WO2021199432A1 - 伝送路長検出装置及びネットワーク通信装置 - Google Patents

伝送路長検出装置及びネットワーク通信装置 Download PDF

Info

Publication number
WO2021199432A1
WO2021199432A1 PCT/JP2020/015344 JP2020015344W WO2021199432A1 WO 2021199432 A1 WO2021199432 A1 WO 2021199432A1 JP 2020015344 W JP2020015344 W JP 2020015344W WO 2021199432 A1 WO2021199432 A1 WO 2021199432A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
capacitance
length
unit
calculation unit
Prior art date
Application number
PCT/JP2020/015344
Other languages
English (en)
French (fr)
Inventor
洋 板倉
慶洋 明星
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/015344 priority Critical patent/WO2021199432A1/ja
Priority to EP20928333.2A priority patent/EP4119955B1/en
Priority to CN202080099116.9A priority patent/CN115349092A/zh
Priority to JP2020560414A priority patent/JP6906718B1/ja
Publication of WO2021199432A1 publication Critical patent/WO2021199432A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing

Definitions

  • the present disclosure relates to a transmission line length detecting device for calculating the electrical length of a transmission line and a network communication device including a transmission line length detecting device.
  • An existing communication network may be used as the communication network used by the network communication device to send and receive signals.
  • the transmission speed of signals transmitted and received by the network communication device may be determined by the transmission speed within a range in which the communication network can be treated as a lumped constant line. In order to determine the transmission speed, it is necessary to measure the electrical length of the transmission line.
  • a TDR (Time Domain Reflectometry) method is known as a method for measuring the electrical length of a transmission line (see, for example, Patent Document 1).
  • a step wave is applied to a transmission line from one end of the transmission line to be measured, and the reflected wave of the step wave reflected by the other end of the transmission line is observed at one end of the transmission line, and the step wave is observed.
  • the electric length of the transmission line is calculated based on the time from the given time to the time when the reflected wave is observed.
  • the electric length of the transmission line can be calculated by using the TDR method.
  • a plurality of reflected waves are generated by reflecting step waves at a plurality of line ends because the communication network is branched in the middle, it can be used for calculating the electric length. It is difficult to identify the reflected wave to be observed. Therefore, when the communication network is branched in the middle, there is a problem that the electric length of the transmission line may not be measured by the TDR method.
  • the present disclosure has been made to solve the above-mentioned problems, and is a transmission line length detecting device capable of measuring the electric length of a transmission line regardless of whether or not the communication network is branched in the middle. The purpose is to obtain.
  • the transmission line length detecting device is a first static unit that observes a voltage change of a transmission line in a communication network and calculates a total capacitance, which is the total capacitance of the transmission line, based on the voltage change.
  • a second capacitance calculation unit that measures the characteristic impedance of the transmission line and calculates the capacitance per unit length of the transmission line from the characteristic impedance, and a first capacitance calculation unit. By dividing the total capacitance calculated by the above by the capacitance per unit length calculated by the second capacitance calculation unit, the electric length calculation unit that calculates the electric length of the transmission line I have.
  • the electrical length of the transmission line can be measured regardless of whether or not the communication network is branched in the middle.
  • FIG. 5 is a hardware configuration diagram of a computer when a part of the transmission line length detecting device 3 is realized by software, firmware, or the like. It is a flowchart which shows the processing procedure of a part of the transmission line length detection apparatus 3. It is explanatory drawing which shows the change of the voltage V at the supply point of a constant current I 0. It is explanatory drawing which shows the change of the voltage V'at the supply point of a step signal.
  • FIG. 1 It is explanatory drawing which shows the change of the voltage V at the supply point of a constant current I 0. It is a block diagram which shows the other communication system including the transmission line length detection apparatus 3 which concerns on Embodiment 1.
  • FIG. 2 is a block diagram which shows the communication system including the transmission line length detection apparatus 3 which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows the communication system including the transmission line length detection apparatus 3 which concerns on Embodiment 3.
  • FIG. 3 It is a hardware block diagram which shows the hardware of a part of the transmission line length detection apparatus 3 which concerns on Embodiment 3.
  • FIG. 1 is a configuration diagram showing a communication system including a transmission line length detecting device 3 according to the first embodiment.
  • the communication system shown in FIG. 1 includes a network communication device 1, a transmission line 2, and a transmission line length detection device 3.
  • a plurality of network communication devices 1 are connected to a transmission line 2.
  • a communication network is formed by a plurality of network communication devices 1 and a transmission line 2.
  • each of the plurality of network communication devices 1 is connected to the line end of the transmission line 2.
  • this is only an example, and there is no particular limitation on the connection position of the network communication device 1 with respect to the transmission line 2.
  • the communication network may be a bus-type network, a star-type network, or the like, or may be a single transmission line having no branch at all.
  • the communication network is an existing communication network, and the line length of the transmission line 2 and the connection form of the transmission line 2 are unknown.
  • the network communication device 1 includes a transmission / reception unit 11, a driver IC (Integrated Circuit) 12, and a receiver IC 13.
  • the transmission / reception unit 11 outputs a transmission signal to the transmission line 2 via the driver IC 12.
  • the transmission / reception unit 11 receives the signal transmitted through the transmission line 2 via the receiver IC 13.
  • the driver IC 12 outputs the transmission signal output from the transmission / reception unit 11 to the transmission line 2.
  • the receiver IC 13 receives the signal transmitted through the transmission line 2 and outputs the signal to the transmission / reception unit 11.
  • the transmission line length detection device 3 includes a first capacitance calculation unit 21, a second capacitance calculation unit 22, an electrical length calculation unit 23, and a display unit 24.
  • FIG. 2 is a hardware configuration diagram showing a part of the hardware of the transmission line length detecting device 3 according to the first embodiment.
  • the first capacitance calculation unit 21 includes a switch 21a, a constant current source 21b, a voltage reference circuit 21c, and a capacitance calculation processing unit 21d.
  • the first capacitance calculation unit 21 observes the voltage change of the transmission line 2 in the communication network, and calculates the total capacitance total, which is the total capacitance of the transmission line 2, based on the voltage change. .. That is, the first capacitance calculation unit 21 observes the voltage change at the supply point of the constant current I 0 with respect to the transmission line 2 when the constant current I 0 is supplied to the transmission line 2, and transmits from the voltage change. calculating the total capacitance C total of the road 2.
  • the first capacitance calculation unit 21 outputs the first capacitance information indicating the total capacitance total to the electrical length calculation unit 23.
  • One end of the switch 21a is connected to a probe 25 described later, and the other end of the switch 21a is connected to each of the constant current source 21b and the voltage reference circuit 21c.
  • the switch 21a is closed if the control signal output from the switch control unit 23a, which will be described later, of the electrical length calculation unit 23 indicates an ON command.
  • the switch 21a is opened when the control signal output from the switch control unit 23a indicates an off command.
  • the constant current source 21b is a current source that supplies a constant current I 0 to the transmission line 2 via the switch 21a and the probe 25.
  • the voltage reference circuit 21c observes the voltage change at the supply point of the constant current I 0 with respect to the transmission line 2 when the constant current I 0 is output from the constant current source 21b.
  • the voltage reference circuit 21c measures the time ⁇ t required for the voltage V at the supply point of the constant current I 0 to change from 0 [V] to the reference voltage REF [V], and calculates the time ⁇ t for the capacitance calculation process. Output to unit 21d.
  • the capacitance calculation processing unit 21d is realized by, for example, the first capacitance calculation processing circuit 31 shown in FIG. Capacitance calculation processing section 21d, by multiplying the constant current I 0 is already value time Delta] t, the multiplication result of the constant current I 0 and the time Delta] t, divided by the reference voltage REF, the total electrostatic Calculate the capacitance voltage.
  • the capacitance calculation processing unit 21d outputs the first capacitance information indicating the total capacitance total to the electric length calculation processing unit 23b, which will be described later, of the electric length calculation unit 23.
  • the second capacitance calculation unit 22 includes a switch 22a, a step signal source 22b, an analog-digital converter (hereinafter referred to as “ADC”) 22c, and a capacitance calculation processing unit 22d.
  • ADC analog-digital converter
  • One end of the switch 22a is connected to the probe 25, and the other end of the switch 22a is connected to each of the step signal source 22b and the ADC 22c.
  • the switch 22a is closed if the control signal output from the switch control unit 23a indicates an ON command.
  • the switch 22a is opened when the control signal output from the switch control unit 23a indicates an off command.
  • the step signal source 22b is a signal source that supplies the step signal to the transmission line 2 via the switch 22a and the probe 25.
  • the step signal is a signal whose signal level changes sharply from 0 to 1.
  • the ADC 22c converts the voltage at the supply point of the step signal from an analog signal to a digital signal.
  • the ADC 22c outputs a digital signal to the capacitance calculation processing unit 22d.
  • the capacitance calculation processing unit 22d is realized by, for example, the second capacitance calculation processing circuit 32 shown in FIG.
  • the capacitance calculation processing unit 22d identifies the characteristic impedance Z 0 of the transmission line 2 based on the digital signal output from the ADC 22c.
  • Capacitance calculation processing section 22d calculates the capacitance C UL per unit length of the transmission path 2 from the characteristic impedance Z 0.
  • the capacitance calculation processing unit 22d outputs the second capacitance information indicating the capacitance CUL per unit length to the electric length calculation processing unit 23b of the electric length calculation unit 23.
  • the electric length calculation unit 23 includes a switch control unit 23a and an electric length calculation processing unit 23b. Electrical length calculation unit 23, the total capacitance C total which is calculated by the first electrostatic capacity calculation unit 21, the capacitance per unit length calculated by the second electrostatic capacity calculation unit 22 C by dividing by UL, calculating an electrical length E L of the transmission line 2.
  • the switch control unit 23a is realized by, for example, the switch control circuit 33 shown in FIG.
  • the switch control unit 23a outputs a control signal indicating an on command or a control signal indicating an off command to the switch 21a. Further, the switch control unit 23a outputs a control signal indicating an on command or a control signal indicating an off command to the switch 22a.
  • the electric length calculation processing unit 23b is realized by, for example, the electric length calculation processing circuit 34 shown in FIG.
  • the electric length calculation processing unit 23b uses the total capacitance total indicated by the first capacitance information output from the capacitance calculation processing unit 21d as the second capacitance information output from the capacitance calculation processing unit 22d. by dividing by the capacitance C UL per unit length indicated calculates an electrical length E L of the transmission line 2.
  • Electrical length calculation processing unit 23b outputs a display signal for displaying on the display unit 24 an electrical length E L of the transmission line 2 on the display unit 24.
  • the display unit 24 is realized by, for example, a liquid crystal display.
  • the display unit 24 displays an electrical length E L of the transmission line 2 according to the display signal outputted from the electric length calculation processing unit 23b.
  • the probe 25 is an instrument for supplying the constant current I 0 output from the constant current source 21b or the step signal output from the step signal source 22b to the transmission line 2.
  • each of the capacitance calculation processing unit 21d, the capacitance calculation processing unit 22d, the switch control unit 23a, and the electrical length calculation processing unit 23b which are some components of the transmission line length detection device 3, is shown in FIG. It is assumed that it will be realized by dedicated hardware as shown in 2. That is, a part of the transmission path length detection device 3 is realized by the first capacitance calculation processing circuit 31, the second capacitance calculation processing circuit 32, the switch control circuit 33, and the electric length calculation processing circuit 34. I'm assuming something.
