WO2015033627A1 - 絶縁抵抗測定装置、絶縁抵抗測定方法、及び絶縁監視装置 - Google Patents

絶縁抵抗測定装置、絶縁抵抗測定方法、及び絶縁監視装置 Download PDF

Info

Publication number
WO2015033627A1
WO2015033627A1 PCT/JP2014/064329 JP2014064329W WO2015033627A1 WO 2015033627 A1 WO2015033627 A1 WO 2015033627A1 JP 2014064329 W JP2014064329 W JP 2014064329W WO 2015033627 A1 WO2015033627 A1 WO 2015033627A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
power generation
generation unit
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2014/064329
Other languages
English (en)
French (fr)
Inventor
政宣 吉富
隆文 石井
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2015033627A1 publication Critical patent/WO2015033627A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • An aspect of the present invention relates to an insulation resistance measuring device, an insulation resistance measuring method, and an insulation monitoring device.
  • a power generation unit is configured by a solar cell string including a plurality of solar cell modules including solar cells or a solar cell array including a plurality of solar cell strings, and sunlight is used by the power generation unit. Power generation is performed. If there is an insulation failure in such a power generation section, for example, when a person or object touches the insulation failure location, or when the insulation failure location and a metal mount contact, the electrical circuit contacts the outside in an unintended manner. A ground fault may occur. Therefore, for example, an insulation resistance measuring device described in Patent Document 1 is known as a device for measuring the insulation resistance related to the ground fault.
  • the insulation resistance measuring device described in Patent Document 1 the voltage value of the resistance (known resistance) on the ground line formed by grounding the positive electrode of the power generation unit (solar cell module circuit), and the grounding formed by grounding the negative electrode of the power generation unit The voltage value of the resistance on the line and the voltage value between the poles of the power generation unit (DC bus voltage) are measured. And it is intended to determine the insulation resistance based on these measurement results.
  • One aspect of the present invention has been made in view of the above circumstances, and provides an insulation resistance measurement device, an insulation resistance measurement method, and an insulation monitoring device that can be grasped without overestimating the insulation resistance without overlooking the decrease.
  • the task is to do.
  • an insulation resistance measuring device for measuring an insulation resistance in a power generation unit constituted by at least one solar cell module, the power generation unit In a state where the positive electrode of the power generation unit is connected to the ground, the first measurement unit that measures the voltage value or the current value in the first load resistance between the positive electrode and the ground, and the negative electrode of the power generation unit is grounded to the ground, In the third load resistance between the positive electrode and the negative electrode in a state where the second measurement unit for measuring the voltage value or the current value in the second load resistance between the negative electrode and the ground and the positive electrode and the negative electrode of the power generation unit are connected to each other.
  • a third measurement unit that measures a voltage value or a current value, and the resistance value of the third load resistor is the resistance value when the first and second load resistors have the same resistance value. 1st and 2nd If the load resistance has a different resistance value, there is a following one of the resistance values smaller of the first and second resistance values of the load resistor.
  • the third load resistance that is the load resistance between the poles of the power generation unit is set to be equal to or less than the resistance value.
  • the resistance value is set to be smaller than one of the resistance values of the first and second load resistances. Therefore, the voltage value is inter-electrode voltage value measured by the third measuring unit for (third voltage value) V a, the following equation (c1) is established. Therefore, for example, by using the voltage value V a as the voltage value (V 1 + V 2 ) of the above formula (a1), it is possible to monitor without fear of overestimating the insulation resistance. As a result, it is possible to grasp without missing the decrease in insulation resistance.
  • V 3 Inter-electrode voltage value when the third load resistance is an insulation resistance and a predetermined resistance value.
  • the insulation resistance measuring apparatus may specifically include a calculation unit that calculates the insulation resistance based on the following equation (1-1) as a configuration that exhibits the above-described effects.
  • R L ⁇ (R D3 ⁇ I a ⁇ R D2 ⁇ I 2 ⁇ R D1 ⁇ I 1 ) / (I 1 + I 2 ) (1-1)
  • I 1 current value in the first load resistance with the positive electrode of the power generation unit connected to the ground
  • I 2 current value in the second load resistance with the negative electrode of the power generation unit connected to the ground
  • I a current value in the third load resistance in a state where the positive electrode and the negative electrode of the power generation unit are connected to each other
  • R D1 first load resistance
  • R D2 second load resistance
  • R D3 third load resistance
  • R L Insulation resistance.
  • the insulation resistance measurement device may include a calculation unit that calculates the position of the ground fault point based on the following equation (1-2). In this case, it is possible to grasp the position of the ground fault point.
  • V 1 : V 2 I 1 ⁇ (R D3 ⁇ I a + I 2 ⁇ (R D1 ⁇ R D2 )): I 2 ⁇ (R D3 ⁇ I a + I 1 ⁇ (R D2 ⁇ R D1 )) (1-2)
  • V 1 Voltage value from the ground fault point to the positive electrode of the power generation unit
  • V 2 Voltage value from the ground fault point to the negative electrode of the power generation unit
  • I 1 In a state where the positive electrode of the power generation unit is connected to the ground Current value in the first load resistance
  • I 2 Current value in the second load resistance in a state where the negative electrode of the power generation unit is connected to the ground
  • R D1 First load resistance
  • R D2 Second load resistance
  • R D3 R D3 :
  • the first, second, and third load resistors may have the same predetermined resistance value as the configuration that exhibits the above-described effects.
  • the measurement unit includes a positive electrode and a negative electrode, and a voltmeter that measures a voltage value of resistance between the positive electrode and the negative electrode, and a positive electrode of the voltmeter, A first switching connection portion that is switchably connected between the positive electrode and the ground, and a second switching connection portion that connects the negative electrode of the voltmeter in a switchable manner between the negative electrode of the power generation portion and the ground.
  • the first, second, and third load resistors are configured by a resistance between the positive electrode and the negative electrode of the voltmeter, and the first measurement unit uses the first switching connection unit to connect the positive electrode of the voltmeter to the power generation unit.
  • the voltage value or current value in the resistance is measured in a state where the negative electrode of the voltmeter is connected to the ground by the second switching connection unit while being connected to the positive electrode of the second measurement unit. While the positive electrode of the meter is connected to the ground, the negative electrode of the voltmeter is generated by the second switching connection part.
  • the voltage value or the current value at the resistor is measured while being connected to the negative electrode, and the third measuring unit connects the positive electrode of the voltmeter to the positive electrode of the power generation unit by the first switching connection unit, and the second switching connection.
  • the voltage value or current value of the resistor may be measured in a state where the negative electrode of the voltmeter is connected to the negative electrode of the power generation unit by the unit. In this case, it is possible to measure the insulation resistance with only one voltmeter.
  • the insulation resistance in the power generation unit is measured using the insulation resistance measurement device.
  • This insulation resistance measuring method also has the above effect that it is possible to grasp the decrease without overestimating the insulation resistance without overestimating the insulation resistance.
  • the insulation monitoring apparatus which concerns on 1 side of this invention measures the insulation resistance in an electric power generation part using the said insulation resistance measuring apparatus, and issues a warning when the measured insulation resistance is less than predetermined value. Even in this insulation monitoring device, it is possible to grasp the decrease of the insulation resistance without overestimating it and not to overlook the decrease, and to notify the decrease of the insulation resistance by an alarm.
  • FIG. 1 is a configuration diagram showing an insulation resistance measuring apparatus according to the first embodiment.
  • the insulation resistance measuring apparatus 100 of this embodiment is for measuring the insulation resistance of the power generation part 11 in a solar power generation system.
  • the insulation resistance measuring apparatus 100 includes a voltmeter 12, a first switching connection unit 13, and a second switching connection unit 14 as the measurement unit 10.
  • the insulation resistance measuring apparatus 100 includes a control unit (control unit) 15 and a calculation unit (calculation unit) 16.
  • the power generation unit 11 is for generating power using sunlight.
  • the power generation unit 11 includes a solar cell string 18 in which a plurality (six in the figure) of solar cell modules 17 are connected in series.
  • the solar cell module 17 is configured in a panel shape, for example.
  • the solar cell module 17 includes a plurality of solar cell units connected in series with each other.
  • the power generation unit 11 may be configured by a solar cell array in which a plurality of solar cell strings 18 are connected in parallel.
  • the power generation unit 11 is connected to, for example, a power conditioner (not shown) and supplies a DC output to the power conditioner.
  • the power conditioner converts a supplied DC output into an AC output and supplies it to a subsequent power system (for example, a commercial power system).
  • the power conditioner may be a transformer insulation type having an insulation transformer or a transformerless (non-insulation) type.
  • the power generation unit 11 may be insulated from the AC system while measuring the insulation resistance. For example, when the power generation unit 11 is not insulated from the AC system, it is difficult to distinguish the grounding of the AC system from an insulation failure, and accurate insulation measurement may not be performed. Therefore, when a transformerless power conditioner is used, the insulation resistance measurement may be performed after the electrical connection between the power generation unit 11 and the power conditioner is disconnected by a switch device or the like.
  • the voltmeter 12 has a positive electrode and a negative electrode, and measures a voltage value of a resistor 12a provided between the positive electrode and the negative electrode.
  • the voltmeter 12 outputs the measured voltage value to the arithmetic unit 16.
  • Various things can be used as the voltmeter 12.
  • a unipolar type is used as the voltmeter 12.
  • the resistor 12a has a known predetermined resistance value RD .
  • the resistor 12a is described separately from the voltmeter 12, but the resistor 12a may be an internal resistance (reception resistor) of the voltmeter 12.
  • the resistance 12a is a parallel combined resistance (1 / (1 / R1) + (1 / R2)).
  • the first switching connection unit 13 connects the positive electrode of the voltmeter 12 so as to be switchable between the positive electrode of the power generation unit 11 and the ground G.
  • the first changeover connection unit 13 includes a changeover switch 19b and a positive electrode wiring 13x connected to the positive electrode of the power generation unit 11 from the positive electrode of the voltmeter 12 (the positive side of the resistor 12a) via the changeover switch 19a. And a positive electrode wiring 13 y connected to the ground G from the positive electrode of the voltmeter 12.
  • the second switching connection unit 14 connects the negative electrode of the voltmeter 12 to be switchable between the negative electrode of the power generation unit 11 and the ground G.
  • the second changeover connection unit 14 includes a changeover switch 19d and a negative electrode line 14x connected to the negative electrode of the power generation unit 11 from the negative electrode of the voltmeter 12 (the negative electrode side of the resistor 12a) via the changeover switch 19c. And a negative electrode wiring 14 y connected to the ground G from the negative electrode of the voltmeter 12.
  • any configuration can be used as long as it cuts off the current.
  • semiconductor switches such as FET (Field Effect Transistor) and IGBT (Insulated Gate Bipolar Transistor), and electromagnetic switches such as mechanical relays can be used (the same applies to the following switches).
  • the control unit 15 controls the switching in the first and second switching connection units 13 and 14. Specifically, the control unit 15 turns on the changeover switch 19a and turns off the changeover switch 19b, connects the positive electrode of the voltmeter 12 to the positive electrode of the power generation unit 11, turns off the changeover switch 19c, and turns on the changeover switch 19d. Then, the negative electrode of the voltmeter 12 is connected to the ground G.
  • the control unit 15 When the changeover switch 19a is turned off and the changeover switch 19b is turned on to connect the positive electrode of the voltmeter 12 to the ground G, the control unit 15 turns on the changeover switch 19c and turns off the changeover switch 19d and turns the negative electrode of the voltmeter 12 off. Is connected to the negative electrode of the power generation unit 11. Furthermore, the control unit 15 turns on the changeover switch 19a and turns off the changeover switch 19b, connects the positive electrode of the voltmeter 12 to the positive electrode of the power generation unit 11, turns on the changeover switch 19c and turns off the changeover switch 19d. The negative electrode of the voltmeter 12 is connected to the negative electrode of the power generation unit 11.
  • the calculation unit 16 calculates and calculates the insulation resistance based on the voltage value measured by the voltmeter 12.
  • the arithmetic unit 16 may be configured by a dedicated ECU [Electronic Control Unit] or may be configured as an application in a general-purpose computer such as a personal computer. Details of the calculation by the calculation unit 16 will be described later.
  • the load resistance (hereinafter referred to as “first load”) between the positive electrode of the power generation unit 11 and the ground G in a state where the positive electrode of the power generation unit 11 is connected to the ground G. Resistance ”), the load resistance between the negative electrode of the power generation unit 11 and the ground G in a state where the negative electrode of the power generation unit 11 is grounded to the ground G (hereinafter,“ second load resistance ”), and the positive electrode of the power generation unit 11
  • the load resistance between the positive electrode and the negative electrode of the power generation unit 11 in a state where the negative electrode and the negative electrode are connected to each other (hereinafter referred to as “third load resistance”) is configured by the resistor 12 a between the positive electrode and the negative electrode of the voltmeter 12. And have the same predetermined resistance value RD .
  • FIG. 2 is a diagram for explaining an insulation resistance measurement method using the insulation resistance measurement apparatus of FIG.
  • a ground fault occurs when a ground fault occurs between certain solar cell modules 17 x and 17 y, and the insulation resistance of the solar cell string 18 decreases to the insulation resistance RL. To do.
  • the changeover switches 19a and 19d are turned on and the changeover switch is turned on by the control unit 15 as shown in FIG. 19 b and 19 c are turned OFF, and the positive electrode of the voltmeter 12 is connected to the positive electrode of the power generation unit 11.
  • the negative electrode of the voltmeter 12 is connected to the ground G.
  • the positive electrode side of the power generation unit 11 is grounded to the ground G. That is, a ground line is formed which is connected in this order from the positive electrode of the power generation unit 11 to the changeover switch 19a, the resistor 12a, the changeover switch 19d, and the ground G.
  • the voltmeter 12 measures the voltage value of the resistor 12a as the first voltage value V D1 that is the voltage value at the first load resistor. Even ground fault has occurred in any position, since the potential of that portion is positive or less, the direction of the current I 1 flowing through the resistor 12a becomes as shown in FIG. 2 (a). Therefore, it is possible to measure the first voltage value V D1 with the monopolar voltmeter 12 with the positive and negative electrodes fixed.
  • the control unit 15 turns on the changeover switches 19b and 19c and turns off the changeover switches 19a and 19d, so that the positive electrode of the voltmeter 12 is grounded.
  • the negative electrode of the voltmeter 12 is connected to the negative electrode of the power generation unit 11.
  • the negative electrode side of the power generation unit 11 is grounded to the ground G. That is, a ground line is formed which is connected in this order from the negative electrode of the power generation unit 11 to the changeover switch 19c, the resistor 12a, the changeover switch 19b, and the ground G.
  • the voltmeter 12 measures the voltage value of the resistor 12a as the second voltage value V D2 that is the voltage value at the second load resistor. Because both are of ground fault at the point has not occurred, the potential of the point is more negative, the direction of the resistor 12a through current I 2 becomes a as shown in FIG. 2 (b), the positive electrode negative electrode is fixed The second voltage value V D2 can be measured with a monopolar voltmeter 12.
  • the control unit 15 turns on the changeover switches 19a and 19c, turns off the changeover switches 19b and 19d, and sets the positive electrode of the voltmeter 12 to the positive electrode of the power generation unit 11. While connecting, the negative electrode of the voltmeter 12 is connected to the negative electrode of the power generation unit 11. Thereby, the poles of the power generation unit 11 are connected to each other. That is, a closed circuit is formed which is connected in this order from the positive electrode of the power generation unit 11 to the changeover switch 19a, the resistor 12a, the changeover switch 19c, and the negative electrode of the power generation unit 11.
  • the voltage value of the resistor 12a is measured by the voltmeter 12 as a third voltage value Va that is a voltage value at the third load resistor.
  • measurable third voltage value V a voltmeter 12 monopolar the positive electrode negative electrode is fixed.
  • the positive electrode of the power generation unit 11 when the positive electrode of the power generation unit 11 is connected to the voltmeter 12, it is always connected to the positive electrode of the voltmeter 12, and when the negative electrode of the power generation unit 11 is connected to the voltmeter 12, it is always connected to the negative electrode of the voltmeter 12. Due to the configuration, a monopolar voltmeter 12 can be used. This is because even if a ground fault occurs at any position in the power generation unit 11, the potential is equal to or lower than the potential of the positive electrode of the solar cell, and thus the resistance 12 a when the positive electrode of the power generation unit 11 is connected to the voltmeter 12. This is because the direction of the current inside is the direction of flowing into the ground G from the power generation unit 11.
  • the arithmetic unit 16 measures the insulation resistance RL based on the first to third voltage values V D1 , V D2 , and V a .
  • the principle of measurement of the insulation resistance RL will be described.
  • the current value I 1 which flows can be expressed by the following equation (2).
  • the flowing current value I 2 can be expressed by the following equation (3).
  • I 1 V 1 / (R L + R D ) (2)
  • I 2 V 2 / (R L + R D ) (3)
  • V 1 voltage value by the solar cell module 17 from the ground fault point to the positive electrode of the power generation unit 11
  • V 2 voltage value by the solar cell module 17 from the ground fault point to the negative electrode of the power generation unit 11
  • R D predetermined resistance value.
  • the insulation resistance RL can be calculated from the voltage value (V 1 + V 2 ) and the current value (I 1 + I 2 ).
  • the position of the ground fault point can be determined based on the following equation.
  • V 1 : V 2 I 1 : I 2
  • FIG. 3 is a graph showing an IV curve for explaining the insulation resistance measuring apparatus of FIG.
  • an IV curve C ⁇ b> 1 indicates a four series IV curve of the solar cell module 17 from the ground fault point to the positive electrode of the power generation unit 11
  • an IV curve C ⁇ b> 2 indicates a solar cell module 17 from the ground fault point to the negative electrode of the power generation unit 11.
  • the IV curve C3 shows the 6 series IV curve of the solar cell module 17 between the poles of the power generation unit 11.
  • the voltage value of the IV curve C3 is the sum of the voltage value of the IV curve C1 and the voltage value of the IC curve C2.
  • the low current portion is shown enlarged and emphasized.
  • the insulation resistance RL may be overestimated and the insulation resistance RL may be overlooked.
  • the voltage value (V 1 + V 2 ) may be significantly lower than the open circuit voltage V OC , and thus overestimation of the insulation resistance RL becomes significant.
  • the electric power generation part 11 has deteriorated, we are anxious about the series resistance also increasing simultaneously with the fall of insulation resistance.
  • the inter-electrode voltage V 3 of the entire power generation unit 11 at the load resistance (R L + R D ) is V 3 ⁇ V 1 + V 2 . Therefore, if the inter-electrode voltage V 3 is used as a substitute for the voltage value (V 1 + V 2 ) in the above equation (6), it is possible to avoid overestimating the insulation resistance RL , but the insulation resistance RL is unknown. there, it is difficult to determine the inter-electrode voltage V 3 accurately.
  • the minimum value of the inter-electrode voltage V 3 may be predicted as follows. That is, if the insulation resistance R L decreases, the load resistance (R L + R D ) decreases to the predetermined resistance value R D, so the minimum value of the interelectrode voltage V 3 is the third voltage value V a (load resistance Is the inter-electrode voltage V 3 ) of the entire power generation section 11 when the predetermined resistance value RD . Therefore, since the V a ⁇ V 3 ⁇ V 1 + V 2, as the voltage value in the above formula (6) (V 1 + V 2), the use of the third voltage value V a, overestimating the insulation resistance R L It is found that measurement can be performed while suppressing the fear of
  • the insulation resistance RL is calculated and measured based on the following expressions (7) and (8).
  • V D1 is a voltage value (first voltage value) at the first load resistor in a state where the positive electrode of the power generation unit 11 is connected to the ground G
  • V D2 is the voltage value at the second load resistor in a state of being connected to the negative electrode of the power generation unit 11 to the ground G (second voltage value)
  • V a is in a state of being connected together to the positive and negative electrodes of the power generation portion 11
  • I 1 is a current value at the first load resistance in a state where the positive electrode of the power generation unit 11 is connected to the ground G
  • I 2 is a ground value of the negative electrode of the power generation unit 11.
  • the current value at the second load resistance in the state of being connected to G, I a is the current value of the third load resistance when the positive and negative electrodes of the power generation unit 11 are connected to each other, R D is the predetermined resistance value, R L is an insulation resistance.
  • the first load resistor, the second load resistor, and the third load resistor are all configured by a resistor 12 a between the positive electrode and the negative electrode of the voltmeter 12.
  • the current value is not calculated, and the voltmeter 12 as shown in the following equation (9). Needless to say, the measured values may be used directly.
  • the predetermined resistance value RD may be the following value in order to accurately measure the insulation resistance RL . That is, if the predetermined resistance value RD is too small, a ground fault occurs. Therefore, it may be equal to or higher than the threshold value for determining a ground fault. If the predetermined resistance value RD is too large, the time to wait until the ground potential stabilizes when measuring the current values I1 and I2 becomes longer and the measurement time becomes longer. Therefore, the measurement accuracy decreases in the measurement with a short measurement time. To do.
  • the predetermined resistance value RD may be equal to or less than a value obtained by dividing the time allowed for measurement by the ground capacitance and further dividing by a predetermined value (here, 3).
  • the first voltage value V D1 is measured in a state where the positive electrode of the power generation unit 11 is connected to the ground G.
  • the second voltage value V D2 is measured in a state where the negative electrode of the power generation unit 11 is grounded to the ground G.
  • the third voltage value Va is measured in a state where the positive electrode and the negative electrode of the power generation unit 11 are connected to each other.
  • the first load resistance between the positive electrode and the ground of the power generation unit 11, the second load resistance between the negative electrode and the ground of the power generation unit 11, and the third load resistance between the positive electrode of the power generation unit 11 and the negative electrode are:
  • the resistor 12a is also used as the same predetermined resistance value RD . Therefore, for the third voltage value V a , V a ⁇ V 3 ⁇ V 1 + V 2 is established.
  • the insulation resistance RL is Monitor without fear of overestimation. As a result, it becomes possible to grasp without missing the decrease in the insulation resistance RL .
  • the software relating to the calculation of the device configuration and the insulation resistance RL becomes simple, and it is possible to manufacture the insulation resistance measuring device 100 that is reliable and inexpensive in operation.
  • the position of the ground fault point can be calculated and determined, and thus the position of the ground fault point can also be grasped.
  • the voltmeter 12 does not need a bipolar type (bipolar) that is a voltmeter capable of determining the direction of the voltage, and can be a unipolar type (monopolar). . That is, according to the present embodiment, it is possible to realize three measurements (measurement of voltage values V D1 , V D2 , and V a ) with one voltmeter 12 that can measure only a positive voltage. As a result, not only cost reduction but also maintenance can be facilitated.
  • bipolar bipolar
  • monopolar unipolar type
  • the first and second changeover connection parts 13 and 14, the changeover switches 19a and 19d, the resistor 12a and the voltmeter 12 measure the first voltage value VD1 by connecting the positive electrode of the power generation part 11 to the ground G.
  • the first measurement unit is configured.
  • the switch 19b switched to the first and second switch connection 13, 14, and 19c and the resistor 12a and the voltmeter 12 measures a second voltage value V D2 grounds the negative electrode to the earth G of the power generation portion 11
  • a second measurement unit is configured.
  • the switch 19a switching the first and second switch connection 13, 14, and 19c and the resistor 12a and the voltmeter 12 measures a third voltage value V a by mutually connecting the positive and negative electrodes of the power generation portion 11
  • a third measurement unit is configured.
  • FIG. 4 is a configuration diagram showing a modification of the insulation resistance measuring apparatus of FIG.
  • the insulation resistance measuring apparatus 100 includes a C contact 20a in place of the changeover switches 19a and 19b (see FIG. 1) and a C contact in place of the changeover switches 19c and 19d (see FIG. 1).
  • a contact 20b may be provided.
  • the wiring can be simplified, and as a result, the insulation resistance RL can be measured with a simpler configuration.
  • the first load resistor, the second load resistor, and the third load resistor are not configured by only the resistor 12a connected in parallel to the voltmeter 12, but may be configured including a protective resistor. . That is, one or a plurality of protective resistors may be arranged in the first switching connection unit 13 and / or the second switching connection unit 14 so that the resistance values of the first to third load resistors are equal to each other. .
  • the calculation unit 16 can calculate and measure the insulation resistance RL based on the following equations (10) and (11).
  • V D1 is a voltage value in the resistor 12a in a state where the positive electrode of the power generation unit 11 is connected to the ground G
  • V D2 is a negative value of the power generation unit 11 connected to the ground G.
  • V a is the voltage value
  • I 1 is to connect the positive electrode of the power generation unit 11 to the ground G in the resistance 12a in the state of being connected together to the positive and negative electrodes of the power generation portion 11
  • the current value in the first load resistance in the state, I 2 is the current value in the second load resistance in a state where the negative electrode of the power generation unit 11 is connected to the ground G
  • RD is the resistance value of the resistor 12a
  • RP is each
  • the sum of the protective resistance values in the first to third load resistors, R L is the insulation resistance value.
  • the predetermined resistance value is (R D + R P ).
  • FIG. 5 is a configuration diagram showing an insulation resistance measuring apparatus according to the second embodiment.
  • the insulation resistance measuring apparatus 200 of the present embodiment is different from the first embodiment in that the first to third measuring units 211 to 213 are replaced with the measuring unit 10 (see FIG. 1). It is the point provided with the measurement part 210 which has.
  • First measuring unit 211 includes a first resistor 12a1 having a predetermined resistance value R D, a first voltmeter 12 1 for measuring the voltage value of the first resistor 12a1, a first voltage via the changeover switch 219a total of 12 1 of the positive electrode positive first wiring 21 1 connected to the pole, switching first voltmeter 12 1 of the negative electrode via a switch 219b (the negative electrode side of the first resistor 12a1 of the power generation unit 11 (the positive electrode side of the first resistor 12a1) ) and the first wiring 22 1 connected to the ground G, contains.
  • the second measuring unit 212 includes a second resistor 12a2 having a predetermined resistance value R D, a second voltmeter 12 2 that measures a voltage value of the second resistor 12a2, the second voltage through the changeover switch 219d meter 12 generating a second positive electrode (positive electrode side of the second resistor 12a2) and the second wiring 21 2 connected to the ground G, through the changeover switch 219c second voltmeter 12 2 of the negative electrode (negative electrode side of the second resistor 12a2) the second wiring 22 2 connected to the negative electrode parts 11, contains.
  • Third measuring unit 213 includes a third resistor 12a3 having a predetermined resistance value R D, a third voltmeter 12 3 for measuring the voltage value of the third resistor 12a3, the third voltage through the changeover switch 219e meter 12 3 of the positive electrode (positive electrode side of the third resistor 12a3) and the third wiring 21 3 connected to the positive electrode of the power generation portion 11, via a changeover switch 219f third voltmeter 12 3 of the negative electrode (negative electrode side of the third resistor 12a3 ) and the third wiring 22 3 connected to the negative electrode of the power generation unit 11 includes a.
  • the control unit 15 turns on the changeover switches 219a and 219b and turns off the changeover switches 219c to 219f so that the positive electrode side of the power generation unit 11 is grounded. Ground to G.
  • the first voltmeter 12 measures the voltage value of the first resistor 12a1 as a first voltage value V D1.
  • control unit 15 turns on the changeover switches 219c and 219d and turns off the changeover switches 219a, 219b, 219e, and 219f, and grounds the negative electrode side of the power generation unit 11 to the ground G.
  • the second voltmeter 12 measures the voltage value of the second resistor 12a2 as the second voltage value V D2.
  • control unit 15 turns on the changeover switches 219e and 219f and turns off the changeover switches 219a to 219d to connect the poles of the power generation unit 11 to each other.
  • the third voltmeter 12 measures the voltage value of the third resistor 12a3 as a third voltage value V a.
  • the first load resistance, the second load resistance, and the third load resistance have the same predetermined resistance value RD . Therefore, the insulation resistance R L monitors without risk of overestimation, the advantageous effects are achieved that it becomes possible to grasp without missing a drop in the insulation resistance R L.
  • the first resistor 12a1, the second resistor 12a2, and the third resistor 12a3 have all been described as having the same predetermined resistance value RD .
  • the first load resistor, the second load resistor, and the third resistor need only have the same predetermined resistance value, and the resistors 12a1 to 12a3 to be measured by the voltmeters 12 1 to 12 3 need not all have the same value. For example, in FIG.
  • the first, second, and third load resistors may not have the same predetermined resistance value.
  • the resistance value of the third load resistor is equal to or less than the resistance value when the first and second load resistors have the same resistance value
  • the first and second load resistors have different resistance values.
  • the resistance value of each of the first and second load resistors may be less than or equal to the smaller one (not larger). In this case, for example, as illustrated below, it is possible to grasp without missing the decrease in the insulation resistance RL , and it is possible to grasp the position of the ground fault point (ground fault position).
  • the voltage generated in the first load resistor is set to the first voltage value V D1, and the ground fault at this time the voltage of the power generation unit 11 to the positive electrode and the voltage value V 1 from the point.
  • the voltage generated in the second load resistor is set to the second voltage value V D2, and the ground fault point at this time the voltage of the power generation portion 11 to the negative electrode and the voltage value V 2.
  • a voltage generated in the third load resistor is defined as a third voltage value Va.
  • V D1 V 1 ⁇ R D1 / (R L + R D1 ) (A)
  • V D2 V 2 ⁇ R D2 / (R L + R D2 ) (B)
  • any of the resistance values R D1 , R D2 , and R D3 of the load resistance can be configured by a combination of a plurality of resistors.
  • the above calculation may be performed by obtaining the voltage values V D1 , V D2 , and V a from the voltage values of some of the resistors.
  • the insulation resistance RL and the ground fault position may be obtained based on currents flowing through the first, second, and third load resistors.
  • the current flowing through the first load resistor and a current value I 1 of the positive electrode of the power generation unit 11 when the grounded via a first load resistor, via a negative electrode second load resistor of the power generation portion 11 the current flowing through the second load resistor and a current value I 2 upon grounded Te, third load resistor when the via third load resistor having a resistance value R D3 between the positive electrode and the negative electrode of the power generation unit 11 are connected to each other
  • I 1 V 1 / (R L + R D1 ) (D)
  • I 2 V 2 / (R L + R D2 ) (E) V 1 + V 2 ⁇ V a (F)
  • FIG. 6 is a configuration diagram showing an insulation resistance measuring apparatus according to the third embodiment.
  • the insulation resistance measuring apparatus 300 of the present embodiment is different from the first embodiment in that a ground measuring unit 311 and an inter-electrode measuring unit 312 are used instead of the measuring unit 10 (see FIG. 1). It is the point provided with the measurement part 310 which has.
  • the ground measurement unit 311 constitutes a first measurement unit and a second measurement unit.
  • the ground measurement unit 311 includes a resistor 31, a bipolar voltmeter 32 that measures the voltage value of the resistor 31, and a wiring 33 x that connects one side of the voltmeter 32 to the positive electrode of the power generation unit 11 via a changeover switch 319 a.
  • a wiring 33y that connects one side of the voltmeter 32 to the positive electrode of the power generation unit 11 via a changeover switch 319b, and a wiring 34 that connects the other side of the voltmeter 32 to the ground G.
  • the wiring 33x is provided with a resistor 35x.
  • the wiring 33y is provided with a resistor 35y.
  • the inter-electrode measurement unit 312 constitutes a third measurement unit.
  • the inter-electrode measurement unit 312 switches between a resistor 36, a voltmeter 37 that measures the voltage value of the resistor 36, and a wiring 38 that connects the positive electrode of the voltmeter 37 to the positive electrode of the power generation unit 11 via a changeover switch 319c. And a wiring 39 for connecting the negative electrode of the voltmeter 37 to the negative electrode of the power generation unit 11 via the switch 319d.
  • the sum of the resistance value of the resistor 31 and the resistance value of the resistor 35x, the sum of the resistance value of the resistor 31 and the resistance value of the resistor 35y, and the resistance value of the resistor 36 are the same.
  • the predetermined resistance value RD is used.
  • the first load resistance, the second load resistance, and the third load resistance have the same predetermined resistance value RD . Therefore, the insulation resistance R L monitors without risk of overestimation, the advantageous effects are achieved that it becomes possible to grasp without missing a drop in the insulation resistance R L.
  • the number of solar cell units constituting the solar cell module 17, the number of solar cell modules 17 constituting the solar cell string 18, the number of solar cell strings 18 constituting the solar cell array, and the photovoltaic power generation system are constituted.
  • the number of solar cell arrays to be performed is not limited. There may be one or a plurality.
  • the first measuring section was measured first voltage value V D1, may measure the current value I 1.
  • the second measuring section was measured second voltage value V D2, may measure the current value I 2.
  • the configuration of the measurement unit is not limited, and various configurations may be employed as long as the first load resistance, the second load resistance, and the third load resistance are the same predetermined resistance values. can do.
  • the said embodiment can also be caught as a solar cell string provided with the insulation resistance measuring apparatus, a solar cell array, or a solar power generation system.
  • the insulation resistance measuring device can be regarded as an insulation monitoring device further provided with an alarm unit. That is, according to one aspect of the present invention, when any one of the insulation resistance measuring devices 100, 200, and 300 is used to measure the insulation resistance in the power generation unit 11, and the insulation resistance that is the measurement result is below a predetermined value. It can also be understood as an insulation monitoring device that issues an alarm.
  • the alarm unit compares the insulation resistance RL of the power generation unit 11 calculated by the arithmetic unit 16 with a predetermined value stored in advance in the storage device (comparison determination process), and the insulation resistance RL is predetermined. Raise an alarm when below the value.
  • the alarm unit may emit a sound such as a buzzer, may indicate that there is a ground fault on the monitor, or alarm signal by wireless or wired to a separate monitoring system. May be transmitted, or at least one of these may be included.
  • the comparison determination process of the alarm unit may be executed by the arithmetic unit 16.
  • changeover switch (second measurement unit, third measurement unit), 19d ... changeover switch (first measurement unit), 100, 200, 300 ... insulation resistance measuring device, 211 ... first measurement unit, 212 ... second measurement , 213... Third measurement unit, 311... Ground measurement unit (first measurement unit, second measurement. ), 312 ... interpolar measuring section (third measuring unit), G ... earth.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

 少なくとも一つの太陽電池モジュールにより構成された発電部における絶縁抵抗を測定するための絶縁抵抗測定装置であって、発電部の正極を大地に接続させた状態で、該正極及び大地間の第1負荷抵抗における電圧値又は電流値を測定する第1測定部と、発電部の負極を大地に接地させた状態で、該負極及び大地間の第2負荷抵抗における電圧値又は電流値を測定する第2測定部と、発電部の正極及び負極を互いに接続させた状態で、該正極及び該負極間の第3負荷抵抗における電圧値又は電流値を測定する第3測定部と、を備えた測定部を具備し、第3負荷抵抗の抵抗値は、第1及び第2負荷抵抗が同じ抵抗値を有する場合、当該抵抗値以下とされ、第1及び第2負荷抵抗が互いに異なる抵抗値を有する場合、第1及び第2負荷抵抗の各抵抗値のうち小さい一方の抵抗値以下とされる。

Description

絶縁抵抗測定装置、絶縁抵抗測定方法、及び絶縁監視装置
 本発明の一側面は、絶縁抵抗測定装置、絶縁抵抗測定方法、及び絶縁監視装置に関する。
 太陽光発電システムでは、例えば太陽電池を含む太陽電池モジュールを複数有する太陽電池ストリング、又は、この太陽電池ストリングを複数有する太陽電池アレイにより発電部が構成され、この発電部によって太陽光が利用されて発電が行われる。このような発電部において絶縁不良があると、例えば人や物が絶縁不良箇所に触れたときや、絶縁不良箇所と金属架台等とが接触したとき、電気回路が外部と意図しない形で接触する地絡が生じる場合がある。そこで、当該地絡に係る絶縁抵抗を測定するものとして、例えば特許文献1に記載された絶縁抵抗測定装置が知られている。
 特許文献1に記載された絶縁抵抗測定装置では、発電部(太陽電池モジュール回路)の正極を接地させてなる接地線上の抵抗(既知抵抗)の電圧値、発電部の負極を接地させてなる接地線上の抵抗の電圧値、及び、発電部の極間の電圧値(直流母線電圧)を測定する。そして、これら測定結果に基づき絶縁抵抗を判定することが図られている。
特開平7-177646号公報
 ここで、上述の絶縁抵抗測定装置では、例えば次式(a1)に示すように、絶縁抵抗Rについて、発電部における地絡点から正極までの電圧値Vと、発電部における地絡点から負極までの電圧値Vと、発電部の正極を接地させてなる接地線を流れる電流値Iと、発電部の負極を接地させてなる接地線を流れる電流値Iと、既知の所定抵抗値Rと、を用いて算出される場合がある。
       R=(V+V)/(I+I)-RD …(a1)
 このとき、電圧値(V+V)としては、発電部の極間の開放電圧が用いられるのが一般的である。しかし、次式(b1)に示すように、開放電発VOCは電圧値(V+V)以上であることから、このことに起因して絶縁抵抗Rを過大評価してしまい、絶縁抵抗Rの低下を見逃す虞がある。特に、かかる虞は、発電部の劣化等のために当該発電部の直列抵抗が増大していると、電圧値(V+V)が開放電圧VOCよりも著しく低下する場合があるために好ましくない。
         (V+V) ≦ VOC …(b1)
 本発明の一側面は、上記実情に鑑みてなされたものであり、絶縁抵抗を過大評価せずにその低下を見逃すことなく把握可能な絶縁抵抗測定装置、絶縁抵抗測定方法及び絶縁監視装置を提供することを課題とする。
 上記課題を解決するため、本発明の一側面に係る絶縁抵抗測定装置は、少なくとも一つの太陽電池モジュールにより構成された発電部における絶縁抵抗を測定するための絶縁抵抗測定装置であって、発電部の正極を大地に接続させた状態で、該正極及び大地間の第1負荷抵抗における電圧値又は電流値を測定する第1測定部と、発電部の負極を大地に接地させた状態で、該負極及び大地間の第2負荷抵抗における電圧値又は電流値を測定する第2測定部と、発電部の正極及び負極を互いに接続させた状態で、該正極及び該負極間の第3負荷抵抗における電圧値又は電流値を測定する第3測定部と、を備えた測定部を具備し、第3負荷抵抗の抵抗値は、第1及び第2負荷抵抗が同じ抵抗値を有する場合、当該抵抗値以下とされ、第1及び第2負荷抵抗が互いに異なる抵抗値を有する場合、第1及び第2負荷抵抗の各抵抗値のうち小さい一方の抵抗値以下とされている。
 この地絡検出測定装置では、発電部の極間の負荷抵抗である第3負荷抵抗が、第1及び第2負荷抵抗が同じ抵抗値を有する場合にはその抵抗値以下とされ、第1及び第2負荷抵抗が互いに異なる抵抗値を有する場合には第1及び第2負荷抵抗の各抵抗値のうち小さい一方の抵抗値以下とされている。そのため、第3測定部で測定した極間電圧値である電圧値(第3電圧値)Vについて、次式(c1)が成立する。よって、例えば当該電圧値Vを上式(a1)の電圧値(V+V)として用いることにより、絶縁抵抗を過大評価するおそれなく監視することが可能となる。その結果、絶縁抵抗の低下を見逃すことなく把握することが可能となる。
        V ≦ V ≦ (V+V …(c1)
 V:第3負荷抵抗が絶縁抵抗及び所定抵抗値のときにおける極間電圧値。
 本発明の一側面に係る絶縁抵抗測定装置は、上記作用効果を奏する構成として具体的には、下式(1-1)に基づいて絶縁抵抗を演算する演算部を備えていてもよい。
      R≧(RD3×I-RD2×I-RD1×I)/
                     (I+I)…(1-1)
 但し、I:発電部の正極を大地に接続させた状態での第1負荷抵抗における電流値、I:発電部の負極を大地に接続させた状態での第2負荷抵抗における電流値、I:発電部の正極及び負極を互いに接続させた状態での第3負荷抵抗における電流値、RD1:第1負荷抵抗、RD2:第2負荷抵抗、RD3:第3負荷抵抗、R:絶縁抵抗。
 本発明の一側面に係る絶縁抵抗測定装置は、下式(1-2)に基づいて地絡点の位置を演算する演算部を備えていてもよい。この場合、地絡点の位置についても把握可能となる。
   V:V=I×(RD3×I+I×(RD1-RD2)):
       I×(RD3×I+I×(RD2-RD1))…(1-2)
 但し、V:地絡点から発電部の正極までの電圧値、V:地絡点から発電部の負極までの電圧値、I:発電部の正極を大地に接続させた状態での第1負荷抵抗における電流値、I:発電部の負極を大地に接続させた状態での第2負荷抵抗における電流値、RD1:第1負荷抵抗、RD2:第2負荷抵抗、RD3:第3負荷抵抗。
 本発明の一側面に係る絶縁抵抗測定装置は、上記作用効果を奏する構成として具体的には、第1、第2及び第3負荷抵抗は、互いに同じ所定抵抗値を有していてもよい。
 本発明の一側面に係る絶縁抵抗測定装置では、測定部は、正極及び負極を有し、該正極及び該負極間の抵抗の電圧値を測定する電圧計と、電圧計の正極を、発電部の正極と大地との間で切替可能に接続する第1切替接続部と、電圧計の負極を、発電部の負極と大地との間で切替可能に接続する第2切替接続部と、を含んで構成され、第1、第2及び第3負荷抵抗は、電圧計の正極及び負極間の抵抗により構成されており、第1測定部は、第1切替接続部によって電圧計の正極を発電部の正極に接続させつつ、第2切替接続部によって電圧計の負極を大地に接続させた状態で、抵抗における電圧値又は電流値を測定し、第2測定部は、第1切替接続部によって電圧計の正極を大地に接続させつつ、第2切替接続部によって電圧計の負極を発電部の負極に接続させた状態で、抵抗における電圧値又は電流値を測定し、第3測定部は、第1切替接続部によって電圧計の正極を発電部の正極に接続させつつ、第2切替接続部によって電圧計の負極を発電部の負極に接続させた状態で、抵抗における電圧値又は電流値を測定してもよい。この場合、一つの電圧計のみによって絶縁抵抗を測定することが可能となる。
 本発明の一側面に係る絶縁抵抗測定方法は、上記絶縁抵抗測定装置を用いて発電部における絶縁抵抗を測定する。この絶縁抵抗測定方法においても、絶縁抵抗を過大評価せずにその低下を見逃すことなく把握することが可能となるという上記効果が奏される。また、本発明の一側面に係る絶縁監視装置は、上記絶縁抵抗測定装置を用いて発電部における絶縁抵抗を測定し、測定した絶縁抵抗が所定値を下回っている場合に、警報を発する。この絶縁監視装置においても、絶縁抵抗を過大評価せずにその低下を見逃すことなく把握することができると共に、当該絶縁抵抗の低下を警報により報知することができる。
 本発明の一側面によれば、絶縁抵抗を過大評価せずにその低下を見逃すことなく把握することが可能となる。
第1実施形態に係る絶縁抵抗測定装置を示す構成図である。 図1の絶縁抵抗測定装置を用いた絶縁抵抗測定方法を説明するための図である。 図1の絶縁抵抗測定装置を説明するためのIVカーブを示すグラフである。 図1の絶縁抵抗測定装置の変形例を示す構成図である。 第2実施形態に係る絶縁抵抗測定装置を示す構成図である。 第3実施形態に係る絶縁抵抗測定装置を示す構成図である。
 以下、図面を参照しながら、本発明の一側面に係る実施形態について詳細に説明する。なお、以下の説明では、同一又は相当要素には同一符号を付し、重複する説明は省略する。
[第1実施形態]
 第1実施形態について説明する。図1は、第1実施形態に係る絶縁抵抗測定装置を示す構成図である。図1に示すように、本実施形態の絶縁抵抗測定装置100は、太陽光発電システムにおいて発電部11の絶縁抵抗を測定するためのものである。絶縁抵抗測定装置100は、電圧計12、第1切替接続部13及び第2切替接続部14を、測定部10として備えている。絶縁抵抗測定装置100は、制御ユニット(制御部)15及び演算ユニット(演算部)16を備えている。
 発電部11は、太陽光を利用して発電を行うためのものである。発電部11は、複数(図中では、6つ)の太陽電池モジュール17が直列接続されてなる太陽電池ストリング18により構成されている。太陽電池モジュール17は、例えばパネル状に構成されている。太陽電池モジュール17は、互いに直列接続された複数の太陽電池ユニットを備えている。なお、発電部11は、複数の太陽電池ストリング18が並列接続されてなる太陽電池アレイにより構成されていてもよい。
 発電部11は、例えば、不図示のパワーコンディショナに接続され、当該パワーコンディショナへ直流出力を供給する。パワーコンディショナは、供給された直流出力を交流出力に変換し、後段の電力系統(例えば商用電力系統)へ供給するものである。パワーコンディショナは、絶縁トランスを有するトランス絶縁型であってもよいし、トランスレス(非絶縁)型であってもよい。ただし、絶縁抵抗を測定している間、発電部11は、交流系統から絶縁されていてもよい。例えば、発電部11が交流系統から絶縁されていない場合、交流系統の接地を絶縁不良と見分けることが困難で、正確な絶縁測定を実施できないおそれがあるためである。従って、トランスレス型のパワーコンディショナを用いる場合、スイッチ装置等により発電部11とパワーコンディショナとの電気的接続を切り離してから、絶縁抵抗測定を行ってもよい。
 電圧計12は、正極及び負極を有し、これら正極及び負極間に設けられた抵抗12aの電圧値を測定する。電圧計12は、測定した電圧値を演算ユニット16へ出力する。電圧計12としては、種々のものを用いることができる。ここでは、電圧計12として、単極型のものが用いられている。抵抗12aは、既知の所定抵抗値Rを有している。なお、ここでは、抵抗12aを電圧計12と区別して説明しているが、抵抗12aは電圧計12の内部抵抗(受信抵抗)であってもよい。電圧計12の受信抵抗をR1とし、電圧計12と並列に接続する抵抗をR2とする場合には、抵抗12aは、並列合成抵抗(1/(1/R1)+(1/R2))を表す。
 第1切替接続部13は、電圧計12の正極を、発電部11の正極と大地Gとの間で切替可能に接続する。具体的には、第1切替接続部13は、切替えスイッチ19aを介して電圧計12の正極(抵抗12aの正極側)から発電部11の正極に接続された正極配線13xと、切替えスイッチ19bを介して電圧計12の正極から大地Gに接続された正極配線13yと、を含んでいる。
 第2切替接続部14は、電圧計12の負極を、発電部11の負極と大地Gとの間で切替可能に接続する。具体的には、第2切替接続部14は、切替えスイッチ19cを介して電圧計12の負極(抵抗12aの負極側)から発電部11の負極に接続された負極配線14xと、切替えスイッチ19dを介して電圧計12の負極から大地Gに接続された負極配線14yと、を含んでいる。
 切替えスイッチ19a~19dとしては、電流を遮断するものであれば如何なる構成のものも用いることができる。切替えスイッチ19a~19dとして、例えば、FET(Field Effect Transistor)やIGBT(Insulated GateBipolar Transistor)等の半導体スイッチ、機械式リレー等の電磁開閉器を用いることができる(以下のスイッチについて同様)。
 制御ユニット15は、第1及び第2切替接続部13,14における切替えを制御するものである。具体的には、制御ユニット15は、切替えスイッチ19aをON且つ切替えスイッチ19bをOFFにして電圧計12の正極を発電部11の正極に接続し、切替えスイッチ19cをOFF且つ切替えスイッチ19dをONにして電圧計12の負極を大地Gに接続させる。
 制御ユニット15は、切替えスイッチ19aをOFF且つ切替えスイッチ19bをONにして電圧計12の正極を大地Gに接続させたとき、切替えスイッチ19cをON且つ切替えスイッチ19dをOFFにして電圧計12の負極を発電部11の負極に接続させる。さらにまた、制御ユニット15は、切替えスイッチ19aをON且つ切替えスイッチ19bをOFFにして電圧計12の正極を発電部11の正極に接続して、切替えスイッチ19cをON且つ切替えスイッチ19dをOFFにして電圧計12の負極を発電部11の負極に接続させる。
 演算ユニット16は、電圧計12で測定した電圧値に基づいて、絶縁抵抗を演算し算出する。演算ユニット16は、専用のECU[Electronic Control Unit]で構成されていてもよく、あるいは、パソコン等の汎用コンピュータにおけるアプリケーションとして構成されてもよい。演算ユニット16による演算の詳細については、後述する。
 なお、このように構成された絶縁抵抗測定装置100では、発電部11の正極を大地Gに接続させた状態における発電部11の正極と大地Gとの間の負荷抵抗(以下、「第1負荷抵抗」)と、発電部11の負極を大地Gに接地させた状態における発電部11の負極と大地Gとの間の負荷抵抗(以下、「第2負荷抵抗」)と、発電部11の正極及び負極を互いに接続させた状態における発電部11の正極と負極との間の負荷抵抗(以下、「第3負荷抵抗」)と、は、全て電圧計12の正極及び負極間の抵抗12aにより構成され、互いに同じ所定抵抗値Rとなる。
 次に、上記絶縁抵抗測定装置100による絶縁抵抗の測定について説明する。図2は、図1の絶縁抵抗測定装置を用いた絶縁抵抗測定方法を説明するための図である。ここでは、図2に示すように、ある太陽電池モジュール17x,17y間で地絡が発生し、太陽電池ストリング18の絶縁抵抗が絶縁抵抗Rまで低下した場合の地絡状態を例にして説明する。
 絶縁抵抗測定装置100を用いた絶縁抵抗測定方法では、発電部11を開放した状態において、図2(a)に示すように、制御ユニット15により、切替えスイッチ19a,19dをONとすると共に切替えスイッチ19b,19cをOFFとし、電圧計12の正極を発電部11の正極に接続する。これと共に、電圧計12の負極を大地Gに接続する。これにより、発電部11の正極側を大地Gへ接地させる。すなわち、発電部11の正極から、切替えスイッチ19a、抵抗12a、切替えスイッチ19d及び大地Gへこの順に接続されてなる接地線を形成する。この状態で、電圧計12により、抵抗12aの電圧値を、第1負荷抵抗における電圧値である第1電圧値VD1として測定する。何れの箇所で地絡が発生していても、その箇所の電位は正極以下であるため、抵抗12aを流れる電流値Iの向きは、図2(a)に示した通りとなる。そのため、正極負極が固定されたモノポーラの電圧計12で第1電圧値VD1を測定することが可能である。
 図2(b)に示すように、発電部11を開放した状態において、制御ユニット15により、切替えスイッチ19b,19cをONとすると共に切替えスイッチ19a,19dをOFFとし、電圧計12の正極を大地Gに接続すると共に、電圧計12の負極を発電部11の負極に接続する。これにより、発電部11の負極側を大地Gへ接地させる。すなわち、発電部11の負極から、切替えスイッチ19c、抵抗12a、切替えスイッチ19b及び大地Gへこの順に接続されてなる接地線を形成する。この状態で、電圧計12により、抵抗12aの電圧値を、第2負荷抵抗における電圧値である第2電圧値VD2として測定する。何れの箇所で地絡が発生していても、その箇所の電位は負極以上であるため、抵抗12a流れる電流Iの向きは、図2(b)に示した通りとなり、正極負極が固定されたモノポーラの電圧計12でこの第2電圧値VD2を測定することが可能である。
 さらにまた、図2(c)に示すように、制御ユニット15により、切替えスイッチ19a,19cをONとすると共に、切替えスイッチ19b,19dをOFFとし、電圧計12の正極を発電部11の正極に接続すると共に、電圧計12の負極を発電部11の負極に接続する。これにより、発電部11の極間を互いに接続させる。すなわち、発電部11の正極から、切替えスイッチ19a、抵抗12a、切替えスイッチ19c及び発電部11の負極へこの順に接続されてなる閉回路を形成する。この状態で、電圧計12により、抵抗12aの電圧値を、第3負荷抵抗における電圧値である第3電圧値Vとして測定する。この場合にも、正極負極が固定されたモノポーラの電圧計12で第3電圧値Vを測定可能であることは言うまでもない。
 このように発電部11の正極を電圧計12に接続するときには、必ず電圧計12の正極に接続し、発電部11の負極を電圧計12に接続するときには、必ず電圧計12の負極に接続する構成であるため、モノポーラの電圧計12を利用することができる。なぜならば、発電部11中のどの位置で地絡が発生しても、その電位は、太陽電池正極の電位以下であることから、発電部11の正極を電圧計12に接続した場合の抵抗12a中の電流の向きは、発電部11から大地Gに流れ込む向きとなるためである。また、発電部11中のどの位置で地絡が発生しても、その電位は、太陽電池負極の電位以上であることから、発電部11の負極を電圧計12に接続した場合の抵抗12a中の電流の向きは、大地Gから発電部11に流れ込む向きとなるためである。
 続いて、演算ユニット16により、第1~第3電圧値VD1,VD2,Vに基づき絶縁抵抗Rを測定する。まず、絶縁抵抗Rの測定の原理について、説明する。
 発電部11の正極側を大地Gへ接地させた状態(図2(a)参照)では、流れる電流値Iは、下式(2)で表せる。また、発電部11の負極側を大地Gへ接地させた状態(図2(b)参照)では、流れる電流値Iは、下式(3)で表せる。
            I=V/(R+R) …(2)
            I=V/(R+R) …(3)
  V:地絡点から発電部11の正極までの太陽電池モジュール17による電圧値、
  V:地絡点から発電部11の負極までの太陽電池モジュール17による電圧値、
  R:所定抵抗値。
 従って、下式(4)~(6)に示すように、電圧値(V+V)及び電流値(I+I)より、絶縁抵抗Rを算出することができる。
        I+I=(V+V)/(R+R) …(4)
        (V+V)/(I+I)=R+R …(5)
        R=(V+V)/(I+I)-R …(6)
 また、地絡点の位置を、次式に基づき判定することが可能である。
             V:V2=I:I2
 図3は、図1の絶縁抵抗測定装置を説明するためのIVカーブを示すグラフである。図3において、IVカーブC1は地絡点から発電部11の正極までの太陽電池モジュール17の4直列IVカーブを示し、IVカーブC2は地絡点から発電部11の負極までの太陽電池モジュール17の2直列IVカーブを示し、IVカーブC3は発電部11の極間における太陽電池モジュール17の6直列IVカーブを示している。同じ電流値では、IVカーブC3の電圧値は、IVカーブC1の電圧値とICカーブC2の電圧値との合計となっている。なお、図中では、説明のための便宜上、低電流部分を拡大・強調して示している。
 発電部11の正極側を大地Gへ接地させた状態、及び、発電部11の負極側を大地Gへ接地させた状態では、負荷抵抗として、絶縁抵抗Rと所定抵抗値Rとが直列に接続されている。よって、図3に示すように、これらの状態の発電部11の動作電圧である電圧値V,Vは、IVカーブC1,C2と直線I=V(R+R)との交点における電圧値である。発電部11全体の開放電圧VOCは、VOC=VOC1+VOC2であるため、V+V≦VOCとなる。
  VOC1:地絡点から発電部11の正極までの太陽電池モジュール17の開放電圧、
  VOC2:地絡点から発電部11の負極までの太陽電池モジュール17の開放電圧。
 よって、上式(6)の電圧値(V+V)の代用として開放電圧VOCを用いると、絶縁抵抗Rを過大評価し、絶縁抵抗Rを見落としてしまう場合がある。特に、発電部11の直列抵抗が増大していると、電圧値(V+V)が開放電圧VOCよりも著しく低下することがあるため、絶縁抵抗Rの過大評価が顕著となる。また、発電部11が劣化している場合、絶縁抵抗の低下と同時に、直列抵抗も増大していることが懸念される。
 これに対し、負荷抵抗(R+R)における発電部11全体の極間電圧Vは、V≦V+Vである。そのため、上式(6)の電圧値(V+V)の代用として極間電圧Vを用いると、絶縁抵抗Rを過大評価することは回避できるが、当該絶縁抵抗Rは未知であるため、極間電圧Vを正確に求めることは困難である。
 この点、極間電圧Vの最低値は、次のようにして予測することができる。すなわち、絶縁抵抗Rが低下すれば、負荷抵抗(R+R)については所定抵抗値Rまで低下するため、極間電圧Vの最低値は、第3電圧値V(負荷抵抗が所定抵抗値Rのときにおける発電部11全体の極間電圧V)となる。従って、V≦V≦V+Vとなることから、上式(6)における電圧値(V+V)として、第3電圧値Vを用いれば、絶縁抵抗Rを過大評価のおそれを抑制して測定できることが見出される。
 そこで、本実施形態の演算ユニット16では、下式(7),(8)に基づいて絶縁抵抗Rを演算して測定する。なお、前述のように、下式(7),(8)において、VD1は発電部11の正極を大地Gに接続させた状態での第1負荷抵抗における電圧値(第1電圧値)、VD2は発電部11の負極を大地Gに接続させた状態での第2負荷抵抗における電圧値(第2電圧値)、Vは発電部11の正極及び負極を互いに接続させた状態での第3負荷抵抗における電圧値(第3電圧値)、Iは発電部11の正極を大地Gに接続させた状態での第1負荷抵抗における電流値、Iは発電部11の負極を大地Gに接続させた状態での第2負荷抵抗における電流値、Iは発電部11の正極及び負極を互いに接続させた状態での第3負荷抵抗における電流値、Rは所定抵抗値、Rは絶縁抵抗である。
    R≧(I/(I+I)-1)×R …(7)
    I=V/R,I=VD1/R、I=VD2/R …(8)
 上式(7)は、V+V≧V=I×Rと上式(6)とにより得ることができる。すなわち、絶縁抵抗R
           (I/(I+I)-1)×R
として評価すれば、絶縁抵抗Rの真値は当該評価値以上であることから、絶縁抵抗Rの低下を見逃すことなく把握することが可能となる。
 なお、本実施形態では、図1に示すように、第1負荷抵抗と、第2負荷抵抗と、第3負荷抵抗とを、全て、電圧計12の正極及び負極の間における抵抗12aにより構成する場合を説明した。このように、第1~第3負荷抵抗を電圧計12の測定対象となる抵抗のみにより構成する場合には、電流値を算出せずに、下式(9)に示すように電圧計12によって測定された値を直接使用してよいことは言うまでもない。
       R≧(V/(VD1+VD2)-1)×R …(9)
 この場合、地絡点の位置についても、電流値を使用せずに電圧計によって測定された値を直接使用してよいことも言うまでもない(次式参照)。
            V:V2=VD1:VD2
 ちなみに、所定抵抗値Rは、絶縁抵抗Rを精度よく測定するために、次の値としてもよい。つまり、所定抵抗値Rが小さすぎると地絡していることになることから、地絡と判断する閾値と同程度又は閾値よりも高くてもよい。所定抵抗値Rが大きすぎると、電流値I1,I2の測定時に対地電位が安定するまで待つ時間が長くなって測定時間が長くなることから、短い測定時間での測定では、測定精度が低下する。所定抵抗値Rは、測定に許容される時間を対地静電容量で除し、さらに所定値(ここでは、3)で除した値と同程度又はそれ以下であってもよい。
 以上、本実施形態では、発電部11の正極を大地Gに接続させた状態で第1電圧値VD1が測定される。発電部11の負極を大地Gに接地させた状態で第2電圧値VD2が測定される。発電部11の正極及び負極を互いに接続させた状態で第3電圧値Vが測定される。ここで、発電部11の正極及び大地間の第1負荷抵抗と、発電部11の負極及び大地間の第2負荷抵抗と、発電部11の正極及び該負極間の第3負荷抵抗と、は、抵抗12aが兼用されて互いに同じ所定抵抗値Rとされている。そのため、第3電圧値Vについて、V≦V≦V+Vが成立する。
 よって、第3電圧値Vを上式(6)の電圧値(V+V)として用いた上式(7)の右辺でもって絶縁抵抗Rを算出することで、絶縁抵抗Rを過大評価するおそれなく監視できる。その結果、絶縁抵抗Rの低下を見逃すことなく把握することが可能となる。加えて、例えば装置構成及び絶縁抵抗Rの算出に係るソフトウェアが簡易なものとなり、動作が確実で安価な絶縁抵抗測定装置100を製造することも可能となる。
 本実施形態においては、上述したように、地絡点の位置を演算して判定することができ、よって、地絡点の位置についても把握可能となる。
 本実施形態では、上述したように、一つの電圧計12のみによって絶縁抵抗Rを測定することが可能となり、簡易な構成で絶縁抵抗Rを測定することが可能となる。また、上述したように、電圧計12としては、電圧の向きを判定可能な電圧計である双極型(バイポーラ)のもの等が要されず、単極型(モノポーラ)のものを用いることができる。すなわち、本実施形態によれば、正電圧だけ計れる電圧計12を1台で、3つの測定(電圧値VD1,VD2,Vの測定)を実現することができる。その結果、低コスト化するだけでなく、メンテナンスを容易化することが可能となる。
 上記において、第1及び第2切替接続部13,14と切替えスイッチ19a,19dと抵抗12aと電圧計12とは、発電部11の正極を大地Gに接続させて第1電圧値VD1を測定する第1測定部を構成する。また、第1及び第2切替接続部13,14と切替えスイッチ19b、19cと抵抗12aと電圧計12とは、発電部11の負極を大地Gに接地させて第2電圧値VD2を測定する第2測定部を構成する。また、第1及び第2切替接続部13,14と切替えスイッチ19a、19cと抵抗12aと電圧計12とは、発電部11の正極及び負極を互いに接続させて第3電圧値Vを測定する第3測定部を構成する。
 図4は、図1の絶縁抵抗測定装置の変形例を示す構成図である。図4に示すように、絶縁抵抗測定装置100は、切替えスイッチ19a,19b(図1参照)に代えてC接点20aを備えていると共に、切替えスイッチ19c,19d(図1参照)に代えてC接点20bを備えていてもよい。これにより、配線を簡易化することができ、ひいては、一層簡易な構成で絶縁抵抗Rを測定することが可能となる。
 なお、本実施形態において、第1負荷抵抗、第2負荷抵抗及び第3負荷抵抗を電圧計12に並列接続された抵抗12aだけで構成するのではなく、保護抵抗を含めて構成してもよい。すなわち、第1切替接続部13及び/又は第2切替接続部14に、第1~第3負荷抵抗の各抵抗値が互いに等しくなるように、一つ又は複数の保護抵抗を配置してもよい。この場合、演算ユニット16では、下式(10),(11)に基づいて絶縁抵抗Rを演算して測定できる。なお、下式(10),(11)において、VD1は発電部11の正極を大地Gに接続させた状態での抵抗12aにおける電圧値、VD2は発電部11の負極を大地Gに接続させた状態での抵抗12aにおける電圧値、Vは発電部11の正極及び負極を互いに接続させた状態での抵抗12aにおける電圧値、Iは発電部11の正極を大地Gに接続させた状態での第1負荷抵抗における電流値、Iは発電部11の負極を大地Gに接続させた状態での第2負荷抵抗における電流値、Rは抵抗12aの抵抗値、Rは各第1~第3負荷抵抗における保護抵抗値の和、Rは絶縁抵抗値である。ここでは、所定抵抗値は(R+R)である。
   R≧(I/(I+I)-1)×(R+R) …(10)
   I=V/R、I=VD1/R、I=VD2/R …(11)
[第2実施形態]
 次に、第2実施形態について説明する。本実施形態の説明では、上記第1実施形態と異なる点について主に説明する。
 図5は、第2実施形態に係る絶縁抵抗測定装置を示す構成図である。図5に示すように、本実施形態の絶縁抵抗測定装置200が上記第1実施形態と異なる点は、測定部10(図1参照)に代えて、第1~第3測定部211~213を有する測定部210を備えている点である。
 第1測定部211は、所定抵抗値Rを有する第1抵抗12a1と、この第1抵抗12a1の電圧値を測定する第1電圧計12と、切替えスイッチ219aを介して第1電圧計12の正極(第1抵抗12a1の正極側)を発電部11の正極に接続する第1配線21と、切替えスイッチ219bを介して第1電圧計12の負極(第1抵抗12a1の負極側)を大地Gに接続する第1配線22と、を含んでいる。
 第2測定部212は、所定抵抗値Rを有する第2抵抗12a2と、この第2抵抗12a2の電圧値を測定する第2電圧計12と、切替えスイッチ219dを介して第2電圧計12の正極(第2抵抗12a2の正極側)を大地Gに接続する第2配線21と、切替えスイッチ219cを介して第2電圧計12の負極(第2抵抗12a2の負極側)を発電部11の負極に接続する第2配線22と、を含んでいる。
 第3測定部213は、所定抵抗値Rを有する第3抵抗12a3と、この第3抵抗12a3の電圧値を測定する第3電圧計12と、切替えスイッチ219eを介して第3電圧計12の正極(第3抵抗12a3の正極側)を発電部11の正極に接続する第3配線21と、切替えスイッチ219fを介して第3電圧計12の負極(第3抵抗12a3の負極側)を発電部11の負極に接続する第3配線22と、を含んでいる。
 本実施形態の絶縁抵抗測定装置200を用いた絶縁抵抗測定方法では、制御ユニット15により、切替えスイッチ219a,219bをONとすると共に切替えスイッチ219c~219fをOFFとし、発電部11の正極側を大地Gへ接地させる。この状態で、第1電圧計12により、第1抵抗12a1の電圧値を第1電圧値VD1として測定する。
 また、制御ユニット15により、切替えスイッチ219c,219dをONとすると共に切替えスイッチ219a,219b,219e,219fをOFFとし、発電部11の負極側を大地Gへ接地させる。この状態で、第2電圧計12により、第2抵抗12a2の電圧値を第2電圧値VD2として測定する。
 さらにまた、制御ユニット15により、切替えスイッチ219e,219fをONとすると共に切替えスイッチ219a~219dをOFFとし、発電部11の極間を互いに接続させる。この状態で、第3電圧計12により、第3抵抗12a3の電圧値を第3電圧値Vとして測定する。
 以上、本実施形態においても、第1負荷抵抗と第2負荷抵抗と第3負荷抵抗とが互いに同じ所定抵抗値Rとなっている。よって、絶縁抵抗Rを過大評価するおそれなく監視し、絶縁抵抗Rの低下を見逃すことなく把握することが可能となるという上記作用効果が奏される。
 なお、本実施形態において、第1抵抗12a1と第2抵抗12a2と第3抵抗12a3とが全て等しい所定抵抗値Rを有することとして説明したが、第1負荷抵抗と第2負荷抵抗と第3負荷抵抗とが互いに同じ所定抵抗値であればよく、電圧計12~12の測定対象となる抵抗12a1~12a3を全て同じ値にする必要はない。例えば、図5において、第1配線21に第1保護抵抗Rを、第2配線22に第2保護抵抗Rを、第3配線21に第3保護抵抗Rをそれぞれ配置し、第1負荷抵抗(第1保護抵抗Rと第1抵抗12a1との和)と、第2負荷抵抗(第2保護抵抗Rと第2抵抗12a2との和)と、第3負荷抵抗(第3保護抵抗Rと第3抵抗12a3との和)が互いに同じ所定抵抗値になるように設計することができる。
 さらにまた、本実施形態においては、第1、第2及び第3負荷抵抗は互いに同じ所定抵抗値を有しなくともよい。要は、第3負荷抵抗の抵抗値が、第1及び第2負荷抵抗が同じ抵抗値を有する場合には当該抵抗値以下とされ、第1及び第2負荷抵抗が互いに異なる抵抗値を有する場合には第1及び第2負荷抵抗の各抵抗値のうち小さい一方(大きくない一方)の抵抗値以下とされていてもよい。この場合、例えば以下に例示するように、絶縁抵抗Rの低下を見逃すことなく把握することができ、地絡点の位置(地絡位置)を把握することができる。
 まず、発電部11の正極を、抵抗値RD1を有する第1負荷抵抗を介して接地した際に、この第1負荷抵抗に発生する電圧を第1電圧値VD1とし、このときの地絡点から当該正極までの発電部11の電圧を電圧値Vとする。発電部11の負極を、抵抗値RD2を有する第2負荷抵抗を介して接地した際に、この第2負荷抵抗に発生する電圧を第2電圧値VD2とし、このときの地絡点から負極までの発電部11の電圧を電圧値Vとする。発電部11の正極及び負極間を、抵抗値RD3を有する第3負荷抵抗を介して接続した際に、この第3負荷抵抗に発生する電圧を第3電圧値Vとする。
 この場合、次式(A),(B)が成立する。また、RD3≦RD1、且つ、RD3≦RD2より、次式(C)が成立する。
          VD1=V×RD1/(R+RD1) …(A)
          VD2=V×RD2/(R+RD2) …(B)
          V+V≧V …(C)
 そして、上式(A),(B),(C)より、下式を得ることができる。
    R≧RD1×RD2×(V-VD1-VD2)/
                  (RD1×VD2+RD2×VD1
 すなわち、V+V=Vとみなし、絶縁抵抗R
    RD1×RD2×(V-VD1-VD2)/
                  (RD1×VD2+RD2×VD1
として評価すれば、絶縁抵抗Rの真値は当該評価値以上であることから、絶縁抵抗Rの低下を見逃すことなく把握することが可能となる。
 さらにこの場合、下式により地絡位置を推定することが可能である。
    V:V=VD1×(RD2×V+VD2×(RD1-RD2)):
           VD2×(RD1×V+VD1×(RD2-RD1))
 なお、負荷抵抗の抵抗値RD1,RD2,RD3の何れも、複数の抵抗の組み合わせで構成することができる。このとき、その一部の抵抗の電圧値から上記電圧値VD1,VD2,Vを求めることで、上記計算を行ってもよい。
 或いは、第1、第2及び第3負荷抵抗に流れる電流に基づいて、絶縁抵抗R及び地絡位置を求めてもよい。例えば、上記の例において、発電部11の正極を第1負荷抵抗を介して接地した際に第1負荷抵抗に流れる電流を電流値Iとし、発電部11の負極を第2負荷抵抗を介して接地した際に第2負荷抵抗に流れる電流を電流値Iとし、発電部11の正極及び負極間を抵抗値RD3を有する第3負荷抵抗を介して互いに接続した際に第3負荷抵抗に流れる電流を電流値Iとする場合、次式(D),(E)が成立し、また、RD3≦RD1、且つ、RD3≦RD2より、次式(F)が成立する。
            I=V/(R+RD1) …(D)
            I=V/(R+RD2) …(E)
            V+V≧V …(F)
 そして、上式(D),(E),(F)より、下式を得ることができる。
    R≧(V-RD2×I-RD1×I)/(I+I
 すなわち、V+V=Vとみなし、また、V=RD3×Iであることから、絶縁抵抗R
    (RD3×I-RD2×I-RD1×I)/(I+I
として評価すれば、絶縁抵抗Rの真値は当該評価値以上であることから、絶縁抵抗Rの低下を見逃すことなく把握することが可能となる。
 さらにこの場合、下式により地絡位置を推定することが可能である。
 V:V=I×(RD3×I+I×(RD1-RD2)):
             I×(RD3×I+I×(RD2-RD1))
[第3実施形態]
 次に、第3実施形態について説明する。本実施形態の説明では、上記第1実施形態と異なる点について主に説明する。
 図6は、第3実施形態に係る絶縁抵抗測定装置を示す構成図である。図6に示すように、本実施形態の絶縁抵抗測定装置300が上記第1実施形態と異なる点は、測定部10(図1参照)に代えて、対地測定部311及び極間測定部312を有する測定部310を備えている点である。
 対地測定部311は、第1及び第2測定部を構成するものである。対地測定部311は、抵抗31と、この抵抗31の電圧値を測定する双極型の電圧計32と、切替えスイッチ319aを介して電圧計32の一方側を発電部11の正極に接続する配線33xと、切替えスイッチ319bを介して電圧計32の一方側を発電部11の正極に接続する配線33yと、電圧計32の他方側を大地Gに接続する配線34と、を含んでいる。配線33xには、抵抗35xが設けられている。配線33yには、抵抗35yが設けられている。
 極間測定部312は、第3測定部を構成するものである。極間測定部312は、抵抗36と、この抵抗36の電圧値を測定する電圧計37と、切替えスイッチ319cを介して電圧計37の正極を発電部11の正極に接続する配線38と、切替えスイッチ319dを介して電圧計37の負極を発電部11の負極に接続する配線39と、を含んでいる。
 ここで、本実施形態では、抵抗31の抵抗値と抵抗35xの抵抗値との合計、抵抗31の抵抗値と抵抗35yの抵抗値との合計、及び、抵抗36の抵抗値が、互いに同じとされており、ここでは、所定抵抗値Rとされている。これにより、本実施形態においても、第1負荷抵抗と第2負荷抵抗と第3負荷抵抗とが互いに同じ所定抵抗値Rとなっている。よって、絶縁抵抗Rを過大評価するおそれなく監視し、絶縁抵抗Rの低下を見逃すことなく把握することが可能となるという上記作用効果が奏される。
 以上、本発明の一側面に係る実施形態について説明したが、本発明は上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。
 例えば、太陽電池モジュール17を構成する太陽電池ユニットの数、太陽電池ストリング18を構成する太陽電池モジュール17の数、太陽電池アレイを構成する太陽電池ストリング18の数、及び、太陽光発電システムを構成する太陽電池アレイの数については、限定されるものではない。1つとしてもよいし複数としてもよい。
 上記実施形態では、第1測定部により第1電圧値VD1を測定したが、電流値Iを測定してもよい。また、第2測定部により第2電圧値VD2を測定したが、電流値Iを測定してもよい。本発明の一側面においては、測定部の構成は限定されるものではなく、第1負荷抵抗と第2負荷抵抗と第3負荷抵抗とが互いに同じ所定抵抗値であれば、種々の構成を採用することができる。なお、上記実施形態は、絶縁抵抗測定装置を備えた太陽電池ストリング、太陽電池アレイ、又は太陽光発電システムとして捉えることもできる。
 上記第1~3実施形態の何れかに係る絶縁抵抗測定装置は、警報部を更に備えた絶縁監視装置として捉えることもできる。つまり、本発明の一側面は、絶縁抵抗測定装置100,200,300の何れかを用いて発電部11における絶縁抵抗を測定し、その測定結果である絶縁抵抗が所定値を下回っている場合に警報を発する絶縁監視装置として捉えることもできる。
 この場合、例えば、警報部は、演算ユニット16により演算された発電部11の絶縁抵抗Rを、記憶装置に予め記憶された所定値と比較し(比較判定処理)、絶縁抵抗Rが所定値を下回っている場合に警報を発する。警報部としては、ブザー等の音を発するものであってもよいし、モニタに地絡がある旨を表示するものであってもよいし、別途設けられた監視システムに無線又は有線により警報信号を発信するものであってもよいし、これらの少なくとも何れかを有するものであってもよい。警報部の比較判定処理は、演算ユニット16により実行する構成としてもよい。
 なお、「発電部11の正極と大地Gとの接続」、「発電部11の負極と大地Gとの接続」、「発電部11の正極と負極との接続」、「電圧計12の負極と大地Gとの接続」、「電圧計12の正極と発電部11の正極との接続」、「電圧計12の正極と大地Gとの接続」、「電圧計12の負極と発電部11の負極との接続」、及び、「電圧計12の負極と大地Gとの接続」のそれぞれでは、接続される両者の間に1又は複数の抵抗やスイッチ等の電子部品(素子)が介在されていてもよい。要は、両者が互いに電気的に接続されていればよい。
 本発明の一側面によれば、絶縁抵抗を過大評価せずにその低下を見逃すことなく把握することが可能となる。
 10,210,310…測定部、11…発電部、12…電圧計(第1測定部,第2測定部,第3測定部)、12a…抵抗(第1測定部,第2測定部,第3測定部)、13…第1切替接続部(第1測定部,第2測定部,第3測定部)、14…第2切替接続部(第1測定部,第2測定部,第3測定部)、16…演算ユニット(演算部)、17…太陽電池モジュール、18…太陽電池ストリング、19a…切替えスイッチ(第1測定部,第3測定部)19b…切替えスイッチ(第2測定部)、19c…切替えスイッチ(第2測定部,第3測定部)、19d…切替えスイッチ(第1測定部)、100,200,300…絶縁抵抗測定装置、211…第1測定部、212…第2測定部、213…第3測定部、311…対地測定部(第1測定部,第2測定部)、312…極間測定部(第3測定部)、G…大地。
 

Claims (7)

  1.  少なくとも一つの太陽電池モジュールにより構成された発電部における絶縁抵抗を測定するための絶縁抵抗測定装置であって、
     前記発電部の正極を大地に接続させた状態で、該正極及び大地間の第1負荷抵抗における電圧値又は電流値を測定する第1測定部と、
     前記発電部の負極を大地に接地させた状態で、該負極及び大地間の第2負荷抵抗における電圧値又は電流値を測定する第2測定部と、
     前記発電部の正極及び負極を互いに接続させた状態で、該正極及び該負極間の第3負荷抵抗における電圧値又は電流値を測定する第3測定部と、を備えた測定部を具備し、
     前記第3負荷抵抗の抵抗値は、
     前記第1及び第2負荷抵抗が同じ抵抗値を有する場合、当該抵抗値以下とされ、
     前記第1及び第2負荷抵抗が互いに異なる抵抗値を有する場合、前記第1及び第2負荷抵抗の各抵抗値のうち小さい一方の抵抗値以下とされている、絶縁抵抗測定装置。
  2.  下式(1-1)に基づいて前記絶縁抵抗Rを演算する演算部を備えた、請求項1記載の絶縁抵抗測定装置。
          R≧(RD3×I-RD2×I-RD1×I)/
                     (I+I)…(1-1)
     但し、I:前記発電部の正極を大地に接続させた状態での前記第1負荷抵抗における電流値、I:前記発電部の負極を大地に接続させた状態での前記第2負荷抵抗における電流値、I:前記発電部の正極及び負極を互いに接続させた状態での前記第3負荷抵抗における電流値、RD1:前記第1負荷抵抗、RD2:前記第2負荷抵抗、RD3:前記第3負荷抵抗、R:前記絶縁抵抗。
  3.  下式(1-2)に基づいて地絡点の位置を演算する演算部を備えた、請求項1又は2記載の絶縁抵抗測定装置。
      V:V=I×(RD3×I+I×(RD1-RD2)):
        I×(RD3×I+I×(RD2-RD1))…(1-2)
     但し、V:地絡点から発電部の正極までの電圧値、V:地絡点から発電部の負極までの電圧値、I:前記発電部の正極を大地に接続させた状態での前記第1負荷抵抗における電流値、I:前記発電部の負極を大地に接続させた状態での前記第2負荷抵抗における電流値、RD1:前記第1負荷抵抗、RD2:前記第2負荷抵抗、RD3:前記第3負荷抵抗。
  4.  前記第1、第2及び第3負荷抵抗は、互いに同じ所定抵抗値を有する、請求項1~3の何れか一項記載の絶縁抵抗測定装置。
  5.  前記測定部は、
     正極及び負極を有し、該正極及び該負極間の抵抗の電圧値を測定する電圧計と、
     前記電圧計の正極を、前記発電部の正極と大地との間で切替可能に接続する第1切替接続部と、
     前記電圧計の負極を、前記発電部の負極と大地との間で切替可能に接続する第2切替接続部と、を含んで構成され、
     前記第1、第2及び第3負荷抵抗は、前記電圧計の正極及び負極間の前記抵抗により構成されており、
     前記第1測定部は、前記第1切替接続部によって前記電圧計の正極を前記発電部の正極に接続させつつ、前記第2切替接続部によって前記電圧計の負極を大地に接続させた状態で、前記抵抗における電圧値又は電流値を測定し、
     前記第2測定部は、前記第1切替接続部によって前記電圧計の正極を大地に接続させつつ、前記第2切替接続部によって前記電圧計の負極を前記発電部の負極に接続させた状態で、前記抵抗における電圧値又は電流値を測定し、
     前記第3測定部は、前記第1切替接続部によって前記電圧計の正極を前記発電部の正極に接続させつつ、前記第2切替接続部によって前記電圧計の負極を前記発電部の負極に接続させた状態で、前記抵抗における電圧値又は電流値を測定する、請求項2~4の何れか一項記載の絶縁抵抗測定装置。
  6.  請求項1~5の何れか一項記載の絶縁抵抗測定装置を用いて前記発電部における前記絶縁抵抗を測定する、絶縁抵抗測定方法。
  7.  請求項1~5の何れか一項記載の絶縁抵抗測定装置を用いて前記発電部における前記絶縁抵抗を測定し、測定した前記絶縁抵抗が所定値を下回っている場合に、警報を発する、絶縁監視装置。
PCT/JP2014/064329 2013-09-04 2014-05-29 絶縁抵抗測定装置、絶縁抵抗測定方法、及び絶縁監視装置 WO2015033627A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013182995A JP2015049216A (ja) 2013-09-04 2013-09-04 絶縁抵抗測定装置、絶縁抵抗測定方法、及び絶縁監視装置
JP2013-182995 2013-09-04

Publications (1)

Publication Number Publication Date
WO2015033627A1 true WO2015033627A1 (ja) 2015-03-12

Family

ID=52628117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064329 WO2015033627A1 (ja) 2013-09-04 2014-05-29 絶縁抵抗測定装置、絶縁抵抗測定方法、及び絶縁監視装置

Country Status (2)

Country Link
JP (1) JP2015049216A (ja)
WO (1) WO2015033627A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337519A (zh) * 2015-11-18 2016-02-17 阳光电源股份有限公司 级联多电平变换器的自检系统及自检方法
WO2016031269A1 (ja) * 2014-08-28 2016-03-03 オムロン株式会社 地絡検出装置および地絡検出方法
CN105807138A (zh) * 2016-03-10 2016-07-27 南通大学 车用电池组动态绝缘电阻的检测方法
CN110967606A (zh) * 2019-01-15 2020-04-07 宁德时代新能源科技股份有限公司 绝缘检测电路及检测方法、电池管理系统
WO2020147748A1 (zh) * 2019-01-15 2020-07-23 宁德时代新能源科技股份有限公司 绝缘检测电路及检测方法、电池管理系统
CN111983316A (zh) * 2020-07-29 2020-11-24 江苏固德威电源科技股份有限公司 一种iso检测方法和装置
WO2021197437A1 (zh) * 2020-04-02 2021-10-07 长城汽车股份有限公司 用于燃料电池车辆的绝缘故障响应方法及装置
CN114113791A (zh) * 2021-11-30 2022-03-01 北京邦卓尔微电子有限公司 接插件绝缘电阻和导通电阻测试系统及测试方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911353B (zh) * 2016-04-15 2018-09-14 广州汽车集团股份有限公司 汽车绝缘电阻检测电路及其绝缘电阻检测方法
CN110166002B (zh) * 2019-04-18 2021-02-09 江苏固德威电源科技股份有限公司 一种绝缘电阻检测电路、方法和应用其的光伏系统
CN110426556B (zh) * 2019-08-14 2021-12-07 江铃控股有限公司 整车绝缘电阻测试方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179272A (ja) * 1989-12-07 1991-08-05 Tenpaale Kogyo Kk 直流回路の地絡抵抗の表示装置
JP2011002417A (ja) * 2009-06-22 2011-01-06 Jx Nippon Oil & Energy Corp 絶縁抵抗測定装置及び絶縁抵抗測定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179272A (ja) * 1989-12-07 1991-08-05 Tenpaale Kogyo Kk 直流回路の地絡抵抗の表示装置
JP2011002417A (ja) * 2009-06-22 2011-01-06 Jx Nippon Oil & Energy Corp 絶縁抵抗測定装置及び絶縁抵抗測定方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031269A1 (ja) * 2014-08-28 2016-03-03 オムロン株式会社 地絡検出装置および地絡検出方法
CN105337519A (zh) * 2015-11-18 2016-02-17 阳光电源股份有限公司 级联多电平变换器的自检系统及自检方法
EP3171503A1 (en) * 2015-11-18 2017-05-24 Sungrow Power Supply Co., Ltd. Cascaded multilevel converter self-test system and self-test method for the same
US9906022B2 (en) 2015-11-18 2018-02-27 Sungrow Power Supply Co., Ltd. Cascaded multilevel converter self-test system and self-test method for the same
CN105337519B (zh) * 2015-11-18 2018-05-01 阳光电源股份有限公司 级联多电平变换器的自检系统及自检方法
CN105807138A (zh) * 2016-03-10 2016-07-27 南通大学 车用电池组动态绝缘电阻的检测方法
CN110967606A (zh) * 2019-01-15 2020-04-07 宁德时代新能源科技股份有限公司 绝缘检测电路及检测方法、电池管理系统
WO2020147748A1 (zh) * 2019-01-15 2020-07-23 宁德时代新能源科技股份有限公司 绝缘检测电路及检测方法、电池管理系统
US10969419B2 (en) 2019-01-15 2021-04-06 Contemporary Amperex Technology Co., Limited Insulation detection circuit, detection method and battery management system
US11448683B2 (en) 2019-01-15 2022-09-20 Contemporary Amperex Technology Co., Limited Insulation detection circuit, detection method and battery management system
WO2021197437A1 (zh) * 2020-04-02 2021-10-07 长城汽车股份有限公司 用于燃料电池车辆的绝缘故障响应方法及装置
CN111983316A (zh) * 2020-07-29 2020-11-24 江苏固德威电源科技股份有限公司 一种iso检测方法和装置
CN111983316B (zh) * 2020-07-29 2023-07-07 固德威技术股份有限公司 一种iso检测方法和装置
CN114113791A (zh) * 2021-11-30 2022-03-01 北京邦卓尔微电子有限公司 接插件绝缘电阻和导通电阻测试系统及测试方法
CN114113791B (zh) * 2021-11-30 2022-06-10 北京邦卓尔微电子有限公司 接插件绝缘电阻和导通电阻测试系统及测试方法

Also Published As

Publication number Publication date
JP2015049216A (ja) 2015-03-16

Similar Documents

Publication Publication Date Title
WO2015033627A1 (ja) 絶縁抵抗測定装置、絶縁抵抗測定方法、及び絶縁監視装置
JP5802076B2 (ja) 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
JP5000739B2 (ja) 電池モジュールを計測する検出装置および検出方法
JP5819602B2 (ja) 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
KR100840040B1 (ko) 감시 장치
US7576547B2 (en) Measuring array
CN103080758B (zh) 用于非接地电源的绝缘状态检测电路
JP6321007B2 (ja) 絶縁故障を検出し測定するための装置
WO2013018795A1 (ja) 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
JP5145380B2 (ja) 電池システム
CN101655523B (zh) 一种动力电池组对地绝缘电阻检测电路
JP2013140162A (ja) 絶縁抵抗測定回路
JP6390359B2 (ja) 太陽光発電システムの検査方法および検査装置
CN105842540A (zh) 一种直流母线绝缘电阻检测方法
CN104297570A (zh) 用于监测电力电路的方法和设备
WO2015015836A1 (ja) 太陽光発電システム
JP2014240767A (ja) 地絡検出装置
WO2015015835A1 (ja) 太陽光発電システム
KR20220048213A (ko) 배터리 장치, 배터리 관리 시스템 및 연결 상태 진단 방법
CN106053946A (zh) 光伏直流绝缘监测方法、装置及一种光伏系统
EP2799892B1 (en) Breakdown detection device and detection method thereof
WO2016199445A1 (ja) 太陽光発電システムの検査方法および検査装置
WO2016031269A1 (ja) 地絡検出装置および地絡検出方法
RU2377581C1 (ru) Способ измерения и контроля сопротивления изоляции изолированных от земли (корпуса) силовых электрических сетей переменного тока под рабочим напряжением и устройство для его реализации
CN113820544A (zh) 对地阻抗测量电路、对地阻抗测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843123

Country of ref document: EP

Kind code of ref document: A1