WO2023273921A1 - 车辆驱动控制方法、装置、系统、存储介质及车辆 - Google Patents

车辆驱动控制方法、装置、系统、存储介质及车辆 Download PDF

Info

Publication number
WO2023273921A1
WO2023273921A1 PCT/CN2022/099518 CN2022099518W WO2023273921A1 WO 2023273921 A1 WO2023273921 A1 WO 2023273921A1 CN 2022099518 W CN2022099518 W CN 2022099518W WO 2023273921 A1 WO2023273921 A1 WO 2023273921A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure level
level
drive system
failure
disengagement
Prior art date
Application number
PCT/CN2022/099518
Other languages
English (en)
French (fr)
Inventor
徐斌
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP22831739.2A priority Critical patent/EP4344927A1/en
Publication of WO2023273921A1 publication Critical patent/WO2023273921A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to the technical field of vehicle control, in particular to a vehicle drive control method, device, system, storage medium and vehicle.
  • the four-wheel drive electric system of new energy vehicles adopts the permanent magnet synchronous motor system for the front and rear drives.
  • the permanent magnet synchronous motor uses permanent magnets to generate the air gap magnetic field, which is different from the air gap magnetic field generated by the commutator motor through the excitation coil.
  • the induction motor uses the excitation component of the stator current to generate the same air gap magnetic field, and has a simple structure, low loss and high efficiency.
  • the motor controller when the front drive system or the rear drive system fails, the motor controller will report the fault level information according to the safety status of the motor, and the vehicle controller will perform vehicle speed limit or stop actions according to the fault level. After the front drive or rear drive drive system fails, the vehicle controller will slow down or stop according to the fault level of the electric drive, and the drive system that has not failed cannot fully exert its driving ability.
  • Embodiments of the present invention provide a vehicle drive control method, device, system, storage medium, and vehicle, aiming at addressing the problems existing in the above special circumstances.
  • an embodiment of the present invention provides a vehicle drive control method, the method comprising:
  • the fault level of the disengagement system corresponding to the fault information is determined according to the current gear position of the disengagement controller
  • the determining the fault level of the electric drive system corresponding to the fault information according to the safety state information, fault performance information and post-processing execution actions of the electric drive system includes:
  • the fault manifests as the loss of power of the electric drive system, and the post-processing action is that the high voltage needs to be disconnected, and the fault level of the electric drive system is determined to be the fifth fault level;
  • the fault manifests as the power loss of the electric drive system
  • the post-processing action is to reduce the motor speed to zero within the preset time
  • the fault level of the electric drive system is determined to be Fourth failure level
  • the fault manifests as the power loss of the electric drive system, and the post-processing action is to reduce the motor speed to the preset speed within the preset time to determine the electric drive system.
  • the failure class is the third failure class.
  • the fault manifests as the electric drive system is on standby, and the post-processing action is to reduce the motor speed to the preset speed within the preset time to determine the fault of the electric drive system
  • the level is the second failure level
  • the fault level of the electric drive system is determined to be the first fault level.
  • determining the failure level of the disengagement system corresponding to the fault information includes:
  • the current failure level of the disengagement system is set as the first failure level.
  • determining the failure level of the disengagement system corresponding to the fault information includes:
  • the current failure level of the disengagement system is set as the first failure level.
  • failure level of the disengagement system is the fourth failure level, report the failure code and stop the vehicle within a specified time;
  • performing corresponding fault handling actions according to the fault level of the disengagement system and the fault level of the electric drive system includes:
  • the failure level of the disengagement control system is the first failure level and the failure level of the electric drive system is the first failure level, execute no-fault no-handling action, alarm action or power-down operation action;
  • the failure level of the disengagement system is the first failure level and the failure level of the electric drive system is the third failure level, perform the operation of the disengagement failure drive system;
  • failure level of the disengagement system is the first failure level
  • failure level of the electric drive system is the fourth failure level
  • the action of disengaging the faulty drive system and disconnecting the high-voltage system is performed.
  • failure level of the disengagement system is the second failure level
  • failure level of the electric drive system is the third failure level
  • the action of stopping and disconnecting the high-voltage system is executed.
  • the action of disengaging the failure drive system to run is performed;
  • the failure level of the disengagement system is the third failure level and the failure level of the electric drive system is the second failure level, perform the operation of the disengagement failure drive system;
  • failure level of the disengagement system is the third failure level
  • failure level of the electric drive system is the third failure level
  • failure level of the disengagement system is the third failure level
  • failure level of the electric drive system is the fourth failure level
  • the failure level of the disengagement system is the third failure level and the failure level of the electric drive system is the fifth failure level, the action of disengaging the faulty drive system and disconnecting the operation of the high voltage system is performed.
  • the parking action is performed.
  • the parking action is executed.
  • the parking action is executed.
  • the parking action is executed.
  • the parking action is executed and the high-voltage system is disconnected.
  • an embodiment of the present invention provides a vehicle drive control device, the device comprising:
  • the first determination module is used to determine the fault level of the electric drive system corresponding to the fault information as the fault level of the electric drive system according to the fault level classification relationship of the electric drive system after detecting the fault information of the electric drive system;
  • the second determination module is used to determine the fault level corresponding to the fault information as the fault level of the disengagement system according to the obtained current gear position of the disengagement controller after detecting the fault information of the disengagement system;
  • the execution module is configured to execute corresponding fault handling actions according to the fault level of the disengagement system and the fault level of the electric drive system.
  • a third aspect of the embodiments of the present invention provides a vehicle drive control system, the system includes:
  • the motor drive system is used to detect the fault information of the electric drive system, and determine the fault level corresponding to the fault information according to the fault level classification relationship of the electric drive system;
  • a disengagement control system the disengagement control system is used to determine the failure level corresponding to the failure information according to the current gear position of the disengagement controller when detecting the failure information of the disengagement controller;
  • a complete vehicle control system the complete vehicle control system is used to execute corresponding fault handling actions based on the mapping matrix according to the fault level of the driving motor system and the fault level of the disengagement control system.
  • the fourth aspect of the embodiment of the present invention provides a readable storage medium, the storage medium stores a vehicle drive control program, and the vehicle drive control program is executed by a processor to implement the vehicle drive control method proposed in the first aspect of the embodiment of the present invention step.
  • a fifth aspect of the embodiments of the present invention provides a vehicle, including the vehicle drive control system as provided in the third aspect of the embodiments of the present invention.
  • the embodiment of the present application provides a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the vehicle driving control method described in the first aspect of the embodiment.
  • the embodiments of the present application provide a computer program, including computer readable codes, which, when the computer readable codes are run on a computing processing device, cause the computing processing device to execute the program according to the first aspect of the embodiment. vehicle drive control method.
  • the embodiment of the present application provides a computer-readable medium, in which the computer program described in the seventh aspect of the embodiment is stored.
  • the vehicle driving method of the present invention has the following advantages:
  • the fault level of the electric drive system corresponding to the fault information is determined according to the safety status information and fault performance information of the electric drive system.
  • the failure level of the disengagement system corresponding to the fault information is determined, and the corresponding fault processing action is executed according to the failure level of the disengagement system and the failure level of the electric drive system.
  • FIG. 1 is a flow chart of the steps of a vehicle driving control method in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a vehicle drive control system in an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a vehicle drive control device in an embodiment of the present invention.
  • Figure 4 schematically illustrates a block diagram of a computing processing device for performing a method according to the present disclosure.
  • Fig. 5 schematically shows a storage unit for holding or carrying program codes implementing the method according to the present disclosure.
  • Reference numerals: 301 is a first determination module, 302 is a second determination module, and 303 is an execution module.
  • the motor controller when the front drive system or the rear drive system fails, the motor controller will report the fault level information according to the safety status of the motor, and the vehicle controller will perform the vehicle speed limit or stop action according to the fault level. After the front drive or rear drive drive system fails, the vehicle controller will slow down or stop according to the fault level of the electric drive, and the drive system that has not failed cannot fully exert its driving ability.
  • this application proposes a vehicle drive control method, which aims to determine the electric drive system corresponding to the fault information according to the safety status information and fault performance information of the electric drive system after the fault information of the electric drive system is detected.
  • System fault level when the fault information of the disengagement controller is detected, according to the current gear position of the disengagement controller, the fault level of the disengagement system corresponding to the fault information is determined, and according to the fault level of the disengagement system and the power The fault level of the drive system, and execute the corresponding fault handling actions.
  • the faulty drive system can be disengaged according to the judgment result of the fault information, and the driving ability of the non-faulty drive system can be fully utilized, and the driving speed can be driven normally without reducing the driving speed, which improves the vehicle of the four-wheel drive system The driving performance of the whole vehicle, thereby improving the driving experience.
  • FIG. 1 shows a flow chart of the steps of a vehicle drive control method according to an embodiment of the present application. The method includes the following steps:
  • Step S101 After detecting the fault information of the electric drive system, determine the fault level of the electric drive system corresponding to the fault information according to the safety status information of the electric drive system, fault manifestation information and post-processing execution actions.
  • the electric drive system includes a front drive system and a rear drive system.
  • the front drive system and the rear drive system include corresponding The motor, the motor controller MCU and the transmission mechanism will feed back the corresponding fault information to the electric drive system when the components have electrical or mechanical faults, and the electric drive system will As well as the relationship between the post-processing actions that need to be performed and the preset fault level classification, the fault level of the electrical fault or mechanical fault that occurs in the system at this time is judged.
  • the method for determining the fault level of the electric drive system corresponding to the fault information may include:
  • the fault manifests as the loss of power of the electric drive system, and the post-processing action is that the high voltage needs to be disconnected, and the fault level of the electric drive system is determined to be the fifth fault level.
  • Table 1 Correspondence Table of Fault Levels of Electric Drive System
  • the safe state of the electric drive system can only execute the active short circuit state ASC (active short circuit), so
  • ASC active short circuit
  • the safety state mentioned above refers to the functional safety state in the driving process.
  • the safe state is only the active short-circuit state, and the corresponding fault is the power loss of the electric drive system
  • the post-processing action that needs to be performed is the action of disconnecting the high voltage and actively discharging. At this time, it belongs to the situation where the risk of the failure level of the electric drive system is relatively high, and the failure level of the electric drive system is determined to be the fifth failure level.
  • the fault manifests as the power loss of the electric drive system
  • the post-processing action is to reduce the motor speed to zero within the preset time
  • the fault level of the electric drive system is determined to be Fourth failure level.
  • the fault level correspondence table of the electric drive system when the fault level is 5, when the safety state of the electric drive The power of the drive system is lost, and the post-processing action that needs to be performed is to reduce the motor speed to 0 within the specified time. At this time, it belongs to the situation where the risk impact of the failure level of the electric drive system is general, and the failure level of the electric drive system is determined to be the fourth failure level.
  • the fault manifests as the power loss of the electric drive system, and the post-processing action is to reduce the motor speed to the preset speed within the preset time to determine the electric drive system.
  • the failure class is the third failure class.
  • the fault level correspondence table of the electric drive system when the fault level is 4, when the safety state of the electric drive system is the active short circuit state or the free running state FW (free wheeling) , the corresponding fault is the power loss of the electric drive system, and the post-processing action that needs to be performed is the action of reducing the motor speed to the specified speed or allowing the vehicle to be dragged below the preset speed within a specified time.
  • the failure level of the electric drive system is determined to be the third failure level.
  • the fault manifests as the electric drive system is on standby
  • the post-processing action is to reduce the motor speed to the preset speed within the preset time to determine the fault of the electric drive system
  • the level is the second failure level.
  • the post-processing action that needs to be performed is the action of reducing the motor speed to or allowing the vehicle to be dragged below the speed S within a specified time. At this time, it belongs to the general situation of the risk impact of the failure level of the electric drive system, and the failure level of the electric drive system is determined to be the failure level of medium risk.
  • the fault level of the electric drive system is determined to be a low-risk fault level.
  • the fault level correspondence table of the electric drive system when the fault level is 0-2, that is, the fault information at this time does not affect the driving safety state, for example, the body temperature is too high, etc. , or no fault information is generated, perform corresponding alarm or power down operation. This is a situation where the risk of failure level of the electric drive system is low, and the failure level of the electric drive system is determined to be a low-risk failure level.
  • Step S102 After detecting the disengagement system failure information, determine the disengagement system failure level corresponding to the failure information according to the obtained current gear position of the disengagement controller.
  • the disengagement controller ACU includes two gears, that is, a combination gear and a disengagement gear. Since the disengagement structure itself is a mechanical structure, its failure probability is relatively low.
  • the disengagement system detects the failure of the disengagement controller ACU, it will obtain the current gear position of the disengagement controller, that is, determine the disengagement system corresponding to the fault information based on the current gear position information of the disengagement controller failure level.
  • the method for determining the failure level of the disengagement system corresponding to the fault information may include:
  • the disengagement system failure level is the fourth failure level disengagement system failure level.
  • the fault level of the disengagement system is the fourth fault level
  • the fault code is reported, the drive system cannot work, and the driving of the whole vehicle is affected, and it is necessary to stop within the specified time.
  • the current disengagement system failure level is the third failure level disengagement system failure level.
  • the failure level of the disengagement system is the third failure level, report the fault code and enter a safe state to disengage the drive system without affecting the driving of the vehicle.
  • the current disengagement system failure level is the second failure level disengagement system failure level.
  • the failure level of the disengagement system is 3, that is, when the disengagement controller fails, if the gear position is at the combined position, the power transmission If there is no interruption, it belongs to the general risk situation of the failure level of the disengagement system, and the failure level of the disengagement system is determined as the second failure level.
  • the fault level of the disengagement system is the second fault level, report the fault code, enter the safe state combination, and the drive system can work without affecting the driving of the whole vehicle.
  • the current disengagement system failure level is set as the first failure level of the disengagement system failure level.
  • the failure of the disengagement controller when the failure level is 0-2, the failure of the disengagement controller is a failure that does not affect the driving safety state or does not When a fault occurs, the normal gear shifting operation can be carried out. Therefore, the power transmission is not interrupted. At this time, it belongs to the situation where the risk of the failure level of the disengagement system is low, and the failure level of the disengagement system is determined to be a failure level of low risk.
  • Step S103 According to the failure level of the disengagement system and the failure level of the electric drive system, perform corresponding failure handling actions.
  • the vehicle controller VCU After the vehicle controller VCU receives the feedback of the fault level of the electric drive system and the fault level of the disengagement controller ACU, it determines the corresponding fault treatment according to the fault level of the electric drive system and the matrix mapped by the disengagement system actions, and execute corresponding processing actions through corresponding execution components.
  • the failure level of the disengagement control system is the first failure level
  • the electric drive system is the first failure level
  • the no-fault non-processing action, alarm action or power reduction operation action is performed
  • the failure level of the disengagement system is the first failure level and the failure level of the electric drive system is the third failure level, perform the operation of the disengagement failure drive system;
  • failure level of the disengagement system is the first failure level
  • failure level of the electric drive system is the fourth failure level
  • the action of disengaging the faulty drive system and disconnecting the high-voltage system is performed.
  • Table 3 Mapping table of disengagement system failure levels and electric drive system failure levels
  • the fault level of the disengagement system and the fault level mapping table of the electric drive system when the fault level is 0-2, that is, when the fault level of the disengagement system is the first fault level, and the failure level of the electric drive system is the first failure level, it means that the vehicle is in a low-risk running state or a no-fault state, and the vehicle performs an alarm operation or a power reduction operation action, or there is no fault and no harm, and no processing is performed;
  • the failure level of the opening system is 0-2
  • the failure level of the electric drive system is 3, that is, when the failure level of the disengagement system is the first failure level, and the failure level of the electric drive system is the second failure level, it means At this time, the vehicle is in the medium-risk running state, and the vehicle performs the operation action of disengaging the faulty electric drive system, and disengages the faulty drive system through the disengagement device, that is, the faulty drive system does not affect the work of the normal drive system, ensuring Give full play
  • the failure level of the driving system is 5, that is, when the failure level of the disengagement system is the first failure level, and the electric drive system is the fourth failure level, it means that the vehicle is in a medium-risk running state at this time, and the vehicle Execute the operation action of disengaging the faulty electric drive system, and disengage the faulty drive system through the disengagement device, that is, the faulty drive system does not affect the work of the normal drive system, ensuring that the drive capability of the non-faulty drive system is fully utilized. Drive normally without reducing the driving speed.
  • the failure level of the disengagement system is 0-2
  • the failure level of the electric drive system is 6, that is, when the failure level of the disengagement system is the first failure level, and the failure level of the electric drive system is the fifth failure level
  • the vehicle performs the operation action of disengaging the faulty electric drive system, disengages the faulty drive system through the disengagement device, and cuts off the power system of the high-voltage part of the vehicle. Can be dragged without speed limit.
  • failure level of the disengagement system is the second failure level
  • failure level of the electric drive system is the third failure level
  • the action of stopping and disconnecting the high-voltage system is executed.
  • the vehicle When the failure level of the disengagement system is 3 and the failure level of the electric drive system is 3, when the failure level of the disengagement system is the second failure level, and the failure level of the electric drive system is the second failure level, then At this time, the vehicle is in a high-risk operating state, and the vehicle performs an operation combined with a faulty drive system;
  • the vehicle When the failure level of the disengagement system is 3 and the failure level of the electric drive system is 4, when the failure level of the disengagement system is the second failure level, and the failure level of the electric drive system is the third failure level, then At this time, the vehicle is in a high-risk operating state, and the vehicle performs an operation combined with a faulty drive system;
  • the vehicle When the failure level of the disengagement system is 3 and the failure level of the electric drive system is 5, when the failure level of the disengagement system is the second failure level, and the failure level of the electric drive system is the fourth failure level, then At this time, the vehicle is in a high-risk operating state, and the vehicle performs an operation combined with a faulty drive system;
  • the vehicle When the failure level of the disengagement system is 3 and the failure level of the electric drive system is 6, when the failure level of the disengagement system is the second failure level, and the failure level of the electric drive system is the fifth failure level, then At this time, the vehicle is in a high-risk running state, and the vehicle performs a parking action and disconnects the power supply system of the high-voltage part.
  • the action of disengaging the failure drive system to run is performed when the failure level of the disengagement system is the third failure level, and the failure level of the electric drive system is the first failure level;
  • the failure level of the disengagement system is the third failure level and the failure level of the electric drive system is the second failure level, perform the operation of the disengagement failure drive system;
  • failure level of the disengagement system is the third failure level
  • failure level of the electric drive system is the third failure level
  • failure level of the disengagement system is the third failure level
  • failure level of the electric drive system is the fourth failure level
  • the failure level of the disengagement system is the third failure level and the failure level of the electric drive system is the fifth failure level, the action of disengaging the faulty drive system and disconnecting the operation of the high voltage system is performed.
  • the vehicle When the failure level of the disengagement system is 4 and the failure level of the electric drive system is 3, when the failure level of the disengagement system is the third failure level, and the failure level of the electric drive system is the second failure level, then At this time, the vehicle is in a high-risk running state, and the vehicle performs the operation of disengaging the faulty drive system and allowing it to be dragged at a limited speed;
  • the vehicle When the failure level of the disengagement system is 4 and the failure level of the electric drive system is 4, when the failure level of the disengagement system is the third failure level, and the failure level of the electric drive system is the third failure level, then At this time, the vehicle is in a high-risk running state, and the vehicle performs the operation of disengaging the faulty drive system and allowing it to be dragged at a limited speed;
  • the vehicle When the failure level of the disengagement system is 4 and the failure level of the electric drive system is 5, when the failure level of the disengagement system is the third failure level, and the failure level of the electric drive system is the fourth failure level, then At this time, the vehicle is in a high-risk running state, and the vehicle performs the action of disengaging the faulty drive system and allowing the operation of being dragged under the limited speed;
  • the vehicle When the failure level of the disengagement system is 4 and the failure level of the electric drive system is 6, when the failure level of the disengagement system is the third failure level, and the failure level of the electric drive system is the fifth failure level, then At this time, the vehicle is in a high-risk running state, and the vehicle performs the action of disengaging the faulty drive system and disconnecting the high-voltage system from running.
  • the parking action is performed.
  • the parking action is executed.
  • the parking action is executed.
  • the parking action is executed.
  • the parking action is executed and the high-voltage system is disconnected.
  • the fault level of the disengagement system and the fault level mapping table of the electric drive system when the fault level of the disengagement system is 5, and the fault level of the electric drive system is 0-2, in the If the failure level of the disengagement system is the fourth failure level, and the failure level of the electric drive system is the first failure level, it means that the vehicle is in a high-risk running state, and the vehicle immediately performs a parking action; when the failure level of the disengagement system is 5 , when the failure level of the electric drive system is 3-5, when the failure level of the disengagement system is the fourth failure level, and the failure level of the electric drive system is the second failure level to the fourth failure level, then it means At this time, the vehicle is in a high-risk running state, the vehicle executes, and the vehicle immediately executes the parking action; when the failure level of the disengagement system is 5, and the failure level of the electric drive system is 6, the failure level of the disengagement system is the fourth failure. level, and the failure level of the electric drive system is the fifth
  • FIG. 2 a schematic diagram of a vehicle drive control system is shown. As shown in Figure 2, the system includes:
  • An electric drive system the electric drive system is used to detect the fault information of the electric drive system, and determine the fault level corresponding to the fault information according to the hierarchical relationship of the fault levels of the electric drive system.
  • the electric drive system includes a drive system and a rear drive drive system.
  • the drive system and the rear drive drive system include corresponding motors, motor controllers MCU and transmission mechanisms respectively.
  • the electric drive system EDS will judge the fault level of the electrical fault or mechanical fault that occurs in the system at this time according to the relationship between the fault information and the preset fault level classification. And feed back the determined fault level of the electric drive system to the vehicle controller VCU.
  • a disengagement control system the disengagement control system is used to determine the fault level corresponding to the failure information according to the obtained current gear position of the disengagement controller when detecting the failure information of the disengagement controller.
  • the disengagement control system includes a disengagement controller ACU and a disengagement structure.
  • the disengagement structure can be arranged in the front drive system or in the rear drive system, and is used to connect the faulty drive system with the drive system.
  • the entire drive system is disengaged, and the disengagement controller ACU includes two gears, namely, a combination gear and a disengagement gear. Since the disengagement structure itself is a mechanical structure, the probability of failure is relatively low.
  • the disengagement system detects the failure of the disengagement controller ACU, it will obtain the current gear position of the disengagement controller, that is, determine the disengagement system corresponding to the fault information based on the current gear position information of the disengagement controller failure level. And feed back the determined failure level of the disengagement system to the vehicle controller.
  • the vehicle control system is used to execute corresponding fault handling actions according to the fault level of the driving motor system and the fault level of the disengagement control system.
  • the vehicle control system is composed of the vehicle controller VCU and the corresponding vehicle control execution components. According to the fault level of the electric drive system and the matrix mapped to the fault level of the disconnecting controller ACU, the corresponding fault handling action is determined, and the corresponding fault handling action is executed through the corresponding execution component.
  • FIG. 3 is a schematic diagram of a vehicle drive control device in an embodiment of the present invention. As shown in FIG. 3, the device includes:
  • the first determining module 301 is configured to determine the fault level corresponding to the fault information as the fault level of the electric drive system according to the fault level classification relationship of the electric drive system after detecting the fault information of the electric drive system;
  • the second determination module 302 is used to determine the failure level corresponding to the failure information as the failure level of the disengagement system according to the current gear position of the disengagement controller after detecting the failure information of the disengagement controller;
  • the execution module 303 is configured to execute the fault handling action corresponding to the first fault level and the second fault level according to the mapping matrix determined by the fault level of the electric drive system and the fault level of the disengaging mechanism.
  • an embodiment of the present application provides a vehicle, including the vehicle drive control device system provided in the third aspect of the embodiment of the present invention.
  • the fault level of the electric drive system corresponding to the fault information is determined according to the safety status information and fault performance information of the electric drive system. After the fault information is obtained, according to the current gear position of the disengagement controller, the fault level of the disengagement system corresponding to the fault information is determined, and the corresponding fault handling action is executed according to the fault level of the disengagement system and the fault level of the electric drive system .
  • the faulty drive system can be disengaged according to the judgment result of the fault information, and the driving ability of the non-faulty drive system can be fully utilized, and the driving speed can be driven normally without reducing the driving speed, which improves the vehicle of the four-wheel drive system The driving performance of the whole vehicle, thereby improving the driving experience.
  • the various component embodiments of the present disclosure may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components in the computing processing device according to the embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as an apparatus or apparatus program (eg, computer program and computer program product) for performing a part or all of the methods described herein.
  • Such a program realizing the present disclosure may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal may be downloaded from an Internet site, or provided on a carrier signal, or provided in any other form.
  • FIG. 4 illustrates a computing processing device that may implement methods according to the present disclosure.
  • the computing processing device conventionally includes a processor 1010 and a computer program product or computer readable medium in the form of memory 1020 .
  • Memory 1020 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for program code 1031 for performing any method steps in the methods described above.
  • the storage space 1030 for program codes may include respective program codes 1031 for respectively implementing various steps in the above methods. These program codes can be read from or written into one or more computer program products.
  • These computer program products comprise program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such a computer program product is typically a portable or fixed storage unit as described with reference to FIG. 5 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 4 .
  • the program code can eg be compressed in a suitable form.
  • the storage unit includes computer readable code 1031', i.e. code readable by, for example, a processor such as 1010, which code, when executed by a computing processing device, causes the computing processing device to perform the above-described methods. each step.
  • embodiments of the present invention may be provided as methods, devices, or computer program products. Accordingly, embodiments of the invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present invention are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the present invention. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor or processor of other programmable data processing terminal equipment to produce a machine such that instructions executed by the computer or processor of other programmable data processing terminal equipment Produce means for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing terminal to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the The instruction means implements the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车辆驱动控制方法、装置、系统、存储介质及车辆。该车辆驱动控制方法包括:当检测到电驱动系统的故障信息后,根据电驱动系统的安全状态信息和故障表现信息,确定所述故障信息对应的电驱动系统故障等级,当检测到脱开控制器故障信息后,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的脱开系统故障等级,根据所述脱开系统故障等级和电驱动系统故障等级,执行对应的故障处理动作。在当任意前驱系统或后驱系统出现故障后,可根据故障信息判断结果将故障驱动系统脱开,充分发挥未故障驱动系统的驱动能力,不降低行驶速度,正常行驶,提升了四驱系统车辆的整车的驾驶表现,进而提高驾驶感受。

Description

车辆驱动控制方法、装置、系统、存储介质及车辆
相关申请的交叉引用
本公开要求在2021年6月30日提交中国专利局、申请号为202110742379.3、名称为“车辆驱动控制方法、装置、系统、存储介质及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本发明涉及车辆控制技术领域,尤其涉及一种车辆驱动控制方法、装置、系统、存储介质及车辆。
背景技术
目前新能源车辆的四驱电动系统,前后驱动都采用永磁同步电机系统,永磁同步电机采用永磁体产生气隙磁场,与换向器电动机通过励磁线圈产生气隙磁场不相同,也不与感应电机那样用定子电流的励磁分量产生气隙磁场相同,而且结构简单、损耗小、效率高。
相关技术中,当前驱驱动系统或者后驱驱动系统出现故障后,电机控制器会依据电机安全状态上报故障等级信息,整车控制器会依据故障等级,进行车辆限速或者停车动作。当前驱或者后驱驱动系统出现故障后,整车控制器根据电驱的故障等级进行降速或者停车的动作,而没有出现故障的驱动系统不能充分发挥其驱动的能力。
发明内容
本发明实施例提供一种车辆驱动控制方法、装置、系统、存储介质及车辆,旨在针对以上特殊情况下存在的问题。
为了解决上述技术问题,本发明是这样实现的:
第一方面,本发明实施例提供了一种车辆驱动控制方法,所述方法包括:
当检测到电驱动系统的故障信息后,根据电驱动系统的安全状态信息、故障表现信息和后处理执行动作,确定所述故障信息对应的电驱动系统故障等级;
当检测到脱开控系统故障信息后,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的脱开系统故障等级;
根据所述脱开系统故障等级和电驱动系统故障等级,执行对应的故障处理动作。
可选地,所述根据电驱动系统的安全状态信息、故障表现信息和后处理执行动作,确定所述故障信息对应的电驱动系统故障等级,包括:
当电驱动系统的安全状态为只能执行主动短路状态,故障表现为电驱动系统动力丢失,后处理执行动作为需要断开高压,确定电驱动系统故障等级为第五故障等级;
当电驱动系统的安全状态为只能执行主动短路状态,故障表现为电驱动系统动力丢失,后处理执行动作为需要在预设时间内,将电机转速降低到零,确定电驱动系统故障等级为第四故障等级;
当电驱动系统的安全状态为主动短路状态或自由运行状态,故障表现为电驱动系统动力丢失,后处理执行动作为需要在预设时间内,将电机转速降低到预设转速,确定电驱动系统故障等级为第三故障等级。
当电驱动系统的安全状态为主动短路状态或自由运行状态,故障表现为电驱动系统待机,后处理执行动作为需要在预设时间内,将电机转速降低到预设转速,确定电驱动系统故障等级为第二故障等级;
当电驱动系统的安全状态不影响行车安全状态时,确定电驱动系统故障等级为第一故障等级。
可选地,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的脱开系统故障等级,包括:
当脱开控制器的当前档位位置位于半结合位置或位置未知,确定当前脱开系统故障等级为第四故障等级;
当脱开控制器的当前档位位置位于脱开位置,确定当前脱开系统故障等级为第三故障等级;
当脱开控制器的当前档位位置位于结合位置,确定当前脱开系统故障等级为第二故障等级;
当脱开控制器的故障信息不影响行车安全状态时,定当前脱开系统故障等级为第一故障等级。
可选地,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的脱开系统故障等级,包括:
当脱开控制器的当前档位位置位于半结合位置或位置未知,确定当前脱开系统故障等级为第四故障等级;
当脱开控制器的当前档位位置位于脱开位置,确定当前脱开系统故障等级为第三故障等级;
当脱开控制器的当前档位位置位于结合位置,确定当前脱开系统故障等级为第二故障等级;
当脱开控制器的故障信息不影响行车安全状态时,定当前脱开系统故障等级为第一故障等级。
可选地,当脱开系统故障等级为第四故障等级时,上报故障码,在规定时间内停车;
当脱开系统故障等级为第三故障等级时,上报故障码,进入安全状态脱开;
当脱开系统故障等级为第二故障等级时,上报故障码,进入安全状态结合;
当脱开系统故障等级为第一故障等级时,不进行处理或报警。
可选地,所述根据脱开系统故障等级和电驱系统故障等级,执行对应的故障处理动作,包括:
当脱开控系统故障等级为第一故障等级,电驱动系统故障等级为第一故障等级时,执行无故障不处理动作、报警动作或降功率运行动作;
当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第二故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第三故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第四故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第五故障等级时,执行脱开故障驱动系统并断开高压系统运行的动作。
可选地,当脱开系统故障等级为第二故障等级,电驱动系统故障等级为 第一故障等级时,执行报警动作或降功率运行动作;
当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第二故障等级时,执行结合故障驱动系统运行的动作;
当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第三故障等级时,执行结合故障驱动系统运行的动作;
当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第四故障等级时,执行结合故障驱动系统运行的动作;
当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第五故障等级时,执行停车并断开高压系统的动作。
可选地,当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第一故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第二故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第三故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第四故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第五故障等级时,执行脱开故障驱动系统,并断开高压系统运行的动作。
可选地,当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第一故障等级时,执行停车动作。
当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第二故障等级时,执行停车动作。
当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第三故障等级时,执行停车动作。
当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第四故障等级时,执行停车动作。
当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第五故障等级时,执行停车动作,并断开高压系统。
第二方面,本发明实施例提供了一种车辆驱动控制装置,所述装置包括:
第一确定模块,用于当检测到电驱动系统故障信息后,根据电驱动系统故障等级分级关系,确定所述故障信息对应电驱动系统的故障等级,作为电驱动系统故障等级;
第二确定模块,用于当检测到脱开系统故障信息后,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的故障等级,作为脱开系统故障等级;
执行模块,用于根据所述脱开系统故障等级和电驱动系统故障等级,执行对应的故障处理动作。
本发明实施例第三方面提出一种车辆驱动控制系统,所述系统包括:
驱动电机系统,所述电机驱动系统用于测到电驱动系统故障信息,根据电驱动系统故障等级分级关系,确定所述故障信息对应的故障等级;
脱开控制系统,所述脱开控制系统用于当检测脱开控制器故障信息,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的故障等级;
整车控制系统,所述整车控制系统用于根据驱动电机系统的故障等级和脱开控制系统故障等级基于映射矩阵,执行相应的故障处理动作。
本发明实施例第四方面提出一种可读存储介质,所述存储介质存车辆驱动控制程序,所述车辆驱动控制程序被处理器执行实现本发明实施例第一方面提出的车辆驱动控制方法的步骤。
本发明实施例第五方面提出一种车辆,包括如本发明实施例第三方面提出的车辆驱动控制系统。
第六方面,本申请实施例提供一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行实施例第一方面所述的车辆驱动控制方法。
第七方面,本申请实施例提供一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据实施例第一方面所述的车辆驱动控制方法。
第八方面,本申请实施例提供一种计算机可读介质,其中存储了实施例第七方面所述的计算机程序。
相对于现有技术,本发明所述的车辆驱动方法具有以下优势:
在本发明中,当检测到电驱动系统的故障信息后,根据电驱动系统的安全状态信息和故障表现信息,确定所述故障信息对应的电驱动系统故障等级,当检测到脱开控制器故障信息后,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的脱开系统故障等级,根据所述脱开系统故障等级和电驱动系统故障等级,执行对应的故障处理动作。在当任意系统或后驱系统出现故障后,可根据故障信息判断结果将故障驱动系统脱开,充分发挥未故障驱动系统的驱动能力,不降低行驶速度,正常行驶,提升了四驱系统车辆的整车的驾驶表现,进而提高驾驶感受。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中一种车辆驱动控制方法的步骤流程图;
图2是本发明实施例中一种车辆驱动控制系统的示意图;
图3是本发明实施例中一种车辆驱动控制装置的示意图;
图4示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;并且
图5示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
附图标记:301为第一确定模块、302为第二确定模块、303为执行模块。
具体实施例
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于 本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
相关技术中,当前驱系统或者后驱系统出现故障后,电机控制器会依据电机安全状态上报故障等级信息,整车控制器会依据故障等级,进行车辆限速或者停车动作。当前驱或者后驱驱动系统出现故障后,整车控制器根据电驱的故障等级进行降速或者停车的动作,而没有出现故障的驱动系统不能充分发挥其驱动的能力。
为克服上述问题,本申请提出一种车辆驱动控制方法,旨在当检测到电驱动系统的故障信息后,根据电驱动系统的安全状态信息和故障表现信息,确定所述故障信息对应的电驱动系统故障等级,当检测到脱开控制器故障信息后,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的脱开系统故障等级,根据所述脱开系统故障等级和电驱动系统故障等级,执行对应的故障处理动作。在当任意前驱系统或后驱系统出现故障后,可根据故障信息判断结果将故障驱动系统脱开,充分发挥未故障驱动系统的驱动能力,不降低行驶速度,正常行驶,提升了四驱系统车辆的整车的驾驶表现,进而提高驾驶感受。
本发明实施例提供了一种车辆驱动控制方法,参见图1,图1示出了本申请实施例一种车辆驱动控制方法的步骤流程图,该方法包括以下步骤:
步骤S101:当检测到电驱动系统的故障信息后,根据电驱动系统的安全状态信息、故障表现信息和后处理执行动作,确定所述故障信息对应的电驱动系统故障等级。
在本实施方式中,在车辆行驶运行的过程中,电驱动系统可能会出现故障现象,电驱动系统包括前驱驱动系统和后驱驱动系统,所述前驱驱动系统和后驱驱动系统分别包括相应的电动机、电动机控制器MCU及传动机构,当所述部件产生电气故障或者机械故障时,会将相应的故障信息反馈给电驱动系统,电驱动系统会根据故障信息的表现和电驱系统安全状态信息以及需要执行的后处理动作与预设的故障等级分级关系,判断此时系统中发生的电气故障或者机械故障的故障等级。
在一种可选实施方式中,根据电驱动系统的安全状态信息和故障表现信息,确定所述故障信息对应的电驱动系统故障等级的方法可以包括:
当电驱动系统的安全状态为只能执行主动短路状态,故障表现为电驱动系统动力丢失,后处理执行动作为需要断开高压,确定电驱动系统故障等级为第五故障等级。
Figure PCTCN2022099518-appb-000001
表1:电驱动系统故障等级对应表
在本实施方式中,如表1所示的电驱动系统故障等级对应表,当故障等级为6的情形时,电驱动系统的安全状态为只能执行主动短路状态ASC(active short circuit),所述安全状态是指行车过程的功能安全状态。安全状态为只能执行主动短路状态时,且对应的故障表现为电驱动系统动力丢失,需要执行的后处理动作为需要断开高压,主动放电的动作。此时属于电驱动系统故障等级风险较高的情形,确定电驱动系统故障等级为第五故障等级。当电驱动系统的安全状态为只能执行主动短路状态,故障表现为电驱动系统动力丢失,后处理执行动作为需要在预设时间内,将电机转速降低到零,确定电驱动系统故障等级为第四故障等级。
在本实施方式中,如表1所示的电驱动系统故障等级对应表,当故障等级为5的情形时,当电驱动系统的安全状态为只能执行主动短路状态,对应的故障表现为电驱动系统动力丢失,需要执行的后处理动作为车辆在规定时间内,执行将电机转速降低到0的动作。此时属于电驱动系统故障等级风险影响一般的情形,确定电驱动系统故障等级为第四故障等级。
当电驱动系统的安全状态为主动短路状态或自由运行状态,故障表现为电驱动系统动力丢失,后处理执行动作为需要在预设时间内,将电机转速降低到预设转速,确定电驱动系统故障等级为第三故障等级。
在本实施方式中,如表1所示的电驱动系统故障等级对应表,当故障等级为4的情形时,当电驱动系统的安全状态为执行主动短路状态或自由运行状态FW(free wheeling),对应的故障表现为电驱动系统动力丢失,需要执行的后处理动作为车辆在规定时间内,将电机转速降低到规定转速或允许在预设转速以下被拖动的动作。此时属于电驱动系统故障等级风险影响一般的情形,确定电驱动系统故障等级为第三故障等级。
当电驱动系统的安全状态为主动短路状态或自由运行状态,故障表现为电驱动系统待机,后处理执行动作为需要在预设时间内,将电机转速降低到预设转速,确定电驱动系统故障等级为第二故障等级在本实施方式中,如表1所示的电驱动系统故障等级对应表,当故障等级为3的情形时,当电驱动系统的安全状态为执行主动短路状态或自由运行状态FW(free wheeling),当对应的故障表现为电驱动系统待机,需要执行的后处理动作为车辆在规定时间内,将电机转速降低到或允许在转速S以下被拖动的动作。此时属于电驱动系统故障等级风险影响一般的情形,确定电驱动系统故障等级为中风险的故障等级。
当电驱动系统的安全状态不影响行车安全状态时,确定电驱动系统故障等级为低风险的故障等级。
在本实施方式中,如表1所示的电驱动系统故障等级对应表,当故障等级为0-2的情形时,即此时的故障信息不影响行车安全状态,例如车体温度过高等等,或者没有故障信息的产生,执行相应的报警或者降功率运行操作。此时属于电驱动系统故障等级风险较低的情形,确定电驱动系统故障等级为低风险的故障等级。
步骤S102:当检测到脱开系统故障信息后,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的脱开系统故障等级。
在本实施方式中,所述脱开控制器ACU包括两个档位,即结合档位和脱开档位,由于脱开结构本身属于机械结构,因此其发生故障的概率较低。当脱开系统检测到脱开控制器ACU的故障后,会获取脱开控制器处于的当前档位位置,即基于脱开控制器的当前档位位置信息确定所述故障信息对应的脱开系统故障等级。
在一种可选实施方式中,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的脱开系统故障等级脱开系统故障等级的方法可以包括:
Figure PCTCN2022099518-appb-000002
表2:脱开系统故障等级对应表
当脱开控制器的当前档位位置位于半结合位置或位置未知,确定当前脱开系统故障等级为第四故障等级脱开系统故障等级。
在本实施方式中,如表2所示的脱开系统故障等级对应表,故障等级为5的情形时,即脱开控制器发生故障时,其档位位置如果处于半结合的位置或者其位置不确定的情形,由于无法采集到档位位置的信息,说明动力传输异常或者不受控,所以此时处于较危险的行车状态,此时属于脱开系统故障等级风险较高的情形,确定当前脱开系统故障等级为第四故障等级脱开系统故障等级。
当脱开系统故障等级为第四故障等级时,上报故障码,驱动系统不可工 作,影响整车行驶,需要在规定时间内停车。
当脱开控制器的当前档位位置位于脱开位置,确定当前脱开系统故障等级为第三故障等级脱开系统故障等级。
在本实施方式中,如表2所示的脱开系统故障等级对应表,故障等级为4的情形时,即脱开控制器发生故障时,其档位位置如果处于结合的位置或的情形,则说明此时动力传输中断,此时属于脱开系统故障等级风险一般的情形,确定脱开系统故障等级为第三故障等级。
当脱开系统故障等级为第三故障等级时,上报故障码,进入安全状态脱开驱动系统,不影响整车行驶。
当脱开控制器的当前档位位置位于结合位置,确定当前脱开系统故障等级为第二故障等级脱开系统故障等级。
在本实施方式中,如表2所示的脱开系统故障等级对应表,故障等级为3的情形时,即脱开控制器发生故障时,其档位位置如果处于结合位置的情形,动力传输不中断,此时属于脱开系统故障等级风险一般的情形,确定脱开系统故障等级为第二故障等级。
当脱开系统故障等级为第二故障等级时,上报故障码,进入安全状态结合,驱动系统可工作,不影响整车行驶。
当脱开控制器的故障信息不影响行车安全状态时,定当前脱开系统故障等级为第一故障等级脱开系统故障等级。
在本实施方式中,如表2所示的脱开系统故障等级对应表,当故障等级为0-2的情形时,即脱开控制器发生故障的故障为不影响行车安全状态的故障或者没有故障产生,能够进行的正常换挡操作,因此,动力传输不中断,此时属于脱开系统故障等级风险较低的情形,确定脱开系统故障等级为低风险的故障等级。
当脱开系统故障等级为低风险的故障等级时,并执行相应的驱动系统控制操作,例如不进行处理或报警。
步骤S103:根据所述脱开系统故障等级和电驱动系统故障等级,执行对应的故障处理动作。
在本实施方式中,整车控制器VCU接收到反馈的电驱动系统的故障等级和脱开控制器ACU故障等级后,根据电驱动系统的故障等级和脱开系统映射 的矩阵确定相应的故障处理动作,并通过相应的执行组件执行相应的处理动作。
在一种可选实施方式中,当脱开控系统故障等级为第一故障等级,电驱动系统故障等级为第一故障等级时,执行无故障不处理动作、报警动作或降功率运行动作;
当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第二故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第三故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第四故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第五故障等级时,执行脱开故障驱动系统并断开高压系统运行的动作。
Figure PCTCN2022099518-appb-000003
表3:脱开系统故障等级和电驱动系统故障等级映射表
在本实施方式中,如表3所示的脱开系统故障等级和电驱动系统故障等级映射表,当故障等级为0-2的情形时,即在所述脱开系统故障等级为第一故障等级,且所述电驱动系统故障等级为第一故障等级时,则说明车辆处于低 风险运行状态或无故障状态,车辆执行报警操作或降功率运行动作或者无故障无危害不进行处理;当脱开系统故障等级为0-2,电驱动系统故障等级为3的情形时,即在所述脱开系统故障等级为第一故障等级,且电驱动系统故障等级为第二故障等级时,则说明此时车辆处于中风险运行状态,车辆执行脱开故障电驱动系统的运行动作,将出现故障的驱动系统通过脱开装置进行脱开,即故障的驱动系统不影响正常驱动系统的工作,保证了充分发挥未故障驱动系统的驱动能力,不降低行驶速度,正常行驶;当脱开系统故障等级为0-2,电驱动系统故障等级为4的情形时,即在所述脱开系统故障等级为第一故障等级,且电驱动系统故障等级为第三故障等级时,则说明此时车辆处于中风险运行状态,车辆执行脱开故障电驱动系统的运行动作,将出现故障的驱动系统通过脱开装置进行脱开,即故障的驱动系统不影响正常驱动系统的工作,保证了充分发挥未故障驱动系统的驱动能力,不降低行驶速度,正常行驶,当脱开系统故障等级为0-2,电驱动系统故障等级为5的情形时,即在所述脱开系统故障等级为第一故障等级,且电驱动系统故障等级为第四故障等级时,则说明此时车辆处于中风险运行状态,车辆执行脱开故障电驱动系统的运行动作,将出现故障的驱动系统通过脱开装置进行脱开,即故障的驱动系统不影响正常驱动系统的工作,保证了充分发挥未故障驱动系统的驱动能力,不降低行驶速度,正常行驶。当脱开系统故障等级为0-2,电驱动系统故障等级为6的情形时,即在所述脱开系统故障等级为第一故障等级,且电驱动系统故障等级为第五故障等级时,则说明此时车辆处于高风险运行状态,车辆执行脱开故障电驱动系统的运行动作,将出现故障的驱动系统通过脱开装置进行脱开,并且断掉车辆的高压部分的电源系统,车辆可被可被无速度限制的拖动。
在一种可选实施方式中,当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第一故障等级时,执行报警动作或降功率运行动作;
当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第二故障等级时,执行结合故障驱动系统运行的动作;
当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第三故障等级时,执行结合故障驱动系统运行的动作;
当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第四故障 等级时,执行结合故障驱动系统运行的动作;
当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第五故障等级时,执行停车并断开高压系统的动作。
在本实施方式中,如表3所示的脱开系统故障等级和电驱动系统故障等级映射表,当脱开系统故障等级为3,电驱动系统故障等级为0-2的情形时,即在所述脱开系统故障等级为第二故障等级,且所述电驱动系统故障等级为第一故障等级时,则说明车辆处于中风险运行状态,车辆执行报警操作或降功率运行动作;
当脱开系统故障等级为3,电驱动系统故障等级为3的情形时,在所述脱开系统故障等级为第二的故障等级,且电驱动系统故障等级为第二故障等级时,则说明此时车辆处于高风险运行状态,车辆执行结合故障驱动系统的操作;
当脱开系统故障等级为3,电驱动系统故障等级为4的情形时,在所述脱开系统故障等级为第二的故障等级,且电驱动系统故障等级为第三故障等级时,则说明此时车辆处于高风险运行状态,车辆执行结合故障驱动系统的操作;
当脱开系统故障等级为3,电驱动系统故障等级为5的情形时,在所述脱开系统故障等级为第二的故障等级,且电驱动系统故障等级为第四故障等级时,则说明此时车辆处于高风险运行状态,车辆执行结合故障驱动系统的操作;
当脱开系统故障等级为3,电驱动系统故障等级为6的情形时,在所述脱开系统故障等级为第二的故障等级,且电驱动系统故障等级为第五故障等级时,则说明此时车辆处于高风险运行状态,车辆执行停车动作,并断开高压部分的电源系统。
在一种可选实施方式中,当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第一故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第二故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第三故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第四故障等级时,执行脱开故障驱动系统运行的动作;
当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第五故障等级时,执行脱开故障驱动系统,并断开高压系统运行的动作。
在本实施方式中,如表3所示的脱开系统故障等级和电驱动系统故障等级映射表,当脱开系统故障等级为4,电驱动系统故障等级为0-2的情形时,即在所述脱开系统故障等级为第二故障等级,且所述电驱动系统故障等级为第一故障等级时,则说明车辆处于中风险运行状态,车辆执行报警操作或降功率运行动作。当脱开系统故障等级为4,电驱动系统故障等级为3的情形时,在所述脱开系统故障等级为第三的故障等级,且电驱动系统故障等级为第二故障等级时,则说明此时车辆处于高风险运行状态,车辆执行脱开故障驱动系统,并允许在限制转速下被拖动的操作;
当脱开系统故障等级为4,电驱动系统故障等级为4的情形时,在所述脱开系统故障等级为第三的故障等级,且电驱动系统故障等级为第三故障等级时,则说明此时车辆处于高风险运行状态,车辆执行脱开故障驱动系统,并允许在限制转速下被拖动的操作;
当脱开系统故障等级为4,电驱动系统故障等级为5的情形时,在所述脱开系统故障等级为第三的故障等级,且电驱动系统故障等级为第四故障等级时,则说明此时车辆处于高风险运行状态,车辆执行脱开故障驱动系统运行的动作,并允许在限制转速下被拖动的操作;
当脱开系统故障等级为4,电驱动系统故障等级为6的情形时,在所述脱开系统故障等级为第三的故障等级,且电驱动系统故障等级为第五故障等级时,则说明此时车辆处于高风险运行状态,车辆执行脱开故障驱动系统,并断开高压系统运行的动作。
在一种可选实施方式中,当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第一故障等级时,执行停车动作。
当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第二故障等级时,执行停车动作。
当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第三故障等级时,执行停车动作。
当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第四故障等级时,执行停车动作。
当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第五故障等级时,执行停车动作,并断开高压系统。
在本实施方式中,如表3所示的脱开系统故障等级和电驱动系统故障等级映射表,当脱开系统故障等级为5,电驱动系统故障等级为0-2的情形时,在所述脱开系统故障等级为第四故障等级,且所述电驱动系统故障等级为第一故障等级时,则说明车辆处于高风险运行状态,车辆立即执行停车动作;当脱开系统故障等级为5,电驱动系统故障等级为3-5的情形时,在所述脱开系统故障等级为第四故障等级,且电驱动系统故障等级第二故障等级至第四故障等级的故障等级时,则说明此时车辆处于高风险运行状态,车辆执行,车辆立即执行停车动作;当脱开系统故障等级为5,电驱动系统故障等级为6的情形时,在所述脱开系统故障等级为第四故障等级,且电驱动系统故障等级为第五故障等级时,则说明此时车辆处于高风险运行状态,车辆执行停车动作,并断开高压部分的电源系统。
基于同一发明构思,本申请实施例提供一种车辆驱动控制系统。参见图2,示出了车辆驱动控制系统的示意图。如图2所示,系统包括:
电驱动系统,所述电驱动系统用于检测到电驱动系统故障信息,根据电驱动系统故障等级分级关系,确定所述故障信息对应的故障等级。
在本实施方式中,电驱动系统包括驱动系统和后驱驱动系统,所述驱动系统和后驱驱动系统分别包括相应的电动机、电动机控制器MCU及传动机构,当所述部件产生电气故障或者机械故障时,会将相应的故障信息反馈给电驱动系统EDS,电驱动系统EDS会根据故障信息与预设的故障等级分级关系,判断此时系统中发生的电气故障或者机械故障的故障等级。并将确定的电驱动系统的故障等级反馈给整车控制器VCU。
脱开控制系统,所述脱开控制系统用于当检测脱开控制器故障信息,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的故障等级。
在本实施方式中,脱开控制系统包括脱开控制器ACU和脱开结构,所述脱开结构可以设置在前驱驱动系统,也可以设置在后驱驱动系统,用于将故障的驱动系统与整个驱动系统脱开,所述脱开控制器ACU包括两个档位,即 结合档位和脱开档位,由于脱开结构本身属于机械结构,因此其发生故障的概率较低。当脱开系统检测到脱开控制器ACU的故障后,会获取脱开控制器处于的当前档位位置,即基于脱开控制器的当前档位位置信息确定所述故障信息对应的脱开系统故障等级。并将确定的脱开系统故障等级反馈给整车控制器。
整车控制系统,所述整车控制系统用于根据驱动电机系统的故障等级和脱开控制系统故障等级,执行相应的故障处理动作。
在本实施方式中,整车控制系统由整车控制器VCU和相应的车辆控制执行组件构成,当整车控制器VCU接收到反馈的电驱动系统的故障等级和脱开控制器ACU故障等级后,根据电驱动系统的故障等级和脱开控制器ACU故障等级映射的矩阵确定相应的故障处理动作,并通过相应的执行组件执行相应的故障处理动作。
基于同一发明构思,本申请提出了一种车辆驱动控制装置,参考图3,图3是本发明实施例中一种车辆驱动控制装置的示意图,如图3所示,所述装置包括:
第一确定模块301,用于当检测到电驱动系统故障信息后,根据电驱动系统故障等级分级关系,确定所述故障信息对应的故障等级,作为电驱动系统故障等级;
第二确定模块302,用于当检测到脱开控制器故障信息后,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的故障等级,作为脱开系统故障等级;
执行模块303,用于根据电驱动系统故障等级和脱开机构故障等级确定的映射矩阵执行第一故障等级与第二故障等级相对应的故障处理动作。
基于同一发明构思,本申请一实施例提供一种车辆,包括如本发明实施例第三方面提出的车辆驱动控制装置系统。
在本实施例中,当检测到电驱动系统的故障信息后,根据电驱动系统的安全状态信息和故障表现信息,确定所述故障信息对应的电驱动系统故障等级,当检测到脱开控制器故障信息后,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的脱开系统故障等级,根据所述脱开系统故障等级和电驱动系统故障等级,执行对应的故障处理动作。在当任意前驱系统或后驱 系统出现故障后,可根据故障信息判断结果将故障驱动系统脱开,充分发挥未故障驱动系统的驱动能力,不降低行驶速度,正常行驶,提升了四驱系统车辆的整车的驾驶表现,进而提高驾驶感受。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图4示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图5所述的便携式或者固定存储单元。该存储单元可以具有与图4的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本领域内的技术人员应明白,本发明实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明实施例是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术 语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本发明所提供的一种车辆驱动控制方法、装置、系统、存储介质及车辆,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (15)

  1. 一种车辆驱动控制方法,其特征在于,所述方法包括:
    当检测到电驱动系统的故障信息后,根据电驱动系统的安全状态信息、故障表现信息和后处理执行动作,确定所述故障信息对应的电驱动系统故障等级;
    当检测到脱开控系统故障信息后,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的脱开系统故障等级;
    根据所述脱开系统故障等级和电驱动系统故障等级,执行对应的故障处理动作。
  2. 根据权利要求1所述的车辆驱动控制方法,其特征在于,所述根据电驱动系统的安全状态信息、故障表现信息和后处理执行动作,确定所述故障信息对应的电驱动系统故障等级,包括:
    当电驱动系统的安全状态为只能执行主动短路状态,故障表现为电驱动系统动力丢失,后处理执行动作为需要断开高压,确定电驱动系统故障等级为第五故障等级;
    当电驱动系统的安全状态为只能执行主动短路状态,故障表现为电驱动系统动力丢失,后处理执行动作为需要在预设时间内,将电机转速降低到零,确定电驱动系统故障等级为第四故障等级;
    当电驱动系统的安全状态为主动短路状态或自由运行状态,故障表现为电驱动系统动力丢失,后处理执行动作为需要在预设时间内,将电机转速降低到预设转速,确定电驱动系统故障等级为第三故障等级;
    当电驱动系统的安全状态为主动短路状态或自由运行状态,故障表现为电驱动系统待机,后处理执行动作为需要在预设时间内,将电机转速降低到预设转速,确定电驱动系统故障等级为第二故障等级;
    当电驱动系统的安全状态不影响行车安全状态时,确定电驱动系统故障等级为第一故障等级。
  3. 根据权利要求1所述的车辆驱动控制方法,其特征在于,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的脱开系统故障等级,包括:
    当脱开控制器的当前档位位置位于半结合位置或位置未知,确定当前脱 开系统故障等级为第四故障等级;
    当脱开控制器的当前档位位置位于脱开位置,确定当前脱开系统故障等级为第三故障等级;
    当脱开控制器的当前档位位置位于结合位置,确定当前脱开系统故障等级为第二故障等级;
    当脱开控制器的故障信息不影响行车安全状态时,定当前脱开系统故障等级为第一故障等级。
  4. 根据权利要求3所述的车辆驱动控制方法,其特征在于,
    当脱开系统故障等级为第四故障等级时,上报故障码,在规定时间内停车;
    当脱开系统故障等级为第三故障等级时,上报故障码,进入安全状态脱开;
    当脱开系统故障等级为第二故障等级时,上报故障码,进入安全状态结合;
    当脱开系统故障等级为第一故障等级时,不进行处理或报警。
  5. 根据权利要求1所述的车辆驱动控制方法,其特征在于,所述根据脱开系统故障等级和电驱系统故障等级,执行对应的故障处理动作,包括:
    当脱开控系统故障等级为第一故障等级,电驱动系统故障等级为第一故障等级时,执行无故障不处理动作、报警动作或降功率运行动作;
    当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第二故障等级时,执行脱开故障驱动系统运行的动作;
    当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第三故障等级时,执行脱开故障驱动系统运行的动作;
    当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第四故障等级时,执行脱开故障驱动系统运行的动作;
    当脱开系统故障等级为第一故障等级,电驱动系统故障等级为第五故障等级时,执行脱开故障驱动系统并断开高压系统运行的动作。
  6. 根据权利要求5所述的车辆驱动控制方法,其特征在于,
    当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第一故障等级时,执行报警动作或降功率运行动作;
    当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第二故障等级时,执行结合故障驱动系统运行的动作;
    当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第三故障等级时,执行结合故障驱动系统运行的动作;
    当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第四故障等级时,执行结合故障驱动系统运行的动作;
    当脱开系统故障等级为第二故障等级,电驱动系统故障等级为第五故障等级时,执行停车并断开高压系统的动作。
  7. 根据权利要求5所述的车辆驱动控制方法,其特征在于,
    当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第一故障等级时,执行脱开故障驱动系统运行的动作;
    当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第二故障等级时,执行脱开故障驱动系统运行的动作;
    当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第三故障等级时,执行脱开故障驱动系统运行的动作;
    当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第四故障等级时,执行脱开故障驱动系统运行的动作;
    当脱开系统故障等级为第三故障等级,电驱动系统故障等级为第五故障等级时,执行脱开故障驱动系统,并断开高压系统运行的动作。
  8. 根据权利要求5所述的车辆驱动控制方法,其特征在于,
    当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第一故障等级时,执行停车动作;
    当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第二故障等级时,执行停车动作;
    当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第三故障等级时,执行停车动作;
    当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第四故障等级时,执行停车动作;
    当脱开系统故障等级为第四故障等级,电驱动系统故障等级为第五故障等级时,执行停车动作,并断开高压系统。
  9. 一种车辆驱动控制装置,其特征在于,所述装置包括:
    第一确定模块,用于当检测到电驱动系统故障信息后,根据电驱动系统故障等级分级关系,确定所述故障信息对应电驱动系统的故障等级,作为电驱动系统故障等级;
    第二确定模块,用于当检测到脱开系统故障信息后,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的故障等级,作为脱开系统故障等级;
    执行模块,用于根据所述脱开系统故障等级和电驱动系统故障等级,执行对应的故障处理动作。
  10. 一种车辆驱动控制系统,其特征在于,所述系统应用于有线控转向系统的车辆,所述系统包括:
    驱动电机系统,所述电机驱动系统用于测到电驱动系统故障信息,根据电驱动系统故障等级分级关系,确定所述故障信息对应的故障等级;
    脱开控制系统,所述脱开控制系统用于当检测脱开控制器故障信息,根据获取脱开控制器的当前档位位置,确定所述故障信息对应的故障等级;
    整车控制系统,所述整车控制系统用于根据驱动电机系统的故障等级和脱开控制系统故障等级基于映射矩阵,执行相应的故障处理动作。
  11. 一种可读存储介质,其特征在于,所述存储介质存储车辆驱动控制程序,所述车辆驱动控制程序被处理器执行实现如权利要求1-8任一项所述的车辆驱动控制方法的步骤。
  12. 一种车辆,其特征在于,包括如权利要求10所述的车辆驱动控制系统。
  13. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-8中任一项所述的车辆驱动控制方法。
  14. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据如权利要求1-8中任一项所述的车辆驱动控制方法。
  15. 一种计算机可读介质,其中存储了如权利要求14所述的计算机程序。
PCT/CN2022/099518 2021-06-30 2022-06-17 车辆驱动控制方法、装置、系统、存储介质及车辆 WO2023273921A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22831739.2A EP4344927A1 (en) 2021-06-30 2022-06-17 Vehicle drive control method, apparatus and system, and storage medium and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110742379.3 2021-06-30
CN202110742379.3A CN114801744A (zh) 2021-06-30 2021-06-30 车辆驱动控制方法、装置、系统、存储介质及车辆

Publications (1)

Publication Number Publication Date
WO2023273921A1 true WO2023273921A1 (zh) 2023-01-05

Family

ID=82525837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099518 WO2023273921A1 (zh) 2021-06-30 2022-06-17 车辆驱动控制方法、装置、系统、存储介质及车辆

Country Status (3)

Country Link
EP (1) EP4344927A1 (zh)
CN (1) CN114801744A (zh)
WO (1) WO2023273921A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117360239B (zh) * 2023-12-06 2024-03-01 小米汽车科技有限公司 车辆控制方法、双电驱系统及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105291887A (zh) * 2015-11-20 2016-02-03 南车株洲电力机车研究所有限公司 胶轮低地板智能轨道列车的双电机扭矩分配控制方法
WO2017061981A1 (en) * 2015-10-05 2017-04-13 General Electric Company Method and system for locating ground faults in a network of drives
CN109094372A (zh) * 2017-06-20 2018-12-28 宁波轩悦行电动汽车服务有限公司 一种电动汽车故障救援系统及方法
CN109094371A (zh) * 2017-06-20 2018-12-28 宁波轩悦行电动汽车服务有限公司 一种电动汽车应急救助系统及方法
US20190050307A1 (en) * 2018-09-24 2019-02-14 Intel Corporation Multilevel fault simulations for integrated circuits (ic)
CN110254439A (zh) * 2019-07-06 2019-09-20 深圳数翔科技有限公司 自动驾驶车辆的异常管理系统及异常处理方法
CN112590818A (zh) * 2020-12-25 2021-04-02 际络科技(上海)有限公司 车辆的故障处理方法、装置及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061981A1 (en) * 2015-10-05 2017-04-13 General Electric Company Method and system for locating ground faults in a network of drives
CN105291887A (zh) * 2015-11-20 2016-02-03 南车株洲电力机车研究所有限公司 胶轮低地板智能轨道列车的双电机扭矩分配控制方法
CN109094372A (zh) * 2017-06-20 2018-12-28 宁波轩悦行电动汽车服务有限公司 一种电动汽车故障救援系统及方法
CN109094371A (zh) * 2017-06-20 2018-12-28 宁波轩悦行电动汽车服务有限公司 一种电动汽车应急救助系统及方法
US20190050307A1 (en) * 2018-09-24 2019-02-14 Intel Corporation Multilevel fault simulations for integrated circuits (ic)
CN110254439A (zh) * 2019-07-06 2019-09-20 深圳数翔科技有限公司 自动驾驶车辆的异常管理系统及异常处理方法
CN112590818A (zh) * 2020-12-25 2021-04-02 际络科技(上海)有限公司 车辆的故障处理方法、装置及车辆

Also Published As

Publication number Publication date
EP4344927A1 (en) 2024-04-03
CN114801744A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN103424690B (zh) 用于诊断电动车辆的高压继电器触点的装置及其方法
US7279862B1 (en) Fault handling of inverter driven PM motor drives
JP5352570B2 (ja) 回転機の制御装置,回転機系,車両,電気自動車または発電システム
JP5856234B2 (ja) インバータ制御装置及びその制御方法
WO2023273921A1 (zh) 车辆驱动控制方法、装置、系统、存储介质及车辆
US9112437B2 (en) Method of detecting disconnection state of power cable in inverter system
WO2021197478A1 (zh) 车辆及其电池包的加热方法、装置
CN111717031B (zh) 一种纯电动车扭矩功能安全监控方法、系统及车辆
WO2021197434A1 (zh) 确定车辆高压回路的连接可靠性的方法及系统
CN107462807A (zh) 一种电动汽车永磁同步电机定子绕组故障诊断方法
EP4063181A1 (en) Method and apparatus for controlling heating of battery pack, and entire vehicle controller
CN109283918A (zh) 故障处理方法和控制器
CN108099692A (zh) 一种车辆及其电机驱动系统的故障处理方法和系统
CN108023506B (zh) 一种磁轴承磁悬浮鼓风机故障检测系统
JP2011139559A (ja) インバータ制御装置
Aktas A novel method for inverter faults detection and diagnosis in PMSM drives of HEVs based on discrete wavelet transform
CN107942119A (zh) 永磁同步电机驱动器母线电流的冗余检测方法
CN109193566B (zh) 一种电机的故障停机方法、装置、存储介质及电机
JP2016178735A (ja) 鉄道車両用駆動制御装置
JP6893332B2 (ja) 車両駆動装置
JP2010220384A (ja) 回転電機制御装置
CN207720044U (zh) 一种磁轴承磁悬浮鼓风机故障检测系统
US20240103091A1 (en) Electrically Powered Vehicle and Method of Diagnosing Deterioration of Vehicle Battery
dos Santos Moraes et al. Inverter fault diagnosis of an electrical series‐connected two sinusoidal six‐phase permanent magnet machines drive
CN117360239B (zh) 车辆控制方法、双电驱系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022831739

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024000003

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022831739

Country of ref document: EP

Effective date: 20231227

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112024000003

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240102