WO2021196894A1 - 电子设备、交互方法及装置 - Google Patents

电子设备、交互方法及装置 Download PDF

Info

Publication number
WO2021196894A1
WO2021196894A1 PCT/CN2021/075753 CN2021075753W WO2021196894A1 WO 2021196894 A1 WO2021196894 A1 WO 2021196894A1 CN 2021075753 W CN2021075753 W CN 2021075753W WO 2021196894 A1 WO2021196894 A1 WO 2021196894A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
infrared
rotating member
rotation
module
Prior art date
Application number
PCT/CN2021/075753
Other languages
English (en)
French (fr)
Inventor
段俊杰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2022559469A priority Critical patent/JP2023519403A/ja
Priority to EP21780676.9A priority patent/EP4120030A4/en
Publication of WO2021196894A1 publication Critical patent/WO2021196894A1/zh
Priority to US17/954,405 priority patent/US20230019967A1/en

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B39/00Watch crystals; Fastening or sealing of crystals; Clock glasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34776Absolute encoders with analogue or digital scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/001Electromechanical switches for setting or display
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0362Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 1D translations or rotations of an operating part of the device, e.g. scroll wheels, sliders, knobs, rollers or belts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/3473Circular or rotary encoders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the invention relates to the field of intelligent interaction, and in particular to an electronic device, an interaction method and a device.
  • the existing bezel is generally rotated and interacted by means of magnetic encoding. Place several magnets on the bezel, and place a magnetic field sensor under the bezel. When the bezel is rotated, the direction of the magnetic field of the magnet changes. The change in the magnetic field can be detected by the magnetic field sensor to identify the rotation and interact.
  • This method has some disadvantages : The structure is complicated and a magnet needs to be added to the bezel; it is easily interfered by external magnetic fields; the added magnet will interfere with the electronic compass on the watch. Therefore, there is an urgent need for a better device and its interaction solution.
  • the embodiments of the present invention provide an electronic device, an interaction method, and a device, so as to solve the problems of complicated structure of the existing device for rotating interaction and low accuracy of the interaction result.
  • an embodiment of the present invention provides an electronic device, including a rotating member and an infrared module, the rotating member and the infrared module are disposed oppositely; the surface of the rotating member opposite to the infrared module has An annular area, the annular area is provided with a reflective surface, along the circumferential direction of the annular area, the width of the reflective surface gradually increases or gradually decreases; the infrared module includes an infrared transmitter and an infrared receiver The light emitted by the infrared transmitter is reflected by the reflecting surface and is received by the infrared receiver; wherein, during the rotation of the rotating member, the light received by the infrared receiver follows the reflection The width of the part that faces the infrared module increases as the width increases.
  • an embodiment of the present invention also provides an interaction method, which is applied to the electronic device according to the above-mentioned first aspect, including: acquiring The first infrared energy; when the infrared module is located at the second relative position of the rotating member, the second infrared energy is acquired; according to the first infrared energy and the second infrared energy, the rotation of the rotating member is determined The angle of rotation and/or the direction of rotation; wherein the first relative position is the position of the infrared module relative to the rotating member before the rotating member is rotated, and the second relative position is when the rotating member is The position of the infrared module relative to the rotating member after rotation.
  • an embodiment of the present invention also provides an interaction device, which is applied to the interaction method described in the second aspect above, and includes: a first acquisition module, configured to locate the infrared module on the rotating member In the first relative position, the first infrared energy is obtained; the second obtaining module is used to obtain the second infrared energy when the infrared module is in the second relative position of the rotating member; the first determining module is used to According to the first infrared energy and the second infrared energy, determine the rotation angle and/or rotation direction of the rotating member; wherein, the first relative position is the infrared module before the rotating member rotates With respect to the position of the rotating member, the second relative position is the position of the infrared module relative to the rotating member after the rotating member is rotated.
  • a first acquisition module configured to locate the infrared module on the rotating member In the first relative position, the first infrared energy is obtained
  • the second obtaining module is used to obtain the second infrared energy when the infrared
  • an embodiment of the present invention also provides an electronic device, including: a memory storing computer program instructions; a processor, when the computer program instructions are executed by the processor, the implementation as described in the second aspect is Interactive method.
  • the embodiments of the present invention also provide a computer-readable storage medium.
  • the computer-readable storage medium includes instructions that, when run on a computer, cause the computer to execute The interactive method described.
  • the electronic device provided by the embodiment of the present invention can collect the light reflected by the electronic device only by arranging the infrared module in the electronic device. Compared with the traditional adding a magnet to the device, it is easy to cause interference to the device and make the device easy to use. For devices subject to external interference, the electronic equipment has a simple structure and is easy to implement.
  • the interactive method applied to the above-mentioned electronic device obtaineds the infrared energy of the infrared module at different positions, and determines the rotation angle and/or the rotation direction of the rotating member according to the infrared energy, thereby realizing the device
  • the interaction solves the problem of poor anti-interference ability of the device during the rotation interaction process, and improves the accuracy of the interaction result.
  • Fig. 1 is a schematic structural diagram of an electronic device in an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of an annular area of a rotating member in an embodiment of the present invention.
  • Fig. 3 is a schematic flowchart of an interaction method in an embodiment of the present invention.
  • Fig. 4 is a diagram of the correspondence between infrared energy and angle in an embodiment of the present invention.
  • Fig. 5 is a schematic flowchart of a device interaction method in another embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of an interactive device in an embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of an electronic device in an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of an electronic device in an embodiment of the present invention.
  • the electronic device includes a rotating member 11 and an infrared module 12, and the rotating member 11 and the infrared module 12 are arranged oppositely.
  • the surface of the rotating member 11 opposite to the infrared module 12 has an annular area (as shown in FIG. 2).
  • the annular area is provided with a reflecting surface 111.
  • the width of the reflecting surface gradually increases or decreases. .
  • the infrared module 12 includes an infrared transmitter 121 and an infrared receiver 122.
  • the light emitted by the infrared transmitter 121 is reflected by the reflective surface 111 and received by the infrared receiver 122; wherein, during the rotation of the rotating member 11, the infrared receiver
  • the light received by 122 increases as the width of the portion facing the reflective surface 111 and the infrared module 12 increases.
  • the electronic device may be a watch with a rotating bezel, a machine tool with a rotating component, and other devices that include rotating parts.
  • the rotating member 11 includes an annular bezel, which can rotate relative to a base, and an infrared module 12 is provided on the base.
  • the opposite surface of the bezel and the base includes a reflective surface and a non-reflective surface.
  • the reflective surface has excellent reflection ability for infrared light
  • the non-reflective surface has excellent absorption ability for infrared light.
  • the width of the reflective surface gradually increases or gradually decreases along the circumference of the bezel, that is, along the clockwise or counterclockwise direction, the width of the reflective surface gradually increases or gradually decreases.
  • the width of the reflective surface on the bezel gradually increases, that is, as the bezel rotates clockwise relative to the base, the area on the bezel opposite to the infrared module 12
  • the ability to reflect infrared light gradually increases.
  • the light emitted by the infrared transmitter 121 passes through the reflection of the area on the bezel opposite to the infrared module 12 and is received by the infrared receiver 122.
  • the intensity of the light received by the infrared receiver 122 gradually increases.
  • the width of the reflective surface can also be gradually reduced, which is not limited in the embodiment of the present invention.
  • the reflective surface 111 is coated with a reflective layer.
  • the reflective layer can increase the infrared absorption capacity of the reflective surface 111.
  • the light-reflecting layer is an infrared reflective pigment coating, which has a high reflectivity to infrared, such as nano-silica or nano-titanium dioxide coating.
  • the area on the rotating member 11 other than the reflective surface 111 may be coated with a light-absorbing layer, such as a carbon black coating.
  • the reflective surface 111 and the area outside the reflective surface 111 have different gray levels. As shown in FIG. 2, the reflective surface 111 is set to be white, and the area on the ring area except the reflective surface 111 is set to be black. White and black have different gray levels, and their ability to reflect infrared light is also different. The white area has a strong ability to reflect infrared light, and the black area has a weak ability to reflect infrared light.
