WO2021197437A1 - 用于燃料电池车辆的绝缘故障响应方法及装置 - Google Patents

用于燃料电池车辆的绝缘故障响应方法及装置 Download PDF

Info

Publication number
WO2021197437A1
WO2021197437A1 PCT/CN2021/084988 CN2021084988W WO2021197437A1 WO 2021197437 A1 WO2021197437 A1 WO 2021197437A1 CN 2021084988 W CN2021084988 W CN 2021084988W WO 2021197437 A1 WO2021197437 A1 WO 2021197437A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
fuel cell
insulation
insulation resistance
resistance value
Prior art date
Application number
PCT/CN2021/084988
Other languages
English (en)
French (fr)
Inventor
胡志敏
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to US17/758,127 priority Critical patent/US20230044324A1/en
Priority to EP21781013.4A priority patent/EP4067151A4/en
Publication of WO2021197437A1 publication Critical patent/WO2021197437A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0053Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/08Means for preventing excessive speed of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular to an insulation fault response method and device for fuel cell vehicles.
  • Fuel cell vehicles convert hydrogen energy into electrical energy for driving through chemical reactions, and the voltage of their battery packs far exceeds the safe voltage that the human body can withstand.
  • the aging or dampness of the high-voltage cable may cause the insulation resistance between the positive and negative leads of the power battery and the chassis of the car to decrease, causing electric leakage and seriously endangering the personal safety of the people in the car.
  • an insulation detection system is usually installed in the fuel cell vehicle, and when the resistance value is lower than the safety threshold, it is reported to the vehicle controller for safety response in time.
  • a reasonable control strategy when performing a safety response is the key to ensuring the safety of the occupants in the vehicle.
  • the present disclosure aims to propose an insulation fault response method for fuel cell vehicles, so as to implement different insulation fault responses in different situations.
  • the insulation fault response method for a fuel cell vehicle includes: when the vehicle is started, detecting whether the fuel cell is in a starting state; In the case of the startup state, read the first insulation resistance value detected by the fuel cell control unit and the second insulation resistance value detected by the battery management system; in the case that the first insulation resistance value indicates that the vehicle is in an insulation failure , Execute a first control strategy; and execute a second control strategy when the second insulation resistance value indicates that the vehicle is in an insulation failure, wherein the first control strategy is different from the second control strategy, and Wherein, the vehicle is in an insulation failure when the first insulation resistance value is less than the first threshold value and/or the second insulation resistance value is less than the second threshold value.
  • the first control strategy includes: judging whether the first insulation resistance value is less than a third threshold value, wherein the third threshold value is less than the first threshold value; when the first insulation resistance value is not less than the In the case of the third threshold, a first prompt is issued; and in the case where the first insulation resistance is less than the third threshold, one or more of the following is executed: a second prompt is issued, and the fuel cell is prohibited from starting , And controlling the vehicle speed based on the lithium battery power of the vehicle.
  • the insulation failure response method for a fuel cell vehicle further includes: reading a third insulation resistance value detected by the battery management system when the fuel cell is in the startup state; and The third insulation resistance value indicates that the second control strategy is executed when the vehicle is in an insulation failure, and the vehicle is in an insulation failure when the third insulation resistance is less than the second threshold.
  • the second control strategy includes: judging whether the second insulation resistance value is less than a fourth threshold value, wherein the fourth threshold value is less than the second threshold value; when the second insulation resistance value is not less than the In the case of the fourth threshold value, one or more of the following is executed: issuing a third prompt and controlling the vehicle speed of the vehicle to be lower than the first preset vehicle speed; and when the second insulation resistance value is less than the fourth threshold value In the case of performing one or more of the following: issuing a fourth prompt, controlling the speed of the vehicle to be lower than a second preset speed, and performing high-voltage power-off when the speed of the vehicle is lower than a safety threshold, The second preset vehicle speed is less than the first preset vehicle speed.
  • the insulation failure response method for a fuel cell vehicle further includes: in the case where the first insulation resistance value and the second insulation resistance value both indicate that the vehicle is in an insulation failure, executing the first insulation resistance value Both a control strategy and the second control strategy.
  • the insulation fault response method for fuel cell vehicles described in the present disclosure has the following advantages:
  • the fuel cell control unit detects the first insulation resistance value inside the fuel cell, and the battery management system detects the second insulation resistance value of the entire vehicle except the fuel cell. If the first insulation resistance value indicates that the vehicle is in an insulation failure, the first control strategy is executed. If the second insulation resistance value indicates that the vehicle is in an insulation failure, a second control strategy different from the first control strategy is executed. In this way, different control strategies can be adopted for different situations to ensure the safety of people in the vehicle.
  • Another object of the present disclosure is to provide an insulation fault response device for a fuel cell vehicle, so as to implement different insulation fault responses under different conditions.
  • the insulation failure response device for a fuel cell vehicle includes: a fuel cell state detection module for detecting whether the fuel cell is in a startup state when the vehicle is started; The reading module is used to read the first insulation resistance value detected by the fuel cell control unit and the second insulation resistance value detected by the battery management system when the fuel cell is not in the startup state; the first execution module , Used to execute a first control strategy when the first insulation resistance value indicates that the vehicle is in an insulation failure; and a second execution module, used to execute a first control strategy when the second insulation resistance value indicates that the vehicle is in insulation In the case of a fault, execute a second control strategy, wherein the first control strategy is different from the second control strategy, and wherein the first insulation resistance value is less than the first threshold value and/or the second insulation resistance value is less than In the case of the second threshold, the vehicle is in an insulation failure.
  • the first control strategy includes: judging whether the first insulation resistance value is less than a third threshold value, wherein the third threshold value is less than the first threshold value; when the first insulation resistance value is not less than the In the case of the third threshold, a first prompt is issued; and in the case where the first insulation resistance is less than the third threshold, one or more of the following is executed: a second prompt is issued, and the fuel cell is prohibited from starting , And controlling the vehicle speed based on the lithium battery power of the vehicle.
  • the second control strategy includes: judging whether the second insulation resistance value is less than a fourth threshold value, wherein the fourth threshold value is less than the second threshold value; when the second insulation resistance value is not less than the In the case of the fourth threshold value, one or more of the following is executed: issuing a third prompt and controlling the vehicle speed of the vehicle to be lower than the first preset vehicle speed; and when the second insulation resistance value is less than the fourth threshold value In the case of performing one or more of the following: issuing a fourth prompt, controlling the speed of the vehicle to be lower than a second preset speed, and performing high-voltage power-off when the speed of the vehicle is lower than a safety threshold, The second preset vehicle speed is less than the first preset vehicle speed.
  • the first execution module executes the first control strategy and the second execution The module executes the second control strategy.
  • the insulation fault response device for a fuel cell vehicle has the same advantages as the foregoing insulation fault response method for a fuel cell vehicle over the prior art, and will not be repeated here.
  • an embodiment of the present disclosure further provides a machine-readable storage medium, characterized in that instructions are stored on the machine-readable storage medium, and the instructions are used to make a machine execute the aforementioned insulation for fuel cell vehicles. Failure response method.
  • Fig. 1 shows a schematic flow chart of a method for responding to an insulation failure of a fuel cell vehicle according to an embodiment of the present disclosure
  • Fig. 2 shows a schematic flowchart of an insulation fault response method for a fuel cell vehicle according to another embodiment of the present disclosure.
  • Fig. 3 shows a structural block diagram of an insulation fault response device for a fuel cell vehicle according to another embodiment of the present disclosure
  • Fig. 4 schematically shows a block diagram of a computing processing device for executing the method according to the present disclosure.
  • Fig. 5 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present disclosure.
  • the battery management system of the fuel cell vehicle is equipped with an insulation detection module. After the vehicle high voltage is established, the battery management system performs insulation detection on the vehicle high voltage network in real time. When the detected insulation resistance is lower than the safety threshold, the vehicle The controller responds safely in time. During the driving of the fuel cell vehicle, the fuel cell may not be activated. In this case, the fuel cell is disconnected from the high-voltage network of the vehicle. Only the battery management system is used to perform insulation detection, and the internal fuel cell cannot be detected. Insulation failure.
  • an insulation detection module for performing insulation detection on the fuel cell can also be provided in the fuel cell control unit.
  • the resistance value is detected by the fuel cell control unit to detect the insulation resistance value inside the fuel cell.
  • the fuel cell When the vehicle is running, the fuel cell will be connected to the high-voltage network of the vehicle after it is started. At this time, the internal insulation resistance of the fuel cell can be detected by the battery management system. Therefore, after the fuel cell is started, the battery management system is responsible for execution Insulation detection can be used to obtain the insulation resistance value. If the fuel cell is shut down or not started, the battery management system will still detect the insulation resistance of the vehicle except for the fuel cell, and the fuel cell control unit will detect the insulation resistance of the fuel cell. In this way, potential safety hazards caused by the internal insulation failure of the fuel cell can be effectively avoided.
  • the insulation fault response strategy can adopt a unified control strategy, that is, the insulation resistance detected by the fuel cell control unit and the battery management system indicates that the vehicle is in an insulation fault.
  • the same response is adopted.
  • the insulation resistance value detected by the battery management system is too low to indicate that the vehicle is in an insulation failure
  • the vehicle needs to be powered off at a low speed to protect the safety of the occupants.
  • the fuel cell control unit detects that the internal insulation resistance of the fuel cell is too low and the vehicle is in an insulation failure, the vehicle also needs to be powered off at a low speed.
  • the adoption of a unified control strategy may increase the number of forced power-offs of the vehicle and reduce the user experience.
  • the insulation fault response method and device for fuel cell vehicles provided by the embodiments of the present disclosure implement different insulation fault responses under different conditions, making the insulation fault response control strategy more reasonable.
  • Fig. 1 shows a schematic flowchart of an insulation failure response method for a fuel cell vehicle according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides an insulation fault response method for a fuel cell vehicle, and the method may be executed by, for example, a vehicle controller.
  • the method may include step S110 to step S140.
  • step S110 when the vehicle is started, it is detected whether the fuel cell is in the starting state.
  • the fuel cell vehicle currently uses the parallel output method of the fuel cell and the lithium battery.
  • the fuel cell outputs at a constant power.
  • the lithium battery discharges, and vice versa, the lithium battery charges.
  • the fuel cell is shut down and disconnected from the high-voltage network, and the lithium battery is independently output.
  • the fuel cell is restarted. Therefore, after the vehicle is started, the fuel cell may not be in the starting state.
  • the fuel cell control unit can detect the status of the fuel cell in real time, and output a status signal of the fuel cell to the vehicle controller.
  • the status signal can indicate whether the fuel cell is in a starting state.
  • step S120 when the fuel cell is not in the startup state, the first insulation resistance value detected by the fuel cell control unit and the second insulation resistance value detected by the battery management system are read.
  • the fuel cell control unit is responsible for detecting the internal insulation resistance of the fuel cell (that is, the first insulation resistance), and the battery management system is responsible for detecting the high-voltage network of the entire vehicle except for the fuel cell.
  • the insulation resistance value (that is, the second insulation resistance value).
  • the fuel cell control unit can transmit the detected first insulation resistance value to the vehicle controller, which can be read by the vehicle controller.
  • the battery management system can also transmit the detected second insulation resistance value to the vehicle controller for reading by the vehicle controller.
  • step S130 in a case where the first insulation resistance value indicates that the vehicle is in an insulation failure, a first control strategy is executed.
  • the first control strategy can be executed. Specifically, in the case where the first insulation resistance value is less than the first threshold value, it may continue to determine whether the first insulation resistance value is less than a third threshold value, and the third threshold value is less than the first threshold value.
  • the first threshold and the third threshold can be set to any suitable values according to actual conditions.
  • the first prompt may be a light and/or voice prompt, for example, the fuel cell fault lamp of the instrument can be controlled to light yellow to prompt the driver, and/or the voice player can be controlled to play information about the fuel cell insulation fault, etc. to prompt The driver.
  • the first insulation resistance value is less than the third threshold value, it indicates that the current insulation fault condition is relatively serious.
  • one or more of the following three can be performed: issuing a second prompt, prohibiting the fuel cell from starting, and controlling the vehicle speed based on the lithium battery power of the vehicle. In an optimal situation, all the above three can be implemented to ensure the safety of people in the vehicle.
  • the second prompt can be a light and/or voice prompt, for example, the fuel cell fault lamp on the instrument can be controlled to light red to remind the driver, and/or the voice player can be controlled to play information about the serious insulation failure of the fuel cell, etc. Prompt the driver.
  • the fuel cell can be prohibited from starting.
  • the vehicle controller can send a signal to the fuel cell control unit about prohibiting the start of the fuel cell, and the fuel cell control unit can control the fuel cell to be in a safe state in response to the signal to avoid leakage due to the fuel cell start.
  • the vehicle speed can be reasonably controlled based on the lithium battery power of the vehicle. For example, if the lithium battery power is greater than the power threshold, the vehicle can be controlled to drive at the speed required by the driver. If the lithium battery power is not greater than the power threshold, the vehicle can be controlled to slow down or the vehicle speed can be controlled not to exceed a certain preset vehicle speed.
  • the embodiments of the present disclosure do not limit how to reasonably control the vehicle speed according to the power of the lithium battery of the vehicle.
  • step S140 in a case where the second insulation resistance value indicates that the vehicle is in an insulation failure, a second control strategy is executed.
  • the second control strategy can be executed.
  • the second control strategy is different from the first control strategy.
  • the second insulation resistance value is less than the second threshold value
  • the second threshold and the fourth threshold can be set to any suitable values according to actual conditions.
  • the first threshold and the second threshold may be the same, and the third threshold and the fourth threshold may be the same.
  • the first threshold, the second threshold, the third threshold, and the fourth threshold can be set according to the requirements of the national standard for the insulation resistance of fuel vehicles.
  • the second insulation resistance value is less than the second threshold value but not less than the fourth threshold value, it indicates that the current insulation fault condition is not very serious.
  • one or both of the following can be performed: issuing a third prompt, and controlling the vehicle speed of the vehicle to be lower than the first preset vehicle speed.
  • the foregoing two can be implemented to ensure the safety of the personnel in the vehicle.
  • the third prompt can be a light and/or voice prompt, for example, the instrument power system fault light can be controlled to light yellow to remind the driver, and/or the voice player can be controlled to play information about the insulation failure of the power system to prompt the driver.
  • the driver Further, the vehicle speed can be controlled to be lower than the first preset vehicle speed to ensure driving safety. Specifically, the current vehicle speed of the vehicle may be compared with the first preset vehicle speed. If the current vehicle speed is not less than the first preset vehicle speed, it is possible to control the vehicle not to respond to the driving demand of the driver, but to control the vehicle to decelerate until the vehicle speed is less than the first preset vehicle speed. If the current vehicle speed is less than the first preset vehicle speed, the vehicle can be controlled to drive normally according to the driving requirements of the driver.
  • any one or more of the following three can be performed: issuing a fourth prompt, controlling the speed of the vehicle to be lower than a second preset speed, and when the speed of the vehicle is lower than a safety threshold In case of high-voltage power-off. In an optimal situation, all the above three can be implemented to ensure the safety of people in the vehicle.
  • the fourth prompt can be a light and/or voice prompt, for example, the instrument power system fault light can be controlled to light red to remind the driver, and/or the voice player can be controlled to play information about a serious insulation failure of the power system, etc. Prompt the driver.
  • the vehicle speed can be controlled to be lower than the second preset vehicle speed to ensure driving safety.
  • the current vehicle speed of the vehicle may be compared with the second preset vehicle speed. If the current vehicle speed is not less than the second preset vehicle speed, it is possible to control the vehicle not to respond to the driving demand of the driver, but to control the vehicle to decelerate until the vehicle speed is less than the second preset vehicle speed. If the current vehicle speed is less than the second preset vehicle speed, the vehicle can be controlled to drive normally according to the driving demand of the driver.
  • the second preset vehicle speed is less than the first preset vehicle speed.
  • the first preset vehicle speed and the second preset vehicle speed can be set to any appropriate value according to actual conditions.
  • the first preset vehicle speed may be It is 90km/h
  • the second preset vehicle speed can be 60km/h.
  • the vehicle controller can also perform high-voltage power-off of the vehicle when the speed of the vehicle is lower than the safety threshold.
  • the vehicle controller may, for example, transmit a power-off request to the power-off control module. After the power-off control module receives the power-off request, it determines whether the current vehicle speed is lower than the safety threshold.
  • the safety threshold is a relatively low vehicle speed value, which is a speed at which it is necessary to ensure that the vehicle suddenly loses power and does not pose a safety risk to the occupants.
  • the safety threshold may be about 10 km/h. If the current vehicle speed has not fallen below the safety threshold, the vehicle is controlled to maintain the current driving state. If the current vehicle speed is lower than the safety threshold, perform power-off operations, including cutting off the power output and high-voltage connection, to avoid safety problems caused by the leakage of the power system of the vehicle.
  • both the first insulation resistance value and the second insulation resistance value indicate that the vehicle is in an insulation failure condition
  • both the first control strategy and the second control strategy can be executed. For example, if the first insulation resistance value is less than the first threshold value but not less than the third threshold value and the second insulation resistance value is less than the second threshold value but not less than the fourth threshold value, the vehicle controller can issue the first prompt and the third prompt And controlling the vehicle speed of the vehicle to be lower than the first preset vehicle speed. If the first insulation resistance value is less than the first threshold value but not less than the third threshold value and the second insulation resistance value is less than the fourth threshold value, the vehicle controller can issue a first prompt, a fourth prompt, and control the speed of the vehicle to be low.
  • High-voltage power-off is performed at the second preset vehicle speed and when the vehicle speed of the vehicle is lower than the safety threshold. If the first insulation resistance value is less than the third threshold value and the second insulation resistance value is less than the second threshold value and not less than the fourth threshold value, the vehicle controller may issue a second prompt, prohibit the fuel cell from starting, and based on the vehicle The power of the lithium battery controls the vehicle speed, sends out a third prompt, and controls the vehicle speed to be lower than the first preset vehicle speed.
  • the vehicle controller can issue a second prompt, prohibit the fuel cell from starting, and control the vehicle speed based on the vehicle’s lithium battery power , Issuing a fourth prompt, controlling the vehicle speed of the vehicle to be lower than a second preset vehicle speed, and performing high-voltage power-off when the vehicle speed of the vehicle is lower than a safety threshold. In this way, while ensuring the safety of the personnel in the vehicle, it is convenient for the driver to know that the internal fuel cell and the entire vehicle power system have insulation failures.
  • Fig. 2 shows a schematic flowchart of an insulation fault response method for a fuel cell vehicle according to another embodiment of the present disclosure.
  • the insulation fault response method for a fuel cell vehicle provided by an embodiment of the present disclosure may further include step S210 to step S220.
  • step S210 when the fuel cell is in the startup state, the third insulation resistance value detected by the battery management system is read.
  • the fuel cell When the fuel cell is activated, the fuel cell will be connected to the high-voltage circuit of the vehicle. At this time, the internal insulation resistance of the fuel cell can be detected by the battery management system. Therefore, after the fuel cell is started, the battery management system is responsible for Just check the insulation resistance.
  • step S220 in a case where the third insulation resistance value indicates that the vehicle is in an insulation failure, the second control strategy is executed.
  • the third insulation resistance value is less than the second threshold value, it means that the vehicle is in an insulation failure. Since the third insulation resistance value is detected by the battery management system, it cannot be determined whether the insulation fault at this time is caused by the insulated battery or other parts. In order to ensure the safety of the personnel in the vehicle, the second control strategy for the insulation failure of the vehicle power system can be implemented.
  • the third insulation resistance value is less than the second threshold value, it may continue to determine whether the third insulation resistance value is less than the fourth threshold value, and the fourth threshold value is less than the second threshold value.
  • the second threshold and the fourth threshold can be set to any suitable values according to actual conditions.
  • the first threshold and the second threshold in the embodiments of the present disclosure may be the same, and the third threshold and the fourth threshold may be the same.
  • the first threshold, the second threshold, the third threshold, and the fourth threshold can be set according to the requirements of the national standard for the insulation resistance of fuel vehicles.
  • the third insulation resistance is less than the second threshold but not less than the fourth threshold, it indicates that the current insulation fault condition is not very serious.
  • one or both of the following can be performed: issuing a third prompt, and controlling the vehicle speed of the vehicle to be lower than the first preset vehicle speed.
  • the foregoing two can be implemented to ensure the safety of the personnel in the vehicle.
  • the third prompt can be a light and/or voice prompt, for example, the instrument power system fault light can be controlled to light yellow to remind the driver, and/or the voice player can be controlled to play information about the insulation failure of the power system to prompt the driver.
  • the driver Further, the vehicle speed can be controlled to be lower than the first preset vehicle speed to ensure driving safety. Specifically, the current vehicle speed of the vehicle may be compared with the first preset vehicle speed. If the current vehicle speed is not less than the first preset vehicle speed, it is possible to control the vehicle not to respond to the driving demand of the driver, but to control the vehicle to decelerate until the vehicle speed is less than the first preset vehicle speed. If the current vehicle speed is less than the first preset vehicle speed, the vehicle can be controlled to drive normally according to the driving requirements of the driver.
  • any one or more of the following three can be performed: issuing a fourth prompt, controlling the speed of the vehicle to be lower than a second preset speed, and when the speed of the vehicle is lower than a safety threshold In case of high-voltage power-off. In an optimal situation, all the above three can be implemented to ensure the safety of people in the vehicle.
  • the fourth prompt can be a light and/or voice prompt, for example, the instrument power system fault light can be controlled to light red to remind the driver, and/or the voice player can be controlled to play information about a serious insulation failure of the power system, etc. Prompt the driver.
  • the vehicle speed can be controlled to be lower than the second preset vehicle speed to ensure driving safety.
  • the current vehicle speed of the vehicle may be compared with the second preset vehicle speed. If the current vehicle speed is not less than the second preset vehicle speed, it is possible to control the vehicle not to respond to the driving demand of the driver, but to control the vehicle to decelerate until the vehicle speed is less than the second preset vehicle speed. If the current vehicle speed is less than the second preset vehicle speed, the vehicle can be controlled to drive normally according to the driving demand of the driver.
  • the second preset vehicle speed is less than the first preset vehicle speed.
  • the first preset vehicle speed and the second preset vehicle speed can be set to any appropriate value according to actual conditions.
  • the first preset vehicle speed may be It is 90km/h
  • the second preset vehicle speed can be 60km/h.
  • the vehicle controller can also perform high-voltage power-off of the vehicle when the speed of the vehicle is lower than the safety threshold.
  • the vehicle controller may, for example, transmit a power-off request to the power-off control module. After the power-off control module receives the power-off request, it determines whether the current vehicle speed is lower than the safety threshold.
  • the safety threshold is a relatively low vehicle speed value, which is a speed at which it is necessary to ensure that the vehicle suddenly loses power and does not pose a safety risk to the occupants.
  • the safety threshold may be about 10 km/h. If the current vehicle speed has not fallen below the safety threshold, the vehicle is controlled to maintain the current driving state. If the current vehicle speed is lower than the safety threshold, perform power-off operations, including cutting off the power output and high-voltage connection, to avoid safety problems caused by the leakage of the power system of the vehicle.
  • the insulation fault response method for fuel cell vehicles provided by the embodiments of the present disclosure, different control strategies are implemented for the insulation faults that occur when the fuel cell is started and not started.
  • the internal personnel are safe, while reducing the number of power-offs caused by insulation failures, and improving the user experience.
  • Fig. 3 shows a structural block diagram of an insulation fault response device for a fuel cell vehicle according to another embodiment of the present disclosure.
  • an embodiment of the present disclosure also provides an insulation fault response device for a fuel cell vehicle.
  • the device may be applied to a vehicle controller.
  • the device may include: a fuel cell state detection module 310, When the vehicle is started, it is detected whether the fuel cell is in the starting state; the reading module 320 is used to read the first insulation resistance detected by the fuel cell control unit when the fuel cell is not in the starting state.
  • a first execution module 330 configured to execute a first control strategy when the first insulation resistance value indicates that the vehicle is in an insulation failure
  • a second execution The module 340 is configured to execute a second control strategy when the second insulation resistance value indicates that the vehicle is in an insulation failure, wherein the first control strategy is different from the second control strategy, and When the first insulation resistance value is less than the first threshold value and/or the second insulation resistance value is less than the second threshold value, the vehicle is in an insulation failure.
  • the specific execution process of the first execution strategy and the second execution strategy can be referred to the foregoing description, which will not be repeated here.
  • the first execution module 330 executes the first control strategy
  • the second execution module 340 executes the second control strategy.
  • the reading module 320 may also be used to read the third insulation resistance value detected by the battery management system when the fuel cell is in the startup state.
  • the second execution module 340 may also be used to execute the second control strategy when the third insulation resistance value indicates that the vehicle is in an insulation failure, wherein the third insulation resistance value is less than the second control strategy. In the case of a threshold value, the vehicle is in an insulation failure.
  • the insulation failure response device for fuel cell vehicles provided by the embodiments of the present disclosure, different control strategies are implemented in response to insulation failures that occur when the fuel cell is started and not The internal personnel are safe, while reducing the number of power-offs caused by insulation failures, and improving the user experience.
  • an embodiment of the present disclosure further provides a machine-readable storage medium, the machine-readable storage medium includes a memory, and instructions are stored on the memory, and the instructions are used to enable a machine to execute any of the embodiments of the present disclosure.
  • the machine-readable storage medium includes, but is not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), Read memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory (Flash Memory) or other memory technologies, CD-ROM, digital versatile disc (DVD) ) Or other optical storage, magnetic cassette tape, magnetic tape disk storage or other magnetic storage devices and other media that can store program codes.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM Read memory
  • EEPROM electrically erasable programmable read-only memory
  • flash Memory Flash Memory
  • CD-ROM compact disc
  • DVD digital versatile disc
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the various component embodiments of the present disclosure may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present disclosure may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 4 shows a computing processing device that can implement the method according to the present disclosure.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • Such computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 5.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 4.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable code 1031', that is, code that can be read by a processor such as 1010, which, when run by a computing processing device, causes the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the present disclosure can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims listing several devices, several of these devices may be embodied in the same hardware item. The use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

一种用于燃料电池车辆的绝缘故障响应方法,包括:在车辆启动的情况下,检测燃料电池是否处于启动状态(S110);在燃料电池未处于启动状态的情况下,读取燃料电池控制单元检测的第一绝缘阻值和电池管理系统检测的第二绝缘阻值(S120);在第一绝缘阻值表示车辆处于绝缘故障的情况下,执行第一控制策略(S130);以及在第二绝缘阻值表示车辆处于绝缘故障的情况下,执行第二控制策略(S140),其中第一控制策略不同于第二控制策略,以及其中在第一绝缘阻值小于第一阈值和/或第二绝缘阻值小于第二阈值的情况下车辆处于绝缘故障。还公开了一种用于燃料电池车辆的绝缘故障响应装置、一种机器可读存储介质、一种计算处理设备和一种计算机程序。方法针对不同情况采用不同的控制策略,以确保车内人员安全。

Description

用于燃料电池车辆的绝缘故障响应方法及装置
相关申请的交叉引用
本公开要求在2020年4月2日提交中国专利局、申请号为202010256580.6、名称为“用于燃料电池车辆的绝缘故障响应方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,特别涉及一种用于燃料电池车辆的绝缘故障响应方法及装置。
背景技术
燃料电池汽车通过化学反应将氢能转化为电能进行驱动,其电池组的电压远远超过人体所能承受的安全电压。在汽车的日常使用过程中,高压电缆的老化或受潮都可能会引起动力电池正、负极引线与汽车底盘之间的绝缘电阻降低,造成漏电,严重危及车内人员的人身安全。为了确保整车的电安全,燃料电池汽车中通常设置有绝缘检测系统,当阻值低于安全阈值时及时上报整车控制器进行安全响应。执行安全响应时合理的控制策略是保证车内人员安全的关键。
公开内容
有鉴于此,本公开旨在提出一种用于燃料电池车辆的绝缘故障响应方法,以用于实现在不同情况下,执行不同的绝缘故障响应。
为达到上述目的,本公开的技术方案是这样实现的:
一种用于燃料电池车辆的绝缘故障响应方法,所述用于燃料电池车辆的绝缘故障响应方法包括:在车辆启动的情况下,检测燃料电池是否处于启动状态;在所述燃料电池未处于所述启动状态的情况下,读取燃料电池控制单元检测的第一绝缘阻值和电池管理系统检测的第二绝缘阻值;在所述第一绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第一控制策略;以及在所述第二绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第二控制策略,其中所述 第一控制策略不同于所述第二控制策略,以及其中在所述第一绝缘阻值小于第一阈值和/或第二绝缘阻值小于第二阈值的情况下所述车辆处于绝缘故障。
进一步的,所述第一控制策略包括:判断所述第一绝缘阻值是否小于第三阈值,其中所述第三阈值小于所述第一阈值;在所述第一绝缘阻值不小于所述第三阈值的情况下,发出第一提示;以及在所述第一绝缘阻值小于所述第三阈值的情况下,执行以下一者或多者:发出第二提示、禁止所述燃料电池启动、以及基于所述车辆的锂电池电量控制车速。
进一步的,所述用于燃料电池车辆的绝缘故障响应方法还包括:在所述燃料电池处于所述启动状态的情况下,读取所述电池管理系统检测的第三绝缘阻值;以及在所述第三绝缘阻值表示所述车辆处于绝缘故障的情况下,执行所述第二控制策略,其中在所述第三绝缘阻值小于所述第二阈值的情况下所述车辆处于绝缘故障。
进一步的,所述第二控制策略包括:判断所述第二绝缘阻值是否小于第四阈值,其中所述第四阈值小于所述第二阈值;在所述第二绝缘阻值不小于所述第四阈值的情况下,执行以下一者或多者:发出第三提示、以及控制所述车辆的车速低于第一预设车速;以及在所述第二绝缘阻值小于所述第四阈值的情况下,执行以下一者或多者:发出第四提示、控制所述车辆的车速低于第二预设车速、以及在所述车辆的车速低于安全阈值的情况下执行高压下电,其中所述第二预设车速小于所述第一预设车速。
进一步的,所述用于燃料电池车辆的绝缘故障响应方法还包括:在所述第一绝缘阻值和所述第二绝缘阻值均表示所述车辆处于绝缘故障的情况下,执行所述第一控制策略和所述第二控制策略两者。
相对于现有技术,本公开所述的用于燃料电池车辆的绝缘故障响应方法具有以下优势:
在燃料电池车辆的燃料电池未启动的情况下,燃料电池控制单元检测燃料电池内部的第一绝缘阻值,电池管理系统检测整车除燃料电池外的第二绝缘阻值。如果第一绝缘阻值表示车辆处于绝缘故障,则执行第一控制策略。如果第二绝缘阻值表示车辆处于绝缘故障,则执行不同于第一控制策略的第二控制策略。如此,可以实现针对不同情况采用不同的控制策略,以确保车内人员安全。
本公开的另一目的在于提出一种用于燃料电池车辆的绝缘故障响应装置,以用于实现在不同情况下,执行不同的绝缘故障响应。
为达到上述目的,本公开的技术方案是这样实现的:
一种用于燃料电池车辆的绝缘故障响应装置,所述用于燃料电池车辆的绝缘故障响应装置包括:燃料电池状态检测模块,用于在车辆启动的情况下,检测燃料电池是否处于启动状态;读取模块,用于在所述燃料电池未处于所述启动状态的情况下,读取燃料电池控制单元检测的第一绝缘阻值和电池管理系统检测的第二绝缘阻值;第一执行模块,用于在所述第一绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第一控制策略;以及第二执行模块,用于在所述第二绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第二控制策略,其中所述第一控制策略不同于所述第二控制策略,以及其中在所述第一绝缘阻值小于第一阈值和/或第二绝缘阻值小于第二阈值的情况下所述车辆处于绝缘故障。
进一步的,所述第一控制策略包括:判断所述第一绝缘阻值是否小于第三阈值,其中所述第三阈值小于所述第一阈值;在所述第一绝缘阻值不小于所述第三阈值的情况下,发出第一提示;以及在所述第一绝缘阻值小于所述第三阈值的情况下,执行以下一者或多者:发出第二提示、禁止所述燃料电池启动、以及基于所述车辆的锂电池电量控制车速。
进一步的,所述第二控制策略包括:判断所述第二绝缘阻值是否小于第四阈值,其中所述第四阈值小于所述第二阈值;在所述第二绝缘阻值不小于所述第四阈值的情况下,执行以下一者或多者:发出第三提示、以及控制所述车辆的车速低于第一预设车速;以及在所述第二绝缘阻值小于所述第四阈值的情况下,执行以下一者或多者:发出第四提示、控制所述车辆的车速低于第二预设车速、以及在所述车辆的车速低于安全阈值的情况下执行高压下电,其中所述第二预设车速小于所述第一预设车速。
进一步的,在所述第一绝缘阻值和所述第二绝缘阻值均表示所述车辆处于绝缘故障的情况下,所述第一执行模块执行所述第一控制策略且所述第二执行模块执行所述第二控制策略。
所述用于燃料电池车辆的绝缘故障响应装置与上述用于燃料电池车辆的绝缘故障响应方法相对于现有技术所具有的优势相同,在此不再赘述。
相应的,本公开实施例还提供一种机器可读存储介质,其特征在于,所述机器可读存储介质上存储有指令,所述指令用于使得机器执行上述的用于燃料电池车辆的绝缘故障响应方法。
本公开的其它特征和优点将在随后的具体实施方式部分予以详细说明。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施方式及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开一实施例所述的用于燃料电池车辆的绝缘故障响应方法的流程示意图;
图2示出了根据本公开又一实施例所述的用于燃料电池车辆的绝缘故障响应方法的流程示意图;以及
图3示出了根据本公开又一实施例所述的用于燃料电池车辆的绝缘故障响应装置的结构框图;
图4示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;并且
图5示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
具体实施例
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开 实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。
在燃料电池车辆的电池管理系统中设置有绝缘检测模块,在整车高压建立后,电池管理系统对整车高压网络实时执行绝缘检测,当检测到的绝缘阻值低于安全阈值时,整车控制器及时进行安全响应。在燃料电池车辆行驶过程中,燃料电池可能处于未启动状态,这种情况下,燃料电池与整车高压网络是断开的,仅使用电池管理系统执行绝缘检测,将不能检测到燃料电池内部的绝缘故障。
为了解决上述技术问题,可以在燃料电池控制单元内也设置有用于对燃料电池执行绝缘检测的绝缘检测模块,即,在燃料电池车辆设置有两个检测源,通过电池管理系统来检测整车绝缘阻值,通过燃料电池控制单元检测燃料电池内部的绝缘阻值。在车辆行驶过程中,燃料电池启动后将会接入整车高压网络中,此时燃料电池内部的绝缘阻值可以被电池管理系统检测到,因此,燃料电池启动后,使用电池管理系统负责执行绝缘检测以得到绝缘阻值即可。如果燃料电池停机或没有被启动,则整车除燃料电池以外的部分依然由电池管理系统检测绝缘阻值,燃料电池内部由燃料电池控制单元进行检测绝缘阻值。如此,能够有效避免由于燃料电池内部绝缘故障而造成的安全隐患。
在燃料电池汽车设置有两个检测源的情况下,绝缘故障响应策略可以采用统一的控制策略,即燃料电池控制单元和电池管理系统检测的绝缘阻值指示车辆处于绝缘故障时皆采用同样的响应。比如电池管理系统检测到的绝缘阻值过低指示车辆处于绝缘故障时,车辆需要在车速较低的情况下进行下电以保护车内人员安全。在燃料电池未启动时,如果燃料电池控制单元检测到燃料电池内部绝缘阻值过低使得车辆处于绝缘故障时,车辆也需要在车速较低的情况下进行下电。然而在燃料电池未启动的情况下,即使车辆由于燃料电池内部绝缘阻值过低而处于故障响应也不会影响乘员安全。因此采用统一的控制策略将可能引起车辆强制下电次数增加,降低用户体验。
本公开实施例提供的用于燃料电池车辆的绝缘故障响应方法及装置为了解决上述技术问题,实现了在不同情况下,执行不同的绝缘故障响应,使得绝缘故障响应的控制策略更加合理。下面将参考附图并结合实施方式来详细说明本公开。
图1示出了根据本公开一实施例所述的用于燃料电池车辆的绝缘故障响应方法的流程示意图。如图1所示,本公开实施例提供一种用于燃料电池车辆的绝缘故障响应方法,该方法例如可以由整车控制器来执行。所述方法可以包括步骤S110至步骤S140。
在步骤S110,在车辆启动的情况下,检测燃料电池是否处于启动状态。
由于燃料电池功率响应速度太慢,无法及时响应汽车驾驶员多变的动力请求,因此目前燃料电池汽车多采用燃料电池与锂电池并联输出的方式。燃料电池以恒定的功率进行输出,当驾驶员请求功率大于燃料电池输出时,锂电池进行放电,反之锂电池进行充电。当驾驶员动力长时间保持低功率请求,锂电池电量充电至较高阈值时,燃料电池进行关机与高压网络断开,由锂电池单独输出,电量降低时再次启动燃料电池。因此,在车辆启动后,燃料电池可能不处于启动状态。
在车辆启动的情况下,燃料电池控制单元可以实时检测燃料电池的状态,并向整车控制器输出燃料电池的状态信号,该状态信号能够表征燃料电池是否处于启动状态。
在步骤S120,在所述燃料电池未处于所述启动状态的情况下,读取燃料电池控制单元检测的第一绝缘阻值和电池管理系统检测的第二绝缘阻值。
在燃料电池未处于启动状态的情况下,燃料电池控制单元负责检测燃料电池内部的绝缘阻值(即,所述第一绝缘阻值),电池管理系统负责检测整车除燃料电池外高压网络的绝缘阻值(即,所述第二绝缘阻值)。
燃料电池控制单元可以将检测到的第一绝缘阻值传输给整车控制器,由整车控制器读取。同样,电池管理系统也可以将检测到的第二绝缘阻值传输给整车控制器,由整车控制器读取。
在步骤S130,在所述第一绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第一控制策略。
如果第一绝缘阻值小于第一阈值,则表示车辆处于绝缘故障,并且这种绝 缘故障是燃料电池内部引起的绝缘故障。这种情况下可以执行第一控制策略。具体的,在第一绝缘阻值小于第一阈值的情况下,可以继续判断第一绝缘阻值是否小于第三阈值,所述第三阈值小于所述第一阈值。第一阈值和第三阈值可以根据实际情况设置为任意合适的值。
如果第一绝缘阻值小于第一阈值但是不小于第三阈值,则表明当前绝缘故障情况不是很严重。这种情况下,可以仅发出第一提示来提醒驾驶员。所述第一提示可以是灯光和/或语音提示,例如可以控制仪表燃料电池故障灯点亮为黄色来提示驾驶员,和/或可以控制语音播放器播放关于燃料电池绝缘故障的信息等来提示驾驶员。
如果第一绝缘阻值小于第三阈值,则表明当前绝缘故障情况相对严重。这种情况下,可以执行以下三者中的一者或多者:发出第二提示、禁止所述燃料电池启动、以及基于所述车辆的锂电池电量控制车速。在优选情况下,可以将前述三者均执行,以保证车内人员安全。
所述第二提示可以是灯光和/或语音提示,例如可以控制仪表燃料电池故障灯点亮红色来提示驾驶员,和/或可以控制语音播放器播放关于燃料电池出现严重绝缘故障的信息等来提示驾驶员。
在燃料电池未处于启动状态的情况下,如果发现燃料电池内部绝缘故障情况相对严重,则可以禁止燃料电池启动。例如,整车控制器可以向燃料电池控制单元传送关于禁止启动燃料电池的信号,燃料电池控制单元响应于该信号,可以控制燃料电池处于安全状态,以避免由于燃料电池启动而造成漏电现象发生。并且进一步的,可以基于车辆的锂电池电量来合理控制车速。例如,如果锂电池电量大于电量阈值,则可以控制车辆按照驾驶员需求的车速来行驶。如果锂电池电量不大于所述电量阈值,则可以控制车辆减速行驶或者控制车辆的车速不超过某一预设车速。本公开实施例对具体如何根据车辆的锂电池电量来合理控制车速并不作限制。
在步骤S140,在所述第二绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第二控制策略。
如果第二绝缘阻值小于第二阈值,则表示车辆处于绝缘故障,并且这种绝缘故障是整车除燃料电池外的部分引起的绝缘故障。这种情况下可以执行第二控制策略。第二控制策略不同于第一控制策略。具体的,在第二绝缘阻值小 于第二阈值的情况下,可以继续判断第二绝缘阻值是否小于第四阈值,所述第四阈值小于所述第二阈值。第二阈值和第四阈值可以根据实际情况设置为任意合适的值。在可选情况下,本公开实施例中第一阈值和第二阈值可以相同,第三阈值和第四阈值可以相同。第一阈值、第二阈值、第三阈值、第四阈值可以根据国标中针对燃料车辆的绝缘阻值的要求来设置。
如果第二绝缘阻值小于第二阈值但是不小于第四阈值,则表明当前绝缘故障情况不是很严重。这种情况下,可以执行以下一者或两者:发出第三提示、以及控制所述车辆的车速低于第一预设车速。在优选情况下可以执行前述两者来保证车内人员安全。
所述第三提示可以是灯光和/或语音提示,例如可以控制仪表动力系统故障灯点亮黄色来提示驾驶员,和/或可以控制语音播放器播放关于动力系统出现绝缘故障的信息等来提示驾驶员。进一步的,可以控制车辆的车速低于第一预设车速以确保行驶安全。具体的,可以将车辆的当前车速与第一预设车速进行比较。如果当前车速不小于第一预设车速,则可以控制车辆不响应驾驶员的驾驶需求,而是控制车辆进行减速直到车速小于第一预设车速。如果当前车速小于第一预设车速,则可以控制车辆按照驾驶员的驾驶需求正常行驶。
如果第二绝缘阻值小于第四阈值,则表明当前绝缘故障情况相对严重。这种情况下,可以执行以下三者中的任一者或多者:发出第四提示、控制所述车辆的车速低于第二预设车速、以及在所述车辆的车速低于安全阈值的情况下执行高压下电。在优选情况下,可以将前述三者均执行,以保证车内人员安全。
所述第四提示可以是灯光和/或语音提示,例如可以控制仪表动力系统故障灯点亮红色来提示驾驶员,和/或可以控制语音播放器播放关于动力系统出现严重绝缘故障的信息等来提示驾驶员。
进一步的,可以控制车辆的车速低于第二预设车速以确保行驶安全。具体的,可以将车辆的当前车速与第二预设车速进行比较。如果当前车速不小于第二预设车速,则可以控制车辆不响应驾驶员的驾驶需求,而是控制车辆进行减速直到车速小于第二预设车速。如果当前车速小于第二预设车速,则可以控制车辆按照驾驶员的驾驶需求正常行驶。本公开实施例中所述第二预设车速小于所述第一预设车速,第一预设车速和第二预设车速可以根据实际情况设置为任意合适的值,例如第一预设车速可以是90km/h,第二预设车速可以是 60km/h。
进一步的,整车控制器还可以在车辆的车速低于安全阈值的情况下对车辆执行高压下电。整车控制器例如可以向上下电控制模块传送下电请求。上下电控制模块接收到该下电请求后,判断当前车速是否低于安全阈值。所述安全阈值是一个较低的车速值,是需确保车辆突然失去动力对车内人员没有安全风险的车速,例如所述安全阈值可以约为10km/h等。如果当前车速还未低于安全阈值,则控制车辆维持当前行驶状态。如果当前车速低于安全阈值,则执行下电操作,包括切断动力输出以及高压连接,以避免整车动力系统漏电而引起的安全问题。
进一步的,如果第一绝缘阻值和第二绝缘阻值均表示车辆处于绝缘故障的情况下,可以执行第一控制策略和第二控制策略两者。例如,如果第一绝缘阻值小于第一阈值而不小于第三阈值并且第二绝缘阻值小于第二阈值而不小于第四阈值,则整车控制器可以发出第一提示、发出第三提示、以及控制所述车辆的车速低于第一预设车速。如果第一绝缘阻值小于第一阈值而不小于第三阈值并且第二绝缘阻值小于第四阈值,则整车控制器可以发出第一提示、发出第四提示、控制所述车辆的车速低于第二预设车速、以及在所述车辆的车速低于安全阈值的情况下执行高压下电。如果第一绝缘阻值小于第三阈值并且第二绝缘阻值小于第二阈值而不小于第四阈值,则整车控制器可以发出第二提示、禁止所述燃料电池启动、以及基于所述车辆的锂电池电量控制车速、发出第三提示、以及控制所述车辆的车速低于第一预设车速。如果第一绝缘阻值小于第三阈值并且第二绝缘阻值小于第四阈值,则整车控制器可以发出第二提示、禁止所述燃料电池启动、以及基于所述车辆的锂电池电量控制车速、发出第四提示、控制所述车辆的车速低于第二预设车速、以及在所述车辆的车速低于安全阈值的情况下执行高压下电。如此,在确保车内人员安全的情况下,方便驾驶员知晓燃料电池内部和整车动力系统均发生了绝缘故障。
图2示出了根据本公开又一实施例所述的用于燃料电池车辆的绝缘故障响应方法的流程示意图。如图2所示,基于前述实施例,本公开实施例提供的用于燃料电池车辆的绝缘故障响应方法进一步可以包括步骤S210至步骤S220。
在步骤S210,在所述燃料电池处于所述启动状态的情况下,读取所述电 池管理系统检测的第三绝缘阻值。
在燃料电池处于启动状态的情况下,燃料电池将接入整车高压电路中,此时燃料电池内部的绝缘阻值可以被电池管理系统检测到,因此,燃料电池启动后,使用电池管理系统负责检测绝缘阻值即可。
在步骤S220,在所述第三绝缘阻值表示所述车辆处于绝缘故障的情况下,执行所述第二控制策略。
如果第三绝缘阻值小于第二阈值,则表示车辆处于绝缘故障。由于第三绝缘阻值是由电池管理系统检测得到的,因此不能确定此时的绝缘故障是由绝缘电池还是其他部分引起的。为了确保车内人员的安全,可以执行针对整车动力系统绝缘故障的第二控制策略。
具体的,在第三绝缘阻值小于第二阈值的情况下,可以继续判断第三绝缘阻值是否小于第四阈值,所述第四阈值小于所述第二阈值。第二阈值和第四阈值可以根据实际情况设置为任意合适的值。如前文所述,在可选情况下,本公开实施例中第一阈值和第二阈值可以相同,第三阈值和第四阈值可以相同。第一阈值、第二阈值、第三阈值、第四阈值可以根据国标中针对燃料车辆的绝缘阻值的要求来设置。
如果第三绝缘阻值小于第二阈值但是不小于第四阈值,则表明当前绝缘故障情况不是很严重。这种情况下,可以执行以下一者或两者:发出第三提示、以及控制所述车辆的车速低于第一预设车速。在优选情况下可以执行前述两者来保证车内人员安全。
所述第三提示可以是灯光和/或语音提示,例如可以控制仪表动力系统故障灯点亮黄色来提示驾驶员,和/或可以控制语音播放器播放关于动力系统出现绝缘故障的信息等来提示驾驶员。进一步的,可以控制车辆的车速低于第一预设车速以确保行驶安全。具体的,可以将车辆的当前车速与第一预设车速进行比较。如果当前车速不小于第一预设车速,则可以控制车辆不响应驾驶员的驾驶需求,而是控制车辆进行减速直到车速小于第一预设车速。如果当前车速小于第一预设车速,则可以控制车辆按照驾驶员的驾驶需求正常行驶。
如果第三绝缘阻值小于第四阈值,则表明当前绝缘故障情况相对严重。这种情况下,可以执行以下三者中的任一者或多者:发出第四提示、控制所述车辆的车速低于第二预设车速、以及在所述车辆的车速低于安全阈值的情况下 执行高压下电。在优选情况下,可以将前述三者均执行,以保证车内人员安全。
所述第四提示可以是灯光和/或语音提示,例如可以控制仪表动力系统故障灯点亮红色来提示驾驶员,和/或可以控制语音播放器播放关于动力系统出现严重绝缘故障的信息等来提示驾驶员。
进一步的,可以控制车辆的车速低于第二预设车速以确保行驶安全。具体的,可以将车辆的当前车速与第二预设车速进行比较。如果当前车速不小于第二预设车速,则可以控制车辆不响应驾驶员的驾驶需求,而是控制车辆进行减速直到车速小于第二预设车速。如果当前车速小于第二预设车速,则可以控制车辆按照驾驶员的驾驶需求正常行驶。本公开实施例中所述第二预设车速小于所述第一预设车速,第一预设车速和第二预设车速可以根据实际情况设置为任意合适的值,例如第一预设车速可以是90km/h,第二预设车速可以是60km/h。
进一步的,整车控制器还可以在车辆的车速低于安全阈值的情况下对车辆执行高压下电。整车控制器例如可以向上下电控制模块传送下电请求。上下电控制模块接收到该下电请求后,判断当前车速是否低于安全阈值。所述安全阈值是一个较低的车速值,是需确保车辆突然失去动力对车内人员没有安全风险的车速,例如所述安全阈值可以约为10km/h等。如果当前车速还未低于安全阈值,则控制车辆维持当前行驶状态。如果当前车速低于安全阈值,则执行下电操作,包括切断动力输出以及高压连接,以避免整车动力系统漏电而引起的安全问题。
根据本公开实施例提供的用于燃料电池车辆的绝缘故障响应方法,针对燃料电池启动和未启动情况下发生的绝缘故障情况,执行不同的控制策略,在尽量不影响车辆行驶的情况下确保车内人员安全的,同时降低了因为绝缘故障而引起的下电次数,提升了用户体验。
图3示出了根据本公开又一实施例所述的用于燃料电池车辆的绝缘故障响应装置的结构框图。如图3所示,本公开实施例还提供一种用于燃料电池车辆的绝缘故障响应装置,所述装置可以应用于整车控制器,所述装置可以包括:燃料电池状态检测模块310,用于在车辆启动的情况下,检测燃料电池是否处于启动状态;读取模块320,用于在所述燃料电池未处于所述启动状态的情况下,读取燃料电池控制单元检测的第一绝缘阻值和电池管理系统检测的 第二绝缘阻值;第一执行模块330,用于在所述第一绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第一控制策略;以及第二执行模块340,用于在所述第二绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第二控制策略,其中所述第一控制策略不同于所述第二控制策略,以及其中在所述第一绝缘阻值小于第一阈值和/或第二绝缘阻值小于第二阈值的情况下所述车辆处于绝缘故障。其中,所述第一执行策略和所述第二执行策略的具体执行过程可以参考前文所述,这里将不再赘述。
在一些可选实施例中,在所述第一绝缘阻值和所述第二绝缘阻值均表示所述车辆处于绝缘故障的情况下,所述第一执行模块330执行所述第一控制策略且所述第二执行模块340执行所述第二控制策略。
在一些可选实施例中,读取模块320还可以用于在所述燃料电池处于所述启动状态的情况下,读取所述电池管理系统检测的第三绝缘阻值。第二执行模块340还可以用于在所述第三绝缘阻值表示所述车辆处于绝缘故障的情况下,执行所述第二控制策略,其中在所述第三绝缘阻值小于所述第二阈值的情况下所述车辆处于绝缘故障。
根据本公开实施例提供的用于燃料电池车辆的绝缘故障响应装置,针对燃料电池启动和未启动情况下发生的绝缘故障情况,执行不同的控制策略,在尽量不影响车辆行驶的情况下确保车内人员安全的,同时降低了因为绝缘故障而引起的下电次数,提升了用户体验。
本公开实施例提供的用于燃料电池车辆的绝缘故障响应装置的具体工作原理及益处与上述本公开实施例提供的用于燃料电池车辆的绝缘故障响应方法的具体工作原理及益处相同,这里将不再赘述。
相应的,本公开实施例还提供一种机器可读存储介质,所述机器可读存储介质包括存储器,所述存储器上存储有指令,所述指令用于使得机器能够执行根据本公开任意实施例所述的用于燃料电池车辆的绝缘故障响应方法。其中,所述机器可读存储介质包括但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体(Flash Memory)或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他 磁性存储设备等各种可以存储程序代码的介质。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图4示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图5所述的便携式或者固定存储单元。该存储单元可以具有与图4的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的 方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述仅为本公开的较佳实施方式而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种用于燃料电池车辆的绝缘故障响应方法,其特征在于,所述用于燃料电池车辆的绝缘故障响应方法包括:
    在车辆启动的情况下,检测燃料电池是否处于启动状态;
    在所述燃料电池未处于所述启动状态的情况下,读取燃料电池控制单元检测的第一绝缘阻值和电池管理系统检测的第二绝缘阻值;
    在所述第一绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第一控制策略;以及
    在所述第二绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第二控制策略,
    其中所述第一控制策略不同于所述第二控制策略,以及其中在所述第一绝缘阻值小于第一阈值和/或第二绝缘阻值小于第二阈值的情况下所述车辆处于绝缘故障。
  2. 根据权利要求1所述的用于燃料电池车辆的绝缘故障响应方法,其特征在于,所述第一控制策略包括:
    判断所述第一绝缘阻值是否小于第三阈值,其中所述第三阈值小于所述第一阈值;
    在所述第一绝缘阻值不小于所述第三阈值的情况下,发出第一提示;以及
    在所述第一绝缘阻值小于所述第三阈值的情况下,执行以下一者或多者:发出第二提示、禁止所述燃料电池启动、以及基于所述车辆的锂电池电量控制车速。
  3. 根据权利要求1所述的用于燃料电池车辆的绝缘故障响应方法,其特征在于,所述用于燃料电池车辆的绝缘故障响应方法还包括:
    在所述燃料电池处于所述启动状态的情况下,读取所述电池管理系统检测的第三绝缘阻值;以及
    在所述第三绝缘阻值表示所述车辆处于绝缘故障的情况下,执行所述第二控制策略,
    其中在所述第三绝缘阻值小于所述第二阈值的情况下所述车辆处于绝缘 故障。
  4. 根据权利要求1所述的用于燃料电池车辆的绝缘故障响应方法,其特征在于,所述第二控制策略包括:
    判断所述第二绝缘阻值是否小于第四阈值,其中所述第四阈值小于所述第二阈值;
    在所述第二绝缘阻值不小于所述第四阈值的情况下,执行以下一者或多者:发出第三提示、以及控制所述车辆的车速低于第一预设车速;以及
    在所述第二绝缘阻值小于所述第四阈值的情况下,执行以下一者或多者:发出第四提示、控制所述车辆的车速低于第二预设车速、以及在所述车辆的车速低于安全阈值的情况下执行高压下电,
    其中所述第二预设车速小于所述第一预设车速。
  5. 根据权利要求1至4中任一项所述的用于燃料电池车辆的绝缘故障响应方法,其特征在于,所述用于燃料电池车辆的绝缘故障响应方法还包括:
    在所述第一绝缘阻值和所述第二绝缘阻值均表示所述车辆处于绝缘故障的情况下,执行所述第一控制策略和所述第二控制策略两者。
  6. 一种用于燃料电池车辆的绝缘故障响应装置,其特征在于,所述用于燃料电池车辆的绝缘故障响应装置包括:
    燃料电池状态检测模块,用于在车辆启动的情况下,检测燃料电池是否处于启动状态;
    读取模块,用于在所述燃料电池未处于所述启动状态的情况下,读取燃料电池控制单元检测的第一绝缘阻值和电池管理系统检测的第二绝缘阻值;
    第一执行模块,用于在所述第一绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第一控制策略;以及
    第二执行模块,用于在所述第二绝缘阻值表示所述车辆处于绝缘故障的情况下,执行第二控制策略,
    其中所述第一控制策略不同于所述第二控制策略,以及其中在所述第一绝缘阻值小于第一阈值和/或第二绝缘阻值小于第二阈值的情况下所述车辆处 于绝缘故障。
  7. 根据权利要求6所述的用于燃料电池车辆的绝缘故障响应装置,其特征在于,所述第一控制策略包括:
    判断所述第一绝缘阻值是否小于第三阈值,其中所述第三阈值小于所述第一阈值;
    在所述第一绝缘阻值不小于所述第三阈值的情况下,发出第一提示;以及
    在所述第一绝缘阻值小于所述第三阈值的情况下,执行以下一者或多者:发出第二提示、禁止所述燃料电池启动、以及基于所述车辆的锂电池电量控制车速。
  8. 根据权利要求6所述的用于燃料电池车辆的绝缘故障响应装置,其特征在于,所述第二控制策略包括:
    判断所述第二绝缘阻值是否小于第四阈值,其中所述第四阈值小于所述第二阈值;
    在所述第二绝缘阻值不小于所述第四阈值的情况下,执行以下一者或多者:发出第三提示、以及控制所述车辆的车速低于第一预设车速;以及
    在所述第二绝缘阻值小于所述第四阈值的情况下,执行以下一者或多者:发出第四提示、控制所述车辆的车速低于第二预设车速、以及在所述车辆的车速低于安全阈值的情况下执行高压下电,
    其中所述第二预设车速小于所述第一预设车速。
  9. 根据权利要求6至8中任一项所述的用于燃料电池车辆的绝缘故障响应装置,其特征在于,在所述第一绝缘阻值和所述第二绝缘阻值均表示所述车辆处于绝缘故障的情况下,所述第一执行模块执行所述第一控制策略且所述第二执行模块执行所述第二控制策略。
  10. 一种机器可读存储介质,其特征在于,所述机器可读存储介质上存储有指令,所述指令用于使得机器执行根据权利要求1至5中任一项所述的用于燃料电池车辆的绝缘故障响应方法。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-5中任一项所述的用于燃料电池车辆的绝缘故障响应方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中任一项所述的用于燃料电池车辆的绝缘故障响应方法。
PCT/CN2021/084988 2020-04-02 2021-04-01 用于燃料电池车辆的绝缘故障响应方法及装置 WO2021197437A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/758,127 US20230044324A1 (en) 2020-04-02 2021-04-01 Insulation fault response method and apparatus for fuel cell vehicle
EP21781013.4A EP4067151A4 (en) 2020-04-02 2021-04-01 METHOD AND APPARATUS FOR RESPONDING TO AN INSULATION FAULT FOR A FUEL CELL VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010256580.6 2020-04-02
CN202010256580.6A CN112874304A (zh) 2020-04-02 2020-04-02 用于燃料电池车辆的绝缘故障响应方法及装置

Publications (1)

Publication Number Publication Date
WO2021197437A1 true WO2021197437A1 (zh) 2021-10-07

Family

ID=76042823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084988 WO2021197437A1 (zh) 2020-04-02 2021-04-01 用于燃料电池车辆的绝缘故障响应方法及装置

Country Status (4)

Country Link
US (1) US20230044324A1 (zh)
EP (1) EP4067151A4 (zh)
CN (1) CN112874304A (zh)
WO (1) WO2021197437A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115320386A (zh) * 2022-08-25 2022-11-11 中汽创智科技有限公司 氢燃料汽车的控制方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033627A1 (ja) * 2013-09-04 2015-03-12 Jx日鉱日石エネルギー株式会社 絶縁抵抗測定装置、絶縁抵抗測定方法、及び絶縁監視装置
KR20170119831A (ko) * 2016-04-20 2017-10-30 현대자동차주식회사 연료 전지 자동차 및 연료 전지 자동차의 절연 저항 측정 방법
CN108107274A (zh) * 2018-02-08 2018-06-01 中航锂电技术研究院有限公司 改进型纯电动汽车多点漏电绝缘电阻在线监测系统及方法
CN110053519A (zh) * 2019-04-24 2019-07-26 中通客车控股股份有限公司 一种燃料电池客车用绝缘监测控制系统、方法及车辆
CN110426556A (zh) * 2019-08-14 2019-11-08 江铃控股有限公司 整车绝缘电阻测试方法及设备
CN110696619A (zh) * 2018-07-09 2020-01-17 宝沃汽车(中国)有限公司 混合动力电车的绝缘监测方法、装置以及混合动力电车

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7627405B2 (en) * 2006-11-17 2009-12-01 Gm Global Technology Operations, Inc. Prognostic for loss of high-voltage isolation
CN101324645B (zh) * 2008-07-08 2010-06-02 奇瑞汽车股份有限公司 混合动力车高压能量管理系统绝缘电阻测算方法及装置
JP4937293B2 (ja) * 2009-03-31 2012-05-23 本田技研工業株式会社 地絡検知システムを備える電気自動車
JP5713030B2 (ja) * 2013-01-15 2015-05-07 トヨタ自動車株式会社 電動車両および電動車両の絶縁状態判定方法
KR101836651B1 (ko) * 2016-06-13 2018-03-09 현대자동차주식회사 연료전지차량의 절연저항 측정 시스템 및 방법
CN107817431A (zh) * 2016-09-13 2018-03-20 北汽福田汽车股份有限公司 燃料电池车的高压绝缘检测系统和燃料电池车
DE102018205165A1 (de) * 2018-04-06 2019-10-10 Audi Ag HV-System für ein Brennstoffzellenfahrzeug
JP7047658B2 (ja) * 2018-08-07 2022-04-05 トヨタ自動車株式会社 燃料電池システム
CN109895660A (zh) * 2019-04-17 2019-06-18 上海汉翱新能源科技有限公司 一种燃料电池汽车多源控制器及控制方法
CN110315980B (zh) * 2019-08-30 2020-01-31 潍柴动力股份有限公司 一种燃料电池电动汽车电堆的控制方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033627A1 (ja) * 2013-09-04 2015-03-12 Jx日鉱日石エネルギー株式会社 絶縁抵抗測定装置、絶縁抵抗測定方法、及び絶縁監視装置
KR20170119831A (ko) * 2016-04-20 2017-10-30 현대자동차주식회사 연료 전지 자동차 및 연료 전지 자동차의 절연 저항 측정 방법
CN108107274A (zh) * 2018-02-08 2018-06-01 中航锂电技术研究院有限公司 改进型纯电动汽车多点漏电绝缘电阻在线监测系统及方法
CN110696619A (zh) * 2018-07-09 2020-01-17 宝沃汽车(中国)有限公司 混合动力电车的绝缘监测方法、装置以及混合动力电车
CN110053519A (zh) * 2019-04-24 2019-07-26 中通客车控股股份有限公司 一种燃料电池客车用绝缘监测控制系统、方法及车辆
CN110426556A (zh) * 2019-08-14 2019-11-08 江铃控股有限公司 整车绝缘电阻测试方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067151A4 *

Also Published As

Publication number Publication date
US20230044324A1 (en) 2023-02-09
EP4067151A4 (en) 2023-01-25
CN112874304A (zh) 2021-06-01
EP4067151A1 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
JP6409140B2 (ja) 電池膨れ検知システム及び方法
WO2020220512A1 (zh) 电池热失控的检测方法、装置、系统和电池管理单元
WO2021197480A1 (zh) 插电式燃料电池车辆的能量管理方法及电池控制系统
US9413031B2 (en) Apparatus and system for an internal fuse in a battery cell
WO2021197434A1 (zh) 确定车辆高压回路的连接可靠性的方法及系统
JP5040707B2 (ja) アイドルストップ車両の始動制御装置及び始動制御方法
CN107433881B (zh) 一种车辆电机冷却系统故障的控制方法及装置
WO2021197437A1 (zh) 用于燃料电池车辆的绝缘故障响应方法及装置
CN110303946B (zh) 一种燃料电池汽车的控制方法及装置
WO2021197436A1 (zh) 用于燃料电池车辆的绝缘检测方法及装置、车辆
WO2022237237A1 (zh) 电动车充电、上电及下电控制方法、装置及电动车
WO2021197438A1 (zh) 发动机启停控制方法、系统以及车辆
WO2014154174A1 (en) Energy-saving method and sysytem for vehicle and vehicle comprising system
CN112332475A (zh) 一种电池组件充电电流的控制方法、系统、介质及应用
WO2023098124A1 (zh) 驻车空调及其控制方法、装置以及计算机可读存储介质
CN111497869A (zh) 一种新能源汽车动力电池故障的应急处理方法
CN112046338A (zh) 燃料电池车辆的高压下电方法及电池系统
CN109591732A (zh) 汽车上电控制方法、装置、整车控制器及汽车
CN111284429B (zh) 一种车辆报警方法、车载设备、计算机存储介质及系统
CN112277650A (zh) 一种氢燃料电池汽车的低压控制高压紧急下电方法
WO2023109252A1 (zh) 电动汽车的高压输入欠压故障检测方法、装置及存储介质
WO2023273921A1 (zh) 车辆驱动控制方法、装置、系统、存储介质及车辆
CN114655016B (zh) 唤醒电路、整车控制器、上下电控制方法及装置
WO2022217388A1 (zh) 双电机混合动力车辆及其电池故障处理方法和系统
CN114074552B (zh) 一种燃料电池汽车绝缘检测方法及整车控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021781013

Country of ref document: EP

Effective date: 20220627

NENP Non-entry into the national phase

Ref country code: DE