WO2020066049A1 - Curable resin composition, dry film, cured product, laminated structure, and electronic component - Google Patents

Curable resin composition, dry film, cured product, laminated structure, and electronic component Download PDF

Info

Publication number
WO2020066049A1
WO2020066049A1 PCT/JP2019/002807 JP2019002807W WO2020066049A1 WO 2020066049 A1 WO2020066049 A1 WO 2020066049A1 JP 2019002807 W JP2019002807 W JP 2019002807W WO 2020066049 A1 WO2020066049 A1 WO 2020066049A1
Authority
WO
WIPO (PCT)
Prior art keywords
coated
curable resin
hydrated oxide
resin composition
resin
Prior art date
Application number
PCT/JP2019/002807
Other languages
French (fr)
Japanese (ja)
Inventor
千穂 植田
知哉 工藤
沙和子 嶋田
岡田 和也
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018186066A external-priority patent/JP2020057667A/en
Priority claimed from JP2018186067A external-priority patent/JP2020055927A/en
Priority claimed from JP2018186068A external-priority patent/JP2020057668A/en
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Publication of WO2020066049A1 publication Critical patent/WO2020066049A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a curable resin composition, a dry film, a cured product, a laminated structure, and an electronic component.
  • a method of reducing the number of polar groups in the resin is used from the viewpoint of electric insulation resistance, and it is difficult to achieve both electric insulation resistance and high dielectric constant with only the resin.
  • the dielectric constant of a resin is governed by dipole polarization, a resin having a low dielectric loss tangent generally has a low dielectric constant.
  • the curable resin composition when the curable resin composition is filled with a perovskite-type compound or titanium oxide at a high level, a filler having high thermal conductivity is added to the curable resin composition in order to produce a resist having excellent heat dissipation properties and peripheral materials.
  • a filler having high thermal conductivity is added to the curable resin composition in order to produce a resist having excellent heat dissipation properties and peripheral materials.
  • the dispersibility was impaired.
  • the amount of resin covering these fillers that is, perovskite-type compounds, titanium oxide, and fillers having high thermal conductivity
  • the wettability with the substrate are reduced, so that there is a problem of reduced adhesion.
  • the substrate was roughened to improve the adhesion, but in recent years, due to the problem of transmission loss, the substrate surface tends to be roughened free or a low-roughened surface. It is required to provide adhesion.
  • a first object of the present invention is to improve the dispersibility of a perovskite-type compound, to provide a curable resin composition which is excellent in adhesion to a substrate and which can provide a cured product capable of satisfying both a high dielectric constant and a low dielectric loss tangent.
  • An object of the present invention is to provide a product, a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product.
  • the second object of the present invention is to improve the dispersibility of titanium oxide, obtain a cured product having excellent adhesion to a substrate, and obtain a cured product that can achieve both a high dielectric constant and a low dielectric loss tangent.
  • Another object of the present invention is to provide an electronic component having the cured product.
  • a third object of the present invention is to improve the dispersibility of a filler having a high thermal conductivity, and to obtain a curable resin composition which can obtain a cured product that can achieve both high adhesion and a high thermal conductivity to a substrate.
  • An object of the present invention is to provide a dry film having a resin layer obtained from the composition, a cured product of the resin layer of the composition or the dry film, and an electronic component having the cured product.
  • the present inventors have conducted intensive studies with an eye on surface treatment of perovskite-type compounds to achieve the above object. As a result, the inventors have found that a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc, and a hydrated oxide of titanium can be used. By using a coated perovskite-type compound, it was found that the above-mentioned problem could be solved by doing so, and the present invention was completed.
  • the curable resin composition of the first aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc, and a hydrated oxide of titanium.
  • the coated perovskite compound is at least 20% by volume based on the total solid content of the composition.
  • the coated perovskite compound preferably further has a curable reactive group on the surface.
  • the dry film according to the first aspect of the present invention has a resin layer obtained by applying the curable resin composition to a film and drying the film.
  • the cured product of the first aspect of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.
  • An electronic component according to a first aspect of the present invention includes the cured product.
  • the present inventors have conducted intensive studies with a focus on the surface treatment of titanium oxide to achieve the above object.
  • the inventors have found that the hydrated oxide of silicon, the hydrated oxide of aluminum, the hydrated oxide of zirconium, the hydrated oxide of zinc, and the hydrated oxide of titanium It has been found that the above problem can be solved by using titanium oxide particles which are coated with and further have a curable reactive group on the surface, and have completed the present invention.
  • the curable resin composition of the second aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium.
  • a curable resin composition comprising: a titanium oxide particle coated with at least one of a material; and a curable resin, wherein the coated titanium oxide particle has a curable reactive group on the surface. It is characterized by having.
  • the coated titanium oxide particles preferably account for 25% by volume or more based on the total solid content of the composition.
  • the coated titanium oxide particles preferably have an absolute value of zeta potential of 15 mV or more.
  • the curable resin composition of the second aspect of the present invention preferably has an acid value of the solid content of the composition of not more than 25 mgKOH / g.
  • the curable resin composition of the second aspect of the present invention is preferably applied to a substrate having a dielectric loss tangent at a frequency of 10 GHz of 0.01 or less.
  • a dry film according to a second aspect of the present invention is characterized by having a resin layer obtained by applying and drying the curable resin composition on a film.
  • the cured product of the second aspect of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.
  • a laminated structure according to a second aspect of the present invention is a structure including a cured resin layer (A) and a cured resin layer (B) or a substrate (C) in contact with the cured resin layer (A).
  • the resin cured layer (A) is a cured product having a positive zeta potential obtained by curing the curable resin composition or the resin layer of the dry film, The zeta potential of the resin cured layer (B) or the substrate (C) is negative.
  • An electronic component according to a second aspect of the present invention includes the cured product or the laminated structure.
  • the inventors of the present invention have conducted intensive studies with an eye on the surface treatment of a filler having high thermal conductivity in order to achieve the above object.
  • fillers with high thermal conductivity are hydrated oxides of silicon, hydrated oxides of aluminum, hydrated oxides of zirconium, hydrated oxides of zinc and hydrated oxides of titanium. It has been found that the above problems can be solved by coating with at least one of the above, and the present invention has been completed.
  • the curable resin composition of the third aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium.
  • the coated filler having a thermal conductivity of 15 W / m ⁇ k or more is 30% by volume or more based on the total solid content of the composition. Is preferred.
  • the coated filler having a thermal conductivity of 15 W / mk or more further has a curable reactive group on the surface.
  • a dry film according to a third aspect of the present invention has a resin layer obtained by applying the curable resin composition to a film and drying the film.
  • the cured product of the third aspect of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.
  • An electronic component according to a third aspect of the present invention includes the cured product.
  • a curable resin composition in which the dispersibility of the perovskite compound is improved, the adhesion to the substrate is excellent, and a cured product that can achieve both a high dielectric constant and a low dielectric loss tangent is obtained.
  • Product a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product.
  • a curable resin composition in which the dispersibility of titanium oxide is improved, the adhesiveness to a substrate is excellent, and a cured product that can achieve both a high dielectric constant and a low dielectric loss tangent is obtained.
  • a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, a laminated structure having a cured resin layer made of the cured product, and an electron having the cured product Parts can be provided.
  • the heat dispersibility of the filler having a high thermal conductivity is improved, and a curable resin composition is obtained, which can provide a cured product that can achieve both adhesion to a substrate and high thermal conductivity.
  • a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product can be provided.
  • FIG. 1 is a schematic sectional view schematically showing one embodiment of a laminated structure of the present invention.
  • (meth) acrylate is a general term for acrylate, methacrylate and mixtures thereof, and the same applies to other similar expressions.
  • a numerical range is expressed by “to”, it means a range including those numerical values (that is,... Or more).
  • the curable resin composition of the first aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium. It is characterized by containing a perovskite type compound coated with at least one of them, and a curable resin.
  • the coated perovskite-type compound By blending the coated perovskite-type compound, excellent adhesion to the substrate is achieved, and the surface roughness of the substrate is low, and the adhesion is reduced even to a low-profile substrate made of a low-polarity material. It is possible to obtain a cured product having both a high dielectric constant and a low dielectric loss tangent.
  • the problem of the adhesion is particularly remarkable when the blending amount of the perovskite compound is large, but according to the first aspect of the present invention, when the blending amount of the perovskite compound is large, for example, the solid content of the composition Even when the content is 20% by volume or more based on the total capacity, a cured product having excellent adhesion to the substrate can be obtained. That is, according to the first embodiment of the present invention, it is possible to simultaneously achieve the contradictory characteristics of adhesion to a substrate and high dielectric constant and low dielectric loss tangent due to high filling of a perovskite compound.
  • the perovskite-type compound when the perovskite-type compound is filled in a large amount, adhesion to a substrate made of a low-polarity material or a substrate having a roughened-free or low-roughened surface having no anchor effect (so-called low-profile substrate) is particularly deteriorated. As a result, the problem that the adhesion tends to decrease after the HAST treatment occurs.
  • the HAST treatment can be performed by blending the coated perovskite compound. Even after the treatment, a cured product having excellent adhesion can be obtained.
  • the coated perovskite compound is at least one of a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc and a hydrated oxide of titanium. Since the resin is covered with one or more kinds, coarse particles are hardly generated in the curable resin, and the insulation reliability is particularly excellent even when a fine-patterned circuit board is used. In addition, generation of cracks starting from aggregates can also be suppressed.
  • the coated perovskite compound has a curable reactive group on the surface.
  • the filler has a curable reactive group on the surface, it is possible to strengthen the bond between the filler and the curable resin, but when the filler is highly filled, while the specific surface area of the filler particles is large, Since the resin content is small, it is easy to cause a portion that is not sufficiently compatible with the curable resin.
  • HAST high temperature and high humidity
  • the coated perovskite compound has a curable reactive group on the surface
  • the hydration of silicon is caused between the perovskite compound and the curable reactive group. Since at least one of oxides, hydrated oxides of aluminum, hydrated oxides of zirconium, hydrated oxides of zinc, and hydrated oxides of titanium are interposed, even in a HAST environment It is also confirmed that the decrease in adhesion due to hydrolysis is small. That is, since the wettability with the curable resin can be maintained even after the HAST treatment, an excellent effect that the adhesion is hardly reduced can be obtained. Further, it is possible to improve the physical properties of the cured product due to the curable reactive group, for example, to reduce the CTE.
  • the perovskite-type compound has more hydroxyl groups based on the hydrated oxide on the surface thereof, and the curable reactive group can be effectively imparted thereto, so that the melt viscosity can be further reduced. It is preferable to have a curable reactive group on the surface.
  • the curable resin composition of the first aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc and a hydrated oxide of titanium.
  • perovskite-type compound to be coated examples include barium titanate, calcium titanate, strontium titanate, barium zirconate, calcium zirconate, strontium zirconate, and composite oxides containing these as main components. Among them, it is preferable to use barium titanate, calcium titanate, strontium titanate, calcium zirconate, strontium zirconate, or a composite oxide containing these as a main component.
  • the perovskite compound refers to a compound represented by ABO 3 (A and B are divalent and tetravalent metal ions, and O is an oxygen ion).
  • perovskite-type compounds include BT-03, CT-03, ST-03, CZ-03, SZ-03, CZ-03, etc., manufactured by Sakai Chemical Industry Co., Ltd.
  • the method of coating the perovskite compound is not particularly limited, but as a method of coating the perovskite compound with a hydrated oxide of silicon, for example, an aqueous solution of an alkali silicate is added to a water slurry of the perovskite compound to prepare the perovskite compound.
  • an aqueous solution of an alkali silicate is added to a water slurry of the perovskite compound to prepare the perovskite compound.
  • silicic acid By generating silicic acid on the surface and then adding mineral acid to the slurry, silicic acid can be decomposed into hydrated oxides of silicon, and hydrated oxides of silicon can be deposited on the surface of the perovskite-type compound.
  • the amount of the perovskite-type compound in the water slurry is not particularly limited, but is usually 50 to 200 g / l.
  • alkali silicate to be added to the water slurry as described above specifically, sodium silicate, potassium silicate or the like is used, and its concentration is usually 10 to 200 g / l in terms of perovskite type compound.
  • Hydrochloric acid, nitric acid, sulfuric acid and the like can be used as the mineral acid.
  • the perovskite compound As a method of coating the perovskite compound with a hydrated oxide of aluminum, for example, after adding an aqueous solution of a water-soluble aluminum compound such as sodium aluminate to a water slurry of the perovskite compound, neutralization with an alkali or an acid Thereby, a hydrated oxide of aluminum can be deposited on the surface of the perovskite compound.
  • the amount of the perovskite-type compound in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate.
  • As the alkali sodium hydroxide, potassium hydroxide, ammonia, and as the acid, hydrochloric acid, nitric acid, and the like are used.
  • the amount to be added is an amount by which the water-soluble aluminum compound can form a hydrated oxide of aluminum. Is 7 ⁇ 0.5.
  • the perovskite compound As a method of coating the perovskite compound with a hydrated oxide of zirconium, for example, after adding an aqueous solution of a water-soluble zirconium compound such as zirconium oxychloride to a water slurry of the perovskite compound, neutralization with an alkali or an acid Thereby, a hydrated oxide of zirconium can be deposited on the surface of the perovskite compound.
  • the amount of the perovskite-type compound in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate.
  • the alkali sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zirconium compound can form a hydrated oxide of zirconium, and the pH is preferably 7 ⁇ 0.5. is there.
  • the perovskite compound As a method of coating the perovskite compound with a hydrated oxide of zinc, for example, after adding an aqueous solution of a water-soluble zinc compound such as zinc sulfate to a water slurry of the perovskite compound, neutralization with an alkali or an acid
  • the hydrated oxide of zinc can be deposited on the surface of the perovskite compound.
  • the amount of the perovskite-type compound in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate.
  • the alkali sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zinc compound can form a hydrated oxide of zinc, and the pH is preferably 7 ⁇ 0.5. is there.
  • the perovskite compound As a method of coating the perovskite compound with a hydrated oxide of titanium, for example, by adding an aqueous solution of a water-soluble titanium such as titanyl sulfate to a water slurry of the perovskite compound, and neutralizing with an alkali or an acid, A hydrated oxide of titanium can be deposited on the surface of the perovskite compound.
  • the amount of the perovskite-type compound in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate.
  • As the acid hydrochloric acid, nitric acid or the like is used, and the amount to be added is such that the above water-soluble titanium compound can form a hydrated oxide of titanium, and the pH is preferably 7 ⁇ 0.5.
  • the coating with at least one of a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc, and a hydrated oxide of titanium comprises a perovskite compound 100
  • the hydrated oxide such as silicon is preferably coated with 1 to 40 parts by mass, more preferably 3 to 20 parts by mass, with respect to parts by mass. By coating with 1 part by mass or more, it is possible to obtain a cured product which is more excellent in dispersibility of the perovskite compound in the curable resin and in which the adhesion is less likely to decrease after the HAST treatment.
  • the coated perovskite compound is preferably a perovskite compound coated with a hydrated oxide of silicon and a hydrated oxide of aluminum. It is preferable that the coated perovskite compound has a coating layer made of a hydrated oxide of silicon and a coating layer made of a hydrated oxide of aluminum in this order.
  • the coated perovskite compound has a coating layer made of a hydrated oxide of silicon and a coating layer made of a hydrated oxide of aluminum in this order.
  • the curable reactive group is not particularly limited as long as it is a group that undergoes a curing reaction with a component (for example, a curable resin or an alkali-soluble resin) blended in the curable resin composition. It may be a thermosetting reactive group.
  • the photocurable reactive group include a methacryl group, an acrylic group, a vinyl group, and a styryl group.
  • thermosetting reactive group examples include an epoxy group, an amino group, a hydroxyl group, a carboxyl group, an isocyanate group, an imino group, and oxetanyl.
  • the method for introducing a curable reactive group on the surface of the coated perovskite compound is not particularly limited, and may be introduced using a known and commonly used method, and a surface treating agent having a curable reactive group, for example, a curable
  • the surface of the coated perovskite compound may be treated with a coupling agent having a reactive group as an organic group.
  • a coupling agent a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used.
  • a silane coupling agent is preferable.
  • the dispersibility of the perovskite compound can be further improved.
  • the curable reactive group that the coated perovskite compound has on the surface may be a photocurable reactive group when the curable resin composition of the first aspect of the present invention contains a photocurable resin.
  • a thermosetting resin when contained, it is preferably a thermosetting reactive group.
  • the coated perovskite compound preferably has an average particle size of 0.01 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m. Since the perovskite-type compound has a high refractive index, in the case of a photocurable composition, a smaller average particle diameter is preferable because it is excellent in deep part curability. On the other hand, from the viewpoints of high reflectivity and opacity, a larger average particle diameter is preferable. Further, the maximum particle diameter (D100) is preferably 5 ⁇ m or less. A smaller one suppresses sedimentation.
  • the average particle diameter of the perovskite compound is an average particle diameter (D50) including not only the particle diameter of the primary particles but also the particle diameter of the secondary particles (aggregates). It is a value of D50 measured by the method.
  • D50 average particle diameter
  • the average particle diameter of the coated perovskite compound may be adjusted.
  • the compound is preliminarily dispersed by a bead mill or a jet mill.
  • the coated perovskite compound is preferably compounded in a slurry state. By compounding in a slurry state, high dispersion can be easily achieved, aggregation is prevented, and handling is facilitated.
  • the coated perovskite compound can be used alone or in combination of two or more.
  • the compounded amount of the coated perovskite compound is large, and it is possible to obtain a cured product excellent in adhesion to a substrate even when the resin component is relatively small.
  • the amount of the coated perovskite compound may be 20% by volume or more, or even 25% by volume or more based on the total solid content of the composition.
  • the dielectric constant can be increased as the amount of the coated perovskite compound increases. Preferably, it is at least 30% by volume.
  • the upper limit is, for example, 60% by volume from the viewpoint of the properties of the cured product and handling.
  • the average particle size is 0.5 ⁇ m or more, it is preferably 35% by volume or more.
  • the compounding amount of the coated perovskite-type compound is 30 to 90% by mass in the total solid content of the composition, because the larger the compounding amount, the higher the dielectric constant can be. Is preferred.
  • the curable resin composition of the second aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium.
  • a curable resin composition comprising titanium oxide particles coated with at least one of the above and a curable resin, wherein the coated titanium oxide particles have a curable reactive group on the surface. It is characterized by the following.
  • coated titanium oxide particles having a curable reactive group on the surface (hereinafter, also simply referred to as “coated titanium oxide particles”), excellent adhesion to the substrate is obtained, and the surface of the substrate is A cured product having a low roughness and a small decrease in adhesion to a low-profile substrate made of a low-polarity material can be obtained. It is preferable that the coated titanium oxide particles are coated with at least a hydrated oxide of aluminum because a decrease in adhesion can be further suppressed.
  • the problem of the adhesion is particularly remarkable when the blending amount of the titanium oxide particles is large, but according to the second aspect of the present invention, when the blending amount of the coated titanium oxide particles is large, for example, Even if the content is 25% by volume or more based on the total solid content of the composition, a cured product having excellent adhesion to a substrate can be obtained. That is, according to the second aspect of the present invention, it is possible to simultaneously achieve the contradictory properties of adhesion to a substrate and high dielectric constant and low dielectric loss tangent due to high filling of titanium oxide particles.
  • the above-described substrate can be mixed with the HAST process by mixing the coated titanium oxide particles. After that, a cured product having excellent adhesion can be obtained.
  • the coated titanium oxide particles may be a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc, and a hydrated oxide of titanium. Since the resin is covered with one or more kinds, coarse particles are hardly generated in the curable resin, and the insulation reliability is particularly excellent even when a fine-patterned circuit board is used. In addition, generation of cracks starting from aggregates can also be suppressed.
  • the filler has a curable reactive group on the surface, it is possible to strengthen the bond between the filler and the curable resin. In a severe environment, the adhesion decreased due to hydrolysis and the like.
  • the coated titanium oxide particles have a curable reactive group on the surface
  • hydration of silicon is caused between the titanium oxide particles and the curable reactive group. Since at least one of oxides, hydrated oxides of aluminum, hydrated oxides of zirconium, hydrated oxides of zinc, and hydrated oxides of titanium are interposed, even in a HAST environment It is also confirmed that the decrease in adhesion due to hydrolysis is small. That is, since the wettability with the curable resin can be maintained even after the HAST treatment, an excellent effect that the adhesion is hardly reduced can be obtained. Further, it is possible to improve the physical properties of the cured product due to the curable reactive group, for example, to reduce the CTE.
  • the hydroxyl groups based on hydrated oxides are increased on the surface of the titanium oxide particles, and the curable reactive groups are effectively imparted thereto, so that the melt viscosity is further reduced. can do.
  • the curable resin composition of the second aspect of the present invention may have an acid value at a solid content of 25 mgKOH / g or less, and further may have an acid value of 20 mgKOH / g or less.
  • a higher acid value is advantageous in adhesion since a large amount of hydroxyl groups remain after curing, but from the viewpoint of a low dielectric loss tangent, a lower acid value is preferable.
  • the adhesion is good by including the coated titanium oxide particles.
  • the curable resin composition of the second aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc and a hydrated oxide of titanium. And titanium oxide particles coated with at least one of them. The coated titanium oxide particles further have a curable reactive group on the surface.
  • the titanium oxide particles to be coated are not particularly limited, and known and commonly used titanium oxide particles that can be used as an inorganic filler or a white pigment may be used.
  • the titanium oxide may be any one of a rutile type, an anatase type and a ramsdellite type structure. That is, the titanium oxide particles to be coated may be appropriately selected from the viewpoints of reflectance, coloring property, concealing property, moldability and stability, and may be of rutile type or anatase type.
  • the ramsdellite type titanium oxide is obtained by subjecting the ramsdellite type Li 0.5 TiO 2 to a lithium desorption treatment by chemical oxidation.
  • the method of coating the titanium oxide particles is not particularly limited, but examples of a method of coating the titanium oxide particles with a hydrated oxide of silicon include, for example, adding an aqueous alkali silicate solution to a water slurry of the titanium oxide particles to form the titanium oxide particles.
  • a method of coating the titanium oxide particles with a hydrated oxide of silicon include, for example, adding an aqueous alkali silicate solution to a water slurry of the titanium oxide particles to form the titanium oxide particles.
  • the silicic acid can be decomposed into hydrated oxides of silicon and the hydrated oxides of silicon can be deposited on the surfaces of the titanium oxide particles.
  • the amount of the titanium oxide particles in the water slurry is not particularly limited, but is usually 70 to 150 g / l.
  • alkali silicate to be added to the above-mentioned water slurry specifically, sodium silicate, potassium silicate or the like is used, and its concentration is usually 10 to 200 g / l in terms of titanium oxide particles.
  • Hydrochloric acid, nitric acid, sulfuric acid and the like can be used as the mineral acid.
  • an aqueous solution of a water-soluble aluminum compound such as sodium aluminate is added to a water slurry of titanium oxide particles, and then neutralized with an alkali or an acid.
  • a hydrated oxide of aluminum can be deposited on the surface of the titanium oxide particles.
  • the amount of the titanium oxide particles in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate.
  • As the alkali, sodium hydroxide, potassium hydroxide, ammonia, and as the acid, hydrochloric acid, nitric acid, and the like are used.
  • the amount to be added is an amount by which the water-soluble aluminum compound can form a hydrated oxide of aluminum. Is 7 ⁇ 0.5.
  • titanium oxide particles with a hydrated oxide of zirconium for example, after adding an aqueous solution of a water-soluble zirconium compound such as zirconium oxychloride to a water slurry of titanium oxide particles, neutralization with an alkali or an acid Thereby, the hydrated oxide of zirconium can be deposited on the surface of the titanium oxide particles.
  • the amount of the titanium oxide particles in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate.
  • the alkali sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zirconium compound can form a hydrated oxide of zirconium, and the pH is preferably 7 ⁇ 0.5. is there.
  • titanium oxide particles with a hydrated oxide of zinc for example, by adding an aqueous solution of a water-soluble zinc compound such as zinc sulfate to a water slurry of titanium oxide particles, and then neutralizing with an alkali or acid.
  • the hydrated oxide of zinc can be deposited on the surface of the titanium oxide particles.
  • the amount of the titanium oxide particles in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate.
  • the alkali sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zinc compound can form a hydrated oxide of zinc, and the pH is preferably 7 ⁇ 0.5. is there.
  • titanium oxide particles with a hydrated oxide of titanium for example, by adding an aqueous solution of a water-soluble titanium such as titanyl sulfate to a water slurry of titanium oxide particles, and then neutralizing with an alkali or an acid, A hydrated oxide of titanium can be deposited on the surface of the titanium oxide particles.
  • the amount of the titanium oxide particles in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate.
  • the acid hydrochloric acid, nitric acid or the like is used, and the amount to be added is such that the above water-soluble titanium compound can form a hydrated oxide of titanium, and the pH is preferably 7 ⁇ 0.5.
  • the coating with at least one of a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc, and a hydrated oxide of titanium is performed using titanium oxide particles 100
  • the hydrated oxide such as silicon is preferably coated with 1 to 40 parts by mass, more preferably 3 to 20 parts by mass, with respect to parts by mass. By coating with 1 part by mass or more, it is possible to obtain a cured product which is more excellent in dispersibility of the titanium oxide particles in the curable resin and in which the adhesion is less likely to decrease after the HAST treatment.
  • the coated titanium oxide particles are preferably titanium oxide particles coated with a hydrated oxide of silicon and a hydrated oxide of aluminum.
  • the coated titanium oxide particles preferably have a coating layer made of a hydrated oxide of silicon and a coating layer made of a hydrated oxide of aluminum in this order.
  • the curable reactive group is not particularly limited as long as it is a group that undergoes a curing reaction with a component (for example, a curable resin or an alkali-soluble resin) blended in the curable resin composition. It may be a photocurable reactive group or a thermosetting reactive group.
  • the photocurable reactive group include a methacryl group, an acrylic group, a vinyl group, and a styryl group.
  • the thermosetting reactive group include an epoxy group, an amino group, a hydroxyl group, a carboxyl group, an isocyanate group, an imino group, and oxetanyl.
  • the method for introducing a curable reactive group on the surface of the coated titanium oxide particles is not particularly limited, and may be introduced using a known and commonly used method, and a surface treatment agent having a curable reactive group, for example, a curable
  • the surface of the coated titanium oxide particles may be treated with a coupling agent having a reactive group as an organic group.
  • a coupling agent a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used.
  • a silane coupling agent is preferable.
  • the curable reactive group that the coated titanium oxide particles have on the surface may be a photocurable reactive group when the curable resin composition of the second aspect of the present invention contains a photocurable resin.
  • a thermosetting resin when contained, it is preferably a thermosetting reactive group.
  • the average particle diameter of the coated titanium oxide particles is preferably 0.01 to 10 ⁇ m, and more preferably 0.01 to 1 ⁇ m. Since titanium oxide has a high refractive index, in the case of a photocurable composition, it is preferable that the average particle diameter is small because the composition is excellent in deep part curability. On the other hand, from the viewpoints of high reflectivity and opacity, a larger average particle diameter is preferable. Further, the maximum particle diameter (D100) is preferably 5 ⁇ m or less. A smaller one suppresses sedimentation.
  • the average particle diameter of the titanium oxide particles is an average particle diameter (D50) including not only the particle diameter of the primary particles but also the particle diameter of the secondary particles (aggregates), and It is a value of D50 measured by the method.
  • D50 average particle diameter
  • the coated titanium oxide particles may be adjusted in average particle diameter, and for example, are preferably preliminarily dispersed by a bead mill or a jet mill. Further, the coated titanium oxide particles are preferably blended in a slurry state. By blending in a slurry state, high dispersion can be easily achieved, aggregation is prevented, and handling is facilitated.
  • the absolute value of the zeta potential of the coated titanium oxide particles is 15 mV or more.
  • the absolute value of the surface potential of titanium oxide is increased, the dispersibility is improved by separating from the isoelectric point, the wettability with the curable resin is improved, and the adhesion to the substrate is further improved by considering the Coulomb force. improves. More preferably, it is 25 mV or more.
  • each component material of the semiconductor package such as a low-polarity interlayer insulating material or a sealing material
  • the surface of a silicon wafer or a glass substrate wafer often have a negative zeta potential, and from the viewpoint of adhesion to the substrate,
  • the zeta potential of the coated titanium oxide particles is preferably positive.
  • the titanium oxide particles are subjected to a surface treatment so as to increase the positive charge, so that a low-polarity material can be obtained without applying an adhesion promoter (AP: Adhesion @ Promoter) on those substrates. Good adhesion to a low-profile substrate made of (Low @ Df material) or a substrate free from roughening can be obtained.
  • AP Adhesion @ Promoter
  • the coated titanium oxide particles can be used alone or in combination of two or more.
  • the compounded amount of the coated titanium oxide particles is large, and it is possible to obtain a cured product having excellent adhesion to the substrate even when the resin component is relatively small.
  • the compounding amount of the coated titanium oxide particles may be 25% by volume or more, and more preferably 30% by volume or more, based on the total solid content of the composition.
  • the upper limit is, for example, 50% by volume from the viewpoint of the properties of the cured product and handling.
  • the average particle size is 0.5 ⁇ m or more, it is preferably 35% by volume or more.
  • the blending amount of the coated titanium oxide particles varies depending on the average particle diameter. As described above, the larger the blending amount, the higher the dielectric constant can be. Therefore, the blending amount is, for example, 30 to 80% by mass. .
  • the curable resin composition of the third aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium.
  • a filler having a thermal conductivity of 15 W / m ⁇ k or more coated with at least one of them hereinafter, also referred to as “the coated filler having a high thermal conductivity” and a curable resin; It is characterized by the following.
  • the problem of the adhesion is particularly remarkable when the content of the high thermal conductivity filler is large, but according to the third embodiment of the present invention, the content of the coated high thermal conductivity filler is large. In this case, for example, even if the content is 30% by volume or more based on the total solid content of the composition, a cured product excellent in adhesion to a substrate can be obtained.
  • the filling amount of the filler having a high thermal conductivity is large, adhesion to a substrate having a roughening free or low roughened surface having no anchor effect (a so-called low profile substrate) or a substrate made of a low-polarity material is particularly poor.
  • the above-described substrate is mixed by adding the filler having a high thermal conductivity.
  • a cured product having excellent adhesion can be obtained.
  • the coated high thermal conductivity filler is a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc and a hydrated oxide of titanium. Since it is covered with at least one kind, coarse particles are hardly generated in the curable resin, and the insulation reliability is particularly excellent even when a fine-patterned circuit board is used. In addition, generation of cracks starting from aggregates can also be suppressed.
  • the coated high thermal conductivity filler preferably has a curable reactive group on the surface.
  • a curable reactive group on the surface.
  • HAST high thermal conductivity
  • the coated high thermal conductivity filler has a curable reactive group on the surface, between the high thermal conductivity filler and the curable reactive group, Since at least one of a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium is present, It has also been confirmed that even under a HAST environment, a decrease in adhesion due to hydrolysis is small. That is, since the wettability with the curable resin can be maintained even after the HAST treatment, an excellent effect that the adhesion is hardly reduced can be obtained. Further, it is possible to improve the physical properties of the cured product due to the curable reactive group, for example, to reduce the CTE.
  • the number of hydroxyl groups based on the hydrated oxide is increased on the surface of the filler having a high thermal conductivity, and the melt viscosity can be further reduced by effectively providing a curable reactive group thereto. Therefore, it is preferable to have a curable reactive group on the surface.
  • the curable resin composition of the third aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc and a hydrated oxide of titanium.
  • a filler coated with at least one of them and having a thermal conductivity of 15 W / m ⁇ k or more is included.
  • Examples of the filler having a thermal conductivity of 15 W / mk or more include particles such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, magnesium oxide, aluminum oxide, spinel, carbon nanotube, graphene, diamond, and metal powder. Is mentioned. Among these, boron nitride, aluminum nitride, silicon nitride, silicon carbide, magnesium oxide, aluminum oxide, and spinel having insulating properties are preferable.
  • the thermal conductivity of the high thermal conductivity filler to be coated is preferably 15 W / m ⁇ k or more, more preferably 20 W / m ⁇ k or more.
  • the upper limit of the thermal conductivity is not particularly limited, but is usually 500 W / m ⁇ k or less.
  • the method of coating the high thermal conductivity filler is not particularly limited.However, as a method of coating the high thermal conductivity filler with a hydrated oxide of silicon, for example, an aqueous solution of an alkali silicate is added to a water slurry of the high thermal conductivity filler. In addition, silicic acid is generated on the surface of the high thermal conductivity filler, and then the mineral acid is added to the slurry to decompose the silicic acid into hydrated oxides of silicon and to form silicon water on the surface of the high thermal conductivity filler. A hydrated oxide can be deposited.
  • the amount of the filler having a high thermal conductivity in the water slurry is not particularly limited, but is usually 70 to 150 g / l.
  • alkali silicate to be added to the above-mentioned water slurry specifically, sodium silicate, potassium silicate or the like is used, and its concentration is usually 10 to 200 g / l in terms of a filler having a high thermal conductivity. It is. Hydrochloric acid, nitric acid, sulfuric acid and the like can be used as the mineral acid.
  • the filler having a high thermal conductivity with a hydrated oxide of aluminum for example, after adding an aqueous solution of a water-soluble aluminum compound such as sodium aluminate to a water slurry of the filler having a high thermal conductivity, an alkali or an acid is used. By neutralizing, hydrated oxide of aluminum can be deposited on the surface of the filler having high thermal conductivity.
  • the amount of the filler having a high thermal conductivity in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate.
  • the alkali sodium hydroxide, potassium hydroxide, ammonia, and as the acid, hydrochloric acid, nitric acid, and the like are used, and the amount to be added is an amount by which the water-soluble aluminum compound can form a hydrated oxide of aluminum. Is 7 ⁇ 0.5.
  • a method of coating a filler having a high thermal conductivity with a hydrated oxide of zirconium for example, after adding an aqueous solution of a water-soluble zirconium compound such as zirconium oxychloride to a water slurry of the filler having a high thermal conductivity, an alkali or an acid is used. By neutralization, hydrated oxide of zirconium can be deposited on the surface of the filler having high thermal conductivity.
  • the amount of the filler having a high thermal conductivity in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate.
  • the alkali sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zirconium compound can form a hydrated oxide of zirconium, and the pH is preferably 7 ⁇ 0.5. is there.
  • a method of coating a filler having a high thermal conductivity with a hydrated oxide of zinc for example, after adding an aqueous solution of a water-soluble zinc compound such as zinc sulfate to a water slurry of the filler having a high thermal conductivity, the solution is neutralized with an alkali or an acid.
  • the hydrated oxide of zinc can be deposited on the surface of the filler having a high thermal conductivity.
  • the amount of the filler having a high thermal conductivity in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate.
  • the alkali sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zinc compound can form a hydrated oxide of zinc, and the pH is preferably 7 ⁇ 0.5. is there.
  • a method of coating a filler having a high thermal conductivity with a hydrated oxide of titanium for example, after adding an aqueous solution of a water-soluble titanium such as titanyl sulfate to a water slurry of the filler having a high thermal conductivity, neutralizing with an alkali or an acid
  • the hydrated oxide of titanium can be deposited on the surface of the filler having a high thermal conductivity.
  • the amount of the filler having a high thermal conductivity in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate.
  • As the acid, hydrochloric acid, nitric acid or the like is used, and the amount to be added is such that the above water-soluble titanium compound can form a hydrated oxide of titanium, and the pH is preferably 7 ⁇ 0.5.
  • the coating with at least one of hydrated oxide of silicon, hydrated oxide of aluminum, hydrated oxide of zirconium, hydrated oxide of zinc and hydrated oxide of titanium has high thermal conductivity.
  • the hydrated oxide such as silicon is preferably coated with 1 to 40 parts by mass, more preferably 3 to 20 parts by mass, based on 100 parts by mass of the filler. By coating with 1 part by mass or more, it is possible to obtain a cured product which is more excellent in dispersibility of a filler having a high thermal conductivity in a curable resin and in which the adhesion is less likely to decrease after HAST treatment.
  • the coated high thermal conductivity filler is preferably a high thermal conductivity filler coated with a hydrated oxide of silicon and a hydrated oxide of aluminum. Further, the coated high thermal conductivity filler preferably has a coating layer made of a hydrated oxide of silicon and a coating layer made of a hydrated oxide of aluminum in this order.
  • the curable reactive group is not particularly limited as long as it is a group that undergoes a curing reaction with a component (for example, a curable resin or an alkali-soluble resin) blended in the curable resin composition. It may be a thermosetting reactive group.
  • the photocurable reactive group include a methacryl group, an acrylic group, a vinyl group, and a styryl group.
  • thermosetting reactive group examples include an epoxy group, an amino group, a hydroxyl group, a carboxyl group, an isocyanate group, an imino group, and oxetanyl.
  • the method for introducing a curable reactive group on the surface of the coated high thermal conductivity filler is not particularly limited, and may be introduced using a known and commonly used method, and a surface treating agent having a curable reactive group, for example, The surface of the coated high thermal conductivity filler may be treated with a coupling agent having a curable reactive group as an organic group.
  • a silane coupling agent a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used. Especially, a silane coupling agent is preferable. Further, by treating the surface of the coated high thermal conductivity filler, the dispersibility of the high thermal conductivity filler can be further improved.
  • the curable reactive group that the coated high thermal conductivity filler has on the surface is a photocurable reactive group when the curable resin composition of the third aspect of the present invention contains a photocurable resin.
  • a thermosetting resin is contained, it is preferably a thermosetting reactive group.
  • the coated high thermal conductivity filler preferably has an average particle size of 0.01 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m. Since the filler having a high thermal conductivity has a high refractive index, in the case of a photocurable composition, it is preferable that the average particle diameter is small because the curability in the deep part is excellent. On the other hand, from the viewpoints of thermal conductivity and opacity, it is preferable that the average particle diameter is large. Further, the maximum particle diameter (D100) is preferably 5 ⁇ m or less. A smaller one suppresses sedimentation.
  • the average particle diameter of the filler having a high thermal conductivity is an average particle diameter (D50) including not only the particle diameter of the primary particles but also the particle diameter of the secondary particles (aggregates), It is a value of D50 measured by a laser diffraction method.
  • D50 average particle diameter
  • a laser diffraction method there is Microtrac MT3300EXII manufactured by Nikkiso Co., Ltd.
  • the coated high thermal conductivity filler may have an average particle size adjusted, and for example, is preferably preliminarily dispersed by a bead mill or a jet mill. Further, the coated high thermal conductivity filler is preferably compounded in a slurry state. By compounding in a slurry state, high dispersion can be easily achieved, aggregation is prevented, and handling is facilitated.
  • the coated high thermal conductivity filler may be used alone or in combination of two or more.
  • the compounding amount of the coated high thermal conductivity filler may be 20% by volume or more, and more preferably 25% by volume or more based on the total solid content of the composition. Preferably, it is at least 30% by volume.
  • the upper limit is, for example, 60% by volume from the viewpoint of the properties of the cured product and handling.
  • the average particle size is 0.5 ⁇ m or more, it is preferably 35% by volume or more.
  • curable resin contained in the curable resin composition of the first to third aspects of the present invention and each component that can be contained in the curable resin composition of the first to third aspects of the present invention will be described in detail. Will be described.
  • the curable resin compositions according to the first to third aspects of the present invention contain a curable resin.
  • the curable resin used in the first to third aspects of the present invention is a thermosetting resin or a photocurable resin, and may be a mixture thereof.
  • the compounding amount of the curable resin is, for example, 1 to 50% by mass based on the total solid content of the composition.
  • a curable resin having a high ultraviolet absorption rate is used in the case of an alkali development type. It is preferred to include.
  • the curable resin having a high ultraviolet absorptivity By including a curable resin having a high ultraviolet absorptivity, the resolution can be easily controlled, and the resolution can be improved.
  • Examples of the curable resin having a high ultraviolet absorptivity include those having a plurality of aromatic rings.
  • thermosetting resin When the curable resin compositions of the first to third aspects of the present invention contain a thermosetting resin, the heat resistance of the cured product is improved, and the adhesion to the base is improved.
  • thermosetting resins such as isocyanate compounds, blocked isocyanate compounds, amino resins, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, epoxy compounds, polyfunctional oxetane compounds, and episulfide resins can be used as the thermosetting resin. .
  • thermosetting resin can be used alone or in combination of two or more.
  • the epoxy compound is a compound having an epoxy group, and any of conventionally known compounds can be used. Examples include a polyfunctional epoxy compound having a plurality of epoxy groups in a molecule. Note that a hydrogenated epoxy compound may be used.
  • polyfunctional epoxy compound examples include epoxidized vegetable oil; bisphenol A epoxy resin; hydroquinone epoxy resin; bisphenol epoxy resin; thioether epoxy resin; brominated epoxy resin; novolak epoxy resin; biphenol novolak epoxy resin; Type epoxy resin; hydrogenated bisphenol A type epoxy resin; glycidylamine type epoxy resin; hydantoin type epoxy resin; alicyclic epoxy resin; trihydroxyphenylmethane type epoxy resin; bixylenol type or biphenol type epoxy resin or a mixture thereof; Bisphenol S type epoxy resin; Bisphenol A novolak type epoxy resin; Tetraphenylolethane type epoxy resin; Heterocyclic epoxy resin; Diglycidide Phthalate resin; tetraglycidyl xylenoylethane resin; naphthalene group-containing epoxy resin; epoxy resin having a dicyclopentadiene skeleton; glycidyl methacrylate copolymer epoxy resin; copolymerized epoxy resin of
  • epoxy resins can be used alone or in combination of two or more.
  • a novolak type epoxy resin a bisphenol type epoxy resin, a bixylenol type epoxy resin, a biphenol type epoxy resin, a biphenol novolak type epoxy resin, a naphthalene type epoxy resin or a mixture thereof is particularly preferable.
  • polyfunctional oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether and 1,4-bis [(3- Methyl-3-oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3- Polyfunctional oxetanes such as (oxetanyl) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and their oligomers and copolymers, as well as oxetane alcohol and novolak resins , Poly (p-
  • Examples of the compound having a plurality of cyclic thioether groups in the molecule include bisphenol A type episulfide resin.
  • an episulfide resin in which an oxygen atom of an epoxy group of a novolak type epoxy resin is replaced with a sulfur atom using a similar synthesis method can also be used.
  • amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycoluril compounds, and methylol urea compounds.
  • a polyisocyanate compound can be blended as the isocyanate compound.
  • the polyisocyanate compound include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate and Aromatic polyisocyanates such as 2,4-tolylene isocyanate dimer; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylene bis (cyclohexyl isocyanate) and isophorone diisocyanate; Alicyclic polyisocyanates such as bicycloheptane triisocyanate; and the above-mentioned iso
  • an addition reaction product of an isocyanate compound and an isocyanate blocking agent can be used.
  • the isocyanate compound capable of reacting with the isocyanate blocking agent include the above-described polyisocyanate compounds.
  • the isocyanate blocking agent include a phenol blocking agent; a lactam blocking agent; an active methylene blocking agent; an alcohol blocking agent; an oxime blocking agent; a mercaptan blocking agent; an acid amide blocking agent; Amine blocking agents; imidazole blocking agents; imine blocking agents and the like.
  • the photocurable resin may be any resin that is cured by irradiation with active energy rays and exhibits electrical insulation, and a compound having one or more ethylenically unsaturated groups in the molecule is preferably used.
  • a known and commonly used photosensitive monomer such as a photopolymerizable oligomer or a photopolymerizable vinyl monomer can be used, and a radical polymerizable monomer or a cationic polymerizable monomer may be used.
  • a polymer such as a carboxyl group-containing resin having an ethylenically unsaturated group as described later can be used.
  • the photocurable resin can be used alone or in combination of two or more.
  • a liquid, solid or semi-solid photosensitive (meth) acrylate compound having one or more (meth) acryloyl groups in the molecule at room temperature can be used.
  • the photosensitive (meth) acrylate compound which is liquid at room temperature serves to enhance the photoreactivity of the composition, adjusts the composition to a viscosity suitable for various coating methods, and assists solubility in an alkaline aqueous solution. Also fulfills.
  • Examples of the photopolymerizable oligomer include unsaturated polyester-based oligomers and (meth) acrylate-based oligomers.
  • Examples of the (meth) acrylate oligomer include epoxy (meth) acrylates such as phenol novolak epoxy (meth) acrylate, cresol novolak epoxy (meth) acrylate, and bisphenol-type epoxy (meth) acrylate, urethane (meth) acrylate, and epoxy urethane (meth).
  • photopolymerizable vinyl monomer examples include known and common ones, for example, styrene derivatives such as styrene, chlorostyrene and ⁇ -methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate or vinyl benzoate; vinyl isobutyl ether, vinyl vinyl ethers such as n-butyl ether, vinyl-t-butyl ether, vinyl-n-amyl ether, vinyl isoamyl ether, vinyl-n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, and triethylene glycol monomethyl vinyl ether; acrylamide; Methacrylamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-methoxymethylacrylamide, N-ethoxymethylacryl (Meth) acrylamides such as amide and N-butoxymethylacrylamide; allyl compounds such as triallyl isocyanurate, dial
  • the curable resin compositions according to the first to third aspects of the present invention may contain an alkali-soluble resin.
  • the alkali-soluble resin include a compound having two or more phenolic hydroxyl groups, a carboxyl group-containing resin, a compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups.
  • the alkali-soluble resin is a carboxyl group-containing resin or a phenol resin because the adhesion to the base is improved.
  • the alkali-soluble resin is more preferably a carboxyl group-containing resin because of excellent developability.
  • the carboxyl group-containing resin may be a carboxyl group-containing photosensitive resin having an ethylenically unsaturated group or a carboxyl group-containing resin having no ethylenically unsaturated group.
  • the alkali-soluble resin one kind can be used alone, or two or more kinds can be used in combination.
  • carboxyl group-containing resin examples include the compounds listed below (which may be oligomers or polymers).
  • a carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate and isobutylene.
  • Diisocyanates such as aliphatic diisocyanate, branched aliphatic diisocyanate, alicyclic diisocyanate and aromatic diisocyanate, and carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, and polycarbonate-based polyols and polyether-based A carboxyl group-containing urethane resin obtained by a polyaddition reaction of a diol compound such as a polyol, a polyester polyol, a polyolefin polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, and a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • a diol compound such as a polyol, a polyester polyol, a polyolefin polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol
  • Diisocyanate compounds such as aliphatic diisocyanate, branched aliphatic diisocyanate, alicyclic diisocyanate, and aromatic diisocyanate, and polycarbonate polyol, polyether polyol, polyester polyol, polyolefin polyol, acrylic polyol, bisphenol A
  • a terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with a terminal of a urethane resin by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • a diisocyanate and a bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin and biphenol type epoxy resin; (Meth) acrylate or a partial acid anhydride modified product thereof, a carboxyl group-containing urethane resin obtained by a polyaddition reaction of a carboxyl group-containing dialcohol compound and a diol compound.
  • a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride
  • a carboxyl group-containing polyester resin obtained by reacting a dicarboxylic acid with a polyfunctional oxetane resin and adding a dibasic acid anhydride to a generated primary hydroxyl group.
  • a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide is reacted with an unsaturated group-containing monocarboxylic acid to obtain a reaction product.
  • a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate is reacted with an unsaturated group-containing monocarboxylic acid to obtain a reaction product.
  • an epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule such as p-hydroxyphenethyl alcohol, and (meth) Reaction with an unsaturated group-containing monocarboxylic acid such as acrylic acid, etc., with respect to the alcoholic hydroxyl group of the obtained reaction product, maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, anhydride A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as adipic acid.
  • Alkali-soluble resins having at least one of an amide imide structure and an imide structure can also be suitably used.
  • the alkali-soluble resin the following formula (1) or (2):
  • An amide imide resin having at least one structure represented by and an alkali-soluble functional group can also be suitably used.
  • a resin having an imide bond directly bonded to a cyclohexane ring or a benzene ring By including a resin having an imide bond directly bonded to a cyclohexane ring or a benzene ring, a cured product excellent in toughness and heat resistance can be obtained.
  • the amide imide resin having the structure represented by (1) is excellent in light transmittance, so that the resolution can be improved.
  • the amide imide resin preferably has transparency.
  • the transmittance of light having a wavelength of 365 nm is preferably 70% or more in a 25 ⁇ m dry coating film of the amide imide resin.
  • the content of the structures of the formulas (1) and (2) in the amide imide resin is preferably from 10 to 70% by mass.
  • a resin By using such a resin, it is possible to obtain a cured product that is excellent in solvent solubility and excellent in heat resistance, physical properties such as tensile strength and elongation, and dimensional stability.
  • it is 10 to 60% by mass, more preferably 20 to 50% by mass.
  • the amide imide resin having the structure represented by the formula (1) particularly, the amide imide resin represented by the formula (3A) or (3B) (In the formulas (3A) and (3B), R is a monovalent organic group, preferably H, CF 3 or CH 3 , X is a direct bond or a divalent organic group, and It is preferable to use a resin having a structure represented by a bond, an alkylene group such as CH 2 or C (CH 3 ) 2 ) because of excellent physical properties such as tensile strength and elongation and dimensional stability.
  • R is a monovalent organic group, preferably H, CF 3 or CH 3
  • X is a direct bond or a divalent organic group
  • amide imide resin a resin having a structure of Formulas (3A) and (3B) in an amount of 10 to 100% by mass can be suitably used. More preferably, the content is 20 to 80% by mass.
  • an amide imide resin containing the structures of formulas (3A) and (3B) in an amount of 5 to 100 mol% can be preferably used from the viewpoint of solubility and mechanical properties. It is more preferably 5 to 98 mol%, further preferably 10 to 98 mol%, and particularly preferably 20 to 80 mol%.
  • the amide imide resin having the structure represented by the formula (2) is particularly preferably a compound represented by the formula (4A) or (4B) (In the formulas (4A) and (4B), R is a monovalent organic group, preferably H, CF 3 or CH 3 , and X is a direct bond or a divalent organic group.
  • a resin having a structure represented by a bond, preferably an alkylene group such as CH 2 or C (CH 3 ) 2 ) can provide a cured product having excellent mechanical properties such as tensile strength and elongation. Is preferred.
  • amide imide resin a resin having the structure of formulas (4A) and (4B) in an amount of 10 to 100% by mass can be suitably used. More preferably, the content is 20 to 80% by mass.
  • an amide imide resin containing the structures of formulas (4A) and (4B) in an amount of 2 to 95 mol% can also be preferably used because of exhibiting good mechanical properties. More preferably, it is 10 to 80 mol%.
  • the amide imide resin can be obtained by a known method.
  • the amide imide resin having the structure (1) can be obtained, for example, by using a diisocyanate compound having a biphenyl skeleton and cyclohexane polycarboxylic anhydride.
  • diisocyanate compound having a biphenyl skeleton examples include 4,4′-diisocyanate-3,3′-dimethyl-1,1′-biphenyl and 4,4′-diisocyanate-3,3′-diethyl-1,1′-biphenyl 4,4'-diisocyanate-2,2'-dimethyl-1,1'-biphenyl, 4,4'-diisocyanate-2,2'-diethyl-1,1'-biphenyl, 4,4'-diisocyanate 3,3′-ditrifluoromethyl-1,1′-biphenyl, 4,4′-diisocyanate-2,2′-ditrifluoromethyl-1,1′-biphenyl and the like.
  • an aromatic polyisocyanate compound such as diphenylmethane diisocyanate may be used.
  • cyclohexanepolycarboxylic anhydride examples include cyclohexanetricarboxylic anhydride, cyclohexanetetracarboxylic anhydride and the like.
  • the amide imide resin having the structure (2) can be obtained, for example, by using the diisocyanate compound having the biphenyl skeleton and the aqueous polycarboxylic acid having two acid anhydride groups.
  • aqueous polycarboxylic acid having two acid anhydride groups examples include pyromellitic dianhydride, benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride, diphenylether-3,3', 4,4'-tetracarboxylic dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, biphenyl-3,3 ', 4,4'-tetracarboxylic dianhydride, biphenyl- 2,2 ', 3,3'-tetracarboxylic dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 1,1 -Bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, 2,2-bis
  • the amide imide resin further has an alkali-soluble functional group in addition to the structures of the above formulas (1) and (2).
  • an alkali-soluble functional group By having an alkali-soluble functional group, a resin composition capable of alkali development can be obtained.
  • the alkali-soluble functional group includes a carboxyl group, a phenolic hydroxyl group, a sulfo group, and the like, and preferably a carboxyl group.
  • amide imide resin examples include Unidick V-8000 series and Unidick EQG-1170 manufactured by DIC, and SOXR-U manufactured by Nippon Advanced Paper Industry.
  • Examples of the compound having a phenolic hydroxyl group include a compound having a biphenyl skeleton or a phenylene skeleton or both skeletons, phenol, orthocresol, paracresol, metacresol, 2,3-xylenol, 2,4-xylenol, , 5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, catechol, resorcinol, hydroquinone, methylhydroquinone, 2,6-dimethylhydroquinone, trimethylhydroquinone, pyrogallol, phloroglucinol, etc. And phenolic resins having various skeletons.
  • Examples of the compound having a phenolic hydroxyl group include phenol novolak resin, alkylphenol volak resin, bisphenol A novolak resin, dicyclopentadiene-type phenol resin, Xylok-type phenol resin, terpene-modified phenol resin, polyvinylphenols, and bisphenol F And known phenol resins such as bisphenol S type phenol resin, poly-p-hydroxystyrene, condensate of naphthol and aldehyde, and condensate of dihydroxynaphthalene and aldehyde.
  • phenolic resins include, for example, HF1H60 (manufactured by Meiwa Kasei Co., Ltd.), phenolite TD-2090, phenolite TD-2131 (manufactured by Dai Nippon Printing Co., Ltd.), Vesmall CZ-256-A (manufactured by DIC), Shoyounol BRG-555, SHYONORU BRG-556 (manufactured by Showa Denko KK), CGR-951 (manufactured by Maruzen Sekiyu KK), and polyvinyl phenol CST70, CST90, S-1P, S-2P (manufactured by Maruzen Sekiyu KK).
  • the acid value of the alkali-soluble resin is suitably in the range of 40 to 200 mgKOH / g, and more preferably in the range of 45 to 120 mgKOH / g.
  • the acid value of the alkali-soluble resin is 40 mgKOH / g or more, alkali development becomes easy, and on the other hand, a normal cured product pattern of 200 mgKOH / g or less is easily drawn, which is preferable.
  • the weight average molecular weight of the alkali-soluble resin varies depending on the resin skeleton, but is preferably in the range of 1,500 to 150,000, more preferably 1,500 to 100,000.
  • weight average molecular weight is 1,500 or more, tack-free performance is good, the moisture resistance of the coating film after exposure is good, film loss during development can be suppressed, and a decrease in resolution can be suppressed.
  • the weight average molecular weight is 150,000 or less, the developability is good and the storage stability is excellent.
  • the compounding amount of the alkali-soluble resin is, for example, 5 to 50% by mass based on the total solid content of the composition.
  • the curable resin composition according to the first to third aspects of the present invention can contain a photoreaction initiator.
  • the photoreaction initiator may be any one that can cure the composition by light irradiation, and may be any one of a photopolymerization initiator that generates radicals by light irradiation and a photobase generator that generates a base by light irradiation. Is preferred.
  • the photoreaction initiator may be a compound that generates both a radical and a base upon irradiation with light.
  • Light irradiation refers to irradiation with ultraviolet light having a wavelength of 350 to 450 nm.
  • photopolymerization initiator examples include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2, 6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6- Trimethylbenzoyl) -phenylphosphine oxide Bisacylphosphine oxides such as 2,6
  • thioxanthones such as thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone and 2,4-diisopropylthioxanthone; anthraquinone, chloroanthraquinone , 2 Anthraquinones such as -methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone and 2-aminoanthraquinone; ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; ethyl-4 Benzoic acid esters such as -dimethylaminobenz
  • the photobase generator generates one or more basic substances that can function as a catalyst for a thermosetting reaction by changing the molecular structure by irradiation with light such as ultraviolet light or visible light, or by cleaving the molecule.
  • the basic substance include a secondary amine and a tertiary amine.
  • photobase generators examples include ⁇ -aminoacetophenone compounds, oxime ester compounds, acyloxyimino compounds, N-formylated aromatic amino compounds, N-acylated aromatic amino compounds, nitrobenzyl carbamate compounds, and alkoxyoxybenzyl carbamates And the like.
  • oxime ester compounds and ⁇ -aminoacetophenone compounds are preferable, and oxime ester compounds are more preferable.
  • Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) is more preferred.
  • ⁇ -aminoacetophenone compound a compound having two or more nitrogen atoms is particularly preferable.
  • One photobase generator may be used alone, or two or more photobase generators may be used in combination.
  • examples of the photobase generator include quaternary ammonium salts.
  • WPBG-018 (trade name: 9-anthrylmethyl @ N, N'-diethylcarbamate) and WPBG-027 (trade name: (E) -1- [3-] manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (2-hydroxyphenyl) -2-propenoyl] piperidine
  • WPBG-082 (trade name: guanidinium 2- (3-benzoylphenyl) propionate)
  • ⁇ WPBG-140 (trade name: 1- (anthratioquinoyl) -thylaquinone-yloxy-neoly-xylonyl-e-thylonxyl-thylonxyl-thylon-xyl-thylon-xyl-thylon-xyl-thylon-xyl-thylon-xyl-thylon-xyl-thylon-xyl-thylon-xyl-thylon-xyl-thylon-xyl-thylon-xyl-thylon
  • photopolymerization initiators also function as photobase generators.
  • a photopolymerization initiator that also functions as a photobase generator an oxime ester-based photopolymerization initiator and an ⁇ -aminoacetophenone-based photopolymerization initiator are preferable.
  • the compounding amount of the photoreaction initiator is, for example, 0.01 to 30% by mass based on the total solid content of the composition.
  • the curable resin compositions of the first to third aspects of the present invention can contain a curing accelerator.
  • the curing accelerator include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- Imidazole derivatives such as (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzyl Examples include amine compounds such as amines, 4-methyl-N, N-dimethylbenzylamine and 4-dimethylaminopyridine; hydrazine compounds such as adipic dihydrazide and sebacic dihydrazide
  • a metal-based hardening accelerator may be used, and examples thereof include an organic metal complex or an organic metal salt of a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • a metal-based hardening accelerator examples thereof include an organic metal complex or an organic metal salt of a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • an organic iron complex such as iron (III) acetylacetonate, an organic nickel complex such as nickel (II) acetylacetonate, and an organic manganese complex such as manganese (II) acetylacetonate.
  • the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
  • a compound that also functions as an adhesion promoter is preferably used in combination with the curing accelerator.
  • one type can be used alone, or two or more types can be used in combination.
  • the amount of the curing accelerator is, for example, 0.01 to 30% by mass based on the total solid content of the composition.
  • the curable resin compositions of the first to third aspects of the present invention can contain a curing agent.
  • the curing agent include compounds having a phenolic hydroxyl group, polycarboxylic acids and acid anhydrides thereof, compounds having a cyanate ester group, compounds having a maleimide group, and alicyclic olefin polymers.
  • the curing agent one type can be used alone, or two or more types can be used in combination.
  • Examples of the compound having a phenolic hydroxyl group include phenol novolak resin, alkylphenol novolak resin, bisphenol A novolak resin, dicyclopentadiene-type phenol resin, Xylok-type phenol resin, terpene-modified phenol resin, cresol / naphthol resin, polyvinylphenols, and phenol.
  • Conventionally known resins such as a naphthol resin, a phenol resin having an ⁇ -naphthol skeleton, a cresol novolak resin having a triazine skeleton, a biphenylaralkyl-type phenol resin, and a zyloc-type phenol novolak resin can be used.
  • the hydroxyl equivalent is 100 g / eq.
  • the above are preferred.
  • the hydroxyl equivalent is 100 g / eq.
  • the compound having a phenolic hydroxyl group include a dicyclopentadiene skeleton phenol novolak resin (GDP series, manufactured by Gunei Chemical Co., Ltd.), a Xyloc phenol novolak resin (MEH-7800, manufactured by Meiwa Kasei Co., Ltd.), and a biphenylaralkyl type.
  • Novolak resin (MEH-7851, manufactured by Meiwa Kasei Co., Ltd.), naphthol aralkyl type curing agent (SN series, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), cresol novolak resin containing a triazine skeleton (LA-3018-50P, manufactured by DIC), containing a triazine skeleton Phenol novolak resin (LA-705N, manufactured by DIC) and the like.
  • MEH-7851 manufactured by Meiwa Kasei Co., Ltd.
  • naphthol aralkyl type curing agent SN series, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • cresol novolak resin containing a triazine skeleton LA-3018-50P, manufactured by DIC
  • LA-705N containing a triazine skeleton Phenol novolak resin
  • the compound having a cyanate ester group is preferably a compound having two or more cyanate ester groups (—OCN) in one molecule.
  • the compound having a cyanate ester group any of conventionally known compounds can be used.
  • the compound having a cyanate ester group include, for example, phenol novolak type cyanate ester resin, alkylphenol novolak type cyanate ester resin, dicyclopentadiene type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol S type Cyanate ester resins are exemplified. Further, a prepolymer partially triazined may be used.
  • cyanate ester group examples include a phenol novolak-type polyfunctional cyanate ester resin (PT30S, manufactured by Lonza Japan Co., Ltd.), and a prepolymer in which a part or all of bisphenol A dicyanate is triazine-modified into a trimer. (Lonza Japan, BA230S75), dicyclopentadiene structure-containing cyanate ester resin (Lonza Japan, DT-4000, DT-7000) and the like.
  • the compound having a maleimide group is a compound having a maleimide skeleton, and any of conventionally known compounds can be used.
  • the compound having a maleimide group preferably has two or more maleimide skeletons, such as N, N'-1,3-phenylenedimaleimide, N, N'-1,4-phenylenedimaleimide, N, N'-4.
  • 1,4-diphenylmethanebismaleimide 1,2-bis (maleimide) ethane, 1,6-bismaleimide-hexane, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, bis ( 3-ethyl-5-methyl-4-maleimidophenyl) methane, bisphenol A diphenylether bismaleimide, polyphenylmethanemale Bromide, and more preferably at least any one kind of diamine condensates with these oligomers and maleimide skeleton.
  • the oligomer is an oligomer obtained by condensing a compound having a maleimide group which is a monomer among the above-described
  • BMI-1000 (4,4'-diphenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo
  • BMI-2300 phenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo
  • BMI- 3000 m-phenylene bismaleimide, manufactured by Daiwa Kasei Kogyo
  • BMI-5100 (3,3'-dimethyl-5,5'-dimethyl-4,4'-diphenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo
  • BMI -7000 (4-methyl-1,3, -phenylenebismaleimide, manufactured by Daiwa Chemical Industry Co., Ltd.
  • BMI-TMH ((1,6-bismaleimide-2,2,4-trimethyl) hexane, manufactured by Daiwa Chemical Industry Co., Ltd.)
  • MIR-3000 biphenylaralkyl-type maleimide
  • the curable resin composition of the third aspect of the present invention may contain a compound having an active ester group as a curing agent.
  • the compound having an active ester group is preferably a compound having two or more active ester groups in one molecule.
  • the compound having an active ester group can be generally obtained by a condensation reaction between a carboxylic acid compound and a hydroxy compound. Among them, a compound having an active ester group obtained by using a phenol compound or a naphthol compound as the hydroxy compound is preferable.
  • phenol compound or naphthol compound examples include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolak and the like.
  • the compound having an active ester group may be a naphthalene diol alkyl / benzoic acid type.
  • Examples of commercially available compounds having an active ester group include cyclopentadiene-type diphenol compounds such as HPC8000-65T (manufactured by DIC), HPC8100-65T (manufactured by DIC), and HPC8150-65T (manufactured by DIC). No.
  • the amount of the curing agent is, for example, 0.01 to 30% by mass based on the total solid content of the composition.
  • the curable resin compositions according to the first to third aspects of the present invention may further contain a thermoplastic resin in order to improve the mechanical strength of the obtained cured film.
  • the thermoplastic resin is soluble in a solvent.
  • the flexibility is improved when a dry film is formed, and the generation of cracks and powder fall can be suppressed.
  • a thermoplastic polyhydroxy polyether resin a thermoplastic polyhydroxy polyether resin, a phenoxy resin which is a condensate of epichlorohydrin and various bifunctional phenol compounds, or various acid anhydrides or acid chlorides in which the hydroxyl group of the hydroxy ether portion present in the skeleton is used. Phenoxy resin, polyvinyl acetal resin, polyamide resin, polyamide imide resin, block copolymer, rubber particles, etc.
  • the thermoplastic resins can be used alone or in combination of two or more.
  • thermoplastic resin is, for example, 0.01 to 10% by mass based on the total solid content of the composition.
  • the curable resin compositions of the first to third aspects of the present invention can contain a flame retardant.
  • Known and commonly used flame retardants can be used as the flame retardant, and include phosphoric acid esters and condensed phosphoric acid esters, phosphorus-containing (meth) acrylates, phosphorus-containing compounds having a phenolic hydroxyl group, cyclic phosphazene compounds, phosphazene oligomers, and phosphines.
  • Layered compounds such as phosphorus-containing compounds such as acid metal salts, antimony compounds such as antimony trioxide and antimony pentoxide, halides such as pentabromodiphenyl ether and octabromodiphenyl ether, and metal hydroxides such as aluminum hydroxide and magnesium hydroxide. Hydroxide. Among these, a phosphorus-containing compound is preferable, and a metal phosphinate is more preferable. One type of flame retardant may be used alone, or two or more types may be used in combination.
  • the compounding amount of the flame retardant is, for example, 0.01 to 10% by mass based on the total solid content of the composition.
  • the curable resin compositions of the first to third aspects of the present invention may contain a colorant.
  • a colorant known coloring agents such as red, blue, green, yellow, black, and white can be used, and any of pigments, dyes, and pigments may be used. However, it is preferable not to contain halogen from the viewpoint of reducing the environmental load and affecting the human body.
  • the coloring agents can be used alone or in combination of two or more.
  • the compounding amount of the coloring agent is, for example, 0.01 to 10% by mass based on the total solid content of the composition.
  • the coated perovskite type compound since it has a relatively large refractive index, in the case of an alkali development type, it contains an ultraviolet absorber such as carbon black. Is preferred. By including an ultraviolet absorber such as carbon black, the resolution can be easily controlled, and the resolution can be improved.
  • the curable resin compositions of the first to third aspects of the present invention can contain an organic solvent for the purpose of preparing the composition, adjusting the viscosity when applying the composition to a substrate or a carrier film, and the like.
  • organic solvent include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, and propylene glycol monomethyl ether.
  • Glycol ethers such as dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate and tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbine Tall acetate, propylene glycol monomethyl ether acetate, zip Propylene glycol monomethyl ether acetate, esters such as propylene carbonate; octane, aliphatic hydrocarbons decane; petroleum ether, petroleum naphtha, and petroleum solvents such as solvent naphtha, organic solvents conventionally known can be used. These organic solvents can be used alone or in combination of two or more.
  • the curable resin compositions of the first to third aspects of the present invention may contain other additives commonly used in the field of electronic materials.
  • Other additives include thermal polymerization inhibitors, ultraviolet absorbers, silane coupling agents, plasticizers, antistatic agents, antioxidants, antioxidants, antibacterial and antifungal agents, defoamers, leveling agents, Viscous agent, adhesion promoter, thixotropy promoter, photoinitiator, sensitizer, organic filler, elastomer, release agent, surface treating agent, dispersant, dispersant, surface modifier, stabilizer, Phosphors and the like.
  • the curable resin composition of the first aspect of the present invention contains a known and commonly used inorganic filler other than the coated perovskite compound as long as the effect of the first aspect of the present invention is not impaired. Is also good.
  • inorganic fillers include, for example, perovskite compounds other than the coated perovskite compound, silica, Neuburg silicate, aluminum hydroxide, glass powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, and synthetic mica.
  • examples include inorganic fillers such as mica, aluminum hydroxide, barium sulfate, barium titanate, iron oxide, non-fibrous glass, hydrotalcite, mineral wool, aluminum silicate, calcium silicate, and zinc white.
  • the curable resin composition of the second aspect of the present invention may contain a known and commonly used inorganic filler other than the coated silica particles as long as the effect of the second aspect of the present invention is not impaired.
  • inorganic fillers include, for example, silica other than the coated silica particles, Neuburg silica, aluminum hydroxide, glass powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, synthetic mica, and aluminum hydroxide.
  • inorganic fillers such as barium sulfate, barium titanate, iron oxide, non-fibrous glass, hydrotalcite, mineral wool, aluminum silicate, calcium silicate and zinc white.
  • the curable resin composition of the third aspect of the present invention contains a known and commonly used filler other than the coated high thermal conductivity filler, as long as the effect of the third aspect of the present invention is not impaired. You may.
  • a filler for example, a filler having a high thermal conductivity other than the coated high thermal conductivity filler, silica, Neuburg silica, glass powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, Examples include inorganic fillers such as synthetic mica, barium sulfate, barium titanate, non-fibrous glass, hydrotalcite, mineral wool, and calcium silicate.
  • the curable resin composition of the first to third aspects of the present invention is not particularly limited, and examples thereof include a thermosetting resin composition, a photocurable resin composition, a photocurable thermosetting resin composition, and a photosensitive resin. Any of the thermosetting resin compositions may be used. Further, an alkali developing type may be used, and a negative type or a positive type may be used. Specific examples include a thermosetting resin composition, a photocurable thermosetting resin composition, a photocurable thermosetting resin composition containing a photopolymerization initiator, and a photocurable thermosetting resin containing a photobase generator.
  • Curable resin composition negative photocurable thermosetting resin composition and positive photosensitive thermosetting resin composition, alkali-developed photocurable thermosetting resin composition, solvent-developed photocurable thermosetting Examples thereof include, but are not limited to, a water-soluble resin composition, a swellable peelable thermosetting resin composition, and a dissolution peelable thermosetting resin composition.
  • the curable resin composition according to the first to third aspects of the present invention is a thermosetting resin composition (containing no photopolymerization initiator), it contains a thermosetting resin. Further, it is preferable to contain a curing accelerator. It is preferable to contain a curing agent.
  • the compounding amount of the thermosetting resin is preferably 1 to 50% by mass based on the total solid content of the composition.
  • the compounding amount of the curing accelerator is preferably 0.01 to 30% by mass based on the total solid content of the composition.
  • the compounding amount of the curing agent is preferably 0.01 to 30% by mass based on the total solid content of the composition.
  • the curable resin composition according to the first to third aspects of the present invention is a photocurable thermosetting resin composition
  • it contains a photocurable resin, a thermosetting resin, and a photoreaction initiator.
  • the photocurable resin may be an alkali-soluble resin, and may further contain an alkali-soluble resin. Further, it is preferable to contain a curing accelerator.
  • the compounding amount of the alkali-soluble resin is preferably 5 to 50% by mass based on the total solid content of the composition.
  • the compounding amount of the thermosetting resin is preferably 1 to 50% by mass based on the total solid content of the composition.
  • the compounding amount of the photocurable resin (excluding the photocurable alkali-soluble resin) is preferably 1 to 50% by mass based on the total solid content of the composition.
  • the compounding amount of the photoreaction initiator is preferably 0.01 to 30% by mass based on the total solid content of the composition.
  • the compounding amount of the curing accelerator is preferably 0.01 to 30% by mass based on the total solid content of the composition.
  • the curable resin compositions of the first to third aspects of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-pack or two-pack or more.
  • the dry film of the first, second or third embodiment of the present invention is provided on a carrier film, respectively, with the curable resin composition of the first, second or third embodiment of the present invention (hereinafter referred to as “the present invention”). (Also abbreviated as "curable resin composition of the invention”) and dried.
  • curable resin composition of the invention Also abbreviated as "curable resin composition of the invention"
  • curable resin composition of the invention When forming a dry film, first, after adjusting the curable resin composition of the present invention to an appropriate viscosity by diluting with the organic solvent, a comma coater, blade coater, lip coater, rod coater, squeeze coater , A reverse coater, a transfer roll coater, a gravure coater, a spray coater, etc., to apply a uniform thickness on the carrier film.
  • the applied composition is usually dried at a temperature of 40 to 130 ° C. for 1 to 30 minutes to form a resin layer.
  • the thickness of the applied film is not particularly limited, but is generally appropriately selected in a range of 3 to 150 ⁇ m, preferably 5 to 60 ⁇ m after drying.
  • a plastic film is used, and for example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used.
  • PET polyethylene terephthalate
  • the thickness of the carrier film is not particularly limited, but is generally appropriately selected in the range of 10 to 150 ⁇ m. More preferably, it is in the range of 15 to 130 ⁇ m.
  • a cover that can be peeled off on the surface of the resin layer After forming a resin layer made of the curable resin composition of the present invention on a carrier film, for the purpose of preventing dust from adhering to the surface of the resin layer, further, a cover that can be peeled off on the surface of the resin layer. It is preferable to laminate films.
  • the peelable cover film for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, surface-treated paper, or the like can be used. The cover film only needs to have a smaller adhesive strength between the resin layer and the carrier film when the cover film is peeled off.
  • a resin layer may be formed by applying and drying the curable resin composition of the present invention on the cover film, and a carrier film may be laminated on the surface of the resin layer. That is, any of a carrier film and a cover film may be used as a film on which the curable resin composition of the present invention is applied when producing a dry film in the present invention.
  • the curable resin composition of the present invention is adjusted to a viscosity suitable for a coating method using the organic solvent, and the substrate After being applied on the top by a dip coating method, a flow coating method, a roll coating method, a bar coater method, a screen printing method, a curtain coating method, a spin coating method, or the like, the composition is contained in the composition at a temperature of 60 to 100 ° C.
  • the tack-free resin layer is formed by volatilizing drying (temporary drying) of the organic solvent.
  • a resin layer is formed on a substrate by laminating the resin layer on the substrate such that the resin layer is in contact with the substrate, and then peeling off the carrier film.
  • the substrate in addition to a printed wiring board or a flexible printed wiring board which has been previously formed with a circuit such as copper, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth / non-woven cloth epoxy, glass cloth / paper epoxy, All grades (FR-4, etc.) copper-clad laminates made of synthetic fiber epoxy, fluorocarbon resin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, etc. And others, a metal substrate, a polyimide film, a PET film, a polyethylene naphthalate (PEN) film, a glass substrate, a ceramic substrate, a wafer plate, and the like.
  • the circuit may be pre-treated.
  • the circuit may be pre-treated with GliCAP manufactured by Shikoku Chemicals, New Organic AP (Adhesion Promoter) manufactured by Mec, Nova Bond manufactured by Atotech Japan, or the like.
  • GliCAP Shikoku Chemicals
  • New Organic AP Adhesion Promoter
  • Mec Mec
  • Nova Bond manufactured by Atotech Japan
  • the adhesion to a cured film such as a resist may be improved, or a pre-treatment with a rust inhibitor may be performed.
  • the volatile drying performed after applying the curable resin composition of the present invention may be performed by a hot air circulation drying oven, an IR oven, a hot plate, a convection oven, or the like (using a device equipped with a heat source of an air heating system using steam to dry the inside of the dryer). (A method in which hot air is brought into countercurrent contact or a method in which hot air is blown onto a substrate from a nozzle).
  • a resin layer is formed on a printed wiring board, it is selectively exposed to active energy rays through a photomask on which a predetermined pattern is formed, and an unexposed portion is diluted with a dilute alkaline aqueous solution (for example, a 0.3 to 3 mass% aqueous sodium carbonate solution). ) To form a cured product pattern. Further, the cured product is irradiated with active energy rays and then heated and cured (for example, at 100 to 220 ° C.), or heated and cured with active energy rays, or finally cured (final curing) only by heat curing to achieve close contact. A cured film with excellent properties such as properties and hardness is formed.
  • a dilute alkaline aqueous solution for example, a 0.3 to 3 mass% aqueous sodium carbonate solution.
  • the exposure machine used for the active energy ray irradiation may be any device equipped with a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, a mercury short arc lamp, etc., and irradiating ultraviolet rays in a range of 350 to 450 nm.
  • a projection exposure apparatus using a projection lens or a direct drawing apparatus for example, a laser direct imaging apparatus that directly draws an image with a laser based on CAD data from a computer
  • the lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm.
  • the exposure amount for image formation varies depending on the film thickness and the like, but can be generally in the range of 10 to 1000 mJ / cm 2 , preferably 20 to 800 mJ / cm 2 .
  • a dipping method, a shower method, a spray method, a brush method, or the like can be used as the developing method.
  • a developing solution potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, Aqueous alkali solutions such as ammonia and amines can be used.
  • the curable resin composition of the first aspect of the present invention is preferably used for forming a cured film on an electronic component, particularly, for forming a cured film on a printed wiring board, and more preferably, It is used for forming a permanent film, and more preferably, for forming a solder resist, an interlayer insulating layer, a coverlay, and a sealing material. Further, it is suitable for forming a printed wiring board requiring a high degree of reliability, for example, a package substrate, particularly a permanent film (particularly a solder resist) for FC-BGA.
  • the curable resin composition of the first aspect of the present invention can be suitably used for a printed wiring board having a wiring pattern even if the surface roughness of the circuit is small, for example, a high-frequency printed wiring board.
  • a high-frequency printed wiring board for example, even when the surface roughness Ra is 0.05 ⁇ m or less, particularly 0.03 ⁇ m or less, it can be suitably used.
  • a cured film is formed on a low-polarity base material, for example, a base material containing an active ester. Further, it is suitably used for forming a cured film on a wafer or a glass substrate without roughening.
  • the curable resin composition of the first aspect of the present invention is also suitable for forming a cured film on a substrate having a low transmission loss, for example, a substrate having a dielectric loss tangent at a frequency of 10 GHz of 0.01 or less.
  • the electronic component may be a use other than the printed wiring board, for example, a passive component such as an inductor.
  • the cured product obtained by curing the curable resin composition of the first aspect of the present invention preferably has a dielectric constant of 5 or more, more preferably 10 or more. Further, the dielectric loss tangent is preferably 0.02 or less.
  • the curable resin composition of the second aspect of the present invention is preferably used for forming a cured film on an electronic component, particularly, for forming a cured film on a printed wiring board, and more preferably, It is used for forming a permanent film, and more preferably, for forming a solder resist, an interlayer insulating layer, a coverlay, and a sealing material. Further, it is suitable for forming a printed wiring board requiring a high degree of reliability, for example, a package substrate, particularly a permanent film (particularly a solder resist) for FC-BGA.
  • the curable resin composition of the second aspect of the present invention can be suitably used for a printed wiring board having a wiring pattern even if the surface roughness of the circuit is small, for example, a printed wiring board for high frequency.
  • a printed wiring board for high frequency for example, even when the surface roughness Ra is 0.05 ⁇ m or less, particularly 0.03 ⁇ m or less, it can be suitably used.
  • it can also be suitably used when a cured film is formed on a low-polarity substrate, for example, a substrate containing active ester. Further, it is suitably used for forming a cured film on a wafer or a glass substrate without roughening.
  • the curable resin composition of the second aspect of the present invention is also suitably used for forming a cured film on a substrate having a small transmission loss, for example, a substrate having a dielectric loss tangent at a frequency of 10 GHz of 0.01 or less.
  • a substrate having a low dielectric loss tangent can be manufactured using, for example, an interlayer insulating film (ABF) manufactured by Ajinomoto Co.
  • the electronic component may be a use other than the printed wiring board, for example, a passive component such as an inductor.
  • the laminated structure according to the second aspect of the present invention is a structure including a resin cured layer (A) and a resin cured layer (B) or a substrate (C) in contact with the resin cured layer (A),
  • the resin cured layer (A) is a cured product having a positive zeta potential obtained from the curable resin composition of the second aspect of the present invention or the resin layer of the dry film of the second aspect of the present invention,
  • the zeta potential of the cured resin layer (B) or the substrate (C) is negative.
  • the second embodiment of the present invention by performing surface treatment on the titanium oxide particles so as to increase the positive charge, it is possible to suppress a decrease in adhesion, and thus, excellent adhesion between layers is obtained. It is possible to manufacture a laminated structure.
  • the curable resin composition of the second aspect of the present invention can be suitably used as a composition for forming a semiconductor package constituent material.
  • the thicknesses of the cured resin layers (A) and (B) and the substrate (C) in the laminated structure of the second embodiment of the present invention are not particularly limited.
  • the combination of the resin cured layer (A) and the resin cured layer (B) is not particularly limited.
  • any of the resin cured layers (A) and (B) may be used, but the resin cured layer (A) is preferably a solder resist.
  • any one of the interlayer insulating material 11, the solder resist 13, the underfill 16, and the encapsulant 17 is filled with the coated titanium oxide particles having a positive zeta potential, thereby forming a resin cured layer in contact with these. Has good adhesion.
  • the combination of the resin cured layer (A) and the substrate (C) is not particularly limited.
  • a solder resist (A) 13 and an interlayer insulating material such as those included in a laminated structure schematically shown in FIG. 1 are used.
  • C) 11 the solder resist (A) 13 and the semiconductor wafer (C) 15, the underfill (A) 16 and the semiconductor wafer (C) 15, and the sealing material (A) 17 and the semiconductor wafer (C) 15 in combination.
  • the cured resin layer made of the curable resin composition of the second aspect of the present invention contains the coated titanium oxide particles, the zeta potential becomes positive, and the zeta potential of the other cured resin layers and the substrate is negative. It has excellent adhesion to other cured resin layers and substrates.
  • the cured product obtained by curing the curable resin composition of the second aspect of the present invention preferably has a dielectric constant of 5 or more, more preferably 10 or more. Further, the dielectric loss tangent is preferably 0.02 or less.
  • the curable resin composition of the third aspect of the present invention is preferably used for forming a cured film on an electronic component, particularly for forming a cured film on a printed wiring board, and more preferably, It is used for forming a permanent film, and more preferably, for forming a solder resist, an interlayer insulating layer, a coverlay, and a sealing material.
  • a cured product having high thermal conductivity can be formed, it can be suitably used in an environment exposed to high temperatures, for example, for forming a cured film of a printed wiring board for a vehicle.
  • the curable resin composition of the third aspect of the present invention can be suitably used for a printed wiring board having a wiring pattern even if the surface roughness of the circuit is small, for example, a high-frequency printed wiring board.
  • a high-frequency printed wiring board for example, even when the surface roughness Ra is 0.05 ⁇ m or less, particularly 0.03 ⁇ m or less, it can be suitably used.
  • a cured film is formed on a low-polarity substrate, for example, a substrate containing active ester.
  • the curable resin composition of the third aspect of the present invention is also suitably used for forming a cured film on a substrate having a small transmission loss, for example, a substrate having a dielectric loss tangent at a frequency of 10 GHz of 0.01 or less.
  • a substrate having a low dielectric loss tangent can be manufactured using, for example, an interlayer insulating film (ABF) manufactured by Ajinomoto Co., Inc.
  • the electronic component may be a use other than the printed wiring board, for example, a passive component such as an inductor.
  • a cured product obtained by curing the curable resin composition of the third aspect of the present invention preferably has a thermal conductivity of 1 W / (m ⁇ K) or more.
  • acrylate resin solution A-1 Diethylene glycol monoethyl ether acetate was added to obtain an acrylate resin solution having a solid content of 67%.
  • 322 parts of the obtained acrylate resin solution, 0.1 part of hydroquinone monomethyl ether, and 0.3 part of triphenylphosphine were charged into a four-necked flask equipped with a stirrer and a reflux condenser.
  • 60 parts of tetrahydrophthalic anhydride was added, and the mixture was reacted for 4 hours. After cooling, the mixture was taken out.
  • the photosensitive carboxyl group-containing resin solution thus obtained had a solid content of 70% and an acid value of the solid content of 81 mgKOH / g.
  • the solution of the carboxyl group-containing photosensitive resin is referred to as a resin solution A-1.
  • Barium titanate coated with a hydrated aluminum oxide compounded in Example 1-2 A 50 g aqueous slurry of barium titanate (BT-03, manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 ⁇ m, specific gravity 6.02) was heated to 70 ° C., and then a 20% aqueous sodium aluminate (NaAlO 2 ) solution was treated with titanic acid. 7-8% was added to barium in terms of alumina (Al 2 O 3 ). Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of barium titanate coated with aluminum hydrated oxide.
  • BT-03 manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 ⁇ m, specific gravity 6.02
  • barium titanate coated with hydrated oxide of aluminum and then coated with hydrated oxide of aluminum, blended in Example 1-3 A 50 g water slurry of barium titanate (BT-03 manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 ⁇ m, specific gravity 6.02) was heated to 70 ° C., and then a 10% aqueous sodium silicate solution was added to barium titanate. And 4% in terms of barium titanate. Hydrochloric acid was added to the slurry to adjust the pH to 4 and aged for 30 minutes. Further, while maintaining the pH at 5 ⁇ 1 with hydrochloric acid, a 20% aqueous solution of sodium aluminate (NaAlO 2 ) was added to barium titanate with alumina.
  • NaAlO 2 sodium aluminate
  • barium titanate coated with aluminum hydrated oxide, coated with aluminum hydrated oxide, and surface-treated with methacrylsilane blended in Example 1-4 50 g of barium titanate coated with a hydrated oxide of aluminum and then coated with a hydrated oxide of aluminum, 48 g of PMA as a solvent, and a silane coupling agent having a methacryl group (Shin-Etsu Chemical Co., Ltd.) And 2 g of KBM-503), which was filtered, washed with water, and dried under vacuum to obtain a barium titanate solid surface-treated with methacrylsilane.
  • Barium titanate formulated in Examples 1-5 and 1-10, coated with a hydrated oxide of silicon, then coated with a hydrated oxide of aluminum, and surface-treated with phenylaminosilane 50 g of barium titanate coated with a hydrated oxide of aluminum and then coated with a hydrated oxide of aluminum, PMA as a solvent, and a silane coupling agent having a phenylamino group (Shin-Etsu Chemical Co., Ltd.) And 2 g of KBM-573) (manufactured by K.K.), filtered, washed with water, and vacuum-dried to obtain a barium titanate surface-treated with phenylaminosilane.
  • Example 1-4 (Calcium titanate formulated in Example 1-6, coated with a hydrated oxide of silicon, then coated with a hydrated oxide of aluminum, and surface-treated with methacrylsilane)
  • Surface-treated barium titanate blended in Example 1-4 except that barium titanate was changed to calcium titanate (CT-03, Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 ⁇ m, specific gravity 3.98) It was manufactured by the same method as described above.
  • Example 1-7 (Strontium titanate coated with hydrated oxide of silicon, then coated with hydrated oxide of aluminum, and surface-treated with methacrylsilane, formulated in Example 1-7) Surface-treated barium titanate compounded in Example 1-4, except that barium titanate was changed to strontium titanate (ST-03, manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 ⁇ m, specific gravity 5.13). It was manufactured by the same method as described above.
  • Example 1-4 (Calculated in Examples 1-8, calcium zirconate coated with a hydrated oxide of silicon and then coated with a hydrated oxide of aluminum and surface-treated with methacrylsilane)
  • Surface-treated barium titanate compounded in Example 1-4 except that barium titanate was changed to calcium zirconate (CZ-03 manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 ⁇ m, specific gravity 5.11). It was manufactured by the same method as described above.
  • Example 1 (Strontium zirconate zirconate coated with hydrated oxide of aluminum, then coated with hydrated oxide of aluminum, and surface-treated with methacrylsilane blended in Example 1-9) Surface-treated barium titanate compounded in Example 1-4 except that barium titanate was changed to strontium zirconate (SZ-03 manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 ⁇ m, specific gravity 5.46) It was manufactured by the same method as described above.
  • barium titanate surface-treated with methacrylsilane blended in Comparative Example 1-2 50 g of barium titanate (BT-03 manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 ⁇ m, specific gravity 6.02), 48 g of PMA as a solvent, and a silane coupling agent having a methacryl group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) 2g) was uniformly dispersed, and filtered, washed with water, and vacuum-dried to obtain a solid barium titanate surface-treated with methacrylsilane.
  • Examples 1-1 to 1-10, Comparative Examples 1-1 and 1-2 Various components shown in the following Tables 1 to 3 are blended in the proportions (parts by mass) shown in Tables 1 to 3 and diluted with an organic solvent (propylene glycol monomethyl ether acetate (PMA)) to a viscosity that can be dispersed in a bead mill. After pre-mixing with a stirrer, the mixture was kneaded with a bead mill to disperse the curable resin composition. The obtained dispersion was passed through a filter having an opening of 10 ⁇ m to obtain a curable resin composition.
  • PMA propylene glycol monomethyl ether acetate
  • the degree of dispersion was confirmed by using a grind gauge having a width of 90 mm, a length of 240 mm, and a maximum depth of 50 ⁇ m according to JIS K5101 and JIS K5600.
  • a section in which five or more grains were confirmed was confirmed. :: 10 ⁇ m or less ⁇ : More than 10 ⁇ m and 25 ⁇ m or less ⁇ : Over 25 ⁇ m
  • ⁇ Preparation of cured film> The polyethylene film is peeled from the dry film obtained as described above on the glossy surface of the electrolytic copper foil GTS-MP-18 ⁇ m (made by Furukawa Electric Co., Ltd.), and the resin layer of the dry film is coated on the copper foil surface side.
  • the laminate was heated and laminated at a temperature of 1 ° C. for 1 minute under a vacuum of 133.3 Pa, thereby bringing the copper foil and the resin layer into close contact with each other.
  • Example 1-10 heat lamination was performed under the conditions of 0.5 MPa, 100 ° C., 1 minute, and a degree of vacuum: 133.3 Pa, so that the copper foil and the resin layer were adhered to each other.
  • exposure was performed from above the dry film (exposure amount: 400 to 400 mm) using an exposure apparatus equipped with a high-pressure mercury lamp (short arc lamp). After 600 mJ / cm 2 ), the polyethylene terephthalate film was peeled from the dry film to expose the resin layer. Thereafter, development was performed using a 1% by weight aqueous solution of Na 2 CO 3 at 30 ° C.
  • Example 1-10 after laminating the dry film, the PET film was peeled off, and the resin layer was completely cured at 190 ° C. for 60 minutes.
  • ⁇ Dielectric constant> A dry film prepared in the same manner as in the above ⁇ Preparation of dry film> except that the thickness of the resin layer was changed to other than 40 ⁇ m, was laminated on a glossy surface of electrolytic copper foil GTS-MP-18 ⁇ m (Furukawa Electric Co., Ltd.). Then, the resin layer was flattened and completely cured under the conditions described in the above ⁇ Preparation of cured film>. Thereafter, the cured product was peeled from the copper foil to obtain a cured product having a thickness of 30 ⁇ m. The cured product was cut into a length of 80 mm and a width of 2 mm, and measured at a temperature of 22 ° C.
  • relative permittivity 5 or more
  • relative permittivity less than 5 (dielectric tangent)
  • dielectric loss tangent value 0.02 or less
  • dielectric loss tangent value more than 0.02, 0.025 or less
  • dielectric loss tangent value more than 0.025
  • the insulating layer of this sample and an FR-4 (glass epoxy) substrate were bonded with an adhesive (AR-S30 manufactured by Nichiban).
  • This bonded body was cut into 100 mm ⁇ 15 mm, and cut into copper foil at intervals of 10 mm.
  • the peel strength of both samples was measured by Autograph AG-X manufactured by Shimadzu Corporation based on JIS C6481. The higher the peel strength, the better the adhesion, and the lower the rate of decrease in adhesion before and after the HAST test, the better.
  • the curable resin compositions of Examples 1-1 to 1-10 of the present invention have improved dispersibility of the perovskite compound, excellent adhesion to the substrate, and high dielectric constant. It can be seen that a cured product that can achieve both a low dielectric loss tangent is obtained.
  • ⁇ Second embodiment> [Surface treatment of titanium oxide particles] (Titanium oxide particles that were coated with a hydrated oxide of silicon and then coated with a hydrated oxide of aluminum and surface-treated with methacrylsilane blended in Example 2-1) After heating a water slurry of 50 g of titanium oxide particles (JA-C manufactured by Teica, average particle diameter 180 nm) to 70 ° C., a 10% aqueous solution of sodium silicate was added to the titanium oxide particles by 15% in terms of titanium oxide particles. did. Hydrochloric acid was added to the slurry to adjust the pH to 4 and aged for 30 minutes.
  • a 20% aqueous solution of sodium aluminate NaAlO 2
  • barium titanate with alumina 20% in terms of (Al 2 O 3 ).
  • a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of titanium oxide particles coated with a hydrated oxide of silicon and a hydrated oxide of aluminum.
  • titanium oxide particles coated with the hydrated oxide of aluminum and then coated with the hydrated oxide of aluminum, 48 g of PMA as a solvent, and a silane coupling agent having a methacryl group (Shin-Etsu Chemical Co., Ltd.) And 3 g of KBM-503) were uniformly dispersed, filtered, washed with water, and vacuum-dried to obtain solid titanium oxide particles surface-treated with methacrylsilane.
  • titanium oxide particles blended in Examples 2-2 and 2-3 coated with hydrated oxide of silicon, coated with hydrated oxide of aluminum, and surface-treated with phenylaminosilane
  • a water slurry of 50 g of titanium oxide particles J-C manufactured by Teica, average particle diameter 180 nm
  • a 10% aqueous solution of sodium silicate was added to the titanium oxide particles by 15% in terms of titanium oxide particles.
  • Hydrochloric acid was added to the slurry to adjust the pH to 4 and aged for 30 minutes.
  • a 20% aqueous solution of sodium aluminate NaAlO 2
  • barium titanate with alumina 20% in terms of (Al 2 O 3 ).
  • a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of titanium oxide particles coated with a hydrated oxide of silicon and a hydrated oxide of aluminum.
  • titanium oxide particles surface-treated with methacrylsilane blended in Comparative Example 2-2 50 g of titanium oxide particles (JA-C manufactured by Teica, average particle diameter 180 nm), 48 g of PMA as a solvent, and 3 g of a silane coupling agent having a methacryl group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) were uniformly dispersed. Filtration, washing with water, and vacuum drying yielded solid particles of titanium oxide particles surface-treated with methacrylsilane.
  • Examples 2-1 to 2-3, Comparative Examples 2-1 to 2-3 Various components shown in Table 4 below were blended in the ratio (parts by mass) shown in Table 4, diluted with an organic solvent PMA to a dispersible viscosity in a bead mill, preliminarily mixed with a stirrer, and kneaded in a bead mill. And the curable resin composition was dispersed. The obtained dispersion was passed through a filter having an opening of 10 ⁇ m to obtain a curable resin composition.
  • the degree of dispersion was confirmed by using a grind gauge having a width of 90 mm, a length of 240 mm, and a maximum depth of 50 ⁇ m according to JIS K5101 and JIS K5600.
  • a section in which five or more grains were confirmed was confirmed.
  • the curable resin composition obtained as described above was diluted by adding 300 g of methyl ethyl ketone and stirred for 15 minutes with a stirrer to obtain a coating liquid.
  • the coating solution is applied on a 38 ⁇ m thick polyethylene terephthalate film (PET film, Emblet PTH-25 manufactured by Unitika Ltd.) having an arithmetic surface roughness Ra of 150 nm, and is usually dried at 80 ° C. for 15 minutes.
  • a resin layer was formed.
  • a 18 ⁇ m-thick polypropylene film cover film, OPP-FOA manufactured by Futamura Co., Ltd.
  • ⁇ Preparation of cured film> The polyethylene film is peeled from the dry film obtained as described above on the glossy surface of the electrolytic copper foil GTS-MP-18 ⁇ m (made by Furukawa Electric Co., Ltd.), and the resin layer of the dry film is coated on the copper foil surface side.
  • MVLP-500 manufactured by Meiki Seisakusho
  • Examples 2-1 and 2-2 and Comparative Examples 2-1 to 2-3 exposure was performed from above the dry film (exposure amount: 400 to 400 mm) using an exposure apparatus equipped with a high-pressure mercury lamp (short arc lamp). After 600 mJ / cm 2 ), the polyethylene terephthalate film was peeled from the dry film to expose the resin layer. Thereafter, development was performed using a 1% by weight aqueous solution of Na 2 CO 3 at 30 ° C. under a spray pressure of 0.2 MPa for 60 seconds to form a resin layer having a predetermined resist pattern.
  • the resin layer was irradiated with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, and then heated at 160 ° C. for 60 minutes to completely cure the resin layer, thereby producing a cured film.
  • the PET film was peeled off, and the resin layer was completely cured at 180 ° C. for 60 minutes.
  • ⁇ Dielectric constant and dielectric loss tangent> A dry film prepared in the same manner as in the above ⁇ Preparation of dry film> except that the thickness of the resin layer was changed to other than 40 ⁇ m, was laminated on a glossy surface of electrolytic copper foil GTS-MP-18 ⁇ m (Furukawa Electric Co., Ltd.). Then, the resin layer was flattened and completely cured under the conditions described in the above ⁇ Preparation of cured film>. Thereafter, the cured product was peeled from the copper foil to obtain a cured product having a thickness of 30 ⁇ m.
  • the cured product was cut into a length of 80 mm and a width of 2 mm, and a network analyzer 8510C manufactured by Keysight and a complex relative permittivity calculation software CAMA-S manufactured by KEAD were used.
  • the dielectric constant and the dielectric loss tangent at a measurement temperature of 22 ° C. and 10 GHz were measured using a perturbation cavity resonator.
  • Dielectric constant Dielectric constant value 5 or more
  • Dielectric constant value less than 5 (dielectric tangent)
  • dielectric loss tangent value 0.02 or less
  • dielectric loss tangent value more than 0.02, 0.025 or less
  • dielectric loss tangent value more than 0.025
  • the insulating layer of this sample and an FR-4 (glass epoxy) substrate were bonded with an adhesive (AR-S30 manufactured by Nichiban).
  • This bonded body was cut into 100 mm ⁇ 15 mm, and cut into copper foil at intervals of 10 mm.
  • the peel strength of both samples was measured by Autograph AG-X manufactured by Shimadzu Corporation based on JIS C6481. The higher the peel strength, the better the adhesion, and the lower the rate of decrease in adhesion before and after the HAST test, the better.
  • Acid value (mgKOH / g) ⁇ N ⁇ f ⁇ 56100 ⁇ (V-BL) / (1000 ⁇ W) W: sample amount (g), N: (concentration of potassium hydroxide solution (mol / l), f: titer, V: titer (ml), BL: blank titer
  • NC-6000 bisphenol F type epoxy resin, epoxy equivalent: 210 g / eq) * 2-4: TEPIC-VL (Nissan Chemical Industries, Ltd.) (polyfunctional epoxy resin, epoxy equivalent: 135 g / eq) * 2-5: Dicyandiamide * 2-6: Melamine * 2-7: Omnirad TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide) manufactured by IGM * 2-8: A-DCP (tricyclodecane dimethanol diacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd.
  • the curable resin compositions of Examples 2-1 to 2-3 of the present invention have improved dispersibility of titanium oxide, excellent adhesion to a substrate, high dielectric constant and low dielectric constant. It can be seen that a cured product that can satisfy both the dielectric loss tangent is obtained.
  • ⁇ Third embodiment> [Surface treatment of filler] (Boron nitride particles coated with hydrated silicon oxide compounded in Example 3-1)
  • a 50 g water slurry of boron nitride particles (S1, manufactured by ESK Ceramics GmbH, average particle diameter 2 ⁇ m, specific gravity 3.65, thermal conductivity 200 W / m ⁇ k) is heated to 70 ° C., and then a 10% aqueous sodium silicate solution is nitrided. 1% was added to the boron particles in terms of boron nitride particles.
  • Hydrochloric acid was added to this slurry to adjust the pH to 4, aged for 30 minutes, and further adjusted to pH 7 ⁇ 1 with hydrochloric acid.
  • the slurry was filtered and washed with a filter press, and dried under vacuum to obtain solid boron nitride particles coated with a silicon hydrated oxide.
  • Example 3 (Boron nitride particles coated with hydrated zirconium oxide blended in Example 3-3) 50 g of a water slurry of boron nitride particles (S1, manufactured by ESK Ceramics GmbH, average particle size: 2 ⁇ m, specific gravity: 3.65, thermal conductivity: 200 W / m ⁇ k) was heated to 70 ° C., and then 100 g / l of zirconium oxychloride etc. An aqueous solution of a water-soluble zirconium compound was added to boron nitride particles at 1% in terms of zirconia (ZrO 2 ).
  • Example 3-4 (Boron nitride particles coated with a hydrated oxide of zinc formulated in Example 3-4)
  • a 50 g water slurry of boron nitride particles (S1, manufactured by ESK Ceramics GmbH, average particle diameter 2 ⁇ m, specific gravity 3.65, thermal conductivity 200 W / m ⁇ k) was heated to 70 ° C., and an aqueous solution of zinc sulfate was subjected to boron nitride particles. 1% in terms of ZnO. Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of boron nitride particles coated with a hydrated oxide of zinc.
  • a 20% aqueous solution of sodium aluminate NaAlO 2
  • sodium aluminate NaAlO 2
  • a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes.
  • the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of boron nitride particles coated with a hydrated oxide of silicon and a hydrated oxide of aluminum.
  • a 100 g / l aqueous zirconium oxychloride solution was added to the boron nitride particles.
  • a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of boron nitride particles coated with a hydrated oxide of silicon and a hydrated oxide of zirconium.
  • Example 3-13 Magne oxide particles coated with zirconium hydrated oxide, coated with hydrated oxide of silicon, and surface-treated with methacrylsilane, blended in Example 3-14
  • the aluminum nitride particles were changed to magnesium oxide particles (SMO manufactured by Sakai Chemical Co., average particle diameter 0.4 ⁇ m, specific gravity 3.65, thermal conductivity 40 W / m ⁇ k).
  • SMO manufactured by Sakai Chemical Co.
  • a 10% aqueous solution of sodium silicate was added to the magnesium oxide particles by 3% in terms of magnesium oxide particles.
  • Hydrochloric acid was added to the slurry to adjust the pH to 4, and the mixture was aged for 30 minutes.
  • the temperature was raised to 40 ° C., and the aqueous solution of 100 g / l zirconium oxychloride was treated with magnesium oxide particles.
  • a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes.
  • the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of magnesium oxide particles coated with a hydrated oxide of silicon and a hydrated oxide of zirconium.
  • Example 3-13 Alignment of aluminum nitride particles formulated in Example 3-15, coated with a hydrated oxide of silicon, then coated with a hydrated oxide of zirconium, and surface-treated with methacrylsilane
  • the aluminum nitride particles were converted into aluminum oxide particles (ASFP-20 manufactured by Denka, average particle diameter 0.3 ⁇ m, specific gravity 4.0, thermal conductivity 28 W / mk).
  • a solid of magnesium oxide particles surface-treated with methacrylsilane was obtained in the same manner as described above, except for the change.
  • Example 3-13 Spinel particles blended in Example 3-16, coated with a hydrated oxide of silicon and then coated with a hydrated oxide of zirconium and surface-treated with methacrylsilane
  • the aluminum nitride particles were converted to spinel particles (MgAl 2 O 4 , SN-1 manufactured by Tateho Chemical Industry Co., Ltd., average particle diameter 0.4 ⁇ m, specific gravity 3.8, thermal conductivity 35 W / M ⁇ k) to obtain solids of spinel particles surface-treated with methacrylsilane in the same manner as described above.
  • spinel particles MgAl 2 O 4 , SN-1 manufactured by Tateho Chemical Industry Co., Ltd., average particle diameter 0.4 ⁇ m, specific gravity 3.8, thermal conductivity 35 W / M ⁇ k
  • silica particles surface-treated with methacrylsilane blended in Comparative Example 3-3 50 g of silica particles (SFP-20M manufactured by Denka, average particle diameter 0.4 ⁇ m, specific gravity 2.2, thermal conductivity 1.3 W / m ⁇ k), 48 g of PMA (propylene glycol monomethyl ether acetate) as a solvent, and methacrylic acid 1 g of a silane coupling agent having a group (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was uniformly dispersed, filtered, washed with water, and vacuum-dried to obtain a solid of silica particles surface-treated with methacrylsilane.
  • SFP-20M manufactured by Denka, average particle diameter 0.4 ⁇ m, specific gravity 2.2, thermal conductivity 1.3 W / m ⁇ k
  • PMA propylene glycol monomethyl ether acetate
  • methacrylic acid 1 g of a silane coupling agent having a group K
  • Examples 3-1 to 3-17, Comparative Examples 3-1 to 3-3 Various components shown in the following Tables 5 to 7 are blended in the ratios (parts by mass) shown in Tables 5 to 7, and diluted with an organic solvent (propylene glycol monomethyl ether acetate (PMA)) to a viscosity that enables dispersion in a bead mill. After pre-mixing with a stirrer, the mixture was kneaded with a bead mill to disperse the curable resin composition. The obtained dispersion was passed through a filter having an opening of 10 ⁇ m to obtain a curable resin composition.
  • PMA propylene glycol monomethyl ether acetate
  • the degree of dispersion was confirmed by using a grind gauge having a width of 90 mm, a length of 240 mm, and a maximum depth of 50 ⁇ m according to JIS K5101 and JIS K5600.
  • a section in which five or more grains were confirmed was confirmed.
  • Example 3-17 heat lamination was performed under the following conditions: 0.5 MPa, 100 ° C., 1 minute, degree of vacuum: 133.3 Pa, and the copper foil and the resin layer were adhered to each other.
  • a light exposure device equipped with a high-pressure mercury lamp (short arc lamp) (exposure amount: 400 to After 600 mJ / cm 2 ), the polyethylene terephthalate film was peeled from the dry film to expose the resin layer. Thereafter, development was performed using a 1% by weight aqueous solution of Na 2 CO 3 at 30 ° C.
  • Example 3-17 after laminating the dry film, the PET film was peeled off, and the resin layer was completely cured at 190 ° C. for 60 minutes.
  • Thermal conductivity [W / (m ⁇ K)] density (Kg / m 3 ) ⁇ specific heat [kJ / (kg ⁇ K)] ⁇ thermal diffusivity (m 2 / s) ⁇ 1000 ⁇ : Thermal conductivity 1 or more ⁇ : Thermal conductivity less than 1
  • ⁇ Adhesion with glass> As a glass substrate, a cured film was produced on AN100 glass (manufactured by Asahi Glass Co., Ltd.) under the same conditions as the above ⁇ Preparation of cured film>. Based on JIS K5400, 100 crosscuts of 1 mm square (10 ⁇ 10) are made by a cross cutter to reach the interlayer material, and a cellophane tape is completely adhered to it, separated, and several hundred out of 100 are closely adhered. Was confirmed. ⁇ : 100/100 ⁇ : 70/100 or more and less than 100/100 x: less than 70/100
  • ⁇ Adhesion to copper after HAST> As a pretreatment, a glossy surface of electrolytic copper foil GTS-MP-18 ⁇ m (made by Furukawa Electric Co., Ltd.) is sprayed with CZ-8401 manufactured by Mech Co., Ltd., and then subjected to AP-3002 treatment to roughen the surface. A low-profile copper foil having an Ra of 0.04 ⁇ m was obtained. A dry film having a resin layer thickness of 20 ⁇ m prepared in each of Examples and Comparative Examples was laminated on the treated surface, and cured under the above-described conditions for forming a cured film to obtain a sample in which an insulating layer was formed.
  • the insulating layer of this sample and an FR-4 (glass epoxy) substrate were bonded with an adhesive (AR-S30 manufactured by Nichiban).
  • This bonded body was cut into 100 mm ⁇ 15 mm, and cut into copper foil at intervals of 10 mm.
  • the peel strength of both samples was measured by Autograph AG-X manufactured by Shimadzu Corporation based on JIS C6481. The higher the peel strength, the better the adhesion, and the lower the rate of decrease in adhesion before and after the HAST test, the better.
  • the curable resin compositions of Examples 3-1 to 3-17 of the present invention have improved filler dispersibility having high thermal conductivity, and have good adhesion to the substrate and high thermal conductivity. It can be seen that a cured product capable of satisfying both conditions can be obtained.

Abstract

Provided is a curable resin composition or the like from which it is possible to obtain a cured product that can improve dispersibility of a perovskite-type compound, that has excellent adhesion to a substrate, and that can achieve a high dielectric constant and a low dielectric loss tangent simultaneously. This curable resin composition or the like is characterized by including a curable resin and a perovskite-type compound that is coated with at least one of a hydrous oxide of silicon, a hydrous oxide of aluminum, a hydrous oxide of zirconium, a hydrous oxide of zinc, and a hydrous oxide of titanium.

Description

硬化性樹脂組成物、ドライフィルム、硬化物、積層構造体、および、電子部品Curable resin composition, dry film, cured product, laminated structure, and electronic component
 本発明は、硬化性樹脂組成物、ドライフィルム、硬化物、積層構造体、および、電子部品に関する。 << The present invention relates to a curable resin composition, a dry film, a cured product, a laminated structure, and an electronic component.
 基板材料の誘電率が大きくなるほど信号の電播波長は小さくなるため、アンテナやパワーアンプ用途の回路基板の小型化には比誘電率が高い基板材料が望まれる。また、周波数が高くなるほど信号の伝送損失が大きくなるため、伝送損失が少なくなる誘電正接の低い材料が重要とされる。つまり、高誘電率と低誘電正接の両立できる材料がアンテナやパワーアンプの小型化用途に求められる。 (4) The higher the dielectric constant of the substrate material, the smaller the signal propagation wavelength. Therefore, a substrate material with a high relative dielectric constant is desired for miniaturization of a circuit board for an antenna or a power amplifier. In addition, as the frequency increases, the signal transmission loss increases. Therefore, a material having a low dielectric loss tangent that reduces the transmission loss is important. That is, a material that can achieve both a high dielectric constant and a low dielectric loss tangent is required for miniaturization of antennas and power amplifiers.
 通常、電気絶縁耐性の観点から樹脂の極性基の数を減らす手法が取られるため、電気絶縁耐性と高誘電率の両立を樹脂のみで達成することは困難である。また、樹脂の誘電率は、双極子分極により支配されるため、低誘電正接の樹脂は一般に低誘電率である。 Generally, a method of reducing the number of polar groups in the resin is used from the viewpoint of electric insulation resistance, and it is difficult to achieve both electric insulation resistance and high dielectric constant with only the resin. In addition, since the dielectric constant of a resin is governed by dipole polarization, a resin having a low dielectric loss tangent generally has a low dielectric constant.
 そこで、高誘電率と低誘電正接を両立するために、高誘電率の無機フィラーとして、チタン酸バリウムやチタン酸ストロンチウム等のペロブスカイト型化合物や酸化チタン等を高充填化することが有効である(例えば特許文献1)。 Therefore, in order to achieve both a high dielectric constant and a low dielectric loss tangent, it is effective to highly fill a high dielectric constant inorganic filler such as a perovskite compound such as barium titanate or strontium titanate, or titanium oxide ( For example, Patent Document 1).
 一方で、半導体の高密度化により、半導体から発生する熱が増加する傾向にある。また、近年は自動車等の電装化とともに車載される半導体パッケージの数が増加しており、そのような高温に曝される環境においては、半導体から発生する熱を空気中に逃がす放熱のための方策が特に求められる。従来、放熱の方策として、例えば、IC上にヒートシンクを設けることが知られている。また、レジスト材料に、熱伝導率が高い無機フィラーを含有させた硬化性樹脂組成物を用いることが知られている(例えば、特許文献2)。 On the other hand, with the increase in the density of semiconductors, heat generated from semiconductors tends to increase. In recent years, the number of semiconductor packages mounted on vehicles has increased along with the electrification of automobiles, and in environments exposed to such high temperatures, measures to dissipate heat generated from semiconductors into the air have been taken. Is particularly required. Conventionally, as a heat dissipation measure, for example, providing a heat sink on an IC is known. Further, it is known to use a curable resin composition containing an inorganic filler having a high thermal conductivity as a resist material (for example, Patent Document 2).
特開2003-119379号公報JP-A-2003-119379 特開2010-181825号公報JP 2010-181825 A
 しかし、ペロブスカイト型化合物や酸化チタンを硬化性樹脂組成物に高充填化すると、また、放熱性に優れたレジストや周辺材料を作製するために熱伝導率が高いフィラーを硬化性樹脂組成物に高充填化すると、分散性が損なわれてしまう問題があった。また、これらのフィラー(即ち、ペロブスカイト型化合物、酸化チタンおよび熱伝導率が高いフィラー)を覆う樹脂量や基板との濡れが低下するため、密着性低下の問題があった。 However, when the curable resin composition is filled with a perovskite-type compound or titanium oxide at a high level, a filler having high thermal conductivity is added to the curable resin composition in order to produce a resist having excellent heat dissipation properties and peripheral materials. When filled, there was a problem that the dispersibility was impaired. In addition, the amount of resin covering these fillers (that is, perovskite-type compounds, titanium oxide, and fillers having high thermal conductivity) and the wettability with the substrate are reduced, so that there is a problem of reduced adhesion.
 特に、従来は基板を粗面化して密着性を向上させていたが、近年は伝送損失の問題から、基板表面は粗化フリーもしくは低粗化面となる傾向にあるため、従来よりも優れた密着性を付与することが求められている。 Particularly, in the past, the substrate was roughened to improve the adhesion, but in recent years, due to the problem of transmission loss, the substrate surface tends to be roughened free or a low-roughened surface. It is required to provide adhesion.
 そこで本発明の第一の目的は、ペロブスカイト型化合物の分散性が向上し、基板との密着性に優れ、高誘電率と低誘電正接を両立することができる硬化物が得られる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有する電子部品を提供することにある。 Therefore, a first object of the present invention is to improve the dispersibility of a perovskite-type compound, to provide a curable resin composition which is excellent in adhesion to a substrate and which can provide a cured product capable of satisfying both a high dielectric constant and a low dielectric loss tangent. An object of the present invention is to provide a product, a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product.
 また、本発明の第二の目的は、酸化チタンの分散性が向上し、基板との密着性に優れた硬化物が得られ、高誘電率と低誘電正接を両立することができる硬化物が得られる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、該硬化物からなる樹脂硬化層を有する積層構造体、および、該硬化物を有する電子部品を提供することにある。 Further, the second object of the present invention is to improve the dispersibility of titanium oxide, obtain a cured product having excellent adhesion to a substrate, and obtain a cured product that can achieve both a high dielectric constant and a low dielectric loss tangent. Obtained curable resin composition, a dry film having a resin layer obtained from the composition, a cured product of the resin layer of the composition or the dry film, a laminated structure having a resin cured layer composed of the cured product, and Another object of the present invention is to provide an electronic component having the cured product.
 また、本発明の第三の目的は、熱伝導率が高いフィラーの分散性が向上し、基板との密着性と高熱伝導率を両立することができる硬化物が得られる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有する電子部品を提供することにある。 Further, a third object of the present invention is to improve the dispersibility of a filler having a high thermal conductivity, and to obtain a curable resin composition which can obtain a cured product that can achieve both high adhesion and a high thermal conductivity to a substrate. An object of the present invention is to provide a dry film having a resin layer obtained from the composition, a cured product of the resin layer of the composition or the dry film, and an electronic component having the cured product.
 本発明者らは、上記目的の実現に向け、ペロブスカイト型化合物の表面処理に着目して鋭意検討を行なった。その結果、発明者らはケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されたペロブスカイト型化合物を用いることで、することで、上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies with an eye on surface treatment of perovskite-type compounds to achieve the above object. As a result, the inventors have found that a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc, and a hydrated oxide of titanium can be used. By using a coated perovskite-type compound, it was found that the above-mentioned problem could be solved by doing so, and the present invention was completed.
 即ち、本発明の第一の態様の硬化性樹脂組成物は、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されたペロブスカイト型化合物と、硬化性樹脂と、を含むことを特徴とするものである。 That is, the curable resin composition of the first aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc, and a hydrated oxide of titanium. A perovskite-type compound coated with at least one of the materials and a curable resin.
 本発明の第一の態様の硬化性樹脂組成物は、前記被覆されたペロブスカイト型化合物が、組成物の固形分全容量に対して、20容量%以上であることが好ましい。 は In the curable resin composition of the first aspect of the present invention, it is preferable that the coated perovskite compound is at least 20% by volume based on the total solid content of the composition.
 本発明の第一の態様の硬化性樹脂組成物は、前記被覆されたペロブスカイト型化合物が、さらに、表面に硬化性反応基を有することが好ましい。 は In the curable resin composition according to the first aspect of the present invention, the coated perovskite compound preferably further has a curable reactive group on the surface.
 本発明の第一の態様のドライフィルムは、前記硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするものである。 The dry film according to the first aspect of the present invention has a resin layer obtained by applying the curable resin composition to a film and drying the film.
 本発明の第一の態様の硬化物は、前記硬化性樹脂組成物、または、前記ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。 The cured product of the first aspect of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.
 本発明の第一の態様の電子部品は、前記硬化物を有することを特徴とするものである。 電子 An electronic component according to a first aspect of the present invention includes the cured product.
 また、本発明者らは、上記目的の実現に向け、酸化チタンの表面処理に着目して鋭意検討を行なった。その結果、発明者らは、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆され、さらに表面に硬化性反応基を有する酸化チタン粒子を用いることで、上記課題を解決し得ることを見出し、本発明を完成するに至った。 本 Further, the present inventors have conducted intensive studies with a focus on the surface treatment of titanium oxide to achieve the above object. As a result, the inventors have found that the hydrated oxide of silicon, the hydrated oxide of aluminum, the hydrated oxide of zirconium, the hydrated oxide of zinc, and the hydrated oxide of titanium It has been found that the above problem can be solved by using titanium oxide particles which are coated with and further have a curable reactive group on the surface, and have completed the present invention.
 即ち、本発明の第二の態様の硬化性樹脂組成物は、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆された酸化チタン粒子と、硬化性樹脂と、を含む硬化性樹脂組成物であって、前記被覆された酸化チタン粒子が、表面に硬化性反応基を有することを特徴とするものである。 That is, the curable resin composition of the second aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium. A curable resin composition comprising: a titanium oxide particle coated with at least one of a material; and a curable resin, wherein the coated titanium oxide particle has a curable reactive group on the surface. It is characterized by having.
 本発明の第二の態様の硬化性樹脂組成物は、前記被覆された酸化チタン粒子が、組成物の固形分全容量に対して、25容量%以上であることが好ましい。 は In the curable resin composition according to the second aspect of the present invention, the coated titanium oxide particles preferably account for 25% by volume or more based on the total solid content of the composition.
 本発明の第二の態様の硬化性樹脂組成物は、前記被覆された酸化チタン粒子のゼータ電位の絶対値が、15mV以上であることが好ましい。 は In the curable resin composition of the second aspect of the present invention, the coated titanium oxide particles preferably have an absolute value of zeta potential of 15 mV or more.
 本発明の第二の態様の硬化性樹脂組成物は、当該組成物の固形分の酸価が25mgKOH/g以下であることが好ましい。 は The curable resin composition of the second aspect of the present invention preferably has an acid value of the solid content of the composition of not more than 25 mgKOH / g.
 本発明の第二の態様の硬化性樹脂組成物は、周波数10GHzにおける誘電正接が0.01以下の基板に塗布されることが好ましい。 硬化 The curable resin composition of the second aspect of the present invention is preferably applied to a substrate having a dielectric loss tangent at a frequency of 10 GHz of 0.01 or less.
 本発明の第二の態様のドライフィルムは、前記硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするものである。 ド ラ イ A dry film according to a second aspect of the present invention is characterized by having a resin layer obtained by applying and drying the curable resin composition on a film.
 本発明の第二の態様の硬化物は、前記硬化性樹脂組成物、または、前記ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。 The cured product of the second aspect of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.
 本発明の第二の態様の積層構造体は、樹脂硬化層(A)と、前記樹脂硬化層(A)に接する樹脂硬化層(B)または基板(C)と、を含む構造体であって、
 前記樹脂硬化層(A)が、前記硬化性樹脂組成物、または、前記ドライフィルムの樹脂層を硬化して得られるゼータ電位が正の硬化物であり、
 前記樹脂硬化層(B)または基板(C)のゼータ電位が、負であることを特徴とするものである。
A laminated structure according to a second aspect of the present invention is a structure including a cured resin layer (A) and a cured resin layer (B) or a substrate (C) in contact with the cured resin layer (A). ,
The resin cured layer (A) is a cured product having a positive zeta potential obtained by curing the curable resin composition or the resin layer of the dry film,
The zeta potential of the resin cured layer (B) or the substrate (C) is negative.
 本発明の第二の態様の電子部品は、前記硬化物または前記積層構造体を有することを特徴とするものである。 電子 An electronic component according to a second aspect of the present invention includes the cured product or the laminated structure.
 また、本発明者らは、上記目的の実現に向け、熱伝導率が高いフィラーの表面処理に着目して鋭意検討を行なった。その結果、発明者らは、熱伝導率が高いフィラーを、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆することで、上記課題を解決し得ることを見出し、本発明を完成するに至った。 本 Further, the inventors of the present invention have conducted intensive studies with an eye on the surface treatment of a filler having high thermal conductivity in order to achieve the above object. As a result, the inventors have found that fillers with high thermal conductivity are hydrated oxides of silicon, hydrated oxides of aluminum, hydrated oxides of zirconium, hydrated oxides of zinc and hydrated oxides of titanium. It has been found that the above problems can be solved by coating with at least one of the above, and the present invention has been completed.
 即ち、本発明の第三の態様の硬化性樹脂組成物は、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆された熱伝導率が15W/m・k以上のフィラーと、硬化性樹脂と、を含むことを特徴とするものである。 That is, the curable resin composition of the third aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium. A filler having a thermal conductivity of at least 15 W / m · k coated with at least one of the materials and a curable resin.
 本発明の第三の態様の硬化性樹脂組成物は、前記被覆された熱伝導率が15W/m・k以上のフィラーが、組成物の固形分全容量に対して30容量%以上であることが好ましい。 In the curable resin composition according to the third aspect of the present invention, the coated filler having a thermal conductivity of 15 W / m · k or more is 30% by volume or more based on the total solid content of the composition. Is preferred.
 本発明の第三の態様の硬化性樹脂組成物は、前記被覆された熱伝導率が15W/m・k以上のフィラーが、さらに表面に硬化性反応基を有することが好ましい。 は In the curable resin composition according to the third aspect of the present invention, it is preferable that the coated filler having a thermal conductivity of 15 W / mk or more further has a curable reactive group on the surface.
 本発明の第三の態様のドライフィルムは、前記硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするものである。 ド ラ イ A dry film according to a third aspect of the present invention has a resin layer obtained by applying the curable resin composition to a film and drying the film.
 本発明の第三の態様の硬化物は、前記硬化性樹脂組成物、または、前記ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。 硬化 The cured product of the third aspect of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.
 本発明の第三の態様の電子部品は、前記硬化物を有することを特徴とするものである。 電子 An electronic component according to a third aspect of the present invention includes the cured product.
 第一に、本発明によれば、ペロブスカイト型化合物の分散性が向上し、基板との密着性に優れ、高誘電率と低誘電正接を両立することができる硬化物が得られる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有する電子部品を提供することができる。 First, according to the present invention, a curable resin composition is obtained, in which the dispersibility of the perovskite compound is improved, the adhesion to the substrate is excellent, and a cured product that can achieve both a high dielectric constant and a low dielectric loss tangent is obtained. Product, a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product.
 第二に、本発明によれば、酸化チタンの分散性が向上し、基板との密着性に優れ、高誘電率と低誘電正接を両立することができる硬化物が得られる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、該硬化物からなる樹脂硬化層を有する積層構造体、および、該硬化物を有する電子部品を提供することができる。 Secondly, according to the present invention, a curable resin composition is obtained, in which the dispersibility of titanium oxide is improved, the adhesiveness to a substrate is excellent, and a cured product that can achieve both a high dielectric constant and a low dielectric loss tangent is obtained. A dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, a laminated structure having a cured resin layer made of the cured product, and an electron having the cured product Parts can be provided.
 第三に、本発明によれば、熱伝導率が高いフィラーの分散性が向上し、基板との密着性と高熱伝導率を両立することができる硬化物が得られる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有する電子部品を提供することができる。 Thirdly, according to the present invention, the heat dispersibility of the filler having a high thermal conductivity is improved, and a curable resin composition is obtained, which can provide a cured product that can achieve both adhesion to a substrate and high thermal conductivity. A dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product can be provided.
本発明の積層構造体の一実施態様を模式的に示す概略断面図である。FIG. 1 is a schematic sectional view schematically showing one embodiment of a laminated structure of the present invention.
 以下、本発明の実施の形態について、詳細に説明する。なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語であり、他の類似の表現についても同様である。また、本明細書において、数値範囲を「~」で表記する場合、それらの数値を含む範囲(即ち、・・・以上・・・以下)を意味するものとする。 Hereinafter, embodiments of the present invention will be described in detail. In this specification, the term “(meth) acrylate” is a general term for acrylate, methacrylate and mixtures thereof, and the same applies to other similar expressions. Further, in this specification, when a numerical range is expressed by “to”, it means a range including those numerical values (that is,... Or more).
<<本発明の第一の態様>>
 本発明の第一の態様の硬化性樹脂組成物は、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されたペロブスカイト型化合物と、硬化性樹脂と、を含むことを特徴とするものである。
<<< First embodiment of the present invention >>>
The curable resin composition of the first aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium. It is characterized by containing a perovskite type compound coated with at least one of them, and a curable resin.
 前記被覆されたペロブスカイト型化合物を配合することによって、基板との密着性に優れ、また、基板の表面の粗度が低く、低極性の材料からなるロープロファイル基板に対しても密着性の低下が少なく、高誘電率と低誘電正接を両立した硬化物を得ることができる。 By blending the coated perovskite-type compound, excellent adhesion to the substrate is achieved, and the surface roughness of the substrate is low, and the adhesion is reduced even to a low-profile substrate made of a low-polarity material. It is possible to obtain a cured product having both a high dielectric constant and a low dielectric loss tangent.
 前記密着性の課題は、ペロブスカイト型化合物の配合量が多い場合に特に顕著であるが、本発明の第一の態様によれば、ペロブスカイト型化合物の配合量が多い場合、例えば、組成物の固形分全容量に対して、20容量%以上であっても、基板との密着性に優れた硬化物を得ることが可能である。即ち、本発明の第一の態様によれば、相反する特性である、基板との密着性と、ペロブスカイト型化合物の高充填による高誘電率および低誘電正接とを同時に達成することができる。 The problem of the adhesion is particularly remarkable when the blending amount of the perovskite compound is large, but according to the first aspect of the present invention, when the blending amount of the perovskite compound is large, for example, the solid content of the composition Even when the content is 20% by volume or more based on the total capacity, a cured product having excellent adhesion to the substrate can be obtained. That is, according to the first embodiment of the present invention, it is possible to simultaneously achieve the contradictory characteristics of adhesion to a substrate and high dielectric constant and low dielectric loss tangent due to high filling of a perovskite compound.
 また、ペロブスカイト型化合物の充填量が多い場合、特に、アンカー効果のない粗化フリーもしくは低粗化面の基板(いわゆるロープロファイル基板)や低極性の材料からなる基板との密着性が悪くなり、ひいてはHAST処理後に密着性が低下しやすいという問題が生じるが、本発明の第一の態様においては、前記被覆されたペロブスカイト型化合物を配合することによって、上記のような基板であっても、HAST処理後も密着性に優れた硬化物を得ることができる。 In addition, when the perovskite-type compound is filled in a large amount, adhesion to a substrate made of a low-polarity material or a substrate having a roughened-free or low-roughened surface having no anchor effect (so-called low-profile substrate) is particularly deteriorated. As a result, the problem that the adhesion tends to decrease after the HAST treatment occurs. However, in the first embodiment of the present invention, even if the above-described substrate is used, the HAST treatment can be performed by blending the coated perovskite compound. Even after the treatment, a cured product having excellent adhesion can be obtained.
 さらに、前記被覆されたペロブスカイト型化合物は、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニアの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されているので、硬化性樹脂中において粗粒が発生しにくく、特にファインパターンの回路基板を用いた場合でも絶縁信頼性にも優れる。また、凝集物を起点としたクラックの発生も抑制することができる。 Further, the coated perovskite compound is at least one of a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc and a hydrated oxide of titanium. Since the resin is covered with one or more kinds, coarse particles are hardly generated in the curable resin, and the insulation reliability is particularly excellent even when a fine-patterned circuit board is used. In addition, generation of cracks starting from aggregates can also be suppressed.
 また、前記被覆されたペロブスカイト型化合物は、表面に硬化性反応基を有することが好ましい。一般に、フィラーが表面に硬化性反応基を有する場合、フィラーと硬化性樹脂との結合を強固にすることが可能であるが、フィラーが高充填される場合、フィラー粒子の比表面積が多い一方で樹脂含有量が少なくなるため、硬化性樹脂との馴染みが十分でない部分を引き起こしやすく、特にHAST(高温高湿)環境下では吸湿要因となり硬化性反応基部分が加水分解となる可能性が高くなる。そのため、HAST後の密着性が劣り剥がれが発生しやすくなる。このような塗れ性不良は、フィラーの粒径が小さい場合はフィラーの比表面積が大きく、覆う樹脂量が多く必要となるため特に顕著であった。また、フィラーの表面に硬化性反応基を直接付与しても硬化性樹脂との濡れ性が不十分であることから、特にHAST等の厳しい環境下では加水分解等により密着性の低下となった。 It is preferable that the coated perovskite compound has a curable reactive group on the surface. In general, when the filler has a curable reactive group on the surface, it is possible to strengthen the bond between the filler and the curable resin, but when the filler is highly filled, while the specific surface area of the filler particles is large, Since the resin content is small, it is easy to cause a portion that is not sufficiently compatible with the curable resin. Particularly, in a HAST (high temperature and high humidity) environment, it becomes a factor of absorbing moisture, and the possibility that the curable reactive group portion is hydrolyzed is increased. . Therefore, the adhesion after HAST is inferior and peeling is likely to occur. Such poor wettability was particularly remarkable when the particle size of the filler was small because the specific surface area of the filler was large and the amount of resin to cover was large. In addition, even when a curable reactive group is directly applied to the surface of the filler, the wettability with the curable resin is insufficient. .
 しかしながら、本発明の第一の態様においては、前記被覆されたペロブスカイト型化合物が表面に硬化性反応基を有していても、ペロブスカイト型化合物と硬化性反応基との間に、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種が介在していているので、HAST環境下でも加水分解による密着性の低下が少ないことも確認されている。即ちHAST処理後においても硬化性樹脂との濡れ性が維持できているため、密着性が低下しにくいという優れた効果を得ることができる。さらに、硬化性反応基による硬化物の物性の改善、例えば低CTE化も可能である。 However, in the first embodiment of the present invention, even if the coated perovskite compound has a curable reactive group on the surface, the hydration of silicon is caused between the perovskite compound and the curable reactive group. Since at least one of oxides, hydrated oxides of aluminum, hydrated oxides of zirconium, hydrated oxides of zinc, and hydrated oxides of titanium are interposed, even in a HAST environment It is also confirmed that the decrease in adhesion due to hydrolysis is small. That is, since the wettability with the curable resin can be maintained even after the HAST treatment, an excellent effect that the adhesion is hardly reduced can be obtained. Further, it is possible to improve the physical properties of the cured product due to the curable reactive group, for example, to reduce the CTE.
 また、本発明の第一の態様においては、ペロブスカイト型化合物の表面に水和酸化物に基づく水酸基を多くし、そこに効果的に硬化性反応基を付与できることで溶融粘度をより低下できるため、表面に硬化性反応基を有することが好ましい。 In the first embodiment of the present invention, the perovskite-type compound has more hydroxyl groups based on the hydrated oxide on the surface thereof, and the curable reactive group can be effectively imparted thereto, so that the melt viscosity can be further reduced. It is preferable to have a curable reactive group on the surface.
 以下に、本発明の第一の態様の硬化性樹脂組成物が含有する各成分について説明する。 (4) Hereinafter, each component contained in the curable resin composition of the first embodiment of the present invention will be described.
[ペロブスカイト型化合物]
 本発明の第一の態様の硬化性樹脂組成物は、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニアの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されたペロブスカイト型化合物を含む。
[Perovskite compound]
The curable resin composition of the first aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc and a hydrated oxide of titanium. A perovskite-type compound coated with at least one of them.
 被覆されるペロブスカイト型化合物としては、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸ストロンチウム、および、これらを主成分とする複合酸化物を挙げることができる。これらの中でも、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、ジルコン酸カルシウム、ジルコン酸ストロンチウム、またはこれらを主成分とする複合酸化物を用いることが好ましい。ペロブスカイト型化合物とは、ABO(A、Bは2価と4価の金属イオン、Oは酸素イオン)で表される化合物を言う。 Examples of the perovskite-type compound to be coated include barium titanate, calcium titanate, strontium titanate, barium zirconate, calcium zirconate, strontium zirconate, and composite oxides containing these as main components. Among them, it is preferable to use barium titanate, calcium titanate, strontium titanate, calcium zirconate, strontium zirconate, or a composite oxide containing these as a main component. The perovskite compound refers to a compound represented by ABO 3 (A and B are divalent and tetravalent metal ions, and O is an oxygen ion).
 ペロブスカイト型化合物の市販品としては堺化学工業社製のBT-03、CT-03、ST-03、CZ-03、SZ-03、CZ-03などが挙げられる。 市 販 Commercially available perovskite-type compounds include BT-03, CT-03, ST-03, CZ-03, SZ-03, CZ-03, etc., manufactured by Sakai Chemical Industry Co., Ltd.
 ペロブスカイト型化合物を被覆する方法は特に限定されないが、ケイ素の水和酸化物によりペロブスカイト型化合物を被覆する方法としては、例えば、ペロブスカイト型化合物の水スラリーにケイ酸アルカリ水溶液を加えてペロブスカイト型化合物の表面にケイ酸を生成させ、次いでスラリーに鉱酸を加えることで、ケイ酸をケイ素の水和酸化物に分解してペロブスカイト型化合物の表面にケイ素の水和酸化物を沈着させることができる。水スラリー中のペロブスカイト型化合物の量は特に制限されるものではないが、通常、50~200g/lが適当である。次に、上記のような水スラリーに加えるケイ酸アルカリとしては具体的にはケイ酸ナトリウム、ケイ酸カリウム等が用いられ、その濃度は、通常、ペロブスカイト型化合物換算でl0~200g/lである。鉱酸としては塩酸、硝酸、硫酸等を用いることができる。 The method of coating the perovskite compound is not particularly limited, but as a method of coating the perovskite compound with a hydrated oxide of silicon, for example, an aqueous solution of an alkali silicate is added to a water slurry of the perovskite compound to prepare the perovskite compound. By generating silicic acid on the surface and then adding mineral acid to the slurry, silicic acid can be decomposed into hydrated oxides of silicon, and hydrated oxides of silicon can be deposited on the surface of the perovskite-type compound. The amount of the perovskite-type compound in the water slurry is not particularly limited, but is usually 50 to 200 g / l. Next, as the alkali silicate to be added to the water slurry as described above, specifically, sodium silicate, potassium silicate or the like is used, and its concentration is usually 10 to 200 g / l in terms of perovskite type compound. . Hydrochloric acid, nitric acid, sulfuric acid and the like can be used as the mineral acid.
 アルミニウムの水和酸化物によりペロブスカイト型化合物を被覆する方法としては、例えば、ペロブスカイト型化合物の水スラリーにアルミン酸ナトリウム等の水溶性アルミニウム化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、ペロブスカイト型化合物の表面にアルミニウムの水和酸化物を沈着させることができる。水スラリー中のペロブスカイト型化合物の量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア、酸としては塩酸、硝酸等が用いられ、加える量は上記水溶性アルミニウム化合物が、アルミニウムの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating the perovskite compound with a hydrated oxide of aluminum, for example, after adding an aqueous solution of a water-soluble aluminum compound such as sodium aluminate to a water slurry of the perovskite compound, neutralization with an alkali or an acid Thereby, a hydrated oxide of aluminum can be deposited on the surface of the perovskite compound. The amount of the perovskite-type compound in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate. As the alkali, sodium hydroxide, potassium hydroxide, ammonia, and as the acid, hydrochloric acid, nitric acid, and the like are used. The amount to be added is an amount by which the water-soluble aluminum compound can form a hydrated oxide of aluminum. Is 7 ± 0.5.
 ジルコニウムの水和酸化物によりペロブスカイト型化合物を被覆する方法としては、例えば、ペロブスカイト型化合物の水スラリーにオキシ塩化ジルコニウム等の水溶性ジルコニウム化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、ペロブスカイト型化合物の表面にジルコニウムの水和酸化物を沈着させることができる。水スラリー中のペロブスカイト型化合物の量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア等が用いられ、加える量は上記水溶性ジルコニウム化合物が、ジルコニウムの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating the perovskite compound with a hydrated oxide of zirconium, for example, after adding an aqueous solution of a water-soluble zirconium compound such as zirconium oxychloride to a water slurry of the perovskite compound, neutralization with an alkali or an acid Thereby, a hydrated oxide of zirconium can be deposited on the surface of the perovskite compound. The amount of the perovskite-type compound in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate. As the alkali, sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zirconium compound can form a hydrated oxide of zirconium, and the pH is preferably 7 ± 0.5. is there.
 亜鉛の水和酸化物によりペロブスカイト型化合物を被覆する方法としては、例えば、ペロブスカイト型化合物の水スラリーに硫酸亜鉛等の水溶性亜鉛化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、ペロブスカイト型化合物の表面に亜鉛の水和酸化物を沈着させることができる。水スラリー中のペロブスカイト型化合物の量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア等が用いられ、加える量は上記水溶性亜鉛化合物が、亜鉛の水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating the perovskite compound with a hydrated oxide of zinc, for example, after adding an aqueous solution of a water-soluble zinc compound such as zinc sulfate to a water slurry of the perovskite compound, neutralization with an alkali or an acid The hydrated oxide of zinc can be deposited on the surface of the perovskite compound. The amount of the perovskite-type compound in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate. As the alkali, sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zinc compound can form a hydrated oxide of zinc, and the pH is preferably 7 ± 0.5. is there.
 チタンの水和酸化物によりペロブスカイト型化合物を被覆する方法としては、例えば、ペロブスカイト型化合物の水スラリーにチタニル硫酸等の水溶性チタンの水溶液を加えた後、アルカリまたは酸で中和することにより、ペロブスカイト型化合物の表面にチタンの水和酸化物を沈着させることができる。水スラリー中のペロブスカイト型化合物の量は特に制限されるものではないが、通常、30~300g/lが適当である。酸としては塩酸、硝酸等が用いられ、加える量は上記水溶性チタン化合物が、チタンの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating the perovskite compound with a hydrated oxide of titanium, for example, by adding an aqueous solution of a water-soluble titanium such as titanyl sulfate to a water slurry of the perovskite compound, and neutralizing with an alkali or an acid, A hydrated oxide of titanium can be deposited on the surface of the perovskite compound. The amount of the perovskite-type compound in the water slurry is not particularly limited, but usually 30 to 300 g / l is appropriate. As the acid, hydrochloric acid, nitric acid or the like is used, and the amount to be added is such that the above water-soluble titanium compound can form a hydrated oxide of titanium, and the pH is preferably 7 ± 0.5.
 ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種による被覆は、ペロブスカイト型化合物100質量部に対して、前記ケイ素などの水和酸化物を好ましくは、1~40質量部、より好ましくは3~20質量部で被覆することが好ましい。1質量部以上で被覆することによって、硬化性樹脂中でのペロブスカイト型化合物の分散性により優れ、HAST処理後に密着性がより低下しにくい硬化物を得ることができる。 The coating with at least one of a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc, and a hydrated oxide of titanium comprises a perovskite compound 100 The hydrated oxide such as silicon is preferably coated with 1 to 40 parts by mass, more preferably 3 to 20 parts by mass, with respect to parts by mass. By coating with 1 part by mass or more, it is possible to obtain a cured product which is more excellent in dispersibility of the perovskite compound in the curable resin and in which the adhesion is less likely to decrease after the HAST treatment.
 前記被覆されたペロブスカイト型化合物は、ケイ素の水和酸化物およびアルミニウムの水和酸化物により被覆されたペロブスカイト型化合物であることが好ましい。また、前記被覆されたペロブスカイト型化合物は、ケイ素の水和酸化物からなる被覆層と、アルミニウムの水和酸化物からなる被覆層とを、この順に有することが好ましい。このように被覆することによって、硬化性樹脂中でのペロブスカイト型化合物の分散性により優れ、HAST処理後に密着性がより低下しにくい硬化物を得ることができる。また、アルミニウム水和酸化物からなる被覆層を効率よく付着させることが可能となり、その効果として組成物の光反応性を向上させて高感度化することができる。これはおそらく光触媒となって感光促進となったものと推測される。この効果は、アルミニウムの水和酸化物だけでなく、ジルコニアの水和酸化物、亜鉛の水和酸化物、チタンの水和酸化物などの金属化合物でも同様にみられ光反応開始剤の増量なくめっき耐性に寄与する。 The coated perovskite compound is preferably a perovskite compound coated with a hydrated oxide of silicon and a hydrated oxide of aluminum. It is preferable that the coated perovskite compound has a coating layer made of a hydrated oxide of silicon and a coating layer made of a hydrated oxide of aluminum in this order. By coating in this manner, it is possible to obtain a cured product which is more excellent in the dispersibility of the perovskite compound in the curable resin and in which the adhesion is less likely to decrease after the HAST treatment. Further, it becomes possible to efficiently adhere the coating layer made of aluminum hydrated oxide, and as an effect thereof, the photoreactivity of the composition can be improved and the sensitivity can be increased. It is presumed that this probably acted as a photocatalyst to promote photosensitivity. This effect is seen not only in hydrated oxides of aluminum but also in metal compounds such as hydrated oxides of zirconia, hydrated oxides of zinc, and hydrated oxides of titanium without increasing the amount of photoreaction initiator. Contributes to plating resistance.
 上記のとおり、本発明の第一の態様においては、表面に硬化性反応基を有する場合であっても、HAST処理後の密着性に優れ、また、硬化性樹脂との強固な結合が得られるので、硬化性反応基による硬化物の物性の改善も可能である。ここで、硬化性反応基とは、硬化性樹脂組成物に配合する成分(例えば、硬化性樹脂やアルカリ可溶性樹脂)と硬化反応する基であれば、特に限定されず、光硬化性反応基でも熱硬化性反応基でもよい。光硬化性反応基としては、メタクリル基、アクリル基、ビニル基、スチリル基等が挙げられ、熱硬化性反応基としては、エポキシ基、アミノ基、水酸基、カルボキシル基、イソシアネート基、イミノ基、オキセタニル基、メルカプト基、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基、オキサゾリン基等が挙げられる。前記被覆されたペロブスカイト型化合物の表面に硬化性反応基を導入する方法は特に限定されず、公知慣用の方法を用いて導入すればよく、硬化性反応基を有する表面処理剤、例えば、硬化性反応基を有機基として有するカップリング剤等で前記被覆されたペロブスカイト型化合物の表面を処理すればよい。カップリング剤としては、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤等を用いることができる。なかでも、シランカップリング剤が好ましい。また、被覆されたペロブスカイト型化合物の表面を処理することで、ペロブスカイト型化合物の分散性を更に向上させることができる。 As described above, in the first embodiment of the present invention, even when the surface has a curable reactive group, the adhesiveness after the HAST treatment is excellent, and a strong bond with the curable resin is obtained. Therefore, the physical properties of the cured product can be improved by the curable reactive group. Here, the curable reactive group is not particularly limited as long as it is a group that undergoes a curing reaction with a component (for example, a curable resin or an alkali-soluble resin) blended in the curable resin composition. It may be a thermosetting reactive group. Examples of the photocurable reactive group include a methacryl group, an acrylic group, a vinyl group, and a styryl group. Examples of the thermosetting reactive group include an epoxy group, an amino group, a hydroxyl group, a carboxyl group, an isocyanate group, an imino group, and oxetanyl. Group, mercapto group, methoxymethyl group, methoxyethyl group, ethoxymethyl group, ethoxyethyl group, oxazoline group and the like. The method for introducing a curable reactive group on the surface of the coated perovskite compound is not particularly limited, and may be introduced using a known and commonly used method, and a surface treating agent having a curable reactive group, for example, a curable The surface of the coated perovskite compound may be treated with a coupling agent having a reactive group as an organic group. As the coupling agent, a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used. Especially, a silane coupling agent is preferable. Further, by treating the surface of the coated perovskite compound, the dispersibility of the perovskite compound can be further improved.
 前記被覆されたペロブスカイト型化合物が表面に有する硬化性反応基は、本発明の第一の態様の硬化性樹脂組成物が光硬化性樹脂を含有する場合は、光硬化性反応基であることが好ましく、熱硬化性樹脂を含有する場合は、熱硬化性反応基であることが好ましい。 The curable reactive group that the coated perovskite compound has on the surface may be a photocurable reactive group when the curable resin composition of the first aspect of the present invention contains a photocurable resin. Preferably, when a thermosetting resin is contained, it is preferably a thermosetting reactive group.
 前記被覆されたペロブスカイト型化合物の平均粒子径は、0.01~10μmであることが好ましく、より好ましくは、0.01~1μmである。ペロブスカイト型化合物は高屈折率であるため、光硬化型の組成物の場合は、平均粒子径は小さい方が深部硬化性に優れるため好ましい。一方、高反射率や隠ぺい性の観点からは、平均粒子径が大きい方が好ましい。また、最大粒子径(D100)は、5μm以下であることが好ましい。小さい方が沈降の抑制になる。ここで、本明細書において、ペロブスカイト型化合物の平均粒子径は、一次粒子の粒径だけでなく、二次粒子(凝集体)の粒径も含めた平均粒子径(D50)であり、レーザー回折法により測定されたD50の値である。レーザー回折法による測定装置としては、日機装社製のMicrotrac MT3300EXIIが挙げられる。 平均 The coated perovskite compound preferably has an average particle size of 0.01 to 10 μm, more preferably 0.01 to 1 μm. Since the perovskite-type compound has a high refractive index, in the case of a photocurable composition, a smaller average particle diameter is preferable because it is excellent in deep part curability. On the other hand, from the viewpoints of high reflectivity and opacity, a larger average particle diameter is preferable. Further, the maximum particle diameter (D100) is preferably 5 μm or less. A smaller one suppresses sedimentation. Here, in this specification, the average particle diameter of the perovskite compound is an average particle diameter (D50) including not only the particle diameter of the primary particles but also the particle diameter of the secondary particles (aggregates). It is a value of D50 measured by the method. As a measuring device by the laser diffraction method, there is Microtrac @ MT3300EXII manufactured by Nikkiso Co., Ltd.
 前記被覆されたペロブスカイト型化合物は、平均粒子径を調整してもよく、例えば、ビーズミルやジェットミルで予備分散することが好ましい。また、前記被覆されたペロブスカイト型化合物は、スラリー状態で配合されることが好ましく、スラリー状態で配合することによって、高分散化が容易であり、凝集を防止し、取り扱いが容易になる。 The average particle diameter of the coated perovskite compound may be adjusted. For example, it is preferable that the compound is preliminarily dispersed by a bead mill or a jet mill. The coated perovskite compound is preferably compounded in a slurry state. By compounding in a slurry state, high dispersion can be easily achieved, aggregation is prevented, and handling is facilitated.
 前記被覆されたペロブスカイト型化合物は、1種を単独または2種以上を組み合わせて用いることができる。本発明の第一の態様においては、前記被覆されたペロブスカイト型化合物の配合量が多く、相対的に樹脂成分が少なくなっても基材との密着性に優れた硬化物を得ることが可能であり、例えば、前記被覆されたペロブスカイト型化合物の配合量が、組成物の固形分全容量に対して、20容量%以上、さらには25容量%以上であってもよい。前記被覆されたペロブスカイト型化合物の配合量が多いほど、誘電率を高くすることができる。好ましくは、30容量%以上である。上限値としては、硬化物特性やハンドリングの観点から例えば60容量%である。平均粒子径が0.5μm以上である場合、好ましくは、35容量%以上である。 は The coated perovskite compound can be used alone or in combination of two or more. In the first aspect of the present invention, the compounded amount of the coated perovskite compound is large, and it is possible to obtain a cured product excellent in adhesion to a substrate even when the resin component is relatively small. For example, the amount of the coated perovskite compound may be 20% by volume or more, or even 25% by volume or more based on the total solid content of the composition. The dielectric constant can be increased as the amount of the coated perovskite compound increases. Preferably, it is at least 30% by volume. The upper limit is, for example, 60% by volume from the viewpoint of the properties of the cured product and handling. When the average particle size is 0.5 μm or more, it is preferably 35% by volume or more.
 また、前記被覆されたペロブスカイト型化合物の配合量は、上記のとおり、配合量が多いほど、誘電率を高くすることができるため、組成物の固形分全量中、30~90質量%であることが好ましい。 Further, as described above, the compounding amount of the coated perovskite-type compound is 30 to 90% by mass in the total solid content of the composition, because the larger the compounding amount, the higher the dielectric constant can be. Is preferred.
<<本発明の第二の態様>>
 本発明の第二の態様の硬化性樹脂組成物は、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆された酸化チタン粒子と、硬化性樹脂と、を含む硬化性樹脂組成物であって、前記被覆された酸化チタン粒子が、表面に硬化性反応基を有することを特徴とするものである。
<<< second embodiment of the present invention >>>
The curable resin composition of the second aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium. A curable resin composition comprising titanium oxide particles coated with at least one of the above and a curable resin, wherein the coated titanium oxide particles have a curable reactive group on the surface. It is characterized by the following.
 表面に硬化性反応基を有する前記被覆された酸化チタン粒子(以下、単に「前記被覆された酸化チタン粒子」とも称する)を配合することによって、基板との密着性に優れ、また、基板の表面の粗度が低く、低極性の材料からなるロープロファイル基板に対しても密着性の低下が少ない硬化物を得ることができる。前記被覆された酸化チタン粒子は、少なくともアルミニウムの水和酸化物で被覆されていると、さらに密着性の低下を抑えることができるので好ましい。 By blending the coated titanium oxide particles having a curable reactive group on the surface (hereinafter, also simply referred to as “coated titanium oxide particles”), excellent adhesion to the substrate is obtained, and the surface of the substrate is A cured product having a low roughness and a small decrease in adhesion to a low-profile substrate made of a low-polarity material can be obtained. It is preferable that the coated titanium oxide particles are coated with at least a hydrated oxide of aluminum because a decrease in adhesion can be further suppressed.
 前記密着性の課題は、酸化チタン粒子の配合量が多い場合に特に顕著であるが、本発明の第二の態様によれば、前記被覆された酸化チタン粒子の配合量が多い場合、例えば、組成物の固形分全容量に対して、25容量%以上であっても、基板との密着性に優れた硬化物を得ることが可能である。即ち、本発明の第二の態様によれば、相反する特性である、基板との密着性と、酸化チタン粒子の高充填による高誘電率および低誘電正接とを同時に達成することができる。 The problem of the adhesion is particularly remarkable when the blending amount of the titanium oxide particles is large, but according to the second aspect of the present invention, when the blending amount of the coated titanium oxide particles is large, for example, Even if the content is 25% by volume or more based on the total solid content of the composition, a cured product having excellent adhesion to a substrate can be obtained. That is, according to the second aspect of the present invention, it is possible to simultaneously achieve the contradictory properties of adhesion to a substrate and high dielectric constant and low dielectric loss tangent due to high filling of titanium oxide particles.
 また、酸化チタンの充填量が多い場合、特に、アンカー効果のない粗化フリーもしくは低粗化面の基板(いわゆるロープロファイル基板)や低極性の材料からなる基板との密着性が悪くなり、ひいてはHAST処理後に密着性が低下しやすいという問題が生じるが、本発明の第二の態様においては、前記被覆された酸化チタン粒子を配合することによって、上記のような基板であっても、HAST処理後も密着性に優れた硬化物を得ることができる。 In addition, when the filling amount of titanium oxide is large, adhesion to a substrate having a roughening free or low roughness surface (so-called low-profile substrate) having no anchor effect or a substrate made of a low-polarity material is deteriorated. Although the problem that the adhesion tends to decrease after the HAST process occurs, in the second embodiment of the present invention, the above-described substrate can be mixed with the HAST process by mixing the coated titanium oxide particles. After that, a cured product having excellent adhesion can be obtained.
 さらに、前記被覆された酸化チタン粒子は、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニアの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されているので、硬化性樹脂中において粗粒が発生しにくく、特にファインパターンの回路基板を用いた場合でも絶縁信頼性にも優れる。また、凝集物を起点としたクラックの発生も抑制することができる。 Further, the coated titanium oxide particles may be a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc, and a hydrated oxide of titanium. Since the resin is covered with one or more kinds, coarse particles are hardly generated in the curable resin, and the insulation reliability is particularly excellent even when a fine-patterned circuit board is used. In addition, generation of cracks starting from aggregates can also be suppressed.
 また、上記のとおり、一般に、フィラーが表面に硬化性反応基を有する場合、フィラーと硬化性樹脂との結合を強固にすることが可能であるが、フィラーが高充填される場合、特にHAST等の厳しい環境下では加水分解等により密着性の低下となった。 In addition, as described above, generally, when the filler has a curable reactive group on the surface, it is possible to strengthen the bond between the filler and the curable resin. In a severe environment, the adhesion decreased due to hydrolysis and the like.
 しかしながら、本発明の第二の態様においては、前記被覆された酸化チタン粒子が表面に硬化性反応基を有していても、酸化チタン粒子と硬化性反応基との間に、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種が介在していているので、HAST環境下でも加水分解による密着性の低下が少ないことも確認されている。即ちHAST処理後においても硬化性樹脂との濡れ性が維持できているため、密着性が低下しにくいという優れた効果を得ることができる。さらに、硬化性反応基による硬化物の物性の改善、例えば低CTE化も可能である。 However, in the second embodiment of the present invention, even if the coated titanium oxide particles have a curable reactive group on the surface, hydration of silicon is caused between the titanium oxide particles and the curable reactive group. Since at least one of oxides, hydrated oxides of aluminum, hydrated oxides of zirconium, hydrated oxides of zinc, and hydrated oxides of titanium are interposed, even in a HAST environment It is also confirmed that the decrease in adhesion due to hydrolysis is small. That is, since the wettability with the curable resin can be maintained even after the HAST treatment, an excellent effect that the adhesion is hardly reduced can be obtained. Further, it is possible to improve the physical properties of the cured product due to the curable reactive group, for example, to reduce the CTE.
 また、本発明の第二の態様においては、酸化チタン粒子の表面に水和酸化物に基づく水酸基を多くし、そこに効果的に硬化性反応基を付与されることから、溶融粘度をより低下することができる。 Further, in the second aspect of the present invention, the hydroxyl groups based on hydrated oxides are increased on the surface of the titanium oxide particles, and the curable reactive groups are effectively imparted thereto, so that the melt viscosity is further reduced. can do.
 本発明の第二の態様の硬化性樹脂組成物は、固形分における酸価が25mgKOH/g以下であってもよく、さらには20mgKOH/g以下であってもよい。酸価が高い方が、硬化後に水酸基が多く残存するため密着性には有利であるが、低誘電正接の観点からは、酸価が低い方が好ましい。本発明においては、低酸価の組成系でも、前記被覆された酸化チタン粒子を含むことで密着性が良好である。 酸 The curable resin composition of the second aspect of the present invention may have an acid value at a solid content of 25 mgKOH / g or less, and further may have an acid value of 20 mgKOH / g or less. A higher acid value is advantageous in adhesion since a large amount of hydroxyl groups remain after curing, but from the viewpoint of a low dielectric loss tangent, a lower acid value is preferable. In the present invention, even if the composition system has a low acid value, the adhesion is good by including the coated titanium oxide particles.
[酸化チタン粒子]
 本発明の第二の態様の硬化性樹脂組成物は、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニアの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆された酸化チタン粒子を含む。前記被覆された酸化チタン粒子は、さらに表面に硬化性反応基を有する。
[Titanium oxide particles]
The curable resin composition of the second aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc and a hydrated oxide of titanium. And titanium oxide particles coated with at least one of them. The coated titanium oxide particles further have a curable reactive group on the surface.
 被覆される酸化チタン粒子(即ち、被覆前の酸化チタン粒子)としては、特に限定されず、無機フィラーや白色顔料として用いることができる公知慣用の酸化チタン粒子を用いればよい。酸化チタンとしては、ルチル型、アナターゼ型、ラムスデライト型のいずれの構造の酸化チタンであってもよい。即ち、被覆される酸化チタン粒子は、反射率、着色性、隠蔽性、成形性および安定性等の観点から適宜選択すればよく、ルチル型でもアナターゼ型でもよい。このうちラムスデライト型酸化チタンは、ラムスデライト型Li0.5TiOに化学酸化によるリチウム脱離処理を施すことで得られる。 The titanium oxide particles to be coated (that is, titanium oxide particles before coating) are not particularly limited, and known and commonly used titanium oxide particles that can be used as an inorganic filler or a white pigment may be used. The titanium oxide may be any one of a rutile type, an anatase type and a ramsdellite type structure. That is, the titanium oxide particles to be coated may be appropriately selected from the viewpoints of reflectance, coloring property, concealing property, moldability and stability, and may be of rutile type or anatase type. Among them, the ramsdellite type titanium oxide is obtained by subjecting the ramsdellite type Li 0.5 TiO 2 to a lithium desorption treatment by chemical oxidation.
 酸化チタン粒子を被覆する方法は特に限定されないが、ケイ素の水和酸化物により酸化チタン粒子を被覆する方法としては、例えば、酸化チタン粒子の水スラリーにケイ酸アルカリ水溶液を加えて酸化チタン粒子の表面にケイ酸を生成させ、次いでスラリーに鉱酸を加えることで、ケイ酸をケイ素の水和酸化物に分解して酸化チタン粒子の表面にケイ素の水和酸化物を沈着させることができる。水スラリー中の酸化チタン粒子の量は特に制限されるものではないが、通常、70~150g/lが適当である。次に、上記のような水スラリーに加えるケイ酸アルカリとしては具体的にはケイ酸ナトリウム、ケイ酸カリウム等が用いられ、その濃度は、通常、酸化チタン粒子換算でl0~200g/lである。鉱酸としては塩酸、硝酸、硫酸等を用いることができる。 The method of coating the titanium oxide particles is not particularly limited, but examples of a method of coating the titanium oxide particles with a hydrated oxide of silicon include, for example, adding an aqueous alkali silicate solution to a water slurry of the titanium oxide particles to form the titanium oxide particles. By generating silicic acid on the surface and then adding a mineral acid to the slurry, the silicic acid can be decomposed into hydrated oxides of silicon and the hydrated oxides of silicon can be deposited on the surfaces of the titanium oxide particles. The amount of the titanium oxide particles in the water slurry is not particularly limited, but is usually 70 to 150 g / l. Next, as the alkali silicate to be added to the above-mentioned water slurry, specifically, sodium silicate, potassium silicate or the like is used, and its concentration is usually 10 to 200 g / l in terms of titanium oxide particles. . Hydrochloric acid, nitric acid, sulfuric acid and the like can be used as the mineral acid.
 アルミニウムの水和酸化物により酸化チタン粒子を被覆する方法としては、例えば酸化チタン粒子の水スラリーにアルミン酸ナトリウム等の水溶性アルミニウム化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、酸化チタン粒子の表面にアルミニウムの水和酸化物を沈着させることができる。水スラリー中の酸化チタン粒子の量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア、酸としては塩酸、硝酸等が用いられ、加える量は上記水溶性アルミニウム化合物が、アルミニウムの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating titanium oxide particles with a hydrated oxide of aluminum, for example, an aqueous solution of a water-soluble aluminum compound such as sodium aluminate is added to a water slurry of titanium oxide particles, and then neutralized with an alkali or an acid. A hydrated oxide of aluminum can be deposited on the surface of the titanium oxide particles. The amount of the titanium oxide particles in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate. As the alkali, sodium hydroxide, potassium hydroxide, ammonia, and as the acid, hydrochloric acid, nitric acid, and the like are used. The amount to be added is an amount by which the water-soluble aluminum compound can form a hydrated oxide of aluminum. Is 7 ± 0.5.
 ジルコニウムの水和酸化物により酸化チタン粒子を被覆する方法としては、例えば、酸化チタン粒子の水スラリーにオキシ塩化ジルコニウム等の水溶性ジルコニウム化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、酸化チタン粒子の表面にジルコニウムの水和酸化物を沈着させることができる。水スラリー中の酸化チタン粒子の量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア等が用いられ、加える量は上記水溶性ジルコニウム化合物が、ジルコニウムの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating titanium oxide particles with a hydrated oxide of zirconium, for example, after adding an aqueous solution of a water-soluble zirconium compound such as zirconium oxychloride to a water slurry of titanium oxide particles, neutralization with an alkali or an acid Thereby, the hydrated oxide of zirconium can be deposited on the surface of the titanium oxide particles. The amount of the titanium oxide particles in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate. As the alkali, sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zirconium compound can form a hydrated oxide of zirconium, and the pH is preferably 7 ± 0.5. is there.
