WO2021197513A2 - 一种一体成型电感及其制造方法 - Google Patents

一种一体成型电感及其制造方法 Download PDF

Info

Publication number
WO2021197513A2
WO2021197513A2 PCT/CN2021/103460 CN2021103460W WO2021197513A2 WO 2021197513 A2 WO2021197513 A2 WO 2021197513A2 CN 2021103460 W CN2021103460 W CN 2021103460W WO 2021197513 A2 WO2021197513 A2 WO 2021197513A2
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
magnet
sintered
coating layer
insulating coating
Prior art date
Application number
PCT/CN2021/103460
Other languages
English (en)
French (fr)
Other versions
WO2021197513A3 (zh
Inventor
王莹莹
李有云
侯勤田
余鑫树
夏胜程
谈敏
姚泽鸿
Original Assignee
东莞顺络电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞顺络电子有限公司 filed Critical 东莞顺络电子有限公司
Priority to CN202180001716.1A priority Critical patent/CN113661549A/zh
Priority to PCT/CN2021/103460 priority patent/WO2021197513A2/zh
Publication of WO2021197513A2 publication Critical patent/WO2021197513A2/zh
Publication of WO2021197513A3 publication Critical patent/WO2021197513A3/zh

Links

Images

Definitions

  • the invention relates to electronic components, in particular to an integrally formed inductor and a manufacturing method thereof.
  • thermosetting magnetic powders are mostly used.
  • the solid content of the magnet is low, the resin content is high, and the magnetic permeability and saturation characteristics are limited.
  • the size and resistance characteristics of the inductor have to be sacrificed, resulting in a further increase in the core loss and DC loss of the product, resulting in a reduction in the conversion efficiency of the device, serious heating of the inductor, and accelerated aging.
  • the prior art lacks an integrated inductor with high magnetic permeability, high saturation, high conversion efficiency, low loss, and high heat dissipation characteristics and a manufacturing method thereof.
  • the main purpose of the present invention is to overcome the defects of the above-mentioned background technology and provide an integrated inductor with high magnetic permeability, high saturation, high conversion efficiency, low loss, and high heat dissipation and a manufacturing method thereof.
  • a sintered integrally molded inductor includes a conductor, a magnet, and a heat dissipation insulating coating.
  • the conductor and the magnet are sintered and integrally formed, wherein the main body of the conductor is located inside the magnet and is separated from the magnet. Two ends of the conductor are drawn out inside, and both ends of the conductor are provided with a metallization layer to form electrodes, and the heat dissipation insulating coating layer covers the magnet, but exposes the electrodes.
  • the conductor is a bare wire or metal sheet without paint film coating, or a bare wire or metal sheet covered by an inorganic insulating layer, or a single layer wound from bare copper wire without paint film coating.
  • the magnet includes magnetic powder, the magnetic powder is a soft metal magnetic material; the soft metal material includes one or more of FeSiCr, FeSiMn, FeSiAl, FeNi, and carbonyl iron powder.
  • the magnetic powder is obtained by grading two or more particle sizes.
  • the magnetic powder is insulated and coated by thermosetting organic matter, or insulated and coated by ceramic, or insulated and coated by metal oxide, or insulated and coated by glass, or insulated and coated by non-metal oxide.
  • the magnetic powder is double-layer insulated and coated by phosphoric acid film and epoxy resin.
  • the heat dissipation insulating coating layer includes components A and B, the component A is a mixture of a thermally conductive material and an adhesive, and the thermally conductive material includes one of a metal, a metal oxide, or a non-metallic material.
  • the adhesive is a thermosetting adhesive modified at high temperature; the component B is a curing agent.
  • the component B is an epoxy curing agent
  • the epoxy curing agent is one or more of polyamide curing agent, polyamide adduct curing agent, fatty amine and acid anhydride curing agent.
  • the component A contains graphene
  • the component B contains an epoxy curing agent
  • the heat dissipation insulating coating layer is formed as a high thermal conductivity polymer film.
  • the heat-dissipating insulating coating layer further contains a rust inhibitor.
  • a method for preparing the sintered integrally formed inductor includes the following steps:
  • Electrode forming and metallization are performed on both ends of the conductor to form electrodes.
  • step S1 molding is performed three or more times.
  • step S1 the pressure of the molding press is ⁇ 300Mpa.
  • the sintering temperature is greater than or equal to 200° C.
  • the sintering atmosphere is an oxidizing gas, or an inert gas, or a reducing gas, or multiple gas stepwise treatments are used.
  • the oxidizing gas is air
  • the inert gas is helium or argon
  • the reducing gas is hydrogen or nitrogen.
  • step S1 the temperature of the heat treatment is 100 to 300° C., and the time of the heat treatment is 10 to 120 min.
  • step S1 the temperature of the heat treatment is 160 to 180° C., and the time of the heat treatment is 30 to 60 min.
  • step S2 the coating method is roll spraying, brushing, coating, printing, spraying or dipping; in step S3, the method of removing the heat dissipation insulating coating layer is sandblasting, dry ice cleaning, laser Peeling or mechanical grinding; in step S3, the metallization treatment method is tin immersion, electroplating or PVD.
  • step S2 the formed heat dissipation insulating coating layer covers both ends of the conductor.
  • step S3 the heat dissipation insulating coating layer on both ends of the conductor is first removed, and then the heat dissipation insulating coating layer is passed through a metal After chemical treatment, the electrode is formed; or, in step S2, the two ends of the conductor are protected from being covered by the heat-dissipating insulating coating layer formed, and in step S3, metal is directly performed on both ends of the conductor.
  • the electrode is formed after chemical treatment.
  • the electrode forming process includes bending and/or cutting both ends of the conductor.
  • the present invention provides a sintered integrated molded inductor and a manufacturing method thereof.
  • the inductor of the present invention includes a conductor, a magnet, and a heat-dissipating insulating coating layer.
  • the inside of the magnet, and both ends of the conductor are drawn from the inside of the magnet to serve as electrodes, and the heat dissipation insulating coating layer covers the magnet but exposes the electrodes.
