JP5320592B2 - Neutron beam monochromator - Google Patents

Neutron beam monochromator Download PDF

Info

Publication number
JP5320592B2
JP5320592B2 JP2009066185A JP2009066185A JP5320592B2 JP 5320592 B2 JP5320592 B2 JP 5320592B2 JP 2009066185 A JP2009066185 A JP 2009066185A JP 2009066185 A JP2009066185 A JP 2009066185A JP 5320592 B2 JP5320592 B2 JP 5320592B2
Authority
JP
Japan
Prior art keywords
neutron
neutron beam
crystal
monochromator
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009066185A
Other languages
Japanese (ja)
Other versions
JP2010217089A (en
Inventor
晴弘 平賀
和芳 山田
航三 藤原
一雄 中嶋
Original Assignee
大学共同利用機関法人 高エネルギー加速器研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人 高エネルギー加速器研究機構 filed Critical 大学共同利用機関法人 高エネルギー加速器研究機構
Priority to JP2009066185A priority Critical patent/JP5320592B2/en
Publication of JP2010217089A publication Critical patent/JP2010217089A/en
Application granted granted Critical
Publication of JP5320592B2 publication Critical patent/JP5320592B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、結晶を用いた中性子ビームの単色化および高輝度化に関する。更に詳しくは、本発明は、当該結晶の任意の塑性変形を可能とする塑性変形能を有する温度範囲内で高温加圧加工法により湾曲加工を施して作成されていることを特徴とする中性子線の単色集光装置である。高温加圧加工法によって精密に、しかも再現性良く湾曲加工したSi、GeまたはSiGeの半導体結晶バルクウェハーを重ね合わせ、単色かつ小面積・高輝度の中性子ビームの取り出し方法に関するものである。   The present invention relates to monochromatization and high brightness of a neutron beam using a crystal. More specifically, the present invention is a neutron beam characterized in that it is prepared by performing a bending process by a high-temperature pressing process within a temperature range having a plastic deformability that enables arbitrary plastic deformation of the crystal. This is a monochromatic condensing device. The present invention relates to a method for extracting a single-color, small-area, high-intensity neutron beam by superposing Si, Ge, or SiGe semiconductor crystal bulk wafers that have been precisely and reproducibly curved by a high-temperature pressure processing method.

白色中性子ビームの単色化には、結晶のブラッグ反射を利用する結晶法が広く用いられている。中性子ビームは、線幅が数cm -数十cm程度に広がっているため、通常は、cmサイズの平板結晶を二次元的に並べて、大面積のモノクロメータ及びアナライザーを構成する。その際、図3に示すように、個々の平板結晶を全体として凹状に幾何配置することで、反射ビームを2cm四方程度にまで絞り込み、中性子ビームの単色化および高輝度化を図ってきた(例えば、非特許文献1参照)。   A crystal method using Bragg reflection of a crystal is widely used for monochromatic white neutron beams. Since the neutron beam has a line width of about several centimeters to several tens of centimeters, a monochromator and an analyzer having a large area are usually configured by two-dimensionally arranging cm-sized plate crystals. At that time, as shown in FIG. 3, by arranging the individual flat crystals in a concave shape as a whole, the reflected beam is narrowed down to about 2 cm square, and the neutron beam has been monochromatized and increased in brightness (for example, Non-Patent Document 1).

また、数mm以上の厚みを持った平板結晶を機械的に歪めて張力により曲面を形成する試みも為されてきた(例えば、非特許文献2参照)。なお、高温加圧加工法により曲面を精密制御した、Si、GeまたはSiGeの湾曲した半導体結晶バルクウェハーが本発明者らにより開発されている(例えば、特許文献1または非特許文献3参照)。   In addition, attempts have been made to mechanically distort a plate crystal having a thickness of several mm or more to form a curved surface by tension (for example, see Non-Patent Document 2). In addition, Si, Ge, or SiGe curved semiconductor crystal bulk wafers whose curved surfaces are precisely controlled by a high-temperature pressure processing method have been developed by the present inventors (see, for example, Patent Document 1 or Non-Patent Document 3).

特開2005−142370号公報JP 2005-142370 A

S.A.Smee, J.D.Orndorff, G.A.Scharfstein, Y.Qin,P.C.Brand, C.L.Broholm, D.K.Anand, “MACS low-background doublyfocusing neutron monochromator”, Appl. Phys., 2002, A74(Suppl.), p.S255-S257S.A.Smee, J.D.Orndorff, G.A.Scharfstein, Y.Qin, P.C.Brand, C.L.Broholm, D.K.Anand, “MACS low-background doublyfocusing neutron monochromator”, Appl. Phys., 2002, A74 (Suppl.), P.S255-S257 Jiri Kulda, Jan Saroun, “Elasticallybent silicon monochromator and analyzer on a TAS instrument”,Nuclear Instruments and Methods in Physics Research, 1996, A 379, p.155-166Jiri Kulda, Jan Saroun, “Elasticallybent silicon monochromator and analyzer on a TAS instrument”, Nuclear Instruments and Methods in Physics Research, 1996, A 379, p.155-166 K. Nakajima, K. Fujiwara, W. Pan, and H. Okuda, “Shaped silicon-crystalwafers obtained by plastic deformation and their application to silicon-crystallenses”, NatureMaterials, 2005年1月,vol. 4, p.47-50K. Nakajima, K. Fujiwara, W. Pan, and H. Okuda, “Shaped silicon-crystalwafers obtained by plastic deformation and their application to silicon-crystallenses”, NatureMaterials, January 2005, vol. 4, p.47- 50

しかしながら、非特許文献1に記載のような平板結晶を用いる限り、集光スポットサイズには限界があり、中性子ビームの空間集光は不十分であるという課題があった。原理的には、個々の平板結晶サイズを小さくし、ピース数を増やしていけば、多角形近似としてより滑らかな凹面に近づく。しかし、結晶軸方向を揃えつつ多数のピースを必要な精度内(通常0.2°〜0.5°)に組み上げるには、相当の作業時間と高コストを必要とするという課題もあった。   However, as long as a flat crystal as described in Non-Patent Document 1 is used, there is a problem that the focused spot size is limited, and spatial focusing of the neutron beam is insufficient. In principle, if the individual plate crystal size is reduced and the number of pieces is increased, the surface will approach a smoother concave surface as a polygonal approximation. However, in order to assemble a large number of pieces within the required accuracy (usually 0.2 ° to 0.5 °) while aligning the crystal axis direction, there is a problem that considerable work time and high cost are required.

また、非特許文献2に記載のように、平板結晶を機械的に歪めて張力により曲面を形成するものでは、設計通りに曲面を形成することの困難さ、及び、歪み量の低い限界値のため、mmサイズの点集光は未だ実現されていないという課題があった。   In addition, as described in Non-Patent Document 2, in a case where a flat crystal is mechanically distorted to form a curved surface by tension, it is difficult to form a curved surface as designed, and the limit value with a low strain amount is low. Therefore, there has been a problem that mm-size point condensing has not been realized yet.

本発明は、以上のような課題を鑑みてなされたものであり、従来の機械的方法に基づく曲面制御の困難という欠点を解消し、mmサイズの点集光を可能とし、低コストで高輝度中性子ビームを創成することができる中性子線の単色集光装置を提供することを目的としている。   The present invention has been made in view of the above-described problems, eliminates the drawback of difficult curved surface control based on conventional mechanical methods, enables mm-size point focusing, and is low in cost and high brightness. An object of the present invention is to provide a neutron monochromatic focusing device capable of generating a neutron beam.

上記の課題を解決するものとして、本発明に係る中性子線の単色集光装置は、Si、GeまたはSiGeの半導体結晶バルクウェハーに、前記半導体結晶の塑性変形を可能とする塑性変形能を有する温度範囲内で高温加圧加工法により湾曲加工を施して作成された湾曲結晶ウェーハを複数枚有し、それらを重ね合わせて成ることを、特徴とする。ただし、塑性変形を可能とする塑性変形能を有する温度範囲とは、特定の荷重をかけて半導体結晶バルクに任意の塑性加工をしたときに、半導体結晶バルクの厚さと半導体結晶バルクにかけた応力とにより決まる、半導体結晶バルクが破壊される温度を越える温度範囲をいう。
In order to solve the above-mentioned problems, the neutron monochromatic focusing device according to the present invention is a temperature having a plastic deformability capable of plastic deformation of the semiconductor crystal on a semiconductor crystal bulk wafer of Si, Ge or SiGe. It is characterized by having a plurality of curved crystal wafers produced by performing a bending process by a high-temperature pressure processing method within the range, and superposing them. However, the temperature range having plastic deformability that enables plastic deformation refers to the thickness of the semiconductor crystal bulk and the stress applied to the semiconductor crystal bulk when a certain load is applied to the semiconductor crystal bulk. The temperature range that exceeds the temperature at which the semiconductor crystal bulk is destroyed is determined by

