WO2021197323A1 - 燃油润滑性改进剂及其应用 - Google Patents

燃油润滑性改进剂及其应用 Download PDF

Info

Publication number
WO2021197323A1
WO2021197323A1 PCT/CN2021/083943 CN2021083943W WO2021197323A1 WO 2021197323 A1 WO2021197323 A1 WO 2021197323A1 CN 2021083943 W CN2021083943 W CN 2021083943W WO 2021197323 A1 WO2021197323 A1 WO 2021197323A1
Authority
WO
WIPO (PCT)
Prior art keywords
mono
ester
acid
acid monoester
maleate
Prior art date
Application number
PCT/CN2021/083943
Other languages
English (en)
French (fr)
Inventor
蔺建民
夏鑫
李宝石
李妍
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010240138.4A external-priority patent/CN113462443B/zh
Priority claimed from CN202010237464.XA external-priority patent/CN113462441B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to US17/995,222 priority Critical patent/US20230151290A1/en
Priority to JP2022559996A priority patent/JP2023521642A/ja
Priority to EP21778745.6A priority patent/EP4130206A4/en
Publication of WO2021197323A1 publication Critical patent/WO2021197323A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/593Dicarboxylic acid esters having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/593Dicarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/60Maleic acid esters; Fumaric acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/75Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of acids with a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/1905Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine

Definitions

  • This application relates to the field of fuel additives, in particular to an ester fuel lubricity improver, its preparation method and application.
  • low-sulfur diesel and ultra-low-sulfur diesel are usually treated with lubricity improvers (also known as lubricity additives or antiwear agents) to improve their lubricity.
  • lubricity improvers also known as lubricity additives or antiwear agents
  • This method has the advantages of low cost, flexible production, less pollution, etc., and has received extensive attention in the industry.
  • the existing low-sulfur diesel antiwear agents used in industry mainly include two types, acid type and ester type.
  • the main components of acid type antiwear agents are long-chain unsaturated fatty acids such as oleic acid, linoleic acid, and linolenic acid.
  • the typical product comes from refined tall oil fatty acids.
  • the ester type antiwear agent is the esterification reaction product of the above-mentioned fatty acid and polyhydric alcohol.
  • the cost of using fatty acid anti-wear agents to solve diesel lubricity problems is relatively low, with the upgrading of diesel emission standards and the deterioration of lubricity, the amount of diesel oil will be too large, which will cause diesel acidity to exceed the standard and increase the risk of corrosiveness.
  • the amount of fatty acid ester antiwear agent used is small, it also has a high cost, and there is a risk of emulsifying and becoming muddy when the diesel oil meets water.
  • the fuel injection system of aviation turbine engine relies on the fuel itself to provide lubrication of various components.
  • the lubricity of the fuel deteriorates, the spherical surface of the fuel plunger pump is severely worn, the fuel injection pressure decreases, the engine speed drops, and even an air parking accident may occur. Therefore, aviation fuel usually needs to add anti-wear agents to improve its lubricity.
  • Conjugated or non-conjugated unsaturated fatty acids based on oleic acid, linoleic acid and linolenic acid are used as raw materials, which are polymerized by Diels-Alder addition reaction to form dimer acid (Dimer acid), which is currently the lubricity of aviation fuel in most countries.
  • dimer acid dimer acid
  • the main component of the improver The main component of the improver.
  • the synthesis cost of dimer acid antiwear agent is relatively high, and the cost of dimer acid itself as an aviation fuel lubricity improver is also relatively high.
  • gasoline is the lightest liquid fuel with the worst lubricity. Due to the extremely low content of natural anti-wear impurities in gasoline, the lubricating effect of its body components is very prominent. Moreover, the newly formulated gasoline also contains a considerable amount of easily water-absorbable oxygen-containing blends (such as lower alcohols, etc.) and easily oxidized olefins, which will adversely affect the lubricating performance of the gasoline.
  • the improvement of gasoline lubricity not only means the alleviation of fuel injection pump wear and the extension of engine life, but also the benefits of increased energy utilization efficiency and reduced fuel consumption rate.
  • an effective way to improve the lubricity of gasoline is to add anti-wear agents to gasoline.
  • the existing gasoline anti-wear agents mostly use fatty amines or ether amines as raw materials, and the preparation cost is relatively high.
  • the lubricity additives prepared are nitrogen-containing compounds, which will generate nitrogen oxides during the combustion and use of gasoline, which will cause emission pollution. Contrary to the principle of using clean fuel.
  • An object of the present application is to provide a new type of fuel lubricity improver, which can significantly improve the lubricity of the fuel, and has a lower dosage, so that the use cost of the lubricity improver can be significantly reduced.
  • the present application provides a fuel lubricity improver, comprising a dicarboxylic acid monoester compound represented by structural formula (I):
  • R 1 is a single bond, a substituted or unsubstituted C 2-6 divalent alkenyl group, or a group having the structure -R 3 -R 4 -R 5 -;
  • R 2 is a substituted or unsubstituted C 1-40 hydrocarbon group
  • R 3 and R 5 are each independently a single bond, or a substituted or unsubstituted C 1-3 divalent alkyl group
  • R 4 is a substituted or unsubstituted C 3-12 divalent alicyclic group
  • substituted refers to substitution by at least one C 1-4 linear or branched hydrocarbon group.
  • the present application provides a fuel composition comprising a fuel component and the lubricity improver according to the present application, wherein based on the mass of the fuel being 100%, the dicarboxylic acid monoester compound is The content is 5-400ppm.
  • the present application provides a method for improving the lubricity of fuel, which includes adding the lubricity improver according to the present application to the fuel, wherein based on the mass of the fuel as 100%, the dicarboxylic acid The amount of monoester compound is 5-400ppm.
  • the present application provides the use of a dicarboxylic acid monoester compound as a fuel lubricity improver, wherein the dicarboxylic acid monoester compound has the following structural formula (I):
  • R 1 and R 2 are as described above.
  • the present application provides a dicarboxylic acid monoester compound of formula (I) suitable for use as a fuel lubricity improver:
  • R 1 is a single bond, a substituted or unsubstituted C 2-6 divalent alkenyl group, or a group having the structure -R 3 -R 4 -R 5 -;
  • R 2 is a substituted or unsubstituted C 5-14 linear or branched alkyl group
  • R 3 and R 5 are each independently a single bond, or a substituted or unsubstituted C 1-3 divalent alkyl group
  • R 4 is a substituted or unsubstituted C 3-6 divalent alicyclic group
  • substituted refers to substitution by at least one C 1-4 linear or branched hydrocarbon group.
  • the fuel lubricity improver of the present application has easy-to-obtain raw materials and simple production, can significantly improve the lubricity of the fuel, and the required addition amount is relatively low, which can significantly reduce the use cost of the lubricity improver.
  • the fuel lubricity improver according to the present application contains the unsaturated dicarboxylic acid monoester compound having formula (I), it will not cause the risk of emulsification and turbidity of diesel oil, and the anti-emulsification effect is equivalent to that of the fatty acid type lubricity improver , Better than fatty acid glyceride type lubricity improver.
  • Figure 1 is a photo of the wear scar of diesel fuel b measured on a diesel lubricity tester produced by PCS in the United Kingdom.
  • the corrected wear scar diameter (WS1.4) is 651 microns.
  • Figure 2 is a photo of wear scars measured after adding 200 mg/kg of monoisooctyl maleate described in Example II-1 to diesel fuel b, and the corrected wear scar diameter (WS1.4) is 208 microns.
  • any specific numerical value (including the end point of the numerical range) disclosed in this article is not limited to the precise value of the numerical value, but should be understood to also cover values close to the precise value, for example, within the range of ⁇ 5% of the precise value All possible values.
  • between the endpoints of the range, between the endpoints and the specific point values in the range, and between the specific point values can be arbitrarily combined to obtain one or more new Numerical ranges, these new numerical ranges should also be regarded as specifically disclosed herein.
  • the term "divalent” group refers to a group obtained by removing 2 hydrogen atoms from the corresponding compound.
  • C 2-6 divalent alkenyl group refers to a group having 2 -6 carbon atoms linear or branched olefins, such as ethylene, propylene, 1-butene, 2-butene, isobutene, pentene and hexene, etc., on the group obtained by removing two hydrogen atoms, where The carbon-carbon double bond can be located on the main chain of the group or on its side chain;
  • C 1-3 divalent alkyl group refers to the removal of two from an alkyl group having 1-3 carbon atoms.
  • C 3-12 divalent alicyclic group refers to a saturated or Unsaturated alicyclic hydrocarbons, such as cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclohexane, cyclohexene, etc., are groups obtained by removing two hydrogen atoms.
  • hydrocarbon group refers to a group obtained by removing a hydrogen atom from aliphatic hydrocarbon, alicyclic hydrocarbon or aromatic hydrocarbon, wherein the term “aliphatic hydrocarbon” refers to straight or branched chain, saturated or unsaturated hydrocarbon.
  • C 1-40 hydrocarbon groups methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, N-octyl, isooctyl, n-nonyl, isononyl, n-decyl, isodecyl, n-undecyl, isundecyl, n-dodecyl, n-tridecyl, isotene Trialkyl, 3-hexen-1-yl, octadecenyl, cyclohexyl, p-nonylphenyl, benzyl, etc.
  • any matters or matters not mentioned are directly applicable to those known in the art without any changes.
  • any embodiment described herein can be freely combined with one or more other embodiments described herein, and the technical solutions or technical ideas formed thereby shall be regarded as part of the original disclosure or original record of this application, and shall not be It is regarded as new content that has not been disclosed or anticipated in this article, unless those skilled in the art think that the combination is obviously unreasonable.
  • the present application provides a fuel lubricity improver, comprising a dicarboxylic acid monoester compound represented by structural formula (I):
  • R 1 is a single bond, a substituted or unsubstituted C 2-6 divalent alkenyl group, or a group having the structure -R 3 -R 4 -R 5 -;
  • R 2 is a substituted or unsubstituted C 1-40 hydrocarbon group
  • R 3 and R 5 are each independently a single bond, or a substituted or unsubstituted C 1-3 divalent alkyl group
  • R 4 is a substituted or unsubstituted C 3-12 divalent alicyclic group
  • substituted refers to substitution by at least one C 1-4 linear or branched hydrocarbon group.
  • R 1 is a single bond, a substituted or unsubstituted C 2-4 divalent alkenyl group, or a group having the structure -R 3 -R 4 -R 5 -;
  • R 2 is a substituted Or an unsubstituted C 1-18 hydrocarbon group;
  • R 3 and R 5 are each independently a single bond or a methylene group;
  • R 4 is a substituted or unsubstituted C 3-10 divalent alicyclic group.
  • R 2 is selected from a C 1-18 linear or branched hydrocarbon group, a C 4-18 alicyclic hydrocarbon group, and a C 7-18 aryl-substituted hydrocarbon group or a hydrocarbon-substituted aryl group.
  • the dicarboxylic acid monoester compound is selected from the group consisting of maleic acid monoester, fumaric acid monoester, itaconic acid monoester, citraconic acid monoester, and methyl fumaric acid monoester.
  • the dicarboxylic acid monoester compound is selected from the group consisting of maleic acid monomethyl ester, Monoethyl maleate, mono-n-propyl maleate, mono-n-butyl maleate, mono-n-octyl maleate, mono-n-nonyl maleate, mono-n-decyl maleate, maleic acid Mono-n-dodecyl ester, monomethyl itaconate, monoethyl itaconate, mono-n-propyl itaconate, mono-n-butyl itaconate, mono-n-octyl itaconate, mono-n-decyl itaconic acid Ester, itaconic acid mono-n-dodecyl ester, maleic acid monoisopropyl ester, maleic acid monoisobutyl ester, male
  • the dicarboxylic acid monoester compound is selected from the group consisting of 1,2-cyclopentadicarboxylic acid monoester, 1,2-cyclohexanedicarboxylic acid monoester, and tetrahydrophthalic acid monoester.
  • esters methylhexahydrophthalic acid monoester, methyltetrahydrophthalic acid monoester, 1-methyl-1,2-cyclohexanedicarboxylic acid monoester, 4-methyl-1,2-ring Adipate monoester, 3-methyl-1,2-cyclohexanedicarboxylate monoester, 4-methyl-4-cyclohexene-1,2-dicarboxylate monoester, 3-methyl-4-ring Hexene-1,2-dicarboxylic acid monoester, or any combination thereof; more preferably, the dicarboxylic acid monoester compound is selected from 1,2-cyclohexanedicarboxylic acid monoester, tetrahydrophthalic acid Monoester, methylhexahydrophthalic acid monoester, methyltetrahydrophthalic acid monoester, or any combination thereof.
  • the fuel lubricity improver of the present application may contain an appropriate amount of fuel and/or organic solvents, as well as a small amount of unreacted raw materials, and inevitably contain some reaction by-products, such as dicarboxylic acid diester compounds.
  • the present application provides a method for preparing a fuel lubricity improver, which includes reacting a dicarboxylic acid of structural formula (II) or an anhydride thereof with an alcohol or phenol of structural formula (III),
  • R 1 and R2 are as described above.
  • the reaction conditions include: the molar ratio of the dicarboxylic acid or acid anhydride to the alcohol or phenol is 1:0.5 to 1:1.5, the reaction temperature is 50-250°C, and the reaction time is 0.1- For 10 hours, the reaction pressure can be normal pressure or under a certain pressure.
  • a catalyst can be used or not, a solvent can be used or no solvent can be used.
  • the reaction conditions include: the molar ratio of the dicarboxylic acid or acid anhydride to the alcohol or phenol is 1:0.8 to 1:1.3, the reaction temperature is 50-200°C, and the reaction time is 1 -6hr, the reaction pressure can be normal pressure, no catalyst is used, no solvent.
  • the dicarboxylic acid of structural formula (II) or its anhydride includes, but is not limited to: maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid , Citraconic anhydride, methyl fumaric acid, 2,3-dimethylmaleic acid, 2,3-dimethylmaleic anhydride, etc.
  • the alcohol or phenol having the structural formula (III) may be aliphatic alcohol, alicyclic alcohol, aromatic alcohol or phenol, and the carbon number is C1-C30, preferably C1-C18.
  • the carbon number is C1-C24, preferably C1-C18;
  • the carbon number is C3-C20, preferably C4-C10, including but not limited to cyclobutanol, etc.; when it is an aromatic alcohol
  • the carbon number is C6-C30, preferably C7-C18.
  • a catalyst may or may not be added during the reaction, and the catalyst may be an acid catalyst, such as one or more of sulfuric acid, hydrochloric acid, p-toluenesulfonic acid, phosphoric acid, boric acid, acidic ion exchange resin, etc.;
  • ionic liquid catalyst such as 1-butylpyridine/AlCl 4 ionic liquid, etc.
  • inorganic salt solid phase catalyst such as one or more of FeCl 3 , AlCl 3, etc.
  • molecular sieve catalyst such as ZSM-5 One or more of, HZSM-5, Al-MCM-41, etc.
  • heteropoly acid catalyst such as one or more of PW12/MCM-41, SiW12/MCM-41, etc.
  • solid super acid Catalysts such as SO 4 2- /ZrO 2 -TiO 2 , SO 4 2- /TiO 2 -Al 2 O 3,
  • the product after filtering to remove the catalyst can be used as the fuel lubricity improver of this application, or the product can be separated and purified according to the requirements of the antiwear agent product standard, such as removing Solvent and unreacted raw materials. Solvents and unreacted raw materials that meet the requirements of the standard do not affect the performance of the anti-wear agent of this application. After these components are added to the fuel, they have no adverse effect on the performance of the fuel.
  • an appropriate amount of fuel can be added to the reaction product to obtain a fuel antiwear agent concentrate.
  • the present application provides a fuel composition, comprising a fuel component and the fuel lubricity improver according to the present application, wherein based on the mass of the fuel component as 100%, the dicarboxylic acid mono
  • the content of the ester compound is 5-400 ppm, preferably 10-300 ppm.
  • the fuel component may be selected from diesel, gasoline and aviation fuel.
  • the fuel composition is a diesel composition, which comprises a diesel component and a fuel lubricity improver according to the present application, wherein the mass of the diesel component is 100%, so
  • the content of the dicarboxylic acid monoester compound is 10-400 ppm, preferably 50-300 ppm.
  • the diesel may include various low-sulfur diesel fuels.
  • it can be the distillation range of crude oil (petroleum) processed by various refining processes in the refinery, such as atmospheric and vacuum, catalytic cracking, catalytic reforming, coking, hydrofining, hydrocracking, etc., within 160-380°C.
  • the fuel for compression-ignition internal combustion engines that meets the national standard GB/T 19147 for automotive diesel.
  • the diesel fuel can also be second-generation biodiesel.
  • the second-generation biodiesel is derived from renewable resources, such as vegetable oil and animal fat, and is usually hydrotreated in refineries. Vegetable oil is hydrotreated and produced by hydrogenation. Isomerized or non-isomerized long-chain hydrocarbons, second-generation biodiesel may be similar to petroleum-based fuel oil in properties and quality.
  • the diesel fuel may be third-generation biodiesel.
  • the third-generation biodiesel is a non-oily biomass with high cellulose content, such as wood chips, crop straws, and solid waste, and microbial oils are obtained by gasification and Fischer-Tropsch technology. .
  • the diesel fuel may also be coal liquefied diesel (CTL), which refers to diesel fuel obtained by the synthesis of coal funds, or diesel fuel obtained by direct liquefaction of coal. It can also be a mixed diesel obtained by adding oxygenated diesel blending components to petroleum-based diesel.
  • the oxygenated diesel blending component refers to the oxygen-containing compound or oxygen-containing compound that can be blended with various diesel engine fuels to meet certain specifications.
  • the mixture of compounds is usually alcohols and ethers or mixtures thereof. For example, ethanol, polyoxymethylene dimethyl ethers (PODEn, DMMn, or OME), etc.
  • the diesel composition of the present application may also contain other additives, such as phenolic antioxidants, polymer amine ashless dispersants, flow improvers, cetane number improvers, metal deactivators, antistatic One or more of agents, preservatives, rust inhibitors, and demulsifiers.
  • additives such as phenolic antioxidants, polymer amine ashless dispersants, flow improvers, cetane number improvers, metal deactivators, antistatic One or more of agents, preservatives, rust inhibitors, and demulsifiers.
  • the polymer amine type ashless dispersant includes alkenyl succinimide and/or alkenyl succinic acid amide, Mannich base type ashless dispersant, polyetheramine type ashless dispersant and polyolefin amine type ashless dispersant One or more of powders.
  • the flow improver is preferably a homopolymer of (meth)acrylate and/or a polymer of ethylene and vinyl acetate.
  • the cetane number improver may be nitrate or peroxide, such as isooctyl nitrate, di-tert-butyl peroxide and the like.
  • the metal deactivator may be an ammonium salt formed by benzotriazole and aliphatic amine, a product obtained by Mannich reaction between benzotriazole, formaldehyde and aliphatic amine, one or more of Schiff bases and organic polycarboxylic acids.
  • the fuel composition is an aviation fuel composition, which comprises an aviation fuel component and a fuel lubricity improver according to the present application, wherein the weight of the aviation fuel component is 100% In total, the content of the dicarboxylic acid monoester compound is 5-200 ppm, preferably 5-50 ppm.
  • the aviation fuel is the fuel used by aviation turbine engines, which can be the first-line fraction of atmospheric distillation made from petroleum refining, the aviation fuel produced by hydrorefining and hydrocracking components,
  • the No. 3 aviation fuel produced in accordance with GB 6537 can also be the aviation fuel component produced by coal liquefaction, including direct coal liquefaction and indirect coal liquefaction (Fischer-Tropsch synthesis); it can also be the aviation fuel produced by syngas under-trust synthesis Component; it can also be aviation fuel produced from renewable biomass raw materials, such as hydrocarbon aviation fuel produced by hydrodeoxygenation of animal and vegetable fats or waste fats, or cellulose or hemicellulose as raw materials through various catalysis The aviation fuel component produced by the reaction.
  • the aviation fuel composition of the present application may also contain other additives, such as naphthenic acid or dimer acid type antiwear agents, metal deactivators, antistatic agents, rust inhibitors, and anti-icing agents. One or more.
  • the fuel composition is a gasoline composition, which comprises a gasoline component and the fuel lubricity improver according to the present application, wherein the gasoline component is 100% by mass, so
  • the content of the dicarboxylic acid monoester compound is 5-400 ppm, preferably 10-300 ppm.
  • the gasoline refers to refined petroleum fractions with a boiling range of 30-220°C, which can contain appropriate additives, and is suitable for use as fuel for ignition engines, including automotive gasoline and aviation piston engine fuel (also known as Aviation gasoline).
  • Motor gasoline is mainly composed of catalytically cracked gasoline, reformed gasoline, aromatic hydrocarbons, alkylated gasoline, isomerized gasoline, etc.
  • the octane number is divided into four brands: No. 89, No. 92, No. 95, and No. 98.
  • the gasoline described in this application can also contain various oxygen-containing compounds such as methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), diisopropyl ether (DIPE), methanol, ethanol, butanol, etc.
  • MTBE methyl tert-butyl ether
  • ETBE ethyl tert-butyl ether
  • TAME tert-amyl methyl ether
  • DIPE diisopropyl ether
  • methanol ethanol
  • butanol butanol
  • the gasoline composition of the present application may also contain other additives, such as one or more of antioxidants, rust inhibitors, detergents and dispersants, and antiknock agents.
  • additives such as one or more of antioxidants, rust inhibitors, detergents and dispersants, and antiknock agents.
  • the present application provides a method for improving the lubricity of fuel, which includes adding the lubricity improver according to the present application to the fuel, wherein based on the mass of the fuel as 100%, the dicarboxylic acid
  • the amount of monoester compound used is 5-400 ppm, preferably 10-300 ppm.
  • the method includes adding the lubricity improver according to the present application to low-sulfur diesel, wherein the amount of the dicarboxylic acid monoester compound is 100% based on the mass of the diesel It is 10-400 ppm, preferably 50-300 ppm.
  • the method includes adding the lubricity improver according to the present application to aviation fuel, wherein the amount of the dicarboxylic acid monoester compound is 100% based on the mass of the aviation fuel It is 5-200 ppm, preferably 5-50 ppm.
  • the method includes adding the lubricity improver according to the present application to gasoline, wherein the amount of the dicarboxylic acid monoester compound is 5 based on the mass of the gasoline being 100%. -400ppm, preferably 10-300ppm.
  • this application provides the use of a dicarboxylic acid monoester compound as a fuel lubricity improver, wherein the dicarboxylic acid monoester compound has the following structural formula (I):
  • R 1 and R 2 are as described above.
  • the present application provides a dicarboxylic acid monoester compound of formula (I) suitable for use as a fuel lubricity improver:
  • R 1 is a single bond, a substituted or unsubstituted C 2-6 divalent alkenyl group, or a group having the structure -R 3 -R 4 -R 5 -;
  • R 2 is a substituted or unsubstituted C 5-14 linear or branched alkyl group
  • R 3 and R 5 are each independently a single bond, or a substituted or unsubstituted C 1-3 divalent alkyl group
  • R 4 is a substituted or unsubstituted C 3-6 divalent alicyclic group
  • substituted refers to substitution by at least one C 1-4 linear or branched hydrocarbon group.
  • the dicarboxylic acid monoester compound is selected from compounds having the following structural formula:
  • the fuel lubricity improver of the present application contains at least a cyclic dicarboxylic acid monoester compound selected from structural formula (I-1):
  • n is an integer from 1 to 8
  • m is an integer from 0 to 3
  • x is an integer from 0 to 8
  • y1 and y2 are integers from 0 to 2
  • R is a C 1-30 hydrocarbon group.
  • n is an integer from 1 to 6
  • m is an integer from 0 to 1
  • x is an integer from 0 to 6
  • y1 and y2 are integers from 0 to 2
  • R is a C 1-18 hydrocarbon group.
  • n is 4 or 5
  • m is 0,
  • x is an integer from 0 to 6
  • y1 and y2 are integers from 0 to 1
  • R is a C 4-12 hydrocarbon group.
  • the monoester compound of structural formula (I-1) is 1,2-cyclopropane dicarboxylic acid monoester
  • the monoester compound of structural formula (I-1) is 1,2-cyclopropane diacetate monoester
  • the monoester compound of structural formula (I-1) is 1,1-cyclopropane dicarboxylic acid monoester
  • the monoester compound of structural formula (I-1) is 1,2-cyclobutane dicarboxylic acid monoester
  • the monoester compound of structural formula (I-1) is 1,2-cyclobutane diacetate monoester
  • the monoester compound of structural formula (I-1) is 1,2-cyclopentane dicarboxylic acid monoester
  • the monoester compound of structural formula (I-1) is 1,2-cyclopentane diacetate monoester
  • the monoester compound of structural formula (I-1) is 1,3-cyclopentane dicarboxylic acid monoester
  • the monoester compound of structural formula (I-1) is 1,2-cyclohexanedicarboxylic acid monoester
  • the monoester compound of structural formula (I-1) is 1,2-cyclohexanediacetic acid monoester
  • the monoester compound of structural formula (I-1) is 1,3-cyclohexanedicarboxylic acid monoester;
  • the monoester compound of structural formula (I-1) is 1,4-cyclohexanedicarboxylic acid monoester
  • the monoester compound of structural formula (I-1) is 4-cyclohexene-1,2-dicarboxylic acid monoester (also called Tetrahydrophthalic acid monoester);
  • the monoester compound of structural formula (I-1) is 4-cyclohexene-1,2-diacetic acid monoester
  • the monoester compound of structural formula (I-1) is 3-methyl-1,2-cyclohexanedicarboxylic acid monoester (also called 3-methylhexahydrophthalic acid monoester), 4-methyl-1,2-cyclohexanedicarboxylic acid monoester (also called 4-methylhexahydrophthalic acid monoester), etc.;
  • the monoester compound of structural formula (I-1) is methyltetrahydrophthalic acid monoester, 4-methyl-4-cyclohexyl Ene-1,2-dicarboxylic acid monoester, 3-methyl-4-cyclohexene-1,2-dicarboxylic acid monoester, etc.
  • the cyclic dicarboxylic acid monoester compound is preferably selected from 1,2-cyclopentadicarboxylic acid monoester, 1,2-cyclohexanedicarboxylic acid monoester, tetrahydrophthalic acid monoester, formaldehyde Hexahydrophthalic acid monoester, methyltetrahydrophthalic acid monoester, 1-methyl-1,2-cyclohexanedicarboxylic acid monoester, 4-methyl-1,2-cyclohexanedicarboxylic acid Monoester, 3-methyl-1,2-cyclohexanedicarboxylic acid monoester, 4-methyl-4-cyclohexene-1,2-dicarboxylic acid monoester, 3-methyl-4-cyclohexene- 1,2-Dicarboxylic acid monoester; further preferably, the cyclic dicarboxylic acid monoester compound is selected from the group consisting of 1,2-cyclohexanedicarboxylic acid monoest
  • R in structural formula (I-1) can be an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon may be straight chain or branched; it may be saturated aliphatic hydrocarbon or unsaturated aliphatic hydrocarbon; unsaturated aliphatic hydrocarbon may contain at least one carbon-carbon double bond (ethylenic bond) Or aliphatic hydrocarbon with at least one carbon-carbon triple bond (acetylene bond).
  • the alicyclic hydrocarbon may be a saturated alicyclic hydrocarbon (cycloalkane) or an unsaturated alicyclic hydrocarbon.
  • the aromatic hydrocarbon may be a monocyclic aromatic hydrocarbon, or a bicyclic or polycyclic aromatic hydrocarbon. Alicyclic hydrocarbons and aromatic hydrocarbons may also have various substituents on their rings.
  • R is selected from a C 1-18 aliphatic hydrocarbon group, a C 4-18 alicyclic hydrocarbon group, and a C 7-18 aryl-substituted hydrocarbon group or a hydrocarbon-substituted aryl group.
  • R when R is a saturated aliphatic hydrocarbon group, R may be a normal alkyl group or an isoalkyl group.
  • R when R is a n-alkyl group, it is preferably methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl , Mono-n-dodecyl (lauryl ester group), n-tetradecyl, n-hexadecyl, n-octadecyl, etc.
  • R is an isoalkyl group, preferably isopropyl, isobutyl, sec-butyl, isopentyl, isohexyl, isoheptyl, isooctyl (especially 2-ethylhexyl), isononyl, iso Decyl, isoundecyl, isotridecyl, isopentadecyl, isoheptadecanyl, etc.
  • R is an unsaturated aliphatic hydrocarbon group, preferably allyl, 2-butenyl, 3-butenyl, isopentenyl, 3-hexenyl, 2-octenyl, 3-nonyl Alkenyl, 2-decenyl, 7-dodecenyl, 1,5-hexadienyl, 2,4-nonadienyl, 2,4-decadienyl, 9,11-dodecenyl Carbadienyl, 9-octadecenyl.
  • R is an alicyclic hydrocarbon group
  • cyclobutyl, cyclopentyl, cyclohexyl, 3-cyclohexenyl, 2-cyclohexenyl and the like are preferred.
  • R may also be a substituted aryl group, such as phenyl, methylphenyl, p-nonylphenyl, p-dodecylphenyl, and the like.
  • R can also be an aliphatic hydrocarbon group with an aromatic ring, such as benzyl (benzyl), phenethyl, and the like.
  • the cyclic dicarboxylic acid monoester compound is selected from the group consisting of 1,2-cyclohexanedicarboxylate monobutyl ester, 1,2-cyclohexanedicarboxylate monooctyl ester, and 1,2-cyclohexanedicarboxylate monooctyl ester compounds.
  • the preparation method of the fuel lubricity improver of the present application includes combining the C 5-18 cyclic dicarboxylic acid or acid anhydride having the structural formula (II) with the C 1-30 cyclic dicarboxylic acid or acid anhydride having the structural formula (III) The alcohol or phenol reacts to obtain a cyclic dicarboxylic acid monoester compound having the structural formula (I-1).
  • the reaction conditions include: the molar ratio of C 5-18 cyclic dicarboxylic acid or acid anhydride to C 1-30 alcohol or phenol is 1:0.5 to 1:1.5, and the reaction temperature is 50- 250°C, the reaction time is 0.1-10hr.
  • the fuel lubricity improver of the present application contains at least an unsaturated dicarboxylic acid monoester compound represented by structural formula (I-2):
  • n is an integer from 2 to 6
  • R is a C 1-40 hydrocarbon group.
  • n is an integer from 2 to 4
  • R is a C 1-18 hydrocarbon group.
  • the unsaturated dicarboxylic acid monoester compound refers to a monoesterified compound in which any one of the carboxyl groups of a C 4-8 dicarboxylic acid compound containing a carbon-carbon unsaturated double bond in the molecule is esterified.
  • the compound represented by the structural formula (I-2) is maleic acid monoester (maleic acid monoester), fumaric acid monoester (fumaric acid Monoester); when n is 3, the compound represented by the structural formula (I-2) is itaconic acid monoester, citraconic acid monoester (methyl maleic acid monoester), methyl fumaric acid monoester Ester (methyl fumaric acid monoester), glutaconic acid monoester, etc.; when n is 4, the compound represented by the structural formula (I-2) is preferably 2,3-dimethyl maleic acid monoester, ethyl acetate Maleic acid monoester, hexenedioic acid monoester, etc.
  • the unsaturated dicarboxylic acid monoester compound is selected from maleic acid monoester (maleic acid monoester), fumaric acid monoester (fumaric acid monoester), coating Conic acid monoester, citraconic acid monoester (methyl maleic anhydride), methyl fumaric acid monoester (methyl fumaric acid monoester), 2,3-dimethyl maleic acid monoester, Gluconedioic acid monoester and so on.
  • the unsaturated dicarboxylic acid monoester compound is selected from the maleic acid monoester (maleic acid monoester) represented by the structural formula (I-2-1) and the structural formula (I-2-1) -2-2) or itaconic acid monoester represented by structural formula (I-2-3).
  • R is a C 1-30 hydrocarbon group, preferably a C 1-18 hydrocarbon group.
  • R in structural formulas (I-2), (I-2-1), (I-2-2) and (I-2-3) can be aliphatic hydrocarbon groups, alicyclic hydrocarbon groups, or aromatic hydrocarbons base.
  • the aliphatic hydrocarbon may be straight chain or branched; it may be saturated aliphatic hydrocarbon or unsaturated aliphatic hydrocarbon; unsaturated aliphatic hydrocarbon may contain at least one carbon-carbon double bond (ethylenic bond) Or aliphatic hydrocarbon with at least one carbon-carbon triple bond (acetylene bond).
  • the alicyclic hydrocarbon may be a saturated alicyclic hydrocarbon (cycloalkane) or an unsaturated alicyclic hydrocarbon.
  • the aromatic hydrocarbon may be a monocyclic aromatic hydrocarbon, or a bicyclic or polycyclic aromatic hydrocarbon.
  • the rings of alicyclic hydrocarbons and aromatic hydrocarbons may also carry various substituted hydrocarbon groups.
  • R is preferably a C 1-18 aliphatic hydrocarbon group, a C 4-18 alicyclic hydrocarbon group, and a C7 -18 aryl substituted hydrocarbon group or an alkyl substituted hydrocarbon group.
  • R when R is a saturated aliphatic hydrocarbon group, it may be a normal alkyl group or an isoalkyl group.
  • R when R is a normal alkyl group, the compound of structural formula (I-2-1) can be selected from monomethyl maleate, monoethyl maleate, mono-n-propyl maleate, and mono-n-butyl maleate.
  • Nonyl ester itaconic acid mono-n-decyl ester, itaconic acid mono-n-undecyl ester, itaconic acid mono-n-dodecyl ester (lauryl ester), itaconic acid mono-n-tetradecyl ester, itaconic acid mono-n-hexadecyl ester , Mono-n-octadecyl itaconate, etc., preferably mono-methyl itaconate, mono-ethyl itaconate, mono-n-propyl itaconate, mono-n-butyl itaconate,
  • the compound of structural formula (I-2-1) can be selected from monoisopropyl maleate, monoisobutyl maleate, mono-sec-butyl maleate, Mono-tert-butyl maleate, monoisopentyl maleate, monoisohexyl maleate, monoisooctyl maleate (2-ethylhexyl maleate), monoisononyl maleate , Monoisodecyl maleate, monoisoundecyl maleate, monoisododecyl maleate, monoisotridecyl maleate, monoisotetradecyl maleate, monoisodecyl maleate Pentadecyl ester, maleic acid monoisoseptadecan ester, etc., preferably maleic acid monoisopropyl ester, maleic acid monoisobutyl ester, maleic acid mono-sec-butyl ester, maleic acid mono
  • the compound of structural formula (I-2-1) can be selected from monoallyl maleate, mono-3-buten-1-ol maleate, and maleic acid.
  • the compound of formula (I-2) is preferably selected from monocyclobutyl maleate, monocyclopentyl maleate, monocyclohexyl maleate, maleic acid Mono-3-cyclohexene-1-methyl ester, maleic acid mono-2-cyclohexenyl ester, itaconic acid monocyclohexyl ester, itaconic acid mono-2-cyclohexenyl ester and the like.
  • the compound of formula (I-2) is preferably selected from mono-para-nonylphenyl maleate, mono-para-dodecylphenyl maleate, and itaconic acid mono P-nonylphenyl ester, itaconic acid mono-p-dodecylphenyl ester.
  • the compound of formula (I-2) is preferably selected from the group consisting of maleic acid monobenzyl ester, maleic acid monophenylethanol ester, maleic acid monophenylpropanol ester, coating Conic acid monobenzyl ester, itaconic acid monophenylethanol ester, itaconic acid monophenylpropanol ester, etc.
  • the preparation method of the fuel lubricity improver of the present application includes combining the C 4-8 unsaturated dianhydride or unsaturated dicarboxylic acid with the structural formula (II) and the C 1 with the structural formula (III) -30 alcohol or phenol is reacted to obtain an unsaturated dicarboxylic acid monoester compound having structural formula (I-2).
  • the reaction conditions include: reacting C 4-8 unsaturated dianhydrides or unsaturated dicarboxylic acids with C 1-30 alcohols or phenols in a molar ratio of 1:0.5 to 1:1.5,
  • the reaction temperature is 50-250°C
  • the reaction time is 0.1-10hr
  • the reaction pressure can be normal pressure or under certain pressure.
  • this application provides the following technical solutions:
  • a diesel antiwear agent composition which contains at least a cyclic dicarboxylic acid monoester compound selected from structural formula 1:
  • n is an integer from 1 to 8
  • m is an integer from 0 to 3
  • x is an integer from 0 to 8
  • y1 and y2 are integers from 0 to 2
  • R is a C1-C30 hydrocarbon group.
  • A2 The antiwear agent composition according to item A1, wherein n is an integer from 1 to 6, m is an integer from 0 to 1, x is an integer from 0 to 6, y1 and y2 are integers from 0 to 2, R is a C1-C18 hydrocarbon group.
  • antiwear agent composition according to item A1 or A2, wherein R is selected from the group consisting of C1-C18 chain aliphatic hydrocarbon groups, C4-C18 cyclic aliphatic hydrocarbon groups, and C7-C18 aryl substituted hydrocarbon groups or hydrocarbon groups substituted Aryl.
  • the antiwear agent composition according to item A1, wherein the cyclic dicarboxylic acid monoester compound is selected from the group consisting of 1,2-cyclopentadicarboxylic acid monoester, 1,2-cyclohexanedicarboxylic acid monoester Esters, tetrahydrophthalic acid monoester, phthalic acid monoester, methylhexahydrophthalic acid monoester, methyltetrahydrophthalic acid monoester, 1-methyl-1,2-ring Adipate monoester, 4-methyl-1,2-cyclohexanedicarboxylate monoester, 3-methyl-1,2-cyclohexanedicarboxylate monoester, 4-methyl-4-cyclohexene-1 , 2-Dicarboxylic acid monoester, 3-methyl-4-cyclohexene-1,2-dicarboxylic acid monoester.
  • the cyclic dicarboxylic acid monoester compound is selected from the group consisting of 1,2-cyclopentadicarboxy
  • A5. The antiwear agent composition according to item A1, wherein the cyclic dicarboxylic acid monoester compound is 1,2-cyclohexanedicarboxylic acid monoester, tetrahydrophthalic acid monoester, or phthalic acid Dicarboxylic acid monoester, methylhexahydrophthalic acid monoester, methyltetrahydrophthalic acid monoester.
  • the cyclic dicarboxylic acid monoester compound is 1,2-cyclohexanedicarboxylic acid monoester, tetrahydrophthalic acid monoester, or phthalic acid Dicarboxylic acid monoester, methylhexahydrophthalic acid monoester, methyltetrahydrophthalic acid monoester.
  • a method for preparing diesel antiwear agent which is prepared by reacting C5-C18 cyclic dicarboxylic acid or acid anhydride with C1-C30 alcohol or phenol.
  • the preparation method according to item A6 which includes: reacting C5-C18 cyclic dicarboxylic acid or acid anhydride with C1-C30 alcohol or phenol in a molar ratio of 1:0.5-1.5, and the reaction temperature is 50°C- 250°C.
  • A8 The preparation method according to item A6 or A7, wherein the cyclic dicarboxylic acid or anhydride is selected from 1,2-cyclohexanedicarboxylic acid, phthalic acid, tetrahydrophthalic acid, methyl Tetrahydrophthalic acid, methylhexahydrophthalic acid, 1,2-cyclohexanedicarboxylic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride Dicarboxylic anhydride, methylhexahydrophthalic anhydride.
  • A9 The preparation method according to item A6 or A7, wherein the alcohol or phenol is selected from C1-C18 fatty alcohol, C4-C18 alicyclic alcohol, and C7-C18 aromatic alcohol or phenol.
  • A10 The preparation method according to item A6 or A7, wherein the alcohol or phenol is selected from methanol, ethanol, propanol, n-butanol, sec-butanol, cyclohexanol, 3-cyclohexene-1-methanol , Benzyl alcohol, isooctyl alcohol, isononanol, decanol, isodecanol, lauryl alcohol, oleyl alcohol, nonylphenol, and isomeric nonanol, isoundecyl alcohol produced by polymerization of ethylene, propylene or butene Alcohol, isomerized tridecanol.
  • the alcohol or phenol is selected from methanol, ethanol, propanol, n-butanol, sec-butanol, cyclohexanol, 3-cyclohexene-1-methanol , Benzyl alcohol, isooctyl alcohol, isononanol, decanol,
  • a method for improving the lubricity of diesel oil comprising, based on the mass of diesel oil as 100%, adding the cyclic dicarboxylic acid monoester compound described in one of items A1 to A5 in an amount of 10-400ppm In low-sulfur diesel.
  • a diesel fuel composition comprising low-sulfur diesel and the cyclic dicarboxylic acid monoester compound described in one of items A1 to A5, and the cyclic dicarboxylic acid is calculated as 100% by mass of the diesel
  • the content of monoester compound is 10-400ppm.
  • a diesel antiwear agent composition which contains at least an unsaturated dicarboxylic acid monoester compound represented by structural formula 2:
  • n is an integer from 2 to 6
  • R is a C1-C40 hydrocarbon group.
  • n is an integer from 2 to 4, and R is a C1-C18 hydrocarbon group.
  • R is selected from the group consisting of C1-C18 chain aliphatic hydrocarbon groups, C4-C18 cyclic aliphatic hydrocarbon groups, and C7-C18 aryl substituted hydrocarbon groups or hydrocarbon groups substituted Aryl.
  • the antiwear agent composition according to item B1 wherein the unsaturated dicarboxylic acid monoester compound is selected from the group consisting of maleic acid monoester, fumaric acid monoester, itaconic acid monoester, and citraconic acid monoester.
  • the unsaturated dicarboxylic acid monoester compound is selected from the group consisting of maleic acid monoester, fumaric acid monoester, itaconic acid monoester, and citraconic acid monoester.
  • ester methyl fumaric acid monoester, 2,3-dimethyl maleic acid monoester, and glutenedioic acid monoester.
  • the antiwear agent composition according to item B1, wherein the unsaturated dicarboxylic acid monoester compound is selected from the group consisting of monomethyl maleate, monoethyl maleate, mono-n-propyl maleate, Mono-n-butyl maleate, mono-n-octyl maleate, mono-n-nonyl maleate, mono-n-decyl maleate, mono-n-dodecyl maleate, monomethyl itaconate, itaconic Ethyl monoethyl ester, mono-n-propyl itaconate, mono-n-butyl itaconate, mono-n-octyl itaconate, mono-n-decyl itaconate, mono-n-dodecyl itaconate, mono-maleic acid Isopropyl ester, monoisobutyl maleate, monosec-butyl maleate, monoisooctyl maleate, monoisononyl male
  • a method for preparing a diesel antiwear agent which is prepared by reacting C4-C8 unsaturated dianhydrides or unsaturated diacids with C1-C30 alcohols or phenols.
  • the preparation method according to item B6 which includes: reacting C4-C8 unsaturated diacid anhydrides or unsaturated diacids with C1-C30 alcohols or phenols in a molar ratio of 1:0.5-1.5, and the reaction temperature is 50°C -250°C.
  • the preparation method according to item B6 or B7 which includes: reacting maleic anhydride or itaconic anhydride with C1-C18 alcohol or phenol in a molar ratio of 1:0.8-1.3 without catalyst and solvent , The reaction temperature is 50°C-120°C, and the reaction time is 0.5-8hr.
  • the preparation method according to item B6 or B7 which includes: in the presence of a catalyst, with or without a solvent, the molar ratio of maleic acid or itaconic acid to C1-C18 alcohol or phenol is 1:0.8-1.3.
  • the reaction temperature is 70°C-250°C, and the reaction time is 3-15hr.
  • a method for improving the lubricity of diesel oil which comprises adding the unsaturated dicarboxylic acid monoester compound described in one of items B1 to B5 to low-sulfur diesel oil in an amount of 10-400ppm based on the mass of diesel oil as 100% middle.
  • a diesel composition comprising low-sulfur diesel and the unsaturated dicarboxylic acid monoester compound described in one of items B1 to B5.
  • the content of the unsaturated dicarboxylic acid monoester compound is calculated based on 100% of the mass of the diesel oil. 10-400ppm.
  • the lubricity of diesel oil was measured on a high-frequency reciprocating test machine (High-Frequency Reciprocating Rig, HFRR, British PCS Instrument Company) according to the SH/T 0765 method, and the wear scar diameter (Wear Scar Diameter, WSD) at 60°C was measured ), the report result WS1.4 is obtained by correcting the influence of temperature and humidity.
  • dicarboxylic acid monoester compounds used in the examples and comparative examples of this application can be synthesized by the method described in this application, or can be obtained by purchasing existing industrial products, and are commercially available unless otherwise specified. Industrial Products.
  • test example I-1 and test example I-2 compare the lubricity improver according to the present application (Examples I-1 to I-6) and the non-application lubricity improver (Comparative Examples I-1 to I -4)
  • the effect of using in diesel oil, the types and sources of lubricity improvers used are shown in the following table I-1:
  • This test example compares the use effect of the lubricity improver of the embodiment and the comparative example in diesel oil.
  • the lubricity improver is mixed with petroleum-based diesel a and diesel b respectively.
  • Diesel a comes from Sinopec Yanshan Branch, and diesel b Sourced from Sinopec Gaoqiao Branch, the physical and chemical properties of diesel a and diesel b are shown in Table I-2.
  • the HFRR method (ISO 12156-1) of diesel before and after addition of wear scar diameter WS1.4 is shown in Table I-3 and Table I-4. The smaller the wear scar diameter, the better the lubricity of diesel.
  • the monoester compound described in this application can greatly improve the lubricity of diesel fuel when the addition amount is very small.
  • the addition amount of Examples I-1 and I-2 is At 150mg/kg, the lubricity wear scar diameter of diesel a can be reduced from 564 microns to 266 microns and 257 microns, while the diisooctyl hexahydrophthalate compound shown in Comparative Example I-1 does not improve the lubricity of diesel
  • the effect of the phthalic acid bis(2-ethylhexyl) ester compound shown in Comparative Example I-2 does not improve the lubricity of diesel oil; even the fatty acid type commonly used in the industry (Comparative Example I-3 ) And fatty acid ester type (Comparative Example I-4) diesel lubricity improver can only reduce the wear scar diameter of diesel a to 427 microns and 394 microns at 150 mg/kg.
  • the monoester compound described in this application can also make the lubricity of diesel a meet the requirements of diesel standard, while the anti-wear effect of Comparative Examples I-3 and I-4 at this dosage is It is very poor, and it has not reached the requirement of not more than 460 microns required by the diesel standard.
  • the monoester compound described in this application surprisingly improves the lubricity of diesel fuel when added in a very small amount, such as Examples I-1 and I-2
  • the addition amount is 200 mg/kg
  • the lubricity wear scar diameter of diesel fuel b can be reduced from 651 microns to 296 microns and 281 microns. This result is unexpected.
  • Comparative Example I-1 When the addition amount of hexahydrophthalic diisooctyl phthalate shown in Comparative Example I-1 is 200mg/kg, it can reduce the lubricity wear scar diameter of diesel oil b from 651 microns to 638 microns, with almost no anti-wear effect. Di-ester compound is not an effective lubricity improver. Fatty acid type (Comparative Example I-3) and fatty acid ester type (Comparative Example I-4) diesel lubricity improvers can only reduce diesel fuel b at 200mg/kg. The diameter of the wear scar is reduced to 432 microns and 387 microns.
  • the monoester compound described in this application can also make the lubricity of diesel fuel b meet the diesel standard requirements, while the comparative examples I-1, I-2, I-3 and I-4 reduces the wear scar diameter of diesel fuel b to 651 micron, 652 micron, 519 micron and 482 micron when the dosage of 120mg/kg is added. Regulation.
  • This test example compares the use effect of the lubricity improver of the embodiment and the comparative example in coal-to-diesel.
  • the lubricity improver is mixed with coal-to-diesel c, which is derived from the coal of China Shenhua Coal-to-Liquid Company.
  • Directly liquefied diesel oil the physical and chemical properties are shown in Table I-5.
  • the HFRR method (ISO12156-1) wear scar diameter WS1.4 of diesel fuel after addition is shown in Table I-6.
  • the lubricity improver of the present application is surprisingly better than the fatty acid type or fatty acid ester type lubricity improver. Used as a diesel lubricity improver, it can significantly improve the lubricity of low-sulfur diesel. , And the addition amount can be greatly reduced.
  • test example II-1 compares the lubricity improver according to the present application (Examples II-1 to II-20) and the non-application lubricity improver (Comparative Examples II-1 to II-6) in diesel
  • Table II-1 The use effect of, the types and sources of lubricity improvers used are shown in Table II-1 below:
  • maleic anhydride maleic anhydride, with a mass fraction of 99.5%, produced by Zibo Qixiang Tengda Chemical Co., Ltd.
  • 720g isomeric nonanol Exxal TM 9s, 2,6-dimethyl-4-heptanol, with a mass fraction of 99.5%, produced by Exxon-Mobil
  • the molar ratio of maleic anhydride to nonanol is about 1:1
  • heating, stirring, and heating After reacting for 5 hours, the temperature was raised and the unreacted isononyl alcohol and maleic anhydride were removed by distillation under reduced pressure to obtain 1006 g of maleic acid mono-isononyl ester (maleic acid mono-2,6-dimethyl-4-heptane Alcohol ester).
  • maleic anhydride maleic anhydride, with a mass fraction of 99.5%, purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
  • 316.8 g 7-formaldehyde 1-octanol mass fraction of 99%, provided by Hubei Wanye Pharmaceutical Co., Ltd.
  • the molar ratio of maleic anhydride to 7-methyl-1-octanol is about 1:1.1, heating, stirring, and heating to 90°C
  • 498g of maleic acid mono-7-methyl-1-octanol ester-based product is obtained.
  • This test example compares the use effect of the lubricity improver in the embodiment and the comparative example in diesel, where the lubricity improver is mixed with diesel a and diesel b shown in Table I-2, respectively.
  • the wear scar diameter WS1.4 of diesel before and after addition is shown in Table II-2 and Table II-3. The smaller the wear scar diameter, the better the lubricity of diesel.
  • the unsaturated dicarboxylic acid monoester compound described in this application can greatly improve the lubricity of diesel fuel even with a very small addition amount, such as Examples II-1 and II- 2
  • the addition amount is 150mg/kg
  • the lubricity wear scar diameter of diesel a can be reduced from 564 microns to 211 microns and 205 microns.
  • the dodecenyl succinate monomethyl ester shown in Comparative Example II-1 can only reduce the wear scar diameter to 398 microns, and the diisooctyl maleate shown in Comparative Example II-2
  • the compound has no effect on improving the lubricity of diesel oil; even the fatty acid type (Comparative Example II-3) and fatty acid ester type (Comparative Example II-4) diesel oil lubricity improvers commonly used in the industry at 150mg/kg Only the wear scar diameter of diesel a can be reduced to 427 microns and 394 microns. It can be seen that the unsaturated dicarboxylic acid monoester compound described in the present application has a very excellent antiwear effect.
  • the unsaturated dicarboxylic acid monoester compound described in this application can also make the lubricity of diesel a meet the requirements of diesel standards, and the comparative example has a very good anti-wear effect at this dosage. Poor, it has been unable to meet the requirement of not more than 460 microns required by the diesel standard.
  • the unsaturated dicarboxylic acid monoester compound described in this application surprisingly improves the lubricity of diesel fuel when added in a very small amount, for example, Example II- 1 and II-2 can reduce the lubricity wear scar diameter of diesel oil b from 651 microns to 208 microns and 206 microns when the addition amount is 200 mg/kg. This result is unexpected.
  • the unsaturated dicarboxylic acid monoester compound described in this application can also make the lubricity of diesel fuel b meet the requirements of diesel standards, while comparative examples II-1, II-3, and II- 4
  • the wear scar diameter of diesel b can only be reduced to 471 microns, 519 microns and 482 microns.
  • the anti-wear effect is already very poor, and it cannot meet the requirement of diesel fuel standard of not more than 460 microns. Comparing the effects of Comparative Example II-5 and Comparative Example II-6 with Example II-8 and Example II-1 respectively, it can also be seen that the antiwear effect of dicarboxylic acid monoesters with long-chain substituents has changed significantly. Difference.
  • test example III-1 compares the lubricity improvers according to the present application (Examples III-1 to III-3) and the non-application lubricity improvers (Comparative Examples III-1 to III-3) in aviation fuel
  • Table III-1 The effect of the use in, the types and sources of lubricity improvers used are shown in Table III-1:
  • This test example compares the use effects of the lubricity improvers of the example and the comparative example in aviation fuel.
  • the physical and chemical properties of the aviation fuel used are shown in Table III-2.
  • the results are shown in Table III-3.
  • test example IV-1 compares the lubricity improver according to the present application (Examples IV-1 to IV-4) and the non-application lubricity improver (Comparative Examples IV-1 to IV-4) in gasoline
  • the use effect of, the type and source of lubricity improver used are shown in Table IV-1 below:
  • Test Example IV-1 compares the use effects of the lubricity improvers of the examples and the comparative examples in gasoline, where the lubricity improvers are mixed with gasoline respectively, and the physical and chemical properties of the ethanol gasoline (E10) used for vehicles and the gasoline for vehicles As shown in Table IV-2. Measure the wear scar diameter (Wear Scar Diameter, WSD) of gasoline at 25°C on the High-Frequency Reciprocating Rig (HFRR, British PCS Instrument Company). The smaller the wear scar diameter, the better the lubricity of gasoline. The better the lubricity improver is, the results are shown in Table IV-3.
  • WSD Wear Scar Diameter
  • HFRR High-Frequency Reciprocating Rig
  • Example IV-3 It can be seen from Table IV-3 that the HFRR testing machine measured that the wear scar diameters of the blank No. 92 car ethanol gasoline (E10) and No. 95 car gasoline at 25 °C were as high as 848 ⁇ m and 843 ⁇ m, respectively.
  • the dicarboxylic acid monoester of this application was added.
  • the lubricity improver can greatly improve the lubricity of gasoline.
  • Example IV-1 can reduce the lubricity wear scar diameter of the 92# car ethanol gasoline (E10) to 378 ⁇ m when the addition amount is 150mg/kg. At 200mg/kg, it can reduce the lubricity wear scar diameter of No.
  • Dicarboxylic acid diester compounds such as plasticizer diisooctyl maleate (Comparative Example IV-4) hardly improve lubricity in gasoline. When the addition amount is 200mg/kg, it can reduce the amount of ethanol used in the 92nd car.
  • the lubricity wear scar diameter of gasoline (E10) is reduced to 822 ⁇ m, and gasoline detergent dispersant does not significantly improve gasoline lubricity.
  • Comparative Example IV-3 can only be used in No. 95 cars when the addition amount is 180mg/kg
  • the lubricity wear scar diameter of gasoline is reduced to 786 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

一种燃油润滑性改进剂及其应用,所述燃油润滑性改进剂包含结构式(I)所示的二羧酸单酯化合物,其中,R1为单键、取代或未取代的C2-6的二价链烯基、或者具有-R3-R4-R5-结构的基团;R2为取代或未取代的C1-40烃基;R3和R 5各自独立地为单键、或者取代或未取代的C1-3的二价烷基;且R4为取代或未取代的C3-12的二价脂环族基团。所述燃油润滑性改进剂可显著改善燃油的润滑性,并且用量低,可显著降低润滑性改进剂的使用成本。

Description

燃油润滑性改进剂及其应用
相关申请的交叉引用
本申请要求申请人于2019年3月30日递交的发明名称为“柴油抗磨剂组合物、其制备方法及柴油组合物”的中国专利申请No.202010237464.X;以及2019年3月30日递交的发明名称为“柴油抗磨剂组合物、其制备方法及柴油组合物”的中国专利申请No.202010240138.4的优先权,其内容经此引用全文并入本文。
技术领域
本申请涉及燃油添加剂领域,具体涉及一种酯类燃油润滑性改进剂、其制备方法及应用。
背景技术
由于低硫柴油润滑性较差,因此低硫柴油和超低硫柴油通常用润滑性改进剂(也称润滑性添加剂或抗磨剂)进行处理,改善其润滑性能。该方法具有成本小、生产灵活、污染少等优点,在工业上受到广泛的重视。现有的工业上使用的低硫柴油抗磨剂主要包括酸型和酯型两种类型,酸型抗磨剂的主要成分是长链不饱和脂肪酸如油酸、亚油酸、亚麻酸等,典型的产品来自于精制的妥尔油脂肪酸。酯型抗磨剂是上述脂肪酸与多元醇的酯化反应产物。使用脂肪酸型抗磨剂解决柴油润滑性问题虽然成本相对较低,但随着柴油排放标准的升级以及润滑性的变差面临用量偏大,造成柴油酸度超标,腐蚀性风险增加等问题。使用脂肪酸酯型抗磨剂虽然用量少,但也存在成本高,加剂柴油遇水发生乳化变浑的风险。
航空涡轮发动机燃油喷射系统靠燃料自身提供各部件的润滑,当燃料润滑性变差时,燃油柱塞泵球面严重磨损,喷油压力降低,发动机转速下降,甚至会引发空中停车事故。因此,航空燃料通常也需要添加抗磨剂来改善其润滑性。以油酸、亚油酸和亚麻酸为主的共轭或非共轭不饱和脂肪酸为原料,经过Diels-Alder加成反应聚合而成二聚酸(Dimer acid)是目前多数国家航空燃料润滑性改进剂的主要成分。然而,二聚酸抗磨剂的合成成本较高,二聚酸本身作为航空燃料润滑 性改进剂的成本也较高
与其他燃料相比,汽油是最轻的、也是润滑性最差的液体燃料。汽油中由于天然抗磨杂质的含量极低,其本体组分的润滑作用就显得十分突出。况且,新配方汽油中还含有相当量的易吸水的含氧掺和物(如低级醇等)和易氧化的烯烃,会对汽油润滑性能产生不良影响。汽油润滑性的改善,不仅意味着喷油泵磨损的缓解、发动机寿命的延长,同时还会带来能量利用效率提高和燃油消耗率降低的益处。与解决航空燃料和柴油润滑性问题类似,改善汽油润滑性能的有效方法也是在汽油中加入抗磨剂。现有汽油抗磨剂多以脂肪胺或醚胺为原料,制备成本较高,另外,所制备的润滑性添加剂是含氮化合物,在汽油的燃烧使用过程中会生成氮氧化物造成排放污染,有悖于清洁燃料的使用原则。
因此,现有技术中仍然迫切需要能够显著改善燃油润滑性,并且使用成本低的燃油润滑性改进剂。
发明内容
本申请的一个目的是提供一种新型燃油润滑性改进剂,其可显著改善燃油的润滑性,并且用量较低,从而可显著降低润滑性改进剂的使用成本。
为了实现上述目的,在一个方面,本申请提供了一种燃油润滑性改进剂,包含结构式(I)所示的二羧酸单酯化合物:
Figure PCTCN2021083943-appb-000001
其中,R 1为单键、取代或未取代的C 2-6的二价链烯基、或者具有-R 3-R 4-R 5-结构的基团;
R 2为取代或未取代的C 1-40烃基;
R 3和R 5各自独立地为单键、或者取代或未取代的C 1-3的二价烷基;
R 4为取代或未取代的C 3-12的二价脂环族基团,
其中所述“取代的”是指被至少一个C 1-4直链或支链烃基取代。
在另一方面,本申请提供了一种燃油组合物,包含燃油组分和根据本申请的润滑性改进剂,其中以所述燃油的质量为100%计,所述二羧酸单酯化合物的含量为5-400ppm。
在另一方面,本申请提供了一种改善燃油润滑性的方法,包括将根据本申请的润滑性改进剂添加到燃油中,其中以所述燃油的质量为100%计,所述二羧酸单酯化合物的用量为5-400ppm。
在又一方面,本申请提供了二羧酸单酯化合物作为燃油润滑性改进剂的用途,其中所述二羧酸单酯化合物具有以下结构式(I):
Figure PCTCN2021083943-appb-000002
其中,R 1和R 2的定义如前所述。
在又一方面,本申请提供了适合用作燃油润滑性改进剂的式(I)的二羧酸单酯化合物:
Figure PCTCN2021083943-appb-000003
其中,R 1为单键、取代或未取代的C 2-6的二价链烯基、或者具有-R 3-R 4-R 5-结构的基团;
R 2为取代或未取代的C 5-14直链或支链烷基;
R 3和R 5各自独立地为单键、或者取代或未取代的C 1-3的二价烷基;
R 4为取代或未取代的C 3-6的二价脂环族基团,
其中所述“取代的”是指被至少一个C 1-4直链或支链烃基取代。
本申请的燃油润滑性改进剂原料易得、生产简便,可显著改善燃油的润滑性,且所需添加量较低,可显著降低润滑性改进剂的使用成本。
此外,当根据本申请的燃油润滑性改进剂包含具有式(I)的不饱和二羧酸单酯化合物时,不会引起柴油发生乳化浑浊的风险,抗乳化效 果与脂肪酸型润滑性改进剂相当,优于脂肪酸甘油酯型润滑性改进剂。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
附图1是柴油b在英国PCS公司生产的柴油润滑性测定仪上测出的磨斑照片,其校正磨斑直径(WS1.4)为651微米。
附图2是柴油b中加入200mg/kg的实施例II-1所述的马来酸单异辛酯后测出的磨斑照片,其校正磨斑直径(WS1.4)为208微米。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
在本申请中,术语“二价”基团是指从相应的化合物上脱除2个氢原子得到的基团,例如,术语“C 2-6的二价链烯基”是指从具有2-6个碳原子的直链或支链烯烃,如乙烯、丙烯、1-丁烯、2-丁烯、异丁烯、戊烯和己烯等,上脱除两个氢原子得到的基团上,其中碳碳双键可位于该基团的主链上也可位于其侧链上;术语“C 1-3的二价烷基”是指从具有1-3个碳原子的烷基上脱除两个氢原子得到的基团,如亚甲基、亚乙基和亚丙基等;术语“C 3-12的二价脂环族基团”是指从具有3-12个碳原子的饱和或不饱和脂环烃,如环丙烷、环丁烷、环戊烷、环戊烯, 环己烷、环己烯等,上脱除两个氢原子得到的基团。
在本申请中,术语“烃基”是指从脂肪烃、脂环烃或芳香烃上脱除一个氢原子得到的基团,其中术语“脂肪烃”指直链或支链的、饱和或不饱和烃。例如,作为C 1-40烃基的例子可以提及甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、正己基、正辛基、异辛基、正壬基、异壬基、正癸基、异癸基、正十一烷基、异十一烷基、正十二烷基、正十三烷基、异十三烷基、3-己烯-1-基、十八碳烯基、环己基、对壬基苯基、苄基等。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本申请原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
如上所述,在第一方面,本申请提供了一种燃油润滑性改进剂,包含结构式(I)所示的二羧酸单酯化合物:
Figure PCTCN2021083943-appb-000004
其中,R 1为单键、取代或未取代的C 2-6的二价链烯基、或者具有-R 3-R 4-R 5-结构的基团;
R 2为取代或未取代的C 1-40烃基;
R 3和R 5各自独立地为单键、或者取代或未取代的C 1-3的二价烷基;
R 4为取代或未取代的C 3-12的二价脂环族基团,
其中所述“取代的”是指被至少一个C 1-4直链或支链烃基取代。
在优选的实施方式中,R 1为单键、取代或未取代的C 2-4的二价链烯基、或者具有-R 3-R 4-R 5-结构的基团;R 2为取代或未取代的C 1-18烃基;R 3和R 5各自独立地为单键或者亚甲基;R 4为取代或未取代的C 3-10的 二价脂环族基团。
在优选的实施方式中,R 2选自C 1-18直链或支链烃基,C 4-18的脂环族烃基,和C 7-18的芳基取代的烃基或烃基取代的芳基。
在某些特别优选的实施方式中,所述二羧酸单酯化合物选自马来酸单酯、富马酸单酯、衣康酸单酯、柠康酸单酯、甲基富马酸单酯、2,3-二甲基马来酸单酯、戊烯二酸单酯,或者它们的任意组合;更进一步优选地,所述二羧酸单酯化合物选自马来酸单甲酯、马来酸单乙酯、马来酸单正丙酯、马来酸单正丁酯、马来酸单正辛酯、马来酸单正壬酯、马来酸单正癸酯、马来酸单正十二酯、衣康酸单甲酯、衣康酸单乙酯、衣康酸单正丙酯、衣康酸单正丁酯、衣康酸单正辛酯、衣康酸单正癸酯、衣康酸单正十二酯、马来酸单异丙酯、马来酸单异丁酯、马来酸单仲丁酯、马来酸单叔丁酯、马来酸单异辛酯(马来酸单2-乙基己酯)、马来酸单异壬酯、马来酸单异癸酯,马来酸异十一醇酯、马来酸异十三醇酯、衣康酸单异丙酯、衣康酸单异丁酯、衣康酸单异辛酯、衣康酸单异壬酯、衣康酸单异癸酯,衣康酸异十一醇酯、衣康酸异十三醇酯、马来酸单3-己烯-1-醇酯、马来酸单油醇酯、衣康酸单3-己烯-1-醇酯、衣康酸单油醇酯、马来酸单环己酯、衣康酸单环己酯、马来酸单对壬基苯酯、衣康酸单对壬基苯酯、马来酸单苄酯、衣康酸单苄酯,或者它们的任意组合。
在另一些特别优选的实施方式中,所述的二羧酸单酯化合物选自1,2-环戊二甲酸单酯、1,2-环己二甲酸单酯、四氢临苯二甲酸单酯、甲基六氢临苯二甲酸单酯、甲基四氢临苯二甲酸单酯、1-甲基-1,2-环己二甲酸单酯、4-甲基-1,2-环己二甲酸单酯、3-甲基-1,2-环己二甲酸单酯、4-甲基-4-环己烯-1,2-二甲酸单酯、3-甲基-4-环己烯-1,2-二甲酸单酯,或者它们的任意组合;更进一步优选地,所述二羧酸单酯化合物选自1,2-环己二甲酸单酯、四氢临苯二甲酸单酯、甲基六氢临苯二甲酸单酯、甲基四氢临苯二甲酸单酯,或者它们的任意组合。
本申请的燃油润滑性改进剂中可以含有适量的燃油和/或有机溶剂,以及少量未反应的原料,也不可避免地含有一些反应副产物,如二羧酸双酯类化合物。
在第二方面,本申请提供了一种燃油润滑性改进剂的制备方法,包括使具有结构式(II)的二元羧酸或其酸酐与具有结构式(III)的醇或者 酚反应,
Figure PCTCN2021083943-appb-000005
HO-R 2      (III)
其中,R 1和R2的定义如前所述。
在优选的实施方式中,反应条件包括:所述二元羧酸或者酸酐与所述醇或者酚的摩尔比为1∶0.5至1∶1.5,反应温度为50-250℃,反应时间为0.1-10hr,反应压力可以是常压,也可以在一定压力下进行,可以使用催化剂也可以不使用催化剂,可以使用溶剂,也可以不使用溶剂。
在进一步优选的实施方式中,反应条件包括:所述二元羧酸或者酸酐与所述醇或者酚的摩尔比为1∶0.8至1∶1.3,反应温度为50-200℃,反应时间为1-6hr,反应压力可以是常压,不使用催化剂,无溶剂。
在优选的实施方式中,所述具有结构式(II)的二元羧酸或其酸酐包括但不限于:马来酸、马来酸酐、富马酸、衣康酸、衣康酸酐、柠康酸、柠康酸酐、甲基富马酸、2,3-二甲基马来酸、2,3-二甲基马来酸酐等。
在优选的实施方式中,所述具有结构式(III)的醇或者酚可以是脂肪醇、脂环醇、芳香醇或酚,碳数为C1-C30,优选C1-C18。当为脂肪醇时,碳数为C1-C24,优选C1-C18;当为脂环醇时,碳数为C3-C20,优选C4-C10,包括但不限于环丁醇等;当为芳香醇或酚时,碳数为C6-C30,优选C7-C18。
在本申请的方法中,反应时可以加催化剂也可以不加催化剂,催化剂可以用酸催化剂,如硫酸、盐酸、对甲苯磺酸、磷酸、硼酸、酸性离子交换树脂等的一种或多种;可以用离子液体催化剂,如1-丁基吡啶/AlCl 4离子液体等;可以用无机盐固相催化剂,如FeCl 3、AlCl 3等的一种或多种;可以用分子筛催化剂,如ZSM-5、HZSM-5、Al-MCM-41等的一种或多种;可以用杂多酸催化剂,如PW12/MCM-41、SiW12/MCM-41等的一种或多种;可以用固体超强酸催化剂,如 SO 4 2-/ZrO 2-TiO 2、SO 4 2-/TiO 2-Al 2O 3等;可以用碱催化剂如NaOH、KOH、甲醇钠、固体超强碱、NaH等。反应时可以加入溶剂也可以不加溶剂,溶剂可以是烃类如烷烃和芳烃,例如石油醚、汽油、甲苯、二甲苯等。
根据本申请,反应完成后,过滤去除催化剂(如果使用了催化剂的话)后的产物即可作为本申请的燃油润滑性改进剂,也可以根据抗磨剂产品标准要求对产物进行分离提纯,例如去除溶剂和未反应原料。符合标准要求的溶剂和未反应原料不影响本申请的抗磨剂性能,这些组分加入燃油中后,对燃油性能也没有不良影响。
根据本申请,在反应产物中可以加入适量燃油,以得到燃油抗磨剂浓缩物。
在第三方面,本申请提供了一种燃油组合物,包含燃油组分和根据本申请的燃油润滑性改进剂,其中以所述燃油组分的质量为100%计,所述二羧酸单酯化合物的含量为5-400ppm,优选10-300ppm。
在优选的实施方式中,所述燃油组分可以选自柴油、汽油和航空燃料。
在某些优选的实施方式中,所述燃油组合物为柴油组合物,其包含柴油组分和根据本申请的燃油润滑性改进剂,其中以所述柴油组分的质量为100%计,所述二羧酸单酯化合物的含量为10-400ppm,优选50-300ppm。
根据本申请,所述柴油可以包括各种低硫柴油机燃料。例如,可以是原油(石油)经炼油厂的各种炼制工艺如常减压、催化裂化、催化重整、焦化、加氢精制、加氢裂化等装置处理后的馏程在160-380℃之间的馏分,并经过调配而成的满足车用柴油国家标准GB/T 19147的压燃式内燃机用燃料。
所述柴油也可以是第二代生物柴油,第二代生物柴油衍生自可再生资源,如植物油和动物脂,并通常在精炼厂中通常使用加氢处理法,对植物油氢化处理,通过氢化产生异构化或非异构化的长链烃,第二代生物柴油在性质和品质上可能类似于石油基燃料油。
所述柴油可以是第三代生物柴油,第三代生物柴油是高纤维素含量的非油脂类生物质如木屑、农作物秸秆和固体废弃物等和微生物油脂采用气化和费托技术处理而得。
所述柴油还可以是煤液化柴油(CTL),指煤经费托合成而获得的 柴油机燃料,或煤直接液化而获得的柴油机燃料。也可以是在石油基柴油中加入含氧柴油调合组分得到的混合柴油,其中含氧柴油调合组分是指可与各种柴油机燃料调配成符合一定规范要求的含氧化合物或含氧化合物的混合物,通常是醇类和醚类或其混合物。例如乙醇、聚甲氧基二甲醚(Polyoxymethylene dimethyl ethers,简称PODEn、DMMn或OME)等。
根据使用需要,本申请的柴油组合物中还可以含有其它添加剂,如酚型抗氧剂、高分子胺型无灰分散剂、流动改进剂、十六烷值改进剂、金属钝化剂、抗静电剂、防腐剂、防锈剂、破乳剂中的一种或多种。
所述高分子胺型无灰分散剂包括烯基丁二酰亚胺和/或烯基丁二酸酰胺、曼尼西碱型无灰分散剂、聚醚胺型无灰分散剂和聚烯烃胺型无灰分散剂中的一种或多种。所述流动改进剂优选(甲基)丙烯酸酯的均聚物、和/或乙烯与醋酸乙烯酯的聚合物。所述十六烷值改进剂可以是硝酸酯或者过氧化物,如硝酸异辛酯、二叔丁基过氧化物等。金属钝化剂可以为苯三唑与脂肪胺形成的铵盐,苯三唑、甲醛与脂肪胺通过曼尼西反应得到的产物,席夫碱和有机多元羧酸中的一种或多种。
在某些优选的实施方式中,所述燃油组合物为航空燃料组合物,其包含航空燃料组分和根据本申请的燃油润滑性改进剂,其中以所述航空燃料组分的质量为100%计,所述二羧酸单酯化合物的含量为5-200ppm,优选5-50ppm。
根据本申请,所述航空燃料是航空涡轮发动机所用的燃料,可以是由石油炼制的常压蒸馏的常一线馏分、加氢工艺生产的加氢精制、加氢裂化组分调配的航空燃料,例如按照GB 6537生产的3号航空燃料;也可以是含有煤液化生产的航空燃料组分,包括煤直接液化和煤间接液化(费托合成);还可以是合成气经费托合成生产的航空燃料组分;也可以是来自可再生的生物质原料生产的航空燃料,例如通过动植物油脂或废弃油脂加氢脱氧生成的烃类航空燃料,或者通过纤维素或半纤维素为原料通过各种催化反应生成的航空燃料组分。
根据使用需要,本申请的航空燃料组合物中,还可以含有其它添加剂,如环烷酸或二聚酸型抗磨剂、金属钝化剂、抗静电剂、防锈剂、防冰剂中的一种或多种。
在某些优选的实施方式中,所述燃油组合物为汽油组合物,其包含汽油组分和根据本申请的燃油润滑性改进剂,其中以所述汽油组分的质量为100%计,所述二羧酸单酯化合物的含量为5-400ppm,优选10-300ppm。
根据本申请,所述汽油是指沸程在30-220℃范围内,可含有适当添加剂的精制石油馏分,适用于作点燃式发动机的燃料,包括车用汽油和航空活塞式发动机燃料(也称航空汽油)。车用汽油主要由催化裂化汽油、重整汽油、芳烃、烷基化汽油、异构化汽油等构成,按研究法辛烷值分为89号、92号、95号和98号4个牌号。本申请所述汽油还可以是含有各种含氧化合物如甲基叔丁基醚(MTBE)、乙基叔丁基醚(ETBE)、叔戊基甲基醚(TAME)、二异丙基醚(DIPE)、甲醇、乙醇、丁醇等。本申请所述汽油可以是达到GB 17930、GB 18351、GB 1787所要求的车用汽油、车用乙醇汽油和航空汽油。
根据使用需要,本申请的汽油组合物中,还可以含有其它添加剂,如抗氧剂、防锈剂、清净分散剂、抗爆剂中的一种或多种。
在第四方面,本申请提供了一种改善燃油润滑性的方法,包括将根据本申请的润滑性改进剂添加到燃油中,其中以所述燃油的质量为100%计,所述二羧酸单酯化合物的用量为5-400ppm,优选10-300ppm。
在某些优选实施方式中,所述方法包括将根据本申请的润滑性改进剂添加到低硫柴油中,其中以所述柴油的质量为100%计,所述二羧酸单酯化合物的用量为10-400ppm、优选50-300ppm。
在某些优选实施方式中,所述方法包括将根据本申请的润滑性改进剂添加到航空燃料中,其中以所述航空燃料的质量为100%计,所述二羧酸单酯化合物的用量为5-200ppm、优选5-50ppm。
在某些优选实施方式中,所述方法包括将根据本申请的润滑性改进剂添加到汽油中,其中以所述汽油的质量为100%计,所述二羧酸单酯化合物的用量为5-400ppm、优选10-300ppm。
在第五方面,本申请提供了二羧酸单酯化合物作为燃油润滑性改进剂的用途,其中所述二羧酸单酯化合物具有以下结构式(I):
Figure PCTCN2021083943-appb-000006
其中,R 1和R 2的定义如前所述。
在第六方面,本申请提供了适合用作燃油润滑性改进剂的式(I)的二羧酸单酯化合物:
Figure PCTCN2021083943-appb-000007
其中,R 1为单键、取代或未取代的C 2-6的二价链烯基、或者具有-R 3-R 4-R 5-结构的基团;
R 2为取代或未取代的C 5-14直链或支链烷基;
R 3和R 5各自独立地为单键、或者取代或未取代的C 1-3的二价烷基;
R 4为取代或未取代的C 3-6的二价脂环族基团,
其中所述“取代的”是指被至少一个C 1-4直链或支链烃基取代。
在优选的实施方式中,所述二羧酸单酯化合物选自具有以下结构式的化合物:
Figure PCTCN2021083943-appb-000008
Figure PCTCN2021083943-appb-000009
以下具体描述了本申请的燃油润滑性改进剂的两类具体实施方式。
第一类实施方式
在第一类实施方式中,本申请的燃油润滑性改进剂至少含有选自结构式(I-1)的环状二羧酸单酯化合物:
Figure PCTCN2021083943-appb-000010
其中n是1到8的整数,m是0到3的整数,x是0到8的整数,y1、y2是0到2的整数,R是C 1-30的烃基。
在优选的实施方式中,n是1到6的整数,m是0到1的整数,x是0到6的整数,y1、y2是0到2的整数,R是C 1-18的烃基。
在进一步优选的实施方式中,n是4或5,m是0,x是0到6的 整数,y1、y2是0到1的整数,R是C 4-12的烃基。
在特别优选的实施方式中:
当n为1、x为0、y1、y2为1、m为0时,结构式(I-1)的单酯化合物是1,2-环丙烷二甲酸单酯;
当n为1、x为0、y1、y2为1、m为1时,结构式(I-1)的单酯化合物是1,2-环丙烷二乙酸单酯;
当n为1、x为2、y1、y2为2、m为0时,结构式(I-1)的单酯化合物是1,1-环丙烷二甲酸单酯;
当n为2、x为0、y1、y2为1、m为0时,结构式(I-1)的单酯化合物是1,2-环丁烷二甲酸单酯;
当n为2、x为0、y1、y2为1、m为1时,结构式(I-1)的单酯化合物是1,2-环丁烷二乙酸单酯;
当n为3、x为0、y1、y2为1、m为0时,结构式(I-1)的单酯化合物是1,2-环戊烷二甲酸单酯;
当n为3、x为0、y1、y2为1、m为1时,结构式(I-1)的单酯化合物是1,2-环戊烷二乙酸单酯;
当n为3、x为1、y1、y2中一个为1且另一个为2、m为0时,结构式(I-1)的单酯化合物是1,3-环戊烷二甲酸单酯;
当n为4、x为0、y1、y2为1、m为0时,结构式(I-1)的单酯化合物是1,2-环己烷二甲酸单酯;
当n为4、x为0、y1、y2为1、m为1时,结构式(I-1)的单酯化合物是1,2-环己烷二乙酸单酯;
当n为4、x为1、y1、y2一个为1且另一个为2、m为0时,结构式(I-1)的单酯化合物是1,3-环己烷二甲酸单酯;
当n为4、x为2、y1、y2为2、m为0时,结构式(I-1)的单酯化合物是1,4-环己烷二甲酸单酯;
当n为4、x为2、y1、y2为1、m为0时,结构式(I-1)的单酯化合物是4-环己烯-1,2-二甲酸单酯(也可称为四氢临苯二甲酸单酯);
当n为4、x为2、y1、y2为1、m为1时,结构式(I-1)的单酯化合物是4-环己烯-1,2-二乙酸单酯;
当n为5、x为0、y1、y2为1、m为0时,结构式(I-1)的单酯化合物是3-甲基-1,2-环己二甲酸单酯(也可称为3-甲基六氢苯二甲酸单 酯)、4-甲基-1,2-环己二甲酸单酯(也可称为4-甲基六氢苯二甲酸单酯)等;
当n为5、x为2、y1、y2为1、m为0时,结构式(I-1)的单酯化合物是甲基四氢苯二甲酸单酯、4-甲基-4-环己烯-1,2-二甲酸单酯、3-甲基-4-环己烯-1,2-二甲酸单酯等。
根据本申请,所述的环状二羧酸单酯化合物优选选自1,2-环戊二甲酸单酯、1,2-环己二甲酸单酯、四氢临苯二甲酸单酯、甲基六氢临苯二甲酸单酯、甲基四氢临苯二甲酸单酯、1-甲基-1,2-环己二甲酸单酯、4-甲基-1,2-环己二甲酸单酯、3-甲基-1,2-环己二甲酸单酯、4-甲基-4-环己烯-1,2-二甲酸单酯、3-甲基-4-环己烯-1,2-二甲酸单酯;进一步优选地,所述环状二羧酸单酯化合物选自1,2-环己二甲酸单酯、四氢临苯二甲酸单酯、甲基六氢临苯二甲酸单酯、甲基四氢临苯二甲酸单酯。
根据本申请,结构式(I-1)中的R可以是脂肪烃基、脂环烃基,也可以是芳烃基。所述脂肪烃可以是直链的,也可以是带有支链的;可以是饱和脂肪烃,也可以是不饱和脂肪烃;不饱和脂肪烃可以是含有至少一个碳碳双键(烯键)或至少一个碳碳三键(炔键)的脂肪烃。所述脂环烃可以是饱和脂环烃(环烷烃),也可以是不饱和脂环烃。所述芳香烃可以是单环芳香烃,也可以是双环或多环芳香烃。脂环烃和芳香烃的环上也可以带有各种取代基。
在优选的实施方式中,R选自C 1-18脂肪烃基,C 4-18脂环烃基,以及C 7-18芳基取代的烃基或烃基取代的芳基。
根据本申请,当R是饱和脂肪烃基时,R可以是正构烷基,也可以是异构烷基。R是正构烷基时,优选甲基、乙基、正丙基、正丁基、正戊基、正己基、正庚基、正辛基、正壬基、正癸基、正十一烷基、单正十二烷基(月桂酯基)、正十四烷基、正十六烷基、正十八烷基等。R是异构烷基时,优选异丙基、异丁基、仲丁基、异戊基、异己基、异庚基、异辛基(尤其是2-乙基己基)、异壬基、异癸基,异十一烷基、异十三烷基、异十五烷基、异十七烷基等。
根据本申请,当R是不饱和脂肪烃基时,优选烯丙基、2-丁烯基、3-丁烯基、异戊烯基、3-己烯基、2-辛烯基、3-壬烯基、2-癸烯基、7-十二碳烯基、1,5-己二烯基、2,4-壬二烯基、2,4-癸二烯基、9,11-十二碳二烯基、9-十八烯基。
根据本申请,当R是脂环烃基时,优选环丁基、环戊基、环己基、3-环己烯基、2-环己烯基等。
R还可以是取代的芳基,例如苯基、甲基苯基、对壬基苯基、对十二烷基苯基等。R还可以是带芳环的脂肪烃基,例如苄基(苯甲基)、苯乙基等。
在特别优选的实施方式中,所述的环状二羧酸单酯化合物选自1,2-环己二甲酸单丁酯、1,2-环己二甲酸单辛酯、1,2-环己二甲酸单异辛酯、1,2-环己二甲酸单异壬酯、四氢临苯二甲酸单丁酯、四氢临苯二甲酸单辛酯、四氢临苯二甲酸单异辛酯、四氢临苯二甲酸单异壬酯、邻苯二甲酸单丁酯、邻苯二甲酸单辛酯、邻苯二甲酸单异辛酯、邻苯二甲酸单仲辛酯、邻苯二甲酸单异壬酯、甲基六氢临苯二甲酸单丁酯、甲基六氢临苯二甲酸单丁酯、甲基六氢临苯二甲酸单辛酯、甲基六氢临苯二甲酸单异辛酯、甲基六氢临苯二甲酸单异壬酯、甲基六氢临苯二甲酸单月桂酯、甲基四氢临苯二甲酸单丁酯、甲基四氢临苯二甲酸单辛酯、甲基四氢临苯二甲酸单异辛酯、甲基四氢临苯二甲酸单异壬酯、甲基四氢临苯二甲酸单月桂酯等。
在第一类实施方式中,本申请的燃油润滑性改进剂的制备方法包括使具有结构式(II)的C 5-18环状二元羧酸或者酸酐与具有结构式(III)的C 1-30醇或者酚反应,得到具有结构式(I-1)的环状二羧酸单酯化合物。
在优选的实施方式中,所述反应的条件包括:C 5-18环状二元羧酸或者酸酐与C 1-30醇或者酚的摩尔比1∶0.5至1∶1.5,反应温度为50-250℃,反应时间为0.1-10hr。
第二类实施方式
在第二类实施方式中,本申请的燃油润滑性改进剂至少含有如结构式(I-2)所示的不饱和二羧酸单酯化合物:
Figure PCTCN2021083943-appb-000011
其中,n为2到6的整数,R是C 1-40的烃基。
在优选的实施方式中,n为2到4的整数,R是C 1-18的烃基。
根据本申请,所述的不饱和二羧酸单酯化合物是指分子中含有碳- 碳不饱和双键的C 4-8二元羧酸化合物中的任一个羧基被酯化的单酯化物。
在优选的实施方式中,当n为2时,结构式(I-2)所示的化合物是顺丁烯二酸单酯(马来酸单酯)、反丁烯二酸单酯(富马酸单酯);当n为3时,结构式(I-2)所示的化合物是衣康酸单酯、柠康酸单酯(甲基马来酸单酯)、甲基反丁烯二酸单酯(甲基富马酸单酯)、戊烯二酸单酯等;当n为4时,结构式(I-2)所示的化合物优选2,3-二甲基马来酸单酯、乙基马来酸单酯、己烯二酸单酯等。
在优选的实施方式中,所述不饱和二羧酸单酯化合物选自顺丁烯二酸单酯(马来酸单酯)、反丁烯二酸单酯(富马酸单酯)、衣康酸单酯、柠康酸单酯(甲基马来酸酐)、甲基反丁烯二酸单酯(甲基富马酸单酯)、2,3-二甲基马来酸单酯、戊烯二酸单酯等。
在特别优选的实施方式中,所述的不饱和二羧酸单酯化合物选自结构式(I-2-1)所示的顺丁烯二酸单酯(马来酸单酯)和结构式(I-2-2)或结构式(I-2-3)所示的衣康酸单酯。
Figure PCTCN2021083943-appb-000012
其中R是C 1-30的烃基,优选C 1-18的烃基。
根据本申请,结构式(I-2)、(I-2-1)、(I-2-2)和(I-2-3)中的R可以是脂肪烃基、脂环烃基,也可以是芳烃基。所述脂肪烃可以是直链的,也可以是带有支链的;可以是饱和脂肪烃,也可以是不饱和脂肪烃;不饱和脂肪烃可以是含有至少一个碳碳双键(烯键)或至少一个碳碳三键(炔键)的脂肪烃。所述脂环烃可以是饱和脂环烃(环烷烃),也可以是不饱和脂环烃。所述芳香烃可以是单环芳香烃,也可以是双环或多环芳香烃。脂环烃和芳香烃的环上也可以带有各种取代的烃基。进一步地,R优选C 1-18脂肪烃基,C 4-18脂环烃基以及C7 -18芳基取代的烃基或烷基取代的烃基。
根据本申请,当R是饱和脂肪烃基时,其可以是正构烷基,也可以是异构烷基。当R是正构烷基时,结构式(I-2-1)的化合物可以选自马来酸单甲酯、马来酸单乙酯、马来酸单正丙酯、马来酸单正丁酯、马来酸单正戊酯、马来酸单正己酯、马来酸单正庚酯、马来酸单正辛酯、马来酸单正壬酯、马来酸单正癸酯、马来酸单正十一酯、马来酸单正十二酯(月桂酯)、马来酸单正十四酯、马来酸单正十六酯、马来酸单正十八酯等,优选马来酸单甲酯、马来酸单乙酯、马来酸单正丙酯、马来酸单正丁酯、马来酸单正辛酯、马来酸单正壬酯、马来酸单正癸酯、马来酸单正十二酯等;结构式(I-2-2)和(I-2-3)的化合物可以选自衣康酸单甲酯、衣康酸单乙酯、衣康酸单正丙酯、衣康酸单正丁酯、衣康酸单正戊酯、衣康酸单正己酯、衣康酸单正庚酯、衣康酸单正辛酯、衣康酸单正壬酯、衣康酸单正癸酯、衣康酸单正十一酯、衣康酸单正十二酯(月桂酯)、衣康酸单正十四酯、衣康酸单正十六酯、衣康酸单正十八酯等,优选衣康酸单甲酯、衣康酸单乙酯、衣康酸单正丙酯、衣康酸单正丁酯、衣康酸单正辛酯、衣康酸单正癸酯、衣康酸单正十二酯(月桂酯)等。
根据本申请,当R是异构烷基时,结构式(I-2-1)的化合物可以选自马来酸单异丙酯、马来酸单异丁酯、马来酸单仲丁酯、马来酸单叔丁酯、马来酸单异戊酯、马来酸单异己酯、马来酸单异辛酯(马来酸单2-乙基己酯)、马来酸单异壬酯、马来酸单异癸酯、马来酸单异十一酯、马来酸单异十二酯、马来酸单异十三酯、马来酸单异十四酯、马来酸单异十五酯、马来酸单异十七酯等,优选马来酸单异丙酯、马来酸单异丁酯、马来酸单仲丁酯、马来酸单异辛酯、马来酸单异壬酯、马来 酸单异癸酯,马来酸单异十一酯、马来酸单异十三酯等;结构式(I-2-2)和(I-2-3)的化合物可以选自衣康酸单异丙酯、衣康酸单异丁酯、衣康酸单仲丁酯、衣康酸单叔丁酯、衣康酸单异戊酯、衣康酸单异己酯、衣康酸单异辛酯(衣康酸单2-乙基己酯)、衣康酸单异壬酯、衣康酸单异癸酯,衣康酸单异十一酯、衣康酸单异十三酯等,优选衣康酸单异丙酯、衣康酸单异丁酯、衣康酸单异辛酯(衣康酸单2-乙基己酯)、衣康酸单异壬酯、衣康酸单异癸酯,衣康酸单异十一酯等。
根据本申请,当R是不饱和脂肪烃基时,结构式(I-2-1)的化合物可以选自马来酸单烯丙酯、马来酸单3-丁烯-1-醇酯、马来酸单异戊烯醇酯、马来酸单3-己烯-1-醇酯、马来酸单1-庚烯-3-醇酯、马来酸单甲基庚烯醇酯、马来酸单2-辛烯-1-醇酯、马来酸单3-壬烯-1-醇酯、马来酸单2-癸烯-1-醇酯、马来酸单7-十二碳烯-1-醇酯、马来酸单1,5-己二烯醇酯、马来酸单2,4-壬二烯-1-醇酯、马来酸单2,4-癸二烯-1-醇酯、马来酸单9,11-十二碳二烯醇酯、马来酸单油醇酯等,优选马来酸单烯丙酯、马来酸单3-丁烯-1-醇酯、马来酸单异戊烯醇酯、马来酸单3-己烯-1-醇酯、马来酸单1-庚烯-3-醇酯、马来酸单甲基庚烯醇酯、马来酸单3-壬烯-1-醇酯、马来酸单2,4-癸二烯-1-醇酯、马来酸单油醇酯等;结构式(I-2-2)和(I-2-3)的化合物可以选自衣康酸单烯丙酯、衣康酸单2-丁烯-1-醇酯、衣康酸单3-丁烯-1-醇酯、衣康酸单异戊烯醇酯、衣康酸单3-己烯-1-醇酯、衣康酸单1-庚烯-3-醇酯、衣康酸单甲基庚烯醇酯、衣康酸单2-辛烯-1-醇酯、衣康酸单3-壬烯-1-醇酯、衣康酸单2-癸烯-1-醇酯、衣康酸单7-十二碳烯-1-醇酯、衣康酸单1,5-己二烯醇酯、衣康酸单2,4-壬二烯-1-醇酯、衣康酸单2,4-癸二烯-1-醇酯、衣康酸单9,11-十二碳二烯醇酯、衣康酸单油醇酯等,优选衣康酸单烯丙酯、衣康酸单3-丁烯-1-醇酯、衣康酸单异戊烯醇酯、衣康酸单3-己烯-1-醇酯、衣康酸单3-壬烯-1-醇酯、衣康酸单油醇酯等
根据本申请,当R是脂环烃基时,式(I-2)的化合物优选选自马来酸单环丁酯、马来酸单环戊酯、马来酸单环己酯、马来酸单3-环己烯-1-甲酯、马来酸单2-环己烯酯、衣康酸单环己酯、衣康酸单2-环己烯酯等。
根据本申请,当R是取代的芳基时,式(I-2)的化合物优选选自马来酸单对壬基苯酯、马来酸单对十二烷基苯酯、衣康酸单对壬基苯酯、 衣康酸单对十二烷基苯酯。
根据本申请,当R是带芳环的脂肪烃基,式(I-2)的化合物优选选自马来酸单苄酯、马来酸单苯乙醇酯、马来酸单苯丙醇酯、衣康酸单苄酯、衣康酸单苯乙醇酯、衣康酸单苯丙醇酯等。
在第二类实施方式中,本申请的燃油润滑性改进剂的制备方法包括使具有结构式(II)的C 4-8不饱和二酸酐或不饱和二羧酸与具有结构式(III)的C 1-30醇或者酚反应,得到具有结构式(I-2)的不饱和二羧酸单酯化合物。
在优选的实施方式中,所述反应的条件包括:使C 4-8不饱和二酸酐或者不饱和二羧酸与C 1-30醇或者酚按照摩尔比1∶0.5至1∶1.5进行反应,反应温度为50-250℃,反应时间为0.1-10hr,反应压力可以是常压,也可以在一定压力下进行。
在优选的实施方式中,本申请提供了如下的技术方案:
A1、一种柴油抗磨剂组合物,其中至少含有选自结构式1的环状二元羧酸单酯化合物:
Figure PCTCN2021083943-appb-000013
其中n是1到8的整数,m是0到3的整数,x是0到8的整数,y1和y2是0到2的整数,R是C1-C30的烃基。
A2、按照项目A1所述的抗磨剂组合物,其中,n是1到6的整数,m是0到1的整数,x是0到6的整数,y1和y2是0到2的整数,R是C1-C18的烃基。
A3、按照项目A1或A2所述的抗磨剂组合物,其中,R选自C1-C18链状脂烃基,C4-C18环状脂烃基,以及C7-C18芳基取代的烃基或烃基取代的芳基。
A4、按照项目A1所述的抗磨剂组合物,其中,所述的环状二元羧酸单酯化合物选自1,2-环戊二甲酸单酯、1,2-环己二甲酸单酯、四氢临苯二甲酸单酯、邻苯二甲酸单酯、甲基六氢临苯二甲酸单酯、甲基四氢临苯二甲酸单酯、1-甲基-1,2-环己二甲酸单酯、4-甲基-1,2-环己二甲酸单酯、3-甲基-1,2-环己二甲酸单酯、4-甲基-4-环己烯-1,2-二甲酸单 酯、3-甲基-4-环己烯-1,2-二甲酸单酯。
A5、按照项目A1所述的抗磨剂组合物,其中,所述环状二元羧酸单酯化合物是1,2-环己二甲酸单酯、四氢临苯二甲酸单酯、邻苯二甲酸单酯、甲基六氢临苯二甲酸单酯、甲基四氢临苯二甲酸单酯。
A6、一种柴油抗磨剂的制备方法,所述抗磨剂由C5-C18环状二元羧酸或者酸酐与C1-C30醇或者酚反应制得。
A7、按照项目A6所述的制备方法,其中包括:使C5-C18环状二元羧酸或者酸酐与C1-C30醇或者酚按照摩尔比1∶0.5-1.5进行反应,反应温度在50℃-250℃。
A8、按照项目A6或A7所述的制备方法,其中,所述环状二元羧酸或酸酐选自1,2-环己二甲酸、邻苯二甲酸、四氢临苯二甲酸、甲基四氢临苯二甲酸、甲基六氢临苯二甲酸、1,2-环己二甲酸酐、六氢苯酐、四氢临苯二甲酸酐、临苯二甲酸酐、甲基四氢临苯二甲酸酐、甲基六氢临苯二甲酸酐。
A9、按照项目A6或A7所述的制备方法,其中,所述醇或酚选自C1-C18脂肪醇,C4-C18脂环醇,以及C7-C18芳香醇或酚。
A10、按照项目A6或A7所述的制备方法,其中,所述醇或者酚选自甲醇、乙醇、丙醇、正丁醇、仲丁醇、环己醇、3-环己烯-1-甲醇、苄醇、异辛醇、异壬醇、癸醇、异癸醇、月桂醇、油醇、壬基酚,以及由乙烯、丙烯或丁烯聚合制得的异构壬醇、异构十一醇、异构十三醇。
A11、按照项目A6或A7所述的制备方法,其中,在无催化剂、无溶剂情况下进行反应,使C5-C12环状酸酐与C1-C18醇或者酚按照摩尔比1∶0.8-1.3,反应温度在60℃-180℃,反应时间0.5-10hr。
A12、按照项目A6或A7所述的制备方法,其中,在有催化剂、有或者无溶剂情况下进行反应,使C5-C12环状二元羧酸与C1-C18醇或者酚的摩尔比1∶0.8-1.3,反应温度在70℃-250℃,反应时间3-15hr。
A13、一种改善柴油润滑性的方法,该方法包括,以柴油质量为100%计,将项目A1至A5之一所述的环状二元羧酸单酯化合物以10-400ppm的用量添加到低硫柴油中。
A14、一种柴油组合物,其中包括低硫柴油以及项目A1至A5之一所述的环状二元羧酸单酯化合物,以柴油质量为100%计,所述的环 状二元羧酸单酯化合物含量为10-400ppm。
B1、一种柴油抗磨剂组合物,其中至少含有结构式2所示的不饱和二羧酸单酯化合物:
Figure PCTCN2021083943-appb-000014
其中,n为2到6的整数,其中R是C1-C40的烃基。
B2、按照项目B1所述的抗磨剂组合物,其中,n为2到4的整数,R是C1-C18的烃基。
B3、按照项目B1或B2所述的抗磨剂组合物,其中,R选自C1-C18链状脂烃基,C4-C18环状脂烃基,以及C7-C18芳基取代的烃基或烃基取代的芳基。
B4、按照项目B1所述的抗磨剂组合物,其中,所述不饱和二羧酸单酯化合物选自马来酸单酯、富马酸单酯、衣康酸单酯、柠康酸单酯、甲基富马酸单酯、2,3-二甲基马来酸单酯、戊烯二酸单酯中的一种或几种。
B5、按照项目B1所述的抗磨剂组合物,其中,所述不饱和二羧酸单酯化合物选自马来酸单甲酯、马来酸单乙酯、马来酸单正丙酯、马来酸单正丁酯、马来酸单正辛酯、马来酸单正壬酯、马来酸单正癸酯、马来酸单正十二酯、衣康酸单甲酯、衣康酸单乙酯、衣康酸单正丙酯、衣康酸单正丁酯、衣康酸单正辛酯、衣康酸单正癸酯、衣康酸单正十二酯、马来酸单异丙酯、马来酸单异丁酯、马来酸单仲丁酯、马来酸单异辛酯、马来酸单异壬酯、马来酸单异癸酯,衣康酸单异丙酯、衣康酸单异丁酯、衣康酸单异辛酯、衣康酸单异壬酯、衣康酸单异癸酯,马来酸单3-己烯-1-醇酯、马来酸单油醇酯、衣康酸单3-己烯-1-醇酯、衣康酸单油醇酯、马来酸单环己酯、衣康酸单环己酯、马来酸单对壬基苯酯、衣康酸单对壬基苯酯、马来酸单苄酯、衣康酸单苄酯。
B6、一种柴油抗磨剂的制备方法,所述抗磨剂由C4-C8不饱和二酸酐或者不饱和二酸与C1-C30醇或者酚反应制得。
B7、按照项目B6所述的制备方法,其中包括:使C4-C8不饱和二酸酐或者不饱和二酸与C1-C30醇或者酚按照摩尔比1∶0.5-1.5进行反应,反应温度在50℃-250℃。
B8、按照项目B6或B7所述的制备方法,其中,所述不饱和二酸酐或者不饱和二酸选自马来酸、马来酸酐、富马酸、衣康酸、衣康酸酐、柠康酸、柠康酸酐、甲基富马酸、2,3-二甲基马来酸、2,3-二甲基马来酸酐。
B9、按照项目B6或B7所述的制备方法,其中,所述醇或酚选自C1-C18脂肪醇,C4-C18脂环醇,以及C7-C18芳香醇或酚。
B10、按照项目B6或B7所述的制备方法,其中,所述醇或者酚选自甲醇、乙醇、正丙醇、异丙醇、正丁醇、仲丁醇、环己醇、3-环己烯-1-甲醇、苄醇、正辛醇、异辛醇、异壬醇、正癸醇、异癸醇、月桂醇、油醇、壬基酚,以及由乙烯、丙烯或丁烯聚合制得的异构壬醇、异构十一醇、异构十三醇。
B11、按照项目B6或B7所述的制备方法,其中包括:在无催化剂、无溶剂情况下,使马来酸酐或衣康酸酐与C1-C18醇或者酚按照摩尔比1∶0.8-1.3进行反应,反应温度在50℃-120℃,反应时间0.5-8hr。
B12、按照项目B6或B7所述的制备方法,其中包括:在有催化剂、有或者无溶剂情况下,马来酸或衣康酸与C1-C18醇或者酚按照摩尔比1∶0.8-1.3进行反应,反应温度在70℃-250℃,反应时间3-15hr。
B13、一种改善柴油润滑性的方法,包括,以柴油质量为100%计,将项目B1至B5之一所述的不饱和二羧酸单酯化合物以10-400ppm的用量添加到低硫柴油中。
B14、一种柴油组合物,其中包括低硫柴油,以及项目B1至B5之一所述不饱和二羧酸单酯化合物,以柴油质量为100%计,不饱和二羧酸单酯化合物含量为10-400ppm。
实施例
下面通过实施例对本申请做进一步的说明,但并不因此而限制本申请的范围。
以下实施例中,柴油的润滑性按照SH/T 0765方法在高频往复试验机(High-Frequency Reciprocating Rig,HFRR,英国PCS仪器公司)上测定60℃时的磨痕直径(Wear Scar Diameter,WSD),通过对温度和湿度的影响进行校正得报告结果WS1.4。
本申请各实施例和对比例中所用的二羧酸单酯化合物可以通过本 申请所述的方法合成制得,也可以通过购买现有的工业产品而得到,如无特殊说明均为市售的工业产品。
以下测试例I-1和测试例I-2对比了根据本申请的润滑性改进剂(实施例I-1至I-6)与非本申请的润滑性改进剂(对比例I-1至I-4)在柴油中的使用效果,其中所用的润滑性改进剂类型和来源如下表I-1所示:
表I-1测试例I-1和I-2中所用的润滑性改进剂类型和来源
Figure PCTCN2021083943-appb-000015
表I-1中列举的自制润滑性改进剂的具体制备过程如下所述:
实施例I-5
在一1000mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入336g1,2-环己二甲酸酐(六氢苯酐,台湾南亚(台塑)公司生产)和345.6g异壬醇(3,5,5-三甲基-1-己醇,东京化成工业株式会社生产),六氢苯酐与异壬醇的摩尔比约为1∶1.2,加热搅拌升温至115℃,反应3小时后升温并减压蒸馏除去未反应的异壬醇,得到6202g 1,2-环己二甲酸单异壬酯为主产物的产品。
实施例I-6
在一1000mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入336g甲基-1,2-环己二甲酸酐(甲基六氢苯酐,质量分数为99%,广州市葵邦化工有限公司生产)和316.8g异壬醇(3,5,5-三甲基-1-己醇,东京化成工业株式会社生产),甲基-1,2-环己二甲酸酐与异壬醇的摩尔比约为1∶1.1,加热搅拌升温至100℃,反应4.5小时后得到约770g甲基-1,2-环己二甲酸单异壬酯为主的产物。
测试例I-1
本测试例比较了实施例和对比例的润滑性改进剂在柴油中的使用效果,其中将润滑性改进剂分别与石油基柴油a和柴油b混合,柴油a来源于中石化燕山分公司,柴油b来源于中石化高桥分公司,柴油a和柴油b的理化性能见表I-2。加剂前后柴油的HFRR法(ISO 12156-1)磨斑直径WS1.4见表I-3和表I-4,其中磨痕直径越小则表示柴油润滑性越好。目前世界上多数柴油标准例如欧洲标准EN 590、中国车用柴油标准GB 19147、车用柴油北京市地方标准DB 11/239都以磨痕直径小于460μm(60℃)为柴油润滑性合格的依据。
表I-2石油基柴油a和柴油b的性质
项目 柴油a 柴油b
密度(20℃)/(kg·m -3) 834.1 806.2
初馏点/℃ 192.0 210.1
5%温度/℃ 216.8 226.3
10%温度/℃ 227.5 231.3
20%温度/℃ 240.0 236.4
30%温度/℃ 251.2 242.1
40%温度/℃ 258.9 246.6
50%温度/℃ 269.0 250.3
60%温度/℃ 278.8 254.3
70%温度/℃ 291.2 258.3
80%温度/℃ 305.1 263.3
90%温度/℃ 325.6 273.6
95%温度/℃ 341.5 290.3
终馏点/℃ 345.8 305.7
残留量(ψ)/% 1.0 1.0
损失量(ψ)/% 1.4 1.3
酸度/(mgKOH·100mL -1) -1) 0.45 0.51
20℃黏度/(mm 2·s -1) 4.512 3.421
40℃黏度/(mm 2·s -1) 2.913 2.290
10%残炭,% <0.05 <0.05
灰分,% <0.002 <0.002
冷滤点/℃ -5 -29
凝固点/℃ -10 -36
闭口闪点/℃ 73 82
w(硫)/mg·L -1 10 <5
水分,% 痕迹 痕迹
润滑性(HFRR)/μm 564 651
表I-3加剂前后柴油a的HFRR法磨斑直径WS1.4
Figure PCTCN2021083943-appb-000016
Figure PCTCN2021083943-appb-000017
表I-4加剂前后柴油b的HFRR法磨斑直径WS1.4
Figure PCTCN2021083943-appb-000018
Figure PCTCN2021083943-appb-000019
由表I-3和表I-4可以看出,醇类化合物和酚类化合物几乎没有抗磨作用,在柴油中不能改善柴油的润滑性,而加入本申请所述的单酯化合物后,柴油的润滑性令人惊讶地得到极大改善。
对于表I-3所示的低硫柴油,本申请所述的单酯化合物在极少的添加量时也能大大改善柴油的润滑性,例如实施例I-1和I-2在添加量为150mg/kg时能够将柴油a的润滑性磨斑直径从564微米降低到266微米和257微米,而对比例I-1所示的六氢邻苯二甲酸二异辛酯化合物没有改善柴油润滑性的作用;对比例I-2所示的邻苯二甲酸二(2-乙基己基)酯化合物没有改善柴油润滑性的作用;即使是目前工业上普遍在使用的脂肪酸型(对比例I-3)和脂肪酸酯型(对比例I-4)柴油润滑性改进剂在150mg/kg时也只能将柴油a的磨斑直径降到427微米和394微米。进一步降低到80mg/kg的用量时,本申请所述的单酯化合物也能使柴油a的润滑性满足柴油标准要求,而对比例I-3、I-4在这一添加量时抗磨效果很差,已经不能达到柴油标准要求的不大于460微米的要求。
对于表I-4所示的超低硫柴油,本申请所述的单酯化合物在极少的添加量时就令人惊奇地改善了柴油的润滑性,例如实施例I-1和I-2在添加量为200mg/kg时能够将柴油b的润滑性磨斑直径从651微米降低 到296微米和281微米,这一结果是出人意料的。
对比例I-1所示的六氢邻苯二甲酸二异辛酯添加量为200mg/kg时能够将柴油b的润滑性磨斑直径从651微米降低到638微米,几乎没有抗磨作用,说明双酯化合物不是效果好的润滑性改进剂,脂肪酸型(对比例I-3)和脂肪酸酯型(对比例I-4)柴油润滑性改进剂在200mg/kg时也只能将柴油b的磨斑直径降到432微米和387微米。
进一步降低到120mg/kg或者100mg/kg的用量时,本申请所述的单酯化合物也能使柴油b的润滑性满足柴油标准要求,而对比例I-1、I-2、I-3和I-4在120mg/kg添加量时使柴油b的磨斑直径分别降低到651微米、652微米、519微米和482微米,抗磨效果已经很差,不能达到柴油标准要求的不大于460微米的规定。
测试例I-2
本测试例比较了实施例和对比例的润滑性改进剂在煤制柴油中的使用效果,其中将润滑性改进剂分别与煤制柴油c混合,柴油c来源于中国神华煤制油公司的煤直接液化柴油,理化性能见表I-5。加剂后柴油的HFRR法(ISO12156-1)磨斑直径WS1.4见表I-6。
表I-5柴油c的性质
项目 柴油c
密度(20℃)/(kg·m -3) 837.9
初馏点/℃ 187
5%温度/℃ 193
10%温度/℃ 197
20%温度/℃ 200
30%温度/℃ 202
50%温度/℃ 202
70%温度/℃ 213
90%温度/℃ 218
95%温度/℃ 229
终馏点/℃ 255
酸度/(mgKOH·100mL -1) -1) 0.3
20℃黏度/(mm 2·s -1) 2.337
40℃黏度/(mm 2·s -1) 1.666
10%残炭,% <0.05
氧化安定性,总不溶物(mg/100mL) <0.3
灰分,% <0.002
冷滤点/℃ -50
凝固点/℃ <-50
十六烷值 45
闭口闪点/℃ 63
w(硫)/mg·L -1 10
水分,% 痕迹
润滑性(HFRR)/μm 663
表I-6加剂前后柴油c的HFRR法(ISO12156-1)磨斑直径WS1.4
Figure PCTCN2021083943-appb-000020
Figure PCTCN2021083943-appb-000021
从以上测试例的结果可以看出,本申请的润滑性改进剂效果出人意料地优于脂肪酸型或者脂肪酸酯型润滑性改进剂,作为柴油润滑性改进剂使用可显著改善低硫柴油的润滑性,且添加量可大大降低。
以下测试例II-1对比了根据本申请的润滑性改进剂(实施例II-1至II-20)与非本申请的润滑性改进剂(对比例II-1至II-6)在柴油中的使用效果,其中所用的润滑性改进剂类型和来源如下表II-1所示:
表II-1测试例II-1中所用的润滑性改进剂类型和来源
Figure PCTCN2021083943-appb-000022
Figure PCTCN2021083943-appb-000023
表II-1中列举的自制润滑性改进剂的具体制备过程如下所述:
实施例II-2
在一1000mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入215.6g马来酸酐(顺丁烯二酸酐,质量分数为99.5%,山西侨友化工股份有限公司生产)和372g月桂醇(质量分数为99.9%,马来西亚椰树牌),马来酸酐与月桂醇的摩尔比约为1.1∶1,加热搅拌升温至95℃,反应3小时后升温并减压蒸馏除去未反应的马来酸酐,得到581g马来酸单月桂醇酯。具体反应式如下:
Figure PCTCN2021083943-appb-000024
实施例II-3
在一2000mL装有电动搅拌器、温度计的反应器中,加入490g马来酸酐(顺丁烯二酸酐,质量分数为99.5%,淄博齐翔腾达化工股份有限公司生产)和720g异构壬醇(Exxal TM 9s,2,6-二甲基-4-庚醇,质量分数为99.5%,Exxon-Mobil公司生产),马来酸酐与异构壬醇的摩尔比约为1∶1,加热搅拌升温至85℃,反应5小时后升温并减压蒸馏除去未反应的异壬醇和马来酸酐,得到1006g马来酸单异壬酯(马来酸单-2,6-二甲基-4-庚醇酯)。
实施例II-4
在一2000mL装有电动搅拌器、温度计的反应器中,加入450g马来酸酐(顺丁烯二酸酐,质量分数为99.5%,购自上海阿拉丁生化科技股份有限公司)和910g对壬基酚(质量分数为98%,淮南市科迪化工科技有限公司生产),马来酸酐与对壬基酚的摩尔比约为1∶0.9,加热搅拌升温至110℃,反应12小时后升温并减压蒸馏除去未反应的对壬基酚和马来酸酐,得到1296g马来酸单对壬基苯酯。具体反应式如下:
Figure PCTCN2021083943-appb-000025
实施例II-5
在一2000mL装有电动搅拌器、温度计的反应器中,加入475g马来酸酐(顺丁烯二酸酐,质量分数为99.5%,购自上海阿拉丁生化科技股份有限公司)和796g苄醇(苯甲醇,质量分数为99%,购自上海迈瑞尔化学技术有限公司),马来酸酐与苄醇的摩尔比约为1∶1,加热搅拌升温至90℃,反应8小时后升温并减压蒸馏除去未反应的苄醇和马来酸酐,得到1196g马来酸单苄酯。具体反应式如下:
Figure PCTCN2021083943-appb-000026
实施例II-6
在一2000mL装有电动搅拌器、温度计的反应器中,加入500g马来酸酐(顺丁烯二酸酐,质量分数为99.5%,购自北京伊诺凯科技有限公司)和665g环己醇(质量分数为98%,购自北京伊诺凯科技有限公司),马来酸酐与环己醇的摩尔比约为1∶1.3,加热搅拌升温至85℃,反应4小时后升温并减压蒸馏除去未反应的环己醇和马来酸酐,得到1096g马来酸单环己酯。具体反应式如下:
Figure PCTCN2021083943-appb-000027
实施例II-7
在一2000mL装有电动搅拌器、温度计的反应器中,加入550g马来酸酐(顺丁烯二酸酐,质量分数为99.5%,购自北京伊诺凯科技有限公司)和504g的3-环己烯-1-甲醇(质量分数为98%,上海毕得医药科技股份有限公司生产),马来酸酐与3-环己烯-1-甲醇的摩尔比约为1∶0.8,加热搅拌升温至75℃,反应6小时后升温并减压蒸馏除去未反应的3-环己烯-1-甲醇和马来酸酐,得到997g马来酸单-3-环己烯-1-甲酯。具体反应式如下:
Figure PCTCN2021083943-appb-000028
实施例II-12
在一2000mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入560g衣康酸酐(质量分数为98%,浙江国光生化股份有限公司生产)和650g异辛醇(2-乙基己醇,质量分数为99.9%,中国石油化工股份有限公司齐鲁石化分公司生产),衣康酸酐与异辛醇的摩尔比约为1∶1,加热搅拌升温至95℃,反应4小时后升温并减压蒸馏除去未反应的异辛醇和衣康酸酐,得到1193g衣康酸单异辛酯。
实施例II-13
在一1000mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入260g衣康酸(质量分数为99.6%,浙江国光生化股份有限公司生产)、446g月桂醇(质量分数为99.9%,马来西亚椰树牌)和7g对甲苯磺酸,衣康酸与月桂醇的摩尔比约为1.1∶2,加热搅拌升温至165℃,反应6小时后升温并减压蒸馏除去未反应的原料,精馏得到611g衣康酸单月桂酯。
实施例II-14
在一2000mL装有电动搅拌器、温度计的反应器中,加入571g衣康酸酐(质量分数为98%,浙江国光生化股份有限公司生产)和792g异构壬醇(Exxal TM 9s,质量分数为99.5%,Exxon-Mobil公司生产),衣康酸酐与异构壬醇的摩尔比约为1∶1.1,加热搅拌升温至90℃,反应5小时后升温并减压蒸馏除去未反应的异壬醇和衣康酸酐,得到1286g衣康酸单异壬酯。
实施例II-15
在一500mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入56g衣康酸酐(质量分数为97%,阿拉丁试剂公司生产)和121g壬基酚(质量分数为99.5%,台湾中纤生产),衣康酸酐与壬基酚的摩尔比约为1.1∶1,加热搅拌升温至100℃,反应5.5小时后得到171g衣康酸单对壬基苯酯为主的混合物。
实施例II-16
在一2000mL装有电动搅拌器、温度计的反应器中,加入490g衣 康酸酐(质量分数为95%,日本TCI集团生产)和540g苯甲醇(苄醇,质量分数为99.5%,山东鲁西集团有限公司生产),衣康酸酐与苯甲醇的摩尔比约为1∶1,加热搅拌升温至100℃,反应4.5小时后升温并减压蒸馏除去未反应的苯甲醇和衣康酸酐,得到996g衣康酸单苄酯。
实施例II-17
在一500mL电动搅拌器、温度计、回流冷能管的反应器中,加入147g衣康酸酐(质量分数为97%,阿拉丁试剂)和180g环己醇(质量分数为98%,阿拉丁试剂),衣康酸酐与环己醇的摩尔比约为1.1∶1,加热搅拌升温至80℃反应6小时后,减压蒸馏除去未反应的环己醇得到296g衣康酸单环己酯。
实施例II-19
在一500mL电动搅拌器、温度计、回流冷能管的反应器中,加入150g柠康酸酐(质量分数为98%,购自梯希爱(上海)化成工业发展有限公司)和192g异辛醇(2-乙基己醇,质量分数为99.9%,中国石油化工股份有限公司齐鲁石化分公司生产),柠康酸酐与异辛醇的摩尔比约为1.1∶1,加热搅拌升温至75℃反应8小时后,减压蒸馏除去未反应的异辛醇得到329g柠康酸单异辛酯。反应式如下:
Figure PCTCN2021083943-appb-000029
实施例II-20
在一1000mL装有电动搅拌器、温度计的反应器中,加入196g马来酸酐(顺丁烯二酸酐,质量分数为99.5%,购自上海阿拉丁生化科技股份有限公司)和316.8g 7-甲基-1-辛醇(质量分数为99%,湖北万业医药有限公司提供),马来酸酐与7-甲基-1-辛醇的摩尔比约为1∶1.1,加热搅拌升温至90℃,反应4小时后得到498g马来酸单-7-甲基-1-辛醇酯为主的产品。
测试例II-1
本测试例比较了实施例和对比例中的润滑性改进剂在柴油中的使用效果,其中将润滑性改进剂分别与表I-2所示的柴油a和柴油b混合。加剂前后柴油的磨斑直径WS1.4见表II-2和表II-3,其中磨痕直径越小则表示柴油润滑性越好。
表II-2加剂前后柴油a的HFRR法磨斑直径WS1.4
Figure PCTCN2021083943-appb-000030
Figure PCTCN2021083943-appb-000031
表II-3加剂前后柴油b的HFRR法磨斑直径WS1.4
Figure PCTCN2021083943-appb-000032
Figure PCTCN2021083943-appb-000033
由表II-2和表II-3可以看出,加入醇类化合物、如月桂醇后,柴油的润滑性基本上没有改善,而加入本申请所述的不饱和二羧酸单酯类型化合物后,柴油的润滑性令人惊讶地得到极大改善。
对于表II-2所示的低硫柴油,本申请所述的不饱和二羧酸单酯化合物在极少的添加量时也能大大改善柴油的润滑性,例如实施例II-1 和II-2在添加量为150mg/kg时能够将柴油a的润滑性磨斑直径从564微米降低到211微米和205微米。相比之下,对比例II-1所示的十二烯基丁二酸单甲酯仅能将磨斑直径降低到398微米,且对比例II-2所示的马来酸二异辛酯化合物没有改善柴油润滑性的作用;即使是目前工业上普遍在使用的脂肪酸型(对比例II-3)和脂肪酸酯型(对比例II-4)柴油润滑性改进剂在150mg/kg时也只能将柴油a的磨斑直径降到427微米和394微米。可见,本申请所述的不饱和二羧酸单酯化合物具有非常优异的抗磨作用。进一步降低到80mg/kg的用量时,本申请所述的不饱和二羧酸单酯化合物也能使柴油a的润滑性满足柴油标准的要求,而对比例在这一添加量时抗磨效果很差,已经不能达到柴油标准要求的不大于460微米的要求。
对于表II-3所示的超低硫柴油,本申请所述的不饱和二羧酸单酯化合物在极少的添加量时就令人惊奇地改善了柴油的润滑性,例如实施例II-1和II-2在添加量为200mg/kg时能够将柴油b的润滑性磨斑直径从651微米降低到208微米和206微米,这一结果是出人意料的。
对比例II-1所示的十二烯基丁二酸单甲酯添加量为200mg/kg时仅能够将柴油b的润滑性磨斑直径从651微米降低到389微米,脂肪酸型(对比例II-3)和脂肪酸酯型(对比例II-4)柴油润滑性改进剂在200mg/kg时也只能将柴油b的磨斑直径降到432微米和387微米。进一步降低到120mg/kg的用量时,本申请所述的不饱和二羧酸单酯化合物也能使柴油b的润滑性满足柴油标准的要求,而对比例II-1、II-3、II-4在120mg/kg添加量时只能使柴油b的磨斑直径降低到471微米、519微米和482微米,抗磨效果已经很差,不能达到柴油标准要求的不大于460微米的规定。对比例II-5、对比例II-6分别与实施例II-8、实施例II-1的效果进行比较,也可以看出带有长链取代基的二羧酸单酯抗磨效果明显变差。
从测试例II-1也可以看出,优选的马来酸单酯和衣康酸单酯改善柴油润滑性的效果更优,相比之下反式结构的富马酸单酯以及带有支链的甲基马来酸单酯的效果稍差。
以下测试例III-1对比了根据本申请的润滑性改进剂(实施例III-1至III-3)与非本申请的润滑性改进剂(对比例III-1至III-3)在航空燃 料中的使用效果,其中所用的润滑性改进剂类型和来源如下表III-1所示:
表III-1测试例III-1中所用的润滑性改进剂类型和来源
Figure PCTCN2021083943-appb-000034
表III-1中列举的自制润滑性改进剂的具体制备过程如下所述:
实施例III-3
分别称取50g马来酸酐(购自上海阿拉丁生化科技股份有限公司)和104.9g异癸醇(购自上海阿拉丁生化科技股份有限公司),置于一装有搅拌器、温度计、冷凝回流管的三口烧瓶反应器中。在90℃条件下反应3小时,冷却至室温,即得马来酸单异癸酯为主的产品。
对比例III-3
分别称取100g十二烯基琥珀酸酐(购自上海阿拉丁生化科技股份有限公司)和70.4g异壬醇(购自上海阿拉丁生化科技股份有限公司),置于一装有搅拌器、温度计、冷凝回流管的三口烧瓶反应器中。在140℃条件下反应3小时,冷却至室温,即得十二烯基丁二酸单异壬酯为主产品。
测试例III-1
本测试例比较了实施例和对比例的润滑性改进剂在航空燃料中的 使用效果,所用航空燃料的理化性能如表III-2所示。在航空燃料中分别加入所示的润滑性改进剂,按照SH/T 0687(ASTM D5001)测定上述加入润滑性改进剂后航空燃料的润滑性磨斑直径。按照GB/T 1793、SH/T 0616方法测定加入润滑性改进剂后航空燃料的水反应性和水分离指数,结果见表III-3。
表III-2测试例III-1所用航空燃料的性质
Figure PCTCN2021083943-appb-000035
Figure PCTCN2021083943-appb-000036
表III-3测试例III-1的测试结果
Figure PCTCN2021083943-appb-000037
由表III-3可见,本申请的二羧酸单酯润滑性改进剂对航空燃料润滑性的改善优于对比例,水反应性和水分离指数试验结果与对比例的航煤润滑性改进剂相当。
以下测试例IV-1对比了根据本申请的润滑性改进剂(实施例IV-1至IV-4)与非本申请的润滑性改进剂(对比例IV-1至IV-4)在汽油中的使用效果,其中所用的润滑性改进剂类型和来源如下表IV-1所示:
表IV-1测试例IV-1中所用的润滑性改进剂类型和来源
Figure PCTCN2021083943-appb-000038
测试例IV-1
测试例IV-1比较了实施例和对比例的润滑性改进剂在汽油中的使用效果,其中将润滑性改进剂分别与汽油混合,所用车用乙醇汽油(E10)和车用汽油的理化性能如表IV-2所示。在高频往复试验机(High-Frequency Reciprocating Rig,HFRR,英国PCS仪器公司)上测定汽油25℃时的磨痕直径(Wear Scar Diameter,WSD),磨痕直径 越小则汽油润滑性越好或润滑性改进剂效果越好,结果见表IV-3。
表IV-2测试例IV-1所用汽油的性质
Figure PCTCN2021083943-appb-000039
Figure PCTCN2021083943-appb-000040
表IV-3测试例IV-1的测试结果
Figure PCTCN2021083943-appb-000041
Figure PCTCN2021083943-appb-000042
由表IV-3可见,HFRR试验机测出空白92号车用乙醇汽油(E10)和95号车用汽油25℃时的磨痕直径分别高达848μm和843μm,加入本申请的二羧酸单酯润滑性改进剂能大大改善汽油的润滑性,实施例IV-1在添加量为150mg/kg时能够将92号车用乙醇汽油(E10)的润滑性磨斑直径降低到378μm,在添加量为200mg/kg时能够将92号车用乙醇汽油(E10)的润滑性磨斑直径降低到296μm;效果远远优于目前工业上使用的脂肪酸和脂肪酸甘油酯润滑性改进剂,如对比例IV-1和对比例IV-2,在200mg/kg用量时仅分别将磨斑直径降低到533μm和498μm。二羧酸双酯化合物例如增塑剂马来酸二异辛酯(对比例IV-4)在汽油中几乎没有提高润滑性的作用,在添加量为200mg/kg时能够将92号车用乙醇汽油(E10)的润滑性磨斑直径降低到822μm,汽油清净分散剂对汽油润滑性的改善作用也不明显,例如对比例IV-3在添加量为180mg/kg时仅能够将95号车用汽油的润滑性磨斑直径降低到786μm。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (11)

  1. 一种燃油润滑性改进剂,包含结构式(I)所示的二羧酸单酯化合物:
    Figure PCTCN2021083943-appb-100001
    其中,R 1为单键、取代或未取代的C 2-6的二价链烯基、或者具有-R 3-R 4-R 5-结构的基团;
    R 2为取代或未取代的C 1-40烃基;
    R 3和R 5各自独立地为单键、或者取代或未取代的C 1-3的二价烷基;
    R 4为取代或未取代的C 3-12的二价脂环族基团,
    其中所述“取代的”是指被至少一个C 1-4直链或支链烃基取代。
  2. 根据权利要求1所述的润滑性改进剂,其中:
    R 1为单键、取代或未取代的C 2-4的二价链烯基、或者具有-R 3-R 4-R 5-结构的基团;
    R 2为取代或未取代的C 1-18烃基;
    R 3和R 5各自独立地为单键或者亚甲基;
    R 4为取代或未取代的C 3-10的二价脂环族基团。
  3. 根据权利要求1所述的润滑性改进剂,其中R 2选自C 1-18直链或支链烃基,C 4-18的脂环族烃基,和C 7-18的芳基取代的烃基或烃基取代的芳基。
  4. 根据权利要求1所述的润滑性改进剂,其中:
    所述二羧酸单酯化合物选自马来酸单酯、富马酸单酯、衣康酸单酯、柠康酸单酯、甲基富马酸单酯、2,3-二甲基马来酸单酯、戊烯二酸单酯,或者它们的任意组合,
    优选选自马来酸单甲酯、马来酸单乙酯、马来酸单正丙酯、马来酸单正丁酯、马来酸单正辛酯、马来酸单正壬酯、马来酸单正癸酯、马来酸单正十二酯、衣康酸单甲酯、衣康酸单乙酯、衣康酸单正丙酯、衣康酸单正丁酯、衣康酸单正辛酯、衣康酸单正癸酯、衣康酸单正十 二酯、马来酸单异丙酯、马来酸单异丁酯、马来酸单仲丁酯、马来酸单叔丁酯、马来酸单异辛酯(马来酸单2-乙基己酯)、马来酸单异壬酯、马来酸单异癸酯,马来酸异十一醇酯、马来酸异十三醇酯、衣康酸单异丙酯、衣康酸单异丁酯、衣康酸单异辛酯、衣康酸单异壬酯、衣康酸单异癸酯,衣康酸异十一醇酯、衣康酸异十三醇酯、马来酸单3-己烯-1-醇酯、马来酸单油醇酯、衣康酸单3-己烯-1-醇酯、衣康酸单油醇酯、马来酸单环己酯、衣康酸单环己酯、马来酸单对壬基苯酯、衣康酸单对壬基苯酯、马来酸单苄酯、衣康酸单苄酯,或者它们的任意组合。
  5. 根据权利要求1所述的润滑性改进剂,其中:
    所述的二羧酸单酯化合物选自1,2-环戊二甲酸单酯、1,2-环己二甲酸单酯、四氢临苯二甲酸单酯、甲基六氢临苯二甲酸单酯、甲基四氢临苯二甲酸单酯、1-甲基-1,2-环己二甲酸单酯、4-甲基-1,2-环己二甲酸单酯、3-甲基-1,2-环己二甲酸单酯、4-甲基-4-环己烯-1,2-二甲酸单酯、3-甲基-4-环己烯-1,2-二甲酸单酯,或者它们的任意组合;
    优选选自1,2-环己二甲酸单酯、四氢临苯二甲酸单酯、甲基六氢临苯二甲酸单酯、甲基四氢临苯二甲酸单酯,或者它们的任意组合。
  6. 一种燃油组合物,包含燃油组分和权利要求1-5中任一项所述的润滑性改进剂,其中以所述燃油的质量为100%计,所述二羧酸单酯化合物的含量为5-400ppm。
  7. 一种改善燃油润滑性的方法,包括将权利要求1-5中任一项所述的润滑性改进剂添加到燃油中,其中以所述燃油的质量为100%计,所述二羧酸单酯化合物的用量为5-400ppm。
  8. 二羧酸单酯化合物作为燃油润滑性改进剂的用途,其中所述二羧酸单酯化合物具有以下结构式(I):
    Figure PCTCN2021083943-appb-100002
    其中,R 1为单键、取代或未取代的C 2-6的二价链烯基、或者具有-R 3-R 4-R 5-结构的基团;
    R 2为取代或未取代的C 1-40烃基;
    R 3和R 5各自独立地为单键、或者取代或未取代的C 1-3的二价烷基;
    R 4为取代或未取代的C 3-12的二价脂环族基团,
    其中所述“取代的”是指被至少一个C 1-4直链或支链烃基取代。
  9. 根据权利要求8所述的用途,其中所述二羧酸单酯化合物如权利要求2-5中任一项所限定。
  10. 适合用作燃油润滑性改进剂的式(I)的二羧酸单酯化合物:
    Figure PCTCN2021083943-appb-100003
    其中,R 1为取代或未取代的C 2-6的二价链烯基、或者具有-R 3-R 4-R 5-结构的基团;
    R 2为取代或未取代的C 5-14直链或支链烷基;
    R 3和R 5各自独立地为单键、或者取代或未取代的C 1-3的二价烷基;
    R 4为取代或未取代的C 3-6的二价脂环族基团,
    其中所述“取代的”是指被至少一个C 1-4直链或支链烃基取代。
  11. 根据权利要求10所述的二羧酸单酯化合物,选自:马来酸单异壬酯(马来酸单-7-甲基-1-辛醇酯),马来酸单异十一烷醇酯,马来酸单异十三烷醇酯,衣康酸单异戊酯,衣康酸单异壬酯(衣康酸单-3,5,5-三甲基己酯),衣康酸单7-甲基辛酯、衣康酸单异癸酯,衣康酸单异十一烷醇酯,衣康酸单异十三烷醇酯,环己二甲酸单异壬酯,六氢邻苯二甲酸单异壬酯,和甲基六氢邻苯二甲酸单异壬酯。
PCT/CN2021/083943 2020-03-30 2021-03-30 燃油润滑性改进剂及其应用 WO2021197323A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/995,222 US20230151290A1 (en) 2020-03-30 2021-03-30 Lubricity modifier for fuels and application thereof
JP2022559996A JP2023521642A (ja) 2020-03-30 2021-03-30 燃料潤滑性改良剤およびその応用
EP21778745.6A EP4130206A4 (en) 2020-03-30 2021-03-30 FUEL LUBRICITY IMPROVER AND USE THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010240138.4 2020-03-30
CN202010237464.X 2020-03-30
CN202010240138.4A CN113462443B (zh) 2020-03-30 2020-03-30 柴油抗磨剂组合物、其制备方法及柴油组合物
CN202010237464.XA CN113462441B (zh) 2020-03-30 2020-03-30 柴油抗磨剂组合物、其制备方法及柴油组合物

Publications (1)

Publication Number Publication Date
WO2021197323A1 true WO2021197323A1 (zh) 2021-10-07

Family

ID=77927717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083943 WO2021197323A1 (zh) 2020-03-30 2021-03-30 燃油润滑性改进剂及其应用

Country Status (5)

Country Link
US (1) US20230151290A1 (zh)
EP (1) EP4130206A4 (zh)
JP (1) JP2023521642A (zh)
TW (1) TW202136484A (zh)
WO (1) WO2021197323A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3166335A1 (en) * 2019-12-31 2021-07-08 China Petroleum & Chemical Corporation Low sulfur diesel blockage inhibitor, preparation method therefor and use thereof
JP7476736B2 (ja) 2020-09-08 2024-05-01 日油株式会社 潤滑油用添加剤組成物およびこれを含有する潤滑油組成物
JP7505341B2 (ja) 2020-09-08 2024-06-25 日油株式会社 潤滑油用添加剤組成物およびこれを含有する潤滑油組成物
CN114806657B (zh) * 2022-06-13 2023-07-28 中国航空油料有限责任公司 喷气燃料抗静电添加剂及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191219147A (en) 1912-08-21 1913-03-06 Frederick William Smith Improved Method of Reinforcing Rubber Goods.
GB191217930A (en) 1911-08-02 1913-08-05 Andre Citroen Et Cie Soc Improvements in or relating to Mechanism for Controlling the Valves of Submerged Torpedo Tubes.
GB191401787A (en) 1914-01-22 1915-01-21 Arthur Clayton Dulcken Improvements in or relating to the Manufacture of Brushes.
GB191506537A (en) 1915-05-01 1915-10-14 Emile Massis Improved Means for Raising and Lowering Windows in Railway Carriages and other Vehicles.
GB191418351A (en) 1914-08-07 1916-08-08 William Albert Burns Improvements in the Sighting of Ordnance, Machine Guns and Small Arms.
JPH0299597A (ja) * 1988-10-06 1990-04-11 Adeka Argus Chem Co Ltd 金属加工油
CN1149312A (zh) * 1994-05-24 1997-05-07 出光兴产株式会社 切割或研磨油组合物
CN1349556A (zh) * 1999-04-14 2002-05-15 国际壳牌研究有限公司 液压用液体
CN1399653A (zh) * 1999-11-30 2003-02-26 罗麦斯添加剂有限公司 一种制备含带长链烷基残基的聚酯化合物的组合物的方法和该组合物的用途
CN107075405A (zh) * 2014-09-19 2017-08-18 出光兴产株式会社 润滑油组合物、和该润滑油组合物的制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3085002A (en) * 1959-03-31 1963-04-09 Sun Oil Co Motor fuel compositions
US5882364A (en) * 1995-07-14 1999-03-16 Exxon Chemical Patents Inc. Additives and fuel oil compositions
JPH0953084A (ja) * 1995-08-11 1997-02-25 Yachiyo Res Kk 耐摩耗性低硫黄軽油組成物
WO2009150145A1 (en) * 2008-06-12 2009-12-17 Basf Se Use of solubilizers for homogenizing additive concentrates
AU2018244795B2 (en) * 2017-03-30 2023-02-23 Innospec Limited Method and use

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191217930A (en) 1911-08-02 1913-08-05 Andre Citroen Et Cie Soc Improvements in or relating to Mechanism for Controlling the Valves of Submerged Torpedo Tubes.
GB191219147A (en) 1912-08-21 1913-03-06 Frederick William Smith Improved Method of Reinforcing Rubber Goods.
GB191401787A (en) 1914-01-22 1915-01-21 Arthur Clayton Dulcken Improvements in or relating to the Manufacture of Brushes.
GB191418351A (en) 1914-08-07 1916-08-08 William Albert Burns Improvements in the Sighting of Ordnance, Machine Guns and Small Arms.
GB191506537A (en) 1915-05-01 1915-10-14 Emile Massis Improved Means for Raising and Lowering Windows in Railway Carriages and other Vehicles.
JPH0299597A (ja) * 1988-10-06 1990-04-11 Adeka Argus Chem Co Ltd 金属加工油
CN1149312A (zh) * 1994-05-24 1997-05-07 出光兴产株式会社 切割或研磨油组合物
CN1349556A (zh) * 1999-04-14 2002-05-15 国际壳牌研究有限公司 液压用液体
CN1399653A (zh) * 1999-11-30 2003-02-26 罗麦斯添加剂有限公司 一种制备含带长链烷基残基的聚酯化合物的组合物的方法和该组合物的用途
CN107075405A (zh) * 2014-09-19 2017-08-18 出光兴产株式会社 润滑油组合物、和该润滑油组合物的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130206A4

Also Published As

Publication number Publication date
EP4130206A1 (en) 2023-02-08
TW202136484A (zh) 2021-10-01
JP2023521642A (ja) 2023-05-25
US20230151290A1 (en) 2023-05-18
EP4130206A4 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2021197323A1 (zh) 燃油润滑性改进剂及其应用
US5997592A (en) Fuel oil compositions
US9464252B2 (en) Quaternary ammonium detergent fuel additives
EP2435541B1 (en) Gasoline compositions
US20070094919A1 (en) Fuel compositions
JP4380912B2 (ja) 燃料油組成物用の潤滑性添加剤
CN109153931B (zh) 蜡抗沉降添加剂在汽车燃料组合物中的用途
US20130000583A1 (en) Liquid fuel compositions
EP1274820B1 (en) Fuel oil compositions
CN113462443B (zh) 柴油抗磨剂组合物、其制备方法及柴油组合物
JP7377815B2 (ja) 改善された着火特性を有するディーゼル燃料
CN113462441B (zh) 柴油抗磨剂组合物、其制备方法及柴油组合物
US20150284652A1 (en) Diesel fuel with improved ignition characteristics
CN113462442B (zh) 柴油抗磨剂组合物、其制备方法及柴油组合物
WO2023274335A1 (zh) 燃油润滑性改进剂组合物及其应用
WO2023051747A1 (zh) 一种润滑性改进剂及其在油品中的应用
JP7204741B2 (ja) 燃料油用添加剤、それを含有する燃料油組成物及び燃料油の摩耗特性の改善方法
CN117987189A (zh) 一种改性蓖麻油柴油抗磨剂、其制备方法及柴油组合物
WO2022263244A1 (en) Quaternized betaines as additives in fuels
CN115141663A (zh) 改善汽油润滑性能的添加剂及汽油组合物
CN102741381A (zh) 液体燃料组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559996

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021778745

Country of ref document: EP

Effective date: 20221031

WWE Wipo information: entry into national phase

Ref document number: 522440757

Country of ref document: SA