  • Each of the first capacitance calculation processing circuit 31, the second capacitance calculation processing circuit 32, the switch control circuit 33, and the electrical length calculation processing circuit 34 is, for example, a single circuit, a composite circuit, or a programmed processor. , A parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • Some components of the transmission line length detection device 3 are not limited to those realized by dedicated hardware, and a part of the transmission line length detection device 3 includes software, firmware, or software and firmware. It may be realized by the combination of.
  • the software or firmware is stored as a program in the memory of the computer.
  • a computer means hardware that executes a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
  • FIG. 3 is a hardware configuration diagram of a computer when a part of the transmission line length detecting device 3 is realized by software, firmware, or the like.
  • the capacitance calculation processing unit 21d When a part of the transmission line length detection device 3 is realized by software, firmware, or the like, the capacitance calculation processing unit 21d, the capacitance calculation processing unit 22d, the switch control unit 23a, and the electrical length calculation processing unit 23b, respectively.
  • a program for causing the computer to execute the processing procedure of is stored in the memory 41.
  • the processor 42 of the computer executes the program stored in the memory 41.
  • FIG. 4 is a flowchart showing a processing procedure of a part of the transmission line length detecting device 3.
  • the switch control unit 23a closes the switch 21a by outputting a control signal indicating an on command to the switch 21a (step ST1 in FIG. 4).
  • the switch control unit 23a opens the switch 22a by outputting a control signal indicating an off command to the switch 22a (step ST1 in FIG. 4).
  • the constant current source 21b supplies the constant current I 0 to the transmission line 2 via the switch 21a and the probe 25 (step ST2 in FIG. 4).
  • the voltage reference circuit 21c observes the voltage change at the supply point of the constant current I 0 with respect to the transmission line 2 when the constant current I 0 is output from the constant current source 21b.
  • the supply point of the constant current I 0 for the transmission line 2 is the installation point of the probe 25.
  • the voltage reference circuit 21c measures the time ⁇ t required for the voltage V at the supply point of the constant current I 0 to change from 0 [V] to the reference voltage REF [V] (step ST3 in FIG. 4).
  • the voltage reference circuit 21c outputs the time ⁇ t to the capacitance calculation processing unit 21d.
  • the capacitance calculation processing unit 21d When the capacitance calculation processing unit 21d receives the time ⁇ t from the voltage reference circuit 21c , it multiplies the existing constant current I 0 and the time ⁇ t as shown in the following equation (1), and the constant current I
  • the total capacitance C total [F] is calculated by dividing the multiplication result of 0 and the time ⁇ t by the reference voltage REF [V] (step ST4 in FIG. 4).
  • the capacitance calculation processing unit 21d outputs the first capacitance information indicating the total capacitance total to the electrical length calculation processing unit 23b.
  • the switch control unit 23a opens the switch 21a by outputting a control signal indicating an off command to the switch 21a (step ST5 in FIG. 4). Further, the switch control unit 23a closes the switch 22a by outputting a control signal indicating an on command to the switch 22a (step ST5 in FIG. 4).
  • the step signal source 22b supplies the step signal to the transmission line 2 via the switch 22a and the probe 25 (step ST6 in FIG. 4).
  • the step signal is supplied from the step signal source 22b to the transmission line 2
  • the wave returns to the supply point of the step signal for transmission line 2.
  • the supply point of the step signal with respect to the transmission line 2 is the installation point of the probe 25.
  • FIG. 6 is an explanatory diagram showing a change in voltage V'at a supply point of a step signal.
  • the line end of the transmission line 2 of the transmission line 2 is, for example, an open end
  • the voltage V' is V. It rises from test to 2 ⁇ V 0.
  • the ADC 22c converts the voltage V'at the supply point of the step signal from an analog signal to a digital signal.
  • the ADC 22c outputs a digital signal to the capacitance calculation processing unit 22d.
  • the capacitance calculation processing unit 22d specifies the characteristic impedance Z 0 [ ⁇ ] of the transmission line 2 based on the digital signal output from the ADC 22c (step ST7 in FIG. 4).
  • the capacitance calculation processing unit 22d identifies the voltage V 0 when the step signal is supplied to the transmission line 2 by observing the waveform of the digital signal output from the ADC 22c. That is, the capacitance calculation processing unit 22d returns the reflected wave of the step signal reflected by the branch point to the supply point from the time when the step signal is supplied to the transmission line 2, so that the step signal supply point is returned to the supply point.
  • the voltage V 0 in the period before the voltage V'increase rises is specified.
  • the capacitance calculation processing unit 22d observes the waveform of the digital signal output from the ADC 22c, so that the reflected wave of the step signal reflected by the branch point returns to the supply point of the step signal. Identify the voltage V test. That is, the capacitance calculation processing unit 22d is determined by the line end from the time when the voltage V'at the supply point of the step signal rises due to the reflected wave of the step signal reflected by the branch point returning to the supply point. By returning the reflected wave of the reflected step signal to the supply point, the voltage V test of the period before the voltage V'at the supply point of the step signal rises is specified.
  • the capacitance calculation processing unit 22d calculates the characteristic impedance Z 0 of the transmission line 2 by substituting the voltage V 0 and the voltage V test into the following equation (2).
  • R is the resistance of the cable from the connection point between the step signal source 22b and the ADC 22c to the probe 25, and is, for example, 50 [ ⁇ ].
  • the capacitance calculation processing unit 22d calculates the capacitance CUL [F / m] per unit length of the transmission line 2 from the characteristic impedance Z 0 as shown in the following equation (3).
  • v is the radio wave propagation velocity [m / s]
  • ⁇ r is the relative permittivity of the transmission line 2.
  • Each of the radio wave propagation velocity v and the relative permittivity ⁇ r may be stored in the internal memory of the capacitance calculation processing unit 22d, or may be given from the outside of the transmission line length detection device 3. ..
  • the capacitance calculation processing unit 22d outputs the second capacitance information indicating the capacitance CUL per unit length to the electric length calculation processing unit 23b.
  • the electric length calculation unit 23 acquires the first capacitance information from the capacitance calculation processing unit 21d and the second capacitance information from the capacitance calculation processing unit 22d. Electrical length calculation unit 23, as shown in the following equation (4), the total capacitance C total indicated first capacity information, the capacitance per unit length indicated by the second capacity information C UL By dividing by, the electric length EL [m] of the transmission line 2 is calculated (step ST9 in FIG. 4).
  • Electrical length calculation processing unit 23b outputs a display signal for displaying on the display unit 24 an electrical length E L of the transmission line 2 on the display unit 24.
  • the display unit 24 displays an electrical length E L of the transmission line 2 according to the display signal outputted from the electric length calculation processing unit 23b. Knowing the electrical length E L of the transmission line 2, to the extent capable of handling the communication network as a lumped constant line, the transmission speed of the signal network communication apparatus 1 to transmit and receive [m / s] is possible to determine the There is (see Embodiment 2).
  • the first capacitance is obtained by observing the voltage change of the transmission line 2 in the communication network and calculating the total capacitance which is the total capacitance of the transmission line 2 based on the voltage change.
  • the second capacitance calculation unit 22 that measures the characteristic impedance of the transmission line 2 and the capacitance calculation unit 21 and calculates the capacitance per unit length of the transmission line 2 from the characteristic impedance, and the first capacitance.
  • the electric length of the transmission line 2 is calculated by dividing the total capacitance calculated by the capacitance calculation unit 21 by the capacitance per unit length calculated by the second capacitance calculation unit 22.
  • the transmission line length detection device 3 is configured to include the electric length calculation unit 23. Therefore, the transmission line length detecting device 3 can measure the electric length of the transmission line 2 regardless of whether or not the communication network is branched in the middle.
  • the first capacitance calculation unit 21 calculates the total capacitance total, and then the second capacitance calculation unit 22 per unit length.
  • the capacitance CUL of is calculated.
  • the second electrostatic capacity calculation unit 22 after calculating the electrostatic capacitance C UL per unit length, the first electrostatic capacity calculation unit 21, the total electrostatic The capacitance Static may be calculated.
  • the first electrostatic capacity calculation unit 21 when a constant current is supplied I 0 to the transmission path 2, at the feed point of the constant current I 0 for the transmission path 2 observing a voltage change, and calculates the total capacitance C total of the transmission path 2 from the voltage change.
  • the first electrostatic capacity calculation unit 21 when stopping the supply of the constant current I 0 which has been supplied to the transmission line 2, the supply of the constant current I 0 for the transmission path 2 observing a voltage change at the point, it may be calculated the total capacitance C total of the transmission path 2 from the voltage change.
  • the calculation process of the total capacitance total by the first capacitance calculation unit 21 will be specifically described.
  • the constant current source 21b stops the supply of the constant current I 0 supplied to the transmission line 2.
  • the voltage reference circuit 21c observes the voltage change at the supply point of the constant current I 0 with respect to the transmission line 2 when the supply of the constant current I 0 supplied to the transmission line 2 is stopped.
  • the voltage V becomes smaller than the reference voltage REF [V] and then becomes 0 [V].
  • FIG. 7 is an explanatory diagram showing a change in voltage V at a supply point of constant current I 0.
  • the voltage reference circuit 21c measures the time ⁇ t required for the voltage V at the supply point of the constant current I 0 to change from the reference voltage REF [V] to 0 [V].
  • the voltage reference circuit 21c outputs the time ⁇ t to the capacitance calculation processing unit 21d.
  • the capacitance calculation processing unit 21d receives the time ⁇ t from the voltage reference circuit 21c, as shown in the equation (1), the capacitance calculation processing unit 21d multiplies the existing constant current I 0 and the time ⁇ t to obtain the constant current I 0 .
  • the total capacitance C total [F] is calculated by dividing the multiplication result with the time ⁇ t by the reference voltage REF [V].
  • the second capacitance calculation unit 22 supplies a step signal to the transmission line 2, the branch point of the transmission line 2 or the line end of the transmission line 2
  • the characteristic impedance Z 0 of the transmission line 2 is specified from the reflected wave of the step signal that is reflected by and returns to the supply point of the step signal with respect to the transmission line 2.
  • the second capacitance calculation unit 22 is reflected by the branch point of the transmission line 2 or the line end of the transmission line 2.
  • the characteristic impedance Z 0 of the transmission line 2 may be specified from the reflected wave of the pulse signal returning to the supply point of the pulse signal with respect to the transmission line 2.
  • the second capacitance calculation unit 22 supplies the pulse signal to the transmission line 2 in which the time for the signal level of the pulse signal to become 1 is longer than the time ⁇ t.
  • the electrical length calculation unit 23 calculates the electrical length E L of the transmission line 2.
  • the calculation target of the electrical length E L as long as it has conductivity, not limited to the transmission line 2. Therefore, the electrical length calculation unit 23, for example, may be calculated an electrical length E L of the metal pipe.
  • FIG. 8 is a configuration diagram showing another communication system including the transmission line length detecting device 3 according to the first embodiment.
  • Embodiment 2 the transmission line length detecting device 3 including the output cycle determining unit 26 for determining the output cycle of the signal output from the network communication device 1 to the transmission line 2 will be described.
  • FIG. 9 is a configuration diagram showing a communication system including the transmission line length detecting device 3 according to the second embodiment.
  • the same reference numerals as those in FIGS. 1 and 8 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • FIG. 10 is a hardware configuration diagram showing a part of the hardware of the transmission line length detecting device 3 according to the second embodiment.
  • the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the output cycle determination unit 26 is realized by, for example, the output cycle determination circuit 35 shown in FIG. Output period determination unit 26, based on the calculated electrical length E L by the electrical length calculation processing section 23b of the electrical length calculation unit 23 determines the output period of the signal output to the transmission path 2 from the network communication device 1 ..
  • the output cycle determination unit 26 outputs cycle information indicating the determined output cycle to the transmission / reception unit 11 of the network communication device 1.
  • the output cycle determination unit 26 is applied to the communication system shown in FIG. However, this is only an example, and the output cycle determination unit 26 may be applied to the communication system shown in FIG.
  • the capacitance calculation processing unit 21d, the capacitance calculation processing unit 22d, the switch control unit 23a, the electrical length calculation processing unit 23b, and the output cycle determination unit which are some components of the transmission line length detection device 3, are shown. It is assumed that each of the 26 is realized by the dedicated hardware as shown in FIG. That is, a part of the transmission path length detection device 3 determines the first capacitance calculation processing circuit 31, the second capacitance calculation processing circuit 32, the switch control circuit 33, the electric length calculation processing circuit 34, and the output cycle. It is assumed that it is realized by the circuit 35.
  • Each of the first capacitance calculation processing circuit 31, the second capacitance calculation processing circuit 32, the switch control circuit 33, the electrical length calculation processing circuit 34, and the output cycle determination circuit 35 is, for example, a single circuit or a composite. This includes circuits, programmed processors, parallel programmed processors, ASICs, FPGAs, or combinations thereof.
  • Some components of the transmission line length detection device 3 are not limited to those realized by dedicated hardware, and a part of the transmission line length detection device 3 includes software, firmware, or software and firmware. It may be realized by the combination of.
  • a part of the transmission line length detection device 3 is realized by software, firmware, or the like, the capacitance calculation processing unit 21d, the capacitance calculation processing unit 22d, the switch control unit 23a, the electrical length calculation processing unit 23b, and the output.
  • a program for causing the computer to execute each processing procedure in the cycle determination unit 26 is stored in the memory 41 shown in FIG. Then, the processor 42 shown in FIG. 3 executes the program stored in the memory 41.
  • Output period determining unit 26 receives the information indicating the electrical length E L from electrical length calculation processing section 23b, the electrical length E L is substituted into the following equation (5), the minimum wavelength formula (5) is satisfied Calculate ⁇ .
  • is the wavelength of the signal v output from the network communication device 1 to the transmission line 2.
  • the output cycle determining unit 26 calculates the minimum wavelength ⁇ for which the equation (5) holds. However, if the wavelength ⁇ for which the equation (5) holds, the wavelength ⁇ is not limited to the minimum wavelength ⁇ , and the output cycle determination unit 26 calculates, for example, a wavelength that is several percent larger than the minimum wavelength ⁇ . May be good.
  • the output cycle determination unit 26 calculates the frequency f of the signal output from the network communication device 1 to the transmission line 2 by substituting the wavelength ⁇ into the following equation (6).
  • the output cycle T of the signal output from the network communication device 1 to the transmission line 2 is calculated by substituting the frequency f into the following equation (7). ..
  • the output cycle determination unit 26 outputs cycle information indicating the signal output cycle T to the transmission / reception unit 11 of the network communication device 1.
  • the transmission / reception unit 11 of the network communication device 1 When the transmission / reception unit 11 of the network communication device 1 receives the cycle information from the output cycle determination unit 26, the transmission / reception unit 11 sets the output cycle of the transmission signal to be output to the transmission line 2 via the driver IC 12 to the output cycle T indicated by the cycle information. do.
  • the setting of the output cycle of the transmission signal corresponds to the setting of the transmission speed of the transmission signal.
  • the transmission / reception unit 11 outputs the transmission signal to the transmission line 2 via the driver IC 12 according to the set output cycle T. For example, if the transmission signal is "101", the transmission / reception unit 11 transmits "1", then "0" when the output cycle T has elapsed, and then "0". When the output cycle T has elapsed, "1" is transmitted.
  • the output cycle of the signal output from the network communication device 1 connected to the transmission line 2 to the transmission line 2 is determined based on the electric length calculated by the electric length calculation unit 23.
  • the transmission line length detection device 3 is configured to include the output cycle determination unit 26. Therefore, the transmission line length detecting device 3 can measure the electric length of the transmission line 2 regardless of whether or not the communication network is branched in the middle, and also transmits a signal output from the network communication device 1. The speed can be determined as the transmission speed within a range in which the communication network can be treated as a centralized constant line.
  • Embodiment 3 the transmission line length detecting device 3 including the abnormality detecting unit 27 for detecting the wiring abnormality of the transmission line 2 or the illegal connection to the transmission line 2 will be described.
  • FIG. 11 is a configuration diagram showing a communication system including the transmission line length detecting device 3 according to the third embodiment.
  • the same reference numerals as those in FIGS. 1, 8 and 9 indicate the same or corresponding portions, and thus the description thereof will be omitted.
  • FIG. 12 is a hardware configuration diagram showing a part of the hardware of the transmission line length detecting device 3 according to the third embodiment.
  • the same reference numerals as those in FIGS. 2 and 10 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the abnormality detection unit 27 is realized by, for example, the abnormality detection circuit 36 shown in FIG. Abnormality detector 27, the total capacitance C total which is calculated by the first electrostatic capacity calculation unit 21, and the properties impedance Z 0 measured by the second electrostatic capacity calculation unit 22, a second static acquires the electrostatic capacitance C UL per unit length calculated by the capacity calculation unit 22.
  • the abnormality detection unit 27 detects a wiring abnormality of the transmission line 2 or an illegal connection to the transmission line 2 from the total capacitance total, the characteristic impedance Z 0, and the capacitance CUL per unit length. do.
  • the wiring abnormality of the transmission line 2 corresponds to a disconnection or short circuit of the transmission line 2.
  • the illegal connection to the transmission line 2 corresponds to the case where a computer, a communication device, or the like is illegally connected to the transmission line 2.
  • the abnormality detection unit 27 detects a wiring abnormality or the like that occurs thereafter.
  • the abnormality detection unit 27 is applied to the communication system shown in FIG.
  • the capacitance calculation processing unit 21d, the capacitance calculation processing unit 22d, the switch control unit 23a, the electrical length calculation processing unit 23b, and the output cycle determination unit, which are some components of the transmission line length detection device 3, are shown. It is assumed that each of the 26 and the abnormality detection unit 27 is realized by dedicated hardware as shown in FIG. That is, a part of the transmission path length detection device 3 determines the first capacitance calculation processing circuit 31, the second capacitance calculation processing circuit 32, the switch control circuit 33, the electric length calculation processing circuit 34, and the output cycle. It is assumed that it is realized by the circuit 35 and the abnormality detection circuit 36.
  • Each of the first capacitance calculation processing circuit 31, the second capacitance calculation processing circuit 32, the switch control circuit 33, the electrical length calculation processing circuit 34, the output cycle determination circuit 35, and the abnormality detection circuit 36 is, for example, It corresponds to a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Some components of the transmission line length detection device 3 are not limited to those realized by dedicated hardware, and a part of the transmission line length detection device 3 includes software, firmware, or software and firmware. It may be realized by the combination of.
  • a part of the transmission line length detection device 3 is realized by software, firmware, or the like, the capacitance calculation processing unit 21d, the capacitance calculation processing unit 22d, the switch control unit 23a, the electrical length calculation processing unit 23b, and the output.
  • a program for causing the computer to execute each processing procedure in the cycle determination unit 26 and the abnormality detection unit 27 is stored in the memory 41 shown in FIG. Then, the processor 42 shown in FIG. 3 executes the program stored in the memory 41.
  • Abnormality detector 27 the total capacitance C total which is calculated by the first electrostatic capacity calculation unit 21, and the properties impedance Z 0 measured by the second electrostatic capacity calculation unit 22, a second static acquires the electrostatic capacitance C UL per unit length calculated by the capacity calculation unit 22.
  • the abnormality detection unit 27 stores the total capacitance C total as the initial total capacitance C total'in the internal memory, and stores the characteristic impedance Z 0 as the initial characteristic impedance Z 0'in the internal memory. Further, the abnormality detection unit 27 stores the capacitance CUL per unit length as the initial capacitance CUL'in the internal memory.
  • the abnormality detecting section 27 a total capacitance C total newly calculated by the first electrostatic capacity calculation unit 21, the characteristic impedance Z 0, which is newly measured by the second capacitance calculator 22
  • a capacitance C UL per unit length which is newly calculated by the second electrostatic capacity calculation unit 22.
  • the abnormality detection unit 27 compares the difference [Delta] C total of the first threshold value Th 1, greater the difference [Delta] C total than the first threshold value Th 1, a transmission line 2 wiring error or fraud against transmission path 2 Determine that there is a connection.
  • the abnormality detection unit 27 compares the difference [Delta] Z 0 and the second threshold value Th 2, larger difference [Delta] Z 0 is than the second threshold Th 2, the transmission path 2 wiring error or fraud against transmission path 2 Determine that there is a connection.
  • the abnormality detection unit 27 compares the difference [Delta] C UL and third threshold Th 3, the larger the difference [Delta] C UL than the third threshold value Th 3, the transmission path 2 wiring error or fraud against transmission path 2 Determine that there is a connection.
  • the difference ⁇ C total is equal to or less than the first threshold value Th 1 and the difference ⁇ Z 0 is equal to or less than the second threshold value Th 2 and the difference ⁇ C UL is equal to or less than the third threshold value Th 3 . It is determined that there is no wiring abnormality in the transmission line 2 and no unauthorized connection to the transmission line 2.
  • Each of the first threshold value Th 1 , the second threshold value Th 2 and the third threshold value Th 3 may be stored in the internal memory of the abnormality detection unit 27, or may be given from the outside of the transmission line length detection device 3. It may be something that can be done.
  • the display unit 24 displays a determination result indicating that fact.
  • the display unit 24 displays a determination result indicating that fact.
  • a transmission line length detection device is provided so as to include an abnormality detection unit 27 for detecting a wiring abnormality of the transmission line 2 or an illegal connection to the transmission line 2 from the capacitance per unit length calculated by the calculation unit 22. 3 was configured. Therefore, the transmission line length detecting device 3 can measure the electric length of the transmission line 2 regardless of whether or not the communication network is branched in the middle, and also has a wiring abnormality in the transmission line 2 or a transmission line. Unauthorized connection to 2 can be detected.
  • the second capacitance calculation unit 22 includes a step signal source 22b that supplies a step signal to the transmission line 2.
  • the second capacitance calculation unit 22 acquires a data pattern simulating a step signal from the transmission / reception unit 11 of the network communication device 1, and transmits a signal indicating the data pattern as a step signal. It may be supplied to the road 2.
  • the data pattern simulating the step signal is, for example, a data pattern such as 0111 ....
  • the present disclosure is suitable for a transmission line length detecting device that calculates the electrical length of a transmission line. Further, the present disclosure is suitable for a network communication device including a transmission line length detection device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

通信ネットワークにおける伝送路(2)の電圧変化を観測し、電圧変化に基づいて、伝送路(2)の全体の静電容量である総静電容量を算出する第1の静電容量算出部(21)と、伝送路(2)の特性インピーダンスを測定し、特性インピーダンスから伝送路(2)の単位長さ当りの静電容量を算出する第2の静電容量算出部(22)と、第1の静電容量算出部(21)により算出された総静電容量を、第2の静電容量算出部(22)により算出された単位長さ当りの静電容量によって除算することにより、伝送路(2)の電気長を算出する電気長算出部(23)とを備えるように、伝送路長検出装置(3)を構成した。

Description

伝送路長検出装置及びネットワーク通信装置
 本開示は、伝送路の電気長を算出する伝送路長検出装置と、伝送路長検出装置を備えるネットワーク通信装置とに関するものである。
 ネットワーク通信装置が信号の送受信に用いる通信ネットワークとして、既存の通信ネットワークが利用されることがある。ネットワーク通信装置が送受信する信号の伝送速度は、通信ネットワークを集中定数線路として扱うことが可能な範囲での伝送速度に決定されることがある。当該伝送速度を決定するためには、伝送路の電気長を測定する必要がある。
 伝送路の電気長を測定する方法として、TDR(Time Domain Reflectometry)法が知られている(例えば、特許文献1を参照)。TDR法は、測定対象の伝送路の一端から、ステップ波を伝送路に与えることによって、当該伝送路の他端によって反射されたステップ波の反射波を伝送路の一端において観測し、ステップ波を与えた時刻から反射波を観測した時刻までの時間に基づいて、伝送路の電気長を算出するものである。
特開2013-024729号公報
 既存の通信ネットワークの伝送路に分岐点がなく、通信ネットワークが1本の伝送路によって構成されていれば、TDR法を用いることによって、伝送路の電気長を算出することができる。しかし、通信ネットワークが途中で分岐しているために、複数の線路端において、ステップ波がそれぞれ反射されることによって、複数の反射波が生じている場合、電気長の算出に用いることが可能な観測対象の反射波を特定することが困難である。このため、通信ネットワークが途中で分岐している場合、TDR法では、伝送路の電気長を測定することができないことがあるという課題があった。
 本開示は、上記のような課題を解決するためになされたもので、通信ネットワークが途中で分岐しているか否かにかかわらず、伝送路の電気長を測定することができる伝送路長検出装置を得ることを目的とする。
 本開示に係る伝送路長検出装置は、通信ネットワークにおける伝送路の電圧変化を観測し、電圧変化に基づいて、伝送路の全体の静電容量である総静電容量を算出する第1の静電容量算出部と、伝送路の特性インピーダンスを測定し、特性インピーダンスから伝送路の単位長さ当りの静電容量を算出する第2の静電容量算出部と、第1の静電容量算出部により算出された総静電容量を、第2の静電容量算出部により算出された単位長さ当りの静電容量によって除算することにより、伝送路の電気長を算出する電気長算出部とを備えている。
 本開示によれば、通信ネットワークが途中で分岐しているか否かにかかわらず、伝送路の電気長を測定することができる。
実施の形態1に係る伝送路長検出装置3を含む通信システムを示す構成図である。 実施の形態1に係る伝送路長検出装置3の一部のハードウェアを示すハードウェア構成図である。 伝送路長検出装置3の一部が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。 伝送路長検出装置3の一部の処理手順を示すフローチャートである。 定電流Iの供給点における電圧Vの変化を示す説明図である。 ステップ信号の供給点における電圧V’の変化を示す説明図である。 定電流Iの供給点における電圧Vの変化を示す説明図である。 実施の形態1に係る伝送路長検出装置3を含む他の通信システムを示す構成図である。 実施の形態2に係る伝送路長検出装置3を含む通信システムを示す構成図である。 実施の形態2に係る伝送路長検出装置3の一部のハードウェアを示すハードウェア構成図である。 実施の形態3に係る伝送路長検出装置3を含む通信システムを示す構成図である。 実施の形態3に係る伝送路長検出装置3の一部のハードウェアを示すハードウェア構成図である。
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る伝送路長検出装置3を含む通信システムを示す構成図である。
 図1に示す通信システムは、ネットワーク通信装置1、伝送路2及び伝送路長検出装置3を備えている。
 図1に示す通信システムでは、複数のネットワーク通信装置1が伝送路2に接続されている。複数のネットワーク通信装置1と伝送路2とによって、通信ネットワークが形成されている。
 図1に示す通信システムでは、複数のネットワーク通信装置1のそれぞれが、伝送路2の線路端に接続されている。しかし、これは一例に過ぎず、伝送路2に対するネットワーク通信装置1の接続位置については、特に制限がない。
 当該通信ネットワークは、バス型のネットワーク、又は、スター型のネットワーク等であってもよいし、全く分岐がない1本の伝送路であってもよい。ただし、当該通信ネットワークは、既存の通信ネットワークであり、伝送路2の線路長及び伝送路2の接続形態のそれぞれが不明である。
 ネットワーク通信装置1は、送受信部11、ドライバIC(Integrated Circuit)12及びレシーバIC13を備えている。
 送受信部11は、送信信号を、ドライバIC12を介して、伝送路2に出力する。
 送受信部11は、伝送路2を伝送されてきた信号を、レシーバIC13を介して、受信する。
 ドライバIC12は、送受信部11から出力された送信信号を伝送路2に出力する。
 レシーバIC13は、伝送路2を伝送されてきた信号を受信し、当該信号を送受信部11に出力する。
 伝送路長検出装置3は、第1の静電容量算出部21、第2の静電容量算出部22、電気長算出部23及び表示部24を備えている。
 図2は、実施の形態1に係る伝送路長検出装置3の一部のハードウェアを示すハードウェア構成図である。
 第1の静電容量算出部21は、スイッチ21a、定電流源21b、電圧参照回路21c及び静電容量算出処理部21dを備えている。
 第1の静電容量算出部21は、通信ネットワークにおける伝送路2の電圧変化を観測し、電圧変化に基づいて、伝送路2の全体の静電容量である総静電容量Ctotalを算出する。
 即ち、第1の静電容量算出部21は、伝送路2に定電流Iを供給したときの、伝送路2に対する定電流Iの供給点での電圧変化を観測し、電圧変化から伝送路2の総静電容量Ctotalを算出する。
 第1の静電容量算出部21は、総静電容量Ctotalを示す第1の容量情報を電気長算出部23に出力する。
 スイッチ21aの一端は、後述するプローブ25と接続され、スイッチ21aの他端は、定電流源21b及び電圧参照回路21cのそれぞれと接続されている。
 スイッチ21aは、電気長算出部23の後述するスイッチ制御部23aから出力された制御信号がオン指令を示していれば、閉状態になる。
 スイッチ21aは、スイッチ制御部23aから出力された制御信号がオフ指令を示していれば、開状態になる。
 定電流源21bは、定電流Iを、スイッチ21a及びプローブ25を介して、伝送路2に供給する電流源である。
 電圧参照回路21cは、定電流源21bから定電流Iが出力されているときに、伝送路2に対する定電流Iの供給点での電圧変化を観測する。
 電圧参照回路21cは、定電流Iの供給点での電圧Vが、0[V]から参照電圧REF[V]に変化するまでに要する時間Δtを計測し、時間Δtを静電容量算出処理部21dに出力する。
 静電容量算出処理部21dは、例えば、図2に示す第1の静電容量算出処理回路31によって実現される。
 静電容量算出処理部21dは、既値である定電流Iと時間Δtとを乗算し、定電流Iと時間Δtとの乗算結果を、参照電圧REFによって除算することにより、総静電容量Ctotalを算出する。
 静電容量算出処理部21dは、総静電容量Ctotalを示す第1の容量情報を電気長算出部23の後述する電気長算出処理部23bに出力する。
 第2の静電容量算出部22は、スイッチ22a、ステップ信号源22b、アナログデジタル変換器(以下、「ADC」と称する)22c及び静電容量算出処理部22dを備えている。
 スイッチ22aの一端は、プローブ25と接続され、スイッチ22aの他端は、ステップ信号源22b及びADC22cのそれぞれと接続されている。
 スイッチ22aは、スイッチ制御部23aから出力された制御信号がオン指令を示していれば、閉状態になる。
 スイッチ22aは、スイッチ制御部23aから出力された制御信号がオフ指令を示していれば、開状態になる。
 ステップ信号源22bは、ステップ信号を、スイッチ22a及びプローブ25を介して、伝送路2に供給する信号源である。ステップ信号は、信号レベルが0から1に急峻に変化する信号である。
 ステップ信号源22bから伝送路2にステップ信号が供給されることにより、伝送路2の分岐点によって反射されたステップ信号の反射波、又は、伝送路2の線路端によって反射されたステップ信号の反射波が、伝送路2に対するステップ信号の供給点に戻ってくる。
 ADC22cは、ステップ信号の供給点における電圧をアナログ信号からデジタル信号に変換する。
 ADC22cは、デジタル信号を静電容量算出処理部22dに出力する。
 静電容量算出処理部22dは、例えば、図2に示す第2の静電容量算出処理回路32によって実現される。
 静電容量算出処理部22dは、ADC22cから出力されたデジタル信号に基づいて、伝送路2の特性インピーダンスZを特定する。
 静電容量算出処理部22dは、特性インピーダンスZから伝送路2の単位長さ当りの静電容量CULを算出する。
 静電容量算出処理部22dは、単位長さ当りの静電容量CULを示す第2の容量情報を電気長算出部23の電気長算出処理部23bに出力する。
 電気長算出部23は、スイッチ制御部23a及び電気長算出処理部23bを備えている。
 電気長算出部23は、第1の静電容量算出部21により算出された総静電容量Ctotalを、第2の静電容量算出部22により算出された単位長さ当りの静電容量CULによって除算することにより、伝送路2の電気長Eを算出する。
 スイッチ制御部23aは、例えば、図2に示すスイッチ制御回路33によって実現される。
 スイッチ制御部23aは、オン指令を示す制御信号、又は、オフ指令を示す制御信号をスイッチ21aに出力する。
 また、スイッチ制御部23aは、オン指令を示す制御信号、又は、オフ指令を示す制御信号をスイッチ22aに出力する。
 電気長算出処理部23bは、例えば、図2に示す電気長算出処理回路34によって実現される。
 電気長算出処理部23bは、静電容量算出処理部21dから出力された第1の容量情報が示す総静電容量Ctotalを、静電容量算出処理部22dから出力された第2の容量情報が示す単位長さ当りの静電容量CULによって除算することにより、伝送路2の電気長Eを算出する。
 電気長算出処理部23bは、伝送路2の電気長Eを表示部24に表示させるための表示信号を表示部24に出力する。
 表示部24は、例えば、液晶ディスプレイによって実現される。
 表示部24は、電気長算出処理部23bから出力された表示信号に従って伝送路2の電気長Eを表示する。
 プローブ25は、定電流源21bから出力された定電流I、又は、ステップ信号源22bから出力されたステップ信号を伝送路2に供給するための器具である。
 図1では、伝送路長検出装置3の一部の構成要素である静電容量算出処理部21d、静電容量算出処理部22d、スイッチ制御部23a及び電気長算出処理部23bのそれぞれが、図2に示すような専用のハードウェアによって実現されるものを想定している。即ち、伝送路長検出装置3の一部が、第1の静電容量算出処理回路31、第2の静電容量算出処理回路32、スイッチ制御回路33及び電気長算出処理回路34によって実現されるものを想定している。
 第1の静電容量算出処理回路31、第2の静電容量算出処理回路32、スイッチ制御回路33及び電気長算出処理回路34のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
 伝送路長検出装置3の一部の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、伝送路長検出装置3の一部が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
 図3は、伝送路長検出装置3の一部が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 伝送路長検出装置3の一部が、ソフトウェア又はファームウェア等によって実現される場合、静電容量算出処理部21d、静電容量算出処理部22d、スイッチ制御部23a及び電気長算出処理部23bにおけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ41に格納される。そして、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行する。
 次に、図1に示す通信システムの動作について説明する。
 図4は、伝送路長検出装置3の一部の処理手順を示すフローチャートである。
 まず、スイッチ制御部23aは、オン指令を示す制御信号をスイッチ21aに出力することにより、スイッチ21aを閉状態にする(図4のステップST1)。
 また、スイッチ制御部23aは、オフ指令を示す制御信号をスイッチ22aに出力することにより、スイッチ22aを開状態にする(図4のステップST1)。
 定電流源21bは、定電流Iを、スイッチ21a及びプローブ25を介して、伝送路2に供給する(図4のステップST2)。
 電圧参照回路21cは、定電流源21bから定電流Iが出力されているときに、伝送路2に対する定電流Iの供給点での電圧変化を観測する。
 伝送路2に対する定電流Iの供給点は、プローブ25の設置点である。定電流Iの供給点における電圧Vは、図5に示すように、定電流Iの供給が開始されると、0[V]から時間の経過に伴って単調に上昇する。電圧Vは、参照電圧REF[V]よりも大きくなり、その後、一定の電圧になる。
 図5は、定電流Iの供給点における電圧Vの変化を示す説明図である。
 電圧参照回路21cは、定電流Iの供給点での電圧Vが、0[V]から参照電圧REF[V]に変化するまでに要する時間Δtを計測する(図4のステップST3)。
 電圧参照回路21cは、時間Δtを静電容量算出処理部21dに出力する。
 静電容量算出処理部21dは、電圧参照回路21cから時間Δtを受けると、以下の式(1)に示すように、既値である定電流Iと時間Δtとを乗算し、定電流Iと時間Δtとの乗算結果を、参照電圧REF[V]によって除算することにより、総静電容量Ctotal[F]を算出する(図4のステップST4)。

Figure JPOXMLDOC01-appb-I000001
 静電容量算出処理部21dは、総静電容量Ctotalを示す第1の容量情報を電気長算出処理部23bに出力する。
 スイッチ制御部23aは、オフ指令を示す制御信号をスイッチ21aに出力することにより、スイッチ21aを開状態にする(図4のステップST5)。
 また、スイッチ制御部23aは、オン指令を示す制御信号をスイッチ22aに出力することにより、スイッチ22aを閉状態にする(図4のステップST5)。
 ステップ信号源22bは、ステップ信号を、スイッチ22a及びプローブ25を介して、伝送路2に供給する(図4のステップST6)。
 ステップ信号源22bから伝送路2にステップ信号が供給されることにより、伝送路2の分岐点によって反射されたステップ信号の反射波、又は、伝送路2の線路端によって反射されたステップ信号の反射波が、伝送路2に対するステップ信号の供給点に戻ってくる。伝送路2に対するステップ信号の供給点は、プローブ25の設置点である。
 ステップ信号の供給点における電圧V’は、時間の経過に伴って、図6のように変化する。
 図6は、ステップ信号の供給点における電圧V’の変化を示す説明図である。
 ステップ信号源22bから伝送路2にステップ信号が供給されたのち、伝送路2の分岐点によって反射されたステップ信号の反射波が、ステップ信号の供給点に戻ってくるまでの間の電圧V’は、Vである。
 伝送路2の分岐点によって反射されたステップ信号の反射波が、ステップ信号の供給点に戻ってくると、電圧V’は、VからVtestに上昇する。
 また、伝送路2の伝送路2の線路端が例えば開放端であれば、開放端によって反射されたステップ信号の反射波が、ステップ信号の供給点に戻ってくると、電圧V’は、Vtestから2×Vに上昇する。
 ADC22cは、ステップ信号の供給点における電圧V’をアナログ信号からデジタル信号に変換する。
 ADC22cは、デジタル信号を静電容量算出処理部22dに出力する。
 静電容量算出処理部22dは、ADC22cから出力されたデジタル信号に基づいて、伝送路2の特性インピーダンスZ[Ω]を特定する(図4のステップST7)。
 以下、静電容量算出処理部22dによる特性インピーダンスZの特定処理を具体的に説明する。
 静電容量算出処理部22dは、ADC22cから出力されたデジタル信号の波形を観測することにより、伝送路2にステップ信号が供給されたときの電圧Vを特定する。即ち、静電容量算出処理部22dは、伝送路2にステップ信号が供給された時点から、分岐点によって反射されたステップ信号の反射波が供給点に戻ってくることによって、ステップ信号の供給点の電圧V’が上昇する前までの期間の電圧Vを特定する。
 また、静電容量算出処理部22dは、ADC22cから出力されたデジタル信号の波形を観測することにより、分岐点によって反射されたステップ信号の反射波が、ステップ信号の供給点に戻ってきたときの電圧Vtestを特定する。即ち、静電容量算出処理部22dは、分岐点によって反射されたステップ信号の反射波が供給点に戻ってくることによって、ステップ信号の供給点の電圧V’が上昇した時点から、線路端によって反射されたステップ信号の反射波が供給点に戻ってくることによって、ステップ信号の供給点の電圧V’が上昇する前までの期間の電圧Vtestを特定する。
 静電容量算出処理部22dは、電圧V及び電圧Vtestを、以下の式(2)に代入することによって、伝送路2の特性インピーダンスZを算出する。

Figure JPOXMLDOC01-appb-I000002
 式(2)において、Rは、ステップ信号源22bとADC22cとの接続点から、プローブ25までのケーブルの抵抗であり、例えば、50[Ω]である。
 次に、静電容量算出処理部22dは、以下の式(3)に示すように、特性インピーダンスZから伝送路2の単位長さ当りの静電容量CUL[F/m]を算出する(図4のステップST8)。

Figure JPOXMLDOC01-appb-I000003
 式(3)において、vは、電波伝搬速度[m/s]、εは、伝送路2の比誘電率である。
 電波伝搬速度v及び比誘電率εのそれぞれは、静電容量算出処理部22dの内部メモリに格納されていてもよいし、伝送路長検出装置3の外部から与えられるものであってもよい。
 静電容量算出処理部22dは、単位長さ当りの静電容量CULを示す第2の容量情報を電気長算出処理部23bに出力する。
 電気長算出部23は、静電容量算出処理部21dから第1の容量情報を取得し、静電容量算出処理部22dから第2の容量情報を取得する。
 電気長算出部23は、以下の式(4)に示すように、第1の容量情報が示す総静電容量Ctotalを、第2の容量情報が示す単位長さ当りの静電容量CULによって除算することにより、伝送路2の電気長E[m]を算出する(図4のステップST9)。

Figure JPOXMLDOC01-appb-I000004
 電気長算出処理部23bは、伝送路2の電気長Eを表示部24に表示させるための表示信号を表示部24に出力する。
 表示部24は、電気長算出処理部23bから出力された表示信号に従って伝送路2の電気長Eを表示する。
 伝送路2の電気長Eが分かれば、通信ネットワークを集中定数線路として扱うことが可能な範囲において、ネットワーク通信装置1が送受信する信号の伝送速度[m/s]を決定することが可能である(実施の形態2を参照)。
 以上の実施の形態1では、通信ネットワークにおける伝送路2の電圧変化を観測し、電圧変化に基づいて、伝送路2の全体の静電容量である総静電容量を算出する第1の静電容量算出部21と、伝送路2の特性インピーダンスを測定し、特性インピーダンスから伝送路2の単位長さ当りの静電容量を算出する第2の静電容量算出部22と、第1の静電容量算出部21により算出された総静電容量を、第2の静電容量算出部22により算出された単位長さ当りの静電容量によって除算することにより、伝送路2の電気長を算出する電気長算出部23とを備えるように、伝送路長検出装置3を構成した。したがって、伝送路長検出装置3は、通信ネットワークが途中で分岐しているか否かにかかわらず、伝送路2の電気長を測定することができる。
 図1に示す伝送路長検出装置3では、第1の静電容量算出部21が、総静電容量Ctotalを算出してから、第2の静電容量算出部22が、単位長さ当りの静電容量CULを算出している。しかし、これは一例に過ぎず、第2の静電容量算出部22が、単位長さ当りの静電容量CULを算出してから、第1の静電容量算出部21が、総静電容量Ctotalを算出するようにしてもよい。
 図1に示す伝送路長検出装置3では、第1の静電容量算出部21が、伝送路2に定電流Iを供給したときの、伝送路2に対する定電流Iの供給点での電圧変化を観測し、電圧変化から伝送路2の総静電容量Ctotalを算出している。しかし、これは一例に過ぎず、第1の静電容量算出部21は、伝送路2に供給していた定電流Iの供給を停止したときの、伝送路2に対する定電流Iの供給点での電圧変化を観測し、電圧変化から伝送路2の総静電容量Ctotalを算出するようにしてもよい。
 以下、第1の静電容量算出部21による総静電容量Ctotalの算出処理を具体的に説明する。
 定電流源21bは、伝送路2に供給していた定電流Iの供給を停止する。
 電圧参照回路21cは、伝送路2に供給していた定電流Iの供給を停止したときに、伝送路2に対する定電流Iの供給点での電圧変化を観測する。定電流Iの供給点における電圧Vは、図7に示すように、定電流Iの供給が停止されると、時間の経過に伴って単調に下降する。電圧Vは、参照電圧REF[V]よりも小さくなり、その後、0[V]になる。
 図7は、定電流Iの供給点における電圧Vの変化を示す説明図である。
 電圧参照回路21cは、定電流Iの供給点での電圧Vが、参照電圧REF[V]から0[V]に変化するまでに要する時間Δtを計測する。
 電圧参照回路21cは、時間Δtを静電容量算出処理部21dに出力する。
 静電容量算出処理部21dは、電圧参照回路21cから時間Δtを受けると、式(1)に示すように、既値である定電流Iと時間Δtとを乗算し、定電流Iと時間Δtとの乗算結果を、参照電圧REF[V]によって除算することにより、総静電容量Ctotal[F]を算出する。
 図1に示す伝送路長検出装置3では、第2の静電容量算出部22が、伝送路2にステップ信号を供給したときに、伝送路2の分岐点、又は、伝送路2の線路端によって反射されて、伝送路2に対するステップ信号の供給点に戻ってくるステップ信号の反射波から、伝送路2の特性インピーダンスZを特定している。しかし、これは一例に過ぎず、第2の静電容量算出部22は、伝送路2にパルス信号を供給したときに、伝送路2の分岐点、又は、伝送路2の線路端によって反射されて、伝送路2に対するパルス信号の供給点に戻ってくるパルス信号の反射波から、伝送路2の特性インピーダンスZを特定するようにしてもよい。ただし、第2の静電容量算出部22は、パルス信号の信号レベルが1になる時間が、時間Δtよりも長いパルス信号を伝送路2に供給するものとする。
 図1に示す伝送路長検出装置3では、電気長算出部23が、伝送路2の電気長Eを算出している。しかし、電気長Eの算出対象は、導電性を有するものであれば、伝送路2に限るものではない。したがって、電気長算出部23は、例えば、金属製の配管の電気長Eを算出するようにしてもよい。
 図1に示す通信システムでは、ネットワーク通信装置1と伝送路長検出装置3とが別々の装置である。しかし、これは一例に過ぎず、図8に示すように、ネットワーク通信装置1が、伝送路長検出装置3を含んでいてもよい。
 図8は、実施の形態1に係る伝送路長検出装置3を含む他の通信システムを示す構成図である。
実施の形態2.
 実施の形態2では、ネットワーク通信装置1から伝送路2に出力される信号の出力周期を決定する出力周期決定部26を備えている伝送路長検出装置3について説明する。
 図9は、実施の形態2に係る伝送路長検出装置3を含む通信システムを示す構成図である。図9において、図1及び図8と同一符号は同一又は相当部分を示すので説明を省略する。
 図10は、実施の形態2に係る伝送路長検出装置3の一部のハードウェアを示すハードウェア構成図である。図10において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 出力周期決定部26は、例えば、図10に示す出力周期決定回路35によって実現される。
 出力周期決定部26は、電気長算出部23の電気長算出処理部23bにより算出された電気長Eに基づいて、ネットワーク通信装置1から伝送路2に出力される信号の出力周期を決定する。
 出力周期決定部26は、決定した出力周期を示す周期情報をネットワーク通信装置1の送受信部11に出力する。
 図9に示す通信システムでは、出力周期決定部26が、図8に示す通信システムに適用されている。しかし、これは一例に過ぎず、出力周期決定部26が、図1に示す通信システムに適用されていてもよい。
 図9では、伝送路長検出装置3の一部の構成要素である静電容量算出処理部21d、静電容量算出処理部22d、スイッチ制御部23a、電気長算出処理部23b及び出力周期決定部26のそれぞれが、図10に示すような専用のハードウェアによって実現されるものを想定している。即ち、伝送路長検出装置3の一部が、第1の静電容量算出処理回路31、第2の静電容量算出処理回路32、スイッチ制御回路33、電気長算出処理回路34及び出力周期決定回路35によって実現されるものを想定している。
 第1の静電容量算出処理回路31、第2の静電容量算出処理回路32、スイッチ制御回路33、電気長算出処理回路34及び出力周期決定回路35のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
 伝送路長検出装置3の一部の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、伝送路長検出装置3の一部が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 伝送路長検出装置3の一部が、ソフトウェア又はファームウェア等によって実現される場合、静電容量算出処理部21d、静電容量算出処理部22d、スイッチ制御部23a、電気長算出処理部23b及び出力周期決定部26におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムが図3に示すメモリ41に格納される。そして、図3に示すプロセッサ42がメモリ41に格納されているプログラムを実行する。
 次に、図9に示す通信システムの動作について説明する。ただし、出力周期決定部26以外は、図1又は図8に示す通信システムと同様であるため、ここでは、主に、出力周期決定部26の動作について説明する。
 電気長算出処理部23bは、伝送路2の電気長Eを算出すると、電気長Eを示す情報を出力周期決定部26に出力する。
 出力周期決定部26は、電気長算出処理部23bから電気長Eを示す情報を受けると、電気長Eを以下の式(5)に代入し、式(5)が成立する最小の波長λを算出する。λは、ネットワーク通信装置1から伝送路2に出力される信号vの波長である。
 図9に示す伝送路長検出装置3では、出力周期決定部26が、式(5)が成立する最小の波長λを算出している。しかし、式(5)が成立する波長λであれば、最小の波長λに限るものではなく、出力周期決定部26は、例えば、最小の波長λよりも数パーセント大きな波長を算出するようにしてもよい。

Figure JPOXMLDOC01-appb-I000005
 次に、出力周期決定部26は、波長λを以下の式(6)に代入することによって、ネットワーク通信装置1から伝送路2に出力される信号の周波数fを算出する。

Figure JPOXMLDOC01-appb-I000006
 出力周期決定部26は、信号の周波数fを算出すると、周波数fを以下の式(7)に代入することによって、ネットワーク通信装置1から伝送路2に出力される信号の出力周期Tを算出する。

Figure JPOXMLDOC01-appb-I000007
 出力周期決定部26は、信号の出力周期Tを示す周期情報をネットワーク通信装置1の送受信部11に出力する。
 ネットワーク通信装置1の送受信部11は、出力周期決定部26から周期情報を受けると、ドライバIC12を介して、伝送路2に出力する送信信号の出力周期を、周期情報が示す出力周期Tに設定する。送信信号の出力周期の設定は、送信信号の伝送速度の設定に相当する。
 以降、送受信部11は、設定した出力周期Tによって、送信信号を、ドライバIC12を介して、伝送路2に出力する。例えば、送信信号が“101”であれば、送受信部11は、“1”を送信してから、出力周期Tを経過した時点で“0”を送信し、“0”を送信してから、出力周期Tを経過した時点で“1”を送信する。
 以上の実施の形態2では、電気長算出部23により算出された電気長に基づいて、伝送路2に接続されているネットワーク通信装置1から伝送路2に出力される信号の出力周期を決定する出力周期決定部26を備えるように、伝送路長検出装置3を構成した。したがって、伝送路長検出装置3は、通信ネットワークが途中で分岐しているか否かにかかわらず、伝送路2の電気長を測定することができるほか、ネットワーク通信装置1から出力される信号の伝送速度を、通信ネットワークを集中定数線路として扱うことが可能な範囲での伝送速度に決定することができる。
実施の形態3.
 実施の形態3では、伝送路2の配線異常、又は、伝送路2に対する不正接続を検出する異常検出部27を備える伝送路長検出装置3について説明する。
 図11は、実施の形態3に係る伝送路長検出装置3を含む通信システムを示す構成図である。図11において、図1、図8及び図9と同一符号は同一又は相当部分を示すので説明を省略する。
 図12は、実施の形態3に係る伝送路長検出装置3の一部のハードウェアを示すハードウェア構成図である。図12において、図2及び図10と同一符号は同一又は相当部分を示すので説明を省略する。
 異常検出部27は、例えば、図10に示す異常検出回路36によって実現される。
 異常検出部27は、第1の静電容量算出部21により算出された総静電容量Ctotalと、第2の静電容量算出部22により測定された特性インピーダンスZと、第2の静電容量算出部22により算出された単位長さ当りの静電容量CULとを取得する。
 異常検出部27は、総静電容量Ctotalと、特性インピーダンスZと、単位長さ当りの静電容量CULとから、伝送路2の配線異常、又は、伝送路2に対する不正接続を検出する。
 伝送路2の配線異常としては、伝送路2の断線又は短絡等が該当する。伝送路2に対する不正接続は、伝送路2に対して、コンピュータ又は通信装置等が不正に接続された場合が該当する。
 図11に示す通信システムでは、電気長算出部23により電気長Eが算出された当初は、伝送路2の配線異常等が無いものとする。異常検出部27は、その後に発生した配線異常等を検出する。
 図11に示す通信システムでは、異常検出部27が、図9に示す通信システムに適用されている。しかし、これは一例に過ぎず、異常検出部27が、図1又は図8に示す通信システムに適用されていてもよい。
 図11では、伝送路長検出装置3の一部の構成要素である静電容量算出処理部21d、静電容量算出処理部22d、スイッチ制御部23a、電気長算出処理部23b、出力周期決定部26及び異常検出部27のそれぞれが、図12に示すような専用のハードウェアによって実現されるものを想定している。即ち、伝送路長検出装置3の一部が、第1の静電容量算出処理回路31、第2の静電容量算出処理回路32、スイッチ制御回路33、電気長算出処理回路34、出力周期決定回路35及び異常検出回路36によって実現されるものを想定している。
 第1の静電容量算出処理回路31、第2の静電容量算出処理回路32、スイッチ制御回路33、電気長算出処理回路34、出力周期決定回路35及び異常検出回路36のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
 伝送路長検出装置3の一部の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、伝送路長検出装置3の一部が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 伝送路長検出装置3の一部が、ソフトウェア又はファームウェア等によって実現される場合、静電容量算出処理部21d、静電容量算出処理部22d、スイッチ制御部23a、電気長算出処理部23b、出力周期決定部26及び異常検出部27におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムが図3に示すメモリ41に格納される。そして、図3に示すプロセッサ42がメモリ41に格納されているプログラムを実行する。
 次に、図11に示す通信システムの動作について説明する。ただし、異常検出部27以外は、図1、図8又は図9に示す通信システムと同様であるため、ここでは、主に、異常検出部27の動作について説明する。
 異常検出部27は、第1の静電容量算出部21により算出された総静電容量Ctotalと、第2の静電容量算出部22により測定された特性インピーダンスZと、第2の静電容量算出部22により算出された単位長さ当りの静電容量CULとを取得する。
 異常検出部27は、総静電容量Ctotalを初期総静電容量Ctotal’として、内部メモリに格納し、特性インピーダンスZを初期特性インピーダンスZ’として、内部メモリに格納する。
 また、異常検出部27は、単位長さ当りの静電容量CULを初期静電容量CUL’として、内部メモリに格納する。
 その後、異常検出部27は、第1の静電容量算出部21により新たに算出された総静電容量Ctotalと、第2の静電容量算出部22により新たに測定された特性インピーダンスZと、第2の静電容量算出部22により新たに算出された単位長さ当りの静電容量CULとを繰り返し取得する。
 異常検出部27は、総静電容量Ctotalと、特性インピーダンスZと、単位長さ当りの静電容量CULとを取得する毎に、取得した総静電容量Ctotalと初期総静電容量Ctotal’との差分ΔCtotalを算出する。
 また、異常検出部27は、取得した特性インピーダンスZと初期特性インピーダンスZ’との差分ΔZを算出し、取得した単位長さ当りの静電容量CULと初期静電容量CUL’との差分ΔCULを算出する。
 異常検出部27は、差分ΔCtotalと第1の閾値Thとを比較し、差分ΔCtotalが第1の閾値Thよりも大きければ、伝送路2の配線異常、又は、伝送路2に対する不正接続が有ると判定する。
 異常検出部27は、差分ΔZと第2の閾値Thとを比較し、差分ΔZが第2の閾値Thよりも大きければ、伝送路2の配線異常、又は、伝送路2に対する不正接続が有ると判定する。
 異常検出部27は、差分ΔCULと第3の閾値Thとを比較し、差分ΔCULが第3の閾値Thよりも大きければ、伝送路2の配線異常、又は、伝送路2に対する不正接続が有ると判定する。
 異常検出部27は、差分ΔCtotalが第1の閾値Th以下であり、差分ΔZが第2の閾値Th以下であり、かつ、差分ΔCULが第3の閾値Th以下であれば、伝送路2の配線異常、及び、伝送路2に対する不正接続のそれぞれが無いと判定する。
 第1の閾値Th、第2の閾値Th及び第3の閾値Thのそれぞれは、異常検出部27の内部メモリに格納されていてもよいし、伝送路長検出装置3の外部から与えられるものであってもよい。
 異常検出部27は、伝送路2の配線異常、又は、伝送路2に対する不正接続が有ると判定すると、その旨を示す判定結果を表示部24に表示させる。
 異常検出部27は、伝送路2の配線異常、及び、伝送路2に対する不正接続のそれぞれが無いと判定すると、その旨を示す判定結果を表示部24に表示させる。
 以上の実施の形態3では、第1の静電容量算出部21により算出された総静電容量と、第2の静電容量算出部22により測定された特性インピーダンスと、第2の静電容量算出部22により算出された単位長さ当りの静電容量とから、伝送路2の配線異常、又は、伝送路2に対する不正接続を検出する異常検出部27を備えるように、伝送路長検出装置3を構成した。したがって、伝送路長検出装置3は、通信ネットワークが途中で分岐しているか否かにかかわらず、伝送路2の電気長を測定することができるほか、伝送路2の配線異常、又は、伝送路2に対する不正接続を検出することができる。
 実施の形態1~3に係る通信システムでは、第2の静電容量算出部22が、ステップ信号を伝送路2に供給するステップ信号源22bを備えている。しかし、これは一例に過ぎず、第2の静電容量算出部22が、ネットワーク通信装置1の送受信部11からステップ信号を模擬したデータパターンを取得し、データパターンを示す信号をステップ信号として伝送路2に供給するようにしてもよい。ステップ信号を模擬したデータパターンとは、例えば、0111・・・・のようなデータパターンである。
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本開示は、伝送路の電気長を算出する伝送路長検出装置に適している。
 また、本開示は、伝送路長検出装置を備えるネットワーク通信装置に適している。
 1 ネットワーク通信装置、2 伝送路、3 伝送路長検出装置、11 送受信部、12 ドライバIC、13 レシーバIC、21 第1の静電容量算出部、21a スイッチ、21b 定電流源、21c 電圧参照回路、21d 静電容量算出処理部、22 第2の静電容量算出部、22a スイッチ、22b ステップ信号源、22c ADC、22d 静電容量算出処理部、23 電気長算出部、23a スイッチ制御部、23b 電気長算出処理部、24 表示部、25 プローブ、26 出力周期決定部、27 異常検出部、31 第1の静電容量算出処理回路、32 第2の静電容量算出処理回路、33 スイッチ制御回路、34 電気長算出処理回路、35 出力周期決定回路、36 異常検出回路、41 メモリ、42 プロセッサ。

Claims (8)

  1.  通信ネットワークにおける伝送路の電圧変化を観測し、前記電圧変化に基づいて、前記伝送路の全体の静電容量である総静電容量を算出する第1の静電容量算出部と、
     前記伝送路の特性インピーダンスを測定し、前記特性インピーダンスから前記伝送路の単位長さ当りの静電容量を算出する第2の静電容量算出部と、
     前記第1の静電容量算出部により算出された総静電容量を、前記第2の静電容量算出部により算出された単位長さ当りの静電容量によって除算することにより、前記伝送路の電気長を算出する電気長算出部と
     を備えた伝送路長検出装置。
  2.  前記電気長算出部により算出された電気長に基づいて、前記伝送路に接続されているネットワーク通信装置から前記伝送路に出力される信号の出力周期を決定する出力周期決定部を備えたことを特徴とする請求項1記載の伝送路長検出装置。
  3.  前記第1の静電容量算出部により算出された総静電容量と、前記第2の静電容量算出部により測定された特性インピーダンスと、前記第2の静電容量算出部により算出された単位長さ当りの静電容量とから、前記伝送路の配線異常、又は、前記伝送路に対する不正接続を検出する異常検出部を備えたことを特徴とする請求項1記載の伝送路長検出装置。
  4.  前記第1の静電容量算出部は、前記伝送路に定電流を供給したときの、前記伝送路に対する前記定電流の供給点での電圧変化を観測し、前記電圧変化から前記伝送路の総静電容量を算出することを特徴とする請求項1記載の伝送路長検出装置。
  5.  前記第1の静電容量算出部は、前記伝送路に供給していた定電流の供給を停止したときの、前記伝送路に対する前記定電流の供給点での電圧変化を観測し、前記電圧変化から前記伝送路の総静電容量を算出することを特徴とする請求項1記載の伝送路長検出装置。
  6.  前記第2の静電容量算出部は、前記伝送路にステップ信号を供給したときに、前記伝送路の分岐点、又は、前記伝送路の線路端によって反射されて、前記伝送路に対する前記ステップ信号の供給点に戻ってくる前記ステップ信号の反射波から、前記伝送路の特性インピーダンスを特定し、前記特性インピーダンスから前記伝送路の単位長さ当りの静電容量を算出することを特徴とする請求項1記載の伝送路長検出装置。
  7.  前記第2の静電容量算出部は、前記ステップ信号を前記伝送路に供給するステップ信号源を備えていることを特徴とする請求項6記載の伝送路長検出装置。
  8.  通信ネットワークの伝送路に信号を出力する一方、前記伝送路を伝送されてきた信号を受信する送受信部と、
     前記伝送路の電気長を算出する伝送路長検出装置とを備え、
     前記伝送路長検出装置が、請求項1から請求項7のうちのいずれか1項記載の伝送路長検出装置であることを特徴とするネットワーク通信装置。
PCT/JP2020/015344 2020-04-03 2020-04-03 伝送路長検出装置及びネットワーク通信装置 WO2021199432A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/015344 WO2021199432A1 (ja) 2020-04-03 2020-04-03 伝送路長検出装置及びネットワーク通信装置
EP20928333.2A EP4119955B1 (en) 2020-04-03 2020-04-03 Transmission line length detection device and network communication device
CN202080099116.9A CN115349092A (zh) 2020-04-03 2020-04-03 传输路径长度检测装置和网络通信装置
JP2020560414A JP6906718B1 (ja) 2020-04-03 2020-04-03 伝送路長検出装置及びネットワーク通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015344 WO2021199432A1 (ja) 2020-04-03 2020-04-03 伝送路長検出装置及びネットワーク通信装置

Publications (1)

Publication Number Publication Date
WO2021199432A1 true WO2021199432A1 (ja) 2021-10-07

Family

ID=76918309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015344 WO2021199432A1 (ja) 2020-04-03 2020-04-03 伝送路長検出装置及びネットワーク通信装置

Country Status (4)

Country Link
EP (1) EP4119955B1 (ja)
JP (1) JP6906718B1 (ja)
CN (1) CN115349092A (ja)
WO (1) WO2021199432A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201419A (ja) * 1993-12-28 1995-08-04 Nec Corp 同軸コネクタのインピーダンス整合方式
JPH1164412A (ja) * 1997-08-12 1999-03-05 Fujitsu Ltd 電磁界強度算出装置及び方法並びにプログラム記憶媒体
JP2004064754A (ja) * 2002-07-23 2004-02-26 Fluke Corp 時間領域反射率計(tdr)、および時間領域反射率計測検査をネットワークケーブルに適用するための方法
JP2006017606A (ja) * 2004-07-02 2006-01-19 Toppan Printing Co Ltd 特性インピーダンス測定装置および特性インピーダンス測定方法
JP2007163237A (ja) * 2005-12-13 2007-06-28 Hioki Ee Corp 静電容量測定装置および静電容量測定方法
US20110012608A1 (en) * 2007-08-24 2011-01-20 Broadcom Corporation System and Method for Enhanced Accuracy in Cable Diagnostics of Cable Length
JP2013024729A (ja) 2011-07-21 2013-02-04 Yokogawa Electric Corp 半導体試験装置における電気長測定方法
JP2013185978A (ja) * 2012-03-08 2013-09-19 Mitsubishi Electric Corp 長さ測定装置および長さ測定方法
WO2019043828A1 (ja) * 2017-08-30 2019-03-07 三菱電機株式会社 コンデンサ容量測定装置及び電力用機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE155928T1 (de) * 1990-05-31 1997-08-15 Canon Kk Verfahren zur herstellung einer halbleiterspeicheranordnung mit kondensator
JP2947097B2 (ja) * 1994-11-28 1999-09-13 株式会社島津製作所 伝送ケーブル
US6646454B2 (en) * 2002-01-07 2003-11-11 Test-Um, Inc. Electronic apparatus and method for measuring length of a communication cable
US9784555B2 (en) * 2015-11-25 2017-10-10 Teradyne, Inc. Determining electrical path length

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201419A (ja) * 1993-12-28 1995-08-04 Nec Corp 同軸コネクタのインピーダンス整合方式
JPH1164412A (ja) * 1997-08-12 1999-03-05 Fujitsu Ltd 電磁界強度算出装置及び方法並びにプログラム記憶媒体
JP2004064754A (ja) * 2002-07-23 2004-02-26 Fluke Corp 時間領域反射率計(tdr)、および時間領域反射率計測検査をネットワークケーブルに適用するための方法
JP2006017606A (ja) * 2004-07-02 2006-01-19 Toppan Printing Co Ltd 特性インピーダンス測定装置および特性インピーダンス測定方法
JP2007163237A (ja) * 2005-12-13 2007-06-28 Hioki Ee Corp 静電容量測定装置および静電容量測定方法
US20110012608A1 (en) * 2007-08-24 2011-01-20 Broadcom Corporation System and Method for Enhanced Accuracy in Cable Diagnostics of Cable Length
JP2013024729A (ja) 2011-07-21 2013-02-04 Yokogawa Electric Corp 半導体試験装置における電気長測定方法
JP2013185978A (ja) * 2012-03-08 2013-09-19 Mitsubishi Electric Corp 長さ測定装置および長さ測定方法
WO2019043828A1 (ja) * 2017-08-30 2019-03-07 三菱電機株式会社 コンデンサ容量測定装置及び電力用機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119955A4

Also Published As

Publication number Publication date
EP4119955B1 (en) 2024-01-17
JP6906718B1 (ja) 2021-07-21
EP4119955A4 (en) 2023-04-19
JPWO2021199432A1 (ja) 2021-10-07
EP4119955A1 (en) 2023-01-18
CN115349092A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
US7075309B2 (en) System and method to locate an anomaly of a conductor
EP1395840B1 (en) Fault detection system and method
CA2626186C (en) System and method for monitoring of electrical cables
KR100486972B1 (ko) 시간-주파수 영역 반사파 처리 방법
KR101570506B1 (ko) 선형 첩 반사파 계측법을 이용한 케이블 고장점 추정 및 임피던스 추정 장치 및 방법
EP2221626A1 (en) A method for testing a power distribution system an a power distribution system analyser device
CN105308872B (zh) 用于确定金属电缆的通信特性的测试装置和方法
KR100915712B1 (ko) 전력기기의 부분방전위치 검출시스템 및 방전위치 검출방법
US20170199235A1 (en) Cable fault diagnosis method and system
Tsai et al. Mixed-signal reflectometer for location of faults on aging wiring
US11874396B2 (en) Radar device
JP2006208060A (ja) 伝送遅延評価システムおよび伝送遅延評価方法
US20170117936A1 (en) Estimation of impedances in a transmission medium
WO2021199432A1 (ja) 伝送路長検出装置及びネットワーク通信装置
US11092101B2 (en) Heater in-circuit capacitive measurement
US6922062B2 (en) Timing markers for the measurement and testing of the controlled impedance of a circuit board
JP2004093565A (ja) 充填レベル測定機器
WO2019183490A1 (en) System and method of submitting data from individual sensors over a shared cable
KR20100077494A (ko) 단선 금속 차폐 케이블의 길이 측정 장치
Fischer et al. Perspective on spatially-resolved diagnostic methods for power cables
US10473719B2 (en) System and method for separating and measuring two signals simultaneously present on a signal line
KR102179063B1 (ko) 신호 라인 길이를 산정하는 SoC 테스트 장치
Weiß et al. A novel method of determining the permittivity of liquids
JP4506154B2 (ja) 特性インピーダンス測定方法および測定装置
KR20000039261A (ko) 전선의 단선 및 단락 지점 측정 방법 및 그 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020560414

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020928333

Country of ref document: EP

Effective date: 20221012

NENP Non-entry into the national phase

Ref country code: DE