また、本発明に係る中性子線の単色集光装置は、中性子ビームの単色化と高輝度化とを同時に行う中性子線のモノクロメータまたはアナライザーであることが好ましい。この場合、モノクロメータ及びアナライザーの構成要素に、高温加圧加工法で曲面を精密制御したSi、GeまたはSiGeの湾曲した半導体結晶バルクウェハーを用いて、中性子ビームの集光効率を高めることができる。   Moreover, the neutron beam monochromatic focusing device according to the present invention is preferably a neutron beam monochromator or analyzer that simultaneously performs monochromatic and high brightness neutron beams. In this case, the concentration efficiency of the neutron beam can be increased by using a Si, Ge or SiGe curved semiconductor crystal bulk wafer whose curved surface is precisely controlled by a high-temperature pressure processing method as a component of the monochromator and analyzer. .

本発明に係る中性子線の単色集光装置で、高温・高圧下での高温加圧加工法により、Si、GeまたはSiGeの半導体結晶内部では自然にモザイク結晶化が進み、更に湾曲度を加えることで、当該半導体結晶の完全結晶性が一段と低下する。これにより、完全結晶性に起因する消衰効果が取り除かれ、中性子反射強度を飛躍的に強めることができる。   The monochromatic focusing device for neutron beams according to the present invention is such that mosaic crystallization progresses naturally inside a semiconductor crystal of Si, Ge or SiGe by high-temperature pressure processing under high temperature and high pressure, and further adds a degree of curvature. Thus, the complete crystallinity of the semiconductor crystal is further lowered. Thereby, the extinction effect resulting from perfect crystallinity is removed, and the neutron reflection intensity can be remarkably increased.

更に、それらSi、GeまたはSiGeの湾曲結晶ウェーハを重ね合わせることで、中性子反射強度を増大させることができる。この手法が成立するのは、Si、GeまたはSiGeの元素の中性子吸収断面積が比較的小さいこと、および、金型を使ったホットプレス加工により再現性良く湾曲結晶を製作することができることによる。   Furthermore, the neutron reflection intensity can be increased by superposing these Si, Ge, or SiGe curved crystal wafers. This method is established because the neutron absorption cross section of Si, Ge, or SiGe element is relatively small, and the curved crystal can be manufactured with high reproducibility by hot pressing using a mold.

本発明によって、これまでの平板結晶の組み合わせや張力による曲面形成では得られなかった、空間制御可能な高輝度中性子単色ビームを取り出すことができるようになる。また、本発明によれば、従来の機械的方法に基づく曲面制御の困難という欠点を解消し、mmサイズの点集光を可能とし、低コストで高輝度中性子ビームを創成することができる中性子線の単色集光装置を提供することができる。   According to the present invention, it is possible to extract a spatially controllable high-intensity neutron monochromatic beam that has not been obtained by the conventional curved surface formation by combination of flat crystals or tension. In addition, according to the present invention, a neutron beam that eliminates the disadvantage of curved surface control based on the conventional mechanical method, enables point focusing of mm size, and can create a high-intensity neutron beam at low cost. It is possible to provide a single color condensing device.

本発明の実施の形態の中性子線の単色集光装置およびその製造方法を示す斜視図である。It is a perspective view which shows the monochromatic condensing device of the neutron beam of embodiment of this invention, and its manufacturing method. 図1に示す中性子線の単色集光装置の使用状態を示す側面図、および反射強度の空間的広がりを示すグラフである。It is a side view which shows the use condition of the monochromatic condensing device of the neutron beam shown in FIG. 1, and a graph which shows the spatial spread of reflection intensity. 従来の中性子線のモノクロメータを示す側面図である。It is a side view which shows the monochromator of the conventional neutron beam.