 亜鉛の水和酸化物により酸化チタン粒子を被覆する方法としては、例えば、酸化チタン粒子の水スラリーに硫酸亜鉛等の水溶性亜鉛化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、酸化チタン粒子の表面に亜鉛の水和酸化物を沈着させることができる。水スラリー中の酸化チタン粒子の量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア等が用いられ、加える量は上記水溶性亜鉛化合物が、亜鉛の水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating titanium oxide particles with a hydrated oxide of zinc, for example, by adding an aqueous solution of a water-soluble zinc compound such as zinc sulfate to a water slurry of titanium oxide particles, and then neutralizing with an alkali or acid. The hydrated oxide of zinc can be deposited on the surface of the titanium oxide particles. The amount of the titanium oxide particles in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate. As the alkali, sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zinc compound can form a hydrated oxide of zinc, and the pH is preferably 7 ± 0.5. is there.
 チタンの水和酸化物により酸化チタン粒子を被覆する方法としては、例えば、酸化チタン粒子の水スラリーにチタニル硫酸等の水溶性チタンの水溶液を加えた後、アルカリまたは酸で中和することにより、酸化チタン粒子の表面にチタンの水和酸化物を沈着させることができる。水スラリー中の酸化チタン粒子の量は特に制限されるものではないが、通常、30~300g/lが適当である。酸としては塩酸、硝酸等が用いられ、加える量は上記水溶性チタン化合物が、チタンの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating titanium oxide particles with a hydrated oxide of titanium, for example, by adding an aqueous solution of a water-soluble titanium such as titanyl sulfate to a water slurry of titanium oxide particles, and then neutralizing with an alkali or an acid, A hydrated oxide of titanium can be deposited on the surface of the titanium oxide particles. The amount of the titanium oxide particles in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate. As the acid, hydrochloric acid, nitric acid or the like is used, and the amount to be added is such that the above water-soluble titanium compound can form a hydrated oxide of titanium, and the pH is preferably 7 ± 0.5.
 ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種による被覆は、酸化チタン粒子100質量部に対して、前記ケイ素などの水和酸化物を好ましくは、1~40質量部、より好ましくは3~20質量部で被覆することが好ましい。1質量部以上で被覆することによって、硬化性樹脂中での酸化チタン粒子の分散性により優れ、HAST処理後に密着性がより低下しにくい硬化物を得ることができる。 The coating with at least one of a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc, and a hydrated oxide of titanium is performed using titanium oxide particles 100 The hydrated oxide such as silicon is preferably coated with 1 to 40 parts by mass, more preferably 3 to 20 parts by mass, with respect to parts by mass. By coating with 1 part by mass or more, it is possible to obtain a cured product which is more excellent in dispersibility of the titanium oxide particles in the curable resin and in which the adhesion is less likely to decrease after the HAST treatment.
 前記被覆された酸化チタン粒子は、ケイ素の水和酸化物およびアルミニウムの水和酸化物により被覆された酸化チタン粒子であることが好ましい。また、前記被覆された酸化チタン粒子は、ケイ素の水和酸化物からなる被覆層と、アルミニウムの水和酸化物からなる被覆層とを、この順に有することが好ましい。このように被覆することによって、硬化性樹脂中での酸化チタン粒子の分散性により優れ、HAST処理後に密着性がより低下しにくい硬化物を得ることができる。また、アルミニウム水和酸化物からなる被覆層を効率よく付着させることが可能となり、その効果として組成物の光反応性を向上させて高感度化することができる。これはおそらく光触媒となって感光促進となったものと推測される。この効果は、アルミニウムの水和酸化物だけでなく、ジルコニアの水和酸化物、亜鉛の水和酸化物、チタンの水和酸化物などの金属化合物でも同様にみられ光反応開始剤の増量なくめっき耐性に寄与する。 The coated titanium oxide particles are preferably titanium oxide particles coated with a hydrated oxide of silicon and a hydrated oxide of aluminum. The coated titanium oxide particles preferably have a coating layer made of a hydrated oxide of silicon and a coating layer made of a hydrated oxide of aluminum in this order. By coating in this manner, it is possible to obtain a cured product which is more excellent in dispersibility of the titanium oxide particles in the curable resin and in which the adhesion is less likely to decrease after the HAST treatment. Further, it becomes possible to efficiently adhere the coating layer made of aluminum hydrated oxide, and as an effect thereof, the photoreactivity of the composition can be improved and the sensitivity can be increased. It is presumed that this probably acted as a photocatalyst to promote photosensitivity. This effect is seen not only in hydrated oxides of aluminum but also in metal compounds such as hydrated oxides of zirconia, hydrated oxides of zinc, and hydrated oxides of titanium without increasing the amount of photoreaction initiator. Contributes to plating resistance.
 上記のとおり、本発明においては、硬化性反応基とは、硬化性樹脂組成物に配合する成分(例えば、硬化性樹脂やアルカリ可溶性樹脂)と硬化反応する基であれば、特に限定されず、光硬化性反応基でも熱硬化性反応基でもよい。光硬化性反応基としては、メタクリル基、アクリル基、ビニル基、スチリル基等が挙げられ、熱硬化性反応基としては、エポキシ基、アミノ基、水酸基、カルボキシル基、イソシアネート基、イミノ基、オキセタニル基、メルカプト基、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基、オキサゾリン基等が挙げられる。前記被覆された酸化チタン粒子の表面に硬化性反応基を導入する方法は特に限定されず、公知慣用の方法を用いて導入すればよく、硬化性反応基を有する表面処理剤、例えば、硬化性反応基を有機基として有するカップリング剤等で前記被覆された酸化チタン粒子の表面を処理すればよい。カップリング剤としては、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤等を用いることができる。なかでも、シランカップリング剤が好ましい。また、前記被覆された酸化チタン粒子の表面を処理することで、酸化チタン粒子の分散性を更に向上させることができる。 As described above, in the present invention, the curable reactive group is not particularly limited as long as it is a group that undergoes a curing reaction with a component (for example, a curable resin or an alkali-soluble resin) blended in the curable resin composition. It may be a photocurable reactive group or a thermosetting reactive group. Examples of the photocurable reactive group include a methacryl group, an acrylic group, a vinyl group, and a styryl group. Examples of the thermosetting reactive group include an epoxy group, an amino group, a hydroxyl group, a carboxyl group, an isocyanate group, an imino group, and oxetanyl. Group, mercapto group, methoxymethyl group, methoxyethyl group, ethoxymethyl group, ethoxyethyl group, oxazoline group and the like. The method for introducing a curable reactive group on the surface of the coated titanium oxide particles is not particularly limited, and may be introduced using a known and commonly used method, and a surface treatment agent having a curable reactive group, for example, a curable The surface of the coated titanium oxide particles may be treated with a coupling agent having a reactive group as an organic group. As the coupling agent, a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used. Especially, a silane coupling agent is preferable. By treating the surface of the coated titanium oxide particles, the dispersibility of the titanium oxide particles can be further improved.
 前記被覆された酸化チタン粒子が表面に有する硬化性反応基は、本発明の第二の態様の硬化性樹脂組成物が光硬化性樹脂を含有する場合は、光硬化性反応基であることが好ましく、熱硬化性樹脂を含有する場合は、熱硬化性反応基であることが好ましい。 The curable reactive group that the coated titanium oxide particles have on the surface may be a photocurable reactive group when the curable resin composition of the second aspect of the present invention contains a photocurable resin. Preferably, when a thermosetting resin is contained, it is preferably a thermosetting reactive group.
 前記被覆された酸化チタン粒子の平均粒子径は、0.01~10μmであることが好ましく、より好ましくは、0.01~1μmである。酸化チタンは高屈折率であるため、光硬化型の組成物の場合は、平均粒子径は小さい方が深部硬化性に優れるため好ましい。一方、高反射率や隠ぺい性の観点からは、平均粒子径が大きい方が好ましい。また、最大粒子径(D100)は、5μm以下であることが好ましい。小さい方が沈降の抑制になる。ここで、本明細書において、酸化チタン粒子の平均粒子径は、一次粒子の粒径だけでなく、二次粒子(凝集体)の粒径も含めた平均粒子径(D50)であり、レーザー回折法により測定されたD50の値である。レーザー回折法による測定装置としては、日機装社製のMicrotrac MT3300EXIIが挙げられる。 平均 The average particle diameter of the coated titanium oxide particles is preferably 0.01 to 10 μm, and more preferably 0.01 to 1 μm. Since titanium oxide has a high refractive index, in the case of a photocurable composition, it is preferable that the average particle diameter is small because the composition is excellent in deep part curability. On the other hand, from the viewpoints of high reflectivity and opacity, a larger average particle diameter is preferable. Further, the maximum particle diameter (D100) is preferably 5 μm or less. A smaller one suppresses sedimentation. Here, in this specification, the average particle diameter of the titanium oxide particles is an average particle diameter (D50) including not only the particle diameter of the primary particles but also the particle diameter of the secondary particles (aggregates), and It is a value of D50 measured by the method. As a measuring device by the laser diffraction method, there is Microtrac @ MT3300EXII manufactured by Nikkiso Co., Ltd.
 前記被覆された酸化チタン粒子は、平均粒子径を調整してもよく、例えば、ビーズミルやジェットミルで予備分散することが好ましい。また、前記被覆された酸化チタン粒子は、スラリー状態で配合されることが好ましく、スラリー状態で配合することによって、高分散化が容易であり、凝集を防止し、取り扱いが容易になる。 平均 The coated titanium oxide particles may be adjusted in average particle diameter, and for example, are preferably preliminarily dispersed by a bead mill or a jet mill. Further, the coated titanium oxide particles are preferably blended in a slurry state. By blending in a slurry state, high dispersion can be easily achieved, aggregation is prevented, and handling is facilitated.
 前記被覆された酸化チタン粒子のゼータ電位の絶対値は、15mV以上であることが好ましい。酸化チタンの表面電位の絶対値を大きくし、等電点から離すことで分散性を向上させ、硬化性樹脂との濡れ性が向上、更にクーロン力も加味することで、基板への密着性がより向上する。より好ましくは、25mV以上である。 絶 対 It is preferable that the absolute value of the zeta potential of the coated titanium oxide particles is 15 mV or more. The absolute value of the surface potential of titanium oxide is increased, the dispersibility is improved by separating from the isoelectric point, the wettability with the curable resin is improved, and the adhesion to the substrate is further improved by considering the Coulomb force. improves. More preferably, it is 25 mV or more.
 また、半導体パッケージの各構成材料(低極性の層間絶縁材料や封止材等)やシリコンウェハやガラス基板ウェハの表面はゼータ電位が負である場合が多く、基板との密着性の観点から、前記被覆された酸化チタン粒子のゼータ電位は正であることが好ましい。本発明の第二の態様では、酸化チタン粒子を正の電荷が大きくなるように表面処理することによって、それらの基板上に接着促進剤(AP:Adhesion Promoter)を塗布しなくても低極性材料(Low Df材料)からなるロープロファイル基板や粗化フリーな基板との良好な密着を得ることができる。 Also, each component material of the semiconductor package (such as a low-polarity interlayer insulating material or a sealing material) and the surface of a silicon wafer or a glass substrate wafer often have a negative zeta potential, and from the viewpoint of adhesion to the substrate, The zeta potential of the coated titanium oxide particles is preferably positive. In the second aspect of the present invention, the titanium oxide particles are subjected to a surface treatment so as to increase the positive charge, so that a low-polarity material can be obtained without applying an adhesion promoter (AP: Adhesion @ Promoter) on those substrates. Good adhesion to a low-profile substrate made of (Low @ Df material) or a substrate free from roughening can be obtained.
 特に、アミン系化合物を含有する場合には、ゼータ電位が正である前記被覆された酸化チタン粒子とのクーロン力が働き、前記被覆された酸化チタン粒子の硬化性樹脂組成物への分散性が向上し、粗化フリーな基板やロープロファイル基板との密着性が向上する。また、密着対象の構成材料が、アミン系化合物を含む材料からなる場合にも密着対象物との密着性に優れた硬化物を得ることができる。 In particular, when an amine-based compound is contained, Coulomb force acts on the coated titanium oxide particles having a positive zeta potential, and dispersibility of the coated titanium oxide particles in the curable resin composition. This improves the adhesion to a roughening-free substrate or a low-profile substrate. Further, even when the constituent material of the contact target is made of a material containing an amine compound, a cured product having excellent adhesion to the contact target object can be obtained.
 前記被覆された酸化チタン粒子は、1種を単独または2種以上を組み合わせて用いることができる。本発明の第二の態様においては、前記被覆された酸化チタン粒子の配合量が多く、相対的に樹脂成分が少なくなっても基板との密着性に優れた硬化物を得ることが可能である。例えば、前記被覆された酸化チタン粒子の配合量が、組成物の固形分全容量に対して、25容量%以上、さらには30容量%以上であってもよい。前記被覆された酸化チタン粒子の配合量が多いほど、誘電率を高くすることができる。上限値としては、硬化物特性やハンドリングの観点から例えば50容量%である。平均粒子径が0.5μm以上である場合、好ましくは、35容量%以上である。 は The coated titanium oxide particles can be used alone or in combination of two or more. In the second aspect of the present invention, the compounded amount of the coated titanium oxide particles is large, and it is possible to obtain a cured product having excellent adhesion to the substrate even when the resin component is relatively small. . For example, the compounding amount of the coated titanium oxide particles may be 25% by volume or more, and more preferably 30% by volume or more, based on the total solid content of the composition. The greater the blending amount of the coated titanium oxide particles, the higher the dielectric constant can be. The upper limit is, for example, 50% by volume from the viewpoint of the properties of the cured product and handling. When the average particle size is 0.5 μm or more, it is preferably 35% by volume or more.
 また、前記被覆された酸化チタン粒子の配合量は、平均粒子径によって異なるが、上記のとおり、配合量が多いほど、誘電率を高くすることができるため、例えば、30~80質量%である。 The blending amount of the coated titanium oxide particles varies depending on the average particle diameter. As described above, the larger the blending amount, the higher the dielectric constant can be. Therefore, the blending amount is, for example, 30 to 80% by mass. .
<<本発明の第三の態様>>
 本発明の第三の態様の硬化性樹脂組成物は、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆された熱伝導率が15W/m・k以上のフィラー(以下、「前記被覆された高熱伝導率のフィラー」とも称する)と、硬化性樹脂と、を含むことを特徴とするものである。
<<< 3rd aspect of this invention >>
The curable resin composition of the third aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium. A filler having a thermal conductivity of 15 W / m · k or more coated with at least one of them (hereinafter, also referred to as “the coated filler having a high thermal conductivity”) and a curable resin; It is characterized by the following.
 前記被覆された高熱伝導率のフィラーを配合することによって、基板との密着性に優れ、また、基板の表面の粗度が低く、低極性の材料からなるロープロファイル基板に対しても密着性の低下が少ない硬化物を得ることができる。 By blending the coated high thermal conductivity filler, excellent adhesion to the substrate, and also low surface roughness of the substrate, adhesion to a low-profile substrate made of a low-polarity material A cured product with little decrease can be obtained.
 前記密着性の課題は、高熱伝導率のフィラーの配合量が多い場合に特に顕著であるが、本発明の第三の態様によれば、前記被覆された高熱伝導率のフィラーの配合量が多い場合、例えば、組成物の固形分全容量に対して、30容量%以上であっても、基板との密着性に優れた硬化物を得ることが可能である。 The problem of the adhesion is particularly remarkable when the content of the high thermal conductivity filler is large, but according to the third embodiment of the present invention, the content of the coated high thermal conductivity filler is large. In this case, for example, even if the content is 30% by volume or more based on the total solid content of the composition, a cured product excellent in adhesion to a substrate can be obtained.
 また、高熱伝導率のフィラーの充填量が多い場合、特に、アンカー効果のない粗化フリーもしくは低粗化面の基板(いわゆるロープロファイル基板)や低極性の材料からなる基板との密着性が悪くなり、ひいてはHAST処理後に密着性が低下しやすいという問題が生じるが、本発明の第三の態様においては、前記被覆された高熱伝導率のフィラーを配合することによって、上記のような基板であっても、HAST処理後も密着性に優れた硬化物を得ることができる。 In addition, when the filling amount of the filler having a high thermal conductivity is large, adhesion to a substrate having a roughening free or low roughened surface having no anchor effect (a so-called low profile substrate) or a substrate made of a low-polarity material is particularly poor. However, in the third aspect of the present invention, the above-described substrate is mixed by adding the filler having a high thermal conductivity. However, even after the HAST treatment, a cured product having excellent adhesion can be obtained.
 さらに、前記被覆された高熱伝導率のフィラーは、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニアの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されているので、硬化性樹脂中において粗粒が発生しにくく、特にファインパターンの回路基板を用いた場合でも絶縁信頼性にも優れる。また、凝集物を起点としたクラックの発生も抑制することができる。 Further, the coated high thermal conductivity filler is a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc and a hydrated oxide of titanium. Since it is covered with at least one kind, coarse particles are hardly generated in the curable resin, and the insulation reliability is particularly excellent even when a fine-patterned circuit board is used. In addition, generation of cracks starting from aggregates can also be suppressed.
 また、前記被覆された高熱伝導率のフィラーは、表面に硬化性反応基を有することが好ましい。上記のとおり、一般に、フィラーが表面に硬化性反応基を有する場合、フィラーと硬化性樹脂との結合を強固にすることが可能であるが、フィラーが高充填される場合、特にHAST等の厳しい環境下では加水分解等により密着性の低下となった。 The coated high thermal conductivity filler preferably has a curable reactive group on the surface. As described above, in general, when the filler has a curable reactive group on the surface, it is possible to strengthen the bond between the filler and the curable resin. However, when the filler is highly filled, it is particularly severe such as HAST. Under the environment, the adhesion decreased due to hydrolysis and the like.
 しかしながら、本発明の第三の態様においては、前記被覆された高熱伝導率のフィラーが表面に硬化性反応基を有していても、高熱伝導率のフィラーと硬化性反応基との間に、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種が介在していているので、HAST環境下でも加水分解による密着性の低下が少ないことも確認されている。即ちHAST処理後においても硬化性樹脂との濡れ性が維持できているため、密着性が低下しにくいという優れた効果を得ることができる。さらに、硬化性反応基による硬化物の物性の改善、例えば低CTE化も可能である。 However, in the third aspect of the present invention, even if the coated high thermal conductivity filler has a curable reactive group on the surface, between the high thermal conductivity filler and the curable reactive group, Since at least one of a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconium, a hydrated oxide of zinc and a hydrated oxide of titanium is present, It has also been confirmed that even under a HAST environment, a decrease in adhesion due to hydrolysis is small. That is, since the wettability with the curable resin can be maintained even after the HAST treatment, an excellent effect that the adhesion is hardly reduced can be obtained. Further, it is possible to improve the physical properties of the cured product due to the curable reactive group, for example, to reduce the CTE.
 また、本発明の第三の態様においては、高熱伝導率のフィラーの表面に水和酸化物に基づく水酸基を多くし、そこに効果的に硬化性反応基を付与できることで溶融粘度をより低下できるため、表面に硬化性反応基を有することが好ましい。 In the third embodiment of the present invention, the number of hydroxyl groups based on the hydrated oxide is increased on the surface of the filler having a high thermal conductivity, and the melt viscosity can be further reduced by effectively providing a curable reactive group thereto. Therefore, it is preferable to have a curable reactive group on the surface.
 また、本発明の第三の態様において、感光性の硬化性樹脂組成物とした場合には、解像性が良好となる。 In addition, in the third embodiment of the present invention, when a photosensitive curable resin composition is used, the resolution is improved.
[熱伝導率が15W/m・k以上のフィラー]
 本発明の第三の態様の硬化性樹脂組成物は、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニアの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆された熱伝導率が15W/m・k以上のフィラーを含む。
[Filler having a thermal conductivity of 15 W / m · k or more]
The curable resin composition of the third aspect of the present invention comprises a hydrated oxide of silicon, a hydrated oxide of aluminum, a hydrated oxide of zirconia, a hydrated oxide of zinc and a hydrated oxide of titanium. A filler coated with at least one of them and having a thermal conductivity of 15 W / m · k or more is included.
 被覆される熱伝導率が15W/m・k以上のフィラーとしては、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化マグネシウム、酸化アルミニウム、スピネル、カーボンナノチューブ、グラフェン、ダイヤモンド、金属粉等の粒子が挙げられる。これらの中でも、絶縁性がある窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化マグネシウム、酸化アルミニウム、スピネルが好ましい。 Examples of the filler having a thermal conductivity of 15 W / mk or more include particles such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, magnesium oxide, aluminum oxide, spinel, carbon nanotube, graphene, diamond, and metal powder. Is mentioned. Among these, boron nitride, aluminum nitride, silicon nitride, silicon carbide, magnesium oxide, aluminum oxide, and spinel having insulating properties are preferable.
 被覆される高熱伝導率のフィラーの熱伝導率は、15W/m・k以上であることが好ましく、20W/m・k以上であることがより好ましい。なお、熱伝導率の上限値は、特に制限されるものではないが、通常500W/m・k以下である。 フ ィ ラ ー The thermal conductivity of the high thermal conductivity filler to be coated is preferably 15 W / m · k or more, more preferably 20 W / m · k or more. The upper limit of the thermal conductivity is not particularly limited, but is usually 500 W / m · k or less.
 高熱伝導率のフィラーを被覆する方法は特に限定されないが、ケイ素の水和酸化物により高熱伝導率のフィラーを被覆する方法としては、例えば、高熱伝導率のフィラーの水スラリーにケイ酸アルカリ水溶液を加えて高熱伝導率のフィラーの表面にケイ酸を生成させ、次いでスラリーに鉱酸を加えることで、ケイ酸をケイ素の水和酸化物に分解して高熱伝導率のフィラーの表面にケイ素の水和酸化物を沈着させることができる。水スラリー中の高熱伝導率のフィラーの量は特に制限されるものではないが、通常、70~150g/lが適当である。次に、上記のような水スラリーに加えるケイ酸アルカリとしては具体的にはケイ酸ナトリウム、ケイ酸カリウム等が用いられ、その濃度は、通常、高熱伝導率のフィラー換算でl0~200g/lである。鉱酸としては塩酸、硝酸、硫酸等を用いることができる。 The method of coating the high thermal conductivity filler is not particularly limited.However, as a method of coating the high thermal conductivity filler with a hydrated oxide of silicon, for example, an aqueous solution of an alkali silicate is added to a water slurry of the high thermal conductivity filler. In addition, silicic acid is generated on the surface of the high thermal conductivity filler, and then the mineral acid is added to the slurry to decompose the silicic acid into hydrated oxides of silicon and to form silicon water on the surface of the high thermal conductivity filler. A hydrated oxide can be deposited. The amount of the filler having a high thermal conductivity in the water slurry is not particularly limited, but is usually 70 to 150 g / l. Next, as the alkali silicate to be added to the above-mentioned water slurry, specifically, sodium silicate, potassium silicate or the like is used, and its concentration is usually 10 to 200 g / l in terms of a filler having a high thermal conductivity. It is. Hydrochloric acid, nitric acid, sulfuric acid and the like can be used as the mineral acid.
 アルミニウムの水和酸化物により高熱伝導率のフィラーを被覆する方法としては、例えば、高熱伝導率のフィラーの水スラリーにアルミン酸ナトリウム等の水溶性アルミニウム化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、高熱伝導率のフィラーの表面にアルミニウムの水和酸化物を沈着させることができる。水スラリー中の高熱伝導率のフィラーの量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア、酸としては塩酸、硝酸等が用いられ、加える量は上記水溶性アルミニウム化合物が、アルミニウムの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating the filler having a high thermal conductivity with a hydrated oxide of aluminum, for example, after adding an aqueous solution of a water-soluble aluminum compound such as sodium aluminate to a water slurry of the filler having a high thermal conductivity, an alkali or an acid is used. By neutralizing, hydrated oxide of aluminum can be deposited on the surface of the filler having high thermal conductivity. The amount of the filler having a high thermal conductivity in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate. As the alkali, sodium hydroxide, potassium hydroxide, ammonia, and as the acid, hydrochloric acid, nitric acid, and the like are used, and the amount to be added is an amount by which the water-soluble aluminum compound can form a hydrated oxide of aluminum. Is 7 ± 0.5.
 ジルコニウムの水和酸化物により高熱伝導率のフィラーを被覆する方法としては、例えば、高熱伝導率のフィラーの水スラリーにオキシ塩化ジルコニウム等の水溶性ジルコニウム化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、高熱伝導率のフィラーの表面にジルコニウムの水和酸化物を沈着させることができる。水スラリー中の高熱伝導率のフィラーの量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア等が用いられ、加える量は上記水溶性ジルコニウム化合物が、ジルコニウムの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating a filler having a high thermal conductivity with a hydrated oxide of zirconium, for example, after adding an aqueous solution of a water-soluble zirconium compound such as zirconium oxychloride to a water slurry of the filler having a high thermal conductivity, an alkali or an acid is used. By neutralization, hydrated oxide of zirconium can be deposited on the surface of the filler having high thermal conductivity. The amount of the filler having a high thermal conductivity in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate. As the alkali, sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zirconium compound can form a hydrated oxide of zirconium, and the pH is preferably 7 ± 0.5. is there.
 亜鉛の水和酸化物により高熱伝導率のフィラーを被覆する方法としては、例えば、高熱伝導率のフィラーの水スラリーに硫酸亜鉛等の水溶性亜鉛化合物の水溶液を加えた後、アルカリまたは酸で中和することにより、高熱伝導率のフィラーの表面に亜鉛の水和酸化物を沈着させることができる。水スラリー中の高熱伝導率のフィラーの量は特に制限されるものではないが、通常、30~300g/lが適当である。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア等が用いられ、加える量は上記水溶性亜鉛化合物が、亜鉛の水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating a filler having a high thermal conductivity with a hydrated oxide of zinc, for example, after adding an aqueous solution of a water-soluble zinc compound such as zinc sulfate to a water slurry of the filler having a high thermal conductivity, the solution is neutralized with an alkali or an acid. By the addition, the hydrated oxide of zinc can be deposited on the surface of the filler having a high thermal conductivity. The amount of the filler having a high thermal conductivity in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate. As the alkali, sodium hydroxide, potassium hydroxide, ammonia or the like is used, and the amount to be added is such that the water-soluble zinc compound can form a hydrated oxide of zinc, and the pH is preferably 7 ± 0.5. is there.
 チタンの水和酸化物により高熱伝導率のフィラーを被覆する方法としては、例えば、高熱伝導率のフィラーの水スラリーにチタニル硫酸等の水溶性チタンの水溶液を加えた後、アルカリまたは酸で中和することにより、高熱伝導率のフィラーの表面にチタンの水和酸化物を沈着させることができる。水スラリー中の高熱伝導率のフィラーの量は特に制限されるものではないが、通常、30~300g/lが適当である。酸としては塩酸、硝酸等が用いられ、加える量は上記水溶性チタン化合物が、チタンの水和酸化物を形成できる量であり、好ましくはpHは7±0.5である。 As a method of coating a filler having a high thermal conductivity with a hydrated oxide of titanium, for example, after adding an aqueous solution of a water-soluble titanium such as titanyl sulfate to a water slurry of the filler having a high thermal conductivity, neutralizing with an alkali or an acid By doing so, the hydrated oxide of titanium can be deposited on the surface of the filler having a high thermal conductivity. The amount of the filler having a high thermal conductivity in the water slurry is not particularly limited, but usually, 30 to 300 g / l is appropriate. As the acid, hydrochloric acid, nitric acid or the like is used, and the amount to be added is such that the above water-soluble titanium compound can form a hydrated oxide of titanium, and the pH is preferably 7 ± 0.5.
 ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種による被覆は、高熱伝導率のフィラー100質量部に対して、前記ケイ素などの水和酸化物を好ましくは、1~40質量部、より好ましくは3~20質量部で被覆することが好ましい。1質量部以上で被覆することによって、硬化性樹脂中での高熱伝導率のフィラーの分散性により優れ、HAST処理後に密着性がより低下しにくい硬化物を得ることができる。 The coating with at least one of hydrated oxide of silicon, hydrated oxide of aluminum, hydrated oxide of zirconium, hydrated oxide of zinc and hydrated oxide of titanium has high thermal conductivity. The hydrated oxide such as silicon is preferably coated with 1 to 40 parts by mass, more preferably 3 to 20 parts by mass, based on 100 parts by mass of the filler. By coating with 1 part by mass or more, it is possible to obtain a cured product which is more excellent in dispersibility of a filler having a high thermal conductivity in a curable resin and in which the adhesion is less likely to decrease after HAST treatment.
 前記被覆された高熱伝導率のフィラーは、ケイ素の水和酸化物およびアルミニウムの水和酸化物により被覆された高熱伝導率のフィラーであることが好ましい。また、前記被覆された高熱伝導率のフィラーは、ケイ素の水和酸化物からなる被覆層と、アルミニウムの水和酸化物からなる被覆層とを、この順に有することが好ましい。このように被覆することによって、高熱伝導率のフィラーの硬化性樹脂中での分散性により優れ、HAST処理後に密着性がより低下しにくい硬化物を得ることができる。また、アルミニウム水和酸化物からなる被覆層を効率よく付着させることが可能となり、その効果として組成物の光反応性を向上させて高感度化することができる。これはおそらく光触媒となって感光促進となったものと推測される。この効果は、アルミニウムの水和酸化物だけでなく、ジルコニアの水和酸化物、亜鉛の水和酸化物、チタンの水和酸化物などの金属化合物でも同様にみられ光反応開始剤の増量なくめっき耐性に寄与する。 The coated high thermal conductivity filler is preferably a high thermal conductivity filler coated with a hydrated oxide of silicon and a hydrated oxide of aluminum. Further, the coated high thermal conductivity filler preferably has a coating layer made of a hydrated oxide of silicon and a coating layer made of a hydrated oxide of aluminum in this order. By coating as described above, it is possible to obtain a cured product which is excellent in the dispersibility of the filler having a high thermal conductivity in the curable resin and in which the adhesion is less likely to decrease after the HAST treatment. Further, it becomes possible to efficiently adhere the coating layer made of aluminum hydrated oxide, and as an effect thereof, the photoreactivity of the composition can be improved and the sensitivity can be increased. It is presumed that this probably acted as a photocatalyst to promote photosensitivity. This effect is seen not only in hydrated oxides of aluminum but also in metal compounds such as hydrated oxides of zirconia, hydrated oxides of zinc, and hydrated oxides of titanium without increasing the amount of photoreaction initiator. Contributes to plating resistance.
 上記のとおり、本発明の第三の態様においては、表面に硬化性反応基を有する場合であっても、HAST処理後の密着性に優れ、また、硬化性樹脂との強固な結合が得られるので、硬化性反応基による硬化物の物性の改善も可能である。ここで、硬化性反応基とは、硬化性樹脂組成物に配合する成分(例えば、硬化性樹脂やアルカリ可溶性樹脂)と硬化反応する基であれば、特に限定されず、光硬化性反応基でも熱硬化性反応基でもよい。光硬化性反応基としては、メタクリル基、アクリル基、ビニル基、スチリル基等が挙げられ、熱硬化性反応基としては、エポキシ基、アミノ基、水酸基、カルボキシル基、イソシアネート基、イミノ基、オキセタニル基、メルカプト基、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基、オキサゾリン基等が挙げられる。前記被覆された高熱伝導率のフィラーの表面に硬化性反応基を導入する方法は特に限定されず、公知慣用の方法を用いて導入すればよく、硬化性反応基を有する表面処理剤、例えば、硬化性反応基を有機基として有するカップリング剤等で前記被覆された高熱伝導率のフィラーの表面を処理すればよい。カップリング剤としては、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤等を用いることができる。なかでも、シランカップリング剤が好ましい。また、被覆された高熱伝導率のフィラーの表面を処理することで、高熱伝導率のフィラーの分散性を更に向上させることができる。 As described above, in the third embodiment of the present invention, even when the surface has a curable reactive group, the adhesiveness after the HAST treatment is excellent, and a strong bond with the curable resin is obtained. Therefore, the physical properties of the cured product can be improved by the curable reactive group. Here, the curable reactive group is not particularly limited as long as it is a group that undergoes a curing reaction with a component (for example, a curable resin or an alkali-soluble resin) blended in the curable resin composition. It may be a thermosetting reactive group. Examples of the photocurable reactive group include a methacryl group, an acrylic group, a vinyl group, and a styryl group. Examples of the thermosetting reactive group include an epoxy group, an amino group, a hydroxyl group, a carboxyl group, an isocyanate group, an imino group, and oxetanyl. Group, mercapto group, methoxymethyl group, methoxyethyl group, ethoxymethyl group, ethoxyethyl group, oxazoline group and the like. The method for introducing a curable reactive group on the surface of the coated high thermal conductivity filler is not particularly limited, and may be introduced using a known and commonly used method, and a surface treating agent having a curable reactive group, for example, The surface of the coated high thermal conductivity filler may be treated with a coupling agent having a curable reactive group as an organic group. As the coupling agent, a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used. Especially, a silane coupling agent is preferable. Further, by treating the surface of the coated high thermal conductivity filler, the dispersibility of the high thermal conductivity filler can be further improved.
 前記被覆された高熱伝導率のフィラーが表面に有する硬化性反応基は、本発明の第三の態様の硬化性樹脂組成物が光硬化性樹脂を含有する場合は、光硬化性反応基であることが好ましく、熱硬化性樹脂を含有する場合は、熱硬化性反応基であることが好ましい。 The curable reactive group that the coated high thermal conductivity filler has on the surface is a photocurable reactive group when the curable resin composition of the third aspect of the present invention contains a photocurable resin. When a thermosetting resin is contained, it is preferably a thermosetting reactive group.
 前記被覆された高熱伝導率のフィラーの平均粒子径は、0.01~10μmであることが好ましく、より好ましくは、0.01~1μmである。高熱伝導率のフィラーは高屈折率であるため、光硬化型の組成物の場合は、平均粒子径は小さい方が深部硬化性に優れるため好ましい。一方、熱伝導率や隠ぺい性の観点からは、平均粒子径が大きい方が好ましい。また、最大粒子径(D100)は、5μm以下であることが好ましい。小さい方が沈降の抑制になる。
 ここで、本明細書において、高熱伝導率のフィラーの平均粒子径は、一次粒子の粒径だけでなく、二次粒子(凝集体)の粒径も含めた平均粒子径(D50)であり、レーザー回折法により測定されたD50の値である。レーザー回折法による測定装置としては、日機装社製のMicrotrac MT3300EXIIが挙げられる。
The coated high thermal conductivity filler preferably has an average particle size of 0.01 to 10 μm, more preferably 0.01 to 1 μm. Since the filler having a high thermal conductivity has a high refractive index, in the case of a photocurable composition, it is preferable that the average particle diameter is small because the curability in the deep part is excellent. On the other hand, from the viewpoints of thermal conductivity and opacity, it is preferable that the average particle diameter is large. Further, the maximum particle diameter (D100) is preferably 5 μm or less. A smaller one suppresses sedimentation.
Here, in this specification, the average particle diameter of the filler having a high thermal conductivity is an average particle diameter (D50) including not only the particle diameter of the primary particles but also the particle diameter of the secondary particles (aggregates), It is a value of D50 measured by a laser diffraction method. As a measuring apparatus by a laser diffraction method, there is Microtrac MT3300EXII manufactured by Nikkiso Co., Ltd.
 前記被覆された高熱伝導率のフィラーは、平均粒子径を調整してもよく、例えば、ビーズミルやジェットミルで予備分散することが好ましい。また、前記被覆された高熱伝導率のフィラーは、スラリー状態で配合されることが好ましく、スラリー状態で配合することによって、高分散化が容易であり、凝集を防止し、取り扱いが容易になる。 (4) The coated high thermal conductivity filler may have an average particle size adjusted, and for example, is preferably preliminarily dispersed by a bead mill or a jet mill. Further, the coated high thermal conductivity filler is preferably compounded in a slurry state. By compounding in a slurry state, high dispersion can be easily achieved, aggregation is prevented, and handling is facilitated.
 前記被覆された高熱伝導率のフィラーは、1種を単独または2種以上を組み合わせて用いることができる。本発明の第三の態様においては、前記被覆された高熱伝導率のフィラーの配合量が多く、相対的に樹脂成分が少なくなっても基板との密着性に優れた硬化物を得ることが可能であり、例えば、前記被覆された高熱伝導率のフィラーの配合量が、組成物の固形分全容量に対して、20容量%以上、さらには25容量%以上であってもよい。好ましくは、30容量%以上である。前記被覆された高熱伝導率のフィラーの配合量が多いほど、熱伝導率を高くすることができる。上限値としては、硬化物特性やハンドリングの観点から例えば60容量%である。平均粒子径が0.5μm以上である場合、好ましくは、35容量%以上である。 は The coated high thermal conductivity filler may be used alone or in combination of two or more. In the third aspect of the present invention, it is possible to obtain a cured product having excellent adhesion to the substrate even when the amount of the coated high thermal conductivity filler is large and the resin component is relatively small. For example, the compounding amount of the coated high thermal conductivity filler may be 20% by volume or more, and more preferably 25% by volume or more based on the total solid content of the composition. Preferably, it is at least 30% by volume. As the amount of the coated high thermal conductivity filler increases, the thermal conductivity can be increased. The upper limit is, for example, 60% by volume from the viewpoint of the properties of the cured product and handling. When the average particle size is 0.5 μm or more, it is preferably 35% by volume or more.
 また、前記被覆された高熱伝導率のフィラーの配合量は、上記のとおり、配合量が多いほど、熱伝導率を高くすることができるため、組成物の固形分全量中、例えば、30~90質量%である。 As described above, as for the compounding amount of the coated high thermal conductivity filler, the larger the compounding amount, the higher the thermal conductivity can be. Therefore, for example, 30 to 90% in the total solid content of the composition. % By mass.
 以下、本発明の第一~第三の態様の硬化性樹脂組成物が含有する硬化性樹脂、および、本発明の第一~第三の態様の硬化性樹脂組成物が含有できる各成分について詳述する。 Hereinafter, the curable resin contained in the curable resin composition of the first to third aspects of the present invention, and each component that can be contained in the curable resin composition of the first to third aspects of the present invention will be described in detail. Will be described.
[硬化性樹脂]
 本発明の第一~第三の態様の硬化性樹脂組成物は、硬化性樹脂を含有する。本発明の第一~第三の態様において用いられる硬化性樹脂は、熱硬化性樹脂または光硬化性樹脂であり、これらの混合物であってもよい。硬化性樹脂の配合量は、例えば、組成物の固形分全量中、1~50質量%である。
 本発明の第一の態様の硬化性樹脂組成物においては、前記被覆されたペロブスカイト型化合物の屈折率が比較的大きいので、アルカリ現像型の場合には、紫外線の吸収率の高い硬化性樹脂を含むことが好ましい。紫外線の吸収率の高い硬化性樹脂を含むことにより解像性の制御が容易になり、解像性を向上させることができる。紫外線の吸収率の高い硬化性樹脂としては、芳香環を複数有するものなどが挙げられる。
[Curable resin]
The curable resin compositions according to the first to third aspects of the present invention contain a curable resin. The curable resin used in the first to third aspects of the present invention is a thermosetting resin or a photocurable resin, and may be a mixture thereof. The compounding amount of the curable resin is, for example, 1 to 50% by mass based on the total solid content of the composition.
In the curable resin composition of the first embodiment of the present invention, since the coated perovskite compound has a relatively large refractive index, in the case of an alkali development type, a curable resin having a high ultraviolet absorption rate is used. It is preferred to include. By including a curable resin having a high ultraviolet absorptivity, the resolution can be easily controlled, and the resolution can be improved. Examples of the curable resin having a high ultraviolet absorptivity include those having a plurality of aromatic rings.
(熱硬化性樹脂)
 本発明の第一~第三の態様の硬化性樹脂組成物は、熱硬化性樹脂を含む場合、硬化物の耐熱性が向上し、また、下地との密着性が向上する。熱硬化性樹脂としては、イソシアネート化合物、ブロックイソシアネート化合物、アミノ樹脂、ベンゾオキサジン樹脂、カルボジイミド樹脂、シクロカーボネート化合物、エポキシ化合物、多官能オキセタン化合物、エピスルフィド樹脂などの公知慣用の熱硬化性樹脂が使用できる。これらの中でもエポキシ化合物、多官能オキセタン化合物、分子内に2個以上のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂が好ましく、エポキシ化合物がより好ましい。熱硬化性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。
(Thermosetting resin)
When the curable resin compositions of the first to third aspects of the present invention contain a thermosetting resin, the heat resistance of the cured product is improved, and the adhesion to the base is improved. Known thermosetting resins such as isocyanate compounds, blocked isocyanate compounds, amino resins, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, epoxy compounds, polyfunctional oxetane compounds, and episulfide resins can be used as the thermosetting resin. . Among these, an epoxy compound, a polyfunctional oxetane compound, a compound having two or more thioether groups in a molecule, that is, an episulfide resin is preferable, and an epoxy compound is more preferable. The thermosetting resin can be used alone or in combination of two or more.
 上記エポキシ化合物は、エポキシ基を有する化合物であり、従来公知のものをいずれも使用できる。分子中に複数のエポキシ基を有する多官能エポキシ化合物等が挙げられる。なお、水素添加されたエポキシ化合物であってもよい。 The epoxy compound is a compound having an epoxy group, and any of conventionally known compounds can be used. Examples include a polyfunctional epoxy compound having a plurality of epoxy groups in a molecule. Note that a hydrogenated epoxy compound may be used.
 多官能エポキシ化合物としては、エポキシ化植物油;ビスフェノールA型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;ビスフェノール型エポキシ樹脂;チオエーテル型エポキシ樹脂;ブロム化エポキシ樹脂;ノボラック型エポキシ樹脂;ビフェノールノボラック型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;水添ビスフェノールA型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;ヒダントイン型エポキシ樹脂;脂環式エポキシ樹脂;トリヒドロキシフェニルメタン型エポキシ樹脂;ビキシレノール型もしくはビフェノール型エポキシ樹脂またはそれらの混合物;ビスフェノールS型エポキシ樹脂;ビスフェノールAノボラック型エポキシ樹脂;テトラフェニロールエタン型エポキシ樹脂;複素環式エポキシ樹脂;ジグリシジルフタレート樹脂;テトラグリシジルキシレノイルエタン樹脂;ナフタレン基含有エポキシ樹脂;ジシクロペンタジエン骨格を有するエポキシ樹脂;グリシジルメタアクリレート共重合系エポキシ樹脂;シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂;エポキシ変性のポリブタジエンゴム誘導体;CTBN変性エポキシ樹脂等が挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種を単独または2種以上を組み合わせて用いることができる。これらの中でも特にノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビフェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂またはそれらの混合物が好ましい。 Examples of the polyfunctional epoxy compound include epoxidized vegetable oil; bisphenol A epoxy resin; hydroquinone epoxy resin; bisphenol epoxy resin; thioether epoxy resin; brominated epoxy resin; novolak epoxy resin; biphenol novolak epoxy resin; Type epoxy resin; hydrogenated bisphenol A type epoxy resin; glycidylamine type epoxy resin; hydantoin type epoxy resin; alicyclic epoxy resin; trihydroxyphenylmethane type epoxy resin; bixylenol type or biphenol type epoxy resin or a mixture thereof; Bisphenol S type epoxy resin; Bisphenol A novolak type epoxy resin; Tetraphenylolethane type epoxy resin; Heterocyclic epoxy resin; Diglycidide Phthalate resin; tetraglycidyl xylenoylethane resin; naphthalene group-containing epoxy resin; epoxy resin having a dicyclopentadiene skeleton; glycidyl methacrylate copolymer epoxy resin; copolymerized epoxy resin of cyclohexyl maleimide and glycidyl methacrylate; A polybutadiene rubber derivative; a CTBN-modified epoxy resin; and the like, but not limited thereto. These epoxy resins can be used alone or in combination of two or more. Among these, a novolak type epoxy resin, a bisphenol type epoxy resin, a bixylenol type epoxy resin, a biphenol type epoxy resin, a biphenol novolak type epoxy resin, a naphthalene type epoxy resin or a mixture thereof is particularly preferable.
 多官能オキセタン化合物としては、例えば、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、またはシルセスキオキサン等の水酸基を有する樹脂とのエーテル化物等が挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。 Examples of the polyfunctional oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether and 1,4-bis [(3- Methyl-3-oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3- Polyfunctional oxetanes such as (oxetanyl) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and their oligomers and copolymers, as well as oxetane alcohol and novolak resins , Poly (p-hydroxystyrene), cardo-type bi Phenols, calixarenes, calix resorcin arenes or etherified products such as the resin having a hydroxyl group such as silsesquioxane and the like. Other examples include a copolymer of an unsaturated monomer having an oxetane ring and an alkyl (meth) acrylate.
 分子中に複数の環状チオエーテル基を有する化合物としては、ビスフェノールA型エピスルフィド樹脂等が挙げられる。また、同様の合成方法を用いて、ノボラック型エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂なども用いることができる。 化合物 Examples of the compound having a plurality of cyclic thioether groups in the molecule include bisphenol A type episulfide resin. In addition, an episulfide resin in which an oxygen atom of an epoxy group of a novolak type epoxy resin is replaced with a sulfur atom using a similar synthesis method can also be used.
 メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂としては、メチロールメラミン化合物、メチロールベンゾグアナミン化合物、メチロールグリコールウリル化合物およびメチロール尿素化合物等が挙げられる。 ア ミ ノ Examples of amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycoluril compounds, and methylol urea compounds.
 イソシアネート化合物として、ポリイソシアネート化合物を配合することができる。ポリイソシアネート化合物としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネートおよび2,4-トリレンイソシアネートダイマー等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-メチレンビス(シクロヘキシルイソシアネート)およびイソホロンジイソシアネート等の脂肪族ポリイソシアネート;ビシクロヘプタントリイソシアネート等の脂環式ポリイソシアネート;並びに先に挙げたイソシアネート化合物のアダクト体、ビューレット体およびイソシアヌレート体等が挙げられる。 ポ リ A polyisocyanate compound can be blended as the isocyanate compound. Examples of the polyisocyanate compound include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate and Aromatic polyisocyanates such as 2,4-tolylene isocyanate dimer; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylene bis (cyclohexyl isocyanate) and isophorone diisocyanate; Alicyclic polyisocyanates such as bicycloheptane triisocyanate; and the above-mentioned isocyanate compounds Adducts, biuret body and isocyanurate products thereof.
 ブロックイソシアネート化合物としては、イソシアネート化合物とイソシアネートブロック剤との付加反応生成物を用いることができる。イソシアネートブロック剤と反応し得るイソシアネート化合物としては、例えば、上述のポリイソシアネート化合物等が挙げられる。イソシアネートブロック剤としては、例えば、フェノール系ブロック剤;ラクタム系ブロック剤;活性メチレン系ブロック剤;アルコール系ブロック剤;オキシム系ブロック剤;メルカプタン系ブロック剤;酸アミド系ブロック剤;イミド系ブロック剤;アミン系ブロック剤;イミダゾール系ブロック剤;イミン系ブロック剤等が挙げられる。 付 加 As the blocked isocyanate compound, an addition reaction product of an isocyanate compound and an isocyanate blocking agent can be used. Examples of the isocyanate compound capable of reacting with the isocyanate blocking agent include the above-described polyisocyanate compounds. Examples of the isocyanate blocking agent include a phenol blocking agent; a lactam blocking agent; an active methylene blocking agent; an alcohol blocking agent; an oxime blocking agent; a mercaptan blocking agent; an acid amide blocking agent; Amine blocking agents; imidazole blocking agents; imine blocking agents and the like.
(光硬化性樹脂)
 光硬化性樹脂としては、活性エネルギー線照射により硬化して電気絶縁性を示す樹脂であればよく、分子中に1個以上のエチレン性不飽和基を有する化合物が好ましく用いられる。エチレン性不飽和基を有する化合物としては、公知慣用の感光性モノマーである光重合性オリゴマー、光重合性ビニルモノマー等を用いることができ、ラジカル重合性のモノマーやカチオン重合性のモノマーでもよい。また、光硬化性樹脂として、後述するようなエチレン性不飽和基を有するカルボキシル基含有樹脂等のポリマーを用いることができる。光硬化性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。
(Photocurable resin)
The photocurable resin may be any resin that is cured by irradiation with active energy rays and exhibits electrical insulation, and a compound having one or more ethylenically unsaturated groups in the molecule is preferably used. As the compound having an ethylenically unsaturated group, a known and commonly used photosensitive monomer such as a photopolymerizable oligomer or a photopolymerizable vinyl monomer can be used, and a radical polymerizable monomer or a cationic polymerizable monomer may be used. Further, as the photocurable resin, a polymer such as a carboxyl group-containing resin having an ethylenically unsaturated group as described later can be used. The photocurable resin can be used alone or in combination of two or more.
 前記感光性モノマーとして、分子中に1個以上の(メタ)アクリロイル基を有する室温で液体、固体又は半固形の感光性(メタ)アクリレート化合物が使用できる。室温で液状の感光性(メタ)アクリレート化合物は、組成物の光反応性を上げる目的の他、組成物を各種の塗布方法に適した粘度に調整したり、アルカリ水溶液への溶解性を助ける役割も果たす。 (4) As the photosensitive monomer, a liquid, solid or semi-solid photosensitive (meth) acrylate compound having one or more (meth) acryloyl groups in the molecule at room temperature can be used. The photosensitive (meth) acrylate compound which is liquid at room temperature serves to enhance the photoreactivity of the composition, adjusts the composition to a viscosity suitable for various coating methods, and assists solubility in an alkaline aqueous solution. Also fulfills.
 光重合性オリゴマーとしては、不飽和ポリエステル系オリゴマー、(メタ)アクリレート系オリゴマー等が挙げられる。(メタ)アクリレート系オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン変性(メタ)アクリレート等が挙げられる。 Examples of the photopolymerizable oligomer include unsaturated polyester-based oligomers and (meth) acrylate-based oligomers. Examples of the (meth) acrylate oligomer include epoxy (meth) acrylates such as phenol novolak epoxy (meth) acrylate, cresol novolak epoxy (meth) acrylate, and bisphenol-type epoxy (meth) acrylate, urethane (meth) acrylate, and epoxy urethane (meth). A) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene-modified (meth) acrylate, and the like.
 光重合性ビニルモノマーとしては、公知慣用のもの、例えば、スチレン、クロロスチレン、α-メチルスチレン等のスチレン誘導体;酢酸ビニル、酪酸ビニルまたは安息香酸ビニル等のビニルエステル類;ビニルイソブチルエーテル、ビニル-n-ブチルエーテル、ビニル-t-ブチルエーテル、ビニル-n-アミルエーテル、ビニルイソアミルエーテル、ビニル-n-オクタデシルエーテル、ビニルシクロヘキシルエーテル、エチレングリコールモノブチルビニルエーテル、トリエチレングリコールモノメチルビニルエーテル等のビニルエーテル類;アクリルアミド、メタクリルアミド、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-ブトキシメチルアクリルアミド等の(メタ)アクリルアミド類;トリアリルイソシアヌレート、フタル酸ジアリル、イソフタル酸ジアリル等のアリル化合物;2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラヒドロフルフリール(メタ)アクリレート、イソボロニル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の(メタ)アクリル酸のエステル類;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート等のアルコキシアルキレングリコールモノ(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート類、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のアルキレンポリオールポリ(メタ)アクリレート、;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート等のポリオキシアルキレングリコールポリ(メタ)アクリレート類;ヒドロキシビバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレート等のポリ(メタ)アクリレート類;トリス[(メタ)アクリロキシエチル]イソシアヌレート等のイソシアヌルレート型ポリ(メタ)アクリレート類等が挙げられる。 Examples of the photopolymerizable vinyl monomer include known and common ones, for example, styrene derivatives such as styrene, chlorostyrene and α-methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate or vinyl benzoate; vinyl isobutyl ether, vinyl vinyl ethers such as n-butyl ether, vinyl-t-butyl ether, vinyl-n-amyl ether, vinyl isoamyl ether, vinyl-n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, and triethylene glycol monomethyl vinyl ether; acrylamide; Methacrylamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-methoxymethylacrylamide, N-ethoxymethylacryl (Meth) acrylamides such as amide and N-butoxymethylacrylamide; allyl compounds such as triallyl isocyanurate, diallyl phthalate and diallyl isophthalate; 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate and tetrahydrofurfuryl Esters of (meth) acrylic acid such as (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, and phenoxyethyl (meth) acrylate; hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and pentaerythritol Hydroxyalkyl (meth) acrylates such as tri (meth) acrylate; alkoxyalkylene such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate Glycol mono (meth) acrylates; ethylene glycol di (meth) acrylate, butanediol di (meth) acrylates, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropanetri Alkylene polyol poly (meth) acrylates such as (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, ethoxylated Polyoxyalkylene glycol poly (meth) acrylates such as trimethylolpropane triacrylate and propoxylated trimethylolpropane tri (meth) acrylate ; Poly (meth) acrylates such as hydroxyethyl Viva phosphoric acid neopentyl glycol ester di (meth) acrylate; tris [(meth) acryloxyethyl] isocyanurate rate poly (meth) acrylates such as isocyanurate.
(アルカリ可溶性樹脂)
 本発明の第一~第三の態様の硬化性樹脂組成物は、アルカリ可溶性樹脂を含有してもよい。アルカリ可溶性樹脂としては、例えば、フェノール性水酸基を2個以上有する化合物、カルボキシル基含有樹脂、フェノール性水酸基およびカルボキシル基を有する化合物、チオール基を2個以上有する化合物が挙げられる。中でも、アルカリ可溶性樹脂がカルボキシル基含有樹脂またはフェノール樹脂であると、下地との密着性が向上するため好ましい。特に、現像性に優れるため、アルカリ可溶性樹脂はカルボキシル基含有樹脂であることがより好ましい。カルボキシル基含有樹脂は、エチレン性不飽和基を有するカルボキシル基含有感光性樹脂でも、エチレン性不飽和基を有さないカルボキシル基含有樹脂でもよい。アルカリ可溶性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。
(Alkali-soluble resin)
The curable resin compositions according to the first to third aspects of the present invention may contain an alkali-soluble resin. Examples of the alkali-soluble resin include a compound having two or more phenolic hydroxyl groups, a carboxyl group-containing resin, a compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups. Above all, it is preferable that the alkali-soluble resin is a carboxyl group-containing resin or a phenol resin because the adhesion to the base is improved. In particular, the alkali-soluble resin is more preferably a carboxyl group-containing resin because of excellent developability. The carboxyl group-containing resin may be a carboxyl group-containing photosensitive resin having an ethylenically unsaturated group or a carboxyl group-containing resin having no ethylenically unsaturated group. As the alkali-soluble resin, one kind can be used alone, or two or more kinds can be used in combination.
 カルボキシル基含有樹脂の具体例としては、以下に列挙するような化合物(オリゴマーおよびポリマーのいずれでもよい)が挙げられる。 具体 Specific examples of the carboxyl group-containing resin include the compounds listed below (which may be oligomers or polymers).
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。 (1) A carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth) acrylate and isobutylene.
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (2) Diisocyanates such as aliphatic diisocyanate, branched aliphatic diisocyanate, alicyclic diisocyanate and aromatic diisocyanate, and carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, and polycarbonate-based polyols and polyether-based A carboxyl group-containing urethane resin obtained by a polyaddition reaction of a diol compound such as a polyol, a polyester polyol, a polyolefin polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, and a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (3)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるウレタン樹脂の末端に酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂。 (3) Diisocyanate compounds such as aliphatic diisocyanate, branched aliphatic diisocyanate, alicyclic diisocyanate, and aromatic diisocyanate, and polycarbonate polyol, polyether polyol, polyester polyol, polyolefin polyol, acrylic polyol, bisphenol A A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with a terminal of a urethane resin by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (4)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (4) a diisocyanate and a bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin and biphenol type epoxy resin; (Meth) acrylate or a partial acid anhydride modified product thereof, a carboxyl group-containing urethane resin obtained by a polyaddition reaction of a carboxyl group-containing dialcohol compound and a diol compound.
 (5)上記(2)または(4)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (5) During the synthesis of the resin of the above (2) or (4), a compound having one hydroxyl group and one or more (meth) acryloyl groups in a molecule such as hydroxyalkyl (meth) acrylate is added, and a terminal ( (Meth) Acrylated carboxyl group-containing urethane resin.
 (6)上記(2)または(4)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物等、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (6) During the synthesis of the resin (2) or (4), one isocyanate group and one or more (meth) acryloyl groups in a molecule such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate. Carboxyl group-containing urethane resin having terminal (meth) acrylated by adding a compound having the same.
 (7)多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (7) A carboxyl group obtained by reacting (meth) acrylic acid with a polyfunctional epoxy resin and adding a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride to a hydroxyl group present in a side chain. Containing resin.
 (8)2官能エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (8) A carboxyl group-containing resin obtained by reacting (meth) acrylic acid with a polyfunctional epoxy resin obtained by further epoxidizing hydroxyl groups of a bifunctional epoxy resin with epichlorohydrin and adding a dibasic acid anhydride to the resulting hydroxyl groups. .
 (9)多官能オキセタン樹脂にジカルボン酸を反応させ、生じた1級の水酸基に2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。 (9) A carboxyl group-containing polyester resin obtained by reacting a dicarboxylic acid with a polyfunctional oxetane resin and adding a dibasic acid anhydride to a generated primary hydroxyl group.
 (10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシド等のアルキレンオキシドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (10) A reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide is reacted with an unsaturated group-containing monocarboxylic acid to obtain a reaction product. Carboxyl group-containing resin obtained by reacting a product with a polybasic acid anhydride.
 (11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (11) A reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate is reacted with an unsaturated group-containing monocarboxylic acid to obtain a reaction product. A carboxyl group-containing resin obtained by reacting a reaction product with a polybasic acid anhydride.
 (12)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (12) an epoxy compound having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule such as p-hydroxyphenethyl alcohol, and (meth) Reaction with an unsaturated group-containing monocarboxylic acid such as acrylic acid, etc., with respect to the alcoholic hydroxyl group of the obtained reaction product, maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, anhydride A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as adipic acid.
 (13)上記(1)~(12)等に記載のカルボキシル基含有樹脂にさらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有樹脂。 (13) In addition to the carboxyl group-containing resin described in the above (1) to (12) and the like, one epoxy group and one or more () in a molecule of glycidyl (meth) acrylate, α-methylglycidyl (meth) acrylate, etc. A carboxyl group-containing resin obtained by adding a compound having a (meth) acryloyl group.
 また、アミドイミド構造およびイミド構造の少なくともいずれか一種を有するアルカリ可溶性樹脂も好適に用いることができる。 ア ル カ リ Alkali-soluble resins having at least one of an amide imide structure and an imide structure can also be suitably used.
 アルカリ可溶性樹脂として、下記式(1)または(2)、
Figure JPOXMLDOC01-appb-I000001
で表される少なくとも一方の構造と、アルカリ可溶性官能基と、を有するアミドイミド樹脂も好適に用いることができる。シクロヘキサン環またはベンゼン環に直結したイミド結合を有する樹脂を含むことにより、強靭性および耐熱性に優れた硬化物を得ることができる。特に、(1)で表される構造を有するアミドイミド樹脂は、光の透過性に優れるため、解像性を向上させることができる。前記アミドイミド樹脂は、透明性を有することが好ましく、例えば、前記アミドイミド樹脂の乾燥塗膜25μmにおいて、波長365nmの光の透過率は70%以上であることが好ましい。
As the alkali-soluble resin, the following formula (1) or (2):
Figure JPOXMLDOC01-appb-I000001
An amide imide resin having at least one structure represented by and an alkali-soluble functional group can also be suitably used. By including a resin having an imide bond directly bonded to a cyclohexane ring or a benzene ring, a cured product excellent in toughness and heat resistance can be obtained. In particular, the amide imide resin having the structure represented by (1) is excellent in light transmittance, so that the resolution can be improved. The amide imide resin preferably has transparency. For example, the transmittance of light having a wavelength of 365 nm is preferably 70% or more in a 25 μm dry coating film of the amide imide resin.
 前記アミドイミド樹脂における、式(1)および(2)の構造の含有量は、10~70質量%が好ましい。かかる樹脂を用いることで、溶剤溶解性に優れ、かつ、耐熱性、引張強度や伸度等の物性および寸法安定性に優れる硬化物が得られることになる。好ましくは10~60質量%であり、より好ましくは20~50質量%である。 は The content of the structures of the formulas (1) and (2) in the amide imide resin is preferably from 10 to 70% by mass. By using such a resin, it is possible to obtain a cured product that is excellent in solvent solubility and excellent in heat resistance, physical properties such as tensile strength and elongation, and dimensional stability. Preferably it is 10 to 60% by mass, more preferably 20 to 50% by mass.
 式(1)で表される構造を有するアミドイミド樹脂としては、特に、式(3A)、または、(3B)
Figure JPOXMLDOC01-appb-I000002
(式(3A)および(3B)中、それぞれ、Rは1価の有機基であり、H、CFまたはCHであることが好ましく、Xは直接結合または2価の有機基であり、直接結合、CHまたはC(CH等のアルキレン基であることが好ましい。)で表される構造を有する樹脂が、引張強度や伸度等の物性および寸法安定性に優れるため好ましい。溶解性や機械物性の観点から、前記アミドイミド樹脂として、式(3A)および(3B)の構造を10~100質量%有する樹脂を好適に用いることができる。より好ましくは20~80質量%である。
As the amide imide resin having the structure represented by the formula (1), particularly, the amide imide resin represented by the formula (3A) or (3B)
Figure JPOXMLDOC01-appb-I000002
(In the formulas (3A) and (3B), R is a monovalent organic group, preferably H, CF 3 or CH 3 , X is a direct bond or a divalent organic group, and It is preferable to use a resin having a structure represented by a bond, an alkylene group such as CH 2 or C (CH 3 ) 2 ) because of excellent physical properties such as tensile strength and elongation and dimensional stability. From the viewpoint of solubility and mechanical properties, as the amide imide resin, a resin having a structure of Formulas (3A) and (3B) in an amount of 10 to 100% by mass can be suitably used. More preferably, the content is 20 to 80% by mass.
 前記アミドイミド樹脂としては、式(3A)および(3B)の構造を、5~100モル%含有するアミドイミド樹脂を、溶解性や機械物性の観点から好ましく用いることができる。より好ましくは5~98モル%であり、さらに好ましくは10~98モル%であり、特に好ましくは20~80モル%である。 As the amide imide resin, an amide imide resin containing the structures of formulas (3A) and (3B) in an amount of 5 to 100 mol% can be preferably used from the viewpoint of solubility and mechanical properties. It is more preferably 5 to 98 mol%, further preferably 10 to 98 mol%, and particularly preferably 20 to 80 mol%.
 また、式(2)で表される構造を有するアミドイミド樹脂としては、特に、式(4A)、または(4B)
Figure JPOXMLDOC01-appb-I000003
(式(4A)および(4B)中、それぞれ、Rは1価の有機基であり、H、CFまたはCHであることが好ましく、Xは直接結合または2価の有機基であり、直接結合、CHまたはC(CHなどのアルキレン基であることが好ましい。)で表される構造を有する樹脂が、引張強度や伸度等の機械的物性に優れる硬化物が得られることから好ましい。溶解性や機械物性の観点から、前記アミドイミド樹脂として、式(4A)および(4B)の構造を10~100質量%有する樹脂を好適に用いることができる。より好ましくは20~80質量%である。
Further, the amide imide resin having the structure represented by the formula (2) is particularly preferably a compound represented by the formula (4A) or (4B)
Figure JPOXMLDOC01-appb-I000003
(In the formulas (4A) and (4B), R is a monovalent organic group, preferably H, CF 3 or CH 3 , and X is a direct bond or a divalent organic group. A resin having a structure represented by a bond, preferably an alkylene group such as CH 2 or C (CH 3 ) 2 ) can provide a cured product having excellent mechanical properties such as tensile strength and elongation. Is preferred. From the viewpoint of solubility and mechanical properties, as the amide imide resin, a resin having the structure of formulas (4A) and (4B) in an amount of 10 to 100% by mass can be suitably used. More preferably, the content is 20 to 80% by mass.
 前記アミドイミド樹脂として、式(4A)および(4B)の構造を2~95モル%含有するアミドイミド樹脂も、良好な機械物性を発現する理由から好ましく用いることができる。より好ましくは10~80モル%である。 ア ミ ド As the amide imide resin, an amide imide resin containing the structures of formulas (4A) and (4B) in an amount of 2 to 95 mol% can also be preferably used because of exhibiting good mechanical properties. More preferably, it is 10 to 80 mol%.
 前記アミドイミド樹脂は、公知の方法により得ることができる。(1)の構造を有するアミドイミド樹脂は、例えば、ビフェニル骨格を有するジイソシアネート化合物と、シクロヘキサンポリカルボン酸無水物と用いて得ることができる。 The amide imide resin can be obtained by a known method. The amide imide resin having the structure (1) can be obtained, for example, by using a diisocyanate compound having a biphenyl skeleton and cyclohexane polycarboxylic anhydride.
 ビフェニル骨格を有するジイソシアネート化合物としては、4,4’-ジイソシアネート-3,3’-ジメチル-1,1’-ビフェニル、4,4’-ジイソシアネート-3,3’-ジエチル-1,1’-ビフェニル、4,4’-ジイソシアネート-2,2’-ジメチル-1,1’-ビフェニル、4,4’-ジイソシアネート-2,2’-ジエチル-1,1’-ビフェニル、4,4’-ジイソシアネート-3,3’-ジトリフロロメチル-1,1’-ビフェニル、4,4’-ジイソシアネート-2,2’-ジトリフロロメチル-1,1’-ビフェニルなどが挙げられる。その他、ジフェニルメタンジイソシアネートなどの芳香族ポリイソシアネート化合物などを使用してもよい。 Examples of the diisocyanate compound having a biphenyl skeleton include 4,4′-diisocyanate-3,3′-dimethyl-1,1′-biphenyl and 4,4′-diisocyanate-3,3′-diethyl-1,1′-biphenyl 4,4'-diisocyanate-2,2'-dimethyl-1,1'-biphenyl, 4,4'-diisocyanate-2,2'-diethyl-1,1'-biphenyl, 4,4'-diisocyanate 3,3′-ditrifluoromethyl-1,1′-biphenyl, 4,4′-diisocyanate-2,2′-ditrifluoromethyl-1,1′-biphenyl and the like. In addition, an aromatic polyisocyanate compound such as diphenylmethane diisocyanate may be used.
 シクロヘキサンポリカルボン酸無水物としては、シクロヘキサントリカルボン酸無水物、シクロヘキサンテトラカルボン酸無水物などが挙げられる。 Examples of cyclohexanepolycarboxylic anhydride include cyclohexanetricarboxylic anhydride, cyclohexanetetracarboxylic anhydride and the like.
 また、(2)の構造を有するアミドイミド樹脂は、例えば、上記ビフェニル骨格を有するジイソシアネート化合物と、2個の酸無水物基を有するポリカルボン酸水物と用いて得ることができる。 ア ミ ド Further, the amide imide resin having the structure (2) can be obtained, for example, by using the diisocyanate compound having the biphenyl skeleton and the aqueous polycarboxylic acid having two acid anhydride groups.
 2個の酸無水物基を有するポリカルボン酸水物としては、ピロメリット酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸二無水物、ベンゼン-1,2,3,4-テトラカルボン酸二無水物、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物、ビフェニル-2,2’,3,3’-テトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,3-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、エチレングリコールビスアンヒドロトリメリテート等のアルキレングリコールビスアンヒドロキシトリメリテート等が挙げられる。 Examples of the aqueous polycarboxylic acid having two acid anhydride groups include pyromellitic dianhydride, benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride, diphenylether-3,3', 4,4'-tetracarboxylic dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, biphenyl-3,3 ', 4,4'-tetracarboxylic dianhydride, biphenyl- 2,2 ', 3,3'-tetracarboxylic dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 1,1 -Bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane Dianhydride, a few Bis (3,4-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, ethylene glycol bisanhydro And alkylene glycol bisanhydroxy trimellitate such as trimellitate.
 前記アミドイミド樹脂は、上記式(1)、(2)の構造の他に、さらに、アルカリ可溶性の官能基を有している。アルカリ可溶性の官能基を有することで、アルカリ現像が可能な樹脂組成物となる。アルカリ可溶性の官能基としては、カルボキシル基、フェノール系水酸基、スルホ基等を含有するものであり、好ましくはカルボキシル基を含有するものである。 The amide imide resin further has an alkali-soluble functional group in addition to the structures of the above formulas (1) and (2). By having an alkali-soluble functional group, a resin composition capable of alkali development can be obtained. The alkali-soluble functional group includes a carboxyl group, a phenolic hydroxyl group, a sulfo group, and the like, and preferably a carboxyl group.
 なお、前記アミドイミド樹脂の具体例としては、DIC社製ユニディックV-8000シリーズ、ユニディックEQG-1170、ニッポン高度紙工業社製SOXR-Uが挙げられる。 Specific examples of the amide imide resin include Unidick V-8000 series and Unidick EQG-1170 manufactured by DIC, and SOXR-U manufactured by Nippon Advanced Paper Industry.
 フェノール性水酸基を有する化合物としては、例えば、ビフェニル骨格若しくはフェニレン骨格またはその両方の骨格を有する化合物や、フェノール、オルソクレゾール、パラクレゾール、メタクレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、カテコール、レゾルシノール、ハイドロキノン、メチルハイドロキノン、2,6-ジメチルハイドロキノン、トリメチルハイドロキノン、ピロガロール、フロログルシノール等を用いて合成した、様々な骨格を有するフェノール樹脂が挙げられる。 Examples of the compound having a phenolic hydroxyl group include a compound having a biphenyl skeleton or a phenylene skeleton or both skeletons, phenol, orthocresol, paracresol, metacresol, 2,3-xylenol, 2,4-xylenol, , 5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, catechol, resorcinol, hydroquinone, methylhydroquinone, 2,6-dimethylhydroquinone, trimethylhydroquinone, pyrogallol, phloroglucinol, etc. And phenolic resins having various skeletons.
 また、フェノール性水酸基を有する化合物としては、例えば、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類、ビスフェノールF、ビスフェノールS型フェノール樹脂、ポリ-p-ヒドロキシスチレン、ナフトールとアルデヒド類の縮合物、ジヒドロキシナフタレンとアルデヒド類との縮合物などの公知慣用のフェノール樹脂が挙げられる。 Examples of the compound having a phenolic hydroxyl group include phenol novolak resin, alkylphenol volak resin, bisphenol A novolak resin, dicyclopentadiene-type phenol resin, Xylok-type phenol resin, terpene-modified phenol resin, polyvinylphenols, and bisphenol F And known phenol resins such as bisphenol S type phenol resin, poly-p-hydroxystyrene, condensate of naphthol and aldehyde, and condensate of dihydroxynaphthalene and aldehyde.
 フェノール樹脂の市販品としては、例えば、HF1H60(明和化成社製)、フェノライトTD-2090、フェノライトTD-2131(大日本印刷社製)、ベスモールCZ-256-A(DIC社製)、シヨウノールBRG-555、シヨウノールBRG-556(昭和電工社製)、CGR-951(丸善石油社製)、ポリビニルフェノールのCST70、CST90、S-1P、S-2P(丸善石油社製)が挙げられる。 Commercially available phenolic resins include, for example, HF1H60 (manufactured by Meiwa Kasei Co., Ltd.), phenolite TD-2090, phenolite TD-2131 (manufactured by Dai Nippon Printing Co., Ltd.), Vesmall CZ-256-A (manufactured by DIC), Shoyounol BRG-555, SHYONORU BRG-556 (manufactured by Showa Denko KK), CGR-951 (manufactured by Maruzen Sekiyu KK), and polyvinyl phenol CST70, CST90, S-1P, S-2P (manufactured by Maruzen Sekiyu KK).
 アルカリ可溶性樹脂の酸価は、40~200mgKOH/gの範囲が適当であり、より好ましくは45~120mgKOH/gの範囲である。アルカリ可溶性樹脂の酸価が40mgKOH/g以上であるとアルカリ現像が容易となり、一方、200mgKOH/g以下である正常な硬化物パターンの描画が容易となるので好ましい。 (4) The acid value of the alkali-soluble resin is suitably in the range of 40 to 200 mgKOH / g, and more preferably in the range of 45 to 120 mgKOH / g. When the acid value of the alkali-soluble resin is 40 mgKOH / g or more, alkali development becomes easy, and on the other hand, a normal cured product pattern of 200 mgKOH / g or less is easily drawn, which is preferable.
 アルカリ可溶性樹脂の重量平均分子量は、樹脂骨格により異なるが、1,500~150,000、さらには1,500~100,000の範囲が好ましい。重量平均分子量が1,500以上の場合、タックフリー性能が良好であり、露光後の塗膜の耐湿性が良好で、現像時の膜減りを抑制し、解像度の低下を抑制できる。一方、重量平均分子量が150,000以下の場合、現像性が良好で、貯蔵安定性にも優れる。 重量 The weight average molecular weight of the alkali-soluble resin varies depending on the resin skeleton, but is preferably in the range of 1,500 to 150,000, more preferably 1,500 to 100,000. When the weight average molecular weight is 1,500 or more, tack-free performance is good, the moisture resistance of the coating film after exposure is good, film loss during development can be suppressed, and a decrease in resolution can be suppressed. On the other hand, when the weight average molecular weight is 150,000 or less, the developability is good and the storage stability is excellent.
 アルカリ可溶性樹脂の配合量は、例えば、組成物の固形分全量中、5~50質量%である。 配合 The compounding amount of the alkali-soluble resin is, for example, 5 to 50% by mass based on the total solid content of the composition.
(光反応開始剤)
 本発明の第一~第三の態様の硬化性樹脂組成物は、光反応開始剤を含有することができる。光反応開始剤は、光照射により組成物を硬化できるものであればよく、光照射によりラジカルを発生する光重合開始剤および光照射により塩基を発生する光塩基発生剤のうちのいずれか1種が好ましい。なお、光反応開始剤は、光照射によりラジカルと塩基の両方を発生する化合物でももちろんよい。光照射とは、波長350~450nmの範囲の紫外線を照射することをいう。
(Photoinitiator)
The curable resin composition according to the first to third aspects of the present invention can contain a photoreaction initiator. The photoreaction initiator may be any one that can cure the composition by light irradiation, and may be any one of a photopolymerization initiator that generates radicals by light irradiation and a photobase generator that generates a base by light irradiation. Is preferred. The photoreaction initiator may be a compound that generates both a radical and a base upon irradiation with light. Light irradiation refers to irradiation with ultraviolet light having a wavelength of 350 to 450 nm.
 光重合開始剤としては、例えば、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド類;2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2-メチルベンゾイルジフェニルフォスフィンオキサイド、ピバロイルフェニルフォスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)等のモノアシルフォスフィンオキサイド類;1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル)-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。光重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the photopolymerization initiator include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2, 6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6- Trimethylbenzoyl) -phenylphosphine oxide Bisacylphosphine oxides such as 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphinic acid methyl ester, 2-methylbenzoyl Monoacylphosphine oxides such as diphenylphosphine oxide, pivaloylphenylphosphinic acid isopropyl ester, 2,4,6-trimethylbenzoyldiphenylphosphine oxide); 1-hydroxy-cyclohexylphenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propio) Benzyl) phenyl} -2-methyl-propan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one and the like; hydroxyacetophenones; benzoin, benzyl, benzoin methyl ether, benzoin ethyl Benzoins such as ether, benzoin n-propyl ether, benzoin isopropyl ether and benzoin n-butyl ether; benzoin alkyl ethers; benzophenone, p-methylbenzophenone, Michler's ketone, methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4 ' Benzophenones such as -bisdiethylaminobenzophenone; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-di Chloroacetophenone, 1-hydroxycyclohexylphenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl ) -Butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl) -1- [4- (4-morpholinyl) phenyl] -1-butanone, N, N-dimethylaminoacetophenone, etc. Acetophenones; thioxanthones such as thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone and 2,4-diisopropylthioxanthone; anthraquinone, chloroanthraquinone , 2 Anthraquinones such as -methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone and 2-aminoanthraquinone; ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; ethyl-4 Benzoic acid esters such as -dimethylaminobenzoate, 2- (dimethylamino) ethylbenzoate and ethyl p-dimethylbenzoate; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O- Oxime esters such as benzoyl oxime)], ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime); bis (η5 -2,4-cyclopentadiene 1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl) titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (2- ( Titanocenes such as 1-pyr-1-yl) ethyl) phenyl] titanium; and phenyl disulfide 2-nitrofluorene, butyroin, anisoin ethyl ether, azobisisobutyronitrile, tetramethylthiuram disulfide and the like. One photopolymerization initiator may be used alone, or two or more photopolymerization initiators may be used in combination.
 光塩基発生剤は、紫外線や可視光等の光照射により分子構造が変化するか、または、分子が開裂することにより、熱硬化反応の触媒として機能しうる1種以上の塩基性物質を生成する化合物である。塩基性物質として、例えば2級アミン、3級アミンが挙げられる。 The photobase generator generates one or more basic substances that can function as a catalyst for a thermosetting reaction by changing the molecular structure by irradiation with light such as ultraviolet light or visible light, or by cleaving the molecule. Compound. Examples of the basic substance include a secondary amine and a tertiary amine.
 光塩基発生剤として、例えば、α-アミノアセトフェノン化合物、オキシムエステル化合物や、アシルオキシイミノ化合物,N-ホルミル化芳香族アミノ化合物、N-アシル化芳香族アミノ化合物、ニトロベンジルカーバメイト化合物、アルコオキシベンジルカーバメート化合物等が挙げられる。なかでも、オキシムエステル化合物、α-アミノアセトフェノン化合物が好ましく、オキシムエステル化合物がより好ましく、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)がより好ましい。α-アミノアセトフェノン化合物としては、特に、2つ以上の窒素原子を有するものが好ましい。光塩基発生剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。この他、光塩基発生剤としては、4級アンモニウム塩等が挙げられる。 Examples of photobase generators include α-aminoacetophenone compounds, oxime ester compounds, acyloxyimino compounds, N-formylated aromatic amino compounds, N-acylated aromatic amino compounds, nitrobenzyl carbamate compounds, and alkoxyoxybenzyl carbamates And the like. Of these, oxime ester compounds and α-aminoacetophenone compounds are preferable, and oxime ester compounds are more preferable. Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) is more preferred. As the α-aminoacetophenone compound, a compound having two or more nitrogen atoms is particularly preferable. One photobase generator may be used alone, or two or more photobase generators may be used in combination. In addition, examples of the photobase generator include quaternary ammonium salts.
 その他の光塩基発生剤として、富士フイルム和光純薬社製のWPBG-018(商品名:9-anthrylmethyl N,N’-diethylcarbamate)、WPBG-027(商品名:(E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine)、WPBG-082(商品名:guanidinium2-(3-benzoylphenyl)propionate)、 WPBG-140(商品名:1-(anthraquinon-2-yl)ethyl imidazolecarboxylate)等を使用することもできる。 As other photobase generators, WPBG-018 (trade name: 9-anthrylmethyl @ N, N'-diethylcarbamate) and WPBG-027 (trade name: (E) -1- [3-] manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (2-hydroxyphenyl) -2-propenoyl] piperidine), WPBG-082 (trade name: guanidinium 2- (3-benzoylphenyl) propionate), {WPBG-140 (trade name: 1- (anthratioquinoyl) -thylaquinone-yloxy-neoly-xylonyl-e-thylonxyl-thylonxyl-thylonxyl-thylon-xyl-thylon-xyl-thylon-x-yl-thylon-xyl-thylon-xyl- Can also be used.
 さらに、前述した光重合開始剤の一部の物質が光塩基発生剤としても機能する。光塩基発生剤としても機能する光重合開始剤としては、オキシムエステル系光重合開始剤、α-アミノアセトフェノン系光重合開始剤が好ましい。 Further, some of the above-mentioned photopolymerization initiators also function as photobase generators. As a photopolymerization initiator that also functions as a photobase generator, an oxime ester-based photopolymerization initiator and an α-aminoacetophenone-based photopolymerization initiator are preferable.
 光反応開始剤の配合量は、例えば、組成物の固形分全量中、0.01~30質量%である。 (4) The compounding amount of the photoreaction initiator is, for example, 0.01 to 30% by mass based on the total solid content of the composition.
(硬化促進剤)
 本発明の第一~第三の態様の硬化性樹脂組成物は、硬化促進剤を含有することができる。硬化促進剤としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン、4-ジメチルアミノピリジン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物等が挙げられる。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもできる。また、金属系硬化促進剤を用いてもよく、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体または有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体などが挙げられる。有機金属塩としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。硬化促進剤としては、好ましくはこれら密着性付与剤としても機能する化合物を硬化促進剤と併用する。硬化促進剤は、1種を単独または2種以上を組み合わせて用いることができる。
(Curing accelerator)
The curable resin compositions of the first to third aspects of the present invention can contain a curing accelerator. Examples of the curing accelerator include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- Imidazole derivatives such as (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzyl Examples include amine compounds such as amines, 4-methyl-N, N-dimethylbenzylamine and 4-dimethylaminopyridine; hydrazine compounds such as adipic dihydrazide and sebacic dihydrazide; and phosphorus compounds such as triphenylphosphine. Guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino S-triazine derivatives such as -S-triazine / isocyanuric acid adduct and 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adduct can also be used. In addition, a metal-based hardening accelerator may be used, and examples thereof include an organic metal complex or an organic metal salt of a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. And the like, an organic iron complex such as iron (III) acetylacetonate, an organic nickel complex such as nickel (II) acetylacetonate, and an organic manganese complex such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like. As the curing accelerator, a compound that also functions as an adhesion promoter is preferably used in combination with the curing accelerator. As the curing accelerator, one type can be used alone, or two or more types can be used in combination.
 硬化促進剤の配合量は、例えば、組成物の固形分全量中、0.01~30質量%である。 配合 The amount of the curing accelerator is, for example, 0.01 to 30% by mass based on the total solid content of the composition.
(硬化剤)
 本発明の第一~第三の態様の硬化性樹脂組成物は、硬化剤を含有することができる。硬化剤としては、フェノール性水酸基を有する化合物、ポリカルボン酸およびその酸無水物、シアネートエステル基を有する化合物、マレイミド基を有する化合物、脂環式オレフィン重合体等が挙げられる。硬化剤は1種を単独または2種以上を組み合わせて用いることができる。
(Curing agent)
The curable resin compositions of the first to third aspects of the present invention can contain a curing agent. Examples of the curing agent include compounds having a phenolic hydroxyl group, polycarboxylic acids and acid anhydrides thereof, compounds having a cyanate ester group, compounds having a maleimide group, and alicyclic olefin polymers. As the curing agent, one type can be used alone, or two or more types can be used in combination.
 前記フェノール性水酸基を有する化合物としては、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、クレゾール/ナフトール樹脂、ポリビニルフェノール類、フェノール/ナフトール樹脂、α-ナフトール骨格含有フェノール樹脂、トリアジン骨格含有クレゾールノボラック樹脂、ビフェニルアラルキル型フェノール樹脂、ザイロック型フェノールノボラック樹脂等の従来公知のものを用いることができる。
 前記フェノール性水酸基を有する化合物の中でも、水酸基当量が100g/eq.以上のものが好ましい。水酸基当量が100g/eq.以上のフェノール性水酸基を有する化合物としては、例えば、ジシクロペンタジエン骨格フェノールノボラック樹脂(GDPシリーズ、群栄化学社製)、ザイロック型フェノールノボラック樹脂(MEH-7800、明和化成社製)、ビフェニルアラルキル型ノボラック樹脂(MEH-7851、明和化成社製)、ナフトールアラルキル型硬化剤(SNシリーズ、新日鉄住金化学社製)、トリアジン骨格含有クレゾールノボラック樹脂(LA-3018-50P、DIC社製)、トリアジン骨格含有フェノールノボラック樹脂(LA-705N、DIC社製)などが挙げられる。
Examples of the compound having a phenolic hydroxyl group include phenol novolak resin, alkylphenol novolak resin, bisphenol A novolak resin, dicyclopentadiene-type phenol resin, Xylok-type phenol resin, terpene-modified phenol resin, cresol / naphthol resin, polyvinylphenols, and phenol. Conventionally known resins such as a naphthol resin, a phenol resin having an α-naphthol skeleton, a cresol novolak resin having a triazine skeleton, a biphenylaralkyl-type phenol resin, and a zyloc-type phenol novolak resin can be used.
Among the compounds having a phenolic hydroxyl group, the hydroxyl equivalent is 100 g / eq. The above are preferred. When the hydroxyl equivalent is 100 g / eq. Examples of the compound having a phenolic hydroxyl group include a dicyclopentadiene skeleton phenol novolak resin (GDP series, manufactured by Gunei Chemical Co., Ltd.), a Xyloc phenol novolak resin (MEH-7800, manufactured by Meiwa Kasei Co., Ltd.), and a biphenylaralkyl type. Novolak resin (MEH-7851, manufactured by Meiwa Kasei Co., Ltd.), naphthol aralkyl type curing agent (SN series, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), cresol novolak resin containing a triazine skeleton (LA-3018-50P, manufactured by DIC), containing a triazine skeleton Phenol novolak resin (LA-705N, manufactured by DIC) and the like.
 前記シアネートエステル基を有する化合物は、一分子中に2個以上のシアネートエステル基(-OCN)を有する化合物であることが好ましい。シアネートエステル基を有する化合物は、従来公知のものをいずれも使用することができる。シアネートエステル基を有する化合物としては、例えば、フェノールノボラック型シアネートエステル樹脂、アルキルフェノールノボラック型シアネートエステル樹脂、ジシクロペンタジエン型シアネートエステル樹脂、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂が挙げられる。また、一部がトリアジン化したプレポリマーであってもよい。 The compound having a cyanate ester group is preferably a compound having two or more cyanate ester groups (—OCN) in one molecule. As the compound having a cyanate ester group, any of conventionally known compounds can be used. Examples of the compound having a cyanate ester group include, for example, phenol novolak type cyanate ester resin, alkylphenol novolak type cyanate ester resin, dicyclopentadiene type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol S type Cyanate ester resins are exemplified. Further, a prepolymer partially triazined may be used.
 市販されているシアネートエステル基を有する化合物としては、フェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン社製、PT30S)、ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー(ロンザジャパン社製、BA230S75)、ジシクロペンタジエン構造含有シアネートエステル樹脂(ロンザジャパン社製、DT-4000、DT-7000)等が挙げられる。 Commercially available compounds having a cyanate ester group include a phenol novolak-type polyfunctional cyanate ester resin (PT30S, manufactured by Lonza Japan Co., Ltd.), and a prepolymer in which a part or all of bisphenol A dicyanate is triazine-modified into a trimer. (Lonza Japan, BA230S75), dicyclopentadiene structure-containing cyanate ester resin (Lonza Japan, DT-4000, DT-7000) and the like.
 前記マレイミド基を有する化合物は、マレイミド骨格を有する化合物であり、従来公知のものをいずれも使用できる。マレイミド基を有する化合物は、2以上のマレイミド骨格を有することが好ましく、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、1,2-ビス(マレイミド)エタン、1,6-ビスマレイミドヘキサン、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、2,2’-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビスフェノールAジフェニルエーテルビスマレイミド、ポリフェニルメタンマレイミド、およびこれらのオリゴマー、ならびにマレイミド骨格を有するジアミン縮合物のうちの少なくとも何れか1種であることがより好ましい。前記オリゴマーは、上述のマレイミド基を有する化合物のうちのモノマーであるマレイミド基を有する化合物を縮合させることにより得られたオリゴマーである。 The compound having a maleimide group is a compound having a maleimide skeleton, and any of conventionally known compounds can be used. The compound having a maleimide group preferably has two or more maleimide skeletons, such as N, N'-1,3-phenylenedimaleimide, N, N'-1,4-phenylenedimaleimide, N, N'-4. 1,4-diphenylmethanebismaleimide, 1,2-bis (maleimide) ethane, 1,6-bismaleimide-hexane, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, bis ( 3-ethyl-5-methyl-4-maleimidophenyl) methane, bisphenol A diphenylether bismaleimide, polyphenylmethanemale Bromide, and more preferably at least any one kind of diamine condensates with these oligomers and maleimide skeleton. The oligomer is an oligomer obtained by condensing a compound having a maleimide group which is a monomer among the above-described compounds having a maleimide group.
 市販されているマレイミド基を有する化合物としては、BMI-1000(4,4’-ジフェニルメタンビスマレイミド、大和化成工業社製)、BMI-2300(フェニルメタンビスマレイミド、大和化成工業社製)、BMI-3000(m-フェニレンビスマレイミド、大和化成工業社製)、BMI-5100(3,3’-ジメチル-5,5’-ジメチル-4,4’-ジフェニルメタンビスマレイミド、大和化成工業社製)、BMI-7000(4-メチル-1,3,-フェニレンビスマレイミド、大和化成工業社製)、BMI-TMH((1,6-ビスマレイミド-2,2,4-トリメチル)ヘキサン、大和化成工業社製)、MIR-3000(ビフェニルアラルキル型マレイミド、日本化薬社製)などが挙げられる。 Commercially available compounds having a maleimide group include BMI-1000 (4,4'-diphenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo), BMI-2300 (phenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo), BMI- 3000 (m-phenylene bismaleimide, manufactured by Daiwa Kasei Kogyo), BMI-5100 (3,3'-dimethyl-5,5'-dimethyl-4,4'-diphenylmethane bismaleimide, manufactured by Daiwa Kasei Kogyo), BMI -7000 (4-methyl-1,3, -phenylenebismaleimide, manufactured by Daiwa Chemical Industry Co., Ltd.), BMI-TMH ((1,6-bismaleimide-2,2,4-trimethyl) hexane, manufactured by Daiwa Chemical Industry Co., Ltd.) ), MIR-3000 (biphenylaralkyl-type maleimide, manufactured by Nippon Kayaku Co., Ltd.).
 本発明の第三の態様の硬化性樹脂組成物は、硬化剤として、活性エステル基を有する化合物を含有してもよい。前記活性エステル基を有する化合物は、一分子中に2個以上の活性エステル基を有する化合物であることが好ましい。活性エステル基を有する化合物は、一般に、カルボン酸化合物とヒドロキシ化合物との縮合反応によって得ることができる。中でも、ヒドロキシ化合物としてフェノール化合物またはナフトール化合物を用いて得られる活性エステル基を有する化合物が好ましい。フェノール化合物またはナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。また、活性エステル基を有する化合物としては、ナフタレンジオールアルキル/安息香酸型でもよい。 硬化 The curable resin composition of the third aspect of the present invention may contain a compound having an active ester group as a curing agent. The compound having an active ester group is preferably a compound having two or more active ester groups in one molecule. The compound having an active ester group can be generally obtained by a condensation reaction between a carboxylic acid compound and a hydroxy compound. Among them, a compound having an active ester group obtained by using a phenol compound or a naphthol compound as the hydroxy compound is preferable. Examples of the phenol compound or naphthol compound include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolak and the like. Further, the compound having an active ester group may be a naphthalene diol alkyl / benzoic acid type.
 市販されている活性エステル基を有する化合物としては、シクロペンタジエン型のジフェノール化合物、例えば、HPC8000-65T(DIC社製)、HPC8100-65T(DIC社製)、HPC8150-65T(DIC社製)が挙げられる。 Examples of commercially available compounds having an active ester group include cyclopentadiene-type diphenol compounds such as HPC8000-65T (manufactured by DIC), HPC8100-65T (manufactured by DIC), and HPC8150-65T (manufactured by DIC). No.
 硬化剤の配合量は、例えば、組成物の固形分全量中、0.01~30質量%である。 配合 The amount of the curing agent is, for example, 0.01 to 30% by mass based on the total solid content of the composition.
(熱可塑性樹脂)
 本発明の第一~第三の態様の硬化性樹脂組成物は、得られる硬化膜の機械的強度を向上させるために、さらに熱可塑性樹脂を含有することができる。熱可塑性樹脂は、溶剤に可溶であることが好ましい。溶剤に可溶である場合、ドライフィルム化した場合に柔軟性が向上し、クラックの発生や粉落ちを抑制できる。熱可塑性樹脂としては、熱可塑性ポリヒドロキシポリエーテル樹脂や、エピクロルヒドリンと各種2官能フェノール化合物の縮合物であるフェノキシ樹脂或いはその骨格に存在するヒドロキシエーテル部の水酸基を各種酸無水物や酸クロリドを使用してエステル化したフェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ブロック共重合体、ゴム粒子等が挙げられる。熱可塑性樹脂は1種を単独または2種以上を組み合わせて用いることができる。
(Thermoplastic resin)
The curable resin compositions according to the first to third aspects of the present invention may further contain a thermoplastic resin in order to improve the mechanical strength of the obtained cured film. Preferably, the thermoplastic resin is soluble in a solvent. When soluble in a solvent, the flexibility is improved when a dry film is formed, and the generation of cracks and powder fall can be suppressed. As the thermoplastic resin, a thermoplastic polyhydroxy polyether resin, a phenoxy resin which is a condensate of epichlorohydrin and various bifunctional phenol compounds, or various acid anhydrides or acid chlorides in which the hydroxyl group of the hydroxy ether portion present in the skeleton is used. Phenoxy resin, polyvinyl acetal resin, polyamide resin, polyamide imide resin, block copolymer, rubber particles, etc. The thermoplastic resins can be used alone or in combination of two or more.
 熱可塑性樹脂の配合量は、例えば、組成物の固形分全量中、0.01~10質量%である。 配合 The blending amount of the thermoplastic resin is, for example, 0.01 to 10% by mass based on the total solid content of the composition.
(難燃剤)
 本発明の第一~第三の態様の硬化性樹脂組成物は、難燃剤を含有することができる。難燃剤としては、公知慣用の難燃剤を用いることができ、リン酸エステルおよび縮合リン酸エステル、リン元素含有(メタ)アクリレート、フェノール性水酸基を有するリン含有化合物、環状フォスファゼン化合物、ホスファゼンオリゴマー、ホスフィン酸金属塩等のリン含有化合物、三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル等のハロゲン化物、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物等の層状複水酸化物が挙げられる。これらの中でも、リン含有化合物が好ましく、ホスフィン酸金属塩がより好ましい。難燃剤は1種類を単独で用いてもよく、2種類以上を併用してもよい。
(Flame retardants)
The curable resin compositions of the first to third aspects of the present invention can contain a flame retardant. Known and commonly used flame retardants can be used as the flame retardant, and include phosphoric acid esters and condensed phosphoric acid esters, phosphorus-containing (meth) acrylates, phosphorus-containing compounds having a phenolic hydroxyl group, cyclic phosphazene compounds, phosphazene oligomers, and phosphines. Layered compounds such as phosphorus-containing compounds such as acid metal salts, antimony compounds such as antimony trioxide and antimony pentoxide, halides such as pentabromodiphenyl ether and octabromodiphenyl ether, and metal hydroxides such as aluminum hydroxide and magnesium hydroxide. Hydroxide. Among these, a phosphorus-containing compound is preferable, and a metal phosphinate is more preferable. One type of flame retardant may be used alone, or two or more types may be used in combination.
 難燃剤の配合量は、例えば、組成物の固形分全量中、0.01~10質量%である。 配合 The compounding amount of the flame retardant is, for example, 0.01 to 10% by mass based on the total solid content of the composition.
(着色剤)
 本発明の第一~第三の態様の硬化性樹脂組成物には、着色剤が含まれていてもよい。着色剤としては、赤、青、緑、黄、黒、白等の公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよい。但し、環境負荷低減並びに人体への影響の観点からハロゲンを含有しないことが好ましい。着色剤は、1種を単独または2種以上を組み合わせて用いることができる。
(Colorant)
The curable resin compositions of the first to third aspects of the present invention may contain a colorant. As the coloring agent, known coloring agents such as red, blue, green, yellow, black, and white can be used, and any of pigments, dyes, and pigments may be used. However, it is preferable not to contain halogen from the viewpoint of reducing the environmental load and affecting the human body. The coloring agents can be used alone or in combination of two or more.
 着色剤の配合量は、例えば、組成物の固形分全量中、0.01~10質量%である。
 本発明の第一の態様の硬化性樹脂組成物においては、前記被覆されたペロブスカイト型化合物の屈折率が比較的大きいので、アルカリ現像型の場合には、カーボンブラックなどの紫外線吸収剤を含むことが好ましい。カーボンブラックなどの紫外線吸収剤を含むことにより解像性の制御が容易になり、解像性を向上させることができる。
The compounding amount of the coloring agent is, for example, 0.01 to 10% by mass based on the total solid content of the composition.
In the curable resin composition of the first aspect of the present invention, since the coated perovskite type compound has a relatively large refractive index, in the case of an alkali development type, it contains an ultraviolet absorber such as carbon black. Is preferred. By including an ultraviolet absorber such as carbon black, the resolution can be easily controlled, and the resolution can be improved.
(有機溶剤)
 本発明の第一~第三の態様の硬化性樹脂組成物には、組成物の調製や、基板やキャリアフィルムに塗布する際の粘度調整等の目的で、有機溶剤を含有させることができる。有機溶剤としては、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤など、公知慣用の有機溶剤が使用できる。これらの有機溶剤は、単独で、または二種類以上組み合わせて用いることができる。
(Organic solvent)
The curable resin compositions of the first to third aspects of the present invention can contain an organic solvent for the purpose of preparing the composition, adjusting the viscosity when applying the composition to a substrate or a carrier film, and the like. Examples of the organic solvent include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, and propylene glycol monomethyl ether. Glycol ethers such as dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate and tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbine Tall acetate, propylene glycol monomethyl ether acetate, zip Propylene glycol monomethyl ether acetate, esters such as propylene carbonate; octane, aliphatic hydrocarbons decane; petroleum ether, petroleum naphtha, and petroleum solvents such as solvent naphtha, organic solvents conventionally known can be used. These organic solvents can be used alone or in combination of two or more.
(その他の任意成分)
 さらに、本発明の第一~第三の態様の硬化性樹脂組成物には、電子材料の分野において公知慣用の他の添加剤を配合してもよい。他の添加剤としては、熱重合禁止剤、紫外線吸収剤、シランカップリング剤、可塑剤、帯電防止剤、老化防止剤、酸化防止剤、抗菌・防黴剤、消泡剤、レベリング剤、増粘剤、密着性付与剤、チキソ性付与剤、光開始助剤、増感剤、有機フィラー、エラストマー、離型剤、表面処理剤、分散剤、分散助剤、表面改質剤、安定剤、蛍光体等が挙げられる。
(Other optional components)
Further, the curable resin compositions of the first to third aspects of the present invention may contain other additives commonly used in the field of electronic materials. Other additives include thermal polymerization inhibitors, ultraviolet absorbers, silane coupling agents, plasticizers, antistatic agents, antioxidants, antioxidants, antibacterial and antifungal agents, defoamers, leveling agents, Viscous agent, adhesion promoter, thixotropy promoter, photoinitiator, sensitizer, organic filler, elastomer, release agent, surface treating agent, dispersant, dispersant, surface modifier, stabilizer, Phosphors and the like.
 また、本発明の第一の態様の硬化性樹脂組成物は、本発明の第一の態様の効果を損なわない範囲で、前記被覆されたペロブスカイト型化合物以外の公知慣用の無機フィラーを含有してもよい。そのような無機フィラーとしては、例えば、前記被覆されたペロブスカイト型化合物以外のペロブスカイト型化合物、シリカ、ノイブルグ珪土、水酸化アルミニウム、ガラス粉末、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、天然マイカ、合成マイカ、水酸化アルミニウム、硫酸バリウム、チタン酸バリウム、酸化鉄、非繊維状ガラス、ハイドロタルサイト、ミネラルウール、アルミニウムシリケート、カルシウムシリケート、亜鉛華等の無機フィラーが挙げられる。 In addition, the curable resin composition of the first aspect of the present invention contains a known and commonly used inorganic filler other than the coated perovskite compound as long as the effect of the first aspect of the present invention is not impaired. Is also good. Examples of such inorganic fillers include, for example, perovskite compounds other than the coated perovskite compound, silica, Neuburg silicate, aluminum hydroxide, glass powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, and synthetic mica. Examples include inorganic fillers such as mica, aluminum hydroxide, barium sulfate, barium titanate, iron oxide, non-fibrous glass, hydrotalcite, mineral wool, aluminum silicate, calcium silicate, and zinc white.
 また、本発明の第二の態様の硬化性樹脂組成物は、本発明の第二の態様の効果を損なわない範囲で、前記被覆されたシリカ粒子以外の公知慣用の無機フィラーを含有してもよい。そのような無機フィラーとしては、例えば、前記被覆されたシリカ粒子以外のシリカ、ノイブルグ珪土、水酸化アルミニウム、ガラス粉末、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、天然マイカ、合成マイカ、水酸化アルミニウム、硫酸バリウム、チタン酸バリウム、酸化鉄、非繊維状ガラス、ハイドロタルサイト、ミネラルウール、アルミニウムシリケート、カルシウムシリケート、亜鉛華等の無機フィラーが挙げられる。 Further, the curable resin composition of the second aspect of the present invention may contain a known and commonly used inorganic filler other than the coated silica particles as long as the effect of the second aspect of the present invention is not impaired. Good. Examples of such inorganic fillers include, for example, silica other than the coated silica particles, Neuburg silica, aluminum hydroxide, glass powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, synthetic mica, and aluminum hydroxide. And inorganic fillers such as barium sulfate, barium titanate, iron oxide, non-fibrous glass, hydrotalcite, mineral wool, aluminum silicate, calcium silicate and zinc white.
 また、本発明の第三の態様の硬化性樹脂組成物は、本発明の第三の態様の効果を損なわない範囲で、前記被覆された高熱伝導率のフィラー以外の公知慣用のフィラーを含有してもよい。そのようなフィラーとしては、例えば、前記被覆がされた高熱伝導率のフィラー以外の高熱伝導率のフィラーや、シリカ、ノイブルグ珪土、ガラス粉末、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、天然マイカ、合成マイカ、硫酸バリウム、チタン酸バリウム、非繊維状ガラス、ハイドロタルサイト、ミネラルウール、カルシウムシリケート等の無機フィラーが挙げられる。 Further, the curable resin composition of the third aspect of the present invention contains a known and commonly used filler other than the coated high thermal conductivity filler, as long as the effect of the third aspect of the present invention is not impaired. You may. As such a filler, for example, a filler having a high thermal conductivity other than the coated high thermal conductivity filler, silica, Neuburg silica, glass powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, Examples include inorganic fillers such as synthetic mica, barium sulfate, barium titanate, non-fibrous glass, hydrotalcite, mineral wool, and calcium silicate.
 本発明の第一~第三の態様の硬化性樹脂組成物は特に限定されず、例えば、熱硬化性樹脂組成物、光硬化性樹脂組成物、光硬化性熱硬化性樹脂組成物、感光性熱硬化性樹脂組成物のいずれであってもよい。また、アルカリ現像型であってもよく、ネガ型でもポジ型でもよい。具体例としては、熱硬化性樹脂組成物、光硬化性熱硬化性樹脂組成物、光重合開始剤を含有する光硬化性熱硬化性樹脂組成物、光塩基発生剤を含有する光硬化性熱硬化性樹脂組成物、ネガ型光硬化性熱硬化性樹脂組成物およびポジ型感光性熱硬化性樹脂組成物、アルカリ現像型光硬化性熱硬化性樹脂組成物、溶剤現像型光硬化性熱硬化性樹脂組成物、膨潤剥離型熱硬化性樹脂組成物、溶解剥離型熱硬化性樹脂組成物などが挙げられるが、これらに限定されるものではない。 The curable resin composition of the first to third aspects of the present invention is not particularly limited, and examples thereof include a thermosetting resin composition, a photocurable resin composition, a photocurable thermosetting resin composition, and a photosensitive resin. Any of the thermosetting resin compositions may be used. Further, an alkali developing type may be used, and a negative type or a positive type may be used. Specific examples include a thermosetting resin composition, a photocurable thermosetting resin composition, a photocurable thermosetting resin composition containing a photopolymerization initiator, and a photocurable thermosetting resin containing a photobase generator. Curable resin composition, negative photocurable thermosetting resin composition and positive photosensitive thermosetting resin composition, alkali-developed photocurable thermosetting resin composition, solvent-developed photocurable thermosetting Examples thereof include, but are not limited to, a water-soluble resin composition, a swellable peelable thermosetting resin composition, and a dissolution peelable thermosetting resin composition.
 本発明の第一~第三の態様の硬化性樹脂組成物が含有する任意成分は、硬化性や用途に合わせて、公知慣用の成分を選択すればよい。 任意 As the optional components contained in the curable resin compositions of the first to third aspects of the present invention, known and commonly used components may be selected in accordance with curability and use.
 例えば、本発明の第一~第三の態様の硬化性樹脂組成物が、(光重合開始剤を含まない)熱硬化性樹脂組成物の場合、熱硬化性樹脂を含有する。また、硬化促進剤を含有することが好ましい。硬化剤を含有することが好ましい。熱硬化性樹脂の配合量は、組成物の固形分全量中、1~50質量%であることが好ましい。硬化促進剤の配合量は、組成物の固形分全量中、0.01~30質量%であることが好ましい。硬化剤の配合量は、組成物の固形分全量中、0.01~30質量%であるであることが好ましい。 For example, when the curable resin composition according to the first to third aspects of the present invention is a thermosetting resin composition (containing no photopolymerization initiator), it contains a thermosetting resin. Further, it is preferable to contain a curing accelerator. It is preferable to contain a curing agent. The compounding amount of the thermosetting resin is preferably 1 to 50% by mass based on the total solid content of the composition. The compounding amount of the curing accelerator is preferably 0.01 to 30% by mass based on the total solid content of the composition. The compounding amount of the curing agent is preferably 0.01 to 30% by mass based on the total solid content of the composition.
 また、本発明の第一~第三の態様の硬化性樹脂組成物が、光硬化性熱硬化性樹脂組成物の場合、光硬化性樹脂と熱硬化性樹脂と光反応開始剤を含有する。アルカリ現像型にする場合は、光硬化性樹脂がアルカリ可溶性樹脂であってもよく、さらにアルカリ可溶性樹脂を含有してもよい。また、硬化促進剤を含有することが好ましい。アルカリ可溶性樹脂の配合量は、組成物の固形分全量中、5~50質量%であることが好ましい。熱硬化性樹脂の配合量は、組成物の固形分全量中、1~50質量%であることが好ましい。光硬化性樹脂(光硬化性であるアルカリ可溶性樹脂を除く)の配合量は、組成物の固形分全量中、1~50質量%であることが好ましい。光反応開始剤の配合量は、組成物の固形分全量中、0.01~30質量%であることが好ましい。硬化促進剤の配合量は、組成物の固形分全量中、0.01~30質量%であることが好ましい。 In the case where the curable resin composition according to the first to third aspects of the present invention is a photocurable thermosetting resin composition, it contains a photocurable resin, a thermosetting resin, and a photoreaction initiator. In the case of an alkali developing type, the photocurable resin may be an alkali-soluble resin, and may further contain an alkali-soluble resin. Further, it is preferable to contain a curing accelerator. The compounding amount of the alkali-soluble resin is preferably 5 to 50% by mass based on the total solid content of the composition. The compounding amount of the thermosetting resin is preferably 1 to 50% by mass based on the total solid content of the composition. The compounding amount of the photocurable resin (excluding the photocurable alkali-soluble resin) is preferably 1 to 50% by mass based on the total solid content of the composition. The compounding amount of the photoreaction initiator is preferably 0.01 to 30% by mass based on the total solid content of the composition. The compounding amount of the curing accelerator is preferably 0.01 to 30% by mass based on the total solid content of the composition.
 本発明の第一~第三の態様の硬化性樹脂組成物は、ドライフィルム化して用いても液状として用いてもよい。液状として用いる場合は、1液性でも2液性以上でもよい。 硬化 The curable resin compositions of the first to third aspects of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-pack or two-pack or more.
 本発明の第一、第二または第三の実施態様のドライフィルムは、キャリアフィルム上に、それぞれ本発明の第一、第二または第三の実施態様の硬化性樹脂組成物(以下、「本発明の硬化性樹脂組成物」とも略記する)を塗布、乾燥させることにより得られる樹脂層を有する。ドライフィルムを形成する際には、まず、本発明の硬化性樹脂組成物を上記有機溶剤で希釈して適切な粘度に調整した上で、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等により、キャリアフィルム上に均一な厚さに塗布する。その後、塗布された組成物を、通常、40~130℃の温度で1~30分間乾燥することで、樹脂層を形成することができる。塗布膜厚については特に制限はないが、一般に、乾燥後の膜厚で、3~150μm、好ましくは5~60μmの範囲で適宜選択される。 The dry film of the first, second or third embodiment of the present invention is provided on a carrier film, respectively, with the curable resin composition of the first, second or third embodiment of the present invention (hereinafter referred to as “the present invention”). (Also abbreviated as "curable resin composition of the invention") and dried. When forming a dry film, first, after adjusting the curable resin composition of the present invention to an appropriate viscosity by diluting with the organic solvent, a comma coater, blade coater, lip coater, rod coater, squeeze coater , A reverse coater, a transfer roll coater, a gravure coater, a spray coater, etc., to apply a uniform thickness on the carrier film. Thereafter, the applied composition is usually dried at a temperature of 40 to 130 ° C. for 1 to 30 minutes to form a resin layer. The thickness of the applied film is not particularly limited, but is generally appropriately selected in a range of 3 to 150 μm, preferably 5 to 60 μm after drying.
 キャリアフィルムとしては、プラスチックフィルムが用いられ、例えば、ポリエチレンテレフタレート(PET)等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等を用いることができる。キャリアフィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。より好ましくは15~130μmの範囲である。 プ ラ ス チ ッ ク As the carrier film, a plastic film is used, and for example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used. The thickness of the carrier film is not particularly limited, but is generally appropriately selected in the range of 10 to 150 μm. More preferably, it is in the range of 15 to 130 μm.
 キャリアフィルム上に本発明の硬化性樹脂組成物からなる樹脂層を形成した後、樹脂層の表面に塵が付着することを防ぐ等の目的で、さらに、樹脂層の表面に、剥離可能なカバーフィルムを積層することが好ましい。剥離可能なカバーフィルムとしては、例えば、ポリエチレンフィルムやポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができる。カバーフィルムとしては、カバーフィルムを剥離するときに、樹脂層とキャリアフィルムとの接着力よりも小さいものであればよい。 After forming a resin layer made of the curable resin composition of the present invention on a carrier film, for the purpose of preventing dust from adhering to the surface of the resin layer, further, a cover that can be peeled off on the surface of the resin layer. It is preferable to laminate films. As the peelable cover film, for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, surface-treated paper, or the like can be used. The cover film only needs to have a smaller adhesive strength between the resin layer and the carrier film when the cover film is peeled off.
 なお、本発明においては、上記カバーフィルム上に本発明の硬化性樹脂組成物を塗布、乾燥させることにより樹脂層を形成して、その表面にキャリアフィルムを積層するものであってもよい。すなわち、本発明においてドライフィルムを製造する際に本発明の硬化性樹脂組成物を塗布するフィルムとしては、キャリアフィルムおよびカバーフィルムのいずれを用いてもよい。 In the present invention, a resin layer may be formed by applying and drying the curable resin composition of the present invention on the cover film, and a carrier film may be laminated on the surface of the resin layer. That is, any of a carrier film and a cover film may be used as a film on which the curable resin composition of the present invention is applied when producing a dry film in the present invention.
 本発明の硬化性樹脂組成物を用いたプリント配線板の製造方法としては、従来公知の方法を用いればよい。アルカリ現像型の光硬化性熱硬化性樹脂組成物の場合を例にすると、例えば、本発明の硬化性樹脂組成物を、上記有機溶剤を用いて塗布方法に適した粘度に調整して、基板上に、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法、スピンコート法等の方法により塗布した後、60~100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成する。また、ドライフィルムの場合、ラミネーター等により樹脂層が基板と接触するように基板上に貼り合わせた後、キャリアフィルムを剥がすことにより、基板上に樹脂層を形成する。 プ リ ン ト As a method for producing a printed wiring board using the curable resin composition of the present invention, a conventionally known method may be used. Taking the case of a photocurable thermosetting resin composition of an alkali development type as an example, for example, the curable resin composition of the present invention is adjusted to a viscosity suitable for a coating method using the organic solvent, and the substrate After being applied on the top by a dip coating method, a flow coating method, a roll coating method, a bar coater method, a screen printing method, a curtain coating method, a spin coating method, or the like, the composition is contained in the composition at a temperature of 60 to 100 ° C. The tack-free resin layer is formed by volatilizing drying (temporary drying) of the organic solvent. In the case of a dry film, a resin layer is formed on a substrate by laminating the resin layer on the substrate such that the resin layer is in contact with the substrate, and then peeling off the carrier film.
 上記基板としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキシド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、PETフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウェハ板等を挙げることができる。回路には、前処理が施されていてもよく、例えば、四国化成社製のGliCAP、メック社製のNew Organic AP(Adhesion promoter)、アトテックジャパン社製のNova Bond等で前処理を施し、ソルダーレジスト等の硬化被膜との密着性等を向上させたり、防錆剤で前処理を施してもよい。 As the substrate, in addition to a printed wiring board or a flexible printed wiring board which has been previously formed with a circuit such as copper, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth / non-woven cloth epoxy, glass cloth / paper epoxy, All grades (FR-4, etc.) copper-clad laminates made of synthetic fiber epoxy, fluorocarbon resin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, etc. And others, a metal substrate, a polyimide film, a PET film, a polyethylene naphthalate (PEN) film, a glass substrate, a ceramic substrate, a wafer plate, and the like. The circuit may be pre-treated. For example, the circuit may be pre-treated with GliCAP manufactured by Shikoku Chemicals, New Organic AP (Adhesion Promoter) manufactured by Mec, Nova Bond manufactured by Atotech Japan, or the like. The adhesion to a cured film such as a resist may be improved, or a pre-treatment with a rust inhibitor may be performed.
 本発明の硬化性樹脂組成物を塗布した後に行う揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより基板に吹き付ける方式)を用いて行うことができる。 The volatile drying performed after applying the curable resin composition of the present invention may be performed by a hot air circulation drying oven, an IR oven, a hot plate, a convection oven, or the like (using a device equipped with a heat source of an air heating system using steam to dry the inside of the dryer). (A method in which hot air is brought into countercurrent contact or a method in which hot air is blown onto a substrate from a nozzle).
 プリント配線板上に樹脂層を形成後、所定のパターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光し、未露光部を希アルカリ水溶液(例えば、0.3~3質量%炭酸ソーダ水溶液)により現像して硬化物のパターンを形成する。さらに、硬化物に活性エネルギー線を照射後加熱硬化(例えば、100~220℃)、もしくは加熱硬化後活性エネルギー線を照射、または、加熱硬化のみで最終仕上げ硬化(本硬化)させることにより、密着性、硬度等の諸特性に優れた硬化膜を形成する。 After a resin layer is formed on a printed wiring board, it is selectively exposed to active energy rays through a photomask on which a predetermined pattern is formed, and an unexposed portion is diluted with a dilute alkaline aqueous solution (for example, a 0.3 to 3 mass% aqueous sodium carbonate solution). ) To form a cured product pattern. Further, the cured product is irradiated with active energy rays and then heated and cured (for example, at 100 to 220 ° C.), or heated and cured with active energy rays, or finally cured (final curing) only by heat curing to achieve close contact. A cured film with excellent properties such as properties and hardness is formed.
 上記活性エネルギー線照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ等を搭載し、350~450nmの範囲で紫外線を照射する装置であればよく、さらに、基板と非接触なマスクレス露光として投影レンズを使用した投影露光機や直接描画装置(例えば、コンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)も用いることができる。直描機のランプ光源またはレーザー光源としては、最大波長が350~450nmの範囲にあるものでよい。画像形成のための露光量は膜厚等によって異なるが、一般には10~1000mJ/cm、好ましくは20~800mJ/cmの範囲内とすることができる。 The exposure machine used for the active energy ray irradiation may be any device equipped with a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, a mercury short arc lamp, etc., and irradiating ultraviolet rays in a range of 350 to 450 nm. Furthermore, a projection exposure apparatus using a projection lens or a direct drawing apparatus (for example, a laser direct imaging apparatus that directly draws an image with a laser based on CAD data from a computer) as a maskless exposure that is not in contact with the substrate can also be used. The lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm. The exposure amount for image formation varies depending on the film thickness and the like, but can be generally in the range of 10 to 1000 mJ / cm 2 , preferably 20 to 800 mJ / cm 2 .
 上記現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液が使用できる。 As the developing method, a dipping method, a shower method, a spray method, a brush method, or the like can be used. As a developing solution, potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, Aqueous alkali solutions such as ammonia and amines can be used.
 本発明の第一の態様の硬化性樹脂組成物は、電子部品に硬化膜を形成するために、特にはプリント配線板上に硬化膜を形成するために好適に使用され、より好適には、永久被膜を形成するために使用され、さらに好適には、ソルダーレジスト、層間絶縁層、カバーレイ、封止材を形成するために使用される。また、高度な信頼性が求められるプリント配線板、例えばパッケージ基板、特にFC-BGA用の永久被膜(特にソルダーレジスト)の形成に好適である。また、本発明の第一の態様の硬化性樹脂組成物は、回路表面の粗度が小さくても配線パターンを備えるプリント配線板、例えば高周波用のプリント配線板にも好適に用いることができる。例えば、表面粗度Raが0.05μm以下、特に0.03μm以下であっても好適に用いることができる。また、低極性の基材、例えば、活性エステルを含む基材上に硬化膜を形成する場合にも好適に用いることができる。更に、粗化レスなウェハやガラス基板上に硬化膜を形成するためにも好適に使用される。また、本発明の第一の態様の硬化性樹脂組成物は、伝送損失の少ない基材、例えば、周波数10GHzにおける誘電正接が0.01以下の基材に硬化膜を形成するためにも好適に使用される。電子部品としては、プリント配線板以外の用途、例えば、インダクタなどの受動部品でもよい。 The curable resin composition of the first aspect of the present invention is preferably used for forming a cured film on an electronic component, particularly, for forming a cured film on a printed wiring board, and more preferably, It is used for forming a permanent film, and more preferably, for forming a solder resist, an interlayer insulating layer, a coverlay, and a sealing material. Further, it is suitable for forming a printed wiring board requiring a high degree of reliability, for example, a package substrate, particularly a permanent film (particularly a solder resist) for FC-BGA. Further, the curable resin composition of the first aspect of the present invention can be suitably used for a printed wiring board having a wiring pattern even if the surface roughness of the circuit is small, for example, a high-frequency printed wiring board. For example, even when the surface roughness Ra is 0.05 μm or less, particularly 0.03 μm or less, it can be suitably used. It can also be suitably used when a cured film is formed on a low-polarity base material, for example, a base material containing an active ester. Further, it is suitably used for forming a cured film on a wafer or a glass substrate without roughening. Further, the curable resin composition of the first aspect of the present invention is also suitable for forming a cured film on a substrate having a low transmission loss, for example, a substrate having a dielectric loss tangent at a frequency of 10 GHz of 0.01 or less. used. The electronic component may be a use other than the printed wiring board, for example, a passive component such as an inductor.
 本発明の第一の態様の硬化性樹脂組成物を硬化して得られる硬化物は、誘電率が5以上であることが好ましく、より好ましくは10以上である。また、誘電正接が0.02以下であることが好ましい。 硬化 The cured product obtained by curing the curable resin composition of the first aspect of the present invention preferably has a dielectric constant of 5 or more, more preferably 10 or more. Further, the dielectric loss tangent is preferably 0.02 or less.
 本発明の第二の態様の硬化性樹脂組成物は、電子部品に硬化膜を形成するために、特にはプリント配線板上に硬化膜を形成するために好適に使用され、より好適には、永久被膜を形成するために使用され、さらに好適には、ソルダーレジスト、層間絶縁層、カバーレイ、封止材を形成するために使用される。また、高度な信頼性が求められるプリント配線板、例えばパッケージ基板、特にFC-BGA用の永久被膜(特にソルダーレジスト)の形成に好適である。また、本発明の第二の態様の硬化性樹脂組成物は、回路表面の粗度が小さくても配線パターンを備えるプリント配線板、例えば高周波用のプリント配線板にも好適に用いることができる。例えば、表面粗度Raが0.05μm以下、特に0.03μm以下であっても好適に用いることができる。また、低極性の基板、例えば、活性エステルを含む基板上に硬化膜を形成する場合にも好適に用いることができる。更に、粗化レスなウェハやガラス基板上に硬化膜を形成するためにも好適に使用される。また、本発明の第二の態様の硬化性樹脂組成物は、伝送損失の少ない基板、例えば、周波数10GHzにおける誘電正接が0.01以下の基板に硬化膜を形成するためにも好適に使用される。このような低誘電正接の基板は、例えば、味の素社の層間絶縁材フィルム(ABF)を用いて製造することができる。電子部品としては、プリント配線板以外の用途、例えば、インダクタなどの受動部品でもよい。 The curable resin composition of the second aspect of the present invention is preferably used for forming a cured film on an electronic component, particularly, for forming a cured film on a printed wiring board, and more preferably, It is used for forming a permanent film, and more preferably, for forming a solder resist, an interlayer insulating layer, a coverlay, and a sealing material. Further, it is suitable for forming a printed wiring board requiring a high degree of reliability, for example, a package substrate, particularly a permanent film (particularly a solder resist) for FC-BGA. Further, the curable resin composition of the second aspect of the present invention can be suitably used for a printed wiring board having a wiring pattern even if the surface roughness of the circuit is small, for example, a printed wiring board for high frequency. For example, even when the surface roughness Ra is 0.05 μm or less, particularly 0.03 μm or less, it can be suitably used. Further, it can also be suitably used when a cured film is formed on a low-polarity substrate, for example, a substrate containing active ester. Further, it is suitably used for forming a cured film on a wafer or a glass substrate without roughening. Further, the curable resin composition of the second aspect of the present invention is also suitably used for forming a cured film on a substrate having a small transmission loss, for example, a substrate having a dielectric loss tangent at a frequency of 10 GHz of 0.01 or less. You. Such a substrate having a low dielectric loss tangent can be manufactured using, for example, an interlayer insulating film (ABF) manufactured by Ajinomoto Co. The electronic component may be a use other than the printed wiring board, for example, a passive component such as an inductor.
 本発明の第二の態様の積層構造体は、樹脂硬化層(A)と、前記樹脂硬化層(A)に接する樹脂硬化層(B)または基板(C)を含む構造体であって、前記樹脂硬化層(A)が、本発明の第二の態様の硬化性樹脂組成物または本発明の第二の態様のドライフィルムの樹脂層から得られる、ゼータ電位が正の硬化物であり、前記樹脂硬化層(B)または基板(C)のゼータ電位が負であることを特徴とするものである。 The laminated structure according to the second aspect of the present invention is a structure including a resin cured layer (A) and a resin cured layer (B) or a substrate (C) in contact with the resin cured layer (A), The resin cured layer (A) is a cured product having a positive zeta potential obtained from the curable resin composition of the second aspect of the present invention or the resin layer of the dry film of the second aspect of the present invention, The zeta potential of the cured resin layer (B) or the substrate (C) is negative.
 上記のとおり、本発明の第二の態様においては、酸化チタン粒子を正の電荷が大きくなるように表面処理することによって、密着性の低下を抑制することができるため、層間の密着性に優れた積層構造体を製造することが可能となる。 As described above, in the second embodiment of the present invention, by performing surface treatment on the titanium oxide particles so as to increase the positive charge, it is possible to suppress a decrease in adhesion, and thus, excellent adhesion between layers is obtained. It is possible to manufacture a laminated structure.
 本発明の第二の態様の硬化性樹脂組成物は、半導体パッケージ構成材料を形成するための組成物として好適に用いることができる。 硬化 The curable resin composition of the second aspect of the present invention can be suitably used as a composition for forming a semiconductor package constituent material.
 本発明の第二の態様の積層構造体における樹脂硬化層(A)、(B)および基板(C)の厚さは特に限定されない。 厚 The thicknesses of the cured resin layers (A) and (B) and the substrate (C) in the laminated structure of the second embodiment of the present invention are not particularly limited.
 樹脂硬化層(A)および樹脂硬化層(B)の組み合わせは特に限定されないが、例えば、図1において模式的に示す積層構造体に含まれるような、ソルダーレジスト13と層間絶縁材11、ソルダーレジスト13とアンダーフィル16、ソルダーレジスト13と封止材17の組み合わせが挙げられる。上記組み合わせにおいて樹脂硬化層(A)および(B)はどちらでもよいが、樹脂硬化層(A)がソルダーレジストであることが好ましい。ここで、層間絶縁材11、ソルダーレジスト13、アンダーフィル16、封止材17のいずれかにゼータ電位が正である前記被覆された酸化チタン粒子を充填することによって、これらに接する樹脂硬化層との密着性が良好となる。 The combination of the resin cured layer (A) and the resin cured layer (B) is not particularly limited. For example, the solder resist 13, the interlayer insulating material 11, and the solder resist included in the laminated structure schematically shown in FIG. 13 and an underfill 16, and a combination of a solder resist 13 and a sealing material 17. In the above combination, any of the resin cured layers (A) and (B) may be used, but the resin cured layer (A) is preferably a solder resist. Here, any one of the interlayer insulating material 11, the solder resist 13, the underfill 16, and the encapsulant 17 is filled with the coated titanium oxide particles having a positive zeta potential, thereby forming a resin cured layer in contact with these. Has good adhesion.
 また、樹脂硬化層(A)および基板(C)の組み合わせは特に限定されないが、例えば、図1において模式的に示す積層構造体に含まれるような、ソルダーレジスト(A)13と層間絶縁材(C)11、ソルダーレジスト(A)13と半導体ウェハ(C)15、アンダーフィル(A)16と半導体ウェハ(C)15、封止材(A)17と半導体ウェハ(C)15の組み合わせが挙げられる。 Further, the combination of the resin cured layer (A) and the substrate (C) is not particularly limited. For example, a solder resist (A) 13 and an interlayer insulating material (such as those included in a laminated structure schematically shown in FIG. 1) are used. C) 11, the solder resist (A) 13 and the semiconductor wafer (C) 15, the underfill (A) 16 and the semiconductor wafer (C) 15, and the sealing material (A) 17 and the semiconductor wafer (C) 15 in combination. Can be
 本発明の第二の態様の硬化性樹脂組成物からなる樹脂硬化層が前記被覆された酸化チタン粒子を含むことでゼータ電位が正となり、他の樹脂硬化層や基板のゼータ電位が負であると、他の樹脂硬化層や基板との密着性に優れる。 Since the cured resin layer made of the curable resin composition of the second aspect of the present invention contains the coated titanium oxide particles, the zeta potential becomes positive, and the zeta potential of the other cured resin layers and the substrate is negative. It has excellent adhesion to other cured resin layers and substrates.
 本発明の第二の態様の硬化性樹脂組成物を硬化して得られる硬化物は、誘電率が5以上であることが好ましく、より好ましくは10以上である。また、誘電正接が0.02以下であることが好ましい。 硬化 The cured product obtained by curing the curable resin composition of the second aspect of the present invention preferably has a dielectric constant of 5 or more, more preferably 10 or more. Further, the dielectric loss tangent is preferably 0.02 or less.
 本発明の第三の態様の硬化性樹脂組成物は、電子部品に硬化膜を形成するために、特にはプリント配線板上に硬化膜を形成するために好適に使用され、より好適には、永久被膜を形成するために使用され、さらに好適には、ソルダーレジスト、層間絶縁層、カバーレイ、封止材を形成するために使用される。また、熱伝導率の高い硬化物を形成できることから、高温に曝される環境、例えば、車載用のプリント配線板の硬化膜を形成するために好適に使用することができる。また、高度な信頼性が求められるプリント配線板、例えばパッケージ基板、特にFC-BGA用の永久被膜(特にソルダーレジスト)の形成に好適である。また、本発明の第三の態様の硬化性樹脂組成物は、回路表面の粗度が小さくても配線パターンを備えるプリント配線板、例えば高周波用のプリント配線板にも好適に用いることができる。例えば、表面粗度Raが0.05μm以下、特に0.03μm以下であっても好適に用いることができる。また、低極性の基板、例えば、活性エステルを含む基板上に硬化膜を形成する場合にも好適に用いることができる。更に、粗化レスなウェハやガラス基板上に硬化膜を形成するためにも好適に使用される。また、本発明の第三の態様の硬化性樹脂組成物は、伝送損失の少ない基板、例えば、周波数10GHzにおける誘電正接が0.01以下の基板に硬化膜を形成するためにも好適に使用される。このような低誘電正接の基板は、例えば、味の素(株)社の層間絶縁材フィルム(ABF)を用いて製造することができる。電子部品としては、プリント配線板以外の用途、例えば、インダクタなどの受動部品でもよい。 The curable resin composition of the third aspect of the present invention is preferably used for forming a cured film on an electronic component, particularly for forming a cured film on a printed wiring board, and more preferably, It is used for forming a permanent film, and more preferably, for forming a solder resist, an interlayer insulating layer, a coverlay, and a sealing material. In addition, since a cured product having high thermal conductivity can be formed, it can be suitably used in an environment exposed to high temperatures, for example, for forming a cured film of a printed wiring board for a vehicle. Further, it is suitable for forming a printed wiring board requiring a high degree of reliability, for example, a package substrate, particularly a permanent film (particularly a solder resist) for FC-BGA. Further, the curable resin composition of the third aspect of the present invention can be suitably used for a printed wiring board having a wiring pattern even if the surface roughness of the circuit is small, for example, a high-frequency printed wiring board. For example, even when the surface roughness Ra is 0.05 μm or less, particularly 0.03 μm or less, it can be suitably used. Further, it can also be suitably used when a cured film is formed on a low-polarity substrate, for example, a substrate containing active ester. Further, it is suitably used for forming a cured film on a wafer or a glass substrate without roughening. Further, the curable resin composition of the third aspect of the present invention is also suitably used for forming a cured film on a substrate having a small transmission loss, for example, a substrate having a dielectric loss tangent at a frequency of 10 GHz of 0.01 or less. You. Such a substrate having a low dielectric loss tangent can be manufactured using, for example, an interlayer insulating film (ABF) manufactured by Ajinomoto Co., Inc. The electronic component may be a use other than the printed wiring board, for example, a passive component such as an inductor.
 本発明の第三の態様の硬化性樹脂組成物を硬化して得られる硬化物は、熱伝導率が1W/(m・K)以上であることが好ましい。 硬化 A cured product obtained by curing the curable resin composition of the third aspect of the present invention preferably has a thermal conductivity of 1 W / (m · K) or more.
 以下、本発明を、実施例を用いてより詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. In the following, “parts” and “%” are all based on mass unless otherwise specified.
[アルカリ可溶性樹脂A-1の合成]
 冷却管、攪拌機を備えたフラスコに、ビスフェノールA456部、水228部、37%ホルマリン649部を仕込み、40℃以下の温度を保ち、25%水酸化ナトリウム水溶液228部を添加した、添加終了後50℃で10時間反応した。反応終了後40℃まで冷却し、40℃以下を保ちながら37.5%リン酸水溶液でpH4まで中和した。その後静置し水層を分離した。分離後メチルイソブチルケトン300部を添加し均一に溶解した後、蒸留水500部で3回洗浄し、50℃以下の温度で減圧下、水、溶媒等を除去した。得られたポリメチロール化合物をメタノール550部に溶解し、ポリメチロール化合物のメタノール溶液1230部を得た。
 得られたポリメチロール化合物のメタノール溶液の一部を真空乾燥機中室温で乾燥したところ、固形分が55.2%であった。
 冷却管、攪拌機を備えたフラスコに、得られたポリメチロール化合物のメタノール溶液500部、2,6-キシレノール440部を仕込み、50℃で均一に溶解した。均一に溶解した後50℃以下の温度で減圧下メタノールを除去した。その後シュウ酸8部を加え、100℃で10時間反応した。反応終了後180℃、50mmHgの減圧下で溜出分を除去し、ノボラック樹脂Aを550部を得た。
 温度計、窒素導入装置兼アルキレンオキシド導入装置および撹拌装置を備えたオートクレーブに、ノボラック樹脂A 130部、50%水酸化ナトリウム水溶液2.6部、トルエン/メチルイソブチルケトン(質量比=2/1)100部を仕込み、撹拌しつつ系内を窒素置換し、次に加熱昇温し、150℃、8kg/cmでプロピレンオキシド60部を徐々に導入し反応させた。反応はゲージ圧0.0kg/cmとなるまで約4時間を続けた後、室温まで冷却した。この反応溶液に3.3部の36%塩酸水溶液を添加混合し、水酸化ナトリウムを中和した。この中和反応生成物をトルエンで希釈し、3回水洗し、エバポレーターにて脱溶剤して、水酸基価が189g/eq.であるノボラック樹脂Aのプロピレンオキシド付加物を得た。これは、フェノール性水酸基1当量当りプロピレンオキシドが平均1モル付加しているものであった。
 得られたノボラック樹脂Aのプロピレンオキシド付加物189部、アクリル酸36部、p-トルエンスルホン酸3.0部、ハイドロキノンモノメチルエーテル0.1部、トルエン140部を撹拌機、温度計、空気吹き込み管を備えた反応器に仕込み、空気を吹き込みながら攪拌して、115℃に昇温し、反応により生成した水をトルエンと共沸混合物として留去しながら、さらに4時間反応させたのち、室温まで冷却した。得られた反応溶液を5%NaCl水溶液を用いて水洗し、減圧留去にてトルエンを除去したのち、ジエチレングリコールモノエチルエーテルアセテートを加えて、固形分67%のアクリレート樹脂溶液を得た。
 次に、撹拌器および還流冷却器の付いた4つ口フラスコに、得られたアクリレート樹脂溶液322部、ハイドロキノンモノメチルエーテル0.1部、トリフェニルホスフィン0.3部を仕込み、この混合物を110℃に加熱し、テトラヒドロ無水フタル酸60部を加え、4時間反応させ、冷却後、取り出した。このようにして得られた感光性のカルボキシル基含有樹脂溶液は、固形分70%、固形分酸価81mgKOH/gであった。以下、このカルボキシル基含有感光性樹脂の溶液を樹脂溶液A-1と称す。
[Synthesis of alkali-soluble resin A-1]
A flask equipped with a condenser and a stirrer was charged with 456 parts of bisphenol A, 228 parts of water and 649 parts of 37% formalin, kept at a temperature of 40 ° C. or lower, and added 228 parts of a 25% aqueous sodium hydroxide solution. Reaction was performed at 10 ° C. for 10 hours. After completion of the reaction, the mixture was cooled to 40 ° C., and neutralized to pH 4 with a 37.5% phosphoric acid aqueous solution while maintaining the temperature at 40 ° C. or lower. Thereafter, the mixture was allowed to stand, and the aqueous layer was separated. After the separation, 300 parts of methyl isobutyl ketone was added and uniformly dissolved, followed by washing three times with 500 parts of distilled water, and removing water, solvent and the like under a reduced pressure at a temperature of 50 ° C. or lower. The obtained polymethylol compound was dissolved in 550 parts of methanol to obtain 1230 parts of a methanol solution of the polymethylol compound.
A part of the obtained methanol solution of the polymethylol compound was dried in a vacuum dryer at room temperature, and the solid content was 55.2%.
In a flask equipped with a condenser and a stirrer, 500 parts of a methanol solution of the obtained polymethylol compound and 440 parts of 2,6-xylenol were charged and uniformly dissolved at 50 ° C. After uniform dissolution, methanol was removed under reduced pressure at a temperature of 50 ° C. or less. Thereafter, 8 parts of oxalic acid was added, and the mixture was reacted at 100 ° C. for 10 hours. After the reaction was completed, the distillate was removed at 180 ° C. under a reduced pressure of 50 mmHg to obtain 550 parts of novolak resin A.
In an autoclave equipped with a thermometer, a nitrogen introduction device, an alkylene oxide introduction device, and a stirring device, 130 parts of novolak resin A, 2.6 parts of a 50% aqueous sodium hydroxide solution, and toluene / methyl isobutyl ketone (mass ratio = 2/1) 100 parts were charged, the inside of the system was replaced with nitrogen while stirring, then the temperature was increased by heating, and 60 parts of propylene oxide was gradually introduced at 150 ° C. and 8 kg / cm 2 to cause a reaction. The reaction was continued for about 4 hours until the gauge pressure became 0.0 kg / cm 2, and then cooled to room temperature. To this reaction solution, 3.3 parts of a 36% hydrochloric acid aqueous solution was added and mixed to neutralize sodium hydroxide. The neutralized reaction product was diluted with toluene, washed three times with water, and the solvent was removed with an evaporator to give a hydroxyl value of 189 g / eq. Of novolak resin A was obtained. This was one in which propylene oxide was added on average to 1 mole per equivalent of phenolic hydroxyl group.
189 parts of the propylene oxide adduct of the obtained novolak resin A, 36 parts of acrylic acid, 3.0 parts of p-toluenesulfonic acid, 0.1 part of hydroquinone monomethyl ether, and 140 parts of toluene were stirred with a stirrer, a thermometer, and an air blowing tube. The mixture was stirred while blowing in air, heated to 115 ° C., and allowed to react for another 4 hours while distilling off water formed by the reaction as an azeotrope with toluene. Cool. The obtained reaction solution was washed with a 5% aqueous NaCl solution, and toluene was removed by distillation under reduced pressure. Diethylene glycol monoethyl ether acetate was added to obtain an acrylate resin solution having a solid content of 67%.
Next, 322 parts of the obtained acrylate resin solution, 0.1 part of hydroquinone monomethyl ether, and 0.3 part of triphenylphosphine were charged into a four-necked flask equipped with a stirrer and a reflux condenser. , 60 parts of tetrahydrophthalic anhydride was added, and the mixture was reacted for 4 hours. After cooling, the mixture was taken out. The photosensitive carboxyl group-containing resin solution thus obtained had a solid content of 70% and an acid value of the solid content of 81 mgKOH / g. Hereinafter, the solution of the carboxyl group-containing photosensitive resin is referred to as a resin solution A-1.
<第一実施例>
[ペロブスカイト型化合物の表面処理]
(実施例1-1で配合した、ケイ素の水和酸化物で被覆処理されたチタン酸バリウム)
 チタン酸バリウム(堺化学工業社製BT-03、平均粒子径0.3μm、比重6.02)50gの水スラリーを70℃に昇温後、10%ケイ酸ナトリウム水溶液をチタン酸バリウムに対して、チタン酸バリウム換算で4%添加した。このスラリ-に塩酸を加えてpHを4とし、30分間熟成し、さらに、塩酸によりpHを7±1に調整した。このスラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ケイ素の水和酸化物で被覆されたシリカ粒子の固形物を得た。
<First embodiment>
[Surface treatment of perovskite compound]
(Barium titanate coated with a hydrated oxide of silicon formulated in Example 1-1)
A 50 g water slurry of barium titanate (BT-03 manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 μm, specific gravity 6.02) was heated to 70 ° C., and then a 10% aqueous sodium silicate solution was added to barium titanate. And 4% in terms of barium titanate. Hydrochloric acid was added to this slurry to adjust the pH to 4, aged for 30 minutes, and further adjusted to pH 7 ± 1 with hydrochloric acid. The slurry was filtered and washed with a filter press, and dried in vacuo to obtain a solid silica particle coated with a silicon hydrated oxide.
(実施例1-2で配合した、アルミニウムの水和酸化物で被覆処理されたチタン酸バリウム)
 チタン酸バリウム(堺化学工業社製BT-03、平均粒子径0.3μm、比重6.02)50gの水スラリーを70℃に昇温後、20%アルミン酸ナトリウム(NaAlO)水溶液をチタン酸バリウムに対してアルミナ(Al)換算で7~8%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、アルミニウムの水和酸化物で被覆されたチタン酸バリウムの固形物を得た。
(Barium titanate coated with a hydrated aluminum oxide compounded in Example 1-2)
A 50 g aqueous slurry of barium titanate (BT-03, manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 μm, specific gravity 6.02) was heated to 70 ° C., and then a 20% aqueous sodium aluminate (NaAlO 2 ) solution was treated with titanic acid. 7-8% was added to barium in terms of alumina (Al 2 O 3 ). Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of barium titanate coated with aluminum hydrated oxide.
(実施例1-3で配合した、ケイ素の水和酸化物で被覆処理された後にアルミニウムの水和酸化物で被覆処理されたチタン酸バリウム)
 チタン酸バリウム(堺化学工業社製BT-03、平均粒子径0.3μm、比重6.02)50gの水スラリーを70℃に昇温後、10%ケイ酸ナトリウム水溶液をチタン酸バリウムに対して、チタン酸バリウム換算で4%添加した。このスラリ-に塩酸を加えてpHを4とし、30分間熟成し、さらに、塩酸によりpHを5±1に維持しながら、20%アルミン酸ナトリウム(NaAlO)水溶液をチタン酸バリウムに対してアルミナ(Al)換算で7~8%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ケイ素の水和酸化物およびアルミニウムの水和酸化物で被覆されたチタン酸バリウムの固形物を得た。
(Barium titanate coated with hydrated oxide of aluminum and then coated with hydrated oxide of aluminum, blended in Example 1-3)
A 50 g water slurry of barium titanate (BT-03 manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 μm, specific gravity 6.02) was heated to 70 ° C., and then a 10% aqueous sodium silicate solution was added to barium titanate. And 4% in terms of barium titanate. Hydrochloric acid was added to the slurry to adjust the pH to 4 and aged for 30 minutes. Further, while maintaining the pH at 5 ± 1 with hydrochloric acid, a 20% aqueous solution of sodium aluminate (NaAlO 2 ) was added to barium titanate with alumina. 7-8% in terms of (Al 2 O 3 ). Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a barium titanate solid coated with a hydrated oxide of silicon and a hydrated oxide of aluminum.
(実施例1-4で配合した、ケイ素の水和酸化物で被覆処理された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたチタン酸バリウム)
 上記で得られたケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆されたチタン酸バリウム50gと、溶剤としてPMA48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)2gとを均一分散させて、濾過、水洗、真空乾燥によりメタクリルシランで表面処理されたチタン酸バリウムの固形物を得た。
(Barium titanate coated with aluminum hydrated oxide, coated with aluminum hydrated oxide, and surface-treated with methacrylsilane blended in Example 1-4)
50 g of barium titanate coated with a hydrated oxide of aluminum and then coated with a hydrated oxide of aluminum, 48 g of PMA as a solvent, and a silane coupling agent having a methacryl group (Shin-Etsu Chemical Co., Ltd.) And 2 g of KBM-503), which was filtered, washed with water, and dried under vacuum to obtain a barium titanate solid surface-treated with methacrylsilane.
(実施例1-5、1-10で配合した、ケイ素の水和酸化物で被覆処理された後にアルミニウムの水和酸化物で被覆され、かつ、フェニルアミノシランで表面処理されたチタン酸バリウム)
 上記で得られたケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆されたチタン酸バリウム50gと、溶剤としてPMA48gと、フェニルアミノ基を有するシランカップリング剤(信越化学工業社製KBM-573)2gとを均一分散させて、濾過、水洗、真空乾燥によりフェニルアミノシランで表面処理されたチタン酸バリウムの固形物を得た。
(Barium titanate formulated in Examples 1-5 and 1-10, coated with a hydrated oxide of silicon, then coated with a hydrated oxide of aluminum, and surface-treated with phenylaminosilane)
50 g of barium titanate coated with a hydrated oxide of aluminum and then coated with a hydrated oxide of aluminum, PMA as a solvent, and a silane coupling agent having a phenylamino group (Shin-Etsu Chemical Co., Ltd.) And 2 g of KBM-573) (manufactured by K.K.), filtered, washed with water, and vacuum-dried to obtain a barium titanate surface-treated with phenylaminosilane.
(実施例1-6で配合した、ケイ素の水和酸化物で被覆処理された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたチタン酸カルシウム)
 チタン酸バリウムをチタン酸カルシウム(堺化学工業社製CT-03、平均粒子径0.3μm、比重3.98)に変えた以外は、実施例1-4で配合した表面処理されたチタン酸バリウムと同様の方法により製造した。
(Calcium titanate formulated in Example 1-6, coated with a hydrated oxide of silicon, then coated with a hydrated oxide of aluminum, and surface-treated with methacrylsilane)
Surface-treated barium titanate blended in Example 1-4 except that barium titanate was changed to calcium titanate (CT-03, Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 μm, specific gravity 3.98) It was manufactured by the same method as described above.
(実施例1-7で配合した、ケイ素の水和酸化物で被覆処理された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたチタン酸ストロンチウム)
 チタン酸バリウムをチタン酸ストロンチウム(堺化学工業社製ST-03、平均粒子径0.3μm、比重5.13)に変えた以外は、実施例1-4で配合した表面処理されたチタン酸バリウムと同様の方法により製造した。
(Strontium titanate coated with hydrated oxide of silicon, then coated with hydrated oxide of aluminum, and surface-treated with methacrylsilane, formulated in Example 1-7)
Surface-treated barium titanate compounded in Example 1-4, except that barium titanate was changed to strontium titanate (ST-03, manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 μm, specific gravity 5.13). It was manufactured by the same method as described above.
(実施例1-8で配合した、ケイ素の水和酸化物で被覆処理された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたジルコン酸カルシウム)
 チタン酸バリウムをジルコン酸カルシウム(堺化学工業社製CZ-03、平均粒子径0.3μm、比重5.11)に変えた以外は、実施例1-4で配合した表面処理されたチタン酸バリウムと同様の方法により製造した。
(Calculated in Examples 1-8, calcium zirconate coated with a hydrated oxide of silicon and then coated with a hydrated oxide of aluminum and surface-treated with methacrylsilane)
Surface-treated barium titanate compounded in Example 1-4, except that barium titanate was changed to calcium zirconate (CZ-03 manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 μm, specific gravity 5.11). It was manufactured by the same method as described above.
(実施例1-9で配合した、ケイ素の水和酸化物で被覆処理された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたジルコン酸ストロンチウム)
 チタン酸バリウムをジルコン酸ストロンチウム(堺化学工業社製SZ-03、平均粒子径0.3μm、比重5.46)に変えた以外は、実施例1-4で配合した表面処理されたチタン酸バリウムと同様の方法により製造した。
(Strontium zirconate zirconate coated with hydrated oxide of aluminum, then coated with hydrated oxide of aluminum, and surface-treated with methacrylsilane blended in Example 1-9)
Surface-treated barium titanate compounded in Example 1-4 except that barium titanate was changed to strontium zirconate (SZ-03 manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 μm, specific gravity 5.46) It was manufactured by the same method as described above.
(比較例1-2で配合した、メタクリルシランで表面処理されたチタン酸バリウム)
 チタン酸バリウム(堺化学工業社製BT-03、平均粒子径0.3μm、比重6.02)50gと、溶剤としてPMA48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)2gとを均一分散させて、濾過、水洗、真空乾燥によりメタクリルシランで表面処理されたチタン酸バリウムの固形物を得た。
(Barium titanate surface-treated with methacrylsilane blended in Comparative Example 1-2)
50 g of barium titanate (BT-03 manufactured by Sakai Chemical Industry Co., Ltd., average particle diameter 0.3 μm, specific gravity 6.02), 48 g of PMA as a solvent, and a silane coupling agent having a methacryl group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) 2g) was uniformly dispersed, and filtered, washed with water, and vacuum-dried to obtain a solid barium titanate surface-treated with methacrylsilane.
[実施例1-1~1-10、比較例1-1、1-2]
 下記表1~3に示す種々の成分を表1~3に示す割合(質量部)にて配合し、ビーズミルにて分散可能な粘度まで有機溶剤(プロピレングリコールモノメチルエーテルアセテート(PMA))にて希釈し攪拌機にて予備混合した後、ビーズミルで混練し、硬化性樹脂組成物を分散した。得られた分散液を目開き10μmの濾過フィルターを通し硬化性樹脂組成物を得た。
[Examples 1-1 to 1-10, Comparative Examples 1-1 and 1-2]
Various components shown in the following Tables 1 to 3 are blended in the proportions (parts by mass) shown in Tables 1 to 3 and diluted with an organic solvent (propylene glycol monomethyl ether acetate (PMA)) to a viscosity that can be dispersed in a bead mill. After pre-mixing with a stirrer, the mixture was kneaded with a bead mill to disperse the curable resin composition. The obtained dispersion was passed through a filter having an opening of 10 μm to obtain a curable resin composition.
<分散性>
 各実施例および比較例の硬化性樹脂組成物について、JIS K5101およびJIS K5600に準拠して幅90mm、長さ240mm、最大深さ50μmのグラインドゲージを用いることにより分散度を確認した。分散度の見方としては、5粒以上確認された区間を確認した。
○:10μm以下 
△:10μm超25μm以下 
×:25μm超 
<Dispersibility>
For the curable resin compositions of the respective examples and comparative examples, the degree of dispersion was confirmed by using a grind gauge having a width of 90 mm, a length of 240 mm, and a maximum depth of 50 μm according to JIS K5101 and JIS K5600. As a viewpoint of the degree of dispersion, a section in which five or more grains were confirmed was confirmed.
:: 10 μm or less
Δ: More than 10 μm and 25 μm or less
×: Over 25 μm
<ドライフィルムの作製>
 上記のようにして得られた硬化性樹脂組成物にメチルエチルケトン300gを加えて希釈し、攪拌機で15分間撹拌して塗工液を得た。塗工液を、算術表面粗さRa150nmである厚さ38μmのポリエチレンテレフタレートフィルム(PETフィルム、ユニチカ社製エンブレットPTH-25)上に塗布し、通常、80~100℃(実施例1-1~1-9および比較例1-1、1-2は80℃15分、実施例1-10は100℃15分)の温度で15分間乾燥し、厚み20μmの樹脂層を形成した。次いで、樹脂層上に、厚み18μmのポリプロピレンフィルム(カバーフィルム、フタムラ社製OPP-FOA)を貼り合わせて、ドライフィルムを作製した。
<Preparation of dry film>
The curable resin composition obtained as described above was diluted by adding 300 g of methyl ethyl ketone and stirred for 15 minutes with a stirrer to obtain a coating liquid. The coating solution is applied on a 38 μm-thick polyethylene terephthalate film (PET film, Emblet PTH-25 manufactured by Unitika Ltd.) having an arithmetic surface roughness Ra of 150 nm, usually at 80 to 100 ° C. (Examples 1-1 to 100). 1-9 and Comparative Examples 1-1 and 1-2 were dried at a temperature of 80 ° C. for 15 minutes, and Example 1-10 was dried at a temperature of 100 ° C. for 15 minutes to form a resin layer having a thickness of 20 μm. Next, a 18 μm-thick polypropylene film (cover film, OPP-FOA manufactured by Futamura Co., Ltd.) was laminated on the resin layer to produce a dry film.
<硬化膜の作製>
 電解銅箔GTS-MP-18μm(古河電気工業社製)の光沢面に、上記のようにして得られたドライフィルムからポリエチレンフィルムを剥離して、銅箔表面側に、ドライフィルムの樹脂層を貼り合わせ、続いて、実施例1-1~1-9、比較例1-1、1-2は、真空ラミネーター(名機製作所製 MVLP-500)を用いて加圧度:0.8MPa、100℃、1分、真空度:133.3Paの条件で加熱ラミネートして、銅箔と樹脂層とを密着させた。実施例1-10においては、0.5MPa、100℃、1分、真空度:133.3Paの条件で加熱ラミネートし、銅箔と樹脂層を密着させた。
 次に、実施例1-1~1-9、比較例1-1、1-2において、高圧水銀灯(ショートアークランプ)搭載の露光装置を用いて、ドライフィルム上から露光(露光量:400~600mJ/cm)した後、ドライフィルムからポリエチレンテレフタレートフィルムを剥離し、樹脂層を露出させた。その後、1重量%NaCO水溶液を用いて、30℃、スプレー圧0.2MPaの条件で60秒間現像を行い、所定のレジストパターンを有する樹脂層を形成した。続いて、高圧水銀灯を備えたUVコンベア炉にて1J/cmの露光量で樹脂層に照射した後、170℃で60分加熱して樹脂層を完全硬化させて硬化膜を作製した。
 実施例1-10においては、ドライフィルムをラミネート後、PETフィルムを剥離し、190℃60分で、樹脂層を完全硬化した。
<Preparation of cured film>
The polyethylene film is peeled from the dry film obtained as described above on the glossy surface of the electrolytic copper foil GTS-MP-18 μm (made by Furukawa Electric Co., Ltd.), and the resin layer of the dry film is coated on the copper foil surface side. Lamination followed by Examples 1-1 to 1-9 and Comparative Examples 1-1 and 1-2 using a vacuum laminator (MVLP-500 manufactured by Meiki Seisakusho) with a degree of pressure of 0.8 MPa and 100 MPa. The laminate was heated and laminated at a temperature of 1 ° C. for 1 minute under a vacuum of 133.3 Pa, thereby bringing the copper foil and the resin layer into close contact with each other. In Example 1-10, heat lamination was performed under the conditions of 0.5 MPa, 100 ° C., 1 minute, and a degree of vacuum: 133.3 Pa, so that the copper foil and the resin layer were adhered to each other.
Next, in Examples 1-1 to 1-9 and Comparative Examples 1-1 and 1-2, exposure was performed from above the dry film (exposure amount: 400 to 400 mm) using an exposure apparatus equipped with a high-pressure mercury lamp (short arc lamp). After 600 mJ / cm 2 ), the polyethylene terephthalate film was peeled from the dry film to expose the resin layer. Thereafter, development was performed using a 1% by weight aqueous solution of Na 2 CO 3 at 30 ° C. under a spray pressure of 0.2 MPa for 60 seconds to form a resin layer having a predetermined resist pattern. Subsequently, after irradiating the resin layer with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, the resin layer was completely cured by heating at 170 ° C. for 60 minutes to produce a cured film.
In Example 1-10, after laminating the dry film, the PET film was peeled off, and the resin layer was completely cured at 190 ° C. for 60 minutes.
<誘電率>
 樹脂層厚みを40μm以外に変えた以外は上記<ドライフィルムの作製>と同じ方法で作製したドライフィルムを電解銅箔GTS-MP-18μm(古河電気工業社製)の光沢面上にラミネートを行い、次いで平坦化し樹脂層を上記<硬化膜の作製>に記載の条件で完全硬化させた。その後、銅箔から硬化物を剥離し、厚み30μmの硬化物を得た。
 その硬化物を長さ80mm、幅2mmに切り出し、ネットワークアナライザー キーサイト社製 8510C、KEAD社製複素比誘電率計算ソフトCAMA-Sを用いた摂動法空洞共振器により、測定温度22℃、1GHzの誘電率を測定した。
〇:比誘電率 5以上
×:比誘電率 5未満
(誘電正接)
〇:誘電正接値 0.02以下
△:誘電正接値 0.02超、0.025以下
×:誘電正接値 0.025超
<Dielectric constant>
A dry film prepared in the same manner as in the above <Preparation of dry film> except that the thickness of the resin layer was changed to other than 40 μm, was laminated on a glossy surface of electrolytic copper foil GTS-MP-18 μm (Furukawa Electric Co., Ltd.). Then, the resin layer was flattened and completely cured under the conditions described in the above <Preparation of cured film>. Thereafter, the cured product was peeled from the copper foil to obtain a cured product having a thickness of 30 μm.
The cured product was cut into a length of 80 mm and a width of 2 mm, and measured at a temperature of 22 ° C. and a frequency of 1 GHz by a perturbation method cavity resonator using a network analyzer 8510C manufactured by Keysight Corporation and software for calculating complex relative permittivity CAMA-S manufactured by KEAD Corporation. The dielectric constant was measured.
〇: relative permittivity 5 or more ×: relative permittivity less than 5 (dielectric tangent)
〇: dielectric loss tangent value 0.02 or less △: dielectric loss tangent value more than 0.02, 0.025 or less ×: dielectric loss tangent value more than 0.025
<解像性>
 上記<ドライフィルムの作製>で得た実施例1-1~1-9、比較例1-1、1-2のドライフィルムを真空ラミネーターを用いて加熱ラミネートして、感光性樹脂組成物の樹脂層を有する評価基板を得た。この基板に対し、高圧水銀灯(ショートアークランプ)搭載露光装置を用いて、最適露光量でL/S=50μm/50μmのパターン露光し、PETフィルムを剥離した。その後、30℃の1質量%炭酸ナトリウム水溶液を用いて、スプレー厚0.2MPaの条件で60秒現像を行いレジストパターンを得た。
〇:良好なパターン形成ができた。
△:欠けが確認された。
×:ライン形成が不可能であった。
<Resolution>
The dry films of Examples 1-1 to 1-9 and Comparative Examples 1-1 and 1-2 obtained in the above <Preparation of dry film> were heat-laminated using a vacuum laminator to obtain a resin of a photosensitive resin composition. An evaluation substrate having a layer was obtained. The substrate was exposed to a pattern of L / S = 50 μm / 50 μm at an optimal exposure amount using an exposure apparatus equipped with a high-pressure mercury lamp (short arc lamp), and the PET film was peeled off. Thereafter, using a 1% by mass aqueous solution of sodium carbonate at 30 ° C., development was performed for 60 seconds under the condition of a spray thickness of 0.2 MPa to obtain a resist pattern.
〇: A good pattern was formed.
Δ: Chipping was confirmed.
X: Line formation was impossible.
<EMC(モールド樹脂)との密着性>
 上記<硬化膜の作製>で得たプラズマ処理なしの硬化被膜上に、モールド材(パナソニック製 UV8710U)を用いて、円形型(直径2.523mm、高さ3.00mm)のモールドプレス成形を行い、175℃で4時間加熱することによりモールド材を硬化させた。その後、硬化被膜表面に設けられたモールド材にシェアを与え、硬化被膜とモールド材との剥離強度を測定した。
〇:150N以上
△:100N以上150N未満
×:100N未満
<Adhesion with EMC (mold resin)>
A circular mold (2.523 mm in diameter, 3.00 mm in height) was molded on the cured film without plasma treatment obtained in the above <Preparation of cured film> using a mold material (UV8710U manufactured by Panasonic). The mold material was cured by heating at 175 ° C. for 4 hours. Then, a shear was given to the mold material provided on the surface of the cured film, and the peel strength between the cured film and the mold material was measured.
〇: 150 N or more △: 100 N or more and less than 150 N ×: less than 100 N
<Low Df材との密着性>
 10GHzの誘電正接が約0.004である低伝送損失層間材上に、各実施例・比較例の硬化性樹脂組成物を塗工し、上記<硬化膜の作製>に記載の条件で硬化した試料を作製した。JIS K5400に基づき、クロスカッターにより切込みが層間材に達する1mm角の碁盤目100個(10×10)を作り、その上にセロハンテープを完全に密着させ、引き離し、100個中何個密着しているか確認した。
〇:96以上/100
△:51~95/100
×:50以下/100
<Adhesion with Low Df material>
The curable resin compositions of Examples and Comparative Examples were coated on a low transmission loss interlayer material having a dielectric loss tangent of about 0.004 at 10 GHz and cured under the conditions described in the above <Preparation of cured film>. A sample was prepared. Based on JIS K5400, 100 crosscuts of 1 mm square (10 × 10) are made by a cross cutter to reach the interlayer material, and a cellophane tape is completely adhered to it, separated, and several hundred out of 100 are closely adhered. Was confirmed.
〇: 96 or more / 100
Δ: 51 to 95/100
×: 50 or less / 100
<HAST後の銅との密着性>
 電解銅箔GTS-MP-18μm(古河電気工業社製)の光沢面に前処理として、メック社製CZ-8401をスプレーした後、AP-3004にて粗化処理を行い表面粗度Raが0.04μmのロープロファイルの銅箔を得た。
 この処理面に各実施例および比較例で作製した樹脂層厚み20μmのドライフィルムをラミネートし、上記硬化膜の作成条件にて硬化させて絶縁層を形成したサンプルを得た。
 このサンプルの絶縁層とFR-4(ガラスエポキシ)基板を接着剤(ニチバン社製AR-S 30)で接着した。この接着体を100mm×15mmに切断し、10mm間隔で銅箔に切り込みを入れた。
 このサンプルの初期値および130℃85%RH 100時間のHAST試験後、両方のサンプルを、島津製作所製オートグラフAG-XによりJIS C6481に基づきピール強度を測定した。
 ピール強度が高いほど密着性が良く、HAST試験前後での密着強度低下率が低い方が優れている。
 (HAST前-HAST後)/HAST前 ×100 (%)
●:密着性低下率 35%未満
◎:密着性低下率 35%以上40%未満
〇:密着性低下率 40%以上55%未満
△:密着性低下率 55%以上65%未満
×:密着性低下率 65%以上
<Adhesion to copper after HAST>
As a pretreatment, CZ-8401 manufactured by MEC Co., Ltd. is sprayed as a pretreatment on the glossy surface of the electrolytic copper foil GTS-MP-18 μm (manufactured by Furukawa Electric Co., Ltd.), and then a roughening treatment is performed by AP-3004 to obtain a surface roughness Ra of 0. A low-profile copper foil of 0.04 μm was obtained.
A dry film having a resin layer thickness of 20 μm prepared in each of Examples and Comparative Examples was laminated on the treated surface, and cured under the above-described conditions for forming a cured film to obtain a sample in which an insulating layer was formed.
The insulating layer of this sample and an FR-4 (glass epoxy) substrate were bonded with an adhesive (AR-S30 manufactured by Nichiban). This bonded body was cut into 100 mm × 15 mm, and cut into copper foil at intervals of 10 mm.
After the initial value of this sample and the HAST test at 130 ° C. and 85% RH for 100 hours, the peel strength of both samples was measured by Autograph AG-X manufactured by Shimadzu Corporation based on JIS C6481.
The higher the peel strength, the better the adhesion, and the lower the rate of decrease in adhesion before and after the HAST test, the better.
(Before HAST-After HAST) / Before HAST × 100 (%)
●: Adhesion reduction rate less than 35% ◎: Adhesion reduction rate from 35% to less than 40% Δ: Adhesion reduction rate from 40% to less than 55% Δ: Adhesion reduction rate from 55% to less than 65% ×: Adhesion reduction Rate 65% or more
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
*1-1:上記で合成したカルボキシル基含有感光性樹脂A-1(カルボン酸当量654g/eq)
*1-2:DIC社製ユニディックEQG-1170(脂環式UV硬化型アミドイミド樹脂)(カルボン酸当量962g/eq)
*1-3:新日鐵化学社製ESN-475V(ナフタレン型エポキシ樹脂、エポキシ当量:340g/eq)
*1-4:日本化薬社製830-S(ビスフェノールF型エポキシ樹脂、エポキシ当量:170g/eq)
*1-5:昭和電工社製PETG(多官能脂肪族型エポキシ樹脂、エポキシ当量:92g/eq)
*1-6:ロンザジャパン社製プリマセットPT-30(ノボラック型シアネート樹脂、シアネート当量124g/eq)
*1-7:三菱ケミカル社製YX7200B35(フェノキシタイプ)
*1-8:DMAP(ジメチルアミノピリジン)
*1-9:ジシアンジアミド
*1-10:メラミン
*1-11:クラリアントケミカルズ社製OP-935(ホスフィン酸金属塩系)
*1-12:トクシキ社製カーボンブラック
*1-13:IGM社製OmniradTPO(2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド)
*1-14:新中村化学工業社製A-DCP(トリシクロデカンジメタノールジアクリレート)
*1-15:上記で調製した、ケイ素の水和酸化物で被覆されたチタン酸バリウム
*1-16:上記で調製した、アルミニウムの水和酸化物で被覆されたチタン酸バリウム
*1-17:上記で調製した、ケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆されたシリカ粒子
*1-18:上記で調製した、ケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたチタン酸バリウム
*1-19:上記で調製した、ケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆され、かつ、フェニルアミノシランで表面処理されたチタン酸バリウム
*1-20:上記で調製した、ケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたチタン酸カルシウム
*1-21:上記で調製した、ケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたチタン酸ストロンチウム
*1-22:上記で調製した、ケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたジルコン酸カルシウム
*1-23:上記で調製した、ケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたジルコン酸ストロンチウム
*1-24:未処理のチタン酸バリウム(堺化学工業社製BT30)
*1-25:上記で調製した、メタクリルシランで表面処理されたチタン酸バリウム
* 1-1: Carboxyl group-containing photosensitive resin A-1 synthesized above (carboxylic acid equivalent 654 g / eq)
* 1-2: Unidic EQG-1170 (alicyclic UV-curable amide imide resin) manufactured by DIC (carboxylic acid equivalent 962 g / eq)
* 1-3: Nippon Steel Chemical's ESN-475V (naphthalene type epoxy resin, epoxy equivalent: 340 g / eq)
* 1-4: Nippon Kayaku 830-S (bisphenol F type epoxy resin, epoxy equivalent: 170 g / eq)
* 1-5: PETG (polyfunctional aliphatic epoxy resin, epoxy equivalent: 92 g / eq) manufactured by Showa Denko KK
* 1-6: Primaset PT-30 manufactured by Lonza Japan (novolak type cyanate resin, cyanate equivalent: 124 g / eq)
* 1-7: YX7200B35 (phenoxy type) manufactured by Mitsubishi Chemical Corporation
* 1-8: DMAP (dimethylaminopyridine)
* 1-9: Dicyandiamide * 1-10: Melamine * 1-11: OP-935 manufactured by Clariant Chemicals (metal phosphinate)
* 1-12: Carbon black manufactured by Tokushiki * 1-13: Omnirad TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide) manufactured by IGM
* 1-14: A-DCP (tricyclodecane dimethanol diacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd.
* 1-15: Barium titanate coated with hydrated oxide of silicon prepared above * 1-16: Barium titanate coated with hydrated oxide of aluminum prepared above * 1-17 : Silica particles prepared above, coated with hydrated oxide of silicon and then coated with hydrated oxide of aluminum * 1-18: After coated with hydrated oxide of silicon, prepared above Barium titanate coated with hydrated aluminum oxide and surface-treated with methacrylsilane * 1-19: Prepared above with hydrated oxide of aluminum after being coated with hydrated oxide of silicon Coated and surface treated with phenylaminosilane barium titanate * 1-20: coated with hydrated oxide of silicon, then coated with hydrated oxide of aluminum, prepared above And calcium titanate surface-treated with methacrylsilane * 1-21: coated with a hydrated oxide of silicon, coated with a hydrated oxide of aluminum, and surface-treated with methacrylsilane as prepared above Strontium titanate * 1-22: Calcium zirconate * 1 prepared above, coated with a hydrated oxide of silicon, then coated with a hydrated oxide of aluminum, and surface-treated with methacrylsilane -23: strontium zirconate * 1-24, prepared above, coated with a hydrated oxide of silicon, then coated with a hydrated oxide of aluminum, and surface-treated with methacrylsilane Barium acid (BT30 manufactured by Sakai Chemical Industry Co., Ltd.)
* 1-25: Barium titanate surface-treated with methacrylsilane prepared above
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表中に示す結果から、本発明の実施例1-1~1-10の硬化性樹脂組成物は、ペロブスカイト型化合物の分散性が向上し、基板との密着性に優れ、高誘電率と低誘電正接を両立することができる硬化物が得られることがわかる。 From the results shown in the above table, the curable resin compositions of Examples 1-1 to 1-10 of the present invention have improved dispersibility of the perovskite compound, excellent adhesion to the substrate, and high dielectric constant. It can be seen that a cured product that can achieve both a low dielectric loss tangent is obtained.
<第二実施例>
[酸化チタン粒子の表面処理]
(実施例2-1で配合した、ケイ素の水和酸化物で被覆処理された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理された酸化チタン粒子)
 酸化チタン粒子(テイカ社製JA-C、平均粒子径180nm)50gの水スラリーを70℃に昇温後、10%ケイ酸ナトリウム水溶液を酸化チタン粒子に対して、酸化チタン粒子換算で15%添加した。このスラリ-に塩酸を加えてpHを4とし、30分間熟成し、さらに、塩酸によりpHを5±1に維持しながら、20%アルミン酸ナトリウム(NaAlO)水溶液をチタン酸バリウムに対してアルミナ(Al)換算で20%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ケイ素の水和酸化物およびアルミニウムの水和酸化物で被覆された酸化チタン粒子の固形物を得た。
 上記で得られたケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆された酸化チタン粒子50gと、溶剤としてPMA48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)3gとを均一分散させて、濾過、水洗、真空乾燥によりメタクリルシランで表面処理された酸化チタン粒子の固形物を得た。
<Second embodiment>
[Surface treatment of titanium oxide particles]
(Titanium oxide particles that were coated with a hydrated oxide of silicon and then coated with a hydrated oxide of aluminum and surface-treated with methacrylsilane blended in Example 2-1)
After heating a water slurry of 50 g of titanium oxide particles (JA-C manufactured by Teica, average particle diameter 180 nm) to 70 ° C., a 10% aqueous solution of sodium silicate was added to the titanium oxide particles by 15% in terms of titanium oxide particles. did. Hydrochloric acid was added to the slurry to adjust the pH to 4 and aged for 30 minutes. Further, while maintaining the pH at 5 ± 1 with hydrochloric acid, a 20% aqueous solution of sodium aluminate (NaAlO 2 ) was added to barium titanate with alumina. 20% in terms of (Al 2 O 3 ). Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of titanium oxide particles coated with a hydrated oxide of silicon and a hydrated oxide of aluminum.
50 g of titanium oxide particles coated with the hydrated oxide of aluminum and then coated with the hydrated oxide of aluminum, 48 g of PMA as a solvent, and a silane coupling agent having a methacryl group (Shin-Etsu Chemical Co., Ltd.) And 3 g of KBM-503) were uniformly dispersed, filtered, washed with water, and vacuum-dried to obtain solid titanium oxide particles surface-treated with methacrylsilane.
(実施例2-2、2-3で配合した、ケイ素の水和酸化物で被覆処理された後にアルミニウムの水和酸化物で被覆され、かつ、フェニルアミノシランで表面処理された酸化チタン粒子)
 酸化チタン粒子(テイカ社製JA-C、平均粒子径180nm)50gの水スラリーを70℃に昇温後、10%ケイ酸ナトリウム水溶液を酸化チタン粒子に対して、酸化チタン粒子換算で15%添加した。このスラリ-に塩酸を加えてpHを4とし、30分間熟成し、さらに、塩酸によりpHを5±1に維持しながら、20%アルミン酸ナトリウム(NaAlO)水溶液をチタン酸バリウムに対してアルミナ(Al)換算で20%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ケイ素の水和酸化物およびアルミニウムの水和酸化物で被覆された酸化チタン粒子の固形物を得た。
 上記で得られたケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆された酸化チタン粒子50gと、溶剤としてPMA48gと、フェニルアミノ基を有するシランカップリング剤(信越化学工業社製KBM-573)3gとを均一分散させて、濾過、水洗、真空乾燥によりフェニルアミノシランで表面処理された酸化チタン粒子の固形物を得た。
(Titanium oxide particles blended in Examples 2-2 and 2-3, coated with hydrated oxide of silicon, coated with hydrated oxide of aluminum, and surface-treated with phenylaminosilane)
After heating a water slurry of 50 g of titanium oxide particles (JA-C manufactured by Teica, average particle diameter 180 nm) to 70 ° C., a 10% aqueous solution of sodium silicate was added to the titanium oxide particles by 15% in terms of titanium oxide particles. did. Hydrochloric acid was added to the slurry to adjust the pH to 4 and aged for 30 minutes. Further, while maintaining the pH at 5 ± 1 with hydrochloric acid, a 20% aqueous solution of sodium aluminate (NaAlO 2 ) was added to barium titanate with alumina. 20% in terms of (Al 2 O 3 ). Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of titanium oxide particles coated with a hydrated oxide of silicon and a hydrated oxide of aluminum.
50 g of titanium oxide particles coated with the hydrated oxide of aluminum and then coated with the hydrated oxide of aluminum, 48 g of PMA as a solvent, and a silane coupling agent having a phenylamino group (Shin-Etsu Chemical Co., Ltd.) And 3 g of KBM-573 (manufactured by Kuraray Co., Ltd.) were uniformly dispersed, filtered, washed with water, and dried under vacuum to obtain solid particles of titanium oxide particles surface-treated with phenylaminosilane.
(比較例2-2で配合した、メタクリルシランで表面処理された酸化チタン粒子)
 酸化チタン粒子(テイカ社製JA-C、平均粒子径180nm)50gと、溶剤としてPMA48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)3gとを均一分散させて、濾過、水洗、真空乾燥によりメタクリルシランで表面処理された酸化チタン粒子の固形物を得た。
(Titanium oxide particles surface-treated with methacrylsilane blended in Comparative Example 2-2)
50 g of titanium oxide particles (JA-C manufactured by Teica, average particle diameter 180 nm), 48 g of PMA as a solvent, and 3 g of a silane coupling agent having a methacryl group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) were uniformly dispersed. Filtration, washing with water, and vacuum drying yielded solid particles of titanium oxide particles surface-treated with methacrylsilane.
<ゼータ電位の測定>
 大塚電子製のELSZ-2000ZSにて、酸化チタン粒子(テイカ社製JA-C、および、石原産業社製R-780-2)、および、上記で作製した表面処理酸化チタン粒子のゼータ電位を測定した。
 具体的には、各粒子をPMA(プロピレングリコールモノメチルエーテルアセテート)で濃度0.1wt%に調整し、超音波バスにて1分間分散した。測定は、Flow Cellを使用し、300Vの印加電圧をかけ20℃のゼータ電位を測定した。なお、電位は、Huckelの計算式により算出した。
(Huckelの計算式)
  ζ=6πηU/ε
  ζ:ゼータ電位
  U:電気移動度
  η:溶媒の粘度
<Measurement of zeta potential>
The zeta potential of titanium oxide particles (JA-C manufactured by Teica and R-780-2 manufactured by Ishihara Sangyo Co., Ltd.) and the surface-treated titanium oxide particles prepared above were measured using ELSZ-2000ZS manufactured by Otsuka Electronics. did.
Specifically, each particle was adjusted to a concentration of 0.1 wt% with PMA (propylene glycol monomethyl ether acetate), and dispersed in an ultrasonic bath for 1 minute. The measurement was performed by using a Flow Cell, applying an applied voltage of 300 V, and measuring the zeta potential at 20 ° C. The potential was calculated by the Huckel equation.
(Huckel formula)
ζ = 6πηU / ε
ζ: Zeta potential U: Electric mobility η: Viscosity of solvent
[実施例2-1~2-3、比較例2-1~2-3]
 下記表4に示す種々の成分を表4に示す割合(質量部)にて配合し、ビーズミルにて分散可能な粘度まで有機溶剤PMAにて希釈し攪拌機にて予備混合した後、ビーズミルで混練し、硬化性樹脂組成物を分散した。得られた分散液を目開き10μmの濾過フィルターを通し硬化性樹脂組成物を得た。
[Examples 2-1 to 2-3, Comparative Examples 2-1 to 2-3]
Various components shown in Table 4 below were blended in the ratio (parts by mass) shown in Table 4, diluted with an organic solvent PMA to a dispersible viscosity in a bead mill, preliminarily mixed with a stirrer, and kneaded in a bead mill. And the curable resin composition was dispersed. The obtained dispersion was passed through a filter having an opening of 10 μm to obtain a curable resin composition.
<分散性>
 各実施例および比較例の硬化性樹脂組成物について、JIS K5101およびJIS K5600に準拠して幅90mm、長さ240mm、最大深さ50μmのグラインドゲージを用いることにより分散度を確認した。分散度の見方としては、5粒以上確認された区間を確認した。
○:10μm以下
△:10μm超25μm以下
×:25μm超 
<Dispersibility>
For the curable resin compositions of the respective examples and comparative examples, the degree of dispersion was confirmed by using a grind gauge having a width of 90 mm, a length of 240 mm, and a maximum depth of 50 μm according to JIS K5101 and JIS K5600. As a viewpoint of the degree of dispersion, a section in which five or more grains were confirmed was confirmed.
○: 10 μm or less Δ: More than 10 μm 25 μm or less ×: More than 25 μm
<ドライフィルムの作製>
 上記のようにして得られた硬化性樹脂組成物にメチルエチルケトン300gを加えて希釈し、攪拌機で15分間撹拌して塗工液を得た。塗工液を、算術表面粗さRa150nmである厚さ38μmのポリエチレンテレフタレートフィルム(PETフィルム、ユニチカ社製エンブレットPTH-25)上に塗布し、通常、80℃で15分間乾燥し、厚み20μmの樹脂層を形成した。次いで、樹脂層上に、厚み18μmのポリプロピレンフィルム(カバーフィルム、フタムラ社製OPP-FOA)を貼り合わせて、ドライフィルムを作製した。
<Preparation of dry film>
The curable resin composition obtained as described above was diluted by adding 300 g of methyl ethyl ketone and stirred for 15 minutes with a stirrer to obtain a coating liquid. The coating solution is applied on a 38 μm thick polyethylene terephthalate film (PET film, Emblet PTH-25 manufactured by Unitika Ltd.) having an arithmetic surface roughness Ra of 150 nm, and is usually dried at 80 ° C. for 15 minutes. A resin layer was formed. Next, a 18 μm-thick polypropylene film (cover film, OPP-FOA manufactured by Futamura Co., Ltd.) was laminated on the resin layer to produce a dry film.
<硬化膜の作製>
 電解銅箔GTS-MP-18μm(古河電気工業社製)の光沢面に、上記のようにして得られたドライフィルムからポリエチレンフィルムを剥離して、銅箔表面側に、ドライフィルムの樹脂層を貼り合わせ、続いて、実施例2-1~2-3、比較例2-1~2-3は、真空ラミネーター(名機製作所製 MVLP-500)を用いて加圧度:0.8MPa、100℃、1分、真空度:133.3Paの条件で加熱ラミネートし銅箔と樹脂層を密着させた。
 次に、実施例2-1、2-2、比較例2-1~2-3において、高圧水銀灯(ショートアークランプ)搭載の露光装置を用いて、ドライフィルム上から露光(露光量:400~600mJ/cm)した後、ドライフィルムからポリエチレンテレフタレートフィルムを剥離し、樹脂層を露出させた。その後、1重量%NaCO水溶液を用いて、30℃、スプレー圧0.2MPaの条件で60秒間現像を行い、所定のレジストパターンを有する樹脂層を形成した。続いて、高圧水銀灯を備えたUVコンベア炉にて1J/cmの露光量で樹脂層に照射した後、160℃で60分加熱して樹脂層を完全硬化させて硬化膜を作製した。
 実施例2-3においては、ドライフィルムをラミネート後、PETフィルムを剥離し、180℃60分で、樹脂層を完全硬化した。
<Preparation of cured film>
The polyethylene film is peeled from the dry film obtained as described above on the glossy surface of the electrolytic copper foil GTS-MP-18 μm (made by Furukawa Electric Co., Ltd.), and the resin layer of the dry film is coated on the copper foil surface side. Lamination, and subsequently, in Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-3, using a vacuum laminator (MVLP-500 manufactured by Meiki Seisakusho), the degree of pressurization: 0.8 MPa, 100 Heat lamination was performed at a temperature of 1 ° C. and a degree of vacuum of 133.3 Pa, and the copper foil and the resin layer were adhered to each other.
Next, in Examples 2-1 and 2-2 and Comparative Examples 2-1 to 2-3, exposure was performed from above the dry film (exposure amount: 400 to 400 mm) using an exposure apparatus equipped with a high-pressure mercury lamp (short arc lamp). After 600 mJ / cm 2 ), the polyethylene terephthalate film was peeled from the dry film to expose the resin layer. Thereafter, development was performed using a 1% by weight aqueous solution of Na 2 CO 3 at 30 ° C. under a spray pressure of 0.2 MPa for 60 seconds to form a resin layer having a predetermined resist pattern. Subsequently, the resin layer was irradiated with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, and then heated at 160 ° C. for 60 minutes to completely cure the resin layer, thereby producing a cured film.
In Example 2-3, after laminating the dry film, the PET film was peeled off, and the resin layer was completely cured at 180 ° C. for 60 minutes.
<誘電率・誘電正接>
 樹脂層厚みを40μm以外に変えた以外は上記<ドライフィルムの作製>と同じ方法で作製したドライフィルムを電解銅箔GTS-MP-18μm(古河電気工業社製)の光沢面上にラミネートを行い、次いで平坦化し樹脂層を上記<硬化膜の作製>に記載の条件で完全硬化させた。その後、銅箔から硬化物を剥離し、厚み30μmの硬化物を得た。
 その硬化物を長さ80mm、幅2mmに切り出し、ネットワークアナライザー キーサイト社製 8510C、KEAD社製複素比誘電率計算ソフトCAMA-Sを用いた。摂動法空洞共振器により、測定温度22℃、10GHzの誘電率と誘電正接を測定した。
(誘電率)
〇:誘電率値 5以上
×:誘電率値 5未満
(誘電正接)
〇:誘電正接値 0.02以下
△:誘電正接値 0.02超、0.025以下
×:誘電正接値 0.025超
<Dielectric constant and dielectric loss tangent>
A dry film prepared in the same manner as in the above <Preparation of dry film> except that the thickness of the resin layer was changed to other than 40 μm, was laminated on a glossy surface of electrolytic copper foil GTS-MP-18 μm (Furukawa Electric Co., Ltd.). Then, the resin layer was flattened and completely cured under the conditions described in the above <Preparation of cured film>. Thereafter, the cured product was peeled from the copper foil to obtain a cured product having a thickness of 30 μm.
The cured product was cut into a length of 80 mm and a width of 2 mm, and a network analyzer 8510C manufactured by Keysight and a complex relative permittivity calculation software CAMA-S manufactured by KEAD were used. The dielectric constant and the dielectric loss tangent at a measurement temperature of 22 ° C. and 10 GHz were measured using a perturbation cavity resonator.
(Dielectric constant)
〇: Dielectric constant value 5 or more ×: Dielectric constant value less than 5 (dielectric tangent)
〇: dielectric loss tangent value 0.02 or less △: dielectric loss tangent value more than 0.02, 0.025 or less ×: dielectric loss tangent value more than 0.025
<赤色変色>
 各実施例および比較例で作製した組成物を銅張積層板に塗工し、上記<硬化膜の作製>に記載の条件で、光硬化、熱硬化した後、無電解金めっきを実施した。金めっき後の外観が、金粒子の付着により赤色変色が起きていないか目視確認した。
〇:変色無し
△:斑変色有り
×:変色あり
<Red discoloration>
The compositions prepared in each of the examples and comparative examples were applied to a copper-clad laminate, photocured and heat-cured under the conditions described in the above <Preparation of cured film>, and then electroless gold plating was performed. The appearance after gold plating was visually checked for red discoloration due to adhesion of gold particles.
〇: No discoloration △: There is spot discoloration X: There is discoloration
<Low Df材との密着性>
 10GHzの誘電正接が約0.004である低伝送損失層間材上に、各実施例・比較例の硬化性樹脂組成物を塗工し、上記<硬化膜の作製>に記載の条件で硬化した試料を作製した。JIS K5400に基づき、クロスカッターにより切込みが層間材に達する1mm角の碁盤目100個(10×10)を作り、その上にセロハンテープを完全に密着させ、引き離し、100個中何個密着しているか確認した。
〇:96以上/100
△:51~95/100
×:50以下/100
<Adhesion with Low Df material>
The curable resin compositions of Examples and Comparative Examples were coated on a low transmission loss interlayer material having a dielectric loss tangent of about 0.004 at 10 GHz and cured under the conditions described in the above <Preparation of cured film>. A sample was prepared. Based on JIS K5400, 100 crosscuts of 1 mm square (10 × 10) are made by a cross cutter to reach the interlayer material, and a cellophane tape is completely adhered to it, separated, and several hundred out of 100 are closely adhered. Was confirmed.
〇: 96 or more / 100
Δ: 51 to 95/100
×: 50 or less / 100
<HAST後の銅との密着性>
 電解銅箔GTS-MP-18μm(古河電気工業社製)の光沢面に前処理として、メック社製CZ-8401をスプレー後、AP-3002処理して粗化処理を行い表面粗度Raが0.04μmのロープロファイルの銅箔を得た。
 この処理面に各実施例および比較例で作製した樹脂層厚み20μmのドライフィルムをラミネートし、上記硬化膜の作成条件にて硬化させて絶縁層を形成したサンプルを得た。
 このサンプルの絶縁層とFR-4(ガラスエポキシ)基板を接着剤(ニチバン社製AR-S 30)で接着した。この接着体を100mm×15mmに切断し、10mm間隔で銅箔に切り込みを入れた。
 このサンプルの初期値および130℃85%RH 100時間のHAST試験後、両方のサンプルを、島津製作所製オートグラフAG-XによりJIS C6481に基づきピール強度を測定した。
 ピール強度が高いほど密着性が良く、HAST試験前後での密着強度低下率が低い方が優れている。
 (HAST前-HAST後)/HAST前 ×100 (%)
◎:密着性低下率 40%未満
〇:密着性低下率 40%以上55%未満
△:密着性低下率 55%以上65%未満
×:密着性低下率 65%以上
<Adhesion to copper after HAST>
As a pretreatment, CZ-8401 manufactured by Mech Co., Ltd. is sprayed on the glossy surface of the electrolytic copper foil GTS-MP-18 μm (manufactured by Furukawa Electric Co., Ltd.), followed by AP-3002 treatment for roughening treatment, and surface roughness Ra of 0. A low-profile copper foil of 0.04 μm was obtained.
A dry film having a resin layer thickness of 20 μm prepared in each of Examples and Comparative Examples was laminated on the treated surface, and cured under the above-described conditions for forming a cured film to obtain a sample in which an insulating layer was formed.
The insulating layer of this sample and an FR-4 (glass epoxy) substrate were bonded with an adhesive (AR-S30 manufactured by Nichiban). This bonded body was cut into 100 mm × 15 mm, and cut into copper foil at intervals of 10 mm.
After the initial value of this sample and the HAST test at 130 ° C. and 85% RH for 100 hours, the peel strength of both samples was measured by Autograph AG-X manufactured by Shimadzu Corporation based on JIS C6481.
The higher the peel strength, the better the adhesion, and the lower the rate of decrease in adhesion before and after the HAST test, the better.
(Before HAST-After HAST) / Before HAST × 100 (%)
:: Adhesion decrease rate less than 40% 〇: Adhesion decrease rate 40% or more and less than 55% △: Adhesion decrease rate 55% or more and less than 65% ×: Adhesion decrease rate 65% or more
<組成物の固形分の酸価の測定>
 組成物サンプルを約0.5g取り、2-ブトキシエタノール50mlに完全に溶解させた後、0.1Nのエタノール性水酸化カリウム溶液で滴定し酸価を下記の計算式から算出した。
酸価(mgKOH/g)={N×f×56100×(V-BL}}/(1000×W)
W:サンプル量(g)、N:(水酸化カリウム溶液の濃度(mol/l)、f:力価、V:滴定量(ml)、BL:ブランクの滴定量
<Measurement of acid value of solid content of composition>
About 0.5 g of a composition sample was taken, completely dissolved in 50 ml of 2-butoxyethanol, and titrated with a 0.1N ethanolic potassium hydroxide solution, and the acid value was calculated from the following formula.
Acid value (mgKOH / g) = {N × f × 56100 × (V-BL) / (1000 × W)
W: sample amount (g), N: (concentration of potassium hydroxide solution (mol / l), f: titer, V: titer (ml), BL: blank titer
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
*2-1:上記で合成したカルボキシル基含有感光性樹脂A-1(カルボン酸当量:654g/eq)
*2-2:DIC社製ユニディックEQG-1170(脂環式UV硬化型アミドイミド樹脂、カルボン酸当量:962g/eq)
*2-3:日本化薬(株)社製NC-6000(ビスフェノールF型エポキシ樹脂、エポキシ当量:210g/eq)
*2-4:日産化学(株)社製TEPIC-VL(多官能エポキシ樹脂、エポキシ当量:135g/eq)
*2-5:ジシアンジアミド
*2-6:メラミン
*2-7:IGM社製OmniradTPO(2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド)
*2-8:新中村化学工業社製A-DCP(トリシクロデカンジメタノールジアクリレート)
*2-9:上記で調製した、ケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理された酸化チタン
*2-10:上記で調製した、ケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆され、かつ、フェニルアミノシランで表面処理された酸化チタン
*2-11:未処理の酸化チタン(テイカ社製JA-C、平均一次粒子径:180nm)
*2-12:上記で調製した、メタクリルシランで表面処理された酸化チタン
*2-13:酸化チタン(石原産業社製R-780-2、平均粒子径:0.24μm、ケイ素の水和酸化物とアルミニウムの水和酸化物で被覆されたもの(約20%処理品)
* 2-1: Carboxyl group-containing photosensitive resin A-1 synthesized above (carboxylic acid equivalent: 654 g / eq)
* 2-2: Unidic EQG-1170 manufactured by DIC (alicyclic UV curable amide imide resin, carboxylic acid equivalent: 962 g / eq)
* 2-3: Nippon Kayaku Co., Ltd. NC-6000 (bisphenol F type epoxy resin, epoxy equivalent: 210 g / eq)
* 2-4: TEPIC-VL (Nissan Chemical Industries, Ltd.) (polyfunctional epoxy resin, epoxy equivalent: 135 g / eq)
* 2-5: Dicyandiamide * 2-6: Melamine * 2-7: Omnirad TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide) manufactured by IGM
* 2-8: A-DCP (tricyclodecane dimethanol diacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd.
* 2-9: Titanium oxide prepared above, coated with hydrated oxide of silicon, then coated with hydrated oxide of aluminum, and surface-treated with methacrylsilane * 2-10: Prepared above Titanium oxide coated with a hydrated oxide of silicon, then coated with a hydrated oxide of aluminum, and surface-treated with phenylaminosilane * 2-11: untreated titanium oxide (JA- C, average primary particle diameter: 180 nm)
* 2-12: Titanium oxide surface-treated with methacrylsilane prepared above * 2-13: Titanium oxide (R-780-2, manufactured by Ishihara Sangyo Co., average particle size: 0.24 μm, hydrated oxidation of silicon) Coated with hydrated oxide of aluminum and aluminum (approximately 20% treated)
 上記表中に示す結果から、本発明の実施例2-1~2-3の硬化性樹脂組成物は、酸化チタンの分散性が向上し、基板との密着性に優れ、高誘電率と低誘電正接を両立することができる硬化物が得られることがわかる。 From the results shown in the above table, the curable resin compositions of Examples 2-1 to 2-3 of the present invention have improved dispersibility of titanium oxide, excellent adhesion to a substrate, high dielectric constant and low dielectric constant. It can be seen that a cured product that can satisfy both the dielectric loss tangent is obtained.
<第三実施例>
[フィラーの表面処理]
(実施例3-1で配合した、ケイ素の水和酸化物で被覆処理された窒化ホウ素粒子)
 窒化ホウ素粒子(ESK Ceramics GmbH社製S1、平均粒子径2μm、比重3.65、熱伝導率200W/m・k)50gの水スラリーを70℃に昇温後、10%ケイ酸ナトリウム水溶液を窒化ホウ素粒子に対して、窒化ホウ素粒子換算で1%添加した。このスラリ-に塩酸を加えてpHを4とし、30分間熟成し、さらに、塩酸によりpHを7±1に調整した。このスラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ケイ素の水和酸化物で被覆された窒化ホウ素粒子の固形物を得た。
<Third embodiment>
[Surface treatment of filler]
(Boron nitride particles coated with hydrated silicon oxide compounded in Example 3-1)
A 50 g water slurry of boron nitride particles (S1, manufactured by ESK Ceramics GmbH, average particle diameter 2 μm, specific gravity 3.65, thermal conductivity 200 W / m · k) is heated to 70 ° C., and then a 10% aqueous sodium silicate solution is nitrided. 1% was added to the boron particles in terms of boron nitride particles. Hydrochloric acid was added to this slurry to adjust the pH to 4, aged for 30 minutes, and further adjusted to pH 7 ± 1 with hydrochloric acid. The slurry was filtered and washed with a filter press, and dried under vacuum to obtain solid boron nitride particles coated with a silicon hydrated oxide.
(実施例3-2で配合した、アルミニウムの水和酸化物で被覆処理された窒化ホウ素粒子)
 窒化ホウ素粒子(ESK Ceramics GmbH社製S1、平均粒子径2μm、比重3.65、熱伝導率200W/m・k)50gの水スラリーを70℃に昇温後、20%アルミン酸ナトリウム(NaAlO)水溶液を窒化ホウ素粒子に対してアルミナ(Al)換算で1%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、アルミニウムの水和酸化物で被覆された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles coated with a hydrated aluminum oxide compounded in Example 3-2)
50 g of a water slurry of boron nitride particles (S1, manufactured by ESK Ceramics GmbH, average particle diameter 2 μm, specific gravity 3.65, thermal conductivity 200 W / m · k) was heated to 70 ° C., and then 20% sodium aluminate (NaAlO 2). 1) The aqueous solution was added to the boron nitride particles at 1% in terms of alumina (Al 2 O 3 ). Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of boron nitride particles coated with aluminum hydrated oxide.
(実施例3-3で配合した、ジルコニウムの水和酸化物で被覆処理された窒化ホウ素粒子)
 窒化ホウ素粒子(ESK Ceramics GmbH社製S1、平均粒子径2μm、比重3.65、熱伝導率200W/m・k)50gの水スラリーを70℃に昇温後、100g/lオキシ塩化ジルコニウム等の水溶性ジルコニウム化合物の水溶液を窒化ホウ素粒子に対してジルコニア(ZrO)換算で1%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ジルコニアの水和酸化物で被覆された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles coated with hydrated zirconium oxide blended in Example 3-3)
50 g of a water slurry of boron nitride particles (S1, manufactured by ESK Ceramics GmbH, average particle size: 2 μm, specific gravity: 3.65, thermal conductivity: 200 W / m · k) was heated to 70 ° C., and then 100 g / l of zirconium oxychloride etc. An aqueous solution of a water-soluble zirconium compound was added to boron nitride particles at 1% in terms of zirconia (ZrO 2 ). Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press and dried under vacuum to obtain a solid of boron nitride particles coated with a hydrated oxide of zirconia.
(実施例3-4で配合した、亜鉛の水和酸化物で被覆処理された窒化ホウ素粒子)
 窒化ホウ素粒子(ESK Ceramics GmbH社製S1、平均粒子径2μm、比重3.65、熱伝導率200W/m・k)50gの水スラリーを70℃に昇温後、硫酸亜鉛の水溶液を窒化ホウ素粒子に対してZnO換算で1%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、亜鉛の水和酸化物で被覆された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles coated with a hydrated oxide of zinc formulated in Example 3-4)
A 50 g water slurry of boron nitride particles (S1, manufactured by ESK Ceramics GmbH, average particle diameter 2 μm, specific gravity 3.65, thermal conductivity 200 W / m · k) was heated to 70 ° C., and an aqueous solution of zinc sulfate was subjected to boron nitride particles. 1% in terms of ZnO. Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of boron nitride particles coated with a hydrated oxide of zinc.
(実施例3-5で配合した、チタンの水和酸化物で被覆処理された窒化ホウ素粒子)
 窒化ホウ素粒子(ESK Ceramics GmbH社製S1、平均粒子径2μm、比重3.65、熱伝導率200W/m・k)50gの水スラリーを70℃に昇温後、100g/lチタニル硫酸水溶液を窒化ホウ素粒子に対してTiO換算で1%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、チタンの水和酸化物で被覆された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles coated with a hydrated titanium oxide compounded in Example 3-5)
A 50 g water slurry of boron nitride particles (S1, manufactured by ESK Ceramics GmbH, average particle diameter 2 μm, specific gravity 3.65, thermal conductivity 200 W / m · k) was heated to 70 ° C., and then a 100 g / l aqueous solution of titanyl sulfate was nitrided. 1% was added to the boron particles in terms of TiO 2 . Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of boron nitride particles coated with a hydrated oxide of titanium.
(実施例3-6で配合した、ケイ素の水和酸化物で被覆処理された後にアルミニウムの水和酸化物で被覆処理された窒化ホウ素粒子)
 窒化ホウ素粒子(ESK Ceramics GmbH社製S1、平均粒子径2μm、比重3.65、熱伝導率200W/m・k)50gの水スラリーを70℃に昇温後、10%ケイ酸ナトリウム水溶液を窒化ホウ素粒子に対して、窒化ホウ素粒子換算で1%添加した。このスラリ-に塩酸を加えてpHを4とし、30分間熟成し、さらに、塩酸によりpHを5±1に維持しながら、20%アルミン酸ナトリウム(NaAlO)水溶液を窒化ホウ素粒子に対してアルミナ(Al)換算で1%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ケイ素の水和酸化物およびアルミニウムの水和酸化物で被覆された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles formulated in Example 3-6 and coated with hydrated oxide of silicon and then coated with hydrated oxide of aluminum)
A 50 g water slurry of boron nitride particles (S1, manufactured by ESK Ceramics GmbH, average particle diameter 2 μm, specific gravity 3.65, thermal conductivity 200 W / m · k) is heated to 70 ° C., and then a 10% aqueous sodium silicate solution is nitrided. 1% was added to the boron particles in terms of boron nitride particles. Hydrochloric acid was added to the slurry to adjust the pH to 4 and aged for 30 minutes. Further, while maintaining the pH at 5 ± 1 with hydrochloric acid, a 20% aqueous solution of sodium aluminate (NaAlO 2 ) was added to the boron nitride particles to form an alumina. 1% in terms of (Al 2 O 3 ). Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of boron nitride particles coated with a hydrated oxide of silicon and a hydrated oxide of aluminum.
(実施例3-7で配合した、ケイ素の水和酸化物で被覆処理された後にジルコニウムの水和酸化物で被覆処理された窒化ホウ素粒子)
 上記と同様の窒化ホウ素粒子50gの水スラリーを70℃に昇温後、10%ケイ酸ナトリウム水溶液を窒化ホウ素粒子に対して、窒化ホウ素粒子換算で1%添加した。このスラリ-に塩酸を加えてpHを4とし、30分間熟成し、さらに、塩酸によりpHを5±1に維持しながら、40℃に昇温後、100g/lオキシ塩化ジルコニウム水溶液を窒化ホウ素粒子に対してZrO換算で1%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ケイ素の水和酸化物およびジルコニウムの水和酸化物で被覆処理された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles compounded in Example 3-7 and coated with hydrated oxide of silicon and then coated with hydrated oxide of zirconium)
After raising the temperature of a water slurry of 50 g of the same boron nitride particles as described above to 70 ° C., a 10% aqueous solution of sodium silicate was added to the boron nitride particles at 1% in terms of boron nitride particles. Hydrochloric acid was added to the slurry to adjust the pH to 4, and the mixture was aged for 30 minutes. The temperature was raised to 40 ° C. while maintaining the pH at 5 ± 1 with hydrochloric acid. Then, a 100 g / l aqueous zirconium oxychloride solution was added to the boron nitride particles. To 1% in terms of ZrO 2 . Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of boron nitride particles coated with a hydrated oxide of silicon and a hydrated oxide of zirconium.
(実施例3-8で配合した、ケイ素の水和酸化物で被覆処理された後に亜鉛の水和酸化物で被覆処理された窒化ホウ素粒子)
 上記と同様の窒化ホウ素粒子50gの水スラリーを70℃に昇温後、10%ケイ酸ナトリウム水溶液を窒化ホウ素粒子に対して、窒化ホウ素粒子換算で1%添加した。このスラリ-に塩酸を加えてpHを4とし、30分間熟成し、さらに、塩酸によりpHを5±1に維持しながら、45℃に昇温後、硫酸亜鉛の水溶液を窒化ホウ素粒子に対してZnO換算で1質量%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ケイ素の水和酸化物および亜鉛の水和酸化物で被覆処理された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles compounded in Examples 3-8, coated with hydrated oxide of silicon and then coated with hydrated oxide of zinc)
After raising the temperature of a water slurry of 50 g of the same boron nitride particles as described above to 70 ° C., a 10% aqueous solution of sodium silicate was added to the boron nitride particles at 1% in terms of boron nitride particles. Hydrochloric acid was added to the slurry to adjust the pH to 4, and the mixture was aged for 30 minutes. After the temperature was raised to 45 ° C. while maintaining the pH at 5 ± 1 with hydrochloric acid, an aqueous solution of zinc sulfate was added to the boron nitride particles. 1% by mass as ZnO was added. Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain solid particles of boron nitride particles coated with a hydrated oxide of silicon and a hydrated oxide of zinc.
(実施例3-9で配合した、ケイ素の水和酸化物で被覆処理された後にチタンの水和酸化物で被覆処理された窒化ホウ素粒子)
 上記と同様の窒化ホウ素粒子50gの水スラリーを70℃に昇温後、10%ケイ酸ナトリウム水溶液を窒化ホウ素粒子に対して、窒化ホウ素粒子換算で1%添加した。このスラリ-に塩酸を加えてpHを4とし、30分間熟成し、さらに、塩酸によりpHを5±1に維持しながら、40℃に昇温後、100g/lチタニル硫酸水溶液を窒化ホウ素粒子に対してTiO換算で1%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ケイ素の水和酸化物およびチタンの水和酸化物で被覆処理された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles formulated in Example 3-9 and coated with hydrated oxide of silicon and then coated with hydrated oxide of titanium)
After raising the temperature of a water slurry of 50 g of the same boron nitride particles as described above to 70 ° C., a 10% aqueous solution of sodium silicate was added to the boron nitride particles at 1% in terms of boron nitride particles. Hydrochloric acid was added to the slurry to adjust the pH to 4 and the mixture was aged for 30 minutes. After the temperature was raised to 40 ° C. while maintaining the pH at 5 ± 1 with hydrochloric acid, a 100 g / l aqueous solution of titanyl sulfate was added to the boron nitride particles. On the other hand, 1% was added in terms of TiO 2 . Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain solid particles of boron nitride particles coated with a hydrated oxide of silicon and a hydrated oxide of titanium.
(実施例3-10で配合した、アルミニウムの水和酸化物で被覆された後にメタクリルシランで表面処理された窒化ホウ素粒子)
 上記と同様にして得られたアルミニウムの水和酸化物で被覆処理された窒化ホウ素粒子50gと、溶剤としてPMA48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)1gとを均一分散させて、濾過、水洗、真空乾燥によりメタクリルシランで表面処理された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles coated with a hydrated aluminum oxide and surface-treated with methacrylsilane blended in Example 3-10)
50 g of boron nitride particles coated with a hydrated aluminum oxide obtained in the same manner as above, 48 g of PMA as a solvent, and 1 g of a silane coupling agent having a methacryl group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) Was uniformly dispersed, filtered, washed with water, and dried under vacuum to obtain solid particles of boron nitride particles surface-treated with methacrylsilane.
(実施例3-11で配合した、アルミニウムの水和酸化物で被覆された後にフェニルアミノシランで表面処理された窒化ホウ素粒子)
 上記と同様にして得られたアルミニウムの水和酸化物で被覆処理された窒化ホウ素粒子50gと、溶剤としてPMA48gと、フェニルアミノ基を有するシランカップリング剤(信越化学工業社製KBM-573)0.5gとを均一分散させて、濾過、水洗、真空乾燥によりフェニルアミノシランで表面処理された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles coated with hydrated aluminum oxide and surface-treated with phenylaminosilane, blended in Example 3-11)
50 g of boron nitride particles coated with a hydrated aluminum oxide obtained in the same manner as above, 48 g of PMA as a solvent, and a silane coupling agent having a phenylamino group (KBM-573, manufactured by Shin-Etsu Chemical Co., Ltd.) And 0.5 g of the same, and the solid was filtered, washed with water, and dried under vacuum to obtain solid particles of boron nitride particles surface-treated with phenylaminosilane.
(実施例3-12で配合した、ケイ素の水和酸化物で被覆処理された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理された窒化ホウ素粒子)
 上記で得られたケイ素で被覆された後にアルミニウムの水和酸化物で被覆処理された窒化ホウ素粒子50gと、溶剤としてPMA48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)0.5gとを均一分散させて、濾過、水洗、真空乾燥によりメタクリルシランで表面処理された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles formulated in Example 3-12, coated with hydrated oxide of silicon, then coated with hydrated oxide of aluminum, and surface-treated with methacrylsilane)
50 g of boron nitride particles coated with silicon and then coated with a hydrated oxide of aluminum, 48 g of PMA as a solvent, and a silane coupling agent having a methacryl group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) ) Was uniformly dispersed, and filtered, washed with water, and dried under vacuum to obtain solid particles of boron nitride particles surface-treated with methacrylsilane.
(比較例3-1で配合した、メタクリルシランで表面処理された窒化ホウ素粒子)
 窒化ホウ素粒子(ESK Ceramics GmbH社製S1、平均粒子径2μm、比重3.65、熱伝導率200W/m・k))50gと、溶剤としてPMA48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)0.5gとを均一分散させて、濾過、水洗、真空乾燥によりメタクリルシランで表面処理された窒化ホウ素粒子の固形物を得た。
(Boron nitride particles surface-treated with methacrylsilane compounded in Comparative Example 3-1)
50 g of boron nitride particles (S1, manufactured by ESK Ceramics GmbH, average particle diameter 2 μm, specific gravity 3.65, thermal conductivity 200 W / m · k)), 48 g of PMA as a solvent, and a silane coupling agent having a methacryl group (Shin-Etsu Chemical) And 0.5 g of KBM-503 (manufactured by Kogyo Co., Ltd.), and the mixture was filtered, washed with water, and dried under vacuum to obtain solid particles of boron nitride particles surface-treated with methacrylsilane.
(実施例3-13で配合した、ケイ素の水和酸化物で被覆処理された後にジルコニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理された窒化アルミニウム粒子)
 窒化アルミニウム粒子(トクヤマ社製、平均粒子径1μm、比重3.26、熱伝導率200W/m・k)50gの水スラリーを70℃に昇温後、10%ケイ酸ナトリウム水溶液を窒化アルミニウム粒子に対して、窒化アルミニウム粒子換算で1%添加した。このスラリ-に塩酸を加えてpHを4とし、30分間熟成し、さらに、塩酸によりpHを5±1に維持しながら、40℃に昇温後、100g/lオキシ塩化ジルコニウム水溶液を窒化アルミニウム粒子に対してZrO換算で1%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ケイ素の水和酸化物およびジルコニウムの水和酸化物で被覆処理された窒化アルミニウム粒子の固形物を得た。
 上記被覆処理された窒化アルミニウム粒子50gと、溶剤としてPMA48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)0.5gとを均一分散させて、濾過、水洗、真空乾燥によりメタクリルシランで表面処理された窒化ホウ素粒子の固形物を得た。
(Aluminum nitride particles coated with hydrated oxide of silicon, coated with hydrated oxide of zirconium, and surface-treated with methacrylsilane, blended in Example 3-13)
A 50 g water slurry of aluminum nitride particles (manufactured by Tokuyama Corporation, average particle diameter 1 μm, specific gravity 3.26, thermal conductivity 200 W / m · k) was heated to 70 ° C., and then a 10% aqueous sodium silicate solution was converted to aluminum nitride particles. On the other hand, 1% was added in terms of aluminum nitride particles. Hydrochloric acid was added to the slurry to adjust the pH to 4 and the mixture was aged for 30 minutes. After the temperature was raised to 40 ° C. while maintaining the pH at 5 ± 1 with hydrochloric acid, 100 g / l aqueous zirconium oxychloride solution was added to aluminum nitride particles. To 1% in terms of ZrO 2 . Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of aluminum nitride particles coated with a hydrated oxide of silicon and a hydrated oxide of zirconium.
50 g of the coated aluminum nitride particles, 48 g of PMA as a solvent, and 0.5 g of a silane coupling agent having a methacryl group (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) are uniformly dispersed, filtered, washed with water, and vacuum-dried. As a result, solids of boron nitride particles surface-treated with methacrylsilane were obtained.
(実施例3-14で配合した、ケイ素の水和酸化物で被覆処理された後にジルコニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理された酸化マグネシウム粒子)
 実施例3-13における窒化アルミニウム粒子の調製において、窒化アルミニウム粒子を酸化マグネシウム粒子(堺化学社製SMO、平均粒子径0.4μm、比重3.65、熱伝導率40W/m・k)に変更し、50gの水スラリーを70℃に昇温後、10%ケイ酸ナトリウム水溶液を酸化マグネシウム粒子に対して、酸化マグネシウム粒子換算で3%添加した。このスラリ-に塩酸を加えてpHを4とし、30分間熟成し、さらに、塩酸によりpHを5±1に維持しながら、40℃に昇温後、100g/lオキシ塩化ジルコニウム水溶液を酸化マグネシウム粒子に対してZrO換算で5~6%添加した。この後、20%水酸化ナトリウム水浴液を加え、pHを7に調整し、30分間熟成した。この後、スラリーをフィルタープレスにてろ過水洗し、真空乾燥し、ケイ素の水和酸化物およびジルコニウムの水和酸化物で被覆処理された酸化マグネシウム粒子の固形物を得た。
 上記被覆処理された酸化マグネシウム粒子50gと、溶剤としてPMA48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)1gとを均一分散させて、濾過、水洗、真空乾燥によりメタクリルシランで表面処理された酸化マグネシウム粒子の固形物を得た。
(Magnesium oxide particles coated with zirconium hydrated oxide, coated with hydrated oxide of silicon, and surface-treated with methacrylsilane, blended in Example 3-14)
In the preparation of aluminum nitride particles in Example 3-13, the aluminum nitride particles were changed to magnesium oxide particles (SMO manufactured by Sakai Chemical Co., average particle diameter 0.4 μm, specific gravity 3.65, thermal conductivity 40 W / m · k). After raising the temperature of 50 g of the water slurry to 70 ° C., a 10% aqueous solution of sodium silicate was added to the magnesium oxide particles by 3% in terms of magnesium oxide particles. Hydrochloric acid was added to the slurry to adjust the pH to 4, and the mixture was aged for 30 minutes. After maintaining the pH at 5 ± 1 with hydrochloric acid, the temperature was raised to 40 ° C., and the aqueous solution of 100 g / l zirconium oxychloride was treated with magnesium oxide particles. Was added in an amount of 5 to 6% in terms of ZrO 2 . Thereafter, a 20% aqueous sodium hydroxide solution was added to adjust the pH to 7, and the mixture was aged for 30 minutes. Thereafter, the slurry was filtered and washed with a filter press, and dried under vacuum to obtain a solid of magnesium oxide particles coated with a hydrated oxide of silicon and a hydrated oxide of zirconium.
50 g of the coated magnesium oxide particles, 48 g of PMA as a solvent, and 1 g of a silane coupling agent having a methacryl group (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) are uniformly dispersed, and the mixture is filtered, washed with water, and vacuum-dried to obtain methacryl. A solid of magnesium oxide particles surface-treated with silane was obtained.
(実施例3-15で配合した、ケイ素の水和酸化物で被覆処理された後にジルコニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理された酸化アルミニウム粒子)
 実施例3-13における窒化アルミニウム粒子の調製において、窒化アルミニウム粒子を酸化アルミニウム粒子(デンカ社製ASFP-20、平均粒子径0.3μm、比重4.0、熱伝導率28W/m・k)に変更した以外は上記と同様にしてメタクリルシランで表面処理された酸化マグネシウム粒子の固形物を得た。
(Aluminum oxide particles formulated in Example 3-15, coated with a hydrated oxide of silicon, then coated with a hydrated oxide of zirconium, and surface-treated with methacrylsilane)
In the preparation of the aluminum nitride particles in Example 3-13, the aluminum nitride particles were converted into aluminum oxide particles (ASFP-20 manufactured by Denka, average particle diameter 0.3 μm, specific gravity 4.0, thermal conductivity 28 W / mk). A solid of magnesium oxide particles surface-treated with methacrylsilane was obtained in the same manner as described above, except for the change.
(実施例3-16で配合した、ケイ素の水和酸化物で被覆処理された後にジルコニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたスピネル粒子)
 実施例3-13における窒化アルミニウム粒子の調製において、窒化アルミニウム粒子をスピネル粒子(MgAl、タテホ化学工業社製SN-1、平均粒子径0.4μm、比重3.8、熱伝導率35W/m・k)に変更した以外は上記と同様にしてメタクリルシランで表面処理されたスピネル粒子の固形物を得た。
(Spinel particles blended in Example 3-16, coated with a hydrated oxide of silicon and then coated with a hydrated oxide of zirconium and surface-treated with methacrylsilane)
In the preparation of the aluminum nitride particles in Example 3-13, the aluminum nitride particles were converted to spinel particles (MgAl 2 O 4 , SN-1 manufactured by Tateho Chemical Industry Co., Ltd., average particle diameter 0.4 μm, specific gravity 3.8, thermal conductivity 35 W / M · k) to obtain solids of spinel particles surface-treated with methacrylsilane in the same manner as described above.
(比較例3-3で配合した、メタクリルシランで表面処理されたシリカ粒子)
 シリカ粒子(デンカ社製SFP-20M、平均粒子径0.4μm、比重2.2、熱伝導率1.3W/m・k)50gと、溶剤としてPMA(プロピレングリコールモノメチルエーテルアセテート)48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)1gとを均一分散させて、濾過、水洗、真空乾燥により、メタクリルシランで表面処理されたシリカ粒子の固形物を得た。
(Silica particles surface-treated with methacrylsilane blended in Comparative Example 3-3)
50 g of silica particles (SFP-20M manufactured by Denka, average particle diameter 0.4 μm, specific gravity 2.2, thermal conductivity 1.3 W / m · k), 48 g of PMA (propylene glycol monomethyl ether acetate) as a solvent, and methacrylic acid 1 g of a silane coupling agent having a group (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was uniformly dispersed, filtered, washed with water, and vacuum-dried to obtain a solid of silica particles surface-treated with methacrylsilane.
[実施例3-1~3-17、比較例3-1~3-3]
 下記表5~7に示す種々の成分を表5~7に示す割合(質量部)にて配合し、ビーズミルにて分散可能な粘度まで有機溶剤(プロピレングリコールモノメチルエーテルアセテート(PMA))にて希釈し攪拌機にて予備混合した後、ビーズミルで混練し、硬化性樹脂組成物を分散した。得られた分散液を目開き10μmの濾過フィルターを通し硬化性樹脂組成物を得た。
[Examples 3-1 to 3-17, Comparative Examples 3-1 to 3-3]
Various components shown in the following Tables 5 to 7 are blended in the ratios (parts by mass) shown in Tables 5 to 7, and diluted with an organic solvent (propylene glycol monomethyl ether acetate (PMA)) to a viscosity that enables dispersion in a bead mill. After pre-mixing with a stirrer, the mixture was kneaded with a bead mill to disperse the curable resin composition. The obtained dispersion was passed through a filter having an opening of 10 μm to obtain a curable resin composition.
<分散性>
 各実施例および比較例の硬化性樹脂組成物について、JIS K5101およびJIS K5600に準拠して幅90mm、長さ240mm、最大深さ50μmのグラインドゲージを用いることにより分散度を確認した。分散度の見方としては、5粒以上確認された区間を確認した。
○:10μm以下
△:10μm超25μm以下
×:25μm超 
<Dispersibility>
For the curable resin compositions of the respective examples and comparative examples, the degree of dispersion was confirmed by using a grind gauge having a width of 90 mm, a length of 240 mm, and a maximum depth of 50 μm according to JIS K5101 and JIS K5600. As a viewpoint of the degree of dispersion, a section in which five or more grains were confirmed was confirmed.
○: 10 μm or less Δ: More than 10 μm 25 μm or less ×: More than 25 μm
<ドライフィルムの作製>
 上記のようにして得られた硬化性樹脂組成物にメチルエチルケトン300gを加えて希釈し、攪拌機で15分間撹拌して塗工液を得た。塗工液を、算術表面粗さRa150nmである厚さ38μmのポリエチレンテレフタレートフィルム(PETフィルム、ユニチカ社製エンブレットPTH-25)上に塗布し、通常、80~100℃(実施例3-1~3-16および比較例3-1~3-3は80℃15分、実施例3-17は100℃15分)の温度で15分間乾燥し、厚み20μmの樹脂層を形成した。次いで、樹脂層上に、厚み18μmのポリプロピレンフィルム(カバーフィルム、フタムラ社製OPP-FOA)を貼り合わせて、ドライフィルムを作製した。
<Preparation of dry film>
The curable resin composition obtained as described above was diluted by adding 300 g of methyl ethyl ketone and stirred for 15 minutes with a stirrer to obtain a coating liquid. The coating liquid is applied on a 38 μm-thick polyethylene terephthalate film (PET film, Emblet PTH-25 manufactured by Unitika Ltd.) having an arithmetic surface roughness Ra of 150 nm, usually at 80 to 100 ° C. (Examples 3-1 to 3-1). 3-16 and Comparative Examples 3-1 to 3-3 were dried at a temperature of 80 ° C. for 15 minutes, and Example 3-17 was dried at a temperature of 100 ° C. for 15 minutes for 15 minutes to form a resin layer having a thickness of 20 μm. Next, a 18 μm-thick polypropylene film (cover film, OPP-FOA manufactured by Futamura Co., Ltd.) was laminated on the resin layer to produce a dry film.
<硬化膜の作製>
 電解銅箔GTS-MP-18μm(古河電気工業(株)社製)の光沢面に、上記のようにして得られたドライフィルムからポリエチレンフィルムを剥離して、銅箔表面側に、ドライフィルムの樹脂層を貼り合わせ、続いて、実施例3-1~3-16、比較例3-1~3-3は、真空ラミネーター(名機製作所製 MVLP-500)を用いて加圧度:0.8MPa、100℃、1分、真空度:133.3Paの条件で加熱ラミネートして、銅箔と樹脂層とを密着させた。実施例3-17においては、0.5MPa、100℃、1分、真空度:133.3Paの条件で加熱ラミネートし、銅箔と樹脂層を密着させた。
 次に、実施例3-1~3-16、比較例3-1~3-3において、高圧水銀灯(ショートアークランプ)搭載の露光装置を用いて、ドライフィルム上から露光(露光量:400~600mJ/cm)した後、ドライフィルムからポリエチレンテレフタレートフィルムを剥離し、樹脂層を露出させた。その後、1重量%NaCO水溶液を用いて、30℃、スプレー圧0.2MPaの条件で60秒間現像を行い、所定のレジストパターンを有する樹脂層を形成した。続いて、高圧水銀灯を備えたUVコンベア炉にて1J/cmの露光量で樹脂層に照射した後、170℃で60分加熱して樹脂層を完全硬化させて硬化膜を作製した。
 実施例3-17においては、ドライフィルムをラミネート後、PETフィルムを剥離し、190℃60分で、樹脂層を完全硬化した。
<Preparation of cured film>
The polyethylene film is peeled from the dry film obtained as described above on the glossy surface of the electrolytic copper foil GTS-MP-18 μm (manufactured by Furukawa Electric Co., Ltd.), and the dry film The resin layers were laminated, and subsequently, in Examples 3-1 to 3-16 and Comparative Examples 3-1 to 3-3, the degree of pressurization was set to 0.degree. By using a vacuum laminator (MVLP-500 manufactured by Meiki Seisakusho). Heat lamination was carried out under the conditions of 8 MPa, 100 ° C., 1 minute, degree of vacuum: 133.3 Pa, and the copper foil and the resin layer were brought into close contact with each other. In Example 3-17, heat lamination was performed under the following conditions: 0.5 MPa, 100 ° C., 1 minute, degree of vacuum: 133.3 Pa, and the copper foil and the resin layer were adhered to each other.
Next, in Examples 3-1 to 3-16 and Comparative Examples 3-1 to 3-3, exposure was performed from above the dry film using a light exposure device equipped with a high-pressure mercury lamp (short arc lamp) (exposure amount: 400 to After 600 mJ / cm 2 ), the polyethylene terephthalate film was peeled from the dry film to expose the resin layer. Thereafter, development was performed using a 1% by weight aqueous solution of Na 2 CO 3 at 30 ° C. under a spray pressure of 0.2 MPa for 60 seconds to form a resin layer having a predetermined resist pattern. Subsequently, after irradiating the resin layer with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, the resin layer was completely cured by heating at 170 ° C. for 60 minutes to produce a cured film.
In Example 3-17, after laminating the dry film, the PET film was peeled off, and the resin layer was completely cured at 190 ° C. for 60 minutes.
<熱伝導率>
 上記<ドライフィルムの作製>及び、上記<硬化膜の作製>と同じ条件で、各実施例および比較例で作製した樹脂層の硬化膜を電解銅箔GTS-MP-18μm(古河電気工業(株)社製)の光沢面上に400μmとなるように形成した。その後、銅箔から硬化膜を剥離し、厚み400μm、φ10mmのサンプルを作製し、京都電子工業社製レーザーフラッシュ法熱物性測定装置LFA-502にて熱拡散率を測定、カーブフィッティング法にて解析した。密度は、水中置換法、比熱はDSC法(PerkinElmer Oyris Diamond DSC)にて測定し、下記式により熱伝導率を算出した。
熱伝導率[W/(m・K)}=密度(Kg/m)×比熱[kJ/(kg・K)]×熱拡散率(m/s)×1000
〇:熱伝導率1以上
×:熱伝導率1未満
<Thermal conductivity>
Under the same conditions as in the above <Preparation of dry film> and <Preparation of cured film>, the cured film of the resin layer prepared in each of the examples and comparative examples was replaced with electrolytic copper foil GTS-MP-18 μm (Furukawa Electric Co., Ltd. ) Was formed to a thickness of 400 μm on the glossy surface. Thereafter, the cured film was peeled off from the copper foil, a sample having a thickness of 400 μm and a diameter of 10 mm was prepared, and the thermal diffusivity was measured by a laser flash method thermophysical property measurement device LFA-502 manufactured by Kyoto Electronics Industry Co., Ltd. and analyzed by a curve fitting method. did. The density was measured by an underwater displacement method, and the specific heat was measured by a DSC method (PerkinElmer Oyris Diamond DSC), and the thermal conductivity was calculated by the following equation.
Thermal conductivity [W / (m · K)] = density (Kg / m 3 ) × specific heat [kJ / (kg · K)] × thermal diffusivity (m 2 / s) × 1000
〇: Thermal conductivity 1 or more ×: Thermal conductivity less than 1
<解像性>
 上記<ドライフィルムの作製>で得た実施例3-1~3-16、比較例3-1~3-3のドライフィルムを真空ラミネーターを用いて加熱ラミネートして、感光性樹脂組成物の樹脂層を有する評価基板を得た。この基板に対し、高圧水銀灯(ショートアークランプ)搭載露光装置を用いて、最適露光量でL/S=100μm/100μmのパターン露光し、PETフィルムを剥離した。その後、30℃の1質量%炭酸ナトリウム水溶液を用いて、スプレー厚0.2MPaの条件で60秒現像を行いレジストパターンを得た。
〇:良好なパターン形成ができた。
△:欠けが確認された。
×:ライン形成が不可能であった。
<Resolution>
The dry films of Examples 3-1 to 3-16 and Comparative Examples 3-1 to 3-3 obtained in the above <Preparation of dry film> were heat-laminated using a vacuum laminator to obtain a resin of a photosensitive resin composition. An evaluation substrate having a layer was obtained. The substrate was exposed to a pattern of L / S = 100 μm / 100 μm at an optimal exposure amount using an exposure apparatus equipped with a high-pressure mercury lamp (short arc lamp), and the PET film was peeled off. Thereafter, using a 1% by mass aqueous solution of sodium carbonate at 30 ° C., development was performed for 60 seconds under the condition of a spray thickness of 0.2 MPa to obtain a resist pattern.
〇: A good pattern was formed.
Δ: Chipping was confirmed.
X: Line formation was impossible.
<EMC(モールド樹脂)との密着性>
 上記<硬化膜の作製>で得たプラズマ処理なしの硬化被膜上に、モールド材(パナソニック社製UV8710U)を用いて、円形型(直径2.523mm、高さ3.00mm)のモールドプレス成形を行い、175℃で4時間加熱することによりモールド材を硬化させた。その後、硬化被膜表面に設けられたモールド材にシェアを与え、硬化被膜とモールド材との剥離強度を測定した。
〇:150N以上
△:100N以上150N未満
×:100N未満
<Adhesion with EMC (mold resin)>
Using a mold material (UV8710U manufactured by Panasonic Corporation), a circular mold (2.523 mm in diameter, 3.00 mm in height) was press-molded on the cured film without plasma treatment obtained in the above <Preparation of cured film>. Then, the mold material was cured by heating at 175 ° C. for 4 hours. Then, a shear was given to the mold material provided on the surface of the cured film, and the peel strength between the cured film and the mold material was measured.
〇: 150 N or more △: 100 N or more and less than 150 N ×: less than 100 N
<ガラスとの密着性>
 ガラス基板として、AN100ガラス(旭硝子社製)上に、上記<硬化膜の作製>と同じ条件で硬化膜を作製した。JIS K5400に基づき、クロスカッターにより切込みが層間材に達する1mm角の碁盤目100個(10×10)を作り、その上にセロハンテープを完全に密着させ、引き離し、100個中何個密着しているか確認した。
〇:100/100
△:70/100以上100/100未満
×:70/100未満
<Adhesion with glass>
As a glass substrate, a cured film was produced on AN100 glass (manufactured by Asahi Glass Co., Ltd.) under the same conditions as the above <Preparation of cured film>. Based on JIS K5400, 100 crosscuts of 1 mm square (10 × 10) are made by a cross cutter to reach the interlayer material, and a cellophane tape is completely adhered to it, separated, and several hundred out of 100 are closely adhered. Was confirmed.
〇: 100/100
Δ: 70/100 or more and less than 100/100 x: less than 70/100
<HAST後の銅との密着性>
 電解銅箔GTS-MP-18μm(古河電気工業(株)社製)の光沢面に前処理として、メック社製CZ-8401をスプレー後、AP-3002処理して粗化処理を行い表面粗度Raが0.04μmのロープロファイルの銅箔を得た。
 この処理面に各実施例および比較例で作製した樹脂層厚み20μmのドライフィルムをラミネートし、上記硬化膜の作成条件にて硬化させて絶縁層を形成したサンプルを得た。
 このサンプルの絶縁層とFR-4(ガラスエポキシ)基板を接着剤(ニチバン社製AR-S 30)で接着した。この接着体を100mm×15mmに切断し、10mm間隔で銅箔に切り込みを入れた。
 このサンプルの初期値および130℃85%RH 100時間のHAST試験後、両方のサンプルを、島津製作所製オートグラフAG-XによりJIS C6481に基づきピール強度を測定した。
 ピール強度が高いほど密着性が良く、HAST試験前後での密着強度低下率が低い方が優れている。
 (HAST前-HAST後)/HAST前 ×100 (%)
●:密着性低下率 35%未満
◎:密着性低下率 35%以上40%未満
〇:密着性低下率 40%以上55%未満
△:密着性低下率 55%以上65%未満
×:密着性低下率 65%以上
<Adhesion to copper after HAST>
As a pretreatment, a glossy surface of electrolytic copper foil GTS-MP-18 μm (made by Furukawa Electric Co., Ltd.) is sprayed with CZ-8401 manufactured by Mech Co., Ltd., and then subjected to AP-3002 treatment to roughen the surface. A low-profile copper foil having an Ra of 0.04 μm was obtained.
A dry film having a resin layer thickness of 20 μm prepared in each of Examples and Comparative Examples was laminated on the treated surface, and cured under the above-described conditions for forming a cured film to obtain a sample in which an insulating layer was formed.
The insulating layer of this sample and an FR-4 (glass epoxy) substrate were bonded with an adhesive (AR-S30 manufactured by Nichiban). This bonded body was cut into 100 mm × 15 mm, and cut into copper foil at intervals of 10 mm.
After the initial value of this sample and the HAST test at 130 ° C. and 85% RH for 100 hours, the peel strength of both samples was measured by Autograph AG-X manufactured by Shimadzu Corporation based on JIS C6481.
The higher the peel strength, the better the adhesion, and the lower the rate of decrease in adhesion before and after the HAST test, the better.
(Before HAST-After HAST) / Before HAST × 100 (%)
●: Adhesion reduction rate less than 35% ◎: Adhesion reduction rate from 35% to less than 40% Δ: Adhesion reduction rate from 40% to less than 55% Δ: Adhesion reduction rate from 55% to less than 65% ×: Adhesion reduction Rate 65% or more
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
*3-1:上記で合成したカルボキシル基含有感光性樹脂A-1(カルボン酸当量:701.25g/eq)
*3-2:新日鐵化学社製ESN-475V(ナフタレン型エポキシ樹脂、エポキシ当量:340g/eq)
*3-3:日本化薬社製NC-3000L(ビフェニル型エポキシ樹脂、エポキシ当量:275g/eq)
*3-4:ロンザジャパン社製プリマセットPT30(ノボラック型多官能シアネート樹脂)
*3-5:日本化薬社製MIR-3000(マレイミド基を有する化合物)
*3-6:三菱化学社製YX7200B35(フェノキシタイプ)
*3-7:DMAP(ジメチルアミノピリジン)
*3-8:ジシアンジアミド
*3-9:メラミン
*3-10:クラリアントケミカルズ社製OP-935(ホスフィン酸金属塩系)
*3-11:フタロシアニンブルー
*3-12:トクシキ社製カーボンブラック
*3-13:IGM社製OmniradTPO(2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド)
*3-14:新中村化学工業社製A-DCP(トリシクロデカンジメタノールジアクリレート)
*3-15:上記で調製した、ケイ素の水和酸化物で被覆された窒化ホウ素粒子
*3-16:上記で調製した、アルミニウムの水和酸化物で被覆された窒化ホウ素粒子
*3-17:上記で調製した、ジルコニウムの水和酸化物で被覆された窒化ホウ素粒子
*3-18:上記で調製した、亜鉛の水和酸化物で被覆された窒化ホウ素粒子
*3-19:上記で調製した、チタンの水和酸化物で被覆された窒化ホウ素粒子
*3-20:上記で調製した、ケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆された窒化ホウ素粒子
*3-21:上記で調製した、ケイ素の水和酸化物で被覆された後にジルコニウムの水和酸化物で被覆された窒化ホウ素粒子
*3-22:上記で調製した、ケイ素の水和酸化物で被覆された後に亜鉛の水和酸化物で被覆された窒化ホウ素粒子
*3-23:上記で調製した、ケイ素の水和酸化物で被覆された後にチタンの水和酸化物で被覆された窒化ホウ素粒子
*3-24:上記で調製した、アルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理された窒化ホウ素粒子
*3-25:上記で調製した、アルミニウムの水和酸化物で被覆され、かつ、フェニルアミノシランで表面処理された窒化ホウ素粒子
*3-26:上記で調製した、ケイ素の水和酸化物で被覆された後にアルミニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理された窒化ホウ素粒子
*3-27:上記で調製した、メタクリルシランで表面処理された窒化ホウ素粒子
*3-28:未処理の窒化ホウ素粒子(ESK Ceramics GmbH社製S1、比重:3.65、平均粒子径:2μm、熱伝導率:200W/m・k)
*3-29:上記で調製した、ケイ素の水和酸化物で被覆された後にジルコニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理された窒化アルミニウム粒子
*3-30:上記で調製した、ケイ素の水和酸化物で被覆された後にジルコニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理された酸化マグネシウム粒子
*3-31:上記で調製した、ケイ素の水和酸化物で被覆された後にジルコニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理された酸化アルミニウム粒子
*3-32:上記で調製した、ケイ素の水和酸化物で被覆された後にジルコニウムの水和酸化物で被覆され、かつ、メタクリルシランで表面処理されたスピネル粒子
*3-33:上記で調製した、メタクリルシランで表面処理されたシリカ粒子
* 3-1: Carboxyl group-containing photosensitive resin A-1 synthesized above (carboxylic acid equivalent: 701.25 g / eq)
* 3-2: ESN-475V manufactured by Nippon Steel Chemical Co., Ltd. (naphthalene type epoxy resin, epoxy equivalent: 340 g / eq)
* 3-3: NC-3000L manufactured by Nippon Kayaku (biphenyl type epoxy resin, epoxy equivalent: 275 g / eq)
* 3-4: Primaset PT30 (Novolak type polyfunctional cyanate resin) manufactured by Lonza Japan
* 3-5: NIR-3000 (a compound having a maleimide group) manufactured by Nippon Kayaku Co., Ltd.
* 3-6: Mitsubishi Chemical YX7200B35 (phenoxy type)
* 3-7: DMAP (dimethylaminopyridine)
* 3-8: Dicyandiamide * 3-9: Melamine * 3-10: OP-935 (Metal phosphinate) based on Clariant Chemicals
* 3-11: Phthalocyanine blue * 3-12: Carbon black manufactured by Tokushiki * 3-13: Omnirad TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide) manufactured by IGM
* 3-14: A-DCP (tricyclodecane dimethanol diacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd.
* 3-15: Boron nitride particles coated with hydrated oxide of silicon prepared above * 3-16: Boron nitride particles coated with hydrated oxide of aluminum prepared above * 3-17 : Boron nitride particles coated with hydrated oxide of zirconium prepared above * 3-18: Boron nitride particles coated with hydrated oxide of zinc prepared above * 3-19: Prepared above Boron nitride particles coated with hydrated oxide of titanium * 3-20: Boron nitride particles prepared above, coated with hydrated oxide of silicon and then coated with hydrated oxide of aluminum * 3-21: Boron nitride particles prepared above, coated with hydrated oxide of silicon and then coated with hydrated oxide of zirconium * 3-22: The hydrated oxide of silicon prepared above Hydration of zinc after being coated Boron nitride particles coated with halide * 3-23: Prepared above, boron nitride particles coated with hydrated oxide of silicon and then coated with hydrated oxide of titanium * 3-24: Prepared above Boron nitride particles coated with hydrated aluminum oxide and surface-treated with methacrylsilane * 3-25: Coated with hydrated aluminum oxide prepared above and surface-coated with phenylaminosilane Treated boron nitride particles * 3-26: The above-prepared boron nitride particles coated with a hydrated oxide of silicon and then coated with a hydrated oxide of aluminum and surface-treated with methacrylsilane * 3-27: Boron nitride particles surface-treated with methacrylsilane prepared above * 3-28: Untreated boron nitride particles (ESK Ceramics GmbH) S1, specific gravity: 3.65, average particle diameter: 2 μm, thermal conductivity: 200 W / m · k)
* 3-29: Aluminum nitride particles prepared above, coated with hydrated oxide of silicon, then coated with hydrated oxide of zirconium, and surface-treated with methacrylsilane * 3-30: Prepared magnesium oxide particles coated with hydrated oxide of silicon and then coated with hydrated oxide of zirconium and surface-treated with methacrylsilane * 3-31: hydrated silicon prepared as described above Aluminum oxide particles coated with oxide and then coated with hydrated oxide of zirconium and surface-treated with methacrylsilane * 3-32: after coated with hydrated oxide of silicon prepared above Spinel particles coated with a hydrated oxide of zirconium and surface-treated with methacrylsilane * 3-33: Surface prepared with methacrylsilane as prepared above Management silica particles
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記表中に示す結果から、本発明の実施例3-1~3-17の硬化性樹脂組成物は、熱伝導率が高いフィラーの分散性が向上し、基板との密着性と高熱伝導率を両立することができる硬化物が得られることがわかる。 From the results shown in the above table, it can be seen that the curable resin compositions of Examples 3-1 to 3-17 of the present invention have improved filler dispersibility having high thermal conductivity, and have good adhesion to the substrate and high thermal conductivity. It can be seen that a cured product capable of satisfying both conditions can be obtained.
10 積層構造体
11 層間絶縁材(パッケージ基板)
12a、12b 導体層
13a、13b ソルダーレジスト
14 はんだ
15 半導体ウェハ
16 アンダーフィル
17 封止材
 
10 laminated structure 11 interlayer insulating material (package substrate)
12a, 12b Conductive layers 13a, 13b Solder resist 14 Solder 15 Semiconductor wafer 16 Underfill 17 Sealant

Claims (22)

  1.  ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆されたペロブスカイト型化合物と、硬化性樹脂と、を含むことを特徴とする硬化性樹脂組成物。 A perovskite compound coated with at least one of silicon hydrated oxide, aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide and titanium hydrated oxide; And a curable resin.
  2.  前記被覆されたペロブスカイト型化合物が、組成物の固形分全容量に対して、20容量%以上であることを特徴とする請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the coated perovskite compound accounts for 20% by volume or more based on the total solid content of the composition.
  3.  前記被覆されたペロブスカイト型化合物が、さらに、表面に硬化性反応基を有することを特徴とする請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the coated perovskite compound further has a curable reactive group on the surface.
  4.  請求項1記載の硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするドライフィルム。 A dry film having a resin layer obtained by applying and drying the curable resin composition according to claim 1 on a film.
  5.  請求項1~3のいずれか一項に記載の硬化性樹脂組成物、または、請求項4記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 (4) A cured product obtained by curing the curable resin composition according to any one of (1) to (3) or the resin layer of the dry film according to (4).
  6.  請求項5記載の硬化物を有することを特徴とする電子部品。 An electronic component comprising the cured product according to claim 5.
  7.  ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆された酸化チタン粒子と、硬化性樹脂と、を含む硬化性樹脂組成物であって、
     前記被覆された酸化チタン粒子が、表面に硬化性反応基を有することを特徴とする硬化性樹脂組成物。
    Titanium oxide particles coated with at least one of silicon hydrated oxide, aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide and titanium hydrated oxide; , A curable resin, and a curable resin composition comprising:
    A curable resin composition, wherein the coated titanium oxide particles have a curable reactive group on the surface.
  8.  前記被覆された酸化チタン粒子が、組成物の固形分全容量に対して、25容量%以上であることを特徴とする請求項7記載の硬化性樹脂組成物。 The curable resin composition according to claim 7, wherein the coated titanium oxide particles account for 25% by volume or more of the total solid content of the composition.
  9.  前記被覆された酸化チタン粒子のゼータ電位の絶対値が、15mV以上であることを特徴とする請求項7記載の硬化性樹脂組成物。 8. The curable resin composition according to claim 7, wherein the coated titanium oxide particles have an absolute value of zeta potential of 15 mV or more.
  10.  当該組成物の固形分の酸価が25mgKOH/g以下であることを特徴とする請求項7記載の硬化性樹脂組成物。 The curable resin composition according to claim 7, wherein the solid content of the composition has an acid value of 25 mgKOH / g or less.
  11.  周波数10GHzにおける誘電正接が0.01以下の基板に塗布されることを特徴とする請求項7記載の硬化性樹脂組成物。 The curable resin composition according to claim 7, wherein the composition is applied to a substrate having a dielectric loss tangent of 0.01 or less at a frequency of 10 GHz.
  12.  請求項7記載の硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするドライフィルム。 A dry film comprising a resin layer obtained by applying and drying the curable resin composition according to claim 7 on a film.
  13.  請求項7~11のいずれか一項に記載の硬化性樹脂組成物、または、請求項12記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 硬化 A curable resin composition obtained by curing the curable resin composition according to any one of claims 7 to 11 or the resin layer of the dry film according to claim 12.
  14.  樹脂硬化層(A)と、前記樹脂硬化層(A)に接する樹脂硬化層(B)または基板(C)と、を含む構造体であって、
     前記樹脂硬化層(A)が、請求項7~11のいずれか一項に記載の硬化性樹脂組成物、または、請求項12記載のドライフィルムの樹脂層を硬化して得られるゼータ電位が正の硬化物であり、
     前記樹脂硬化層(B)または基板(C)のゼータ電位が、負であることを特徴とする積層構造体。
    A structure comprising: a cured resin layer (A); and a cured resin layer (B) or a substrate (C) in contact with the cured resin layer (A),
    The resin cured layer (A) has a positive zeta potential obtained by curing the curable resin composition according to any one of claims 7 to 11 or the resin layer of the dry film according to claim 12. Is a cured product of
    A laminated structure, wherein the zeta potential of the cured resin layer (B) or the substrate (C) is negative.
  15.  請求項13記載の硬化物を有することを特徴とする電子部品。 An electronic component comprising the cured product according to claim 13.
  16.  請求項請求項14記載の積層構造体を有することを特徴とする電子部品。 An electronic component comprising the laminated structure according to claim 14.
  17.  ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物およびチタンの水和酸化物のうちの少なくともいずれか1種により被覆された熱伝導率が15W/m・k以上のフィラーと、
     硬化性樹脂と、
    を含むことを特徴とする硬化性樹脂組成物。
    Thermal conductivity coated with at least one of silicon hydrated oxide, aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide and titanium hydrated oxide A filler of 15 W / mk or more,
    A curable resin,
    A curable resin composition comprising:
  18.  前記被覆された熱伝導率が15W/m・k以上のフィラーが、組成物の固形分全容量に対して30容量%以上であることを特徴とする請求項17記載の硬化性樹脂組成物。 18. The curable resin composition according to claim 17, wherein the coated filler having a thermal conductivity of 15 W / mk is not less than 30% by volume based on the total solid content of the composition.
  19.  前記被覆された熱伝導率が15W/m・k以上のフィラーが、さらに表面に硬化性反応基を有することを特徴とする請求項17記載の硬化性樹脂組成物。 The curable resin composition according to claim 17, wherein the coated filler having a thermal conductivity of 15 W / mk or more further has a curable reactive group on its surface.
  20.  請求項17記載の硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするドライフィルム。 18. A dry film comprising a resin layer obtained by applying the curable resin composition according to claim 17 to a film and drying the film.
  21.  請求項17~19のいずれか一項に記載の硬化性樹脂組成物、または、請求項20記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 硬化 A cured product obtained by curing the curable resin composition according to any one of claims 17 to 19 or the resin layer of the dry film according to claim 20.
  22.  請求項21記載の硬化物を有することを特徴とする電子部品。 An electronic component comprising the cured product according to claim 21.
PCT/JP2019/002807 2018-09-28 2019-01-28 Curable resin composition, dry film, cured product, laminated structure, and electronic component WO2020066049A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-186066 2018-09-28
JP2018186066A JP2020057667A (en) 2018-09-28 2018-09-28 Curable resin composition, dry film, cured product, and electronic component
JP2018-186067 2018-09-28
JP2018186067A JP2020055927A (en) 2018-09-28 2018-09-28 Curable resin composition, dry film, cured product, laminate structure and electronic component
JP2018-186068 2018-09-28
JP2018186068A JP2020057668A (en) 2018-09-28 2018-09-28 Curable resin composition, dry film, cured product, and electronic component

Publications (1)

Publication Number Publication Date
WO2020066049A1 true WO2020066049A1 (en) 2020-04-02

Family

ID=69951236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002807 WO2020066049A1 (en) 2018-09-28 2019-01-28 Curable resin composition, dry film, cured product, laminated structure, and electronic component

Country Status (2)

Country Link
TW (1) TW202012162A (en)
WO (1) WO2020066049A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545951A (en) * 2020-06-29 2020-08-18 王莹 High-temperature-resistant welding stopper
WO2021157282A1 (en) * 2020-02-03 2021-08-12 太陽インキ製造株式会社 Curable composition, and dry film and cured object obtained therefrom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145285A1 (en) * 2006-06-16 2007-12-21 Nippon Shokubai Co., Ltd. Polymer-coated metal oxide microparticle and application thereof
JP2009073987A (en) * 2007-09-21 2009-04-09 Ajinomoto Co Inc High dielectric resin composition
WO2013187303A1 (en) * 2012-06-12 2013-12-19 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate and printed wiring board
WO2016199867A1 (en) * 2015-06-12 2016-12-15 旭硝子株式会社 Film or sheet and screen
JP2017034226A (en) * 2016-04-08 2017-02-09 太陽インキ製造株式会社 Curable resin composition, dry film, cured product, and printed wiring board
JP2018159012A (en) * 2017-03-23 2018-10-11 東洋アルミニウム株式会社 Heat-radiating filler and heat-radiating resin composition containing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145285A1 (en) * 2006-06-16 2007-12-21 Nippon Shokubai Co., Ltd. Polymer-coated metal oxide microparticle and application thereof
JP2009073987A (en) * 2007-09-21 2009-04-09 Ajinomoto Co Inc High dielectric resin composition
WO2013187303A1 (en) * 2012-06-12 2013-12-19 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate and printed wiring board
WO2016199867A1 (en) * 2015-06-12 2016-12-15 旭硝子株式会社 Film or sheet and screen
JP2017034226A (en) * 2016-04-08 2017-02-09 太陽インキ製造株式会社 Curable resin composition, dry film, cured product, and printed wiring board
JP2018159012A (en) * 2017-03-23 2018-10-11 東洋アルミニウム株式会社 Heat-radiating filler and heat-radiating resin composition containing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157282A1 (en) * 2020-02-03 2021-08-12 太陽インキ製造株式会社 Curable composition, and dry film and cured object obtained therefrom
CN111545951A (en) * 2020-06-29 2020-08-18 王莹 High-temperature-resistant welding stopper
CN111545951B (en) * 2020-06-29 2021-09-24 王莹 High-temperature-resistant welding stopper

Also Published As

Publication number Publication date
TW202012162A (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6880510B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, printed wiring board and semiconductor device
JP7076263B2 (en) Curable resin compositions, dry films, cured products, and electronic components
WO2019163292A1 (en) Resin composition for multilayer electronic components, dry film, cured product, multilayer electronic component, and printed wiring board
JP6748663B2 (en) Curable composition, dry film, cured product and printed wiring board
WO2018143220A1 (en) Photocurable resin composition, dry film, cured product, and printed wiring board
JP2019178307A (en) Curable resin composition, dry film, cured product and electronic component
WO2020066049A1 (en) Curable resin composition, dry film, cured product, laminated structure, and electronic component
JP6939784B2 (en) Resin composition, resin sheet, multilayer printed wiring board and semiconductor device
JP2020057667A (en) Curable resin composition, dry film, cured product, and electronic component
KR20190022480A (en) Resin composition, resin sheet, multilayer printed wiring board and semiconductor device
JP2020055927A (en) Curable resin composition, dry film, cured product, laminate structure and electronic component
JP2019178306A (en) Curable resin composition, dry film, cured product and electronic component
JP7032977B2 (en) Curable resin compositions, dry films, cured products, and electronic components
WO2019187587A1 (en) Curable resin composition, dry film, cured object, layered structure, and electronic component
JP2020057668A (en) Curable resin composition, dry film, cured product, and electronic component
TW202035595A (en) Curable resin composition, dry film, cured product, and electronic component
KR102543365B1 (en) Curable composition, dry film, cured product and printed wiring board
KR102571046B1 (en) Curable resin composition, dry film, cured product and printed wiring board
JP2021044387A (en) Laminated cured product, curable resin composition, dry film, and manufacturing method of laminated cured product
JP2022159248A (en) Resin laminate, cured product and printed wiring board
JP2022122104A (en) Curable resin composition, dry film, cured product, and electronic component
CN113126436A (en) Laminated cured body, curable resin composition, dry film, and method for producing laminated cured body
JP2021044386A (en) Laminated cured product, curable resin composition, dry film, and manufacturing method of laminated cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864917

Country of ref document: EP

Kind code of ref document: A1