  • the inductor of the present invention has the advantages of high magnet molding density, high solid content, and high molding accuracy, which can effectively improve the inductance and saturation characteristics of the product, reduce the core loss of the inductor, and reduce the volume of the finished product.
  • the insulating and heat dissipation coating formed on the surface of the magnet can effectively improve the heat dissipation, insulation and corrosion resistance of the product.
  • the molded semi-finished product is coated with a heat dissipation insulating coating to cover the magnet, which effectively improves the heat dissipation, insulation and corrosion resistance of the product.
  • two compression molding is adopted. Compared with one compression molding, the magnetic core can have lower porosity, higher density, lower residual stress, and increase the effective magnetic permeability of the magnetic powder. And reduce the loss of the magnetic core, improve the inductance and resistivity of the inductor.
  • two compression molding compared with one compression molding, the required pressure is also smaller, and the damage to the mold and the tonnage of the press are lower.
  • the molded semi-finished product is sintered to eliminate the defects and internal stress generated during the pressing process, produce a solid phase transition reaction, change the metallographic structure of the magnetic powder, and then increase the effective magnetic permeability of the magnetic powder and reduce the hysteresis loss.
  • the sintering shrinkage of the magnetic core can be effectively reduced, and the risk of product cracking and warping during the sintering process can be reduced.
  • the heat treatment conditions provided in the preferred solution of the present invention can better avoid damage to the insulating coating characteristics of the magnetic core, reduce eddy current loss and adverse effects on the particle size and crystal grain size of the powder.
  • the inductor manufacturing method of the present invention adopts two molding, heat treatment and sintering processes, which can effectively increase the molding density of the magnet and the solid content of the magnet, thereby improving the inductance and saturation characteristics of the product, reducing the inductance loss, and contributing to the miniaturization of the product.
  • the surface of the magnet is coated with a heat-dissipating insulating coating, which can effectively improve the heat-dissipating capacity, insulation characteristics and corrosion resistance of the product.
  • the inductor is a sintered integrated molding structure, the product has high dimensional accuracy, and can work stably under high current impact and high frequency voltage.
  • FIG. 1A is a schematic diagram of a semi-finished molded product structure in a sintered integrated forming inductor manufacturing method according to the first embodiment of the present invention
  • FIG. 1B is a schematic diagram of the finished product structure in the sintered integrated forming inductor manufacturing method according to the first embodiment of the present invention
  • FIG. 2A is a schematic diagram of a semi-finished molded product structure in a sintered integrated forming inductor manufacturing method according to the second embodiment of the present invention
  • 2B is a schematic diagram of the finished product structure in the sintered integrally formed inductor manufacturing method according to the second embodiment of the present invention.
  • connection can be used for fixing or for coupling or connecting.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • a plurality of means two or more than two, unless otherwise specifically defined.
  • an embodiment of the present invention provides a sintered integrated inductor, including conductors 110, 210, magnets 120, 220, and heat dissipation insulating coating layers 130, 240, the conductors 110, 210 and the magnet 120 , 220 sintered and integrally formed, wherein the main part of the conductor 110, 210 is located inside the magnet 120, 220, and the two ends of the conductor 110, 210 are drawn from the inside of the magnet 120, 220 (for example, as The lead-out ends 211 and 212 shown in FIG.
  • both ends of the conductor are provided with metallization layers to form electrodes 111, 112, 231, 232, and the heat dissipation insulating coating layers 130, 240 connect the magnets 120, 220 is covered, but the electrodes 111, 112, 231, 232 are exposed.
  • the lead-out ends of the conductor can be drawn from both sides of the magnet, or from the bottom of the magnetic core, or from the upper and lower surfaces of the magnetic core, which is not limited by the present invention.
  • the sintered one-piece inductor has the advantages of high magnet molding density, high solid content, and high molding accuracy. It can effectively improve the inductance and saturation characteristics of the product, reduce the core loss of the inductor, and reduce the volume of the finished product.
  • the insulating and heat-dissipating coating can effectively improve the heat dissipation, insulation and corrosion resistance of the product.
  • an embodiment of the present invention also provides a method for manufacturing a sintered integrally formed inductor, which includes the following steps:
  • Electrode forming treatment such as bending and/or cutting, etc.
  • metallization treatment on both ends of the conductors 110 and 210 to form electrodes 111, 112, 231, and 232.
  • the molded semi-finished product is coated with a heat dissipation insulating coating to cover the magnet, which effectively improves the heat dissipation, insulation and corrosion resistance of the product.
  • the magnetic core can have lower porosity, higher density, lower residual stress, improve the effective magnetic permeability of the magnetic powder, and reduce the loss of the magnetic core. Improve the inductance and resistivity of the inductor.
  • the required pressure is also smaller, and the damage to the mold and the tonnage of the press are lower.
  • the molded semi-finished product is sintered to eliminate the defects and internal stress generated during the pressing process, produce a solid phase transition reaction, change the metallographic structure of the magnetic powder, and then increase the effective magnetic permeability of the magnetic powder and reduce the hysteresis loss.
  • the sintering shrinkage of the magnetic core can be effectively reduced, and the risk of product cracking and warping during the sintering process can be reduced.
  • the conductor may be a bare wire or a metal sheet without paint film coating, or a bare wire or metal sheet with an inorganic insulating layer, or a bare copper wire without paint film coating.