以下、図面に基づき本発明の実施の形態について説明する。
図1に、Si湾曲結晶ウェーハを構成要素とする、本発明の実施の形態のモノクロメータあるいはアナライザーから成る中性子線の単色集光装置を示す。また、図2に、それを用いた空間集光の一実施例の模式図を示す。図2に示すように、入射平行中性子ビームが湾曲結晶モノクロメータあるいはアナライザーにより反射され、反射中性子ビームが空間的に集光される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a neutron monochromatic focusing device comprising a monochromator or an analyzer according to an embodiment of the present invention, which includes a Si curved crystal wafer as a constituent element. Moreover, the schematic diagram of one Example of the spatial condensing using it in FIG. 2 is shown. As shown in FIG. 2, the incident parallel neutron beam is reflected by a curved crystal monochromator or analyzer, and the reflected neutron beam is spatially collected.

図1に示すように、サイズ5cm角・厚さ0.5mm程度で、(111)面や(200)面といった反射面が出ているSi完全結晶ウェーハをホットプレス加工し、湾曲結晶ウェーハを製作する。それらを複数枚重ね合わせ、別に用意する結晶ホルダーにセットする。あとは、通常のモノクロメータ及びアナライザーと同様に扱う。図2に示すように、本発明の実施の形態のモノクロメータあるいはアナライザーから成る中性子線の単色集光装置によれば、通常の平板結晶モノクロメータ及びアナライザーで実現している2cm四方程度の集光ビームを、1cm四方以下にまで絞り込むことができ、中心部の輝度を数倍上昇させることができる。   As shown in Fig. 1, a Si crystal wafer with a 5 cm square size and a thickness of about 0.5 mm and a reflecting surface such as the (111) surface or (200) surface is hot-pressed to produce a curved crystal wafer. . A plurality of them are stacked and set in a crystal holder prepared separately. The rest is handled in the same way as ordinary monochromators and analyzers. As shown in FIG. 2, according to the monochromatic focusing device for neutron beams composed of the monochromator or analyzer according to the embodiment of the present invention, the focusing of about 2 cm square that is realized by a normal flat crystal monochromator and analyzer. The beam can be narrowed down to 1 cm square and the central brightness can be increased several times.

なお、湾曲結晶の曲率は、モノクロメータ〜試料間の距離Lm(典型的には1〜3m)、あるいはアナライザー〜検出器間の距離La(典型的には0.2〜0.7m)に依存する。結晶の湾曲面を曲率半径Rの球面で近似すると、Rは大凡Lm, Laの程度であるから、例えば、サイズ5cm角の湾曲結晶1ピースをアナライザー構成要素に利用する場合、ホットプレス加工により深さ1mm程度の凹面を持たせる必要がある。

The curvature of the curved crystal depends on the distance Lm between the monochromator and the sample (typically 1 to 3 m) or the distance La between the analyzer and the detector (typically 0.2 to 0.7 m). When the curved surface of a crystal is approximated by a spherical surface with a radius of curvature R, R is approximately Lm, La. For example, when one piece of a 5cm square curved crystal is used as an analyzer component, it can be deepened by hot pressing. It is necessary to have a concave surface of about 1mm.

Claims (2)

Si、GeまたはSiGeの半導体結晶バルクウェハーに、前記半導体結晶の塑性変形を可能とする塑性変形能を有する温度範囲内で高温加圧加工法により湾曲加工を施して作成された湾曲結晶ウェーハを複数枚有し、それらを重ねて合わせて成ることを特徴とする、中性子線の単色集光装置。 A plurality of curved crystal wafers prepared by subjecting a Si, Ge or SiGe semiconductor crystal bulk wafer to bending by a high-temperature pressure processing method within a temperature range having plastic deformability capable of plastic deformation of the semiconductor crystal. A single color condensing device for neutron beams, characterized in that it has a sheet and is formed by overlapping them. 中性子ビームの単色化と高輝度化とを同時に行う中性子線のモノクロメータまたはアナライザーであることを特徴とする請求項1記載の中性子線の単色集光装置。
2. The neutron beam monochromator according to claim 1, wherein the neutron beam monochromator or analyzer is a neutron monochromator or analyzer that simultaneously performs monochromatization and high brightness of the neutron beam.
JP2009066185A 2009-03-18 2009-03-18 Neutron beam monochromator Expired - Fee Related JP5320592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009066185A JP5320592B2 (en) 2009-03-18 2009-03-18 Neutron beam monochromator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009066185A JP5320592B2 (en) 2009-03-18 2009-03-18 Neutron beam monochromator

Publications (2)

Publication Number Publication Date
JP2010217089A JP2010217089A (en) 2010-09-30
JP5320592B2 true JP5320592B2 (en) 2013-10-23

Family

ID=42976086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009066185A Expired - Fee Related JP5320592B2 (en) 2009-03-18 2009-03-18 Neutron beam monochromator

Country Status (1)

Country Link
JP (1) JP5320592B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186920B2 (en) 2020-03-31 2022-12-09 太陽インキ製造株式会社 Structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103120011A (en) 2010-09-28 2013-05-22 日本电气株式会社 Wireless communication system, wireless-resource determination method therefor, communication management device, and control method and control program for said communication management device
KR101267542B1 (en) * 2011-07-19 2013-05-27 한국원자력연구원 a hihg efficient Monochromator coated with Supermirror or reflecting wall

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211198A (en) * 1995-02-06 1996-08-20 Nikon Corp Neutron reflector
DE10203591B4 (en) * 2002-01-23 2008-09-18 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Neutron optical component arrangement for the targeted spectral design of neutron beams or pulses
DE10239691B4 (en) * 2002-08-25 2004-06-09 Hahn-Meitner-Institut Berlin Gmbh Neutron optical component for neutron small angle scattering measurement technology
KR100576921B1 (en) * 2003-01-15 2006-05-03 한국원자력연구소 Device for generating parallel beam with high flux
FR2881264B1 (en) * 2005-01-21 2007-06-01 Commissariat Energie Atomique X-RAY OR NEUTRON MONOCHROMATOR
JP2007128681A (en) * 2005-11-01 2007-05-24 Japan Atomic Energy Agency Neutron polarizing device
EP2196998B1 (en) * 2007-08-31 2014-02-19 Kyoto University Curvature distribution crystal lens and x-ray reflectance measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186920B2 (en) 2020-03-31 2022-12-09 太陽インキ製造株式会社 Structure

Also Published As

Publication number Publication date
JP2010217089A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
KR101394058B1 (en) Measuring Overlay And Profile Asymmetry Using Symmetric And Anti-systemtric Signals
JP5856727B2 (en) Method, phase grating and apparatus for analyzing the wavefront of a light beam
Heilmann et al. Critical-angle transmission grating technology development for high resolving power soft x-ray spectrometers on Arcus and Lynx
JP5320592B2 (en) Neutron beam monochromator
JP6622723B2 (en) Multifocal spectroscopic measurement device and optical system for multifocal spectroscopic measurement device
Ureña et al. Raman measurements of uniaxial strain in silicon nanostructures
US20200398381A1 (en) Method for Producing Short Subcritical Cracks in Solid Bodies
Ketenoglu et al. Resonant inelastic X-ray scattering spectrometer with 25 meV resolution at the Cu K-edge
JP5173435B2 (en) X-ray monochromator or neutron monochromator
US7659979B2 (en) Optical inspection apparatus and method
Nieto et al. Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques
CN106062542A (en) Beam generation unit and small-angle X-ray scattering device
JPWO2006022333A1 (en) Curvature distribution crystal lens, X-ray apparatus having curvature distribution crystal lens, and method of manufacturing curvature distribution crystal lens
Groß et al. Tetramode metamaterials as phonon polarizers
Camattari et al. Highly reproducible quasi-mosaic crystals as optical components for a Laue lens
JP2007173526A (en) Silicon wafer surface strain distribution measuring device
US20170110621A1 (en) Method of preparing strain released strip-bent x-ray crystal analyzers
Bonera et al. Raman stress maps from finite-element models of silicon structures
Yavaş et al. Sapphire analyzers for high-resolution X-ray spectroscopy
KR20160066365A (en) Fluorescence image apparatus and fluorescence image method using the same
Martyniuk Low-temperature micro-opto-electro-mechanical technologies for temperature sensitive substrates
Guidi et al. Bent crystals by surface grooving method for high-efficiency concentration of hard x-ray photons by a Laue lens
EP4160623A1 (en) Multi beam splitting and redirecting apparatus for a tomoscopic inspection apparatus, tomoscopic inspection apparatus and method for creating a three dimensional tomoscopic image of a sample
US20230296521A1 (en) Bio-detection device, bio-detection system, and bio-detection method
EP2168130B1 (en) Optical element for x-ray microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121017

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees