路(67)を経由して第2中間路(52)を流れる。第2中間路(52)の熱媒体は、第2蓄熱部(82)に流入する。
 第2蓄熱部(82)には、その直前の通常加熱動作において、第2磁気冷凍部(M2)で加熱された熱媒体が溜まっている。このため、第3バイパス流路(67)を経由して第2蓄熱部(82)に流入した熱媒体は、その温度が上昇する。よって、第1磁気冷凍部(M1)を流れる熱媒体の温度は、第2バイパス流路(65)を流れる熱媒体の温度より高くなる。したがって、第1磁気冷凍部(M1)を流れる熱媒体の温度が、第1磁気冷凍部(M1)の動作温度域から外れてしまうことを抑制できる。
 通常冷却動作から第1バイパス冷却動作に切り換えると、比較的高温の熱媒体が第1バイパス流路(63)を経由して第1中間路(42)を流れる。第1中間路(42)の熱媒体は、第1蓄熱部(81)に流入する。
 第1蓄熱部(81)には、その直前の通常冷却動作において、第1磁気冷凍部(M1)で冷却された熱媒体が溜まっている。このため、第1バイパス流路(63)を経由して第1蓄熱部(81)に流入した熱媒体は、その温度が低下する。よって、第2磁気冷凍部(M2)を流れる熱媒体の温度は、第1バイパス流路(63)を流れる熱媒体の温度より低くなる。したがって、第2磁気冷凍部(M2)を流れる熱媒体の温度が、第2磁気冷凍部(M2)の動作温度域から外れてしまうことを抑制できる。
 加えて、本構成により、バイパス動作から通常動作への切換に起因して、ある磁気冷凍部(M)を流れる熱媒体の温度が変化した場合にも、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 《実施形態3の変形例1》 
 図13に示す実施形態3の変形例1の磁気冷凍装置(1)は、実施形態3の磁気冷凍装置(1)と、蓄熱部(81,82)、及びその周辺の構成が異なる。
 熱媒体回路(C)には、第1三方弁(91)、第2三方弁(92)、第3三方弁(93)、及び第4三方弁(94)が接続される。各三方弁(91,92,93,94)のそれぞれは、3つのポートを有する。3つのポートのそれぞれは、開閉可能に構成される。
 第1三方弁(91)には、第1上流部(63a)、第1下流部(63b)、及び第1蓄熱流路(75)が接続される。第2三方弁(92)には、第2上流部(65a)、第2下流部(65b)、及び第1蓄熱流路(75)が接続される。第3三方弁(93)には、第3上流部(67a)、第3下流部(67b)、及び第2蓄熱流路(76)が接続される。第4三方弁(94)には、第4上流部(69a)、第4下流部(69b)、及び第2蓄熱流路(76)が接続される。
 通常加熱動作では、第3三方弁(93)が、第3上流部(67a)側のポート、及び第3下流部(67b)側のポートを閉じる。第4三方弁(94)が、第4上流部(69a)側のポートを閉じる。第2流路(50)の熱媒体は、第2磁気冷凍部(M2)、第1磁気冷凍部(M1)を順に流れる。この熱媒体は、第2蓄熱部(82)を流れない。したがって、例えば通常加熱動作の開始時において、第2蓄熱部(82)の熱容量の影響により、第2熱交換器(32)の放熱能力がなかなか増大しないことを抑制できる。
 第1バイパス加熱動作では、第3三方弁(93)が、第3上流部(67a)側のポート、及び第2蓄熱流路(76)側のポートを開け、第3下流部(67b)側のポートを閉じる。第4三方弁(94)が、第2蓄熱流路(76)側のポート、及び第4上流部(69a)側のポートを開け、第4下流部(69b)側のポートを閉じる。第2流路(50)の比較的低温の熱媒体は、第3上流部(67a)、第2蓄熱流路(76)の第2蓄熱部(82)、第4上流部(69a)を順に流れた後、第1磁気冷凍部(M1)を流れる。第2蓄熱部(82)の熱容量の影響により、第1磁気冷凍部(M1)を流れる熱媒体の温度が急激に低下することを抑制できる。したがって、第1磁気冷凍部(M1)を流れる熱媒体の温度が、第1磁気冷凍部(M1)の動作温度域から外れてしまうことを抑制できる。
 通常冷却動作では、第1三方弁(91)が、第1上流部(63a)側のポート、及び第1下流部(63b)側のポートを閉じる。第2三方弁(92)が、第2上流部(65a)側のポートを閉じる。第1流路(40)の熱媒体は、第1磁気冷凍部(M1)、第2磁気冷凍部(M2)を順に流れる。この熱媒体は、第1蓄熱部(81)を流れない。したがって、例えば通常冷却動作の開始時において、第1蓄熱部(81)の熱容量の影響により、第1熱交換器(31)の冷却能力がなかなか増大しないことを抑制できる。
 第1バイパス冷却動作では、第1三方弁(91)が、第1上流部(63a)側のポート、及び第1蓄熱流路(75)側のポートを開け、第1下流部(63b)側のポートを閉じる。第2三方弁(92)が、第1蓄熱流路(75)側のポート、及び第2上流部(65a)側のポートを開け、第2下流部(65b)側のポートを閉じる。第1流路(40)の比較的高温の熱媒体は、第1上流部(63a)、第1蓄熱流路(75)の第1蓄熱部(81)、第2上流部(65a)を順に流れた後、第2磁気冷凍部(M2)を流れる。第1蓄熱部(81)の熱容量の影響により、第2磁気冷凍部(M2)を流れる熱媒体の温度が急激に上昇することを抑制できる。したがって、第2磁気冷凍部(M2)を流れる熱媒体の温度が、第1磁気冷凍部(M1)の動作温度域から外れてしまうことを抑制できる。
 加えて、本構成により、バイパス動作から通常動作への切換に起因して、ある磁気冷凍部(M)を流れる熱媒体の温度が変化した場合にも、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 《実施形態3の変形例2》 
 図14に示す実施形態3の変形例2は、実施形態3の磁気冷凍装置(1)と、蓄熱部及びその周辺の構成が異なる。
 第1磁気冷凍部(M1)には、第1蓄熱ユニット(83)と第2蓄熱ユニット(84)とが設けられる。第1蓄熱ユニット(83)及び第2蓄熱ユニット(84)は、リザーバで構成される。第1蓄熱ユニット(83)は、第1磁気冷凍部(M1)の第1流路(40)側の流入部に設けられる。第2蓄熱ユニット(84)は、第1磁気冷凍部(M1)の第2流路(50)側の流入部に設けられる。
 第2磁気冷凍部(M2)には、第3蓄熱ユニット(85)と第4蓄熱ユニット(86)とが設けられる。第3蓄熱ユニット(85)及び第4蓄熱ユニット(86)は、リザーバで構成される。第3蓄熱ユニット(85)は、第2磁気冷凍部(M2)の第1流路(40)側の流入部に設けられる。第4蓄熱ユニット(86)は、第2磁気冷凍部(M2)の第2流路(50)側の流入部に設けられる。
 第2蓄熱ユニット(84)及び第3蓄熱ユニット(85)は、蓄熱部に対応する。なお、第1蓄熱ユニット(83)及び第4蓄熱ユニット(86)を省略した構成としてもよい。
 通常加熱動作から第1バイパス加熱動作に切り換えると、比較的低温の熱媒体が第3バイパス流路(67)を経由して第2中間路(52)を流れる。第2中間路(52)の熱媒体は、第2蓄熱ユニット(84)を通過後に、第1磁気冷凍部(M1)を流れる。このため、第1磁気冷凍部(M1)を流れる熱媒体の温度が、第1磁気冷凍部(M1)の動作温度域から外れることを抑制できる。
 通常冷却動作から第1バイパス冷却動作に切り換えると、比較的高温の熱媒体が第1バイパス流路(63)を経由して第1中間路(42)を流れる。第1中間路(42)の熱媒体は、第3蓄熱ユニット(85)を通過後に、第2磁気冷凍部(M2)を流れる。このため、第2磁気冷凍部(M2)を流れる熱媒体の温度が、第2磁気冷凍部(M2)の動作温度域から外れることを抑制できる。
 加えて、本構成により、バイパス動作から通常動作(熱媒体が磁気冷凍部(M)を流れる動作)への切換に起因して、ある磁気冷凍部(M)を流れる熱媒体の温度が変化した場合にも、熱媒体の温度が磁気冷凍部(M)の動作温度域から外れてしまうことを抑制できる。
 なお、上述した実施形態3、及びその変形例に係る蓄熱部は、蓄熱材料であってもよい。蓄熱材料は、熱容量の大きい金属材料や、相変化材料で構成される。蓄熱材料には、熱媒体が流れる流路が形成される。この流路を流れる熱媒体と蓄熱材料とが熱交換する。
 蓄熱部は、熱媒体が貯留されるリザーバに上述した蓄熱材料を設けた蓄熱ユニットであってもよい。
 《実施形態4》
 実施形態4に係る磁気冷凍装置(1)は、冷房運転と暖房運転とを切り換えて行う。図15に示すように、磁気冷凍装置(1)の熱媒体回路(C)は、室内熱交換器(33)、室外熱交換器(34)、第1四方切換弁(35)、及び第2四方切換弁(36)を有する。室内熱交換器(33)は、室内に設置される。室外熱交換器(34)は、室外に設置される。
 第1四方切換弁(35)及び第2四方切換弁(36)は、それぞれ4つのポート(P1,P2,P3,P4)を有する。第1四方切換弁(35)の第1ポート(P1)は、第1中継路(71)を介して第1搬送流路(61)と繋がる。第1四方切換弁(35)の第2ポート(P2)は、室外熱交換器(34)の一端と繋がる。第1四方切換弁(35)の第3ポート(P3)は、第2中継路(72)を介して第2搬送流路(62)と繋がる。第1四方切換弁(35)の第4ポート(P4)は、室内熱交換器(33)の一端と繋がる。第2搬送流路(62)の流出端は、第1上流路(41)と繋がる。
 第2四方切換弁(36)の第1ポート(P1)は、第1流路(40)の第1下流路(43)と繋がる。第2四方切換弁(36)の第2ポート(P2)は、室外熱交換器(34)の他端と繋がる。第2四方切換弁(36)の第3ポート(P3)は、第3中継路(73)を介して第2流路(50)の第2下流路(53)と繋がる。第2四方切換弁(36)の第4ポート(P4)は、室内熱交換器(33)の他端と繋がる。
 第1四方切換弁(35)及び第2四方切換弁(36)は、第1状態(図15の実線で示す状態)と第2状態(図16の破線で示す状態)とにそれぞれ切り換わる。第1状態の各四方切換弁(35,36)では、第1ポート(P1)と第2ポート(P2)とが連通し且つ第3ポート(P3)と第4ポート(P4)とが連通する。第2状態の各四方切換弁(35,36)では、第1ポート(P1)と第4ポート(P4)とが連通し且つ第2ポート(P2)と第3ポート(P3)とが連通する。
 -運転動作-
 磁気冷凍装置(1)の運転動作について説明する。
 〈冷房運転〉
 冷房運転では、第1四方切換弁(35)及び第2四方切換弁(36)がそれぞれ第2状態となる。冷房運転では、第1動作と第2動作とが交互に繰り返し行われる。
 図16に示す第1動作では、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)の各磁場変調部(12)が、第1変調動作を行う。搬送機構(20)が第1搬送動作を行う。通常の第1動作では、制御器(100)は、第1制御弁(64)、第2制御弁(66)、第3制御弁(68)、及び第4制御弁(70)を閉じる。
 第1動作では、第2流路(50)において、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)により加熱された熱媒体が、第2熱交換部に対応する室外熱交換器(34)へ供給される。室外熱交換器(34)では、熱媒体が室外空気へ放熱する。
 第1動作において第3制御弁(68)を開けることで、熱媒体が第2磁気冷凍部(M2)をバイパスし、第1磁気冷凍部(M1)で加熱されるバイパス動作が行われる。第1動作において第4制御弁(70)を開けることで、熱媒体が第2磁気冷凍部(M2)で加熱され、第1磁気冷凍部(M1)をバイパスするバイパス動作が行われる。
 図17に示す第2動作では、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)の各磁場変調部(12)が、第2変調動作を行う。搬送機構(20)が第2搬送動作を行う。通常の第2動作では、制御器(100)は、第1制御弁(64)、第2制御弁(66)、第3制御弁(68)、及び第4制御弁(70)を閉じる。
 第2動作では、第1流路(40)において、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)により冷却された熱媒体が、第1熱交換部に対応する室内熱交換器(33)へ供給される。室内熱交換器(33)では、室内空気が熱媒体によって冷却される。
 第2動作において第1制御弁(64)を開けることで、熱媒体が第1磁気冷凍部(M1)をバイパスし、第2磁気冷凍部(M2)で冷却されるバイパス動作が行われる。第2動作において第2制御弁(66)を開けることで、熱媒体が第1磁気冷凍部(M1)で冷却され、第2磁気冷凍部(M2)をバイパスするバイパス動作が行われる。
 〈暖房運転〉
 暖房運転では、第1四方切換弁(35)及び第2四方切換弁(36)がそれぞれ第1状態となる。暖房運転では、第3動作と第4動作とが交互に繰り返し行われる。
 図18に示す第3動作では、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)の各磁場変調部(12)が、第1変調動作を行う。搬送機構(20)が第1搬送動作を行う。通常の第3動作では、制御器(100)は、第1制御弁(64)、第2制御弁(66)、第3制御弁(68)、及び第4制御弁(70)を閉じる。
 第3動作では、第2流路(50)において、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)により加熱された熱媒体が、第2熱交換部に対応する室内熱交換器(33)へ供給される。室内熱交換器(33)では、室内空気が熱媒体によって加熱される。
 第3動作において第3制御弁(68)を開けることで、熱媒体が第2磁気冷凍部(M2)をバイパスし、第1磁気冷凍部(M1)で加熱されるバイパス動作が行われる。第3動作において第4制御弁(70)を開けることで、熱媒体が第2磁気冷凍部(M2)で加熱され、第1磁気冷凍部(M1)をバイパスするバイパス動作が行われる。
 図19に示す第4動作では、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)の各磁場変調部(12)が、第2変調動作を行う。搬送機構(20)が第2搬送動作を行う。通常の第4動作では、制御器(100)は、第1制御弁(64)、第2制御弁(66)、第3制御弁(68)、及び第4制御弁(70)を閉じる。
 第4動作では、第1流路(40)において、第1磁気冷凍部(M1)及び第2磁気冷凍部(M2)により冷却された熱媒体が、第1熱交換部に対応する室外熱交換器(34)へ供給される。室外熱交換器(34)では、熱媒体が室外空気から吸熱する。
 第4動作において第1制御弁(64)を開けることで、熱媒体が第1磁気冷凍部(M1)をバイパスし、第2磁気冷凍部(M2)で冷却されるバイパス動作が行われる。第4動作において第2制御弁(66)を開けることで、熱媒体が第1磁気冷凍部(M1)で冷却され、第2磁気冷凍部(M2)をバイパスするバイパス動作が行われる。
 《他の変形例》
 上述した実施形態においては、適用可能な範囲において、以下の構成を採用してもよい。
 〈変形例A-バイパス機構(1)〉
 図20に示すように、変形例Aに係るバイパス機構(B)は、上述した実施形態において、制御弁が付加される。第1バイパス機構(B1)は、第5制御弁(95)を有する。第5制御弁(95)は、第1流路(40)における第1磁気冷凍部(M1)の流入側に設けられる。第2バイパス機構(B2)は、第6制御弁(96)を有する。第6制御弁(96)は、第1流路(40)における第2磁気冷凍部(M2)の流入側に設けられる。第3バイパス機構(B3)は、第7制御弁(97)を有する。第7制御弁(97)は、第2流路(50)における第2磁気冷凍部(M2)の流入側に設けられる。第4バイパス機構(B4)は、第8制御弁(98)を有する。第8制御弁(98)は、第2流路(50)における第1磁気冷凍部(M1)の流入側に設けられる。
 第1バイパス機構(B1)によりバイパス動作を行う際には、第1制御弁(64)を開け、第5制御弁(95)を閉じる。これにより、第1流路(40)の熱媒体が、第1磁気冷凍部(M1)を確実にバイパスする。
 第2バイパス機構(B2)によりバイパス動作を行う際には、第2制御弁(66)を開け、第6制御弁(96)を閉じる。これにより、第1流路(40)の熱媒体が、第2磁気冷凍部(M2)を確実にバイパスする。
 第3バイパス機構(B3)によりバイパス動作を行う際には、第3制御弁(68)を開け、第7制御弁(97)を閉じる。これにより、第2流路(50)の熱媒体が、第2磁気冷凍部(M2)を確実にバイパスする。
 第4バイパス機構(B4)によりバイパス動作を行う際には、第4制御弁(70)を開け、第8制御弁(98)を閉じる。これにより、第2流路(50)の熱媒体が、第1磁気冷凍部(M1)を確実にバイパスする。
 第5制御弁(95)、第6制御弁(96)、第7制御弁(97)、及び第8制御弁(98)は、開閉弁であってもよいし、流量調節弁であってもよい。
 〈変形例B-バイパス機構(2)〉
 図21に示すように、変形例Bに係るバイパス機構(B)は、制御弁に代わって、三方弁を有する。第1バイパス機構(B1)は、第5三方弁(55)を有する。第5三方弁(55)は、第1上流路(41)の熱媒体を、第1磁気冷凍部(M1)側のみに供給する状態と、第1バイパス流路(63)側のみに供給する状態とに切り換わる。第2バイパス機構(B2)は、第6三方弁(56)を有する。第6三方弁(56)は、第1中間路(42)の熱媒体を、第2磁気冷凍部(M2)側のみに供給する状態と、第2バイパス流路(65)側のみに供給する状態とに切り換わる。第3バイパス機構(B3)は、第7三方弁(57)を有する。第7三方弁(57)は、第2上流路(51)の熱媒体を、第2磁気冷凍部(M2)側のみに供給する状態と、第3バイパス流路(67)側のみに供給する状態とに切り換わる。第4バイパス機構(B4)は、第8三方弁(58)を有する。第8三方弁(58)は、第2中間路(52)の熱媒体を、第1磁気冷凍部(M1)側のみに供給する状態と、第4バイパス流路(69)側のみに供給する状態とに切り換わる。
 なお、これらの三方弁(55,56,57,58)は、磁気冷凍部(M)側への流量と、バイパス流路(63,65,67,69)側への流量の比率を調節できる構成であってもよい。
 〈変形例C-搬送機構〉
 図22に示すように、変形例Cに係る搬送機構(20)は、一過式のポンプ(26)と、切換部である四方切換弁(27)とを有する。四方切換弁(27)は、第1状態(図22の実線で示す状態)と、第2状態(図22の破線で示す状態)とに切り換わる。第1状態の四方切換弁(27)は、ポンプ(26)の吐出部と第1搬送流路(61)とを連通させ且つポンプ(26)の吸入部と第2搬送流路(62)とを連通させる。第2状態の四方切換弁(27)は、ポンプ(26)の吐出部と第2搬送流路(62)とを連通させ且つポンプ(26)の吸入部と第1搬送流路(61)とを連通させる。
 第1搬送動作では、ポンプ(26)が運転状態となり且つ四方切換弁(27)が第1状態となる。第2搬送動作では、ポンプ(26)が運転状態となり且つ四方切換弁(27)が第2状態となる。搬送機構(20)は、第1搬送動作と第2搬送動作とを交互に繰り返し行う。
 〈変形例D-3つ以上の磁気冷凍部〉
 第1流路(40)及び第2流路(50)に3つ以上の磁気冷凍部(M)を直列に接続してもよい。図23に示す例では、第1流路(40)及び第2流路(50)に3つの磁気冷凍部(M)が設けられる。第1流路(40)には、3つの磁気冷凍部(M)にそれぞれ対応するように、3つのバイパス機構(B)が設けられる。第2流路(50)には、3つの磁気冷凍部(M)に対応するようにバイパス機構(B)が設けられる。
 〈変形例E-並列回路〉
 図24に示すように、変形例Eに係る熱媒体回路(C)には、複数の回路が並列に接続される。複数の回路は、第1回路(C1)と第2回路(C2)とで構成される。熱媒体回路(C)に3つ以上の回路を並列に接続してもよい。第1回路(C1)には、上述した実施形態と同様、第1流路(40)、第2流路(50)、複数の磁気冷凍部(M)、及び複数のバイパス機構(B)が設けられる。同様に、第2回路(C2)には、第1流路(40)、第2流路(50)、複数の磁気冷凍部(M)、及び複数のバイパス機構(B)が設けられる。第1回路(C1)と第2回路(C2)とには、第1熱交換器(31)、第2熱交換器(32)、第1搬送流路(61)、及び第2搬送流路(62)がそれぞれ接続される。
 通常加熱動作では、第1搬送流路(61)の熱媒体が、第1回路(C1)と第2回路(C2)とに分流する。第1回路(C1)及び第2回路(C2)では、熱媒体が第2流路(50)を流れ、複数の磁気冷凍部(M)によって加熱される。第1回路(C1)及び第2回路(C2)で加熱された熱媒体は、合流した後、第2熱交換器(32)へ供給される。
 通常冷却動作では、第2搬送流路(62)の熱媒体が、第1回路(C1)と第2回路(C2)とに分流する。第1回路(C1)及び第2回路(C2)では、熱媒体が第1流路(40)を流れ、複数の磁気冷凍部(M)によって冷却される。第1回路(C1)及び第2回路(C2)で冷却された熱媒体は、合流した後、第1熱交換器(31)へ供給される。
 加熱動作及び冷却動作では、バイパス機構(B)の切換により、バイパス動作が適宜行われる。
 〈変形例F-単層式〉
 図25に示すように、磁気冷凍部(M)は、1つの磁気作業物質(11)を有する単層式であってもよい。
 第1流路(40)及び第2流路(50)には、複数の磁気冷凍部(M)の磁気作業物質(11)のキュリー温度が順に高くなるように、複数の磁気冷凍部(M)が直列に接続される。これにより、各磁気冷凍部(M)における磁気熱量効果を向上できる。
 隣り合う磁気冷凍部(M)は、それぞれの磁気作業物質(11)の動作温度域の一部が重なる。こうすると、バイパス動作の切り換えに伴い磁気冷凍部(M)に流入する熱媒体の温度が変化しても、熱媒体の温度が磁気作業物質(11)の動作温度域から外れてしまうことを抑制できる。
 重なる領域の磁気熱量効果の最大値は、隣り合う磁気冷凍部(M)の各々の磁気作業物質(11)における磁気熱量効果の最大値の平均値の1/2以上である。これにより、隣り合う磁気冷凍部の動作温度域の重なる領域が増大する。この結果、通常動作からバイパス動作への切り換え、及びバイパス動作から通常動作への切り換えに伴い熱媒体の温度が磁気作業物質(11)の動作温度域から外れてしまうことを確実に抑制できる。
  《実施形態5》
 図26に示すように、実施形態5に係る磁気冷凍装置(1)は、冷房と暖房とを切り換えて行う空気調和装置である。
 磁気冷凍装置(1)は、室内ファン(14)および室外ファン(15)を有する。室内ファン(14)は、室内熱交換器(33)の近傍に配置される。室内ファン(14)は、室内熱交換器(33)を通過する室内空気を搬送する。室外ファン(15)は、室外熱交換器(34)の近傍に配置される。室外ファン(15)は、室外熱交換器(34)を通過する室外空気を搬送する。
 熱媒体回路(C)は、複数の磁気冷凍部(M)を有する。複数の磁気冷凍部(M)は、低温磁気冷凍部(ML)と、中温磁気冷凍部(MM)と、高温磁気冷凍部(MH)とを含む。低温磁気冷凍部(ML)および高温磁気冷凍部(MH)は、第3磁気冷凍部を構成する。中温磁気冷凍部(MM)は、第4磁気冷凍部を構成する。複数の磁気冷凍部(M)は、第1流路(40)と第2流路(50)とに跨がるように、熱媒体回路(C)に直列に接続される。
 熱媒体回路(C)は、第3四方切換弁(37)および第4四方切換弁(38)を有する。第3四方切換弁(37)および第4四方切換弁(38)のそれぞれは、第1ポート(P1)、第2ポート(P2)、第3ポート(P3)、および第4ポート(P4)を有する。第3四方切換弁(37)および第4四方切換弁(38)は、図26の実線で示す第1状態と、図26の破線で示す第2状態とに切り替われる。第1状態の第3四方切換弁(37)および第4四方切換弁(38)のそれぞれは、第1ポート(P1)と第2ポート(P2)とを連通させると同時に第3ポート(P3)と第4ポート(P4)とを連通させる。第2状態の第3四方切換弁(37)および第4四方切換弁(38)のそれぞれは、第1ポート(P1)と第4ポート(P4)とを連通させると同時に第2ポート(P2)と第3ポート(P3)とを連通させる。
 第3四方切換弁(37)の第1ポート(P1)は、第2流路(50)の流出端に連通する。第3四方切換弁(37)の第2ポート(P2)は、室外熱交換器(34)の一端に連通する。第3四方切換弁(37)の第3ポート(P3)は、第2流路(50)の流入端に連通する。第3四方切換弁(37)の第4ポート(P4)は、室内熱交換器(33)の一端に連通する。
 第4四方切換弁(38)の第1ポート(P1)は、第1流路(40)の流入端に連通する。第4四方切換弁(38)の第2ポート(P2)は、室外熱交換器(34)の他端に連通する。第4四方切換弁(38)の第3ポート(P3)は、第1流路(40)の流出端に連通する。第4四方切換弁(38)の第4ポート(P4)は、室内熱交換器(33)の他端に連通する。
 第1流路(40)には、各磁気冷凍部(M)に対応するように第5バイパス機構(B5)が1つずつ設けられる。第2流路(50)には、各磁気冷凍部(M)に対応するように第6バイパス機構(B6)が1つずつ設けられる。第5バイパス機構(B5)および第6バイパス機構(B6)のそれぞれは、バイパス流路(60)と、バイパス流路(60)を開閉する弁(制御弁(90))とを有する。
 -運転動作-
 実施形態5に係る磁気冷凍装置(1)の運転動作について説明する。
 〈冷房運転〉
 冷房運転では、第3四方切換弁(37)および第4四方切換弁(38)がそれぞれ第1状態となる。室外ファン(15)および室内ファン(14)が運転する。冷房運転では、第1動作と第2動作とが交互に繰り返し行われる。なお、以下では、全ての磁気冷凍部(M)を作動させる冷房運転を例に説明する。
 図27に示す第1動作では、低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)で第1変調動作が行われる。搬送機構(20)が第1搬送動作を行う。全ての制御弁(90)が閉状態となる。
 第1動作では、第2流路(50)において、低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)により加熱された熱媒体が、室外熱交換器(34)へ供給される。室外熱交換器(34)では、熱媒体が室外空気へ放熱する。
 図28に示す第2動作では、高温磁気冷凍部(MH)、中温磁気冷凍部(MM)、および低温磁気冷凍部(ML)で第2変調動作が行われる。搬送機構(20)が第2搬送動作を行う。全ての制御弁(90)が閉状態となる。
 第2動作では、第1流路(40)において、高温磁気冷凍部(MH)、中温磁気冷凍部(MM)、および低温磁気冷凍部(ML)により冷却された熱媒体が、室内熱交換器(33)へ供給される。室内熱交換器(33)では、室内空気が熱媒体によって冷却される。
 〈暖房運転〉
 暖房運転では、第3四方切換弁(37)および第4四方切換弁(38)がそれぞれ第2状態となる。室外ファン(15)および室内ファン(14)が運転する。暖房運転では、第3動作と第4動作とが交互に繰り返し行われる。なお、以下では、全ての磁気冷凍部(M)を作動させる第暖房運転を例に説明する。
 図29に示す第3動作では、低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)で第1変調動作が行われる。搬送機構(20)が第1搬送動作を行う。全ての制御弁(90)が閉状態となる。
 第3動作では、第2流路(50)において、低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)により加熱された熱媒体が、室内熱交換器(33)へ供給される。室内熱交換器(33)では、熱媒体が室内空気へ放熱する。
 図30に示す第4動作では、高温磁気冷凍部(MH)、中温磁気冷凍部(MM)、および低温磁気冷凍部(ML)で第2変調動作が行われる。搬送機構(20)が第2搬送動作を行う。全ての制御弁(90)が閉状態となる。
 第4動作では、第1流路(40)において、高温磁気冷凍部(MH)、中温磁気冷凍部(MM)、および低温磁気冷凍部(ML)により冷却された熱媒体が、室外熱交換器(34)へ供給される。室外熱交換器(34)では、室外空気が熱媒体から吸熱する。
 (1)磁気冷凍部の特徴
 本実施形態の磁気冷凍装置(1)では、冷房運転および暖房運転の運転条件を考慮して、複数の磁気冷凍部(M)の構成が決定されている。この点について図31を参照しながら詳細に説明する。
 (1-1)温度範囲について
 磁気冷凍装置(1)の冷房運転では、室外温度および冷房負荷に応じて、熱媒体の最低温度および最高温度が決定される。冷房運転の定格運転時には、最低温度がT1minとなり、最高温度がT1maxとなる。ここで最低温度T1minは冷房運転の定格運転時の室内温度および設定温度に基づく。最高温度T1maxは冷房運転の定格運転時の外気温度に基づく。
 冷房運転では、定格運転を越える最大範囲において、最低温度がT2minとなり、最高温度がT2maxとなる。ここで最低温度T2minは冷房負荷が極端に高い運転条件に対応する熱媒体の温度である。最高温度T2maxは外気温度が極端に高い運転条件に対応する熱媒体の温度である。
 磁気冷凍装置(1)の暖房運転では、室外温度および暖房負荷に応じて、熱媒体の最低温度および最高温度が決定される。暖房運転の定格運転時には、最低温度がT3minとなり、最高温度がT3maxとなる。ここで最低温度T3minは暖房運転の定格運転時の外気温度に基づく。最高温度T3maxは暖房運転の定格運転時の室内温度および設定温度に基づく。
 暖房運転では、定格運転を越える最大範囲において、最低温度がT4minとなり、最高温度がT4maxとなる。ここで最低温度T4minは外気温度が極端に低い運転条件に対応する熱媒体の温度である。最高温度T4maxは暖房負荷が極端に高い運転条件に対応する温度である。本実施形態では、最高温度T4maxと最高温度T2maxとが同じ温度となる。
 同図に示すように、熱媒体回路(C)の熱媒体の出現頻度に応じて、熱媒体の3つの温度範囲が決定される。第1温度範囲は、最低温度T4minから最低温度T3minまでの範囲である。第2温度範囲は、最低温度T3minから最高温度T1maxまでの範囲である。第3温度範囲は、最高温度T1maxから最高温度T2max(T4max)までの範囲である。第2温度範囲は、冷房運転の定格運転の温度範囲と、暖房運転の定格運転の温度範囲の双方に跨る、最低温度(すなわち、T3min)から最高温度(すなわち、T1max)までの範囲である。第1温度範囲は、第2温度範囲よりも低温側の温度範囲である。第3温度範囲は、第2範囲よりも高温側の温度範囲である。
 第2温度範囲は、磁気冷凍装置(1)の全ての運転を考慮した場合に、熱媒体の温度が高頻度に出現する温度範囲である。第1温度範囲および第3温度範囲は、磁気気冷凍装置(1)の全ての運転を考慮した場合に、熱媒体の温度が低頻度に出現する温度範囲である。
 (1-2)低温磁気冷凍部の特性
 第3磁気冷凍部である低温磁気冷凍部(ML)は、複数の磁気冷凍部(M)のうち最も端(厳密には低温端)に位置する。低温磁気冷凍部(ML)は、冷房運転において、吸熱器となる室内熱交換器(33)に隣接する。高温磁気冷凍部(MH)は、暖房運転において、吸熱器となる室外熱交換器(34)に隣接する。
 図31に示すように、本例の低温磁気冷凍部(ML)は、2つの磁気作業物質(11)(低温磁気作業物質(11L))を有する。低温磁気冷凍部(ML)の全体の動作温度域は、第1温度範囲を含んでいる。言い換えると、低温磁気冷凍部(ML)は、熱媒体の温度が第1温度範囲にあるときに磁気熱量効果を発揮するように構成されている。なお、「磁気冷凍部(M)の全体の動作温度域」とは、磁気作業物質(11)単体の動作温度域ではなく、磁気冷凍部(M)が磁気熱量効果を発揮する最低温度から最高温度までの温度範囲を意味する。
 暖房運転において外気温度が極端に低い条件下では、熱媒体の低温側の温度が、第1温度範囲に至ることがある。低温磁気冷凍部(ML)は、このような第1温度範囲の熱媒体に対し、磁気熱量効果を発揮する。
 (1-3)高温磁気冷凍部の特性
 第3磁気冷凍部である高温磁気冷凍部(MH)は、複数の磁気冷凍部(M)のうち最も端(厳密には高温端)に位置する。高温磁気冷凍部(MH)は、冷房運転において、放熱器となる室外熱交換器(34)に隣接する。高温磁気冷凍部(MH)は、暖房運転において、放熱器となる室内熱交換器(33)に隣接する。
 図31に示すように、本例の高温磁気冷凍部(MH)は、単層式であり、1つの磁気作業物質(11)(高温磁気作業物質(11H))を有する。高温磁気冷凍部(MH)の全体の動作温度域は、第3温度範囲を含んでいる。言い換えると、高温磁気冷凍部(MH)は、熱媒体の温度が第3温度範囲にあるときに磁気熱量効果を発揮するように構成されている。
 冷房運転において外気温度が極端に高い条件や、暖房運転において暖房負荷が極端に低い条件下では、熱媒体の高温側の温度が、第3温度範囲に至ることがある。高温磁気冷凍部(MH)は、このような第3温度範囲の熱媒体に対し、磁気熱量効果を発揮する。
 (1-4)中温磁気冷凍部の特性
 第2磁気冷凍部である中温磁気冷凍部(MM)は、両端の磁気冷凍部(M)の間の中間に位置する。図31に示すように、本例の中温磁気冷凍部(MM)は、6つの層の磁気作業物質(11)(中温磁気作業物質(11M))を有する。
 中温磁気冷凍部(MH)の全体の動作温度域は、第2温度範囲を含んでいる。言い換えると、中温磁気冷凍部(MM)は、熱媒体の温度が第2温度範囲にあるときに磁気熱量効果を発揮するように構成されている。
 冷房運転の定格運転や、暖房運転の定格運転では、熱媒体の温度が第2温度範囲に至ることがある。中温磁気冷凍部(MH)は、このような第2温度範囲の熱媒体に対し、磁気熱量効果を発揮する。
 (1-4)熱媒体の出現頻度
 磁気冷凍装置(1)の全体の運転を考慮すると、熱媒体の温度が低温磁気冷凍部(ML)の全体の動作温度域に至る頻度は、熱媒体の温度が中温磁気冷凍部(MM)の全体の動作温度域に至る頻度よりも少ない。同様に、熱媒体の温度が高温磁気冷凍部(MH)の全体の動作温度域に至る頻度は、熱媒体の温度が中温磁気冷凍部(MM)の全体の動作温度域に至る頻度よりも少ない。
 (1-5)磁気作業物質の動作温度域の関係
 図31に示すように、低温磁気冷凍部(ML)の1つの低温磁気作業物質(11L)の動作温度域Aは、中温磁気冷凍部(MM)の1つの中温磁気作業物質(11M)の動作温度域Bよりも広い。この構成により、低温磁気冷凍部(ML)の磁気作業物質(11)の層数を減らしつつ、所定の温度範囲(第1温度範囲)において磁気熱量効果を得ることができる。本例では、低温磁気冷凍部(ML)の層数が2つであり、中温磁気冷凍部(MM)の層数(6つ)よりも少ない。したがって、低温磁気冷凍部(ML)の構造を簡素化でき、低温磁気冷凍部(ML)の生産コストを削減できる。
 一方、低温磁気冷凍部(ML)の低温磁気作業物質(11)の動作温度域Aを広げ、低温磁気冷凍部(ML)の低温磁気作業物質(11L)の層数を減らすと、磁気熱量効果が全体的に低くなり、効率が低下する傾向にある。しかしながら、低温磁気冷凍部(ML)は、出現頻度が低い第1温度範囲に対応するため、磁気冷凍装置(1)の全体の運転を考慮すると、効率の低下の影響は小さい。
 同図に示すように、高温磁気冷凍部(MH)の1つの高温側磁気作業物質(11)の動作温度域Cは、中温磁気冷凍部(MM)の1つの中温側磁気作業物質(11)の動作温度域Bよりも広い。本例では、高温磁気作業物質(11H)の動作温度域Cと、低温磁気作業物質(11L)の動作温度域Aとが概ね同じ広さである。この構成により、高温磁気冷凍部(MH)の磁気作業物質(11)の層数を減らしつつ、所定の温度範囲(第3温度範囲)において磁気熱量効果を得ることができる。本例では、高温磁気冷凍部(MH)の層数が1つであり、中温磁気冷凍部(MM)の層数(6つ)および低温磁気冷凍部(ML)の層数(2つ)よりも少ない。したがって、高温磁気冷凍部(MH)の構造を簡素化でき、高温磁気冷凍部(MH)の生産コストを削減できる。
 一方、高温磁気冷凍部(MH)の高温磁気作業物質(11H)の動作温度域Cを広げ、高温磁気冷凍部(MH)の磁気作業物質(11)の層数を減らすと、磁気熱量効果が全体的に低くなり、効率が低下する傾向にある。しかしながら、高温磁気冷凍部(MH)は、出現頻度が低い第3温度範囲でしか作動しないため、磁気冷凍装置(1)全体の運転を考慮すると、効率の低下の影響は小さい。
 (1-6)磁気作業物質の量の関係
 低温磁気冷凍部(ML)の磁気作業物質(11)の量は、中温磁気冷凍部(MM)の磁気作業物質(11)の量よりも多い。厳密には、各々の低温磁気作業物質(11L)の量が、各々の中温磁気作業物質(11M)の量よりも多い。上述したように、低温磁気冷凍部(ML)は、層数が少ないため、磁気熱量効果が低下する傾向にある。しかしながら、低温磁気冷凍部(ML)の磁気作業物質(11)の量を多くすることで、低温磁気冷凍部(ML)における加熱能力(放熱能力)および冷却能力(吸熱能力)を増大できる。
 高温磁気冷凍部(MH)の磁気作業物質(11)の量は、中温磁気冷凍部(MM)の磁気作業物質(11)の量よりも多い。厳密には、高温磁気作業物質(11H)の量が、各々の中温磁気作業物質(11M)の量よりも多い。上述したように、高温磁気冷凍部(MH)は、層数が1つであるため磁気熱量効果が低下する傾向にある。しかしながら、高温磁気冷凍部(MH)の磁気作業物質(11)の量を多くすることで、高温磁気冷凍部(MH)における加熱能力(放熱能力)および冷却能力(加熱能力)を増大できる。
 (1-7)バイパス動作
 本実施形態では、制御器(100)が、運転条件に応じて、熱媒体が第3磁気冷凍部(ML,MH)をバイパスする動作を実行させる。
 (1-7-1)暖房運転および冷房運転の定格運転
 暖房運転および冷房運転の定格運転時には、制御器(100)は、低温磁気冷凍部(ML)および高温磁気冷凍部(MH)において第1変調動作および第2変調動作のいずれも実行させず、中温磁気冷凍部(MM)のみ第1変調動作および第2変調動作を実行させる。これらの運転では、熱媒体の温度が第1温度範囲や第3温度範囲に至らないため、低温磁気冷凍部(ML)および高温磁気冷凍部(MH)を作動させる必要がないからである。
 加えて、暖房運転および冷房運転の定格運転時には、制御器(100)は、熱媒体が、低温磁気冷凍部(ML)および高温磁気冷凍部(MH)をバイパスするバイパス動作を実行させる。具体的には、低温磁気冷凍部(ML)および高温磁気冷凍部(MH)に対応するバイパス流路(60)の制御弁(90)を開け、中温磁気冷凍部(MM)に対応するバイパス流路(60)の制御弁(90)を閉じる。これにより、熱媒体は、作動状態である中温磁気冷凍部(MM)のみを流れる。このようにすると、熱媒体が低温磁気冷凍部(ML)や高温磁気冷凍部(MH)を流れることに起因して圧力損失が増大することを抑制できる。
 暖房運転や冷房運転が定格運転である第1条件は、外気温度、室内温度、熱媒体の温度の少なくとも1つに基づいて判断できる。制御器(100)は、定格運転であることを示す第1条件が成立すると、第4磁気冷凍部である中温磁気冷凍部(MM)のみを作動させる。加えて、制御器(100)は、第1条件が成立すると、熱媒体が、低温磁気冷凍部(ML)および高温磁気冷凍部をバイパスし、中温磁気冷凍部(MM)を流れる動作を実行させる。
 (1-7-2)第1温度範囲を含む暖房運転
 外気温度が極端に低い条件下での暖房運転では、低温側の熱媒体が第1温度範囲に至る第2条件が成立する。この場合、制御器(100)は、高温磁気冷凍部(MH)において第1変調動作および第2変調動作のいずれも実行させず、低温側磁気冷凍部(M)および中温磁気冷凍部(MM)において第1変調動作および第2変調動作を実行させる。
 加えて、この運転時には、制御器(100)は、熱媒体が高温磁気冷凍部(MH)をバイパスするバイパス動作を実行させる。具体的には、高温磁気冷凍部(MH)に対応するバイパス流路(60)の制御弁(90)を開け、低温磁気冷凍部(ML)および中温磁気冷凍部(MM)に対応するバイパス流路(60)の制御弁(90)を閉じる。これにより、熱媒体は、作動状態である低温磁気冷凍部(ML)および中温磁気冷凍部(MM)を流れる。このようにすると、熱媒体が高温磁気冷凍部(MH)を流れることに起因して圧力損失が増大することを抑制できる。
 低温側の熱媒体が第1温度範囲に至る第2条件は、外気温度および熱媒体の温度の少なくとも1つに基づいて判断できる。制御器(100)は、第2条件が成立すると、低温磁気冷凍部(ML)および中温磁気冷凍部(MM)を作動させる。加えて、制御器(100)は、第2条件が成立すると、熱媒体が高温磁気冷凍部(MH)をバイパスし、熱媒体が低温磁気冷凍部(ML)および中温磁気冷凍部(MM)を流れる動作を実行させる。
 (1-7-3)第3温度範囲を含む冷房運転および暖房運転
 外気温度が極端に高い条件下での冷房運転、および暖房負荷が極端に高い暖房運転では、高温側の熱媒体が第3温度範囲に至る第3条件が成立する。この場合、制御器(100)は、低温磁気冷凍部(ML)において第1変調動作および第2変調動作のいずれも実行させず、中温磁気冷凍部(MM)および高温磁気冷凍部(MH)において第1変調動作および第2変調動作を実行させる。
 加えて、この運転時には、制御器(100)は、熱媒体が低温磁気冷凍部(ML)をバイパスするバイパス動作を実行させる。具体的には、低温磁気冷凍部(ML)に対応するバイパス流路(60)の制御弁(90)を開け、中温磁気冷凍部(MM)および高温磁気冷凍部(MH)に対応するバイパス流路(60)の制御弁(90)を閉じる。これにより、熱媒体は、作動状態である中温磁気冷凍部(MM)および高温磁気冷凍部(MH)を流れる。このようにすると、熱媒体が低温磁気冷凍部(ML)を流れることに起因して圧力損失が増大することを抑制できる。
 高温側の熱媒体が第3温度範囲に至る第3条件は、外気温度、室内温度、および熱媒体の温度の少なくとも1つに基づいて判断できる。制御器(100)は、第3条件が成立すると、中温磁気冷凍部(MM)および高温磁気冷凍部(MH)を作動させる。加えて、制御器(100)は、第3条件が成立すると、熱媒体が低温磁気冷凍部をバイパスし、熱媒体が中温磁気冷凍部(MM)および高温磁気冷凍部(MH)を流れる動作を実行させる。
 《実施形態6》
 図32に示すように、実施形態6の熱媒体回路(C)は、実施形態5に係る第1流路(40)および第2流路(50)を含む2つのユニット(U1,U2)を有する。2つのユニット(U1,U2)は、互いに並列に接続される第1ユニット(U1)と第2ユニット(U2)とで構成される。これらにユニット(U1,U2)は、互いに同じ構成である。各ユニット(U1,U2)は、実施形態5と同様、第1流路(40)、第2流路(50)、低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、高温磁気冷凍部(MH)、逆止弁(CV)、第5バイパス機構(B5)、第6バイパス機構(B6)を有する。
 実施形態6は、実施形態5と搬送機構(20)の構成が異なる。実施形態6の搬送機構(20)は、一過式のポンプ(26)と、第9三方弁(28)と、第10三方弁(29)とを有する。ポンプ(26)は、熱媒体を一方向のみに搬送する。ポンプ(26)は、第3四方切換弁(37)の第2ポート(P2)と、室外熱交換器(34)の間の流路に接続される。ポンプ(26)は、室外熱交換器(34)側へ熱媒体を吐出する。
 第9三方弁(28)および第10三方弁(29)は、第1~第3までのポートを有する。第9三方弁(28)および第10三方弁(29)は、図32の実線で示す第1状態と、図32の破線で示す第2状態とに切り換わる。第1状態の第9三方弁(28)および第10三方弁(29)は、第1ポートと第3ポートとを連通させる。第2状態の第9三方弁(28)および第10三方弁(29)は、第1ポートと第2ポートと連通させる。
 第9三方弁(28)の第1ポートは、第3四方切換弁(37)の第1ポート(P1)に連通する。第9三方弁(28)の第2ポートは、第1ユニット(U1)の第2流路(50)の流出端に連通する。第9三方弁(28)の第3ポートは、第2ユニット(U2)の第2流路(50)の流出端に連通する。
 第10三方弁(29)の第1ポートは、第4四方切換弁(38)の第1ポート(P1)に連通する。第10三方弁(29)の第2ポートは、第1ユニット(U1)の第1流路(40)の流入端に連通する。第10三方弁(29)の第3ポートは、第2ユニット(U2)の第1流路(40)の流入端に連通する。
 -運転動作-
 実施形態6に係る磁気冷凍装置(1)の運転動作について説明する。
 〈冷房運転〉
 冷房運転では、第3四方切換弁(37)および第4四方切換弁(38)がそれぞれ第1状態となる。室外ファン(15)および室内ファン(14)が運転する。冷房運転では、第1動作と第2動作とが交互に繰り返し行われる。なお、以下では、全ての磁気冷凍部(M)を作動させる冷房運転を例に説明する。
 図33に示す第1動作では、第1ユニット(U1)の低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)で第1変調動作が行われる。第2ユニット(U2)の低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)で第2変調動作が行われる。搬送機構(20)のポンプ(26)が運転する。第9三方弁(28)が第2状態となり、第10三方弁(29)が第1状態となる。
 第1動作では、第1ユニット(U1)の第2流路(50)において、低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)の順で加熱された熱媒体が、室外熱交換器(34)へ供給される。室外熱交換器(34)では、熱媒体が室外空気へ放熱する。第2ユニット(U2)の第1流路(40)において、高温磁気冷凍部(MH)、中温磁気冷凍部(MM)、および低温磁気冷凍部(ML)の順で冷却された熱媒体が、室内熱交換器(33)へ供給される。室内熱交換器(33)では、熱媒体が室内空気から吸熱する。
 図34に示す第2動作では、第2ユニット(U2)の低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)で第1変調動作が行われる。第1ユニット(U1)の低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)で第2変調動作が行われる。搬送機構(20)のポンプ(26)が運転する。第9三方弁(28)が第1状態となり、第10三方弁(29)が第2状態となる。
 第2動作では、第2ユニット(U2)の第2流路(50)において、低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)の順で加熱された熱媒体が、室外熱交換器(34)へ供給される。室外熱交換器(34)では、熱媒体が室外空気へ放熱する。第1ユニット(U1)の第1流路(40)において、高温磁気冷凍部(MH)、中温磁気冷凍部(MM)、および低温磁気冷凍部(ML)の順で冷却された熱媒体が、室内熱交換器(33)へ供給される。室内熱交換器(33)では、熱媒体が室内空気から吸熱する。
 〈暖房運転〉
 暖房運転では、第3四方切換弁(37)および第4四方切換弁(38)がそれぞれ第2状態となる。室外ファン(15)および室内ファン(14)が運転する。暖房運転では、第3動作と第4動作とが交互に繰り返し行われる。なお、以下では、全ての磁気冷凍部(M)を作動させる暖房運転を例に説明する。
 図35に示す第3動作では、第1ユニット(U1)の低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)で第1変調動作が行われる。第2ユニット(U2)の低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)で第2変調動作が行われる。搬送機構(20)のポンプ(26)が運転する。第9三方弁(28)が第2状態となり、第10三方弁(29)が第1状態となる。
 第3動作では、第1ユニット(U1)の第2流路(50)において、低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)の順で加熱された熱媒体が、室内熱交換器(33)へ供給される。室内熱交換器(33)では、熱媒体が室内空気へ放熱する。第2ユニット(U2)の第1流路(40)において、高温磁気冷凍部(MH)、中温磁気冷凍部(MM)、および低温磁気冷凍部(ML)の順で冷却された熱媒体が、室外熱交換器(34)へ供給される。室外熱交換器(34)では、熱媒体が室外空気から吸熱する。
 図36に示す第4動作では、第2ユニット(U2)の低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)で第1変調動作が行われる。第1ユニット(U1)の低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)で第2変調動作が行われる。搬送機構(20)のポンプ(26)が運転する。第9三方弁(28)が第1状態となり、第10三方弁(29)が第2状態となる。
 第4動作では、第2ユニット(U2)の第2流路(50)において、低温磁気冷凍部(ML)、中温磁気冷凍部(MM)、および高温磁気冷凍部(MH)の順で加熱された熱媒体が、室内熱交換器(33)へ供給される。室内熱交換器(33)では、熱媒体が室内空気へ放熱する。第1ユニット(U1)の第1流路(40)において、高温磁気冷凍部(MH)、中温磁気冷凍部(MM)、および低温磁気冷凍部(ML)の順で冷却された熱媒体が、室外熱交換器(34)へ供給される。室外熱交換器(34)では、熱媒体が室外空気から吸熱する。
 〈バイパス動作〉
 実施形態6においても、実施形態5と同様に、バイパス動作が行われる。例えば熱媒体の温度が第1温度範囲にあり、低温磁気冷凍部(ML)が作動しない場合には、制御器(100)は、低温磁気冷凍部(ML)に対応するバイパス流路(60)の制御弁(90)を開ける。熱媒体の温度が第3温度範囲にあり、高温磁気冷凍部(MH)が作動しない場合には、制御器(100)は、高温磁気冷凍部(MH)に対応するバイパス流路(60)の制御弁(90)を開ける。それ以外の作用効果は、実施形態5と同じである。
 《実施形態5および6の変形例》
 実施形態5および6の変形例について説明する。
 〈変形例G-出現頻度が異なる例〉
 変形例Gに係る磁気冷凍装置(1)は、実施形態5および6と熱媒体の出現頻度が異なる。図37に示すように、磁気冷凍装置(1)では、その出現頻度の低いものから順に、「希」、「低」、「中」、「高」の4つ段階の温度範囲がある。第1温度範囲は「希」、第2温度範囲および第6温度範囲は「低」、第3温度範囲および第5温度範囲は「中」、第4温度範囲は「高」となる。
 この場合、磁気冷凍装置(1)は、これらの温度範囲に対応するように6つの磁気冷凍部(M)を設けるのが好ましい。第1温度範囲に対応する磁気冷凍部(M)を磁気冷凍部A1、第2温度範囲に対応する磁気冷凍部(M)を磁気冷凍部A2、第3温度範囲に対応する磁気冷凍部(M)を磁気冷凍部A3、第4温度範囲に対応する磁気冷凍部(M)を磁気冷凍部A4、第5温度範囲に対応する磁気冷凍部(M)を磁気冷凍部A5、第6温度範囲に対応する磁気冷凍部(M)を磁気冷凍部A6とする。
 この例では、複数の磁気冷凍部(M)は、熱媒体の出現頻度が小さくなるほど、その磁気作業物質(11)の動作温度域を広くするのが好ましい。本例では、磁気冷凍部A1の磁気作業物質(11)の動作温度域が最も広くなり、磁気冷凍部A2および磁気冷凍部A6の磁気作業物質(11)の動作温度域が次に広くなり、磁気冷凍部A3および磁気冷凍部A5の磁気作業物質(11)の動作温度域が次に広くなり、磁気冷凍部A4の磁気作業物質(11)の動作温度域が最も小さくなる。
 この例では、複数の磁気冷凍部(M)は、熱媒体の出現頻度が小さくなるほど、その磁気作業物質(11)の層数を少なくするのが好ましい。加えて、複数の磁気冷凍部(M)は、熱媒体の出現頻度が小さくなるほど、その磁気作業物質(11)の総量を多くするのが好ましい。これらの理由は、上述の通りである。
 〈変形例H-冷房専用機の例〉
 変形例Hに係る磁気冷凍装置(1)は、冷房専用の空気調和装置に適用される。図38に示すように、磁気冷凍装置(1)は、実施形態5の第3四方切換弁(37)および第4四方切換弁(38)が省略されている。変形例Hの冷房運転は、実施形態5と同様である。
 図39に示すように、磁気冷凍装置(1)の運転では、出現頻度が「中」の第1温度範囲と、出現頻度が「高」の第2温度範囲と、出現頻度が「低」の第3温度範囲とがある。低温磁気冷凍部(ML)は第1温度範囲に対応し、中温磁気冷凍部(MM)は第2温度範囲に対応し、高温磁気冷凍部(MH)は第3温度範囲に対応する。
 この例では、高温磁気作業物質(11H)の動作温度域の広さを最も広くし、低温磁気作業物質(11L)の動作温度域の広さを次に広くし、中温磁気作業物質(11M)の動作温度域の広さを最も小さくする。
 この例では、高温磁気冷凍部(MH)の層数を最も少なくし、低温磁気冷凍部(ML)の層数を次に少なくし、中温磁気冷凍部(MM)の層数を最も多くする。
 この例では、高温磁気冷凍部(MH)の高温磁気作業物質(11H)の量を最も多くし、低温磁気冷凍部(ML)の低温磁気作業物質(11L)の量を次に多くし、中温磁気冷凍部(MM)の中温磁気作業物質(11M)の量を最も少なくする。これらの理由は、上述の通りである。
 〈変形例I-暖房専用機の例〉
 変形例Iに係る磁気冷凍装置(1)は、暖房専用の空気調和装置に適用される。図40に示すように、磁気冷凍装置(1)は、実施形態5の第3四方切換弁(37)および第4四方切換弁(38)が省略されている。変形例Iの暖房運転は、実施形態5と同様である。
 図41に示すように、磁気冷凍装置(1)の運転では、出現頻度が「低」の第1温度範囲と、出現頻度が「高」の第2温度範囲と、出現頻度が「中」の第3温度範囲とがある。低温磁気冷凍部(ML)は第1温度範囲に対応し、中温磁気冷凍部(MM)は第2温度範囲に対応し、高温磁気冷凍部(MH)は第3温度範囲に対応する。
 この例では、低温磁気作業物質(11L)の動作温度域の広さを最も広くし、高温磁気作業物質(11H)の動作温度域の広さを次に広くし、中温磁気作業物質(11M)の動作温度域の広さを最も小さくする。
 この例では、低温磁気冷凍部(ML)の層数を最も少なくし、高温磁気冷凍部(MH)の層数を次に少なくし、中温磁気作業物質(MM)の層数を最も多くする。
 この例では、低温磁気冷凍部(ML)の低温磁気作業物質(11L)の量を最も多くし、高温磁気冷凍部(MH)の高温磁気作業物質(11H)の量を次に多くし、中温磁気冷凍部(MM)の中温磁気作業物質(11M)の量を最も少なくする。これらの理由は、上述の通りである。
 〈変形例J-第3磁気冷凍部および第4磁気冷凍部の他の配置〉
 第3磁気冷凍部である低温磁気冷凍部(ML)や高温磁気冷凍部(MH)は、複数の磁気冷凍部のうち最も端に配置されていなくてもよく、複数の磁気冷凍部(M)の端寄りに配置されていればよい。
 第3磁気冷凍部である低温磁気冷凍部(ML)や高温磁気冷凍部(MH)は、必ずしも室外熱交換器(34)に隣接してなくてもよく、室外熱交換器(34)寄りに配置されていればよい。
 複数の磁気冷凍部(M)の全体としての動作温度域を同じ温度幅で3つに区分し、最も温度が低い温度域を「低温域」、最も温度が高い温度域を「高温域」、低温域と高温域との間を「中温域」とする。この場合に、第3磁気冷凍部を低温域及び高温域のいずれか一方に設け、第4磁気冷凍部を中温域に設けてもよい。言い換えると、第3磁気冷凍部が、低温域や高温域において磁気熱量効果を発揮し、第4磁気冷凍部が中温域において磁気熱量効果を発揮するように、これらを構成してもよい。
 《その他の実施形態》
 上述した各実施形態や各変形例においては、以下のような構成としてもよい。
 磁場変調部(12)は、永久磁石を用いたリニア駆動型、永久磁石を用いた回転駆動型、電磁石を用いた静止型、電磁石と永久磁石を用いた静止型のいずれかであってもよい。
 本開示の第1熱交換部及び第2熱交換部は、空気熱交換器以外の構成であってもよい。具体的には、熱媒体回路(C)の熱媒体と、二次側の流路を流れる他の熱媒体(水、ブライン、冷媒など)とを熱交換させる熱交換器であってもよい。
 固体冷凍装置は、庫内を冷却する冷却器、空気調和機、ヒートポンプ式のチラー、給湯装置などに適用される。
 固体冷凍装置は、磁気作業物質(11)に磁気熱量効果を誘発する磁気冷凍装置以外の他の方式であってもよい。固体冷凍装置は、外部エネルギーに対する熱量効果を発揮する固体冷媒物質と、固体冷媒物質に熱量効果を誘発させる誘発部とを有する。ここでいう固体冷媒物質は、柔軟結晶などの液体と固体の中間の性質を有するものも含む。
 他の方式の固体冷凍装置としては、1)固体冷媒物質に電気熱量効果を誘発する方式、2)固体冷媒物質に圧力熱量効果を誘発する方式、3)固体冷媒物質に弾性熱量効果を誘発する方式が挙げられる。
 1)の方式の固体冷凍装置は、誘発部が固体冷媒物質に電場変動を付与する。これにより固体冷媒物質が強誘電体から常誘電体へ相転移するなどして、固体冷媒物質が発熱または吸熱する。
 2)の方式の固体冷凍装置は、誘発部が固体冷媒物質に圧力変動を付与することで、固体冷媒物質が相転移し発熱または吸熱する。
 3)の方式の固体冷凍装置は、誘発部が固体冷媒物質に応力変動を付与することで、固体冷媒物質が相転移し発熱または吸熱する。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 以上説明したように、本開示は、固体冷凍装置、特に磁気冷凍装置について有用である。
            1   磁気冷凍装置(固体冷凍装置)
     11   磁気作業物質(固体冷媒物質)
     11b  第2磁気作業物質(中間側磁気作業物質)
     11c  第3磁気作業物質(端部側磁気作業物質)
     11d  第4磁気作業物質(端部側磁気作業物質)
     11e  第5磁気作業物質(中間側磁気作業物質)
     12   磁場変調部(変調部)
     20   搬送機構
     31   第1熱交換器(第1熱交換部)
     32   第2熱交換器(第2熱交換部)
     33   室内熱交換器(第1熱交換部、第2熱交換部)
     34   室外熱交換器(第2熱交換部、第1熱交換部)
     40   第1流路
     50   第2流路
     81   第1蓄熱部(蓄熱部)  
     82   第2蓄熱部(蓄熱部)
     84   第2蓄熱ユニット(蓄熱部)
     85   第4蓄熱ユニット(蓄熱部)
     B    バイパス機構
     M    磁気冷凍部(固体冷凍部)
     ML   低温磁気冷凍部(第3磁気冷凍部)
     MM   中温磁気冷凍部(第4磁気冷凍部)
     MH   高温磁気冷凍部(第5磁気冷凍部)

Claims (25)

  1.  外部エネルギーに対する熱量効果を発揮する固体冷媒物質(11)と、該固体冷媒物質(11)に熱量効果を誘発させる誘発部(12)とを有する複数の固体冷凍部(M)と、
     前記複数の固体冷凍部(M)が接続される熱媒体回路(C)と、
     前記熱媒体回路(C)の熱媒体を搬送する搬送機構(20)とを備えた固体冷凍装置であって、
     前記熱媒体回路(C)は、
      前記複数の固体冷凍部(M)がそれぞれ直列に接続されるとともに前記搬送機構(20)により搬送された熱媒体を第1熱交換部(31,33,34)に供給する第1流路(40)と、
      前記複数の固体冷凍部(M)がそれぞれ直列に接続されるとともに前記搬送機構(20)により搬送された熱媒体を第2熱交換部(32,33,34)に供給する第2流路(50)と、
      前記第1流路(40)及び第2流路(50)の少なくとも一方に接続されるとともに、前記熱媒体が前記固体冷凍部(M)を流れる動作と、該熱媒体が該固体冷凍部(M)をバイパスする動作とを切り換える少なくとも1つのバイパス機構(B)とを有する
     ことを特徴とする固体冷凍装置。
  2.  請求項1において、
     前記バイパス機構(B)は、前記第1流路(40)及び前記第2流路(50)の双方に接続されるとともに前記複数の固体冷凍部(M)の全てに対応して設けられる
     ことを特徴とする固体冷凍装置。
  3.  請求項1又は2において、
     前記複数の固体冷凍部は、前記固体冷媒物質としての磁気作業物質(11)と、該磁気作業物質(11)に磁場変動を付与する前記誘発部としての磁場変調部(12)とをそれぞれ有する複数の磁気冷凍部(M)である
     ことを特徴とする固体冷凍装置。
     
  4.  請求項3において、 
     前記複数の磁気冷凍部(M)の各々は、それらの低温端から高温端に向かって、キュリー温度が順に高くなる複数種の磁気作業物質(11)を有するカスケード式である
     ことを特徴とする固体冷凍装置。
  5.  請求項4において、
     前記第1流路(40)及び前記第2流路(50)には、前記複数の磁気冷凍部(M)のそれぞれのキュリー温度の平均値が順に高くなるように、該複数の磁気冷凍部(M)が直列に接続される
     ことを特徴とする固体冷凍装置。
  6.  請求項3において、
     前記複数の磁気冷凍部(M)は、1つの磁気作業物質(11)を有する単層式であり、
     前記第1流路(40)及び前記第2流路(50)には、前記複数の磁気冷凍部(M)の各々の磁気作業物質(11)のキュリー温度が順に高くなるように、該複数の磁気冷凍部(M)が直列に接続される
     ことを特徴とする固体冷凍装置。
  7.  請求項3において、
     隣り合う2つの固体冷凍部(M)の動作温度域の一部が重なる
     ことを特徴とする固体冷凍装置。
  8.  請求項7において、
     前記複数の磁気冷凍部(M)の各々は、それらの低温端から高温端に向かって、キュリー温度が順に高くなる複数種の磁気作業物質(11)を有するカスケード式であり、
     隣り合う磁気冷凍部(M)は、各々の端部側の磁気作業物質(11)の動作温度域の一部又は全部が重なる領域を有するように構成され、
     前記重なる領域の磁気熱量効果の最大値が、隣り合う磁気冷凍部(M)の前記端部側の磁気作業物質(11)における磁気熱量効果の最大値の平均値の1/2以上である
     ことを特徴とする固体冷凍装置。
  9.  請求項7において、
     前記複数の磁気冷凍部(M)は、1種の磁気作業物質(11)を有する単層式であり、
     隣り合う磁気冷凍部(M)は、各々の磁気作業物質(11)の動作温度域の一部が重なる領域を有するように構成され、
     前記重なる領域の磁気熱量効果の最大値が、前記隣り合う磁気冷凍部(M)の各々の磁気作業物質(11)における磁気熱量効果の最大値の平均値の1/2以上である
     ことを特徴とする固体冷凍装置。
  10.  請求項4又は5において、
     前記複数種の磁気作業物質(11)は、それらの端部に対応する端部側磁気作業物質(11c,11d)と、それらの両端の間の中間部に対応する中間側磁気作業物質(11b,11e)とを含み、
     前記端部側磁気作業物質(11c,11d)の動作温度域の幅が、前記中間側磁気作業物質(11b,11e)の動作温度域の幅よりも広い
     ことを特徴とする固体冷凍装置。
  11.  請求項4又は5において、
     前記複数種の磁気作業物質(11)は、それらの端部に対応する端部側磁気作業物質(11c,11d)と、それらの両端の間の中間部に対応する中間側磁気作業物質(11b,11e)とを含み、
     前記端部側磁気作業物質(11c,11d)の磁気熱量効果の最大値が、前記中間側磁気作業物質(11b,11e)の磁気熱量効果の最大値よりも大きい
     ことを特徴とする固体冷凍装置。
  12.  請求項11において、
     前記磁場変調部(12)は、前記端部側磁気作業物質(11c,11d)の磁束密度の変化量を、前記中間側磁気作業物質(11b,11e)の磁束密度の変化量よりも大きくする
     ことを特徴とする固体冷凍装置。
  13.  請求項11又は12において、
     前記端部側磁気作業物質(11c,11d)の断熱温度変化、又はエントロピー変化が、前記中間側磁気作業物質(11b,11e)の断熱温度変化、又はエントロピー変化よりも大きい
     ことを特徴とする固体冷凍装置。
  14.  請求項11~13のいずれか1つにおいて、
     前記端部側磁気作業物質(11c,11d)の重量が、前記中間側磁気作業物質(11b,11e)の重量よりも大きい
     ことを特徴とする固体冷凍装置。
  15.  請求項14において、
     端部側磁気作業物質(11c,11d)の充填率、又は容積が、前記中間側磁気作業物質(11b,11e)の充填率、又は容積よりも大きい
     ことを特徴とする固体冷凍装置。
  16.  請求項1~15のいずれか1つにおいて、
     前記第1流路(40)及び前記第2流路(50)の少なくとも一方には、前記固体冷凍部(M)をバイパスした熱媒体が流れる蓄熱部(81,82,84,85)が設けられる
     ことを特徴とする固体冷凍装置。
  17.  請求項3~15のいずれか1つにおいて、
     複数の磁気冷凍部(M)は、一部の磁気冷凍部である第3磁気冷凍部(ML,MH)と、それ以外の他の磁気冷凍部である第4磁気冷凍部(MM)とを含み、
     前記第3磁気冷凍部(ML,MH)の磁気作業物質(11)の動作温度域が前記第4磁気冷凍部(MM)の磁気作業物質(11)の動作温度域よりも広い
     ことを特徴とする固体冷凍装置。
  18.  請求項17において、
     前記第3磁気冷凍部(ML,MH)の磁気作業物質(11)の量が、前記第4磁気冷凍部(MM)の磁気作業物質(11)の量よりも大きい
     ことを特徴とする固体冷凍装置。
  19.  請求項17又は18において、
     前記バイパス機構(B)は、前記第3磁気冷凍部(ML,MH)に対応して設けられる
     ことを特徴とする固体冷凍装置。
  20.  請求項17~19のいずれか1つにおいて、
     前記固体冷凍装置の運転において、前記熱媒体の温度が前記第3磁気冷凍部(ML,MH)の全体の動作温度域に至る頻度が、前記熱媒体の温度が前記第4磁気冷凍部(MM)の全体の動作温度域内に至る頻度よりも少ない
     ことを特徴とする固体冷凍装置。
  21.  請求項17~20のいずれか1つにおいて、
     前記第4磁気冷凍部(MM)の全体の動作温度域は、中温域であり、
     前記第3磁気冷凍部(ML,MH)の全体の動作温度域は、低温域および高温域のいずれか一方または両方である
     ことを特徴とする固体冷凍装置。
  22.  請求項17~21のいずれか1つにおいて、
     前記第3磁気冷凍部(ML,MH)は、前記複数の磁気冷凍部(M)の端部寄りに設けられる
     ことを特徴とする固体冷凍装置。
  23.  請求項22において、
     前記第3磁気冷凍部(ML,MH)は、前記複数の磁気冷凍部(M)の両端にそれぞれ設けられる
     ことを特徴とする固体冷凍装置。
  24.  請求項17~23のいずれか1つにおいて、
     前記第3磁気冷凍部(ML,MH)は、前記第1熱交換部(31,33,34)および前記第2熱交換部(32,33,34)の少なくとも一方を構成する室外熱交換器(34)寄りに設けられる
     ことを特徴とする固体冷凍装置。
  25.  請求項24において、
     前記第3磁気冷凍部(ML,MH)は、前記室外熱交換器(34)に隣接して設けられる
     ことを特徴とする固体冷凍装置。
PCT/JP2021/012885 2020-03-30 2021-03-26 固体冷凍装置 WO2021200666A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21782099.2A EP4116641A4 (en) 2020-03-30 2021-03-26 SOLID STATE COOLING DEVICE
CN202180024667.3A CN115398161A (zh) 2020-03-30 2021-03-26 固态制冷装置
US17/947,426 US20230019748A1 (en) 2020-03-30 2022-09-19 Solid-state refrigeration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-060281 2020-03-30
JP2020060281 2020-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/947,426 Continuation US20230019748A1 (en) 2020-03-30 2022-09-19 Solid-state refrigeration apparatus

Publications (1)

Publication Number Publication Date
WO2021200666A1 true WO2021200666A1 (ja) 2021-10-07

Family

ID=77928967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012885 WO2021200666A1 (ja) 2020-03-30 2021-03-26 固体冷凍装置

Country Status (5)

Country Link
US (1) US20230019748A1 (ja)
EP (1) EP4116641A4 (ja)
JP (2) JP7032684B2 (ja)
CN (1) CN115398161A (ja)
WO (1) WO2021200666A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179240B1 (ja) * 2022-05-18 2022-11-28 三菱電機株式会社 磁気冷凍装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108183B2 (ja) * 2018-09-27 2022-07-28 ダイキン工業株式会社 磁気冷凍システム
CN114353374B (zh) * 2022-01-13 2023-07-25 中国科学院赣江创新研究院 一种热电效应和弹热效应耦合的固态制冷装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051412A (ja) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc 磁気冷凍装置
US20080314048A1 (en) * 2007-06-19 2008-12-25 General Electric Company Cooling device and method of operation
JP2012193927A (ja) * 2011-03-17 2012-10-11 Nissan Motor Co Ltd 磁気冷凍機及び磁気冷凍方法
JP2012255642A (ja) 2011-05-13 2012-12-27 Denso Corp 熱磁気サイクル装置
JP2013189543A (ja) * 2012-03-13 2013-09-26 Toyama Univ 磁気冷凍材料、蓄冷材料及びそれを用いた冷凍システム
JP2014214885A (ja) * 2013-04-22 2014-11-17 株式会社デンソー 熱磁気サイクル装置
JP2016080205A (ja) * 2014-10-10 2016-05-16 株式会社デンソー 磁気熱量素子および熱磁気サイクル装置
JP2016080206A (ja) * 2014-10-10 2016-05-16 株式会社デンソー 磁気熱量素子および熱磁気サイクル装置
JP2016109412A (ja) * 2014-11-28 2016-06-20 株式会社デンソー 熱磁気サイクル装置
JP2016530479A (ja) * 2013-09-11 2016-09-29 アストロノーティクス コーポレイション オブ アメリカAstronautics Corporation Of America エポキシによって構造的に安定化された高い空隙率の粒子のベッド
JP2017172820A (ja) * 2016-03-18 2017-09-28 株式会社デンソー 熱磁気サイクル装置
US20180283740A1 (en) * 2017-03-28 2018-10-04 Battelle Memorial Institute Advanced multi-layer active magnetic regenerator systems and processes for magnetocaloric liquefaction
JP2019143938A (ja) * 2018-02-23 2019-08-29 サンデンホールディングス株式会社 磁気熱量素子及び磁気ヒートポンプ装置
JP2020046079A (ja) * 2018-09-14 2020-03-26 ダイキン工業株式会社 磁場印加装置
JP2020046085A (ja) * 2018-09-14 2020-03-26 ダイキン工業株式会社 磁気冷凍ユニット

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054470A1 (ja) * 2018-09-11 2020-03-19 ダイキン工業株式会社 磁気冷凍装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051412A (ja) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc 磁気冷凍装置
US20080314048A1 (en) * 2007-06-19 2008-12-25 General Electric Company Cooling device and method of operation
JP2012193927A (ja) * 2011-03-17 2012-10-11 Nissan Motor Co Ltd 磁気冷凍機及び磁気冷凍方法
JP2012255642A (ja) 2011-05-13 2012-12-27 Denso Corp 熱磁気サイクル装置
JP2013189543A (ja) * 2012-03-13 2013-09-26 Toyama Univ 磁気冷凍材料、蓄冷材料及びそれを用いた冷凍システム
JP2014214885A (ja) * 2013-04-22 2014-11-17 株式会社デンソー 熱磁気サイクル装置
JP2016530479A (ja) * 2013-09-11 2016-09-29 アストロノーティクス コーポレイション オブ アメリカAstronautics Corporation Of America エポキシによって構造的に安定化された高い空隙率の粒子のベッド
JP2016080206A (ja) * 2014-10-10 2016-05-16 株式会社デンソー 磁気熱量素子および熱磁気サイクル装置
JP2016080205A (ja) * 2014-10-10 2016-05-16 株式会社デンソー 磁気熱量素子および熱磁気サイクル装置
JP2016109412A (ja) * 2014-11-28 2016-06-20 株式会社デンソー 熱磁気サイクル装置
JP2017172820A (ja) * 2016-03-18 2017-09-28 株式会社デンソー 熱磁気サイクル装置
US20180283740A1 (en) * 2017-03-28 2018-10-04 Battelle Memorial Institute Advanced multi-layer active magnetic regenerator systems and processes for magnetocaloric liquefaction
JP2019143938A (ja) * 2018-02-23 2019-08-29 サンデンホールディングス株式会社 磁気熱量素子及び磁気ヒートポンプ装置
JP2020046079A (ja) * 2018-09-14 2020-03-26 ダイキン工業株式会社 磁場印加装置
JP2020046085A (ja) * 2018-09-14 2020-03-26 ダイキン工業株式会社 磁気冷凍ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116641A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179240B1 (ja) * 2022-05-18 2022-11-28 三菱電機株式会社 磁気冷凍装置
WO2023223462A1 (ja) * 2022-05-18 2023-11-23 三菱電機株式会社 磁気冷凍装置

Also Published As

Publication number Publication date
EP4116641A1 (en) 2023-01-11
JP2022016668A (ja) 2022-01-21
US20230019748A1 (en) 2023-01-19
JP2021162300A (ja) 2021-10-11
CN115398161A (zh) 2022-11-25
EP4116641A4 (en) 2024-03-27
JP7436875B2 (ja) 2024-02-22
JP7032684B2 (ja) 2022-03-09

Similar Documents

Publication Publication Date Title
WO2021200666A1 (ja) 固体冷凍装置
CN102109249B (zh) 具有蒸气注射系统的压缩机
US7980093B2 (en) Combined refrigerant compressor and secondary liquid coolant pump
WO2006025427A1 (ja) 冷凍装置
EP1577621A2 (en) Refrigerating machine
US20220214091A1 (en) Solid-state refrigeration device
JP6832939B2 (ja) 冷凍サイクル装置
KR0166137B1 (ko) 공기 조화기의 운전제어장치
JP6505782B2 (ja) 磁気ヒートポンプ装置
CN112361642B (zh) 磁蓄冷器、蓄冷床、磁制冷系统和磁制冷控制方法
CN105953337B (zh) 冰蓄热空调机组及其控制方法
JP6865902B1 (ja) 磁気温調システム
JP3666264B2 (ja) 空調装置
JP7477805B2 (ja) 固体冷凍装置
JP2022150260A (ja) 固体冷凍装置
JP6505781B2 (ja) 磁気ヒートポンプ装置
JPH01306785A (ja) 空気調和機
JP2023142130A (ja) 磁気冷凍装置
JP2002243295A (ja) 空気調和機
CN112129004B (zh) 压缩机和换热系统
JP2844444B2 (ja) パルス管冷凍機
JPS61225554A (ja) 蓄冷式冷凍装置
JPH0438989B2 (ja)
JPS63118570A (ja) ヒ−トポンプ装置
JPH08303893A (ja) ヒートポンプ式冷暖房装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021782099

Country of ref document: EP

Effective date: 20221004

NENP Non-entry into the national phase

Ref country code: DE