  • a safe distance is left between the conductors to prevent the conductors from contacting each other and causing an interlayer short circuit in the inductor.
  • the electrode terminal exposed in the air will be oxidized during subsequent sintering in the air.
  • the inductance is When sintering in an inert gas or using bare conductors without paint film coating, after sintering in air, the oxidized part of the conductor is removed by cutting, grinding, etc.
  • the magnetic powder is a metallic soft magnetic material, including FeSiCr, FeSiMn, FeSiAl, FeNi, carbonyl iron powder, and the like.
  • the magnetic powder is obtained by grading two or more particle sizes.
  • the coating process of the magnetic powder particles can be thermosetting organic insulation coating, ceramic (metal oxide) insulation coating, or glass (non-metal oxide) insulation coating.
  • a phosphoric acid film formed by phosphating magnetic powder and epoxy resin is used for double-layer insulation coating.
  • the cladding layer of the inductor includes components A and B.
  • Component A is a mixture of a thermally conductive material and an adhesive.
  • the thermally conductive material can be mostly metal (such as Ag, Cu, Al, etc.) , Or one of metal oxides (such as Fe 2 O 3 , BeO, Al 2 O 3, etc.), or other non-metallic materials (such as graphene, graphite, carbon black aluminum nitride, boron nitride, silicon carbide, etc.)
  • the adhesive is a thermosetting adhesive modified at high temperature, which can be polyimide, silicone resin, epoxy resin, etc.
  • Component B is an epoxy curing agent.
  • the epoxy curing agent can be one or more of polyamide curing agent, polyamide adduct curing agent, fatty amine and acid anhydride curing agent.
  • graphene paint and epoxy curing agent are selected, and the heat dissipation insulating coating layer is formed as a high thermal conductivity polymer film.
  • the coating layer in the embodiment can effectively improve the heat dissipation characteristics of the epoxy coating layer by adding a thermally conductive material.
  • an anti-rust agent can be added to the coating to further increase the anti-rust property of the inductor.
  • a method for manufacturing a sintered integrally formed inductor includes the following steps:
  • Step 1 Compression molding: Place the conductor in the mold, and sequentially perform powder filling, primary molding, heat treatment, secondary molding, and sintering to obtain molded semi-finished products;
  • Step 2 coating coating: coating the coating on the molded semi-finished product, and drying it to form a heat-dissipating insulating coating layer;
  • Step 3 Electrode forming: bending or cutting the electrode, removing the heat dissipation insulating coating on the surface of the electrode, thinning or not thinning the electrode, and finally forming an inductive electrode through metallization.
  • the molding in step 1, may be cold pressing or hot pressing, and the pressing may be performed twice or more.
  • the invention adopts two compression molding, compared with one compression molding, the used pressure is smaller, the damage to the mold and the tonnage requirement of the press are lower.
  • the magnetic core By increasing the number of molding times and increasing the molding temperature, the magnetic core can have lower porosity, higher density, lower residual stress, increase the effective magnetic permeability of the magnetic powder, and reduce the loss of the magnetic core, and improve the inductance of the inductance. Value and resistivity.
  • a heat treatment is added between the two compression moldings, and then high-temperature sintering is performed to reduce the sintering shrinkage of the magnetic core and reduce the risk of product cracking and warping during the sintering process;
  • the molding pressure is ⁇ 300Mpa, for example, it can be 400MPa, 600MPa, 800MPa, 1000MPa, 1200MPa, etc., but is not limited to the listed values.
  • step S1 the temperature of the heat treatment is 100 to 300° C., and the time of the heat treatment is 10 to 120 min. In a preferred embodiment, in step S1, the temperature of the heat treatment is 160 to 180° C., and the time of the heat treatment is 30 to 60 min.
  • the heat treatment conditions provided in the foregoing embodiments of the present invention can better avoid damaging the insulating coating characteristics of the magnetic core, reduce eddy current loss and adverse effects on the particle size and crystal grain size of the powder.
  • the sintering temperature is greater than or equal to 200°C, for example, 200°C, 400°C, 600°C, 800°C, 1000°C, etc., which are not limited to the listed values, and there are other unlisted values within this range of values. The values also apply.
  • the sintering atmosphere in step 1 is an oxidizing gas (air), or an inert gas (helium or argon), or a reducing gas (hydrogen or nitrogen), or a multi-gas segmented treatment .
  • the molded semi-finished product is sintered to eliminate defects and internal stress generated in the pressing process, produce a solid phase transition reaction, change the metallographic structure of the magnetic powder, thereby increasing the effective magnetic permeability of the magnetic powder and reducing hysteresis loss.
  • the coating method in step 2 includes roll spraying, brushing, coating, printing, spraying, dip coating, etc.
  • the present invention coats the heat-treated inductor to further improve the heat dissipation of the product. Performance, insulation properties, and corrosion resistance.
  • the method for removing the electrode coating layer in step 3 includes sandblasting, dry ice cleaning, laser peeling, mechanical grinding, and the like.
  • the metallization treatment method in step 3 includes immersion tin, electroplating, PVD, and the like.
  • the inductor of the present invention can protect the electrode under the condition that the inductor electrode is not oxidized, and the electrode can be directly immersed in tin and then bent to form an electrode.
  • the electrode may not be protected during the coating process, and the coating process may be performed directly, and then the coating layer and oxide layer on the electrode surface will be removed, and finally the folding will be performed. Bending and metallization treatment.
  • the electrodes can also be bent and thinned (the coating layer and oxide layer are removed while thinning), and then metallized.
  • a sintered integrated inductor includes a bare copper wire 110, electrodes 111, 112, a magnet 120, and a heat dissipation insulating coating 130.
  • the manufacturing method includes the following steps:
  • Step 1 Compression molding: Place the designed bare copper wire 110 into the mold, the size of the bare copper wire is 2.0*0.3mm, the two ends of the bare copper wire are drawn from the two ends of the mold, and the mold is filled with FeSiCr and carbonyl iron powder Mixed soft magnetic powder, in which the particle size of FeSiCr powder is 15 ⁇ 35 ⁇ m, the particle size of carbonyl iron powder is 2 ⁇ 3 ⁇ m, the mass ratio of FeSiCr and carbonyl iron powder is 4:1; the first molding pressure is 600MPa; The heat treatment temperature is 160°C, and the heat treatment time is 60min; then it is subjected to secondary compression molding with a molding pressure of 1800MPa; sintering in a hydrogen tube furnace for 60 minutes and a sintering temperature of 750°C to obtain a molded semi-finished product; among them, the size of the magnet 120 is 10.5* 5.0*1.4mm, the bottom and both sides of the magnet 120 are slotted.
  • FeSiCr powder FeSiC
  • Step 2 Forming the heat-dissipating insulation coating layer 130:
  • the paint used to form the heat-dissipating insulation coating layer is applied to the surface of the molded semi-finished product by roller spraying, and dried, and the thickness of the heat-dissipating insulation coating layer 130 formed is less than 15 ⁇ m.
  • the main component of the coating is a mixture of graphene and polyimide-epoxy resin.
  • Step 3 Electrode forming: bend the leading ends of both sides of the bare copper wire 110, remove the coating layer formed on the surface of the copper wire by mechanical grinding, and then perform tin immersion treatment to obtain inductor electrodes 111, 112, tin Layer thickness: 10-50 ⁇ m.
  • the reduced thickness of the electrode is 0.1 to 0.7 times the thickness of the electrode, and the surface of the thinned copper wire is smooth and continuous without oxidation.
  • the insulation withstand voltage test and the salt spray test the insulation characteristics and anti-corrosion characteristics of the sintered integrated inductor without a heat dissipation insulation coating layer and with a heat dissipation insulation coating layer are compared.
  • the insulation withstand voltage of the inductor is 0-50V; with the heat-dissipating insulation coating, the insulation withstand voltage of the inductor of the first embodiment is 300-400V.
  • the inductor undergoes a salt spray test for 8 hours, and the corrosion area is greater than 30%; with heat-dissipating insulation coating, the inductor product of the first embodiment has a corrosion area of less than 5% after 48 hours of the salt spray test.
  • the product of the first embodiment effectively improves the heat dissipation efficiency and conversion efficiency.
  • the comparison data of the size, density, permeability, resistance, temperature rise, and conversion efficiency of the inductor of the first embodiment and the traditional curing type integrated inductor are shown in Table 1.
  • the conversion efficiency test conditions are: 12V to 1.8V, the test frequency is 500kHz, and the electronic load is 30A.
  • a sintered integrated inductor includes an air-core coil 210, a magnet 220, electrodes 231, 232, and a heat-dissipating insulating coating layer 240.
  • the manufacturing method includes the following steps:
  • Step 1 Winding the coil: A single-layer multi-row air-core coil 210 is wound with copper wire coated with inorganic insulation.
  • the diameter of the wire is 1.7*0.5mm
  • the thickness of the inorganic coating layer of the copper wire is 5-10 ⁇ m
  • the number of turns of the coil is 2.5
  • the coil is spirally wound
  • the offset pitch of the coil is 0.2mm.
  • Step 2 Compression molding: Place the hollow coil 210 into the mold, and then fill the mold with FeSiCr powder with a particle size of 10-30 ⁇ m; the first molding pressure is 900MPa; the heat treatment temperature is 180°C for 30min; then proceed Second molding, molding pressure is 1600MPa; sintering in air at 200°C for 120min to obtain molded semi-finished products, among which the size of magnet 220 is 17*17*0.96mm.
  • Step 3 Coating the heat-dissipating insulation coating layer: Dip coating is used to apply the paint used to form the heat-dissipating insulation coating layer on the surface of the molded semi-finished product, a layer of anti-rust heat-dissipation insulation coating layer 240, the coating layer
  • the thickness of the coating is less than 20 ⁇ m; the main component of the coating is a mixture of graphene, metal oxide (copper oxide, aluminum oxide) and silicone grease.
  • Step 4 Electrode forming: cutting the leading ends 211, 212 from the bottom of the magnet for forming two electrodes along the surface of the magnet, cutting off the excess length of the lead, and then removing the leading end 211 by sandblasting.
  • the coating layer formed on 212 is then subjected to PVD treatment to obtain metallized electrodes 231, 232; the thickness of each metal layer after the metallization treatment is: Cr: 0.1-0.4 ⁇ m, Ni: 1.0-4.0 ⁇ m, Ag: 0.3 -1.0 ⁇ m, Sn: 4-8 ⁇ m.
  • the insulation withstand voltage test and the salt spray test the insulation characteristics and anti-corrosion characteristics of the sintered integrated inductor without a heat dissipation insulation coating layer and with a heat dissipation insulation coating layer are compared.
  • the insulation withstand voltage of the inductor is 50-200V; with the heat-dissipating insulation coating, the insulation withstand voltage of the inductor in the second embodiment is 400-600V.
  • the inductor undergoes a salt spray test for 8 hours, and the corrosion area is greater than 25%; with heat-dissipating insulation coating, the inductor product of the second embodiment has a corrosion area of less than 3% after 48 hours of the salt spray test.
  • the product of the second embodiment effectively improves the heat dissipation efficiency and conversion efficiency.
  • the comparison data of the size, density, permeability, resistance, temperature rise, and conversion efficiency of the inductor in the second embodiment and the traditional curing type integrated inductor are shown in the table.
  • the conversion efficiency test conditions are: 12V to 5.0V, the test frequency is 300kHz, and the electronic load is 25A.
  • the background part of the present invention may contain background information about the problem or environment of the present invention, and does not necessarily describe the prior art. Therefore, the content contained in the background technology part is not the applicant's recognition of the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种烧结一体成型电感,包括导体、磁体及散热绝缘包覆层,导体与磁体烧结一体成型,导体的主体部分位于磁体的内部,并从磁体的内部引出导体的两端,散热绝缘包覆层将磁体包覆,但暴露电极。一种制备的烧结一体成型电感的方法,包括步骤:S1.将导体置入模具中,然后依次进行填磁粉,一次模压,热处理,二次模压,烧结,得到模压半成品,其中模压半成品包括磁体和位于磁体的内部的导体,导体两端从磁体内部引出;S2.将涂覆材料涂覆到模压半成品上,烘干后形成散热绝缘包覆层;S3.对导体两端进行电极成型处理和金属化处理。提供了一种高磁导率、高饱和、高转化效率、低损耗的一体成型电感及其制造方法,还提升产品的散热特性、绝缘特性以及抗腐蚀能力。

Description

一种一体成型电感及其制造方法 技术领域
本发明涉及电子元器件,特别是涉及一种一体成型电感及其制造方法。
背景技术
随着集成电路由二维向三维方向的发展,半导体的集成化程度越来越高,与此同时,也对电子元器件的高磁导率、高饱和、低损耗、高转化效率以及散热特性提出了更高的要求。
目前,一体成型电感采用热压或冷压一步模压成型,多采用热固型磁粉,磁体固含量低,树脂含量高,磁导率和饱和特性提升空间有限,为获得高感值和高饱和电流,不得不牺牲电感的尺寸和电阻特性,导致产品的磁芯损耗和直流损耗也进一步增加,使得器件转化效率降低,电感发热严重,老化加快。
传统的烧结型合金磁粉,磁体固含量高,具有较高的磁导率、高饱和磁通密度以及高温稳定性,然而,因烧结型合金磁粉的烧结温度远远高于漆包铜线的耐温等级,无法直接模压后烧结成型,因此大多应用于组装式电感。该类电感含有多个组件,依靠胶水或加压、低温加热粘结,组件间存在不均匀气隙,在高温高湿条件下,电感可靠性差,漏磁严重,噪音大。
现有技术中缺乏一种高磁导率、高饱和、高转化效率、低损耗、高散热特性的一体成型电感及其制造方法。
需要说明的是,在上述背景技术部分公开的信息仅用于对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明的主要目的在于克服上述背景技术的缺陷,提供一种高磁导率、高饱和、高转化效率、低损耗、高散热的一体成型电感及其制造方法。
为实现上述目的,本发明采用以下技术方案:
一种烧结一体成型电感,包括导体、磁体以及散热绝缘包覆层,所述导体与所述磁体烧结一体成型,其中,所述导体的主体部分位于所述磁体的内部,并从所述磁体的内部引出所述导体的两端,所述导体的两端设置 有金属化层而形成电极,所述散热绝缘包覆层将所述磁体包覆,但暴露所述电极。
进一步地,所述导体为无漆膜包覆的裸导线或金属片,或为由无机绝缘层包覆的裸导线或金属片,或为无漆膜包覆的裸铜线绕制的单层多圈的空心线圈,或为由无机绝缘层包覆的导线绕制的空心线圈。
进一步地,所述磁体包含磁粉,所述磁粉为金属软磁材料;所述金属软磁材料包含FeSiCr、FeSiMn、FeSiAl、FeNi、羰基铁粉中的一种或多种。
进一步地,所述磁粉由两种及两种以上的粒径级配获得。
进一步地,所述磁粉由热固性有机物绝缘包覆,或由陶瓷绝缘包覆,或由金属氧化物绝缘包覆,或由玻璃绝缘包覆,或由非金属氧化物绝缘包覆。
进一步地,所述磁粉由磷酸膜和环氧树脂进行双层绝缘包覆。
进一步地,所述散热绝缘包覆层包含组分A和B,所述组分A为导热材料及胶黏剂的混合物,所述导热材料包含金属、金属氧化物、或非金属材料中的一种或多种,所述胶黏剂为经过高温改性的热固型胶黏剂;所述组分B为固化剂。
进一步地,所述组分B为环氧固化剂,所述环氧固化剂为聚酰胺固化剂、聚酰胺加成物固化剂、脂肪胺和酸酐固化剂中的一种或几种。
进一步地,所述组分A含有石墨烯,所述组分B含有环氧固化剂,所述散热绝缘包覆层形成为高导热聚合物膜。
进一步地,所述散热绝缘包覆层还包含防锈剂。
一种制备所述的烧结一体成型电感的方法,包括如下步骤:
S1.将导体置入模具中,然后依次进行填磁粉,一次模压,热处理,二次模压,烧结,得到模压半成品,其中所述模压半成品包括磁体和位于所述磁体的内部的所述导体,所述导体的两端从所述磁体的内部引出;
S2.将用于形成散热绝缘包覆层的涂覆材料涂覆到所述模压半成品上,烘干后形成所述散热绝缘包覆层;
S3.对所述导体的两端进行电极成型处理和金属化处理后形成电极。
进一步地,步骤S1中还进行三次或更多次模压。
进一步地,步骤S1中,模压的压强≥300Mpa。
进一步地,步骤S1中,烧结的温度≥200℃,烧结的气氛为氧化性气体,或为惰性气体,或为还原性气体,或采用多种气体分段处理。
进一步地,所述氧化性气体为空气,所述惰性气体为氦气或氩气,所述还原性气体为氢气或氮气。
进一步地,步骤S1中,所述热处理的温度为100~300℃,所述热处理的时间为10~120min。
进一步地,步骤S1中,所述热处理的温度为160~180℃,所述热处理的时间为30~60min。
进一步地,步骤S2中,涂覆的方式为滚喷、刷涂、涂布、印刷、喷雾或浸涂;步骤S3中,去除所述散热绝缘包覆层的方法为喷砂、干冰清洗、激光去皮或机械研磨;步骤S3中,所述金属化处理方法为浸锡、电镀或PVD。
进一步地,步骤S2中,形成的所述散热绝缘包覆层包覆所述导体的两端,步骤S3中,先去除所述导体的两端表面的所述散热绝缘包覆层,再经金属化处理后形成所述电极;或者,步骤S2中,保护所述导体的两端不被形成的所述散热绝缘包覆层包覆,步骤S3中,直接在所述导体的两端表面进行金属化处理后形成所述电极。
进一步地,步骤S3中,所述电极成型处理包括对所述导体的两端进行弯折和/或裁切。
本发明具有如下的有益效果:
本发明提供一种烧结一体成型电感及其制造方法,本发明的电感包括导体、磁体以及散热绝缘包覆层,所述导体与所述磁体烧结一体成型,其中,所述导体的主体部分位于所述磁体的内部,并从所述磁体的内部引出所述导体的两端以充当电极,所述散热绝缘包覆层将所述磁体包覆但暴露所述电极。由此技术方案,本发明的电感具有磁体成型密度高,固含量高,成型精度高的优点,能有效地提升产品的感值和饱和特性,降低电感的磁芯损耗,减小成品体积,而磁体表面形成的绝缘散热涂层能有效地提升产品的散热特性、绝缘特性以及抗腐蚀能力。
本发明烧结一体成型电感的制造方法中,在模压半成品涂覆散热绝缘包覆层,使其包覆磁体,有效地提升了产品的散热性、绝缘特性、抗腐蚀特性。本发明的制造方法中,采用两次模压成型,相比于一次模压成型,可以使磁芯具有更低的孔隙率,更高的密度,更低的残余应力,提高磁粉的有效磁导率,并降低磁芯的损耗,提高电感的感值和电阻率。采用两次模压成型,相比于一次模压成型,所需的压力也更小,对模具的损伤和压机的吨位要求更低。将模压半成品进行烧结处理,消除压制过程中产生的 缺陷及内应力,产生固态相变反应,改变磁粉的金相结构,进而提高磁粉的有效磁导率,降低磁滞损耗。而在进行高温烧结处理之前,通过在两次模压成型之间增加热处理,能够有效地减小磁芯烧结收缩,降低烧结过程中产品的开裂和翘曲风险。本发明优选方案中提供的热处理条件能够更好地避免破坏磁芯的绝缘包覆特性,降低涡流损耗和对粉末颗粒尺寸和晶粒尺寸造成的不利影响。
与传统技术相比,本发明的优点主要体现在(但不限于)如下方面:
(1)本发明的电感制造方法采用两次模压、热处理及烧结工艺,可以有效提高磁体的成型密度,磁体固含量,进而提升产品的感量和饱和特性,降低电感损耗,有利于产品的小型化设计;
(2)磁体的表面涂覆散热绝缘包覆层,能有效提升产品的散热能力、绝缘特性以及抗腐蚀能力。
(3)电感为烧结一体成型结构,产品的尺寸精度高,且能够在大电流冲击和高频电压下稳定工作。
附图说明
图1A是本发明实施例一的烧结一体成型电感制造方法中的模压半成品结构示意图;
图1B是本发明实施例一的烧结一体成型电感制造方法中的成品结构示意图;
图2A是本发明实施例二的烧结一体成型电感制造方法中的模压半成品结构示意图;
图2B是本发明实施例二的烧结一体成型电感制造方法中的成品结构示意图。
具体实施方式
以下对本发明的实施方式做详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。另外,连接既可以是用于固定作用也可以是用于耦合或连通作用。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为 基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
参阅图1B和图2B,本发明实施例提供一种烧结一体成型电感,包括导体110、210、磁体120、220以及散热绝缘包覆层130、240,所述导体110、210与所述磁体120、220烧结一体成型,其中,所述导体110、210的主体部分位于所述磁体120、220的内部,并从所述磁体120、220的内部引出所述导体110、210的两端(例如如图2B所示的引出端211、212),所述导体的两端设置有金属化层而形成电极111、112、231、232,所述散热绝缘包覆层130、240将所述磁体120、220包覆,但暴露所述电极111、112、231、232。本发明中,导体的引出端可以从磁体两侧引出,亦可以从磁芯底部引出,或者从磁芯上下表面引出,本发明对此不作限制。
该烧结一体成型电感具有磁体成型密度高,固含量高,成型精度高的优点,能有效地提升产品的感值和饱和特性,降低电感的磁芯损耗,减小成品体积,而磁体表面形成的绝缘散热涂层能有效地提升产品的散热特性、绝缘特性以及抗腐蚀能力。
参阅图1A至图2B,本发明实施例还提供一种烧结一体成型电感的制造方法,包括如下步骤:
S1.将导体110、210置入模具中,然后依次进行填磁粉,一次模压,热处理,二次模压,烧结,得到模压半成品,其中所述模压半成品包括磁体120、220和位于所述磁体120、220的内部的所述导体110、210,所述导体110、210的两端(例如如图2B所示的引出端211、212)从所述磁体120、220的内部引出;
S2.将用于形成散热绝缘包覆层的涂覆材料涂覆到所述模压半成品上,烘干后形成包覆磁体120、220的散热绝缘包覆层130、240;
S3.对所述导体110、210的两端进行电极成型处理(如弯折和/或裁切等)和金属化处理后形成电极111、112、231、232。
本发明烧结一体成型电感的制造方法中,在模压半成品涂覆散热绝缘包覆层,使其包覆磁体,有效地提升了产品的散热性、绝缘特性、抗腐蚀特性。采用两次模压成型,相比于一次模压成型,可以使磁芯具有更低的孔隙率,更高的密度,更低的残余应力,提高磁粉的有效磁导率,并降低磁芯的损耗,提高电感的感值和电阻率。采用两次模压成型,相比于一次模压成型,所需的压力也更小,对模具的损伤和压机的吨位要求更低。将模压半成品进行烧结处理,消除压制过程中产生的缺陷及内应力,产生固态相变反应,改变磁粉的金相结构,进而提高磁粉的有效磁导率,降低磁滞损耗。而在进行高温烧结处理之前,通过在两次模压成型之间增加热处理,能够有效地减小磁芯烧结收缩,降低烧结过程中产品的开裂和翘曲风险。
在一些实施例中,所述导体可以为无漆膜包覆的裸导线或金属片,或为由无机绝缘层包覆的裸导线或金属片,或为采用无漆膜包覆的裸铜线绕制的单层多圈的空心线圈,或为由无机绝缘层包覆的导线绕制的空心线圈。
在一些实施例中,采用无漆膜包覆的导体时,各导体间留有安全间距,以防止导体间相互接触,使电感发生层间短路。
在一些实施例中,采用无漆膜包覆的裸导体时,后续在空气中烧结时,裸露在空气中的电极端会氧化,优选的,采用无漆膜包覆的裸导体时,电感在惰性气体中烧结处理,或采用无漆膜包覆的裸导体时,在空气中烧结后,采用切割、研磨等方式去除导体被氧化的部分。
在一些实施例中,所述磁粉为金属软磁材料,包括FeSiCr、FeSiMn、FeSiAl、FeNi、羰基铁粉等。优选地,所述磁粉由两种及两种以上的粒径级配获得。磁粉颗粒的包覆工艺可以热固性有机绝缘包覆,或陶瓷(金属氧化物)绝缘包覆,或玻璃(非金属氧化物)绝缘包覆。优选地,采用磁粉经磷化处理形成的磷酸膜加环氧树脂进行双层绝缘包覆。
在一些实施例中,所述电感的包覆层包括组分A和B,组分A为导热材料及胶黏剂的混合物,导热材料可以为大部分为金属(如Ag、Cu、Al等),或金属氧化物(如Fe 2O 3、BeO、Al 2O 3等),或其他非金属材料(如石墨烯、石墨、炭黑氮化铝、氮化硼、碳化硅等)中的一种或多种,所述胶黏剂是经过高温改性的热固性胶黏剂,可以为聚酰亚胺、有机硅树脂,环氧树脂等。组分B为环氧固化剂。环氧固化剂可以为聚酰胺固化剂、聚酰胺加成物固化剂、脂肪胺和酸酐固化剂中的一种或几种。
在一些实施例中,选用石墨烯涂料和环氧固化剂,所述散热绝缘包覆层形成为高导热聚合物膜。实施例中的包覆层通过添加导热材料,有效地改善环氧包覆层的散热特性。
在一些实施例中,涂料中还可以添加防锈剂,进一步增加电感的防锈特性。
在一些实施例中,一种烧结一体成型电感的制作方法,包括以下步骤:
步骤1,模压成型:将导体置入模具中,依次进行填粉,一次模压,热处理,二次模压,烧结,得到模压半成品;
步骤2,涂覆涂层:将涂层涂覆到模压半成品上,烘干后形成散热绝缘包覆层;
步骤3,电极成型:将电极折弯或裁切,并去除电极表面的散热绝缘包覆层,电极减薄或不减薄处理,最后经金属化处理形成电感电极。
在一些实施例中,步骤1中,所述模压可以为冷压或热压,两次及两次以上压制成型。本发明采用两次模压成型,相比于一次模压成型,所用的压力更小,对模具的损伤和压机的吨位要求更低。通过增加模压次数,提高模压温度,可以使磁芯具有更低的孔隙率,更高的密度,更低的残余应力,提高磁粉的有效磁导率,并降低磁芯的损耗,提高电感的感值和电阻率。
在一些实施例中,两次模压成型中间增加一次热处理,再进行高温烧结,减小磁芯烧结收缩,降低烧结过程中产品的开裂和翘曲风险;
在一些实施例中,步骤1中,模压压强≥300Mpa,例如,可以为400MPa,600MPa,800MPa,1000MPa,1200MPa等,但不限于已列出的数值。
在一些实施例中,步骤S1中,所述热处理的温度为100~300℃,所述热处理的时间为10~120min。在优选的实施例中,步骤S1中,所述热处理的温度为160~180℃,所述热处理的时间为30~60min。
本发明上述实施例中提供的热处理条件能够更好地避免破坏磁芯的绝缘包覆特性,降低涡流损耗和对粉末颗粒尺寸和晶粒尺寸造成的不利影响。
在一些实施例中,步骤1中,烧结温度≥200℃,例如,200℃,400℃,600℃,800℃,1000℃等,不限于已列出的数值,该数值范围内其他未列举的数值同样适用。
在一些实施例中,步骤1中烧结气氛为氧化性气体(空气),或为惰 性气体(氦气或氩气),或为还原性气体(氢气或氮气),或为多种气体分段处理。
本发明实施例中将模压半成品进行烧结处理,消除压制过程中产生的缺陷及内应力,产生固态相变反应,改变磁粉的金相结构,进而提高磁粉的有效磁导率,降低磁滞损耗。
在一些实施例中,步骤2中所述涂覆方法包括滚喷,刷涂,涂布,印刷,喷雾,浸涂等方式,本发明将热处理后的电感进行涂覆处理,进一步提升产品的散热性、绝缘特性、抗腐蚀特性。
在一些实施例中,步骤3中去除电极包覆层的方法包括喷砂,干冰清洗,激光去皮,机械研磨等。
在一些实施例中,步骤3中金属化处理方法包括浸锡、电镀、PVD等。
在一些实施例中,在涂覆时,本发明中的电感在电感电极未被氧化的条件下,可以将电极保护起来,直接浸锡后折弯做电极。在另一些实施例中,若电极在热处理过程中被氧化,在涂覆工序中可以不对电极进行保护,直接进行包覆处理,后续再将电极表面的包覆层和氧化层去除,最后进行折弯和金属化处理。此外,对于可以进行减薄处理的电极,也可以将电极先折弯,减薄(减薄的同时将包覆层和氧化层去除),再进行金属化处理。
以下结合附图进一步描述本发明具体实施例的烧结一体成型电感及其制造方法。
实施例一
如图1A~1B所示,一种烧结一体成型电感,包括裸铜线110、电极111、112、磁体120、散热绝缘包覆层130,其制造方法包括以下步骤:
步骤1,模压成型:将设计的裸铜线110置入模具中,裸铜线的尺寸2.0*0.3mm,裸铜线的两端从模具两端引出,模具内填入FeSiCr和羰基铁粉的混合软磁粉末,其中,FeSiCr粉末粒径为15~35μm,羰基铁粉的粒径为2~3μm,FeSiCr和羰基铁粉粉末质量配比为:4:1;第一次模压压力为600MPa;热处理温度为160℃,热处理时间为60min;随后进行二次模压,模压压力为1800MPa;在氢气管式炉中烧结60min,烧结温度为750℃,得到模压半成品;其中,磁体120的尺寸为10.5*5.0*1.4mm,磁体120的底部和两侧开槽。
步骤2,形成散热绝缘包覆层130:采用滚喷的方式将用于形成散热绝缘包覆层的涂料涂覆到模压半成品的表面,烘干,形成的散热绝缘包覆 层130厚度小于15μm,其中,涂料的主要成分为石墨烯与聚酰亚胺-环氧树脂的混合物。
步骤3,电极成型:将裸铜线110的两侧引出端折弯,采用机械研磨的方法去除铜线表面形成的包覆层,之后对其进行浸锡处理后得到电感电极111、112,锡层厚度:10~50μm。优选地,电极减薄的厚度为电极厚度的0.1~0.7倍,减薄后的铜线表面光滑连续无氧化。
通过绝缘耐压测试和盐雾试验,比较没有散热绝缘包覆层和具有散热绝缘包覆层的烧结一体成型电感的绝缘特性和防腐蚀特性。没有散热绝缘包覆层时,电感的绝缘耐压为0~50V;具有散热绝缘包覆后,本实施例一的电感的绝缘耐压为300~400V。没有散热绝缘包覆层时,电感经过盐雾试验8小时,腐蚀面积大于30%;具有散热绝缘包覆后,本实施例一的电感产品在盐雾试验48小时后,腐蚀面积小于5%。此外,与采用纯环氧树脂绝缘包覆的一体成型电感相比,本实施例一的产品有效地提高了散热效率和转化效率。
在获得相同感值100nH和饱和电流50A时,本实施例一的电感与传统固化型一体成型电感在尺寸、密度、磁导率、电阻、温升、转化效率的对比数据如表格1所示,转化效率测试条件为:12V转1.8V,测试频率为500kHz,电子负载为30A。
表1本发明实施例一的电感与传统一体成型电感的对比数据
Figure PCTCN2021103460-appb-000001
实施例二
如图2A~2B,一种烧结一体成型电感,包括空心线圈210、磁体220、电极231、232、散热绝缘包覆层240,其制造方法包括以下步骤::
步骤1,绕制线圈:采用无机绝缘包覆的铜线绕制单层多列空心线圈210,空心线圈的引出端211、212分垂直于线圈本体的方向折弯后引出,本实例中,铜线的线径为1.7*0.5mm,铜线的无机包覆层厚度为5~10μm,线圈的圈数为2.5圈,螺旋绕制,线圈的偏移间距为0.2mm。
步骤2,模压成型:将空心线圈210置入模具中,之后在模具中填入FeSiCr粉末,FeSiCr粉末粒径10~30μm;第一次模压压力为900MPa;热处理温度为180℃,30min;随后进行二次模压,模压压力为1600MPa;在200℃空气中烧结120min,得到模压半成品,其中,磁体220的尺寸17*17*0.96mm。
步骤3,涂覆散热绝缘包覆层:采用浸涂的方式将用于形成散热绝缘包覆层的涂料涂覆到模压半成品的表面,一层防锈的散热绝缘包覆层240,包覆层的厚度小于20μm;涂料的主要成分为石墨烯、金属氧化物(氧化铜、氧化铝)与有机硅脂的混合物。
步骤4,电极成型:将从磁体底部引出的用于形成两个电极的引出端211、212沿着磁体表面进行切割,将引线多余的长度剪切掉,再采用喷砂的方法去除引出端211、212上形成的包覆层,之后进行PVD处理,得到金属化的电极231、232;金属化处理后各金属层厚度为:Cr:0.1-0.4μm、Ni:1.0-4.0μm、Ag:0.3-1.0μm,Sn:4-8μm。
通过绝缘耐压测试和盐雾试验,比较没有散热绝缘包覆层和具有散热绝缘包覆层的烧结一体成型电感的绝缘特性和防腐蚀特性。没有散热绝缘包覆层时,电感绝缘耐压为50~200V;具有散热绝缘包覆后,本实施例二中的电感绝缘耐压为400~600V。没有散热绝缘包覆层时,电感经过盐雾试验8小时,腐蚀面积大于25%;具有散热绝缘包覆后,本实施例二的电感产品在盐雾试验48小时后,腐蚀面积小于3%。此外,与采用纯环氧树脂绝缘包覆的一体成型电感相比,本实施例二的产品有效地提高了散热效率和转化效率。
在获得相同的感量0.47μH和饱和电流27A条件下,本实施例二中的电感与传统固化型一体成型电感在尺寸、密度、磁导率、电阻、温升、转化效率的对比数据如表格2所示,转化效率测试条件为:12V转5.0V,测 试频率为300kHz,电子负载为25A。
表2本发明实施例二的电感与传统一体成型电感的对比数据
Figure PCTCN2021103460-appb-000002
本发明的背景部分可以包含关于本发明的问题或环境的背景信息,而不一定是描述现有技术。因此,在背景技术部分中包含的内容并不是申请人对现有技术的承认。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管已经详细 描述了本发明的实施例及其优点,但应当理解,在不脱离专利申请的保护范围的情况下,可以在本文中进行各种改变、替换和变更。

Claims (20)

  1. 一种烧结一体成型电感,其特征在于,包括导体、磁体以及散热绝缘包覆层,所述导体与所述磁体烧结一体成型,其中,所述导体的主体部分位于所述磁体的内部,并从所述磁体的内部引出所述导体的两端,所述导体的两端设置有金属化层而形成电极,所述散热绝缘包覆层将所述磁体包覆,但暴露所述电极。
  2. 根据权利要求1所述的烧结一体成型电感,其特征在于,所述导体为无漆膜包覆的裸导线或金属片,或为由无机绝缘层包覆的裸导线或金属片,或为无漆膜包覆的裸铜线绕制的单层多圈的空心线圈,或为由无机绝缘层包覆的导线绕制的空心线圈。
  3. 根据权利要求1或2所述的烧结一体成型电感,其特征在于,所述磁体包含磁粉,所述磁粉为金属软磁材料;所述金属软磁材料包含FeSiCr、FeSiMn、FeSiAl、FeNi、羰基铁粉中的一种或多种。
  4. 根据权利要求3所述的烧结一体成型电感,其特征在于,所述磁粉由两种及两种以上的粒径级配获得。
  5. 根据权利要求3所述的烧结一体成型电感,其特征在于,所述磁粉由热固性有机物绝缘包覆,或由陶瓷绝缘包覆,或由金属氧化物绝缘包覆,或由玻璃绝缘包覆,或由非金属氧化物绝缘包覆。
  6. 根据权利要求5所述的烧结一体成型电感,其特征在于,所述磁粉由磷酸膜和环氧树脂进行双层绝缘包覆。
  7. 根据权利要求1至6任一项所述的烧结一体成型电感,其特征在于,所述散热绝缘包覆层包含组分A和B,所述组分A为导热材料及胶黏剂的混合物,所述导热材料包含金属、金属氧化物、或非金属材料中的一种或多种,所述胶黏剂为经过高温改性的热固型胶黏剂;所述组分B为固化剂。
  8. 根据权利要求7所述的烧结一体成型电感,其特征在于,所述组分B为环氧固化剂,所述环氧固化剂为聚酰胺固化剂、聚酰胺加成物固化剂、脂肪胺和酸酐固化剂中的一种或几种。
  9. 根据权利要求7所述的烧结一体成型电感,其特征在于,所述组分A含有石墨烯,所述组分B含有环氧固化剂,所述散热绝缘包覆层形成为高导热聚合物膜。
  10. 根据权利要求1至9任一项所述的烧结一体成型电感,其特征在 于,所述散热绝缘包覆层还包含防锈剂。
  11. 一种制造根据权利要求1至10任一项所述的烧结一体成型电感的方法,其特征在于,包括如下步骤:
    S1.将导体置入模具中,然后依次进行填磁粉,一次模压,热处理,二次模压,烧结,得到模压半成品,其中所述模压半成品包括磁体和位于所述磁体的内部的所述导体,所述导体的两端从所述磁体的内部引出;
    S2.将用于形成散热绝缘包覆层的涂覆材料涂覆到所述模压半成品上,烘干后形成所述散热绝缘包覆层;
    S3.对所述导体的两端进行电极成型处理和金属化处理后形成电极。
  12. 根据权利要求11所述的方法,其特征在于,步骤S1中还可进行三次或更多次模压。
  13. 根据权利要求11或12所述的方法,其特征在于,步骤S1中,模压的压强≥300Mpa。
  14. 根据权利要求11至13任一项所述的方法,其特征在于,步骤S1中,烧结的温度≥200℃,烧结的气氛为氧化性气体,或为惰性气体,或为还原性气体,或采用多种气体分段处理。
  15. 根据权利要求14所述的方法,其特征在于,所述氧化性气体为空气,所述惰性气体为氦气或氩气,所述还原性气体为氢气或氮气。
  16. 根据权利要求11至15任一项所述的方法,其特征在于,步骤S1中,所述热处理的温度为100~300℃,所述热处理的时间为10~120min。
  17. 根据权利要求16所述的方法,其特征在于,步骤S1中,所述热处理的温度为160~180℃,所述热处理的时间为30~60min。
  18. 根据权利要求11至17任一项所述的方法,其特征在于,步骤S2中,涂覆的方式为滚喷、刷涂、涂布、印刷、喷雾或浸涂;步骤S3中,去除所述散热绝缘包覆层的方法为喷砂、干冰清洗、激光去皮或机械研磨;步骤S3中,所述金属化处理方法为浸锡、电镀或PVD。
  19. 根据权利要求11至18任一项所述的方法,其特征在于,步骤S2中,形成的所述散热绝缘包覆层包覆所述导体的两端,步骤S3中,先去除所述导体的两端表面的所述散热绝缘包覆层,再经金属化处理后形成所述电极;或者,步骤S2中,保护所述导体的两端不被形成的所述散热绝缘包覆层包覆,步骤S3中,直接在所述导体的两端表面进行金属化处理后形成所述电极。
  20. 根据权利要求11至19任一项所述的方法,其特征在于,步骤S3中,所述电极成型处理包括对所述导体的两端进行弯折和/或裁切。
PCT/CN2021/103460 2021-06-30 2021-06-30 一种一体成型电感及其制造方法 WO2021197513A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180001716.1A CN113661549A (zh) 2021-06-30 2021-06-30 一种一体成型电感及其制造方法
PCT/CN2021/103460 WO2021197513A2 (zh) 2021-06-30 2021-06-30 一种一体成型电感及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103460 WO2021197513A2 (zh) 2021-06-30 2021-06-30 一种一体成型电感及其制造方法

Publications (2)

Publication Number Publication Date
WO2021197513A2 true WO2021197513A2 (zh) 2021-10-07
WO2021197513A3 WO2021197513A3 (zh) 2022-04-28

Family

ID=77932424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103460 WO2021197513A2 (zh) 2021-06-30 2021-06-30 一种一体成型电感及其制造方法

Country Status (2)

Country Link
CN (1) CN113661549A (zh)
WO (1) WO2021197513A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342017A (zh) * 2021-11-23 2022-04-12 深圳顺络电子股份有限公司 一种异形结构电感及其制作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114999808A (zh) * 2022-07-15 2022-09-02 横店集团东磁股份有限公司 一种模压成型电感及其制备方法与应用
CN115938718B (zh) * 2023-03-09 2023-05-30 天通控股股份有限公司 一种直插式一体成型共烧电感及其制备方法
CN117038298B (zh) * 2023-08-23 2024-02-20 东莞市三体微电子技术有限公司 一种隔离型电感排及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703459B2 (ja) * 2006-03-28 2011-06-15 京セラ株式会社 コイル内蔵基板
CN101901668B (zh) * 2009-05-27 2016-07-13 乾坤科技股份有限公司 电感器及其制作方法
CN112435844A (zh) * 2020-12-04 2021-03-02 横店集团东磁股份有限公司 一种一体共烧电感及其制备方法
CN112435845A (zh) * 2020-12-04 2021-03-02 横店集团东磁股份有限公司 一种一体共烧电感及其制备方法
CN112735752A (zh) * 2020-12-24 2021-04-30 横店集团东磁股份有限公司 一种一体成型共烧电感及其制备方法与应用
CN112735797B (zh) * 2020-12-24 2022-06-14 横店集团东磁股份有限公司 一种一体式共烧电感及其制备方法与应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342017A (zh) * 2021-11-23 2022-04-12 深圳顺络电子股份有限公司 一种异形结构电感及其制作方法
WO2022148160A3 (zh) * 2021-11-23 2022-09-15 深圳顺络电子股份有限公司 一种异形结构电感及其制作方法
CN114342017B (zh) * 2021-11-23 2023-12-26 深圳顺络电子股份有限公司 一种异形结构电感及其制作方法

Also Published As

Publication number Publication date
WO2021197513A3 (zh) 2022-04-28
CN113661549A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2021197513A2 (zh) 一种一体成型电感及其制造方法
JP6502627B2 (ja) コイル部品及び電子機器
CN108597730B (zh) 片式电子组件及其制造方法
JP7077835B2 (ja) インダクタ部品
US20190180909A1 (en) Coil component
JP6962284B2 (ja) インダクタ部品
JP2015082660A (ja) チップ電子部品及びその製造方法
TW202101486A (zh) 複合磁性體及使用該複合磁性體的電感器
JP2020013854A (ja) インダクタ部品
JP2021108328A (ja) 電子部品及び電子部品の製造方法
CN114446575A (zh) 线圈部件
US20160055961A1 (en) Wire wound inductor and manufacturing method thereof
CN112927915A (zh) 一种电感元件以及其制造方法
JP6663138B2 (ja) 端子付き圧粉磁心およびその製造方法
CN208157100U (zh) 220级耐电晕聚酰胺酰亚胺漆包铜扁线
JP7221583B2 (ja) コイル部品
CN114388246A (zh) 一种被动元件导电电感器及其制备方法
TWI729910B (zh) 磁芯、磁芯電極的製作方法及電感元件
CN112927929B (zh) 电感元件及其制造方法
JP2021125474A (ja) コイル部品及びコイル部品の製造方法
CN217588654U (zh) 一种被动元件导电电感器
CN109791829A (zh) 一体成型电感元件及其制造方法
JP2009206491A (ja) 軟磁性粉末、軟磁性材料、および、軟磁性材料の製造方法
JP2002231060A (ja) 磁性線
CN112927917A (zh) 一种电感元件

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE