WO2021200429A1 - Structure - Google Patents

Structure Download PDF

Info

Publication number
WO2021200429A1
WO2021200429A1 PCT/JP2021/012128 JP2021012128W WO2021200429A1 WO 2021200429 A1 WO2021200429 A1 WO 2021200429A1 JP 2021012128 W JP2021012128 W JP 2021012128W WO 2021200429 A1 WO2021200429 A1 WO 2021200429A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin layer
resin
value
thickness
Prior art date
Application number
PCT/JP2021/012128
Other languages
French (fr)
Japanese (ja)
Inventor
衆 管
康代 金沢
中居 弘進
尚人 小山
和貴 仲田
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=77929575&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021200429(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to CN202180015814.0A priority Critical patent/CN115135496A/en
Priority to JP2022512005A priority patent/JP7186920B2/en
Publication of WO2021200429A1 publication Critical patent/WO2021200429A1/en
Priority to JP2022186907A priority patent/JP2023016876A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a structure, and more particularly to a structure having a first film and a resin layer, or a structure having a first film, a resin layer, and a second film in this order.
  • the insulating layer is generally formed by thermosetting the curable resin composition as a curable resin layer.
  • the dry film is a structure having a curable resin layer obtained by applying a liquid curable resin composition adjusted to a predetermined viscosity to a region on the surface of a first film prepared separately and then drying. be.
  • the dry film is generally further laminated with a second film in order to protect the surface of the curable resin layer opposite to the first film.
  • the steps are ordered such that the second film is peeled off first, and then the first film is peeled off after laminating or curing on the base material, the first film and the second film are used. There needs to be a way to tell which of the films to peel off.
  • the first film and the second film are transparent, it is difficult to distinguish the films, and there is a risk that the first film and the second film are peeled off in the wrong order. .. This tendency is particularly remarkable when the first film and the second film have the same specifications, and in such a case, when the second film is peeled off from the structure, due to the relationship with the first film.
  • film marks linear marks
  • chip-type devices such as semiconductor elements and electronic parts
  • a transfer molding method using a powdered epoxy resin composition, potting using a liquid epoxy resin composition, a silicone resin or the like. It has been carried out by the method, the dispensing method, the printing method, etc.
  • it is suitable for mounting a device with a high degree of integration, and in order to efficiently manufacture a device such as a surface acoustic wave (SAW) device or a crystal device that needs to be hollow after sealing.
  • SAW surface acoustic wave
  • Patent Document 2 is characterized by containing (A) a crosslinkable elastomer, (B) an epoxy resin, (C) an epoxy resin curing agent, and (D) an inorganic filler as a composition that can be collectively sealed.
  • Thermosetting resin compositions have been proposed. Further, in recent years, it has been proposed to use a dry film type for batch sealing.
  • the dry film is usually a structure having a curable resin layer on the first film.
  • the above structure can be produced by applying a liquid curable resin composition on a tensioned first film and then drying to form a curable resin layer.
  • the first film used for the structure is used by unwinding the film wound on a roll, but there is a problem that the film is wrinkled or sagging at that time.
  • the roll circumferences D1 to D14 at each part when the film roll is divided into 14 equal parts in the width direction satisfy specific conditions and are straight in the width direction of the film roll divided into 14 equal parts. It has been proposed that the maximum thickness difference (Tm) between the film thicknesses T1 to T14 of each portion measured on the line satisfies a specific condition (see Patent Document 3).
  • an object of the first embodiment of the present invention is a structure in which the first film and the second film of the multi-layered structure can be easily distinguished, and the resin layer is less likely to have film marks when the second film is peeled off. To provide the body.
  • an object of the second embodiment of the present invention is to provide a structure having a resin layer having a thickness of 50 ⁇ m or more and a small variation in thickness on the first film.
  • the present inventors have measured the haze of the first film and the second film itself, or the Lab color measured from the first film side of the structure. Adjust the L * value, a * value, b * value in space and the L * value, a * value, b * value in the Lab color space measured from the second film side of the structure, and adjust each haze or each L *. It was found that it is possible to easily distinguish the front and back of the structure by giving a difference of a certain value or more to the value, the a * value, or the b * value.
  • the present inventors have adjusted the trouser tearing force of the first film and the second film, and made a difference of a certain amount or more between the trouser tearing forces. , It was found that the generation of film marks can be suppressed.
  • the structure according to the first aspect for the purpose of the first aspect of the present invention comprises the first film, the resin layer, and the second film in this order.
  • the difference between the trouser tearing force of the first film and the trouser tearing force of the second film is ⁇ 0.05 N or less or + 0.05 N or more.
  • the difference between the haze of the first film and the haze of the second film is -5% or less or + 5% or more.
  • a structure according to a second aspect for the purpose of the first aspect of the present invention comprises a first film, a resin layer, and a second film in this order.
  • the difference between the trouser tearing force of the first film and the trouser tearing force of the second film is ⁇ 0.05 N or less or + 0.05 N or more.
  • the difference between the * value and b * value is the following conditions (i) to (iii): (I) The difference between L * values is -0.1 or less or +0.1 or more. (Ii) The difference between the a * values is ⁇ 0.1 or less or +0.1 or more. (Iii) The difference between b * values is -1 or less or +1 or more. It is characterized by satisfying at least one of.
  • the trouser tearing force of the second film is smaller than the trouser tearing force of the first film.
  • the resin layer is a curable resin layer.
  • the first film is selected from a polyester film and a polyolefin film.
  • the second film is selected from a polyester film and a polyolefin film.
  • the structure according to the aspect of the present invention comprises a first film and a resin layer.
  • the thickness of the first film is 30 ⁇ m or more, and the thickness is 30 ⁇ m or more.
  • the trouser tearing force of the first film is 0.1 N or more.
  • the thickness of the resin layer is 50 ⁇ m or more, and the thickness of the resin layer is 50 ⁇ m or more.
  • the resin layer is a curable resin layer.
  • the curable resin layer contains a thermosetting resin and a curing agent.
  • thermosetting resin is an epoxy compound.
  • the resin layer is a curable resin layer.
  • the first film is selected from the group consisting of a polyester film, a polyolefin film, and a polyimide film.
  • the variation in the thickness of the first film is preferably ⁇ 10% or less.
  • ⁇ Effect of the first form> it is possible to provide a structure in which the front and back surfaces of a multi-layered structure can be easily distinguished and the resin layer is less likely to have film marks when the second film is peeled off.
  • the reason why the generation of film marks can be suppressed by adjusting the trouser tearing force of the first film and the second film and making a difference of a certain amount or more between each trouser tearing force is not always clear, but as follows. I can guess. That is, when the difference in the tearing force of the trouser is added, the load applied to the resin layer when the film is peeled off is different from that in the case where there is no difference in the tearing force, which is appropriate. As a result, it is considered that there is a difference in the ease of forming film marks on the resin layer. However, this is just a guess, and not limited to this.
  • ⁇ Effect of the second form> it is possible to provide a structure having a resin layer having a thickness of 50 ⁇ m or more and a small variation in thickness on the first film.
  • the reason why a resin layer having a small variation in thickness can be formed by adjusting the trouser tearing force of the first film and adjusting the thickness of the first film is not always clear, but it can be inferred as follows. .. That is, by the above adjustment, the surface condition of the first film becomes appropriate, and even when tension is applied to the first film, the force can be withstood, so that wrinkles are less likely to occur, and as a result, the first It is presumed that the resin layer formed on the film of No. 1 can be easily formed, and the variation in the thickness of the resin layer can be suppressed. However, this is just a guess, and not limited to this.
  • the structure according to the present invention includes a first film, a resin layer, and a second film in this order, and the first film and the second film satisfy specific conditions described later.
  • the first film and the second film satisfy the specific conditions described later, it is easy to distinguish the front and back sides of the multi-layered structure, and when the second film is peeled off, it becomes a resin layer. It is possible to provide a structure in which film marks are less likely to be formed.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a structure according to the present invention.
  • the structure 1 is a surface provided with a first film 10, a resin layer 20 provided on one surface of the first film 10, and a first film 10 of the resin layer 20. It is provided with a second film 30 provided on the opposite surface.
  • the first film in the present invention has a role of supporting the resin layer of the structure, and is a film to which the resin composition is applied when the resin layer is formed.
  • the resin layer side of the structure is in contact with a base material such as a substrate and integrally molding, it means that the resin layer is at least adhered to the resin layer, and the resin layer is cured. After that, it is preferable to peel off from the structure.
  • the first film examples include polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyolefin films such as polyethylene film and polypropylene film, fluororesin films such as polytetrafluoroethylene film, polyimide films, polyamideimide films, and polystyrene films.
  • a film made of a thermoplastic resin such as the above can be used.
  • a polyester film and a polyolefin film can be preferably used from the viewpoints of heat resistance, mechanical strength, handleability and the like.
  • the surface of the first film on which the resin layer is provided may be subjected to a mold release treatment or a matting treatment, or a sputtered or ultrathin copper foil and an adhesive layer may be formed.
  • the thickness of the first film is not particularly limited and can be appropriately selected depending on the intended use.
  • the thickness of the first film is preferably 12 ⁇ m or more and 125 ⁇ m or less, and more preferably 15 ⁇ m or more and 75 ⁇ m or less, from the viewpoint of mechanical strength, handleability, and the like.
  • the second film in the present invention is provided on the surface opposite to the first film of the resin layer for the purpose of preventing dust and the like from adhering to the surface of the resin layer of the structure and improving handleability.
  • It is a film that can be used.
  • it refers to a material that is peeled off from the structure before laminating when it is laminated by heating or the like so that the resin layer side of the structure is in contact with a base material such as a substrate and integrally molded.
  • a film made of the thermoplastic resin exemplified in the first film can be used.
  • polyester film and polyolefin film are preferable from the viewpoint of heat resistance, mechanical strength, handleability and the like.
  • the surface of the second film on which the resin layer is provided may be subjected to a mold release treatment.
  • the thickness of the second film is not particularly limited and can be appropriately selected depending on the intended use.
  • the thickness of the second film is preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 15 ⁇ m or more and 50 ⁇ m or less, from the viewpoint of mechanical strength, handleability, and the like.
  • the trouser tearing force of the first film and the second film is described in JIS K 7128-1: 1998 "Plastic-Film and Sheet Tear Strength Test Method-Part 1: Trouser Tearing Method". It is a value measured under the following measurement conditions using a tensile tester (manufactured by Shimadzu Corporation, EZ-SX) in accordance with the above.
  • EZ-SX tensile tester
  • the measurement direction shall be measured only in the vertical direction (MD direction) regardless of the presence or absence of anisotropy depending on the direction.
  • the trouser tearing force of the first film and the second film is the type of thermoplastic resin of the first film and the second film, the draw ratio during film formation, the film thickness, the breaking strength of the film, and the surface. It can be adjusted within a desired range by adjusting the roughness of the film.
  • the difference between the haze of the first film and the haze of the second film is -5% or less or +5. % Or more, preferably -8% or less or + 8% or more, more preferably -85% or more and -8% or less or + 8% or more in that the front and back of the multi-layer structure can be more easily distinguished. It is + 85% or less.
  • the haze of the first film and the second film is the surface roughness of the first film and the second film, the addition and type of colorant, the type of thermoplastic resin, the draw ratio during film formation, and the film. It can be adjusted within a desired range by adjusting the thickness of the film.
  • the haze of the first film and the second film is a value measured by using a haze mate for the film itself in accordance with ASTMD1003.
  • the structure according to the present invention has L * values, a * values, b * values in the Lab color space measured from the first film side of the structure and the Lab color space measured from the second film side of the structure.
  • the L * value, a * value, b * value ") in the Lab color space measured from the second film side satisfies at least one of the following conditions (i) to (iii).
  • the difference between the L * values is ⁇ 0.1 or less or +0.1 or more, and is preferably ⁇ 10 or less or +10 or more in that the front and back of the multi-layer structure can be more easily distinguished. More preferably, it is -30 or more and -15 or less or +15 or more and +30 or less.
  • the difference between the a * values is ⁇ 0.1 or less or +0.1 or more, and it is preferable that the difference between the front and back of the multi-layered structure is ⁇ 0.3 or less or +0.3. The above is more preferably ⁇ 30 or more and ⁇ 0.3 or less or +0.3 or more and +30 or less.
  • the difference between the b * values is -1 or less or +1 or more, and is preferably -2 or less or +2 or more, more preferably ⁇ 2 or more, in that the front and back of the multi-layer structure can be more easily distinguished. It is 10 or more and -2 or less or +2 or more and +10 or less.
  • the b * value adjusts the surface roughness of the first film and the second film, the amount and type of colorant added, the type of thermoplastic resin, the draw ratio during film formation, the film thickness, and the like.
  • L * value, a * value, b * value in the Lab color space measured from the first film side of the structure and L * value, a * value, in the Lab color space measured from the second film side of the structure When the difference in b * values satisfies the above condition, it becomes easy to distinguish the back side and the back side of the multi-layered structure.
  • the difference described in (i) that is, the difference in the L * value satisfies the above condition from the viewpoint of making it easier to distinguish.
  • the value, a * value, and b * value are values measured under the following measurement conditions using a spectrocolorimeter.
  • the resin layer is a layer located between the first film and the second film of the structure, and is preferably a curable resin layer.
  • the curable resin layer is a dry coating film obtained by drying the curable resin composition, and may be a thermosetting resin layer that is cured by heating, a photocurable resin layer that is cured by light irradiation, or a photocurable resin layer. It may be a thermosetting / photocurable resin layer that is cured by heating and cured by light irradiation.
  • the curable resin composition preferably contains at least one of a thermosetting resin and a photocurable resin, and may further contain other components.
  • thermosetting resin When the curable resin composition contains a thermosetting resin, the heat resistance of the cured product is improved and the adhesion to the substrate is improved.
  • thermosetting resin include amino resins such as melamine resin, benzoguanamine resin, melamine derivative, and benzoguanamine derivative, isocyanate compounds, blocked isocyanate compounds, cyclocarbonate compounds, epoxy compounds, oxetane compounds, episulfide resins, bismaleimide, and carbodiimide resins. Etc. can be used.
  • thermosetting resin one type may be used alone or two or more types may be used in combination.
  • thermosetting resin having a cyclic (thio) ether group in the molecule is a compound having either or both of a 3, 4 or 5-membered cyclic ether group or a cyclic thio ether group in the molecule.
  • an epoxy compound, a polyfunctional oxetane compound, an episulfide resin and the like can be mentioned. Of these, epoxy compounds are preferred.
  • the epoxy compound examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, and bisphenol Z type epoxy resin.
  • Novolak type epoxy resin such as bisphenol type epoxy resin, bisphenol A novolac type epoxy resin, phenol novolac type epoxy resin, cresol novolac epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, arylalkylene type epoxy resin, tetraphenylol ethane Type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantan type epoxy resin, fluorene type epoxy resin, glycidyl methacrylate copolymer type epoxy resin, Copolymerized epoxy resin of cyclohexyl maleimide and glycidyl methacryl
  • Examples of commercially available epoxy resins include jER 828, 806, 807, YX8000, YX8034, 834 manufactured by Mitsubishi Chemical Corporation, YD-128, YDF-170, ZX-1059 manufactured by Nittetsu Chemical & Materials Co., Ltd. Examples thereof include ST-3000, EPICLON 830, 835, 840, 850, N-730A, N-695 manufactured by DIC Corporation, and RE-306 manufactured by Nippon Kayaku Corporation.
  • polyfunctional oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, and 1,4-bis [(3-3-oxythenylmethoxy) methyl] ether.
  • Methyl-3-oxetanylmethoxy) methyl] benzene 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-3) Oxetanyl) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and polyfunctional oxetane such as their oligomers or copolymers, as well as oxetane alcohols and novolak resins.
  • Examples of the compound having a plurality of cyclic thioether groups in the molecule include bisphenol A type episulfide resin and the like. Further, using the same synthesis method, an episulfide resin or the like in which the oxygen atom of the epoxy group of the novolak type epoxy resin is replaced with a sulfur atom can also be used.
  • amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycol uryl compounds and methylol urea compounds.
  • polyisocyanate compound a polyisocyanate compound can be blended.
  • Polyisocyanate compounds include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate and Aromatic polyisocyanates such as 2,4-tolyrene dimer; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis (cyclohexyl isocyanate) and isophorone diisocyanate; bicyclo Alicyclic polyisocyanates such as heptanthriisocyanate; and adducts, burettes, and isocyanurates
  • an addition reaction product of the isocyanate compound and the isocyanate blocking agent can be used.
  • the isocyanate compound capable of reacting with the isocyanate blocking agent include the above-mentioned polyisocyanate compound and the like.
  • the isocyanate blocking agent include a phenol-based blocking agent; a lactam-based blocking agent; an active methylene-based blocking agent; an alcohol-based blocking agent; an oxime-based blocking agent; a mercaptan-based blocking agent; an acid amide-based blocking agent; an imide-based blocking agent; Amine-based blocking agents; imidazole-based blocking agents; imine-based blocking agents and the like can be mentioned.
  • Photocurable resin Radical polymerization
  • a compound having one or more ethylenically unsaturated bonds in the molecule is particularly preferably used.
  • the compound having an ethylenically unsaturated bond known and commonly used photopolymerizable oligomers, photopolymerizable vinyl monomers and the like are used.
  • Examples of the photopolymerizable oligomer include unsaturated polyester-based oligomers and (meth) acrylate-based oligomers.
  • Examples of the (meth) acrylate-based oligomer include epoxy (meth) acrylates such as phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, and bisphenol type epoxy (meth) acrylate, urethane (meth) acrylate, and epoxy urethane (meth). ) Acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene-modified (meth) acrylate and the like.
  • (meth) acrylate is a generic term for acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
  • styrene derivatives such as styrene, chlorostyrene and ⁇ -methylstyrene
  • vinyl esters such as vinyl acetate, vinyl butyrate or vinyl benzoate
  • vinyl isobutyl ether vinyl- Vinyl ethers such as n-butyl ether, vinyl-t-butyl ether, vinyl-n-amyl ether, vinyl isoamyl ether, vinyl-n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, triethylene glycol monomethyl vinyl ether
  • acrylamide (Meta) acrylamides such as methacrylicamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylicamide, N-methoxymethylacrylamide, N-ethoxymethylacrylamide, N-butoxymethylacrylamide
  • triallyl isocyanurate diallyl phthalate
  • Polyoxyalkylene glycol poly (meth) acrylates such as di (meth) acrylates, trimethylolethane ethoxylated propantriacrylates, propoxylated trimethylol propantri (meth) acrylates, etc.
  • Poly (meth) acrylates such as neopentyl glycol ester di (meth) acrylate of hydroxybivariate
  • Isocyanurate-type poly (meth) acrylates such as tris [(meth) acryloxyethyl] isocyanurate. ..
  • photocurable resin cationic polymerization
  • an alicyclic epoxy compound a vinyl ether compound and the like
  • the alicyclic epoxy compounds include 3,4,3', 4'-diepoxybicyclohexyl, 2,2-bis (3,4-epoxycyclohexyl) propane, and 2,2-bis (3,4-epoxy).
  • vinyl ether compound examples include cyclic ether type vinyl ethers such as isosorbite divinyl ether and oxanolbornene divinyl ether (vinyl ethers having cyclic ether groups such as oxylane ring, oxetane ring and oxolan ring); aryl vinyl ethers such as phenyl vinyl ether; n-butyl vinyl ether.
  • cyclic ether type vinyl ethers such as isosorbite divinyl ether and oxanolbornene divinyl ether
  • aryl vinyl ethers such as phenyl vinyl ether
  • n-butyl vinyl ether examples include cyclic ether type vinyl ethers such as isosorbite divinyl ether and oxanolbornene divinyl ether (vinyl ethers having cyclic ether groups such as oxylane ring, oxetane ring and oxolan
  • Alkyl vinyl ethers such as octyl vinyl ethers; cycloalkyl vinyl ethers such as cyclohexyl vinyl ethers; polyfunctional vinyl ethers such as hydroquinone divinyl ethers, 1,4-butanediol divinyl ethers, cyclohexane divinyl ethers, cyclohexanedimethanol divinyl ethers, ⁇ and / or ⁇ -positions.
  • Examples thereof include vinyl ether compounds having a substituent such as an alkyl group and an allyl group.
  • the curable resin composition can contain an alkali-soluble resin.
  • the alkali-soluble resin it is preferable to use a carboxyl group-containing resin or a phenol resin.
  • a carboxyl group-containing resin it is more preferable to use a carboxyl group-containing resin from the viewpoint of developability.
  • the carboxyl group-containing resin may be a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond.
  • Carboxyl group-containing photosensitive by reacting an epoxy resin with (meth) acrylic acid and adding a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride to a hydroxyl group existing in a side chain. Sex resin.
  • a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride
  • Sex resin (2) Carboxyl group-containing photosensitive in which a (meth) acrylic acid is reacted with a polyfunctional epoxy resin obtained by further epoxidizing the hydroxyl group of the epoxy resin with epichlorohydrin, and a dibasic acid anhydride is added to the generated hydroxyl group. Sex resin.
  • the epoxy compound is obtained by reacting a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule with an unsaturated group-containing monocarboxylic acid such as (meth) acrylic acid.
  • an unsaturated group-containing monocarboxylic acid such as (meth) acrylic acid.
  • Photosensitive resin such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, or adipic acid.
  • An unsaturated group-containing monocarboxylic acid is reacted with a reaction product obtained by reacting a compound having two or more phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate.
  • a carboxyl group-containing photosensitive resin obtained by reacting the obtained reaction product with a polybasic acid anhydride.
  • Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates, and polycarbonate-based polyols, polyether-based polyols, polyester-based polyols, polyolefin-based polyols, acrylic-based polyols, and bisphenol A-based A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with the end of a urethane resin obtained by a double addition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Molecules such as hydroxyalkyl (meth) acrylate during the synthesis of a carboxyl group-containing urethane resin by a double addition reaction between a diisocyanate, a carboxyl group-containing dialcohol compound such as dimethylolpropionic acid and dimethylolbutyric acid, and a diol compound.
  • a carboxyl group-containing urethane resin obtained by adding a compound having one hydroxyl group and one or more (meth) acryloyl groups to the terminal (meth) acrylic.
  • a carboxyl group-containing urethane resin by a double addition reaction of a diisocyanate, a carboxyl group-containing dialcohol compound, and a diol compound, an isophorone diisocyanate and a pentaerythritol triacrylate equimolar reaction product, etc.
  • a carboxyl group-containing urethane resin that is terminally (meth) acrylicated by adding a compound having one isocyanate group and one or more (meth) acryloyl groups.
  • a carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth) acrylic acid with an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, or isobutylene.
  • a carboxyl group-containing polyester resin obtained by reacting an oxetane resin with a dicarboxylic acid such as adipic acid, phthalic acid, or hexahydrophthalic acid, and adding a dibasic acid anhydride to the generated primary hydroxyl group.
  • carboxyl group-containing resin Since the above-mentioned carboxyl group-containing resin has a large number of carboxyl groups in the side chain of the backbone polymer, it can be developed with a dilute alkaline aqueous solution.
  • the acid value of the carboxyl group-containing resin is preferably in the range of 40 to 200 mgKOH / g, more preferably in the range of 45 to 120 mgKOH / g.
  • the acid value of the carboxyl group-containing resin is 40 mgKOH / g or more, alkaline development becomes easy, while drawing a normal resist pattern of 200 mgKOH / g or less becomes easy.
  • the weight average molecular weight of the above-mentioned carboxyl group-containing resin varies depending on the resin skeleton, but is generally preferably in the range of 2,000 to 150,000, more preferably 5,000 to 100,000.
  • the weight average molecular weight is 2,000 or more, the tack-free performance, the development resistance of the coating film after exposure, and the resolution are good.
  • the weight average molecular weight is 150,000 or less, the developability is excellent.
  • carboxyl group-containing resin those other than those described above can be used, and one type of each may be used alone, or a plurality of types may be mixed and used.
  • phenolic resin examples include compounds having a phenolic hydroxyl group, for example, a compound having a biphenyl skeleton and / or a phenylene skeleton, or a phenolic hydroxyl group-containing compound, for example, phenol, orthocresol, paracresol, metacresol, 2 , 3-Xylenol, 2,4-Xylenol, 2,5-Xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, catechol, cresolsinol, hydroquinone, methylhydroquinone, 2,6-dimethylhydroquinone , Phenolic resins having various skeletons synthesized with trimethylhydroquinone, pyrogallol, fluoroglucolcinol and the like may be used.
  • phenol novolac resin alkylphenol volac resin, bisphenol A novolak resin, dicyclopentadiene type phenol resin, Xyloc type phenol resin, terpene modified phenol resin, polyvinylphenols, bisphenol F, bisphenol S type phenol resin, poly-p- Known and commonly used phenol resins such as hydroxystyrene, a condensate of naphthol and aldehydes, and a condensate of dihydroxynaphthalene and aldehydes can be used. These can be used alone or in combination of two or more.
  • the alkali-soluble resin either one of the carboxyl group-containing resin and the phenol resin, or a mixture thereof may be used.
  • the photocurable resin is photocurable by irradiation with active energy rays and promotes the dissolution of the alkali-soluble resin in an alkaline aqueous solution. In either case, one or more types of photocurable resins can be used.
  • the curable resin composition may further contain a thermoplastic resin in order to improve the mechanical strength of the obtained cured film.
  • the thermoplastic resin is preferably soluble in a solvent. When it is soluble in a solvent, the flexibility of the dry film is improved, and the generation of cracks and powder falling can be suppressed.
  • various acid anhydrides or acid chlorides are used for the thermoplastic polyhydroxypolyether resin, the phenoxy resin which is a condensate of epichlorohydrin and various bifunctional phenol compounds, or the hydroxyl group of the hydroxyether portion existing in the skeleton thereof.
  • Examples thereof include phenoxy resins, polyvinyl acetal resins, polyamide resins, polyamideimide resins, block copolymers, and polymer resins having a glass transition point of 20 ° C. or lower and a weight average molecular weight of 10,000 or more.
  • the polymer resin is preferably an acrylic acid ester copolymer.
  • the thermoplastic resin may be used alone or in combination of two or more.
  • the curable resin composition may contain a curing agent.
  • the curing agent include phenol resins, polycarboxylic acids and their acid anhydrides, cyanate ester resins, active ester resins, maleimide compounds, alicyclic olefin polymers and the like.
  • the curing agent one type may be used alone or two or more types may be used in combination.
  • the curable resin layer can contain a curing accelerator.
  • the curing accelerator accelerates the thermosetting reaction, and is used to further improve properties such as adhesion, chemical resistance, and heat resistance.
  • Specific examples of such a curing accelerator include imidazole and its derivatives; guanamines such as acetoguanamine and benzoguanamine; diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulphon, dicyandiamide, urea, urea derivatives, etc.
  • Polyamines such as melamine, polybasic hydrazide; these organic acid salts and / or epoxy adducts; amine complexes of boron trifluoride; ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4- Triazine derivatives such as diamino-6-xysilyl-S-triazine; trimethylamine, triethanolamine, N, N-dimethyloctylamine, N-benzyldimethylamine, pyridine, N-methylmorpholin, hexa (N-methyl) melamine, Amines such as 2,4,6-tris (dimethylaminophenol), tetramethylguanidine, m-aminophenol; polyphenols such as polyvinylphenol, polyvinylphenol bromide, phenol novolac, alkylphenol novolac; tributylphosphine, triphenyl Organic pho
  • Styrene-maleic anhydride resin Styrene-maleic anhydride resin; equimolar reactants of phenylisocyanate and dimethylamine, equimolar reactants of organic polyisocyanate and dimethylamine such as tolylene diisocyanate and isophorone diisocyanate, and conventionally known curing accelerators such as metal catalysts.
  • curing accelerators phosphonium salts are preferable because BHAST resistance can be obtained.
  • one type may be used alone or two or more types may be mixed.
  • the curable resin composition can contain a photoreaction initiator.
  • the photoreaction initiator may be any as long as it can generate radicals, bases, acids and the like by light irradiation to cure the curable resin.
  • Examples of the photoreaction initiator include known and commonly used compounds such as benzophenone, acetophenone, aminoacetophenone, benzoin ether, benzyl ketal, acylphosphine oxide, oxime ether, oxime ester, and titanosen. ..
  • As the photoreaction initiator it is preferable to contain one or more selected from the group consisting of an oxime ester type, an ⁇ -aminoacetophenone type acylphosphine oxide type, and a titanosen type.
  • oxime ester-based photoreaction initiator examples include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-). Methylbenzoyl) -9H-carbazole-3-yl]-, 1- (O-acetyloxime), 2- (acetyloxyiminomethyl) thioxanthene-9-one and the like can be mentioned.
  • the oxime ester-based photoreaction initiator may be a compound having a plurality of oxime ester groups.
  • Examples of the ⁇ -aminoacetophenone-based photoreaction initiator include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 2-benzyl-2-dimethylamino-1- (4-morpholino). Phenyl) -butane-1-one, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, N, N-dimethyl Aminoacetophenone and the like can be mentioned.
  • Acylphosphine oxide-based photoreactive initiators include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and bis (2,6-dimethoxybenzoyl). ) -2,4,4-trimethyl-Pentylphosphine oxide and the like.
  • titanosen-based photoreaction initiator examples include bis ( ⁇ 5-2,4-cyclopentadiene-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium. Be done.
  • the curable resin composition can contain a photoreaction initiator other than the above-mentioned compounds, a photoinitiator aid and a sensitizer, and for example, a benzoin compound, an anthraquinone compound, a thioxanthone compound, a ketal compound, and a xanthone compound. , And a tertiary amine compound and the like.
  • the curable resin composition may contain an inorganic filler.
  • the inorganic filler preferably has properties such as adhesion, mechanical strength, and coefficient of linear expansion of the cured product.
  • Examples of the inorganic filler include barium sulfate, barium titanate, silicon oxide powder, fine powdered silicon oxide, amorphous silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, zirconium phosphate, and mica.
  • Known and commonly used inorganic fillers such as powder can be used.
  • the inorganic filler preferably contains at least one of barium sulfate and silica.
  • the average particle size of the inorganic filler is preferably 0.1 to 20 ⁇ m.
  • the average particle size can be determined by a laser diffraction type particle size distribution measuring device. Examples of the measuring device by the laser diffraction method include Microtrac Bell Co., Ltd. (Nanotrac wave).
  • the average particle size is a concept including an average primary particle size and an average secondary particle size.
  • the curable resin composition may contain an organic solvent used for preparing the composition and adjusting the viscosity.
  • organic solvent include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol and propylene glycol.
  • Glycol ethers such as monomethyl ether, dipropylene glycol monomethyl ether (DPM), dipropylene glycol diethyl ether, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbi Esters such as tall acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, and propylene carbonate; aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, and solvent naphtha are used. can do. These organic solvents can be used alone or in combination of two or more.
  • the curable composition may include a colorant.
  • the colorant is not particularly limited, and known colorants such as red, blue, green, and yellow can be used, and any of pigments, dyes, and pigments may be used. However, the colorant preferably does not contain halogen from the viewpoint of reducing the environmental load and affecting the human body.
  • red colorants examples include monoazo, disazo, azolake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, quinacridone, etc.
  • -Index CI; The Society of Dyers and Colorists (issued by The Society of Dyersand Colorists)) numbered ones can be mentioned.
  • Pigment Red 1,2,3,4,5,6,8,9,12,14,15,16,17,21,22,23,31,32,112,114, 146,147,151,170,184,187,188,193,210,245,253,258,266,267,268,269 and the like can be mentioned.
  • Examples of the disazo-based red colorant include Pigment Red 37, 38, 41 and the like.
  • Examples of the benzimidazolone-based red colorant include Pigment Red 171, 175, 176, 185, 208 and the like.
  • Examples of the perylene-based red colorant include Solvent Red 135,179, Pigment Red 123,149,166,178,179,190,194,224 and the like.
  • Examples of the diketopyrrolopyrrole-based red colorant include Pigment Red 254, 255, 264, 270, 272 and the like.
  • Examples of the condensed azo red colorant include Pigment Red 220, 144, 166, 214, 220, 211, 242 and the like.
  • Examples of the anthraquinone-based red colorant include Pigment Red 168, 177, 216 and Solvent Red 149, 150, 52, 207.
  • Examples of the quinacridone-based red colorant include Pigment Red 122, 202, 206, 207, 209 and the like.
  • blue colorant examples include phthalocyanine-based and anthraquinone-based compounds, and pigment-based compounds include compounds classified as Pigment.
  • Pigment Blue 15,15: 1,15: 2,15: 3,15: 4,15: 6,16,60, as the dye system, Compound Blue 35,63,68,70,83,87,94,97,122,136,67,70 and the like can be used.
  • metal-substituted or unsubstituted phthalocyanine compounds can also be used.
  • yellow colorant examples include monoazo, disazo, condensed azo, benzimidazolone, isoindolinone, anthraquinone, etc.
  • examples of the anthraquinone yellow colorant include Solvent Yellow 163, Pigment Yellow 24, 108, 193, 147, 199, 202 and the like can be mentioned.
  • examples of the isoindolinone-based yellow colorant include Pigment Yellow 110, 109, 139, 179, 185 and the like.
  • condensed azo-based yellow colorant examples include Pigment Yellow 93, 94, 95, 128, 155, 166, 180 and the like.
  • Examples of the benzimidazolone-based yellow colorant include Pigment Yellow 120, 151, 154, 156, 175, 181 and the like.
  • a monoazo yellow colorant Pigment Yellow 1,2,3,4,5,6,9,10,12,61,62,62:1,65,73,74,75,97,100, 104, 105, 111, 116, 167, 168, 169, 182, 183 and the like can be mentioned.
  • Examples of the disazo-based yellow colorant include Pigment Yellow 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152, 170, 172, 174, 176, 188, 198 and the like. Can be mentioned.
  • colorants such as purple, orange, brown, black, and white may be added.
  • the structure according to the present invention is preferably for forming a cured film of a printed wiring board, more preferably for forming a permanent protective film, and is preferably an interlayer insulating layer, a coverlay, a solder resist or a fill-in-the-blank (material). It is particularly preferable that it is for forming. Further, since the structure of the present invention can form a cured product having excellent film strength even with a thin film, it is a pattern layer in a printed wiring board, for example, a package substrate (printed wiring board used for a semiconductor package), which is required to be thinned. It can also be suitably used for formation. Further, the structure of the present invention can be suitably used for a flexible printed wiring board.
  • the structure according to the present invention includes a first film and a resin layer, and the first film and the resin layer satisfy specific conditions described later.
  • the first film and the resin layer satisfy the specific conditions described later, it is possible to obtain a structure in which the resin layer having a small variation in thickness is formed on the first film.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of the structure according to the present invention.
  • the structure 1 includes a first film 10 and a resin layer 20 provided on one surface of the first film 10.
  • a resin layer 20 provided on one surface of the first film 10.
  • the first film has a role of supporting the resin layer of the structure, and is a film to which the resin composition is applied when the resin layer is formed.
  • the first film may be one that can be peeled off from the structure after the resin layer is cured.
  • the first film include polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyolefin films such as polyethylene film and polypropylene film, fluororesin films such as polytetrafluoroethylene film, polyimide films, polyamideimide films, and polystyrene films.
  • a film made of a thermoplastic resin such as the above can be used.
  • a polyester film and a polyolefin film can be preferably used from the viewpoints of heat resistance, mechanical strength, handleability and the like.
  • the surface of the first film on which the resin layer is provided may be subjected to a mold release treatment or a matting treatment, or a sputtered or ultrathin copper foil and an adhesive layer may be formed.
  • the thickness of the first film is 30 ⁇ m or more, preferably 35 ⁇ m or more and 125 ⁇ m or less. When the thickness of the first film is within the above numerical range, it is possible to suppress the occurrence of vertical wrinkles when tension is applied to the first film.
  • the trouser tearing force of the first film is 0.1 N or more, preferably 0.15 N or more and 2 N or less, and more preferably 0.2 N or more and 1.5 N or less.
  • the trouser tearing force of the first film is measured under the following measurement conditions using a tensile tester (manufactured by Shimadzu Corporation, EZ-SX) in accordance with JIS K 7128-1: 1998. It is a value measured in.
  • the first film in the structure of the present invention has a thickness variation of ⁇ 10% or less of the first film, which means that the film thickness can be easily controlled because the resin layer is applied without variation. Is preferable. More preferably, it is ⁇ 5% or less.
  • the variation in the thickness of the first film shall be measured as follows. That is, 40 mm was cut out in the MD direction from a position 1 m in the MD direction from the end of the film of the first film to prepare a measurement sample. The measurement sample was measured at 25 points in the TD direction at a pitch of 20 mm from a position 15 mm away from the edge of the film using an automatic measurement type film thickness meter (TOFJ manufactured by Yamabun Denki Co., Ltd.).
  • Thickness variation (%) (maximum value-minimum value) / average value x 100
  • the resin layer is a curable resin layer formed on the first film of the structure.
  • the curable resin layer is a dry coating film obtained by drying a liquid curable resin composition, and may be a thermosetting resin layer that is cured by heating or a photocurable resin layer that is cured by light irradiation. It may also be a thermosetting resin layer that is cured by heating and cured by light irradiation.
  • the thickness of the resin layer is 50 ⁇ m or more, preferably 50 ⁇ m or more and 200 ⁇ m or less. When the thickness of the resin layer is within the above numerical range, parts of a wide range of sizes can be sealed.
  • the thickness of the resin layer is measured by the following method. A 40 mm cut in the MD direction was cut out from a position 10 m in the MD direction from the end of the coating film (resin layer) of the structure to prepare a measurement sample. About the measurement sample, 25 points were measured at a pitch of 20 mm in the TD direction from a position 15 mm away from the end of the coating film (resin layer) using an automatic measurement type film thickness meter (TOFJ manufactured by Yamabun Denki Co., Ltd.). The average value calculated from the measurement results of 25 points was taken as the thickness of the resin layer.
  • TOFJ automatic measurement type film thickness meter
  • the curable resin composition preferably contains a curable resin and a curing agent, and may further contain other components.
  • the curable resin composition preferably contains at least one of a thermosetting resin and a photocurable resin as the curable resin.
  • thermosetting resin The thermosetting resin is as described in the specific description of the first embodiment.
  • epoxy compounds bisphenol A type epoxy resin, dicyclopentadiene type epoxy resin, and phenol novolac type epoxy resin are used from the viewpoint of optimizing the breaking point strength, thermal expansion coefficient, and storage elasticity of the cured coating film. , It is more preferable to use two or more of these in combination, and it is even more preferable to use these three in combination.
  • photocurable resin (radical polymerization)
  • the photocurable resin (radical polymerization) is as described in the specific description of the first embodiment.
  • photocurable resin (cationic polymerization)
  • the photocurable resin (cationic polymerization) is as described in the specific description of the first embodiment.
  • the curable resin composition can contain an alkali-soluble resin.
  • the alkali-soluble resin is as described in the specific description of the first embodiment.
  • the curable resin composition may further contain a thermoplastic resin in order to improve the mechanical strength of the obtained cured film.
  • the thermoplastic resin is as described in the specific description of the first embodiment.
  • the curable resin composition may contain a curing agent.
  • the curing agent is as described in the specific form of the first embodiment.
  • the curable resin layer can contain a curing accelerator.
  • the curing accelerator is as described in the specific form of the first embodiment.
  • the curable resin composition can contain a photoreaction initiator.
  • the photoreaction initiator is as described in detail in the first embodiment.
  • the curable resin composition may contain an inorganic filler.
  • the inorganic filler is as described in the specific form of the first embodiment.
  • the curable resin composition may contain an organic solvent used for preparing the composition and adjusting the viscosity.
  • the organic solvent is as described in the specific description of the first embodiment.
  • the curable composition may include a colorant.
  • the colorant is as described in the specific form of the first embodiment.
  • the structure of the present invention may include a second film.
  • the second film is a film provided on the surface opposite to the first film of the resin layer for the purpose of preventing dust and the like from adhering to the surface of the resin layer of the structure and improving handleability.
  • the second film may be one that can be peeled off from the resin layer before being attached to the substrate during use.
  • a film made of the thermoplastic resin exemplified in the first film can be used.
  • polyester film and polyolefin film are preferable from the viewpoint of heat resistance, mechanical strength, handleability and the like.
  • the surface of the second film on which the resin layer is provided may be subjected to a mold release treatment.
  • the thickness of the second film is not particularly limited and can be appropriately selected depending on the intended use.
  • the thickness of the second film is preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 15 ⁇ m or more and 50 ⁇ m or less, from the viewpoint of mechanical strength, handleability, and the like.
  • the structure according to the present invention can be preferably used as a sealing or protective application for a SAW filter. In addition to the above applications, it is preferably for forming a cured film of a printed wiring board, more preferably for forming a permanent protective film, an interlayer insulating layer, a coverlay, a solder resist, or a fill-in-the-blank filling (material). ) Is particularly preferable. Further, since the structure of the present invention can form a cured product having excellent film strength even with a thin film, it is a pattern layer in a printed wiring board, for example, a package substrate (printed wiring board used for a semiconductor package), which is required to be thinned. It can also be suitably used for formation. Further, the structure of the present invention can be suitably used for a flexible printed wiring board.
  • the electrical and electronic component according to the present invention includes the above-mentioned printed wiring board.
  • the electrical and electronic components according to the present invention can be used in various conventionally known electrical devices. Of these, a SAW filter is preferable.
  • the substrate examples include a printed wiring board, an LTCC (Low Temperature Co-fired Ceramics) substrate (hereinafter, also referred to as a low-temperature co-fired ceramic substrate), a ceramic substrate, a silicon substrate, and a metal substrate.
  • LTCC Low Temperature Co-fired Ceramics
  • electrical and electronic components include sensors, MEMS, SAW chips and the like. Among them, a pressure sensor, a vibration sensor, and a SAW chip can be preferably used, and the SAW chip is particularly preferable.
  • thermosetting resin composition When the thermosetting resin composition is made into a dry film, it is preferable that the thermosetting resin composition is bonded onto the base material under pressure and heating using a vacuum laminator or the like.
  • a vacuum laminator By using such a vacuum laminator, when a board on which components are mounted is used, even if there are irregularities, it adheres to the substrate, so that there is no air bubbles mixed in and the sealing performance of electrical and electronic components is improved. improves.
  • the pressurizing condition is preferably about 0.1 to 2.0 MPa, and the heating condition is preferably 40 to 120 ° C.
  • Curing performed after applying the thermosetting resin composition is performed by directing the hot air in the dryer using a hot air circulation type drying oven, IR furnace, hot plate, convection oven, etc. (using a heat source equipped with an air heating method using steam). It can be carried out by using a method of flowing contact and a method of spraying on a support from a nozzle). Among these, from the viewpoint of curability, it is preferable to use a hot air circulation drying furnace. For example, after the first step of heating at 80 to 120 ° C., preferably 90 to 110 ° C. for 10 to 60 minutes, preferably 20 to 40 minutes, further 180 ° C. to 220 ° C., preferably 190 to 210 ° C.
  • the cured product can be formed by performing the second stage heat curing for 30 to 120 minutes, preferably 50 to 70 minutes. It is preferable to perform two-step curing in that the generation of bubbles during curing can be suppressed. Specifically, by volatilizing the residual solvent component in the first step, it is possible to suppress the generation of bubbles during the main curing. Next, the curing can be completed by curing at a higher temperature in the second step.
  • Example of the first embodiment> ⁇ Preparation Example A of Curable Resin Composition> (Formulation Example A1)
  • the solvent shown in Formulation Example A1 in Table 1 below was placed in a container, heated to 50 ° C. so that the solvent did not volatilize, each epoxy resin was added, and the mixture was sufficiently stirred and dissolved. Then, additives and fillers are added and kneaded with a three-roll mill, a curing agent, a curing accelerator, and other resins are further added, and the mixture is sufficiently stirred with a stirrer to obtain a curable resin composition. rice field.
  • composition Example A3 A curable resin composition was obtained in the same procedure as in Formulation Example 1 except that the formulation was changed to the formulation shown in Formulation Example A3 shown in Table 1 below.
  • the combination of the first film shown in Table 2, the resin layer using the above curable resin composition (thermosetting resin layer), and the second film 3 A layered structure was obtained.
  • the curable resin composition obtained above was applied onto the first film using a bar coater so that the film thickness of the resin layer became 100 ⁇ m after drying.
  • a resin layer was formed on the first film by drying in a hot air circulation type drying oven at 85 ° C. for 5 to 15 minutes so that the amount of residual solvent was 1.0 to 4.0%.
  • the second film was laminated on the surface of the dry coating film using a roll laminator under the conditions of a set temperature of 90 ° C. and a pressure of 0.15 MPa to obtain a structure having a three-layer structure.
  • the film prepared above is subjected to a tensile tester (stock) under the following conditions in accordance with JIS K 7128-1: 1998 "Plastic-Film and Sheet Tear Strength Test Method-Part 1: Trouser Tear Method”.
  • the trouser tearing force was measured using EZ-SX, manufactured by Shimadzu Corporation. However, regarding the measurement direction, only the vertical direction (MD direction) was measured regardless of the presence or absence of anisotropy depending on the direction. 20 mm at the start of tearing and 5 mm before the end of tearing were excluded, and the approximate average value of the tear strength of the remaining 50 mm was calculated. The measurement results are shown in Table 2.
  • ⁇ Measurement of haze> The haze of the film prepared above was measured using a haze mate (NDH7000II, manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with ASTMD1003. The measurement results are shown in Table 2.
  • ⁇ Presence or absence of film marks> The appearance of the resin layer when peeled from the second film side of the structure obtained above at an angle of 180 degrees and a speed of 2 cm / sec was visually confirmed.
  • the film marks on the resin layer were evaluated according to the following criteria, and the evaluation results are shown in Table 3. (Evaluation criteria) ⁇ : There were no film marks on the resin layer. ⁇ : There were film marks on the resin layer that did not affect the use. X: There were film marks on the resin layer that had a large effect on use.
  • ⁇ Visibility of the appearance of the structure > The visibility of the appearance was visually confirmed from the second film side (front) and the first film side (back) of the structure obtained above. The visibility of the appearance of the structure was evaluated according to the following criteria, and the evaluation results are shown in Table 3. (Evaluation criteria) ⁇ : It was easy to distinguish the front and back of the structure. ⁇ : The front and back of the structure could be distinguished. X: The front and back of the structure could not be distinguished.
  • the structure of the embodiment of the first embodiment of the present application can easily distinguish the front and the back, and when the second film is peeled off, it is possible to make it difficult for the resin layer to have film marks. rice field.
  • Example of the second embodiment> ⁇ Preparation Example B of Curable Resin Composition> (Formulation Example B1)
  • the solvent shown in Formulation Example B1 in Table 4 below was placed in a container, heated to 50 ° C. so that the solvent did not volatilize, each epoxy resin was added, and the mixture was sufficiently stirred and dissolved. Then, additives and fillers are added and kneaded with a three-roll mill, a curing agent, a curing accelerator, and other resins are further added, and the mixture is sufficiently stirred with a stirrer to obtain a curable resin composition. rice field.
  • a structure was obtained by combining the first film shown in Table 5 and a resin layer (curable resin layer) using the above-mentioned curable resin composition. Specifically, the curable resin composition obtained above is applied on a first film to which a tension of 100 N / m is applied in the MD direction with a die coater, and then dried at 100 ° C. for 3.5 minutes. Then, a curable resin layer was formed to obtain a structure.
  • the trouser tearing force was measured using a tensile tester (manufactured by Shimadzu Corporation, EZ-SX) under the following conditions in accordance with JIS K 7128-1: 1998. 20 mm at the start of tearing and 5 mm before the end of tearing were excluded, and the approximate average value of the tear strength of the remaining 50 mm was calculated. The measurement results are shown in Table 5.
  • a measurement sample was obtained by cutting out 40 mm in the MD direction from a position 10 m in the MD direction from the end of the dry coating film (resin layer) of the structure obtained above. About the measurement sample, 25 points were measured at a pitch of 20 mm in the TD direction from a position 15 mm away from the end of the dry coating film (resin layer) using an automatic measurement type film thickness meter (TOFJ manufactured by Yamabun Denki Co., Ltd.). .. From the measurement results of 25 points, the maximum value, the minimum value, and the average value were calculated. The average value is shown in Table 5.
  • the variation in thickness was calculated from the difference between the maximum value and the minimum value by the following formula, and evaluated by the following criteria.
  • Thickness variation (%) (maximum value-minimum value) / average value x 100 (Evaluation criteria)
  • The difference between the maximum value and the minimum value of 25 points was 5% or less with respect to the average value.
  • The difference between the maximum value and the minimum value of 25 points was more than 5% and 10% or less with respect to the average value.
  • X The difference between the maximum value and the minimum value of 25 points was more than 10% with respect to the average value.
  • the resin layer of the structure of the second embodiment of the present application has a thickness of 50 ⁇ m or more, but has a small variation in thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a structure of a multilayer structure that facilitates recognition of front and rear sides thereof and prevents a film track from being left on a resin layer when a second film is separated. [Solution] A structure according to the present invention is provided with a first film, a resin layer, and a second film in this order, the structure being characterized in that a difference between a Trouser tear force of the first film and a Trouser tear force of the second film is -0.05 N or less or +0.05 N or more, a difference in haze between the first film and the second film is -5% or less or +5% or more, or a difference between an L* value, an a* value, and a b* value in a Lab color space measured on the side of the first film of the structure and an L* value, an a* value, and a b* value in the Lab color space measured on the side of the second film of the structure satisfies a specific condition.

Description

構造体Structure
 本発明は、構造体に関し、より詳細には、第一のフィルムおよび樹脂層を備える構造体、または、第一のフィルム、樹脂層、および第二のフィルムをこの順に備える構造体に関する。 The present invention relates to a structure, and more particularly to a structure having a first film and a resin layer, or a structure having a first film, a resin layer, and a second film in this order.
 プリント配線板の製造方法として、絶縁層と導体層とを交互に積み重ねるビルドアップ工法によるプリント配線板製造方法が広く用いられている。ビルドアップ工法による製造方法においては、一般的には、絶縁層は硬化性樹脂層として硬化性樹脂組成物を熱硬化させることにより形成される。 As a method for manufacturing a printed wiring board, a method for manufacturing a printed wiring board by a build-up method in which insulating layers and conductor layers are alternately stacked is widely used. In the manufacturing method by the build-up method, the insulating layer is generally formed by thermosetting the curable resin composition as a curable resin layer.
 近年では、ドライフィルムタイプにより、前述したビルドアップ工法による製造方法に用いられる絶縁層を形成することも提案されている。ドライフィルムは、別途準備する第一のフィルムの面上の領域に、所定の粘度に調整された液状の硬化性樹脂組成物を塗布後、乾燥して得られる硬化性樹脂層を有する構造体である。また、ドライフィルムは、一般的には、硬化性樹脂層の第一のフィルムとは反対側の面を保護するために第二のフィルムがさらに積層されている。 In recent years, it has also been proposed to use a dry film type to form an insulating layer used in the manufacturing method by the build-up method described above. The dry film is a structure having a curable resin layer obtained by applying a liquid curable resin composition adjusted to a predetermined viscosity to a region on the surface of a first film prepared separately and then drying. be. In addition, the dry film is generally further laminated with a second film in order to protect the surface of the curable resin layer opposite to the first film.
 上述した構造体においては、第二のフィルムを先に剥がした後、基材にラミネート後もしくは硬化後に第一のフィルムを剥がすというように工程に順序があるため、第一のフィルムと第二のフィルムのどちらのフィルムから剥がすかを見分ける方法が必要ある。しかし、上述した構造体では、第一のフィルムと第二のフィルムの両方が透明である場合、フィルムの判別がしづらく、第一のフィルムと第二のフィルムの剥がす順序を間違える恐れがあった。特に第一のフィルムと第二のフィルムに同一仕様のものを使用するとその傾向は顕著であり、さらにかかる場合、構造体から第二のフィルムを剥がした際に、第一のフィルムとの関係により、樹脂層に線状の痕(以下、「フィルム痕」という)が入るという課題もあった。そこで、構造体の表裏の判別をし易くする方法としては、例えば、一方の面に表裏が目視にて識別できる色差となる着色層を設けることが提案されている(特許文献1参照)。 In the above-mentioned structure, since the steps are ordered such that the second film is peeled off first, and then the first film is peeled off after laminating or curing on the base material, the first film and the second film are used. There needs to be a way to tell which of the films to peel off. However, in the above-mentioned structure, when both the first film and the second film are transparent, it is difficult to distinguish the films, and there is a risk that the first film and the second film are peeled off in the wrong order. .. This tendency is particularly remarkable when the first film and the second film have the same specifications, and in such a case, when the second film is peeled off from the structure, due to the relationship with the first film. There is also a problem that linear marks (hereinafter referred to as "film marks") are formed in the resin layer. Therefore, as a method for facilitating the discrimination between the front and back surfaces of the structure, for example, it has been proposed to provide a colored layer having a color difference between the front and back surfaces so that the front and back surfaces can be visually identified (see Patent Document 1).
 また、半導体素子、電子部品等のチップ型デバイス(チップ部品)の封止は、従来から、粉末状エポキシ樹脂組成物を用いたトランスファー成形法、液状エポキシ樹脂組成物やシリコーン樹脂等を用いてポッティング法、ディスペンス法、印刷法等により行なわれてきた。しかしながら、現在では、高集積度のデバイスの搭載に好適であり、また、表面弾性波(SAW)デバイスや水晶デバイスなどの封止後に内部を中空とする必要があるデバイスを効率的に製造するため、複数のチップ型デバイスを有する基板上で一括封止してパッケ-ジ化することが求められている。 Further, the sealing of chip-type devices (chip parts) such as semiconductor elements and electronic parts has been conventionally carried out by a transfer molding method using a powdered epoxy resin composition, potting using a liquid epoxy resin composition, a silicone resin or the like. It has been carried out by the method, the dispensing method, the printing method, etc. However, at present, it is suitable for mounting a device with a high degree of integration, and in order to efficiently manufacture a device such as a surface acoustic wave (SAW) device or a crystal device that needs to be hollow after sealing. , It is required to collectively seal and package on a substrate having a plurality of chip-type devices.
 例えば、特許文献2においては、一括封止できる組成物として、(A)架橋性エラストマー、(B)エポキシ樹脂、(C)エポキシ樹脂硬化剤および(D)無機充填材を含むことを特徴とする熱硬化型樹脂組成物が提案されている。また、近年ではドライフィルムタイプにより、一括封止することも提案されている。 For example, Patent Document 2 is characterized by containing (A) a crosslinkable elastomer, (B) an epoxy resin, (C) an epoxy resin curing agent, and (D) an inorganic filler as a composition that can be collectively sealed. Thermosetting resin compositions have been proposed. Further, in recent years, it has been proposed to use a dry film type for batch sealing.
 ドライフィルムは、通常、第一のフィルムの上に硬化性樹脂層を有する構造体である。一般には、テンションをかけた第一のフィルムの上に液状の硬化性樹脂組成物を塗布後、乾燥して硬化性樹脂層を形成することで、上記の構造体を製造することができる。 The dry film is usually a structure having a curable resin layer on the first film. Generally, the above structure can be produced by applying a liquid curable resin composition on a tensioned first film and then drying to form a curable resin layer.
 ところで、構造体に用いる第一のフィルムは、ロールに巻き取ったフィルムを巻き出して使用されるが、その際にフィルムにしわやたるみが生じるという課題があった。このような課題に対して、フィルムロールを幅方向に14等分したときの各部位におけるロール円周長D1~D14が特定の条件を満たし、かつ、14等分したフィルムロールの幅方向に一直線上に測定した各部位のフィルム厚みT1~T14における最大の厚みの差(Tm)が特定の条件を満たすものが提案されている(特許文献3参照)。 By the way, the first film used for the structure is used by unwinding the film wound on a roll, but there is a problem that the film is wrinkled or sagging at that time. In response to such a problem, the roll circumferences D1 to D14 at each part when the film roll is divided into 14 equal parts in the width direction satisfy specific conditions and are straight in the width direction of the film roll divided into 14 equal parts. It has been proposed that the maximum thickness difference (Tm) between the film thicknesses T1 to T14 of each portion measured on the line satisfies a specific condition (see Patent Document 3).
特開2010-069760号公報Japanese Unexamined Patent Publication No. 2010-69760 特開2015-166403号公報JP-A-2015-166403 特開2016-44035号公報Japanese Unexamined Patent Publication No. 2016-44035
<第一の形態の課題>
 しかし、特許文献1の方法においては、コア材の両面に貼り合わされる熱可塑性プラスチックフィルムとは別個の層として着色層を設けているため、工程数が増え、製造コストが増加するという問題がある。
<Issues of the first form>
However, in the method of Patent Document 1, since the colored layer is provided as a layer separate from the thermoplastic plastic film bonded to both sides of the core material, there is a problem that the number of steps increases and the manufacturing cost increases. ..
 したがって、本発明の第一の形態の目的は、多層構造の構造体の第一のフィルムと第二のフィルムを見分け易く、第二のフィルムを剥がした際に樹脂層にフィルム痕が付きづらい構造体を提供することである。 Therefore, an object of the first embodiment of the present invention is a structure in which the first film and the second film of the multi-layered structure can be easily distinguished, and the resin layer is less likely to have film marks when the second film is peeled off. To provide the body.
<第二の形態の課題>
 また、特許文献2や3のような構造体において、第一のフィルムが薄い場合には、第一のフィルムにテンションをかけた時にタテしわが生じてしまうという課題を知見した。一方、樹脂層の厚みが薄い場合には、第一のフィルムにしわが生じたとしても、しわに追従して厚みのばらつきの小さい樹脂層を形成することができた。しかし、樹脂層の厚みが例えば50μm以上のように厚い場合には、第一のフィルム上への樹脂層形成時において、第一のフィルムのしわの谷部に塗布した液状の硬化性樹脂組成物が溜まってしまい、その結果、乾燥後に厚みのばらつきの大きい樹脂層が形成されるという課題を知見した。
<Problem of the second form>
Further, it has been found that in a structure such as Patent Documents 2 and 3, when the first film is thin, vertical wrinkles occur when tension is applied to the first film. On the other hand, when the thickness of the resin layer is thin, even if the first film is wrinkled, it is possible to form a resin layer having a small variation in thickness following the wrinkles. However, when the thickness of the resin layer is as thick as 50 μm or more, the liquid curable resin composition applied to the wrinkle valley portion of the first film at the time of forming the resin layer on the first film. As a result, it was found that a resin layer having a large variation in thickness is formed after drying.
 したがって、本発明の第二の形態の目的は、第一のフィルム上に、厚みが50μm以上であり、かつ、厚みのばらつきの小さい樹脂層を備える構造体を提供することである。 Therefore, an object of the second embodiment of the present invention is to provide a structure having a resin layer having a thickness of 50 μm or more and a small variation in thickness on the first film.
<第一の形態の手段>
 本発明者等は、上記第一の形態の目的を達成するために鋭意検討した結果、第一のフィルムと第二のフィルム自体のヘーズ、あるいは構造体の第一のフィルム側から測定したLab色空間におけるL*値、a*値、b*値と構造体の第二のフィルム側から測定したLab色空間におけるL*値、a*値、b*値を調節し、各ヘーズあるいは各L*値、a*値、またはb*値に一定以上の差を付けることで、構造体の表裏の判別をし易くできることを知見した。
 また、本発明者等は、上記課題を解決するために鋭意検討した結果、第一のフィルムと第二のフィルムのトラウザー引裂力を調節し、各トラウザー引裂力に一定以上の差を付けることで、フィルム痕の発生を抑制できることを知見した。
<Means of the first form>
As a result of diligent studies to achieve the object of the first embodiment, the present inventors have measured the haze of the first film and the second film itself, or the Lab color measured from the first film side of the structure. Adjust the L * value, a * value, b * value in space and the L * value, a * value, b * value in the Lab color space measured from the second film side of the structure, and adjust each haze or each L *. It was found that it is possible to easily distinguish the front and back of the structure by giving a difference of a certain value or more to the value, the a * value, or the b * value.
In addition, as a result of diligent studies to solve the above problems, the present inventors have adjusted the trouser tearing force of the first film and the second film, and made a difference of a certain amount or more between the trouser tearing forces. , It was found that the generation of film marks can be suppressed.
 すなわち、本発明の第一の形態の目的に対する第一の態様による構造体は、第一のフィルム、樹脂層、および第二のフィルムをこの順に備え、
 前記第一のフィルムのトラウザー引裂力と、前記第二のフィルムのトラウザー引裂力の差が-0.05N以下または+0.05N以上であり、
 前記第一のフィルムと前記第二のフィルムのヘーズの差が-5%以下または+5%以上であることを特徴とするものである。
That is, the structure according to the first aspect for the purpose of the first aspect of the present invention comprises the first film, the resin layer, and the second film in this order.
The difference between the trouser tearing force of the first film and the trouser tearing force of the second film is −0.05 N or less or + 0.05 N or more.
The difference between the haze of the first film and the haze of the second film is -5% or less or + 5% or more.
 本発明の第一の形態の目的に対する第二の態様による構造体は、第一のフィルム、樹脂層、および第二のフィルムをこの順に備え、
 前記第一のフィルムのトラウザー引裂力と、前記第二のフィルムのトラウザー引裂力の差が-0.05N以下または+0.05N以上であり、
 前記構造体の前記第一のフィルム側から測定したLab色空間におけるL*値、a*値、b*値と前記構造体の第二のフィルム側から測定したLab色空間におけるL*値、a*値、b*値の差が、下記条件(i)~(iii):
 (i)L*値の差が-0.1以下または+0.1以上である、
 (ii)a*値の差が-0.1以下または+0.1以上である、
 (iii)b*値の差が-1以下または+1以上である、
の少なくとも1つを満たすことを特徴とする。
A structure according to a second aspect for the purpose of the first aspect of the present invention comprises a first film, a resin layer, and a second film in this order.
The difference between the trouser tearing force of the first film and the trouser tearing force of the second film is −0.05 N or less or + 0.05 N or more.
The L * value, a * value, and b * value in the Lab color space measured from the first film side of the structure and the L * value, a in the Lab color space measured from the second film side of the structure. The difference between the * value and b * value is the following conditions (i) to (iii):
(I) The difference between L * values is -0.1 or less or +0.1 or more.
(Ii) The difference between the a * values is −0.1 or less or +0.1 or more.
(Iii) The difference between b * values is -1 or less or +1 or more.
It is characterized by satisfying at least one of.
 本発明の第一の形態の目的に対する第一および第二の態様においては、前記第二のフィルムのトラウザー引裂力が、前記第一のフィルムのトラウザー引裂力よりも小さいことが好ましい。 In the first and second aspects for the purpose of the first aspect of the present invention, it is preferable that the trouser tearing force of the second film is smaller than the trouser tearing force of the first film.
 本発明の第一の形態の目的に対する第一および第二の態様においては、前記樹脂層が、硬化性樹脂層であることが好ましい。 In the first and second aspects for the purpose of the first aspect of the present invention, it is preferable that the resin layer is a curable resin layer.
 本発明の第一の形態の目的に対する第一および第二の態様においては、前記第一のフィルムが、ポリエステルフィルムおよびポリオレフィンフィルムから選択されることが好ましい。 In the first and second aspects for the purpose of the first embodiment of the present invention, it is preferable that the first film is selected from a polyester film and a polyolefin film.
 本発明の第一の形態の目的に対する第一および第二の態様においては、前記第二のフィルムが、ポリエステルフィルムおよびポリオレフィンフィルムから選択されることが好ましい。 In the first and second aspects for the purpose of the first embodiment of the present invention, it is preferable that the second film is selected from a polyester film and a polyolefin film.
<第二の形態の手段>
 本発明者等は、上記第二の形態の目的を達成するために鋭意検討した結果、厚みが50μm以上の樹脂層を形成する際に、第一のフィルムのトラウザー引裂力を調節し、かつ、第一のフィルムの厚みを調節することで、厚みのばらつきの小さい樹脂層を形成できることを知見した。本発明はかかる知見によるものである。
<Means of the second form>
As a result of diligent studies to achieve the object of the second embodiment, the present inventors have adjusted the trouser tearing force of the first film when forming a resin layer having a thickness of 50 μm or more, and It was found that a resin layer having a small variation in thickness can be formed by adjusting the thickness of the first film. The present invention is based on such findings.
 本発明の態様による構造体は、第一のフィルムおよび樹脂層を備え、
 前記第一のフィルムの厚みが30μm以上であり、
 前記第一のフィルムのトラウザー引裂力が0.1N以上であり、
 前記樹脂層の厚みが50μm以上であり、
 前記樹脂層が硬化性樹脂層であることを特徴とするものである。
The structure according to the aspect of the present invention comprises a first film and a resin layer.
The thickness of the first film is 30 μm or more, and the thickness is 30 μm or more.
The trouser tearing force of the first film is 0.1 N or more.
The thickness of the resin layer is 50 μm or more, and the thickness of the resin layer is 50 μm or more.
The resin layer is a curable resin layer.
 本発明の第二の形態の目的に対する態様においては、前記硬化性樹脂層が、熱硬化性樹脂および硬化剤を含むことが好ましい。 In the aspect for the purpose of the second aspect of the present invention, it is preferable that the curable resin layer contains a thermosetting resin and a curing agent.
 本発明の第二の形態の目的に対する態様においては、前記熱硬化性樹脂が、エポキシ化合物であることが好ましい。 In the aspect for the purpose of the second aspect of the present invention, it is preferable that the thermosetting resin is an epoxy compound.
 本発明の第二の形態の目的に対する態様においては、前記樹脂層が、硬化性樹脂層であることが好ましい。 In the aspect for the purpose of the second aspect of the present invention, it is preferable that the resin layer is a curable resin layer.
 本発明の第二の形態の目的に対する態様においては、前記第一のフィルムが、ポリエステルフィルム、ポリオレフィンフィルム 、およびポリイミドフィルムからなる群から選択されることが好ましい。 In an aspect for the purpose of the second embodiment of the present invention, it is preferable that the first film is selected from the group consisting of a polyester film, a polyolefin film, and a polyimide film.
 本発明の第二の形態の目的に対する態様においては、前記第一のフィルムの厚みのばらつきが、±10%以下であることが好ましい。 In the aspect for the purpose of the second embodiment of the present invention, the variation in the thickness of the first film is preferably ± 10% or less.
<第一の形態の効果>
 本発明によれば、多層構造の構造体の表と裏を見分け易く、第二のフィルムを剥がした際に樹脂層にフィルム痕が付きづらい構造体を提供することができる。
 第一のフィルムと第二のフィルムのトラウザー引裂力を調節し、各トラウザー引裂力に一定以上の差を付けることで、フィルム痕の発生を抑制できる理由は必ずしも明らかではないが、以下のように推測できる。すなわち、トラウザー引裂力の差を付けると、フィルムを剥がしたときに樹脂層にかかる負荷が、前記引裂力の差が無いものと比較して異なり、適当となる。その結果、樹脂層へのフィルム痕のつきやすさにも差が出るものと考えられる。しかし、あくまでも推測の域であり、この限りではない。
<Effect of the first form>
According to the present invention, it is possible to provide a structure in which the front and back surfaces of a multi-layered structure can be easily distinguished and the resin layer is less likely to have film marks when the second film is peeled off.
The reason why the generation of film marks can be suppressed by adjusting the trouser tearing force of the first film and the second film and making a difference of a certain amount or more between each trouser tearing force is not always clear, but as follows. I can guess. That is, when the difference in the tearing force of the trouser is added, the load applied to the resin layer when the film is peeled off is different from that in the case where there is no difference in the tearing force, which is appropriate. As a result, it is considered that there is a difference in the ease of forming film marks on the resin layer. However, this is just a guess, and not limited to this.
<第二の形態の効果>
 また、本発明によれば、第一のフィルム上に、厚みが50μm以上であり、かつ、厚みのばらつきの小さい樹脂層を備える構造体を提供することができる。
 第一のフィルムのトラウザー引裂力を調節し、かつ、第一のフィルムの厚みを調節することで、厚みのばらつきの小さい樹脂層を形成できる理由は必ずしも明らかではないが、以下のように推測できる。すなわち、上記調節により、第一のフィルムの表面状態が適当となり、前記第一のフィルムに張力をかけた際にもその力に耐えることができるため、シワが発生しにくく、その結果、第一のフィルム上に形成する樹脂層を形成しやすくなり、前記樹脂層の厚みのばらつきをも抑制することができるものと推測される。しかしながら、あくまでも推測の域であって、この限りではない。
<Effect of the second form>
Further, according to the present invention, it is possible to provide a structure having a resin layer having a thickness of 50 μm or more and a small variation in thickness on the first film.
The reason why a resin layer having a small variation in thickness can be formed by adjusting the trouser tearing force of the first film and adjusting the thickness of the first film is not always clear, but it can be inferred as follows. .. That is, by the above adjustment, the surface condition of the first film becomes appropriate, and even when tension is applied to the first film, the force can be withstood, so that wrinkles are less likely to occur, and as a result, the first It is presumed that the resin layer formed on the film of No. 1 can be easily formed, and the variation in the thickness of the resin layer can be suppressed. However, this is just a guess, and not limited to this.
本発明による構造体の一実施形態を示した概略断面図である。It is the schematic sectional drawing which showed one Embodiment of the structure by this invention. 本発明による構造体の一実施形態を示した概略断面図である。It is the schematic sectional drawing which showed one Embodiment of the structure by this invention.
<第一の形態の具体的な説明>
<構造体>
 本発明による構造体は、第一のフィルム、樹脂層、および第二のフィルムをこの順に備えるものであり、第一のフィルムと第二のフィルムが後述する特定の条件を満たすものである。本発明においては、第一のフィルムと第二のフィルムが後述する特定の条件を満たすことで、多層構造の構造体の表と裏を見分け易く、第二のフィルムを剥がした際に樹脂層にフィルム痕が付きづらい構造体を提供することができる。
<Specific explanation of the first form>
<Structure>
The structure according to the present invention includes a first film, a resin layer, and a second film in this order, and the first film and the second film satisfy specific conditions described later. In the present invention, when the first film and the second film satisfy the specific conditions described later, it is easy to distinguish the front and back sides of the multi-layered structure, and when the second film is peeled off, it becomes a resin layer. It is possible to provide a structure in which film marks are less likely to be formed.
 本発明による構造体について、図面を参照しながら説明する。図1は、本発明による構造体の一実施形態を示した概略断面図である。図1に示すように、構造体1は、第一のフィルム10と、第一のフィルム10の一方の面に設けられた樹脂層20と、樹脂層20の第一のフィルム10を設けた面とは反対の面に設けられた第二のフィルム30とを備えている。以下、本発明による構造体を構成する各構成要素について説明する。 The structure according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of a structure according to the present invention. As shown in FIG. 1, the structure 1 is a surface provided with a first film 10, a resin layer 20 provided on one surface of the first film 10, and a first film 10 of the resin layer 20. It is provided with a second film 30 provided on the opposite surface. Hereinafter, each component constituting the structure according to the present invention will be described.
[第一のフィルムおよび第二のフィルム]
 本発明においては、第一のフィルムと第二のフィルムのトラウザー引裂力の差、およびヘーズの差あるいはLab色空間におけるL*値、a*値、b*値の差が後述する範囲であればよい。
[First film and second film]
In the present invention, if the difference in the trouser tearing force between the first film and the second film, the difference in haze, or the difference in L * value, a * value, and b * value in the Lab color space is within the range described later. good.
 本発明における第一のフィルムとは、構造体の樹脂層を支持する役割を有するものであり、該樹脂層を形成する際に、樹脂組成物が塗布されるフィルムである。本発明においては、基板等の基材上に構造体の樹脂層側が接するように加熱等によりラミネートして一体成形する際には、少なくとも樹脂層に接着しているものをいい、樹脂層を硬化した後に構造体から剥離することが好ましい。第一のフィルムとしては、例えば、ポリエチレンテレフタレートおよびポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルムおよびポリプロピレンフィルム等のポリオレフィンフィルム、ポリテトラフルオロエチレンフィルム等のフッ素樹脂フィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリスチレンフィルム等の熱可塑性樹脂からなるフィルムを用いることができる。これらの中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムおよびポリオレフィンフィルムを好適に使用することができる。第一のフィルムの樹脂層を設ける面には、離型処理やマット化処理が施されていてもよいし、スパッタもしくは極薄銅箔、および粘着層が形成されていてもよい。 The first film in the present invention has a role of supporting the resin layer of the structure, and is a film to which the resin composition is applied when the resin layer is formed. In the present invention, when laminating by heating or the like so that the resin layer side of the structure is in contact with a base material such as a substrate and integrally molding, it means that the resin layer is at least adhered to the resin layer, and the resin layer is cured. After that, it is preferable to peel off from the structure. Examples of the first film include polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyolefin films such as polyethylene film and polypropylene film, fluororesin films such as polytetrafluoroethylene film, polyimide films, polyamideimide films, and polystyrene films. A film made of a thermoplastic resin such as the above can be used. Among these, a polyester film and a polyolefin film can be preferably used from the viewpoints of heat resistance, mechanical strength, handleability and the like. The surface of the first film on which the resin layer is provided may be subjected to a mold release treatment or a matting treatment, or a sputtered or ultrathin copper foil and an adhesive layer may be formed.
 第一のフィルムの厚さは、特に限定されず、用途に応じて適宜選択することができる。第一のフィルムの厚さは、機械的強度や取扱性等の観点から、好ましくは12μm以上125μm以下であり、より好ましくは15μm以上75μm以下である。 The thickness of the first film is not particularly limited and can be appropriately selected depending on the intended use. The thickness of the first film is preferably 12 μm or more and 125 μm or less, and more preferably 15 μm or more and 75 μm or less, from the viewpoint of mechanical strength, handleability, and the like.
 本発明における第二のフィルムとは、構造体の樹脂層の表面に塵等が付着するのを防止するとともに取扱性を向上させる目的で、樹脂層の第一のフィルムとは反対の面に設けられるフィルムである。特に本発明においては、基板等の基材上に構造体の樹脂層側が接するように加熱等によりラミネートして一体成形する際、ラミネート前に構造体から剥離するものをいう。第二のフィルムとしては、例えば、前記第一のフィルムで例示した熱可塑性樹脂からなるフィルムを用いることができる。これらの中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムおよびポリオレフィンフィルムが好ましい。第二のフィルムの樹脂層を設ける面には、離型処理が施されていてもよい。 The second film in the present invention is provided on the surface opposite to the first film of the resin layer for the purpose of preventing dust and the like from adhering to the surface of the resin layer of the structure and improving handleability. It is a film that can be used. In particular, in the present invention, it refers to a material that is peeled off from the structure before laminating when it is laminated by heating or the like so that the resin layer side of the structure is in contact with a base material such as a substrate and integrally molded. As the second film, for example, a film made of the thermoplastic resin exemplified in the first film can be used. Among these, polyester film and polyolefin film are preferable from the viewpoint of heat resistance, mechanical strength, handleability and the like. The surface of the second film on which the resin layer is provided may be subjected to a mold release treatment.
 第二のフィルムの厚さは、特に限定されず、用途に応じて適宜選択することができる。第二のフィルムの厚さは、機械的強度や取扱性等の観点から、好ましくは10μm以上100μm以下であり、より好ましくは15μm以上50μm以下である。 The thickness of the second film is not particularly limited and can be appropriately selected depending on the intended use. The thickness of the second film is preferably 10 μm or more and 100 μm or less, and more preferably 15 μm or more and 50 μm or less, from the viewpoint of mechanical strength, handleability, and the like.
 本発明による構造体は、第一のフィルムのトラウザー引裂力と、第二のフィルムのトラウザー引裂力の差(=「第一のフィルムのトラウザー引裂力」-「第二のフィルムのトラウザー引裂力」)が-0.05N以下または+0.05N以上であり、好ましくは-0.1N以下または+0.1N以上であり、より好ましくは-0.3N以上-0.1N以下または+0.1N以上+0.3N以下であり、さらに好ましくは+0.1N以上+0.3N以下である。第二のフィルムのトラウザー引裂力が、前記第一のフィルムのトラウザー引裂力よりも小さいことが、フィルム痕がより付きづらくなる点において好ましい。
 なお、本発明において、第一のフィルムおよび第二のフィルムのトラウザー引裂力は、JIS K 7128-1:1998「プラスチック-フィルム及びシートの引裂強さ試験方法-第一部:トラウザー引裂法」に準拠して、引張試験機(株式会社島津製作所製、EZ-SX)を用いて、下記の測定条件で測定した値である。但し、本発明において、測定方向については、方向による異方性の有無によらず、縦方向(MD方向)のみ測定するものとする。
(測定条件)
・試験室の温湿度:23±2℃、50±15%
・試験片寸法:150mm×50mm
・試験片中央のスリット長さ:75±1mm
・試験速度:200mm/min
・試験片のつかみ具間距離:75mm
 第一のフィルムおよび第二のフィルムのトラウザー引裂力は、第一のフィルムおよび第二のフィルムの熱可塑性樹脂の種類、フィルム製膜時の延伸倍率、フィルムの厚さ、フィルムの破断強度、表面の粗さ等を調節することにより、所望の範囲内に調節することができる。
The structure according to the present invention has a difference between the trouser tearing force of the first film and the trouser tearing force of the second film (= "trouser tearing force of the first film"-"trouser tearing force of the second film". ) Is -0.05N or less or + 0.05N or more, preferably -0.1N or less or + 0.1N or more, and more preferably -0.3N or more and -0.1N or less or + 0.1N or more +0. It is 3N or less, more preferably + 0.1N or more and + 0.3N or less. It is preferable that the trouser tearing force of the second film is smaller than the trouser tearing force of the first film in that film marks are less likely to be formed.
In the present invention, the trouser tearing force of the first film and the second film is described in JIS K 7128-1: 1998 "Plastic-Film and Sheet Tear Strength Test Method-Part 1: Trouser Tearing Method". It is a value measured under the following measurement conditions using a tensile tester (manufactured by Shimadzu Corporation, EZ-SX) in accordance with the above. However, in the present invention, the measurement direction shall be measured only in the vertical direction (MD direction) regardless of the presence or absence of anisotropy depending on the direction.
(Measurement condition)
・ Temperature and humidity of the test room: 23 ± 2 ° C, 50 ± 15%
-Test piece dimensions: 150 mm x 50 mm
・ Slit length at the center of the test piece: 75 ± 1 mm
-Test speed: 200 mm / min
・ Distance between gripping tools of test piece: 75 mm
The trouser tearing force of the first film and the second film is the type of thermoplastic resin of the first film and the second film, the draw ratio during film formation, the film thickness, the breaking strength of the film, and the surface. It can be adjusted within a desired range by adjusting the roughness of the film.
 本発明による構造体は、第一のフィルムのヘーズと第二のフィルムのヘーズの差(=「第一のフィルムのヘーズ」-「第二のフィルムのヘーズ」)は、-5%以下または+5%以上であり、多層構造の構造体の表と裏をより見分け易くなる点において、好ましくは-8%以下または+8%以上であり、より好ましくは-85%以上-8%以下または+8%以上+85%以下である。第一のフィルムおよび第二のフィルムのヘーズは、第一のフィルムおよび第二のフィルムの表面の粗さ、着色剤の添加や種類、熱可塑性樹脂の種類、フィルム製膜時の延伸倍率、フィルムの厚さ等を調節することにより、所望の範囲内に調節することができる。第一のフィルムと第二のフィルムのヘーズの差が上記条件を満たすことで、多層構造の構造体の裏と裏を見分け易くなる。
 なお、本発明において、第一のフィルムおよび第二のフィルムのヘーズは、フィルム自体を、ASTMD1003に準拠して、ヘーズメイターを用いて測定した値である。
In the structure according to the present invention, the difference between the haze of the first film and the haze of the second film (= "haze of the first film"-"haze of the second film") is -5% or less or +5. % Or more, preferably -8% or less or + 8% or more, more preferably -85% or more and -8% or less or + 8% or more in that the front and back of the multi-layer structure can be more easily distinguished. It is + 85% or less. The haze of the first film and the second film is the surface roughness of the first film and the second film, the addition and type of colorant, the type of thermoplastic resin, the draw ratio during film formation, and the film. It can be adjusted within a desired range by adjusting the thickness of the film. When the difference between the haze of the first film and the haze of the second film satisfies the above condition, it becomes easy to distinguish the back side and the back side of the multi-layered structure.
In the present invention, the haze of the first film and the second film is a value measured by using a haze mate for the film itself in accordance with ASTMD1003.
 あるいは、本発明による構造体は、構造体の第一のフィルム側から測定したLab色空間におけるL*値、a*値、b*値と構造体の第二のフィルム側から測定したLab色空間におけるL*値、a*値、b*値の差(=「構造体の第一のフィルム側から測定したLab色空間におけるL*値、a*値、b*値」-「構造体の第二のフィルム側から測定したLab色空間におけるL*値、a*値、b*値」)が下記条件(i)~(iii)の少なくとも1つを満たす。
 (i)L*値の差が-0.1以下または+0.1以上であり、多層構造の構造体の表と裏をより見分け易くなる点において、好ましくは-10以下または+10以上であり、より好ましくは-30以上-15以下または+15以上+30以下である。
 (ii)a*値の差が-0.1以下または+0.1以上であり、多層構造の構造体の表と裏をより見分け易くなる点において、好ましくは-0.3以下または+0.3以上であり、より好ましくは-30以上-0.3以下または+0.3以上+30以下である。
 (iii)b*値の差が-1以下または+1以上であり、多層構造の構造体の表と裏をより見分け易くなる点において、好ましくは-2以下または+2以上であり、より好ましくは-10以上-2以下または+2以上+10以下である。
構造体の第一のフィルム側から測定したLab色空間におけるL*値、a*値、b*値および構造体の第二のフィルム側から測定したLab色空間におけるL*値、a*値、b*値は、第一のフィルムおよび第二のフィルムの表面の粗さ、着色剤の添加量や種類、熱可塑性樹脂の種類、フィルム製膜時の延伸倍率、フィルムの厚さ等を調節することにより、所望の範囲内に調節することができる。構造体の第一のフィルム側から測定したLab色空間におけるL*値、a*値、b*値および構造体の第二のフィルム側から測定したLab色空間におけるL*値、a*値、b*値の差が上記条件を満たすことで、多層構造の構造体の裏と裏を見分け易くなる。この中でも、より見分けやすくなる観点で特に(i)に記載の差、すなわち、L*値の差が上記条件を満たすことが好ましい。
 なお、本発明において、構造体の第二のフィルム側から測定したLab色空間におけるL*値、a*値、b*値および構造体の第一のフィルム側から測定したLab色空間におけるL*値、a*値、b*値は、分光測色計を用いて下記の測定条件で測定した値である。
(測定条件)
・反射モード
・正反射光処理   
・測定径:SAV(3mm)
・UV条件:100%Full
・視野:10°
・入射光65°
・測定方式:SCE(Specular Component Exclude)
・下地:黒色の台紙(L*値:27.3、a*値0.7、b*値2.0)
Alternatively, the structure according to the present invention has L * values, a * values, b * values in the Lab color space measured from the first film side of the structure and the Lab color space measured from the second film side of the structure. Difference between L * value, a * value, and b * value in (= "L * value, a * value, b * value in the Lab color space measured from the first film side of the structure"-"No. 1 of the structure The L * value, a * value, b * value ") in the Lab color space measured from the second film side satisfies at least one of the following conditions (i) to (iii).
(I) The difference between the L * values is −0.1 or less or +0.1 or more, and is preferably −10 or less or +10 or more in that the front and back of the multi-layer structure can be more easily distinguished. More preferably, it is -30 or more and -15 or less or +15 or more and +30 or less.
(Ii) The difference between the a * values is −0.1 or less or +0.1 or more, and it is preferable that the difference between the front and back of the multi-layered structure is −0.3 or less or +0.3. The above is more preferably −30 or more and −0.3 or less or +0.3 or more and +30 or less.
(Iii) The difference between the b * values is -1 or less or +1 or more, and is preferably -2 or less or +2 or more, more preferably −2 or more, in that the front and back of the multi-layer structure can be more easily distinguished. It is 10 or more and -2 or less or +2 or more and +10 or less.
L * value, a * value, b * value in the Lab color space measured from the first film side of the structure and L * value, a * value, in the Lab color space measured from the second film side of the structure. The b * value adjusts the surface roughness of the first film and the second film, the amount and type of colorant added, the type of thermoplastic resin, the draw ratio during film formation, the film thickness, and the like. Thereby, it can be adjusted within a desired range. L * value, a * value, b * value in the Lab color space measured from the first film side of the structure and L * value, a * value, in the Lab color space measured from the second film side of the structure. When the difference in b * values satisfies the above condition, it becomes easy to distinguish the back side and the back side of the multi-layered structure. Among these, it is particularly preferable that the difference described in (i), that is, the difference in the L * value satisfies the above condition from the viewpoint of making it easier to distinguish.
In the present invention, the L * value, a * value, b * value in the Lab color space measured from the second film side of the structure and the L * in the Lab color space measured from the first film side of the structure. The value, a * value, and b * value are values measured under the following measurement conditions using a spectrocolorimeter.
(Measurement condition)
・ Reflection mode ・ Specular light processing
-Measurement diameter: SAV (3 mm)
-UV condition: 100% Full
・ Field of view: 10 °
・ Incident light 65 °
-Measurement method: SCE (Specular Component Exclude)
-Background: Black mount (L * value: 27.3, a * value 0.7, b * value 2.0)
[樹脂層]
 樹脂層は、構造体の第一のフィルムおよび第二のフィルムの間に位置する層であり、硬化性樹脂層であることが好ましい。硬化性樹脂層は、硬化性樹脂組成物を乾燥して得られる乾燥塗膜であり、加熱により硬化する熱硬化性樹脂層でもよいし、光照射により硬化する光硬化性樹脂層でもよいし、加熱により硬化し、かつ、光照射により硬化する熱硬化性・光硬化性樹脂層でもよい。
[Resin layer]
The resin layer is a layer located between the first film and the second film of the structure, and is preferably a curable resin layer. The curable resin layer is a dry coating film obtained by drying the curable resin composition, and may be a thermosetting resin layer that is cured by heating, a photocurable resin layer that is cured by light irradiation, or a photocurable resin layer. It may be a thermosetting / photocurable resin layer that is cured by heating and cured by light irradiation.
(硬化性樹脂組成物)
 硬化性樹脂組成物は、熱硬化性樹脂および光硬化性樹脂の少なくともいずれか1種を含むことが好ましく、他の成分をさらに含んでもよい。
(Curable resin composition)
The curable resin composition preferably contains at least one of a thermosetting resin and a photocurable resin, and may further contain other components.
(熱硬化性樹脂)
 硬化性樹脂組成物は、熱硬化性樹脂を含む場合、硬化物の耐熱性が向上し、また、下地との密着性が向上する。熱硬化性樹脂としては、例えば、メラミン樹脂、ベンゾグアナミン樹脂、メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂、イソシアネート化合物、ブロックイソシアネート化合物、シクロカーボネート化合物、エポキシ化合物、オキセタン化合物、エピスルフィド樹脂、ビスマレイミド、カルボジイミド樹脂等を用いることができる。これらの中でも、分子中に複数の環状エーテル基または環状チオエーテル基(以下、環状(チオ)エーテル基と略す)を有するものが好ましい。熱硬化性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。
(Thermosetting resin)
When the curable resin composition contains a thermosetting resin, the heat resistance of the cured product is improved and the adhesion to the substrate is improved. Examples of the thermosetting resin include amino resins such as melamine resin, benzoguanamine resin, melamine derivative, and benzoguanamine derivative, isocyanate compounds, blocked isocyanate compounds, cyclocarbonate compounds, epoxy compounds, oxetane compounds, episulfide resins, bismaleimide, and carbodiimide resins. Etc. can be used. Among these, those having a plurality of cyclic ether groups or cyclic thioether groups (hereinafter, abbreviated as cyclic (thio) ether groups) in the molecule are preferable. As the thermosetting resin, one type may be used alone or two or more types may be used in combination.
 このような分子中に環状(チオ)エーテル基を有する熱硬化性樹脂は、分子中に3、4または5員環の環状エーテル基若しくは環状チオエーテル基のいずれか一方または双方を有する化合物であり、例えば、エポキシ化合物、多官能オキセタン化合物、エピスルフィド樹脂等が挙げられる。これらの中でも、エポキシ化合物が好ましい。 Such a thermosetting resin having a cyclic (thio) ether group in the molecule is a compound having either or both of a 3, 4 or 5-membered cyclic ether group or a cyclic thio ether group in the molecule. For example, an epoxy compound, a polyfunctional oxetane compound, an episulfide resin and the like can be mentioned. Of these, epoxy compounds are preferred.
 エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂、エポキシ変性のポリブタジエンゴム誘導体、CTBN変性エポキシ樹脂、トリメチロールプロパンポリグリシジルエーテル、フェニル-1,3-ジグリシジルエーテル、ビフェニル-4,4’-ジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールまたはプロピレングリコールのジグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリス(2,3-エポキシプロピル)イソシアヌレート、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート等が挙げられる。 Examples of the epoxy compound include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, and bisphenol Z type epoxy resin. Novolak type epoxy resin such as bisphenol type epoxy resin, bisphenol A novolac type epoxy resin, phenol novolac type epoxy resin, cresol novolac epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, arylalkylene type epoxy resin, tetraphenylol ethane Type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantan type epoxy resin, fluorene type epoxy resin, glycidyl methacrylate copolymer type epoxy resin, Copolymerized epoxy resin of cyclohexyl maleimide and glycidyl methacrylate, epoxy-modified polybutadiene rubber derivative, CTBN-modified epoxy resin, trimethylolpropane polyglycidyl ether, phenyl-1,3-diglycidyl ether, biphenyl-4,4'-di Glycidyl ether, 1,6-hexanediol diglycidyl ether, ethylene glycol or propylene glycol diglycidyl ether, sorbitol polyglycidyl ether, tris (2,3-epoxypropyl) isocyanurate, triglycidyltris (2-hydroxyethyl) isocia Epoxy and the like can be mentioned.
 市販されるエポキシ樹脂としては、例えば、三菱ケミカル株式会社製のjER 828、806、807、YX8000、YX8034、834、日鉄ケミカル&マテリアル株式会社製のYD-128、YDF-170、ZX-1059、ST-3000、DIC株式会社製のEPICLON 830、835、840、850、N-730A、N-695、および日本化薬株式会社製のRE-306等が挙げられる。 Examples of commercially available epoxy resins include jER 828, 806, 807, YX8000, YX8034, 834 manufactured by Mitsubishi Chemical Corporation, YD-128, YDF-170, ZX-1059 manufactured by Nittetsu Chemical & Materials Co., Ltd. Examples thereof include ST-3000, EPICLON 830, 835, 840, 850, N-730A, N-695 manufactured by DIC Corporation, and RE-306 manufactured by Nippon Kayaku Corporation.
 多官能オキセタン化合物としては、例えば、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、またはシルセスキオキサン等の水酸基を有する樹脂とのエーテル化物等が挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。 Examples of the polyfunctional oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, and 1,4-bis [(3-3-oxythenylmethoxy) methyl] ether. Methyl-3-oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-3) Oxetanyl) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and polyfunctional oxetane such as their oligomers or copolymers, as well as oxetane alcohols and novolak resins. , Poly (p-hydroxystyrene), cardo-type bisphenols, calix arrayes, calix resorcinarenes, etherified products with a resin having a hydroxyl group such as silsesquioxane, and the like. In addition, a copolymer of an unsaturated monomer having an oxetane ring and an alkyl (meth) acrylate can also be mentioned.
 分子中に複数の環状チオエーテル基を有する化合物としては、ビスフェノールA型エピスルフィド樹脂等が挙げられる。また、同様の合成方法を用いて、ノボラック型エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂等も用いることができる。 Examples of the compound having a plurality of cyclic thioether groups in the molecule include bisphenol A type episulfide resin and the like. Further, using the same synthesis method, an episulfide resin or the like in which the oxygen atom of the epoxy group of the novolak type epoxy resin is replaced with a sulfur atom can also be used.
 メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂としては、メチロールメラミン化合物、メチロールベンゾグアナミン化合物、メチロールグリコールウリル化合物およびメチロール尿素化合物等が挙げられる。 Examples of amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycol uryl compounds and methylol urea compounds.
 イソシアネート化合物としては、ポリイソシアネート化合物を配合することができる。ポリイソシアネート化合物としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネートおよび2,4-トリレンダイマー等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-メチレンビス(シクロヘキシルイソシアネート)およびイソホロンジイソシアネート等の脂肪族ポリイソシアネート;ビシクロヘプタントリイソシアネート等の脂環式ポリイソシアネート;並びに先に挙げたイソシアネート化合物のアダクト体、ビューレット体およびイソシアヌレート体等が挙げられる。 As the isocyanate compound, a polyisocyanate compound can be blended. Polyisocyanate compounds include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate and Aromatic polyisocyanates such as 2,4-tolyrene dimer; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis (cyclohexyl isocyanate) and isophorone diisocyanate; bicyclo Alicyclic polyisocyanates such as heptanthriisocyanate; and adducts, burettes, and isocyanurates of the isocyanate compounds mentioned above can be mentioned.
 ブロックイソシアネート化合物としては、イソシアネート化合物とイソシアネートブロック剤との付加反応生成物を用いることができる。イソシアネートブロック剤と反応し得るイソシアネート化合物としては、例えば、上述のポリイソシアネート化合物等が挙げられる。イソシアネートブロック剤としては、例えば、フェノール系ブロック剤;ラクタム系ブロック剤;活性メチレン系ブロック剤;アルコール系ブロック剤;オキシム系ブロック剤;メルカプタン系ブロック剤;酸アミド系ブロック剤;イミド系ブロック剤;アミン系ブロック剤;イミダゾール系ブロック剤;イミン系ブロック剤等が挙げられる。 As the blocked isocyanate compound, an addition reaction product of the isocyanate compound and the isocyanate blocking agent can be used. Examples of the isocyanate compound capable of reacting with the isocyanate blocking agent include the above-mentioned polyisocyanate compound and the like. Examples of the isocyanate blocking agent include a phenol-based blocking agent; a lactam-based blocking agent; an active methylene-based blocking agent; an alcohol-based blocking agent; an oxime-based blocking agent; a mercaptan-based blocking agent; an acid amide-based blocking agent; an imide-based blocking agent; Amine-based blocking agents; imidazole-based blocking agents; imine-based blocking agents and the like can be mentioned.
(光硬化性樹脂(ラジカル重合))
 光硬化性樹脂としては、特に、分子中に1個以上のエチレン性不飽和結合を有する化合物が好ましく用いられる。エチレン性不飽和結合を有する化合物としては、公知慣用の光重合性オリゴマーおよび光重合性ビニルモノマー等が用いられる。
(Photocurable resin (radical polymerization))
As the photocurable resin, a compound having one or more ethylenically unsaturated bonds in the molecule is particularly preferably used. As the compound having an ethylenically unsaturated bond, known and commonly used photopolymerizable oligomers, photopolymerizable vinyl monomers and the like are used.
 光重合性オリゴマーとしては、不飽和ポリエステル系オリゴマー、(メタ)アクリレート系オリゴマー等が挙げられる。(メタ)アクリレート系オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン変性(メタ)アクリレート等が挙げられる。なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語であり、他の類似の表現についても同様である。 Examples of the photopolymerizable oligomer include unsaturated polyester-based oligomers and (meth) acrylate-based oligomers. Examples of the (meth) acrylate-based oligomer include epoxy (meth) acrylates such as phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, and bisphenol type epoxy (meth) acrylate, urethane (meth) acrylate, and epoxy urethane (meth). ) Acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene-modified (meth) acrylate and the like. In addition, in this specification, (meth) acrylate is a generic term for acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
 光重合性ビニルモノマーとしては、公知慣用のもの、例えば、スチレン、クロロスチレン、α-メチルスチレン等のスチレン誘導体;酢酸ビニル、酪酸ビニルまたは安息香酸ビニル等のビニルエステル類;ビニルイソブチルエーテル、ビニル-n-ブチルエーテル、ビニル-t-ブチルエーテル、ビニル-n-アミルエーテル、ビニルイソアミルエーテル、ビニル-n-オクタデシルエーテル、ビニルシクロヘキシルエーテル、エチレングリコールモノブチルビニルエーテル、トリエチレングリコールモノメチルビニルエーテル等のビニルエーテル類;アクリルアミド、メタクリルアミド、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-ブトキシメチルアクリルアミド等の(メタ)アクリルアミド類;トリアリルイソシアヌレート、フタル酸ジアリル、イソフタル酸ジアリル等のアリル化合物;2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラヒドロフルフリール(メタ)アクリレート、イソボロニル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の(メタ)アクリル酸のエステル類;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート等のアルコキシアルキレングリコールモノ(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート類、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のアルキレンポリオールポリ(メタ)アクリレート、;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート等のポリオキシアルキレングリコールポリ(メタ)アクリレート類;ヒドロキシビバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレート等のポリ(メタ)アクリレート類;トリス[(メタ)アクリロキシエチル]イソシアヌレート等のイソシアヌルレート型ポリ(メタ)アクリレート類等が挙げられる。 As the photopolymerizable vinyl monomer, known and commonly used ones, for example, styrene derivatives such as styrene, chlorostyrene and α-methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate or vinyl benzoate; vinyl isobutyl ether, vinyl- Vinyl ethers such as n-butyl ether, vinyl-t-butyl ether, vinyl-n-amyl ether, vinyl isoamyl ether, vinyl-n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, triethylene glycol monomethyl vinyl ether; acrylamide, (Meta) acrylamides such as methacrylicamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylicamide, N-methoxymethylacrylamide, N-ethoxymethylacrylamide, N-butoxymethylacrylamide; triallyl isocyanurate, diallyl phthalate, Allyl compounds such as diallyl isophthalate; 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tetrahydrofurfreel (meth) acrylate, isobolonyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate, etc. (Meta) acrylic acid esters; hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate; methoxyethyl (meth) acrylate, ethoxyethyl Alkoxyalkylene glycol mono (meth) acrylates such as (meth) acrylate; ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di ( Alkylene polyol poly (meth) acrylates such as meta) acrylates, trimethylolpropantri (meth) acrylates, pentaerythritol tetra (meth) acrylates, dipentaerythritol hexa (meth) acrylates; diethylene glycol di (meth) acrylates, triethylene glycols. Polyoxyalkylene glycol poly (meth) acrylates such as di (meth) acrylates, trimethylolethane ethoxylated propantriacrylates, propoxylated trimethylol propantri (meth) acrylates, etc. Kind: Poly (meth) acrylates such as neopentyl glycol ester di (meth) acrylate of hydroxybivariate; Isocyanurate-type poly (meth) acrylates such as tris [(meth) acryloxyethyl] isocyanurate. ..
(光硬化性樹脂(カチオン重合))
 光硬化性樹脂としては、脂環エポキシ化合物およびビニルエーテル化合物等を好適に用いることができる。このうち脂環エポキシ化合物としては、3,4,3’,4’-ジエポキシビシクロヘキシル、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、2,2-ビス(3,4-エポキシシクロヘキシル)-1,3-ヘキサフルオロプロパン、ビス(3,4-エポキシシクロヘキシル)メタン、1-[1,1-ビス(3,4-エポキシシクロヘキシル)]エチルベンゼン、ビス(3,4-エポキシシクロヘキシル)アジペート、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(3,4-エポキシ-6-メチルシクロヘキシル)メチル-3’,4’-エポキシ-6-メチルシクロヘキサンカルボキシレート、エチレン-1,2-ビス(3,4-エポキシシクロヘキサンカルボン酸)エステル、シクロヘキセンオキサイド、3,4-エポキシシクロヘキシルメチルアルコール、3,4-エポキシシクロヘキシルエチルトリメトキシシラン等のエポキシ基を有する脂環エポキシ化合物等が挙げられる。
(Photocurable resin (cationic polymerization))
As the photocurable resin, an alicyclic epoxy compound, a vinyl ether compound and the like can be preferably used. Of these, the alicyclic epoxy compounds include 3,4,3', 4'-diepoxybicyclohexyl, 2,2-bis (3,4-epoxycyclohexyl) propane, and 2,2-bis (3,4-epoxy). Cyclohexyl) -1,3-hexafluoropropane, bis (3,4-epoxycyclohexyl) methane, 1- [1,1-bis (3,4-epoxycyclohexyl)] ethylbenzene, bis (3,4-epoxycyclohexyl) Adipate, 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, (3,4-epoxy-6-methylcyclohexyl) methyl-3', 4'-epoxy-6-methylcyclohexanecarboxylate, ethylene An alicyclic epoxy compound having an epoxy group such as -1,2-bis (3,4-epoxycyclohexanecarboxylic acid) ester, cyclohexene oxide, 3,4-epoxycyclohexylmethyl alcohol, 3,4-epoxycyclohexylethyltrimethoxysilane. And so on.
 ビニルエーテル化合物としては、イソソルバイトジビニルエーテル、オキサノルボルネンジビニルエーテル等の環状エーテル型ビニルエーテル(オキシラン環、オキセタン環、オキソラン環等の環状エーテル基を有するビニルエーテル);フェニルビニルエーテル等のアリールビニルエーテル;n-ブチルビニルエーテル、オクチルビニルエーテル等のアルキルビニルエーテル;シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル;ハイドロキノンジビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル等の多官能ビニルエーテル、αおよび/またはβ位にアルキル基、アリル基等の置換基を有するビニルエーテル化合物等が挙げられる。 Examples of the vinyl ether compound include cyclic ether type vinyl ethers such as isosorbite divinyl ether and oxanolbornene divinyl ether (vinyl ethers having cyclic ether groups such as oxylane ring, oxetane ring and oxolan ring); aryl vinyl ethers such as phenyl vinyl ether; n-butyl vinyl ether. Alkyl vinyl ethers such as octyl vinyl ethers; cycloalkyl vinyl ethers such as cyclohexyl vinyl ethers; polyfunctional vinyl ethers such as hydroquinone divinyl ethers, 1,4-butanediol divinyl ethers, cyclohexane divinyl ethers, cyclohexanedimethanol divinyl ethers, α and / or β-positions. Examples thereof include vinyl ether compounds having a substituent such as an alkyl group and an allyl group.
(アルカリ可溶性樹脂)
 硬化性樹脂組成物は、アルカリ可溶性樹脂を含有することができる。アルカリ可溶樹脂としては、カルボキシル基含有樹脂またはフェノール樹脂を用いることが好ましい。下地との密着性を向上させるだけでなく、特に、カルボキシル基含有樹脂を用いると、現像性の面からより好ましい。カルボキシル基含有樹脂は、エチレン性不飽和二重結合を有するカルボキシル基含有感光性樹脂でもよい。
(Alkali-soluble resin)
The curable resin composition can contain an alkali-soluble resin. As the alkali-soluble resin, it is preferable to use a carboxyl group-containing resin or a phenol resin. In addition to improving the adhesion to the substrate, it is more preferable to use a carboxyl group-containing resin from the viewpoint of developability. The carboxyl group-containing resin may be a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond.
(1)エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
(2)エポキシ樹脂の水酸基を、さらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に、(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
(3)エポキシ化合物に、1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(4)ビスフェノールA、ビスフェノールF、ビスフェノールS、ノボラック型フェノール樹脂、ポリ-p-ヒドロキシスチレン、ナフトールとアルデヒド類の縮合物、ジヒドロキシナフタレンとアルデヒド類との縮合物等の1分子中に2個以上のフェノール性水酸基を有する化合物と、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドとを反応させて得られる反応生成物に、(メタ)アクリル酸等の不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(5)1分子中に2個以上のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に、不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(6)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキサイド付加体ジオール、フェノール性ヒドロキシル基及びアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるウレタン樹脂の末端に、酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂。
(7)ジイソシアネートと、ジメチロールプロピオン酸、ジメチロール酪酸等のカルボキシル基含有ジアルコール化合物と、ジオール化合物との重付加反応によるカルボキシル基含有ウレタン樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。
(8)ジイソシアネートと、カルボキシル基含有ジアルコール化合物と、ジオール化合物との重付加反応によるカルボキシル基含有ウレタン樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物等、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。
(9)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。
(10)オキセタン樹脂に、アジピン酸、フタル酸、ヘキサヒドロフタル酸等のジカルボン酸を反応させ、生じた1級の水酸基に、2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂に、さらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の1分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂。
(11)上述した(1)~(10)のカルボキシル基含有樹脂に、1分子中に環状エーテル基と(メタ)アクリロイル基を有する化合物を付加させたカルボキシル基含有感光性樹脂。
(1) Carboxyl group-containing photosensitive by reacting an epoxy resin with (meth) acrylic acid and adding a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride to a hydroxyl group existing in a side chain. Sex resin.
(2) Carboxyl group-containing photosensitive in which a (meth) acrylic acid is reacted with a polyfunctional epoxy resin obtained by further epoxidizing the hydroxyl group of the epoxy resin with epichlorohydrin, and a dibasic acid anhydride is added to the generated hydroxyl group. Sex resin.
(3) The epoxy compound is obtained by reacting a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule with an unsaturated group-containing monocarboxylic acid such as (meth) acrylic acid. Contains a carboxyl group obtained by reacting the alcoholic hydroxyl group of the reaction product with a polybasic acid anhydride such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, or adipic acid. Photosensitive resin.
(4) Two or more in one molecule of bisphenol A, bisphenol F, bisphenol S, novolak type phenol resin, poly-p-hydroxystyrene, condensate of naphthol and aldehydes, condensate of dihydroxynaphthalene and aldehydes, etc. It is obtained by reacting a reaction product obtained by reacting a compound having a phenolic hydroxyl group with an alkylene oxide such as ethylene oxide or propylene oxide with an unsaturated group-containing monocarboxylic acid such as (meth) acrylic acid. A carboxyl group-containing photosensitive resin obtained by reacting a reaction product with a polybasic acid anhydride.
(5) An unsaturated group-containing monocarboxylic acid is reacted with a reaction product obtained by reacting a compound having two or more phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate. , A carboxyl group-containing photosensitive resin obtained by reacting the obtained reaction product with a polybasic acid anhydride.
(6) Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates, and polycarbonate-based polyols, polyether-based polyols, polyester-based polyols, polyolefin-based polyols, acrylic-based polyols, and bisphenol A-based A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with the end of a urethane resin obtained by a double addition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
(7) Molecules such as hydroxyalkyl (meth) acrylate during the synthesis of a carboxyl group-containing urethane resin by a double addition reaction between a diisocyanate, a carboxyl group-containing dialcohol compound such as dimethylolpropionic acid and dimethylolbutyric acid, and a diol compound. A carboxyl group-containing urethane resin obtained by adding a compound having one hydroxyl group and one or more (meth) acryloyl groups to the terminal (meth) acrylic.
(8) During the synthesis of a carboxyl group-containing urethane resin by a double addition reaction of a diisocyanate, a carboxyl group-containing dialcohol compound, and a diol compound, an isophorone diisocyanate and a pentaerythritol triacrylate equimolar reaction product, etc. A carboxyl group-containing urethane resin that is terminally (meth) acrylicated by adding a compound having one isocyanate group and one or more (meth) acryloyl groups.
(9) A carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth) acrylic acid with an unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth) acrylate, or isobutylene.
(10) A carboxyl group-containing polyester resin obtained by reacting an oxetane resin with a dicarboxylic acid such as adipic acid, phthalic acid, or hexahydrophthalic acid, and adding a dibasic acid anhydride to the generated primary hydroxyl group. A carboxyl group-containing photosensitive resin obtained by adding a compound having one epoxy group and one or more (meth) acryloyl groups to one molecule such as glycidyl (meth) acrylate and α-methylglycidyl (meth) acrylate.
(11) A carboxyl group-containing photosensitive resin obtained by adding a compound having a cyclic ether group and a (meth) acryloyl group in one molecule to the above-mentioned carboxyl group-containing resins (1) to (10).
 上述のカルボキシル基含有樹脂は、バックボーン・ポリマーの側鎖に多数のカルボキシル基を有するため、希アルカリ水溶液による現像が可能になる。 Since the above-mentioned carboxyl group-containing resin has a large number of carboxyl groups in the side chain of the backbone polymer, it can be developed with a dilute alkaline aqueous solution.
 また、カルボキシル基含有樹脂の酸価は、40~200mgKOH/gの範囲が好ましく、45~120mgKOH/gの範囲がより好ましい。カルボキシル基含有樹脂の酸価が40mgKOH/g以上であるとアルカリ現像が容易となり、一方、200mgKOH/g以下である正常なレジストパターンの描画が容易となる。 The acid value of the carboxyl group-containing resin is preferably in the range of 40 to 200 mgKOH / g, more preferably in the range of 45 to 120 mgKOH / g. When the acid value of the carboxyl group-containing resin is 40 mgKOH / g or more, alkaline development becomes easy, while drawing a normal resist pattern of 200 mgKOH / g or less becomes easy.
 また、上述のカルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、一般的に2,000~150,000、さらには5,000~100,000の範囲にあるものが好ましい。重量平均分子量が2,000以上であると、タックフリー性能、露光後の塗膜の耐現像性、解像性が良好となる。一方、重量平均分子量が150,000以下であると、現像性に優れる。 The weight average molecular weight of the above-mentioned carboxyl group-containing resin varies depending on the resin skeleton, but is generally preferably in the range of 2,000 to 150,000, more preferably 5,000 to 100,000. When the weight average molecular weight is 2,000 or more, the tack-free performance, the development resistance of the coating film after exposure, and the resolution are good. On the other hand, when the weight average molecular weight is 150,000 or less, the developability is excellent.
 カルボキシル基含有樹脂は、上述以外のものも使用することができ、それぞれ1種類を単独で用いてもよく、複数種を混合して用いてもよい。 As the carboxyl group-containing resin, those other than those described above can be used, and one type of each may be used alone, or a plurality of types may be mixed and used.
 フェノール樹脂としては、フェノール性水酸基を有する化合物、例えば、ビフェニル骨格若しくはフェニレン骨格またはその両方の骨格を有する化合物、または、フェノール性水酸基含有化合物、例えば、フェノール、オルソクレゾール、パラクレゾール、メタクレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、カテコール、レゾルシノール、ハイドロキノン、メチルハイドロキノン、2,6-ジメチルハイドロキノン、トリメチルハイドロキノン、ピロガロール、フロログルシノール等を用いて合成した、様々な骨格を有するフェノール樹脂を用いてもよい。 Examples of the phenolic resin include compounds having a phenolic hydroxyl group, for example, a compound having a biphenyl skeleton and / or a phenylene skeleton, or a phenolic hydroxyl group-containing compound, for example, phenol, orthocresol, paracresol, metacresol, 2 , 3-Xylenol, 2,4-Xylenol, 2,5-Xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, catechol, cresolsinol, hydroquinone, methylhydroquinone, 2,6-dimethylhydroquinone , Phenolic resins having various skeletons synthesized with trimethylhydroquinone, pyrogallol, fluoroglucolcinol and the like may be used.
 例えば、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類、ビスフェノールF、ビスフェノールS型フェノール樹脂、ポリ-p-ヒドロキシスチレン、ナフトールとアルデヒド類の縮合物、ジヒドロキシナフタレンとアルデヒド類との縮合物等公知慣用のフェノール樹脂を用いることができる。これらは、単独でまたは2種以上を組み合わせて使用することができる。 For example, phenol novolac resin, alkylphenol volac resin, bisphenol A novolak resin, dicyclopentadiene type phenol resin, Xyloc type phenol resin, terpene modified phenol resin, polyvinylphenols, bisphenol F, bisphenol S type phenol resin, poly-p- Known and commonly used phenol resins such as hydroxystyrene, a condensate of naphthol and aldehydes, and a condensate of dihydroxynaphthalene and aldehydes can be used. These can be used alone or in combination of two or more.
 本発明においては、アルカリ可溶性樹脂として、カルボキシル基含有樹脂およびフェノール樹脂のいずれか一方、または、これらの混合物を用いてもよい。 In the present invention, as the alkali-soluble resin, either one of the carboxyl group-containing resin and the phenol resin, or a mixture thereof may be used.
 なお、アルカリ可溶性樹脂としてエチレン性不飽和基を含まない材料を用いる場合には、上記光硬化性樹脂を併用することが好ましい。光硬化性樹脂は、活性エネルギー線照射により、光硬化し、かつアルカリ可溶性樹脂のアルカリ水溶液への溶解を助長するものである。いずれの場合にも、1種類または複数種類の光硬化性樹脂を用いることができる。 When a material that does not contain an ethylenically unsaturated group is used as the alkali-soluble resin, it is preferable to use the above photocurable resin together. The photocurable resin is photocurable by irradiation with active energy rays and promotes the dissolution of the alkali-soluble resin in an alkaline aqueous solution. In either case, one or more types of photocurable resins can be used.
(熱可塑性樹脂)
 硬化性樹脂組成物は、得られる硬化被膜の機械的強度を向上させるために、さらに熱可塑性樹脂を含んでもよい。熱可塑性樹脂は、溶剤に可溶であることが好ましい。溶剤に可溶である場合、ドライフィルムの柔軟性が向上し、クラックの発生や粉落ちを抑制できる。熱可塑性樹脂としては、熱可塑性ポリヒドロキシポリエーテル樹脂や、エピクロルヒドリンと各種2官能フェノール化合物の縮合物であるフェノキシ樹脂或いはその骨格に存在するヒドロキシエーテル部の水酸基を各種酸無水物や酸クロリドを使用してエステル化したフェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ブロック共重合体、ガラス転移点が20℃以下かつ重量平均分子量が1万以上の高分子樹脂等が挙げられる。前記高分子樹脂としては、アクリル酸エステル共重合体であることが好ましい。熱可塑性樹脂は1種を単独または2種以上を組み合わせて用いることができる。
(Thermoplastic resin)
The curable resin composition may further contain a thermoplastic resin in order to improve the mechanical strength of the obtained cured film. The thermoplastic resin is preferably soluble in a solvent. When it is soluble in a solvent, the flexibility of the dry film is improved, and the generation of cracks and powder falling can be suppressed. As the thermoplastic resin, various acid anhydrides or acid chlorides are used for the thermoplastic polyhydroxypolyether resin, the phenoxy resin which is a condensate of epichlorohydrin and various bifunctional phenol compounds, or the hydroxyl group of the hydroxyether portion existing in the skeleton thereof. Examples thereof include phenoxy resins, polyvinyl acetal resins, polyamide resins, polyamideimide resins, block copolymers, and polymer resins having a glass transition point of 20 ° C. or lower and a weight average molecular weight of 10,000 or more. The polymer resin is preferably an acrylic acid ester copolymer. The thermoplastic resin may be used alone or in combination of two or more.
(硬化剤)
 硬化性樹脂組成物は硬化剤を含んでもよい。硬化剤としては、フェノール樹脂、ポリカルボン酸およびその酸無水物、シアネートエステル樹脂、活性エステル樹脂、マレイミド化合物、脂環式オレフィン重合体等が挙げられる。硬化剤は1種を単独または2種以上を組み合わせて用いることができる。
(Hardener)
The curable resin composition may contain a curing agent. Examples of the curing agent include phenol resins, polycarboxylic acids and their acid anhydrides, cyanate ester resins, active ester resins, maleimide compounds, alicyclic olefin polymers and the like. As the curing agent, one type may be used alone or two or more types may be used in combination.
 硬化剤は、熱硬化性樹脂のエポキシ基等の熱硬化反応が可能な官能基と、その官能基と反応する硬化剤中の官能基との比率が、硬化剤の官能基/熱硬化反応が可能な官能基(当量比)=0.2~2となるような割合で配合することが好ましい。硬化剤の官能基/熱硬化反応が可能な官能基(当量比)を上記範囲内とすることで、デスミア工程におけるフィルム表面の粗化を防止することができる。より好ましくは硬化剤の官能基/熱硬化反応が可能な官能基(当量比)=0.2~1.5である。 In the curing agent, the ratio of the functional group capable of a thermosetting reaction such as the epoxy group of the thermosetting resin to the functional group in the curing agent that reacts with the functional group is the functional group / thermosetting reaction of the curing agent. It is preferable to mix in a ratio such that the possible functional groups (equivalent ratio) = 0.2 to 2. By setting the functional group (equivalent ratio) capable of the functional group / thermosetting reaction of the curing agent within the above range, roughening of the film surface in the desmear step can be prevented. More preferably, the functional group of the curing agent / the functional group capable of the thermosetting reaction (equivalent ratio) = 0.2 to 1.5.
(硬化促進剤)
 硬化性樹脂層は、硬化促進剤を含有することができる。硬化促進剤は、熱硬化反応を促進させるものであり、密着性、耐薬品性、耐熱性等の特性をより一層向上させるために使用される。このような硬化促進剤の具体例としては、イミダゾールおよびその誘導体;アセトグアナミン、ベンゾグアナミン等のグアナミン類;ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルフォン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類;これらの有機酸塩および/またはエポキシアダクト;三フッ化ホウ素のアミン錯体;エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類;トリメチルアミン、トリエタノールアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、m-アミノフェノール等のアミン類;ポリビニルフェノール、ポリビニルフェノール臭素化物、フェノールノボラック、アルキルフェノールノボラック等のポリフェノール類;トリブチルフォスフィン、トリフェニルフォスフィン、トリス-2-シアノエチルフォスフィン等の有機フォスフィン類;トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスホニウムクロライド等のホスホニウム塩類;ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の4級アンモニウム塩類;前記多塩基酸無水物;ジフェニルヨードニウムテトラフルオロボロエート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェート等の光カチオン重合触媒;スチレン-無水マレイン酸樹脂;フェニルイソシアネートとジメチルアミンの等モル反応物や、トリレンジイソシアネート、イソホロンジイソシアネート等の有機ポリイソシアネートとジメチルアミンの等モル反応物、金属触媒等の従来公知の硬化促進剤が挙げられる。硬化促進剤の中でも、BHAST耐性が得られることから、ホスホニウム塩類が好ましい。硬化促進剤は、1種を単独または2種以上混合して用いることができる。
(Curing accelerator)
The curable resin layer can contain a curing accelerator. The curing accelerator accelerates the thermosetting reaction, and is used to further improve properties such as adhesion, chemical resistance, and heat resistance. Specific examples of such a curing accelerator include imidazole and its derivatives; guanamines such as acetoguanamine and benzoguanamine; diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulphon, dicyandiamide, urea, urea derivatives, etc. Polyamines such as melamine, polybasic hydrazide; these organic acid salts and / or epoxy adducts; amine complexes of boron trifluoride; ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4- Triazine derivatives such as diamino-6-xysilyl-S-triazine; trimethylamine, triethanolamine, N, N-dimethyloctylamine, N-benzyldimethylamine, pyridine, N-methylmorpholin, hexa (N-methyl) melamine, Amines such as 2,4,6-tris (dimethylaminophenol), tetramethylguanidine, m-aminophenol; polyphenols such as polyvinylphenol, polyvinylphenol bromide, phenol novolac, alkylphenol novolac; tributylphosphine, triphenyl Organic phosphines such as phosphines and tris-2-cyanoethyl phosphines; phosphonium salts such as tri-n-butyl (2,5-dihydroxyphenyl) phosphonium bromide, hexadecyltributylphosphonium chloride; benzyltrimethylammonium chloride, phenyltributylammonium Tertiary ammonium salts such as chloride; the polybasic acid anhydride; photocationic polymerization catalysts such as diphenyliodonium tetrafluoroboroate, triphenylsulfonium hexafluoroantimonate, 2,4,6-triphenylthiopyrylium hexafluorophosphate and the like. Styrene-maleic anhydride resin; equimolar reactants of phenylisocyanate and dimethylamine, equimolar reactants of organic polyisocyanate and dimethylamine such as tolylene diisocyanate and isophorone diisocyanate, and conventionally known curing accelerators such as metal catalysts. Can be mentioned. Among the curing accelerators, phosphonium salts are preferable because BHAST resistance can be obtained. As the curing accelerator, one type may be used alone or two or more types may be mixed.
(光反応開始剤)
 硬化性樹脂組成物は、光反応開始剤を含有することができる。光反応開始剤としては、光照射によりラジカル、塩基、酸等を発生して硬化性樹脂を硬化させることができればいずれでもよい。光反応開始剤としては、ベンゾフェノン系、アセトフェノン系、アミノアセトフェノン系、ベンゾインエーテル系、ベンジルケタール系、アシルフォスフィンオキサイド系、オキシムエーテル系、オキシムエステル系、チタノセン系等の公知慣用の化合物が挙げられる。光反応開始剤としては、オキシムエステル系、α-アミノアセトフェノン系アシルフォスフィンオキサイド系、およびチタノセン系からなる群から選択される1種または2種以上を含有することが好ましい。
(Photoreaction initiator)
The curable resin composition can contain a photoreaction initiator. The photoreaction initiator may be any as long as it can generate radicals, bases, acids and the like by light irradiation to cure the curable resin. Examples of the photoreaction initiator include known and commonly used compounds such as benzophenone, acetophenone, aminoacetophenone, benzoin ether, benzyl ketal, acylphosphine oxide, oxime ether, oxime ester, and titanosen. .. As the photoreaction initiator, it is preferable to contain one or more selected from the group consisting of an oxime ester type, an α-aminoacetophenone type acylphosphine oxide type, and a titanosen type.
 オキシムエステル系光反応開始剤としては、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、2-(アセチルオキシイミノメチル)チオキサンテン-9-オン等が挙げられる。オキシムエステル系光反応開始剤は、オキシムエステル基を複数有する化合物でもよい。 Examples of the oxime ester-based photoreaction initiator include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-). Methylbenzoyl) -9H-carbazole-3-yl]-, 1- (O-acetyloxime), 2- (acetyloxyiminomethyl) thioxanthene-9-one and the like can be mentioned. The oxime ester-based photoreaction initiator may be a compound having a plurality of oxime ester groups.
 α-アミノアセトフェノン系光反応開始剤としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等が挙げられる。 Examples of the α-aminoacetophenone-based photoreaction initiator include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 2-benzyl-2-dimethylamino-1- (4-morpholino). Phenyl) -butane-1-one, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, N, N-dimethyl Aminoacetophenone and the like can be mentioned.
 アシルフォスフィンオキサイド系光反応開始剤としては、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド等が挙げられる。 Acylphosphine oxide-based photoreactive initiators include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and bis (2,6-dimethoxybenzoyl). ) -2,4,4-trimethyl-Pentylphosphine oxide and the like.
 チタノセン系光反応開始剤としては、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムが挙げられる。 Examples of the titanosen-based photoreaction initiator include bis (η5-2,4-cyclopentadiene-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium. Be done.
 さらに、硬化性樹脂組成物は、上述した化合物以外の光反応開始剤や、光開始助剤および増感剤を含むことができ、例えば、ベンゾイン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、キサントン化合物、および、3級アミン化合物等を挙げることができる。 Further, the curable resin composition can contain a photoreaction initiator other than the above-mentioned compounds, a photoinitiator aid and a sensitizer, and for example, a benzoin compound, an anthraquinone compound, a thioxanthone compound, a ketal compound, and a xanthone compound. , And a tertiary amine compound and the like.
(無機充填剤)
 硬化性樹脂組成物は無機充填材を含んでもよい。無機充填材は、硬化物の密着性、機械的強度、線膨張係数等の特性を向上させるものであることが好ましい。無機充填材としては、例えば、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、無定形シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、リン酸ジルコニウム、雲母粉等の公知慣用の無機充填剤が使用できる。ここで、無機充填剤は、硫酸バリウムおよびシリカのうちいずれか少なくとも一種を含むことが好ましい。
(Inorganic filler)
The curable resin composition may contain an inorganic filler. The inorganic filler preferably has properties such as adhesion, mechanical strength, and coefficient of linear expansion of the cured product. Examples of the inorganic filler include barium sulfate, barium titanate, silicon oxide powder, fine powdered silicon oxide, amorphous silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, zirconium phosphate, and mica. Known and commonly used inorganic fillers such as powder can be used. Here, the inorganic filler preferably contains at least one of barium sulfate and silica.
 無機充填剤の平均粒径は、0.1~20μmであることが好ましい。なお、平均粒径は、レーザー回折式粒子径分布測定装置により求めることができる。レーザー回折法による測定装置としては、マイクロトラック・ベル株式会社(Nanotrac wave)などが挙げられる。ここで、平均粒径とは、平均一次粒径および平均二次粒径を含む概念である。 The average particle size of the inorganic filler is preferably 0.1 to 20 μm. The average particle size can be determined by a laser diffraction type particle size distribution measuring device. Examples of the measuring device by the laser diffraction method include Microtrac Bell Co., Ltd. (Nanotrac wave). Here, the average particle size is a concept including an average primary particle size and an average secondary particle size.
(有機溶剤)
 硬化性樹脂組成物は、組成物の調製や粘度調整のために用いられる有機溶剤を含んでもよい。有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル(DPM)、ジプロピレングリコールジエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤等を使用することができる。これらの有機溶剤は、単独で、または、2種類以上を組み合わせて用いることができる。
(Organic solvent)
The curable resin composition may contain an organic solvent used for preparing the composition and adjusting the viscosity. Examples of the organic solvent include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol and propylene glycol. Glycol ethers such as monomethyl ether, dipropylene glycol monomethyl ether (DPM), dipropylene glycol diethyl ether, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbi Esters such as tall acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, and propylene carbonate; aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, and solvent naphtha are used. can do. These organic solvents can be used alone or in combination of two or more.
(着色剤)
 硬化性組成物は、着色剤を含んでもよい。着色剤としては、特に限定されず、赤、青、緑、黄等の公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよい。但し、着色剤は、環境負荷低減や人体への影響の観点からハロゲンを含有しないことが好ましい。
(Colorant)
The curable composition may include a colorant. The colorant is not particularly limited, and known colorants such as red, blue, green, and yellow can be used, and any of pigments, dyes, and pigments may be used. However, the colorant preferably does not contain halogen from the viewpoint of reducing the environmental load and affecting the human body.
 赤色着色剤としてはモノアゾ系、ジスアゾ系、アゾレーキ系、ベンズイミダゾロン系、ペリレン系、ジケトピロロピロール系、縮合アゾ系、アントラキノン系、キナクリドン系等があり、具体的には以下のようなカラ-インデックス(C.I.;ザ ソサイエティ オブ ダイヤーズ アンド カラリスツ(The Society of Dyersand Colourists)発行)番号が付されているものが挙げられる。 Examples of red colorants include monoazo, disazo, azolake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, quinacridone, etc. -Index (CI; The Society of Dyers and Colorists (issued by The Society of Dyersand Colorists)) numbered ones can be mentioned.
 モノアゾ系赤色着色剤としては、Pigment Red 1,2,3,4,5,6,8,9,12,14,15,16,17,21,22,23,31,32,112,114,146,147,151,170,184,187,188,193,210,245,253,258,266,267,268,269等が挙げられる。また、ジスアゾ系赤色着色剤としては、Pigment Red 37,38,41等が挙げられる。また、モノアゾレーキ系赤色着色剤としては、Pigment Red 48:1,48:2,48:3,48:4,49:1,49:2,50:1,52:1,52:2,53:1,53:2,57:1,58:4,63:1,63:2,64:1,68等が挙げられる。また、ベンズイミダゾロン系赤色着色剤としては、Pigment Red 171,175,176、185、208等が挙げられる。また、ぺリレン系赤色着色剤としては、Solvent Red 135,179,Pigment Red 123,149,166,178,179,190,194,224等が挙げられる。また、ジケトピロロピロール系赤色着色剤としては、Pigment Red 254,255,264,270,272等が挙げられる。また、縮合アゾ系赤色着色剤としては、Pigment Red 220,144,166,214,220,221,242等が挙げられる。また、アントラキノン系赤色着色剤としては、Pigment Red 168,177,216、Solvent Red 149,150,52,207等が挙げられる。また、キナクリドン系赤色着色剤としては、Pigment Red 122,202,206,207,209等が挙げられる。 As a monoazo red colorant, Pigment Red 1,2,3,4,5,6,8,9,12,14,15,16,17,21,22,23,31,32,112,114, 146,147,151,170,184,187,188,193,210,245,253,258,266,267,268,269 and the like can be mentioned. Examples of the disazo-based red colorant include Pigment Red 37, 38, 41 and the like. Further, as a monoazolake-based red colorant, Pigment Red 48: 1,48: 2,48: 3,48: 4,49: 1,49: 2,50: 1,52: 1,52: 2,53: Examples thereof include 1,53: 2,57: 1,58: 4,63: 1,63: 2,64: 1,68. Examples of the benzimidazolone-based red colorant include Pigment Red 171, 175, 176, 185, 208 and the like. Examples of the perylene-based red colorant include Solvent Red 135,179, Pigment Red 123,149,166,178,179,190,194,224 and the like. Examples of the diketopyrrolopyrrole-based red colorant include Pigment Red 254, 255, 264, 270, 272 and the like. Examples of the condensed azo red colorant include Pigment Red 220, 144, 166, 214, 220, 211, 242 and the like. Examples of the anthraquinone-based red colorant include Pigment Red 168, 177, 216 and Solvent Red 149, 150, 52, 207. Examples of the quinacridone-based red colorant include Pigment Red 122, 202, 206, 207, 209 and the like.
 青色着色剤としてはフタロシアニン系、アントラキノン系があり、顔料系はピグメント(Pigment)に分類されている化合物が挙げられ、例えば、Pigment Blue 15,15:1,15:2,15:3,15:4,15:6,16,60、染料系としては、Solvent Blue 35,63,68,70,83,87,94,97,122,136,67,70等を使用することができる。上記以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。 Examples of the blue colorant include phthalocyanine-based and anthraquinone-based compounds, and pigment-based compounds include compounds classified as Pigment. For example, Pigment Blue 15,15: 1,15: 2,15: 3,15: 4,15: 6,16,60, as the dye system, Compound Blue 35,63,68,70,83,87,94,97,122,136,67,70 and the like can be used. In addition to the above, metal-substituted or unsubstituted phthalocyanine compounds can also be used.
 黄色着色剤としてはモノアゾ系、ジスアゾ系、縮合アゾ系、ベンズイミダゾロン系、イソインドリノン系、アントラキノン系等が挙げられ、例えば、アントラキノン系黄色着色剤としては、Solvent Yellow 163,Pigment Yellow 24,108,193,147,199,202等が挙げられる。イソインドリノン系黄色着色剤としては、Pigment Yellow 110,109,139,179,185等が挙げられる。縮合アゾ系黄色着色剤としては、Pigment Yellow 93,94,95,128,155,166,180等が挙げられる。ベンズイミダゾロン系黄色着色剤としては、Pigment Yellow 120,151,154,156,175,181等が挙げられる。また、モノアゾ系黄色着色剤としては、Pigment Yellow 1,2,3,4,5,6,9,10,12,61,62,62:1,65,73,74,75,97,100,104,105,111,116,167,168,169,182,183等が挙げられる。また、ジスアゾ系黄色着色剤としては、Pigment Yellow 12,13,14,16,17,55,63,81,83,87,126,127,152,170,172,174,176,188,198等が挙げられる。 Examples of the yellow colorant include monoazo, disazo, condensed azo, benzimidazolone, isoindolinone, anthraquinone, etc. For example, examples of the anthraquinone yellow colorant include Solvent Yellow 163, Pigment Yellow 24, 108, 193, 147, 199, 202 and the like can be mentioned. Examples of the isoindolinone-based yellow colorant include Pigment Yellow 110, 109, 139, 179, 185 and the like. Examples of the condensed azo-based yellow colorant include Pigment Yellow 93, 94, 95, 128, 155, 166, 180 and the like. Examples of the benzimidazolone-based yellow colorant include Pigment Yellow 120, 151, 154, 156, 175, 181 and the like. In addition, as a monoazo yellow colorant, Pigment Yellow 1,2,3,4,5,6,9,10,12,61,62,62:1,65,73,74,75,97,100, 104, 105, 111, 116, 167, 168, 169, 182, 183 and the like can be mentioned. Examples of the disazo-based yellow colorant include Pigment Yellow 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152, 170, 172, 174, 176, 188, 198 and the like. Can be mentioned.
 その他、紫、オレンジ、茶色、黒、白等の着色剤を加えてもよい。具体的には、Pigment Black 1,6,7,8,9,10,11,12,13,18,20,25,26,28,29,30,31,32、Pigment Violet 19、23、29、32、36、38、42、Solvent Violet13,36、C.I.Pigment Orange 1,5,13,14,16,17,24,34,36,38,40,43,46,49,51,61,63,64,71,73、PigmentBrown 23,25,カーボンブラック、酸化チタン等が挙げられる。 In addition, colorants such as purple, orange, brown, black, and white may be added. Specifically, Pigment Black 1,6,7,8,9,10,11,12,13,18,20,25,26,28,29,30,31,32, Pigment Violet 19, 23,29 , 32, 36, 38, 42, Solvent Violet 13, 36, C.I. I. Pigment Orange 1,5,13,14,16,17,24,34,36,38,40,43,46,49,51,61,63,64,71,73, PigmentBrown 23,25, Carbon Black, Examples include titanium oxide.
[用途]
 本発明による構造体は、プリント配線板の硬化膜の形成用であることが好ましく、永久保護膜の形成用であることがより好ましく、層間絶縁層、カバーレイ、ソルダーレジストまたは穴埋め充填(材)の形成用であることが特に好ましい。また、本発明の構造体は、薄膜でも膜強度に優れた硬化物を形成できることから、薄膜化が要求されるプリント配線板、例えばパッケージ基板(半導体パッケージに用いられるプリント配線板)におけるパターン層の形成にも好適に用いることができる。さらに、本発明の構造体は、フレキシブルプリント配線板にも好適に使用できる。
[Use]
The structure according to the present invention is preferably for forming a cured film of a printed wiring board, more preferably for forming a permanent protective film, and is preferably an interlayer insulating layer, a coverlay, a solder resist or a fill-in-the-blank (material). It is particularly preferable that it is for forming. Further, since the structure of the present invention can form a cured product having excellent film strength even with a thin film, it is a pattern layer in a printed wiring board, for example, a package substrate (printed wiring board used for a semiconductor package), which is required to be thinned. It can also be suitably used for formation. Further, the structure of the present invention can be suitably used for a flexible printed wiring board.
<第二の形態の具体的な説明>
<構造体>
 本発明による構造体は、第一のフィルムおよび樹脂層を備えるものであり、第一のフィルムと樹脂層が後述する特定の条件を満たすものである。本発明においては、第一のフィルムおよび樹脂層が後述する特定の条件を満たすことで、第一のフィルム上に厚みのばらつきの小さい樹脂層を形成した構造体を得ることができる。
<Specific explanation of the second form>
<Structure>
The structure according to the present invention includes a first film and a resin layer, and the first film and the resin layer satisfy specific conditions described later. In the present invention, when the first film and the resin layer satisfy the specific conditions described later, it is possible to obtain a structure in which the resin layer having a small variation in thickness is formed on the first film.
 本発明による構造体について、図面を参照しながら説明する。図2は、本発明による構造体の一実施形態を示した概略断面図である。図2に示すように、構造体1は、第一のフィルム10と、第一のフィルム10の一方の面に設けられた樹脂層20とを備えている。以下、本発明による構造体を構成する各構成要素について説明する。 The structure according to the present invention will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing an embodiment of the structure according to the present invention. As shown in FIG. 2, the structure 1 includes a first film 10 and a resin layer 20 provided on one surface of the first film 10. Hereinafter, each component constituting the structure according to the present invention will be described.
[第一のフィルム]
 第一のフィルムとは、構造体の樹脂層を支持する役割を有するものであり、該樹脂層を形成する際に、樹脂組成物が塗布されるフィルムである。第一のフィルムは、樹脂層を硬化した後に、構造体から剥離できるものであればよい。第一のフィルムとしては、例えば、ポリエチレンテレフタレートおよびポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルムおよびポリプロピレンフィルム等のポリオレフィンフィルム、ポリテトラフルオロエチレンフィルム等のフッ素樹脂フィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリスチレンフィルム等の熱可塑性樹脂からなるフィルムを用いることができる。これらの中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムおよびポリオレフィンフィルムを好適に使用することができる。第一のフィルムの樹脂層を設ける面には、離型処理やマット化処理が施されていてもよいし、スパッタもしくは極薄銅箔、および粘着層が形成されていてもよい。
[First film]
The first film has a role of supporting the resin layer of the structure, and is a film to which the resin composition is applied when the resin layer is formed. The first film may be one that can be peeled off from the structure after the resin layer is cured. Examples of the first film include polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyolefin films such as polyethylene film and polypropylene film, fluororesin films such as polytetrafluoroethylene film, polyimide films, polyamideimide films, and polystyrene films. A film made of a thermoplastic resin such as the above can be used. Among these, a polyester film and a polyolefin film can be preferably used from the viewpoints of heat resistance, mechanical strength, handleability and the like. The surface of the first film on which the resin layer is provided may be subjected to a mold release treatment or a matting treatment, or a sputtered or ultrathin copper foil and an adhesive layer may be formed.
 第一のフィルムの厚さは、30μm以上であり、好ましくは35μm以上125μm以下である。第一のフィルムの厚さが上記数値範囲内であれば、第一のフィルムにテンションをかけた時にタテしわが生じるのを抑制することができる。 The thickness of the first film is 30 μm or more, preferably 35 μm or more and 125 μm or less. When the thickness of the first film is within the above numerical range, it is possible to suppress the occurrence of vertical wrinkles when tension is applied to the first film.
 第一のフィルムのトラウザー引裂力は、0.1N以上であり、好ましくは0.15N以上2N以下であり、より好ましくは0.2N以上1.5N以下である。第一のフィルムのトラウザー引裂力が上記数値範囲内であると、シワが発生しにくく、第一のフィルム上に形成する樹脂層の厚みのばらつきを抑制することができる。
 なお、本発明において、第一のフィルムのトラウザー引裂力は、JIS K 7128-1:1998に準拠して、引張試験機(株式会社島津製作所製、EZ-SX)を用いて、下記の測定条件で測定した値である。
(測定条件)
・試験室の温湿度:23±2℃、50±15%
・試験片寸法:150mm×50mm
・試験片中央のスリット長さ:75±1mm
・試験速度:200mm/min
・試験片のつかみ具間距離:75mm
 第一のフィルムのトラウザー引裂力は、第一のフィルムの素材の種類、フィルム製膜時の延伸倍率、フィルムの厚さ、フィルムの破断強度、フィルムの熱収縮率等を調節することにより、所望の範囲内に調節することができる。
The trouser tearing force of the first film is 0.1 N or more, preferably 0.15 N or more and 2 N or less, and more preferably 0.2 N or more and 1.5 N or less. When the trouser tearing force of the first film is within the above numerical range, wrinkles are less likely to occur, and variations in the thickness of the resin layer formed on the first film can be suppressed.
In the present invention, the trouser tearing force of the first film is measured under the following measurement conditions using a tensile tester (manufactured by Shimadzu Corporation, EZ-SX) in accordance with JIS K 7128-1: 1998. It is a value measured in.
(Measurement condition)
・ Temperature and humidity of the test room: 23 ± 2 ° C, 50 ± 15%
-Test piece dimensions: 150 mm x 50 mm
・ Slit length at the center of the test piece: 75 ± 1 mm
-Test speed: 200 mm / min
・ Distance between gripping tools of test piece: 75 mm
The trouser tearing force of the first film is desired by adjusting the type of material of the first film, the draw ratio during film formation, the thickness of the film, the breaking strength of the film, the heat shrinkage rate of the film, and the like. It can be adjusted within the range of.
 本発明の構造体における第一のフィルムは、前記第一のフィルムの厚みのばらつきが、±10%以下であることが、樹脂層がばらつきなく塗布されることより、膜厚がコントロールされやすい点で好ましい。より好ましくは、±5%以下である。
 なお、第一のフィルムの厚みのばらつきは以下のようにして測定するものとする。すなわち、第一のフィルムのフィルム端部からMD方向に1mの位置から、MD方向に40mm切り出して、測定サンプルとした。測定サンプルについて、自動測定式膜厚計(山文電気社製、TOF-J)を用いて、フィルム端部より15mm離れた位置からTD方向に20mmピッチで25点測定した。25点の測定結果から、最大値、最小値、および平均値を算出し、最大値と最小値の差から下記式により厚みのばらつきを算出する。
・厚みのばらつき(%)=(最大値-最小値)/平均値×100
The first film in the structure of the present invention has a thickness variation of ± 10% or less of the first film, which means that the film thickness can be easily controlled because the resin layer is applied without variation. Is preferable. More preferably, it is ± 5% or less.
The variation in the thickness of the first film shall be measured as follows. That is, 40 mm was cut out in the MD direction from a position 1 m in the MD direction from the end of the film of the first film to prepare a measurement sample. The measurement sample was measured at 25 points in the TD direction at a pitch of 20 mm from a position 15 mm away from the edge of the film using an automatic measurement type film thickness meter (TOFJ manufactured by Yamabun Denki Co., Ltd.). The maximum value, the minimum value, and the average value are calculated from the measurement results of 25 points, and the variation in thickness is calculated from the difference between the maximum value and the minimum value by the following formula.
・ Thickness variation (%) = (maximum value-minimum value) / average value x 100
[樹脂層]
 樹脂層は、構造体の第一のフィルム上に形成される硬化性樹脂層である。硬化性樹脂層は、液状の硬化性樹脂組成物を乾燥して得られる乾燥塗膜であり、加熱により硬化する熱硬化性樹脂層でもよいし、光照射により硬化する光硬化性樹脂層でもよいし、加熱により硬化し、かつ、光照射により硬化する熱硬化性光硬化性樹脂層でもよい。
[Resin layer]
The resin layer is a curable resin layer formed on the first film of the structure. The curable resin layer is a dry coating film obtained by drying a liquid curable resin composition, and may be a thermosetting resin layer that is cured by heating or a photocurable resin layer that is cured by light irradiation. It may also be a thermosetting resin layer that is cured by heating and cured by light irradiation.
 樹脂層の厚みは、50μm以上であり、好ましくは50μm以上200μm以下である。樹脂層の厚みが上記数値範囲内であれば、幅広いサイズの部品を封止することができる。
 なお、本発明において、樹脂層の厚みは、以下の方法により測定したものである。
 構造体の塗膜(樹脂層)端部からMD方向に10mの位置から、MD方向に40mm切り出して、測定サンプルとした。測定サンプルについて自動測定式膜厚計(山文電気社製、TOF-J)を用いて、塗膜(樹脂層)端部より15mm離れた位置からTD方向に20mmピッチで25点測定した。25点の測定結果から算出した平均値を樹脂層の厚みとした。
The thickness of the resin layer is 50 μm or more, preferably 50 μm or more and 200 μm or less. When the thickness of the resin layer is within the above numerical range, parts of a wide range of sizes can be sealed.
In the present invention, the thickness of the resin layer is measured by the following method.
A 40 mm cut in the MD direction was cut out from a position 10 m in the MD direction from the end of the coating film (resin layer) of the structure to prepare a measurement sample. About the measurement sample, 25 points were measured at a pitch of 20 mm in the TD direction from a position 15 mm away from the end of the coating film (resin layer) using an automatic measurement type film thickness meter (TOFJ manufactured by Yamabun Denki Co., Ltd.). The average value calculated from the measurement results of 25 points was taken as the thickness of the resin layer.
(硬化性樹脂組成物)
 硬化性樹脂組成物は、硬化性樹脂および硬化剤を含むことが好ましく、他の成分をさらに含んでもよい。硬化性樹脂組成物は、硬化性樹脂として熱硬化性樹脂および光硬化性樹脂の少なくともいずれか1種を含むことが好ましい。
(Curable resin composition)
The curable resin composition preferably contains a curable resin and a curing agent, and may further contain other components. The curable resin composition preferably contains at least one of a thermosetting resin and a photocurable resin as the curable resin.
(熱硬化性樹脂)
 熱硬化性樹脂については、第一の形態の具体的な説明の通りである。なお、エポキシ化合物の中でも、硬化塗膜の破断点強度、熱膨張係数、および貯蔵弾性率の各最適化の観点から、ビスフェノールA型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、およびフェノールノボラック型エポキシ樹脂を用いることが好ましく、これらの2種以上を併用することがより好ましく、これらの3種を併用することがさらに好ましい。
(Thermosetting resin)
The thermosetting resin is as described in the specific description of the first embodiment. Among the epoxy compounds, bisphenol A type epoxy resin, dicyclopentadiene type epoxy resin, and phenol novolac type epoxy resin are used from the viewpoint of optimizing the breaking point strength, thermal expansion coefficient, and storage elasticity of the cured coating film. , It is more preferable to use two or more of these in combination, and it is even more preferable to use these three in combination.
(光硬化性樹脂(ラジカル重合))
 光硬化性樹脂(ラジカル重合)については、第一の形態の具体的な説明の通りである。
(Photocurable resin (radical polymerization))
The photocurable resin (radical polymerization) is as described in the specific description of the first embodiment.
(光硬化性樹脂(カチオン重合))
 光硬化性樹脂(カチオン重合)については、第一の形態の具体的な説明の通りである。
(Photocurable resin (cationic polymerization))
The photocurable resin (cationic polymerization) is as described in the specific description of the first embodiment.
(アルカリ可溶性樹脂)
 硬化性樹脂組成物は、アルカリ可溶性樹脂を含有することができる。アルカリ可溶性樹脂については、第一の形態の具体的な説明の通りである。
(Alkali-soluble resin)
The curable resin composition can contain an alkali-soluble resin. The alkali-soluble resin is as described in the specific description of the first embodiment.
(熱可塑性樹脂)
 硬化性樹脂組成物は、得られる硬化被膜の機械的強度を向上させるために、さらに熱可塑性樹脂を含んでもよい。熱可塑性樹脂については、第一の形態の具体的な説明の通りである。
(Thermoplastic resin)
The curable resin composition may further contain a thermoplastic resin in order to improve the mechanical strength of the obtained cured film. The thermoplastic resin is as described in the specific description of the first embodiment.
(硬化剤)
 硬化性樹脂組成物は硬化剤を含んでもよい。硬化剤については、第一の形態の具体的な説明の通りである。
(Hardener)
The curable resin composition may contain a curing agent. The curing agent is as described in the specific form of the first embodiment.
(硬化促進剤)
 硬化性樹脂層は、硬化促進剤を含有することができる。硬化促進剤については、第一の形態の具体的な説明の通りである。
(Curing accelerator)
The curable resin layer can contain a curing accelerator. The curing accelerator is as described in the specific form of the first embodiment.
(光反応開始剤)
 硬化性樹脂組成物は、光反応開始剤を含有することができる。光反応開始剤については、第一の形態の具体的な説明の通りである。
(Photoreaction initiator)
The curable resin composition can contain a photoreaction initiator. The photoreaction initiator is as described in detail in the first embodiment.
(無機充填剤)
 硬化性樹脂組成物は無機充填材を含んでもよい。無機充填材については、第一の形態の具体的な説明の通りである。
(Inorganic filler)
The curable resin composition may contain an inorganic filler. The inorganic filler is as described in the specific form of the first embodiment.
(有機溶剤)
 硬化性樹脂組成物は、組成物の調製や粘度調整のために用いられる有機溶剤を含んでもよい。有機溶剤については、第一の形態の具体的な説明の通りである。
(Organic solvent)
The curable resin composition may contain an organic solvent used for preparing the composition and adjusting the viscosity. The organic solvent is as described in the specific description of the first embodiment.
(着色剤)
 硬化性組成物は、着色剤を含んでもよい。着色剤については、第一の形態の具体的な説明の通りである。
(Colorant)
The curable composition may include a colorant. The colorant is as described in the specific form of the first embodiment.
(第二のフィルム)
 本発明の構造体は第二のフィルムを含んでいても良い。第二のフィルムとは、構造体の樹脂層の表面に塵等が付着するのを防止するとともに取扱性を向上させる目的で、樹脂層の第一のフィルムとは反対の面に設けられるフィルムである。第二のフィルムは、使用の際基板に貼りつける前に樹脂層から剥離できるものであればよい。第二のフィルムとしては、例えば、前記第一のフィルムで例示した熱可塑性樹脂からなるフィルムを用いることができる。これらの中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムおよびポリオレフィンフィルムが好ましい。第二のフィルムの樹脂層を設ける面には、離型処理が施されていてもよい。
(Second film)
The structure of the present invention may include a second film. The second film is a film provided on the surface opposite to the first film of the resin layer for the purpose of preventing dust and the like from adhering to the surface of the resin layer of the structure and improving handleability. be. The second film may be one that can be peeled off from the resin layer before being attached to the substrate during use. As the second film, for example, a film made of the thermoplastic resin exemplified in the first film can be used. Among these, polyester film and polyolefin film are preferable from the viewpoint of heat resistance, mechanical strength, handleability and the like. The surface of the second film on which the resin layer is provided may be subjected to a mold release treatment.
 第二のフィルムの厚さは、特に限定されず、用途に応じて適宜選択することができる。第二のフィルムの厚さは、機械的強度や取扱性等の観点から、好ましくは10μm以上100μm以下であり、より好ましくは15μm以上50μm以下である。 The thickness of the second film is not particularly limited and can be appropriately selected depending on the intended use. The thickness of the second film is preferably 10 μm or more and 100 μm or less, and more preferably 15 μm or more and 50 μm or less, from the viewpoint of mechanical strength, handleability, and the like.
[用途]
 本発明による構造体は、SAWフィルター用の封止や保護用途として好ましく用いることができる。また上記用途以外においては、プリント配線板の硬化膜の形成用であることが好ましく、永久保護膜の形成用であることがより好ましく、層間絶縁層、カバーレイ、ソルダーレジスト、または穴埋め充填(材)の形成用であることが特に好ましい。また、本発明の構造体は、薄膜でも膜強度に優れた硬化物を形成できることから、薄膜化が要求されるプリント配線板、例えばパッケージ基板(半導体パッケージに用いられるプリント配線板)におけるパターン層の形成にも好適に用いることができる。さらに、本発明の構造体は、フレキシブルプリント配線板にも好適に使用できる。
[Use]
The structure according to the present invention can be preferably used as a sealing or protective application for a SAW filter. In addition to the above applications, it is preferably for forming a cured film of a printed wiring board, more preferably for forming a permanent protective film, an interlayer insulating layer, a coverlay, a solder resist, or a fill-in-the-blank filling (material). ) Is particularly preferable. Further, since the structure of the present invention can form a cured product having excellent film strength even with a thin film, it is a pattern layer in a printed wiring board, for example, a package substrate (printed wiring board used for a semiconductor package), which is required to be thinned. It can also be suitably used for formation. Further, the structure of the present invention can be suitably used for a flexible printed wiring board.
[電気電子部品]
 本発明による電気電子部品は、上記のプリント配線板を備えるものである。本発明による電気電子部品は、従来公知の様々な電気機器に用いることができる。なかでも、SAWフィルターが好ましい。
[Electrical and electronic parts]
The electrical and electronic component according to the present invention includes the above-mentioned printed wiring board. The electrical and electronic components according to the present invention can be used in various conventionally known electrical devices. Of these, a SAW filter is preferable.
 上記基材としては、例えば、プリント配線基板、LTCC(Low Temperature Co-fired Ceramics)基板(以下、低温同時焼成セラミック基板ともいう)、セラミック基板、シリコン基板、金属基板などが挙げられる。電気電子部品としては、センサー、MEMS、SAWチップなどが挙げられる。なかでも、圧力センサー、振動センサー、SAWチップを好適に使用でき、SAWチップが特に好ましい Examples of the substrate include a printed wiring board, an LTCC (Low Temperature Co-fired Ceramics) substrate (hereinafter, also referred to as a low-temperature co-fired ceramic substrate), a ceramic substrate, a silicon substrate, and a metal substrate. Examples of electrical and electronic components include sensors, MEMS, SAW chips and the like. Among them, a pressure sensor, a vibration sensor, and a SAW chip can be preferably used, and the SAW chip is particularly preferable.
 熱硬化性樹脂組成物をドライフィルム化した場合、基材上への貼合は、真空ラミネーター等を用いて、加圧および加熱下で行うことが好ましい。このような真空ラミネーターを使用することにより、部品実装された基板を用いた場合に、凹凸があっても、基板に密着するため、気泡の混入がなく、また、電気電子部品の封止性が向上する。加圧条件は、0.1~2.0MPa程度であることが好ましく、また、加熱条件は、40~120℃であることが好ましい。 When the thermosetting resin composition is made into a dry film, it is preferable that the thermosetting resin composition is bonded onto the base material under pressure and heating using a vacuum laminator or the like. By using such a vacuum laminator, when a board on which components are mounted is used, even if there are irregularities, it adheres to the substrate, so that there is no air bubbles mixed in and the sealing performance of electrical and electronic components is improved. improves. The pressurizing condition is preferably about 0.1 to 2.0 MPa, and the heating condition is preferably 40 to 120 ° C.
 熱硬化性樹脂組成物を塗布した後に行う硬化は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。この中でも、硬化性の観点から、熱風循環乾燥炉を用いることが好ましい。例えば、80~120℃、好ましくは90~110℃で、10~60分、好ましくは20~40分、1段階目の加熱を行った後、さらに180℃~220℃、好ましくは190~210℃で、30~120分、好ましくは50~70分、2段階目の加熱硬化を行い、硬化物を形成することができる。2段階硬化をすることにより、硬化時の気泡の発生を抑制することができる点で好ましい。具体的には1段階目において残有溶剤分を揮発させることにより、本硬化時の気泡の発生を抑制させることができる。次に2段階目においてさらに高温で硬化させることで、硬化を完了させることができる。 Curing performed after applying the thermosetting resin composition is performed by directing the hot air in the dryer using a hot air circulation type drying oven, IR furnace, hot plate, convection oven, etc. (using a heat source equipped with an air heating method using steam). It can be carried out by using a method of flowing contact and a method of spraying on a support from a nozzle). Among these, from the viewpoint of curability, it is preferable to use a hot air circulation drying furnace. For example, after the first step of heating at 80 to 120 ° C., preferably 90 to 110 ° C. for 10 to 60 minutes, preferably 20 to 40 minutes, further 180 ° C. to 220 ° C., preferably 190 to 210 ° C. Then, the cured product can be formed by performing the second stage heat curing for 30 to 120 minutes, preferably 50 to 70 minutes. It is preferable to perform two-step curing in that the generation of bubbles during curing can be suppressed. Specifically, by volatilizing the residual solvent component in the first step, it is possible to suppress the generation of bubbles during the main curing. Next, the curing can be completed by curing at a higher temperature in the second step.
 以下、本発明を、実施例を用いてより詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. In the following, "part" and "%" are all based on mass unless otherwise specified.
<第一の形態の実施例>
<硬化性樹脂組成物の調製例A>
(配合例A1)
 下記表1の配合例A1に示す溶剤を容器に入れ、溶剤が揮発しないように50℃に加温し、それぞれのエポキシ樹脂を加えて、十分に撹拌し、溶解させた。その後、添加剤およびフィラーを加えて、3本ロールミルにて混練し、さらに硬化剤、硬化促進剤、およびその他の樹脂を加えて、撹拌機により十分に撹拌して、硬化性樹脂組成物を得た。
<Example of the first embodiment>
<Preparation Example A of Curable Resin Composition>
(Formulation Example A1)
The solvent shown in Formulation Example A1 in Table 1 below was placed in a container, heated to 50 ° C. so that the solvent did not volatilize, each epoxy resin was added, and the mixture was sufficiently stirred and dissolved. Then, additives and fillers are added and kneaded with a three-roll mill, a curing agent, a curing accelerator, and other resins are further added, and the mixture is sufficiently stirred with a stirrer to obtain a curable resin composition. rice field.
(配合例A2)
 下記表1の配合例A2に示す処方にて各成分を配合し、3本ロールミルで分散して、硬化性樹脂組成物を得た。
(Formulation Example A2)
Each component was blended according to the formulation shown in Formulation Example A2 in Table 1 below and dispersed with a three-roll mill to obtain a curable resin composition.
(配合例A3)
 下記表1中に示す配合例A3に示す処方に変更した以外は、配合例1と同様の手順で硬化性樹脂組成物を得た。
(Formulation Example A3)
A curable resin composition was obtained in the same procedure as in Formulation Example 1 except that the formulation was changed to the formulation shown in Formulation Example A3 shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、各成分の配合量は質量部基準である。
*1:三菱ケミカル株式会社製、jER828
*2:DIC株式会社製、HP-7200L
*3:DIC株式会社製、EPICLON N-740
*4:三菱ケミカル株式会社製、ST-6100
*5:DIC株式会社製、HP-4032
*6:明和化成株式会社製、HF-4M
*7:ナガセケムテックス株式会社製、テイサンレジン SG-P3
*8:三菱ケミカル株式会社製、YX6954BH30
*9:四国化成工業株式会社製、2E4MZ
*10:信越化学工業株式会社製、KBM-403
*11:デンカ株式会社製、FB-7SDX
*12:アドマテックス株式会社製、SO-C2
*13:カーボンブラック
*14:C.I.Pigment Yellow 147
*15:フタロシアニンブルー、DIC株式会社製、ファーストゲンブルー 5380
*16:ジエチレングリコールモノエチルエーテルアセテート
*17:シクロヘキサノン
In Table 1, the blending amount of each component is based on parts by mass.
* 1: Mitsubishi Chemical Corporation, jER828
* 2: HP-7200L manufactured by DIC Corporation
* 3: EPICLON N-740 manufactured by DIC Corporation
* 4: ST-6100 manufactured by Mitsubishi Chemical Corporation
* 5: HP-4032 manufactured by DIC Corporation
* 6: HF-4M manufactured by Meiwa Kasei Co., Ltd.
* 7: Taisan Resin SG-P3 manufactured by Nagase Chemtex Co., Ltd.
* 8: YX6954BH30 manufactured by Mitsubishi Chemical Corporation
* 9: 2E4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd.
* 10: KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.
* 11: FB-7SDX manufactured by Denka Co., Ltd.
* 12: SO-C2 manufactured by Admatex Co., Ltd.
* 13: Carbon black * 14: C.I. I. Pigment Yellow 147
* 15: Phthalocyanine blue, manufactured by DIC Corporation, Firstgen Blue 5380
* 16: Diethylene glycol monoethyl ether acetate * 17: Cyclohexanone
[実施例A1~7、比較例A1~4]
<構造体の製造>
 構造体の製造のために、以下のフィルムを準備した。
・フィルムA:外観:光沢無し、材質:PET、厚み38μm、TD方向の引っ張り強さ215MPa、MD方向の引っ張り強さ243MPa
・フィルムB:外観:光沢有り、材質:PET、厚み50μm、TD方向の引っ張り強さ235MPa、MD方向の引っ張り強さ185MPa
・フィルムC:外観:光沢無し、材質:PP、厚み16μm、TD方向の引っ張り強さ250MPa、MD方向の引っ張り強さ120MPa
・フィルムD:外観:光沢有り、材質:PET、厚み38μm、TD方向の引っ張り強さ260MPa、MD方向の引っ張り強さ270MPa
・フィルムE:外観:光沢有り、材質:PET、厚み38μm、TD方向の引っ張り強さ225MPa、MD方向の引っ張り強さ205MPa
[Examples A1 to 7, Comparative Examples A1 to 4]
<Manufacturing of structure>
The following films were prepared for the production of the structure.
-Film A: Appearance: No gloss, Material: PET, Thickness 38 μm, Tensile strength in TD direction 215 MPa, Tensile strength in MD direction 243 MPa
-Film B: Appearance: Glossy, Material: PET, Thickness 50 μm, Tensile strength in TD direction 235 MPa, Tensile strength in MD direction 185 MPa
-Film C: Appearance: No gloss, Material: PP, Thickness 16 μm, Tensile strength in TD direction 250 MPa, Tensile strength 120 MPa in MD direction
-Film D: Appearance: Glossy, Material: PET, Thickness 38 μm, Tension strength in TD direction 260 MPa, Tension strength in MD direction 270 MPa
-Film E: Appearance: Glossy, Material: PET, Thickness 38 μm, Tension strength in TD direction 225 MPa, Tension strength in MD direction 205 MPa
 続いて、各実施例および比較例において、表2に記載の第一のフィルム、上記の硬化性樹脂組成物を用いた樹脂層(熱硬化性樹脂層)、および第二のフィルムの組み合わせで3層構造の構造体を得た。具体的には、上記で得られた硬化性樹脂組成物をバーコーターを用いて、樹脂層の膜厚が乾燥後100μmになるように第一のフィルム上に塗布した。次に、熱風循環式乾燥炉にて残留溶剤量が1.0~4.0%となるように85℃、5~15分間乾燥を行い、第一のフィルム上に樹脂層を形成した。続いて、第二のフィルムを乾燥塗膜面上にロールラミネーターを用いて設定温度90℃、圧力0.15MPaの条件で張り合わせ、3層構造の構造体を得た。 Subsequently, in each Example and Comparative Example, the combination of the first film shown in Table 2, the resin layer using the above curable resin composition (thermosetting resin layer), and the second film 3 A layered structure was obtained. Specifically, the curable resin composition obtained above was applied onto the first film using a bar coater so that the film thickness of the resin layer became 100 μm after drying. Next, a resin layer was formed on the first film by drying in a hot air circulation type drying oven at 85 ° C. for 5 to 15 minutes so that the amount of residual solvent was 1.0 to 4.0%. Subsequently, the second film was laminated on the surface of the dry coating film using a roll laminator under the conditions of a set temperature of 90 ° C. and a pressure of 0.15 MPa to obtain a structure having a three-layer structure.
<トラウザー引裂力の測定>
 上記で準備したフィルムについて、JIS K 7128-1:1998「プラスチック-フィルム及びシートの引裂強さ試験方法-第一部:トラウザー引裂法」に準拠して、下記の条件で、引張試験機(株式会社島津製作所製、EZ-SX)を用いて、トラウザー引裂力を測定した。但し、測定方向については、方向による異方性の有無によらず、縦方向(MD方向)のみ測定した。引裂き開始20mmと引裂き終了前5mmを除外し、残り50mmの引裂強さの近似の平均値を求めた。測定結果を表2に示した。
(測定条件)
・試験室の温湿度:23±2℃、50±15%
・試験片寸法:150mm×50mm
・試験片中央のスリット長さ:75±1mm
・サンプル数:5
・試験速度:200mm/min
・試験片のつかみ具間距離:75mm
<Measurement of trouser tearing force>
The film prepared above is subjected to a tensile tester (stock) under the following conditions in accordance with JIS K 7128-1: 1998 "Plastic-Film and Sheet Tear Strength Test Method-Part 1: Trouser Tear Method". The trouser tearing force was measured using EZ-SX, manufactured by Shimadzu Corporation. However, regarding the measurement direction, only the vertical direction (MD direction) was measured regardless of the presence or absence of anisotropy depending on the direction. 20 mm at the start of tearing and 5 mm before the end of tearing were excluded, and the approximate average value of the tear strength of the remaining 50 mm was calculated. The measurement results are shown in Table 2.
(Measurement condition)
・ Temperature and humidity of the test room: 23 ± 2 ° C, 50 ± 15%
-Test piece dimensions: 150 mm x 50 mm
・ Slit length at the center of the test piece: 75 ± 1 mm
・ Number of samples: 5
-Test speed: 200 mm / min
・ Distance between gripping tools of test piece: 75 mm
<ヘーズの測定>  
 上記で準備したフィルムについて、ASTMD1003に準拠して、ヘーズメイター(日本電色工業株式会社製、NDH7000II)を用いて、ヘーズを測定した。測定結果を表2に示した。
<Measurement of haze>
The haze of the film prepared above was measured using a haze mate (NDH7000II, manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with ASTMD1003. The measurement results are shown in Table 2.
<L*a*b*の測定>   
 上記で得られた構造体の第一のフィルムおよび第二のフィルムについて、下記の条件で、分光測色計(CM-2600d;コニカミノルタ社製)を用いて、L*、a*、b*の測定を行った。なお、第一のフィルムのL*、a*、b*は構造体の第一のフィルム側から測定した。また、第二のフィルムのL*、a*、b*は構造体の第二のフィルム側から測定した。測定結果を表2に示した。
(測定条件)
・サンプル数:n=3    
・反射モード 
・正反射光処理   
・測定径:SAV(3mm)
・UV条件:100%Full
・視野:10°
・入射光65°
・測定方式:SCE(Specular Component Exclude)
・下地:黒色の台紙(L*値:27.3、a*値0.7、b*値2.0)
<Measurement of L * a * b *>
For the first film and the second film of the structure obtained above, L *, a *, b * using a spectrocolorimeter (CM-2600d; manufactured by Konica Minolta) under the following conditions. Was measured. L *, a *, and b * of the first film were measured from the first film side of the structure. Further, L *, a *, and b * of the second film were measured from the second film side of the structure. The measurement results are shown in Table 2.
(Measurement condition)
・ Number of samples: n = 3
・ Reflection mode
・ Specular light processing
-Measurement diameter: SAV (3 mm)
-UV condition: 100% Full
・ Field of view: 10 °
・ Incident light 65 °
-Measurement method: SCE (Specular Component Exclude)
-Background: Black mount (L * value: 27.3, a * value 0.7, b * value 2.0)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<フィルム痕の有無>
 上記で得られた構造体の第二のフィルム側から角度180度、速度2cm/secで剥がしたときの樹脂層の外観を目視にて確認した。以下の基準にて樹脂層のフィルム痕を評価し、評価結果を表3に示した。
(評価基準)
 ◎:樹脂層にフィルム痕が無かった。
 ○:樹脂層に使用上影響ないフィルム痕が有った。
 ×:樹脂層に使用上影響の大きいフィルム痕が有った。
<Presence or absence of film marks>
The appearance of the resin layer when peeled from the second film side of the structure obtained above at an angle of 180 degrees and a speed of 2 cm / sec was visually confirmed. The film marks on the resin layer were evaluated according to the following criteria, and the evaluation results are shown in Table 3.
(Evaluation criteria)
⊚: There were no film marks on the resin layer.
◯: There were film marks on the resin layer that did not affect the use.
X: There were film marks on the resin layer that had a large effect on use.
<構造体の外観の視認性>
 上記で得られた構造体の第二のフィルム側(表)からと第一のフィルム側(裏)からで、外観の視認性を目視にて確認した。以下の基準にて構造体の外観の視認性を評価し、評価結果を表3に示した。
(評価基準)
 ◎:構造体の表と裏を見分けることが容易にできた。
 ○:構造体の表と裏を見分けることができた。
 ×:構造体の表と裏を見分けることができなかった。
<Visibility of the appearance of the structure>
The visibility of the appearance was visually confirmed from the second film side (front) and the first film side (back) of the structure obtained above. The visibility of the appearance of the structure was evaluated according to the following criteria, and the evaluation results are shown in Table 3.
(Evaluation criteria)
⊚: It was easy to distinguish the front and back of the structure.
◯: The front and back of the structure could be distinguished.
X: The front and back of the structure could not be distinguished.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、本願の第一の形態の実施例の構造体は、表と裏を見分け易く、第二のフィルムを剥がした際に樹脂層にフィルム痕が付きづらくすることができた。 As is clear from Table 3, the structure of the embodiment of the first embodiment of the present application can easily distinguish the front and the back, and when the second film is peeled off, it is possible to make it difficult for the resin layer to have film marks. rice field.
<第二の形態の実施例>
<硬化性樹脂組成物の調製例B>
(配合例B1)
 下記表4の配合例B1に示す溶剤を容器に入れ、溶剤が揮発しないように50℃に加温し、それぞれのエポキシ樹脂を加えて、十分に撹拌し、溶解させた。その後、添加剤およびフィラーを加えて、3本ロールミルにて混練し、さらに硬化剤、硬化促進剤、およびその他の樹脂を加えて、撹拌機により十分に撹拌して、硬化性樹脂組成物を得た。
<Example of the second embodiment>
<Preparation Example B of Curable Resin Composition>
(Formulation Example B1)
The solvent shown in Formulation Example B1 in Table 4 below was placed in a container, heated to 50 ° C. so that the solvent did not volatilize, each epoxy resin was added, and the mixture was sufficiently stirred and dissolved. Then, additives and fillers are added and kneaded with a three-roll mill, a curing agent, a curing accelerator, and other resins are further added, and the mixture is sufficiently stirred with a stirrer to obtain a curable resin composition. rice field.
(配合例B2)
 下記表4の配合例B2に示す処方にて各成分を配合し、3本ロールミルで分散して、硬化性樹脂組成物を得た。
(Formulation Example B2)
Each component was blended according to the formulation shown in Formulation Example B2 in Table 4 below and dispersed with a three-roll mill to obtain a curable resin composition.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4中、各成分の配合量は質量部基準である。
*18:三菱ケミカル株式会社製、jER828
*19:DIC株式会社製、HP-7200L
*20:DIC株式会社製、EPICLON N-740
*21:三菱ケミカル株式会社製、ST-6100
*22:DIC株式会社製、HP-4032
*23:明和化成株式会社製、HF-4M
*24:ナガセケムテックス株式会社製、テイサンレジン SG-P3(固形分:15質量%)
*25:三菱ケミカル株式会社製、YX6954BH30(固形分:30質量%)
*26:四国化成工業株式会社製、2E4MZ
*27:信越化学工業株式会社製、KBM-403
*28:デンカ株式会社製、FB-7SDX
*29:カーボンブラック
*30:ジエチレングリコールモノエチルエーテルアセテート
*31:シクロヘキサノン
In Table 4, the blending amount of each component is based on parts by mass.
* 18: Mitsubishi Chemical Corporation, jER828
* 19: HP-7200L manufactured by DIC Corporation
* 20: EPICLON N-740 manufactured by DIC Corporation
* 21: ST-6100 manufactured by Mitsubishi Chemical Corporation
* 22: HP-4032 manufactured by DIC Corporation
* 23: HF-4M manufactured by Meiwa Kasei Co., Ltd.
* 24: Taisan Resin SG-P3 (solid content: 15% by mass) manufactured by Nagase Chemtex Co., Ltd.
* 25: YX6954BH30 manufactured by Mitsubishi Chemical Corporation (solid content: 30% by mass)
* 26: 2E4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd.
* 27: KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.
* 28: FB-7SDX manufactured by Denka Co., Ltd.
* 29: Carbon black * 30: Diethylene glycol monoethyl ether acetate * 31: Cyclohexanone
[実施例B1~7、比較例B1~4]
<構造体の製造>
 構造体の製造のために、以下の第一のフィルムを準備した。
・フィルムA:材質:PET、厚み50μm、片面離型剤付MD方向の引っ張り強さ186MPa、MD方向の伸び率130%
・フィルムB:材質:PET、厚み38μm、片面離型剤付MD方向の引っ張り強さ206MPa、MD方向の伸び率120%
・フィルムC:材質:PI(ポリイミド)、厚み50μm、MD方向の引っ張り強さ300MPa、MD方向の伸び率85%
・フィルムD:材質:PP、厚み30μm、片面粘着層有り、MD方向の引っ張り強さM80Pa、MD方向の伸び率225%
・フィルムE:材質:PP、厚み15μm、MD方向の引っ張り強さ100MPa、MD方向の伸び率150%
・フィルムG:材質:PET 厚み125μm、MD方向の引っ張り強さ225MPa、MD方向の伸び率125%
・フィルムH:材質:PET 厚み25μm、MD方向の引っ張り強さ186MPa、MD方向の伸び率130%
[Examples B1 to 7, Comparative Examples B1 to 4]
<Manufacturing of structure>
The following first film was prepared for the production of the structure.
-Film A: Material: PET, thickness 50 μm, with single-sided mold release agent, tensile strength in MD direction 186 MPa, elongation rate 130% in MD direction
-Film B: Material: PET, thickness 38 μm, with single-sided mold release agent, tensile strength in MD direction 206 MPa, elongation rate 120% in MD direction
-Film C: Material: PI (polyimide), thickness 50 μm, tensile strength in MD direction 300 MPa, elongation rate 85% in MD direction
-Film D: Material: PP, thickness 30 μm, single-sided adhesive layer, tensile strength M80Pa in MD direction, elongation rate 225% in MD direction
-Film E: Material: PP, thickness 15 μm, tensile strength in MD direction 100 MPa, elongation rate 150% in MD direction
-Film G: Material: PET thickness 125 μm, tensile strength in MD direction 225 MPa, elongation rate 125% in MD direction
-Film H: Material: PET thickness 25 μm, tensile strength in MD direction 186 MPa, elongation rate 130% in MD direction
 続いて、各実施例および比較例において、表5に記載の第一のフィルムおよび上記の硬化性樹脂組成物を用いた樹脂層(硬化性樹脂層)の組み合わせで構造体を得た。具体的には、MD方向に100N/mの張力をかけた第一のフィルム上に、上記で得られた硬化性樹脂組成物をダイコーターにて塗布した後、100℃で3.5分間乾燥して、硬化性樹脂層を形成して、構造体を得た。 Subsequently, in each Example and Comparative Example, a structure was obtained by combining the first film shown in Table 5 and a resin layer (curable resin layer) using the above-mentioned curable resin composition. Specifically, the curable resin composition obtained above is applied on a first film to which a tension of 100 N / m is applied in the MD direction with a die coater, and then dried at 100 ° C. for 3.5 minutes. Then, a curable resin layer was formed to obtain a structure.
<第一のフィルムの厚みおよびそのばらつきの測定>
 上記で準備した第一のフィルムのフィルム端部からMD方向に1mの位置から、MD方向に40mm切り出して、測定サンプルとした。測定サンプルについて、自動測定式膜厚計(山文電気社製、TOF-J)を用いて、フィルム端部より15mm離れた位置からTD方向に20mmピッチで25点測定した。25点の測定結果から、最大値、最小値、および平均値を算出し、最大値と最小値の差から下記式により厚みのばらつきを算出した。算出結果を表5に示す。
・厚みのばらつき(%)=(最大値-最小値)/平均値×100
<Measurement of the thickness of the first film and its variation>
A 40 mm cut in the MD direction was cut out from a position 1 m in the MD direction from the end of the first film prepared above to prepare a measurement sample. The measurement sample was measured at 25 points in the TD direction at a pitch of 20 mm from a position 15 mm away from the edge of the film using an automatic measurement type film thickness meter (TOFJ manufactured by Yamabun Denki Co., Ltd.). The maximum value, the minimum value, and the average value were calculated from the measurement results of 25 points, and the variation in thickness was calculated from the difference between the maximum value and the minimum value by the following formula. The calculation results are shown in Table 5.
・ Thickness variation (%) = (maximum value-minimum value) / average value x 100
<トラウザー引裂力の測定> 
 上記で準備したフィルムについて、JIS K 7128-1:1998に準拠して、下記の条件で、引張試験機(株式会社島津製作所製、EZ-SX)を用いて、トラウザー引裂力を測定した。引裂き開始20mmと引裂き終了前5mmを除外し、残り50mmの引裂強さの近似の平均値を求めた。測定結果を表5に示した。
(測定条件)
・試験室の温湿度:23±2℃、50±15%
・試験片寸法:150mm×50mm
・試験片中央のスリット長さ:75±1mm
・サンプル数:5
・試験速度:200mm/min
・試験片のつかみ具間距離:75mm
<Measurement of trouser tearing force>
With respect to the film prepared above, the trouser tearing force was measured using a tensile tester (manufactured by Shimadzu Corporation, EZ-SX) under the following conditions in accordance with JIS K 7128-1: 1998. 20 mm at the start of tearing and 5 mm before the end of tearing were excluded, and the approximate average value of the tear strength of the remaining 50 mm was calculated. The measurement results are shown in Table 5.
(Measurement condition)
・ Temperature and humidity of the test room: 23 ± 2 ° C, 50 ± 15%
-Test piece dimensions: 150 mm x 50 mm
・ Slit length at the center of the test piece: 75 ± 1 mm
・ Number of samples: 5
-Test speed: 200 mm / min
・ Distance between gripping tools of test piece: 75 mm
<樹脂層の厚みおよびそのばらつきの測定>
 上記で得られた構造体の乾燥塗膜(樹脂層)端部からMD方向に10mの位置から、MD方向に40mm切り出して、測定サンプルとした。測定サンプルについて、自動測定式膜厚計(山文電気社製、TOF-J)を用いて、乾燥塗膜(樹脂層)端部より15mm離れた位置からTD方向に20mmピッチで25点測定した。25点の測定結果から、最大値、最小値、および平均値を算出した。平均値を表5に示す。
 また、最大値と最小値の差から下記式により厚みのばらつきを算出し、以下の基準により評価した。
・厚みのばらつき(%)=(最大値-最小値)/平均値×100
(評価基準)
 ◎:25点の最大値と最小値の差が平均値に対して5%以下であった。
 ○:25点の最大値と最小値の差が平均値に対して5%超10%以下であった。
 ×:25点の最大値と最小値の差が平均値に対して10%超であった。
<Measurement of resin layer thickness and its variation>
A measurement sample was obtained by cutting out 40 mm in the MD direction from a position 10 m in the MD direction from the end of the dry coating film (resin layer) of the structure obtained above. About the measurement sample, 25 points were measured at a pitch of 20 mm in the TD direction from a position 15 mm away from the end of the dry coating film (resin layer) using an automatic measurement type film thickness meter (TOFJ manufactured by Yamabun Denki Co., Ltd.). .. From the measurement results of 25 points, the maximum value, the minimum value, and the average value were calculated. The average value is shown in Table 5.
In addition, the variation in thickness was calculated from the difference between the maximum value and the minimum value by the following formula, and evaluated by the following criteria.
・ Thickness variation (%) = (maximum value-minimum value) / average value x 100
(Evaluation criteria)
⊚: The difference between the maximum value and the minimum value of 25 points was 5% or less with respect to the average value.
◯: The difference between the maximum value and the minimum value of 25 points was more than 5% and 10% or less with respect to the average value.
X: The difference between the maximum value and the minimum value of 25 points was more than 10% with respect to the average value.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5からも明らかなように、本願の第二の形態の実施例の構造体の樹脂層は、厚みが50μm以上でありながら、厚みのばらつきの小さいものであった。 As is clear from Table 5, the resin layer of the structure of the second embodiment of the present application has a thickness of 50 μm or more, but has a small variation in thickness.
 1 構造体
 10 第一のフィルム
 20 樹脂層
 30 第二のフィルム
1 Structure 10 First film 20 Resin layer 30 Second film

Claims (11)

  1.  第一のフィルム、樹脂層、および第二のフィルムをこの順に備える構造体であって、
     前記第一のフィルムのトラウザー引裂力と、前記第二のフィルムのトラウザー引裂力の差が-0.05N以下または+0.05N以上であり、
     前記第一のフィルムと前記第二のフィルムのヘーズの差が-5%以下または+5%以上であることを特徴とする、構造体。
    A structure including a first film, a resin layer, and a second film in this order.
    The difference between the trouser tearing force of the first film and the trouser tearing force of the second film is −0.05 N or less or + 0.05 N or more.
    A structure characterized in that the difference between the haze of the first film and the haze of the second film is -5% or less or + 5% or more.
  2.  第一のフィルム、樹脂層、および第二のフィルムをこの順に備える構造体であって、
     前記第一のフィルムのトラウザー引裂力と、前記第二のフィルムのトラウザー引裂力の差が-0.05N以下または+0.05N以上であり、
     前記構造体の前記第一のフィルム側から測定したLab色空間におけるL*値、a*値、b*値と前記構造体の第二のフィルム側から測定したLab色空間におけるL*値、a*値、b*値の差が、下記条件(i)~(iii):
     (i)L*値の差が-0.1以下または+0.1以上である、
     (ii)a*値の差が-0.1以下または+0.1以上である、
     (iii)b*値の差が-1以下または+1以上である、
    の少なくとも1つを満たすことを特徴とする、構造体。
    A structure including a first film, a resin layer, and a second film in this order.
    The difference between the trouser tearing force of the first film and the trouser tearing force of the second film is −0.05 N or less or + 0.05 N or more.
    The L * value, a * value, and b * value in the Lab color space measured from the first film side of the structure and the L * value, a in the Lab color space measured from the second film side of the structure. The difference between the * value and b * value is the following conditions (i) to (iii):
    (I) The difference between L * values is -0.1 or less or +0.1 or more.
    (Ii) The difference between the a * values is −0.1 or less or +0.1 or more.
    (Iii) The difference between b * values is -1 or less or +1 or more.
    A structure characterized by satisfying at least one of.
  3.  前記第二のフィルムのトラウザー引裂力が、前記第一のフィルムのトラウザー引裂力よりも小さい、請求項1または2に記載の構造体。 The structure according to claim 1 or 2, wherein the trouser tearing force of the second film is smaller than the trouser tearing force of the first film.
  4.  前記樹脂層が、硬化性樹脂層である、請求項1~3のいずれか一項に記載の構造体。 The structure according to any one of claims 1 to 3, wherein the resin layer is a curable resin layer.
  5.  前記第一のフィルムが、ポリエステルフィルムおよびポリオレフィンフィルムから選択される、請求項1~4のいずれか一項に記載の構造体。 The structure according to any one of claims 1 to 4, wherein the first film is selected from a polyester film and a polyolefin film.
  6.  前記第二のフィルムが、ポリエステルフィルムおよびポリオレフィンフィルムから選択される、請求項1~5のいずれか一項に記載の構造体。 The structure according to any one of claims 1 to 5, wherein the second film is selected from a polyester film and a polyolefin film.
  7.  第一のフィルムおよび樹脂層を備える構造体であって、
     前記第一のフィルムの厚みが30μm以上であり、
     前記第一のフィルムのトラウザー引裂力が0.10N以上であり、
     前記樹脂層の厚みが50μm以上であり、
     前記樹脂層が硬化性樹脂層であることを特徴とする、構造体。
    A structure comprising a first film and a resin layer.
    The thickness of the first film is 30 μm or more, and the thickness is 30 μm or more.
    The trouser tearing force of the first film is 0.10 N or more.
    The thickness of the resin layer is 50 μm or more, and the thickness of the resin layer is 50 μm or more.
    A structure characterized in that the resin layer is a curable resin layer.
  8.  前記硬化性樹脂層が、熱硬化性樹脂および硬化剤を含む、請求項7に記載の構造体。 The structure according to claim 7, wherein the curable resin layer contains a thermosetting resin and a curing agent.
  9.  前記熱硬化性樹脂が、エポキシ化合物である、請求項8に記載の構造体。 The structure according to claim 8, wherein the thermosetting resin is an epoxy compound.
  10.  前記第一のフィルムが、ポリエステルフィルム、ポリオレフィンフィルム、およびポリイミドフィルムからなる群から選択される、請求項7~9のいずれか一項に記載の構造体。 The structure according to any one of claims 7 to 9, wherein the first film is selected from the group consisting of a polyester film, a polyolefin film, and a polyimide film.
  11.  前記第一のフィルムの厚みのばらつきが、±10%以下である、請求項7~10のいずれか一項に記載の構造体。 The structure according to any one of claims 7 to 10, wherein the variation in the thickness of the first film is ± 10% or less.
PCT/JP2021/012128 2020-03-31 2021-03-24 Structure WO2021200429A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180015814.0A CN115135496A (en) 2020-03-31 2021-03-24 Structural body
JP2022512005A JP7186920B2 (en) 2020-03-31 2021-03-24 Structure
JP2022186907A JP2023016876A (en) 2020-03-31 2022-11-22 Structure body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020063383 2020-03-31
JP2020-063383 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200429A1 true WO2021200429A1 (en) 2021-10-07

Family

ID=77929575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012128 WO2021200429A1 (en) 2020-03-31 2021-03-24 Structure

Country Status (4)

Country Link
JP (2) JP7186920B2 (en)
CN (1) CN115135496A (en)
TW (1) TW202144187A (en)
WO (1) WO2021200429A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320592A (en) * 1992-05-22 1993-12-03 Nitto Denko Corp Double side-adhesive tape
JP2001253033A (en) * 2000-03-09 2001-09-18 Sekisui Chem Co Ltd Marking film
WO2005066246A1 (en) * 2003-12-26 2005-07-21 Sekisui Chemical Co., Ltd. Mold release film
JP2006232896A (en) * 2005-02-22 2006-09-07 Kyodo Giken Kagaku Kk Adhesive film
JP2013067743A (en) * 2011-09-26 2013-04-18 Mitsubishi Plastics Inc Substrate-less double-sided adhesive sheet
JP2015217530A (en) * 2014-05-14 2015-12-07 株式会社巴川製紙所 Adhesive high hardness transparent film
JP2020062786A (en) * 2018-10-16 2020-04-23 藤森工業株式会社 Laminate film for bag and method for producing the same
JP2020069720A (en) * 2018-10-31 2020-05-07 京セラ株式会社 Sheet for encapsulation and manufacturing method of electronic component using the same
JP2021000747A (en) * 2019-06-20 2021-01-07 味の素株式会社 Resin sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952530B2 (en) * 2003-12-19 2005-10-04 The Aerospace Corporation Integrated glass ceramic systems
JP5320592B2 (en) 2009-03-18 2013-10-23 大学共同利用機関法人 高エネルギー加速器研究機構 Neutron beam monochromator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320592A (en) * 1992-05-22 1993-12-03 Nitto Denko Corp Double side-adhesive tape
JP2001253033A (en) * 2000-03-09 2001-09-18 Sekisui Chem Co Ltd Marking film
WO2005066246A1 (en) * 2003-12-26 2005-07-21 Sekisui Chemical Co., Ltd. Mold release film
JP2006232896A (en) * 2005-02-22 2006-09-07 Kyodo Giken Kagaku Kk Adhesive film
JP2013067743A (en) * 2011-09-26 2013-04-18 Mitsubishi Plastics Inc Substrate-less double-sided adhesive sheet
JP2015217530A (en) * 2014-05-14 2015-12-07 株式会社巴川製紙所 Adhesive high hardness transparent film
JP2020062786A (en) * 2018-10-16 2020-04-23 藤森工業株式会社 Laminate film for bag and method for producing the same
JP2020069720A (en) * 2018-10-31 2020-05-07 京セラ株式会社 Sheet for encapsulation and manufacturing method of electronic component using the same
JP2021000747A (en) * 2019-06-20 2021-01-07 味の素株式会社 Resin sheet

Also Published As

Publication number Publication date
TW202144187A (en) 2021-12-01
JP2023016876A (en) 2023-02-02
JPWO2021200429A1 (en) 2021-10-07
CN115135496A (en) 2022-09-30
JP7186920B2 (en) 2022-12-09

Similar Documents

Publication Publication Date Title
KR101545724B1 (en) Photo-curable and thermo-curable resin composition, and dry film solder resist
WO2019163292A1 (en) Resin composition for multilayer electronic components, dry film, cured product, multilayer electronic component, and printed wiring board
JP2017198746A (en) Dry film, cured product and printed wiring board
JP2017198747A (en) Dry film, cured product and printed wiring board
WO2018143220A1 (en) Photocurable resin composition, dry film, cured product, and printed wiring board
JP6748663B2 (en) Curable composition, dry film, cured product and printed wiring board
JP2020166207A (en) Curable resin composition, dry film, cured product and printed wiring board
JP6748478B2 (en) Dry film, cured product and printed wiring board
WO2018123695A1 (en) Curable composition, base resin, curing agent, dry film, cured product, and printed wiring board
WO2021200429A1 (en) Structure
WO2020066049A1 (en) Curable resin composition, dry film, cured product, laminated structure, and electronic component
JP2020057667A (en) Curable resin composition, dry film, cured product, and electronic component
JP6724097B2 (en) Curable resin composition, dry film, cured product, printed wiring board and electronic component
JP7101513B2 (en) Curable resin compositions, dry films, cured products, and electronic components
CN113448166A (en) Curable resin composition, dry film, cured product, and electronic component
KR20160117237A (en) Laminated film
CN113631603A (en) Curable resin composition, dry film, cured product, and electronic component
JP2020055927A (en) Curable resin composition, dry film, cured product, laminate structure and electronic component
JP6774185B2 (en) Laminated structure and printed wiring board
JP7339103B2 (en) Curable resin composition, dry film, cured product, and electronic component
KR102092554B1 (en) Dry film composition for a colored layer of fingerprint verification sensor modules and fingerprint verification sensor module having a cured product thereof as a colored layer
JP2006267152A (en) Photosensitive dry film for protection film of printed wiring board and method for manufacturing the same
WO2019187587A1 (en) Curable resin composition, dry film, cured object, layered structure, and electronic component
CN115151028A (en) Insulating film for electronic component and method for producing insulating film for electronic component
JP2020052362A (en) Production method of cured product, photosensitive resin composition used for the same, dry film, cured product and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779056

Country of ref document: EP

Kind code of ref document: A1