  • the width of the opposite area between the white reflective surface and the infrared module gradually changes, and the signal received by the infrared module
  • the intensity gradually changes accordingly, and the relative position of the rotating member 11 and the infrared module 12 can be determined according to the signal intensity received by the infrared module, and then the rotation angle and direction of the rotating member 11 can be obtained.
  • the difference in the reflection ability of infrared light between the reflective surface and the area outside the reflective surface can be improved, thereby improving the detection accuracy of the infrared receiver.
  • the electronic device by arranging an infrared module in the electronic device, a reflective surface with a width gradually changing along the circumferential direction is provided in the annular area between the rotating part and the infrared module, and the rotating part and the infrared module are collected.
  • the reflection intensity of the infrared light reflected by the relative area can determine the relative position of the rotating part and the infrared module, and then determine the rotation angle and direction of the rotating part.
  • the electronic device has a simple structure and is easy to implement.
  • Fig. 3 is a schematic flowchart of an interaction method in an embodiment of the present invention, which is applied to the electronic device shown in Figs. 1 to 2.
  • the method of FIG. 3 may include the following steps.
  • S302 Acquire first infrared energy when the infrared module is located at the first relative position of the rotating part.
  • the first relative position is the position of the infrared module relative to the rotating member before the rotating member rotates.
  • S304 Acquire second infrared energy when the infrared module is located at the second relative position of the rotating part.
  • the second relative position is the position of the infrared module relative to the rotating member after the rotating member is rotated.
  • S306 Determine the rotation angle and/or rotation direction of the rotating member according to the first infrared energy and the second infrared energy.
  • the interaction method applied to electronic devices obtaineds infrared energy when the infrared module is at different positions, and determines the rotation angle and/or direction of the rotating member according to the infrared energy, thereby realizing device interaction.
  • the problem of poor anti-interference ability of the device during the rotating interaction process is solved, and the accuracy of the interaction result is improved.
  • the first infrared energy when determining the rotation angle and/or rotation direction of the rotating member according to the first infrared energy and the second infrared energy, can be determined according to the corresponding relationship between the preset infrared energy and the angle.
  • the first angle corresponding to the energy and the second angle corresponding to the second infrared energy, and the rotation angle, the rotation direction, etc. of the rotating member are determined according to the angle difference between the first angle and the second angle.
  • angle refers to the deviation angle of the infrared module in a certain relative position of the rotating part relative to the initial rotation position of the rotating part in the specified direction (The center point of the rotating part is the circle point).
  • the initial rotation position can be arbitrarily specified.
  • the initial rotation position is the position where the infrared module is located on the annular area of the rotating part with the smallest or largest width of the reflective surface.
  • the specified direction can be clockwise or counterclockwise along the circumference of the ring area.
  • the first angle corresponding to the first infrared energy is the deviation angle of the first relative position relative to the initial rotation position of the rotating part in the specified direction
  • the second angle corresponding to the second infrared energy is the first angle 2.
  • the corresponding relationship between the infrared energy and the angle ⁇ is shown in Figure 4. It is known that the infrared energy corresponding to an angle of 0° is A1, and the infrared energy corresponding to an angle of 360° is A2.
  • the first infrared energy is greater than the second infrared energy
  • the angle difference between the angles is less than 0.
  • the rotation direction of the rotating part is the direction that gradually decreases along the width of the reflecting surface; if the first infrared energy is less than the second infrared energy, the first angle corresponding to the first infrared energy It is greater than the second angle corresponding to the second infrared energy, that is, the angle difference between the first angle and the second angle is greater than 0.
  • the rotation direction of the rotating member is a direction that gradually increases along the width of the reflection surface.
  • the rotation direction of the rotating member is clockwise; if the first infrared energy is less than the second infrared energy, that is, the angle difference between the first angle and the second angle is greater than 0, and the rotation direction of the rotating member is counterclockwise.
  • the rotation angle and direction of the rotating part can be determined, so that the determination of the rotation angle and direction of the rotating part is simple and fast. Receive infrared energy, and the infrared module will not cause interference to the electronic equipment, so compared with the traditional method, the accuracy of the result of determining the rotation angle and the rotation direction of the rotating part is improved.
  • the first interaction instruction corresponding to the rotation angle and/or the rotation direction of the rotating member may be determined according to the correspondence between the preset rotation angle and/or rotation direction and the device interaction instruction.
  • the device interaction instruction may be a page turning instruction, an adjustment instruction, etc.; the first interaction instruction is used to instruct the electronic device to perform an operation corresponding to the first interaction instruction.
  • the page turning command is executed by rotating in a direction in which the width of the reflective surface gradually increases, and it is preset that every 30° of rotation corresponds to turning one page backward.
  • the rotation direction is a direction that gradually increases along the width of the reflecting surface and the rotation angle is 120°, it can be determined that the first interactive instruction is to turn back 4 pages.
  • the first interaction instruction corresponding to the rotation angle and/or rotation direction of the rotating member can be determined according to the preset rotation angle and/or rotation direction and the corresponding relationship between the device interaction instruction, and the first interaction instruction corresponding to the first interaction instruction can be executed.
  • the corresponding operation of the interactive instruction that is, the corresponding interactive instruction can be determined through the rotation angle and/or the rotation direction of the electronic device, which realizes the rotation interaction and improves the user's rotation interaction experience.
  • Fig. 5 is a schematic flowchart of an interaction method in another embodiment of the present invention.
  • the interactive method is applied to a watch provided with a rotating bezel and an infrared module.
  • the structure of the watch is shown in Figures 1 to 2, and the method in Figure 5 may include the following steps.
  • S501 Acquire first infrared energy when the infrared module is located at the first relative position of the rotating bezel.
  • the first relative position is the position of the infrared module relative to the rotating bezel before the rotating bezel is rotated.
  • S502 Acquire second infrared energy when the infrared module is located at the second relative position of the rotating bezel.
  • the second relative position is the position of the infrared module relative to the rotating bezel after the rotating bezel is rotated.
  • S503 Determine a first angle corresponding to the first infrared energy and a second angle corresponding to the second infrared energy according to the preset correspondence between the infrared energy and the angle.
  • angle refers to the relative position of the infrared module in a certain relative position of the rotating bezel in the specified direction relative to the initial rotation position of the rotating bezel. Deviation angle (take the center point of the rotating bezel as the circle point).
  • the initial rotation position can be arbitrarily specified.
  • the initial rotation position is the position where the infrared module is located on the annular area of the rotating bezel with the smallest or largest width of the reflective surface.
  • the specified direction can be clockwise or counterclockwise along the circumference of the ring area.
  • the first angle corresponding to the first infrared energy is the deviation angle of the first relative position relative to the initial rotation position of the rotating bezel in the specified direction
  • the second angle corresponding to the second infrared energy is The deviation angle of the second relative position relative to the initial rotation position of the rotating bezel in the specified direction.
  • the corresponding relationship between the infrared energy and the angle ⁇ is shown in Figure 4. It is known that the infrared energy corresponding to an angle of 0° is A1, and the infrared energy corresponding to an angle of 360° is A2.
  • S504 Determine the rotation angle and/or rotation direction of the rotating bezel according to the angle difference between the first angle and the second angle.
  • the first infrared energy is greater than the second infrared energy
  • the angle difference between the angles is less than 0.
  • the rotating direction of the rotating bezel is the direction that gradually decreases along the width of the reflective surface; if the first infrared energy is less than the second infrared energy, the first infrared energy corresponds to the first infrared energy.
  • the angle is greater than the second angle corresponding to the second infrared energy, that is, the angle difference between the first angle and the second angle is greater than 0.
  • the rotation direction of the rotating bezel is a direction that gradually increases along the width of the reflective surface.
  • S505 Determine a first interaction instruction corresponding to the rotation angle and/or rotation direction of the rotating bezel according to the preset rotation angle and/or rotation direction and the corresponding relationship between the device interaction instruction.
  • the first interactive instruction is used to instruct the watch to perform an operation corresponding to the first interactive instruction.
  • the page turning command is executed by rotating in a direction in which the width of the reflective surface gradually increases, and it is preset that every 30° of rotation corresponds to turning one page backward.
  • the display interface of the watch contains 5 display pages, with 5 function options of "Call", “Location”, “Settings”, “Sports”, and “Health” in turn, and the current display interface is the "Location” function option.
  • the direction of rotation is the direction that gradually increases along the width of the reflecting surface and the angle of rotation is 60°
  • the two function options for page backwards are determined, namely, the page is turned to the display page of the "sports" function option.
  • the interaction method applied to the watch provided by the embodiment of the present invention obtains the infrared energy of the infrared module at different positions, and determines the rotation angle and/or direction of the rotating bezel according to the infrared energy, thereby realizing device interaction.
  • the problem of poor anti-interference ability of the watch during the rotating interaction process is solved, and the accuracy of the interaction result is improved.
  • an interactive device includes: a first acquisition module 610 for acquiring first infrared energy when the infrared module is located at a first relative position of the rotating member; a second acquisition module 620 for acquiring first infrared energy in the infrared module When the group is located at the second relative position of the rotating member, the second infrared energy is obtained; the first determining module 630 is configured to determine the rotation angle and/or direction of the rotating member according to the first infrared energy and the second infrared energy; wherein, The first relative position is the position of the infrared module relative to the rotating member before the rotating member is rotated, and the second relative position is the position of the infrared module relative to the rotating member after the rotating member is rotated.
  • the first determining module 630 includes: a first determining unit, configured to determine the first angle and the second infrared energy corresponding to the first infrared energy according to the preset correspondence between infrared energy and the angle. Corresponding second angle; where the first angle is the deviation angle of the first relative position relative to the initial rotation position of the rotating member in the specified direction; the second angle is the second relative position relative to the initial rotation position in the specified direction Deviation angle; a second determining unit for determining the rotation angle and/or rotation direction of the rotating member according to the angle difference between the first angle and the second angle.
  • the interaction device further includes: a second determining module, configured to determine the rotation angle and/or rotation direction of the rotating member according to the preset rotation angle and/or rotation direction and the corresponding relationship between the device interaction instruction Corresponding first interactive instruction; the first interactive instruction is used to instruct the electronic device to perform an operation corresponding to the first interactive instruction.
  • the interaction device provided by the embodiment of the present invention can implement each process implemented by the interaction method in the foregoing method embodiment. To avoid repetition, details are not described herein again.
  • the interaction device applied to the interaction method provided by the embodiment of the present invention obtains the infrared energy of the infrared module at different positions, and determines the rotation angle and/or the rotation direction of the rotating member according to the infrared energy, thereby realizing device interaction.
  • the problem of poor anti-interference ability of the device during the rotating interaction process is solved, and the accuracy of the interaction result is improved.
  • Fig. 7 is a schematic structural diagram of an electronic device in an embodiment of the present invention.
  • the electronic device 700 includes, but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, and Power 711 and other components.
  • a radio frequency unit 701 includes, but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, and Power 711 and other components.
  • the electronic device may include more or fewer components than those shown in the figure, or a combination of certain components, or different components. Layout.
  • electronic devices include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals,
  • the processor 710 is configured to obtain the first infrared energy when the infrared module is located at the first relative position of the rotating member; when the infrared module is located at the second relative position of the rotating member, obtain the second infrared energy;
  • An infrared energy and a second infrared energy determine the rotation angle and/or direction of the rotating member; wherein, the first relative position is the position of the infrared module relative to the rotating member before the rotating member is rotated, and the second relative position is when the rotating member is rotating. The position of the infrared module relative to the rotating part after the part is rotated.
  • the electronic device applied to the interaction method provided by the embodiment of the present invention obtains the infrared energy of the infrared module at different positions, and determines the rotation angle and/or the rotation direction of the rotating member according to the infrared energy, thereby achieving device interaction.
  • the problem of poor anti-interference ability of the device during the rotating interaction process is solved, and the accuracy of the interaction result is improved.
  • the radio frequency unit 701 can be used to receive and send signals during information transmission or communication. Specifically, the downlink data from the base station is received and processed by the processor 710; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 701 can also communicate with the network and other devices through a wireless communication system.
  • the electronic device provides users with wireless broadband Internet access through the network module 702, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 703 can convert the audio data received by the radio frequency unit 701 or the network module 702 or stored in the memory 709 into an audio signal and output it as sound. Moreover, the audio output unit 703 may also provide audio output related to a specific function performed by the electronic device 700 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 703 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 704 is used to receive audio or video signals.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is used for the image of a still picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 706.
  • the image frame processed by the graphics processor 7041 may be stored in the memory 709 (or other storage medium) or sent via the radio frequency unit 701 or the network module 702.
  • the microphone 7042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 701 for output in the case of a telephone call mode.
  • the electronic device 700 further includes at least one sensor 705, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 7061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 7061 and the display panel 7061 when the electronic device 700 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of electronic devices (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 705 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 706 is used to display information input by the user or information provided to the user.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 707 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the electronic device.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072.
  • the touch panel 7071 also known as the touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 7071 or near the touch panel 7071. operate).
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 7071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 707 may also include other input devices 7072.
  • other input devices 7072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 7071 can be overlaid on the display panel 7061.
  • the touch panel 7071 detects a touch operation on or near it, it is transmitted to the processor 710 to determine the type of the touch event, and then the processor 710 determines the type of touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 7061.
  • the touch panel 7071 and the display panel 7061 are used as two independent components to implement the input and output functions of the electronic device, in some embodiments, the touch panel 7071 and the display panel 7061 can be integrated
  • the implementation of the input and output functions of the electronic device is not specifically limited here.
  • the interface unit 708 is an interface for connecting an external device and the electronic device 700.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 708 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the electronic device 700 or can be used to connect the electronic device 700 to an external device. Transfer data between devices.
  • the memory 709 can be used to store software programs and various data.
  • the memory 709 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the electronic device, which uses various interfaces and lines to connect the various parts of the entire electronic device, runs or executes software programs and/or modules stored in the memory 709, and calls data stored in the memory 709 , Perform various functions of electronic equipment and process data, so as to monitor the electronic equipment as a whole.
  • the processor 710 may include one or more processing units; preferably, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem The processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 710.
  • the electronic device 700 may also include a power source 711 (such as a battery) for supplying power to various components.
  • a power source 711 such as a battery
  • the power source 711 may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the electronic device 700 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides an electronic device, including a processor 710, a memory 709, a computer program stored on the memory 709 and running on the processor 710, when the computer program is executed by the processor 710
  • an electronic device including a processor 710, a memory 709, a computer program stored on the memory 709 and running on the processor 710, when the computer program is executed by the processor 710
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above-mentioned interactive method embodiment is realized, and the same technical effect can be achieved. To avoid repetition, I won’t repeat it here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Abstract

本发明实施例公开了一种电子设备、交互方法及装置。该电子设备包括旋转件和红外模组,旋转件和红外模组相对设置;旋转件与红外模组相对的表面具有环形区域,环形区域上设置有反射面,沿环形区域的周长方向,反射面的宽度逐渐增大或者逐渐减小;红外模组包括红外发射器和红外接收器,红外发射器发射的光线经过反射面的反射,被红外接收器接收。

Description

电子设备、交互方法及装置
交叉引用
本发明要求在2020年04月03日提交中国专利局、申请号202010261292.X、发明名称为“电子设备、交互方法及装置”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及智能交互领域,尤其涉及一种电子设备、交互方法及装置。
背景技术
现有的表圈一般是通过磁编码的方式进行旋转交互。在表圈上安放几块磁铁,在表圈下面放置磁场传感器,旋转表圈时磁铁的磁场方向发生变化,通过磁场传感器检测磁场的变化即可识别到旋转,进而进行交互,此方法存在一些缺点:结构复杂,需要在表圈上加入磁铁;容易被外界磁场干扰;加入的磁铁会干扰到手表上的电子罗盘。因此,亟需一种更优的设备及其交互方案。
发明内容
本发明实施例提供一种电子设备、交互方法及装置,以解决现有的用于旋转交互的设备结构复杂、且交互结果准确率低的问题。
为解决上述技术问题,本发明实施例是这样实现的:
第一方面,本发明实施例提供了一种电子设备,包括旋转件和红外模组,所述旋转件和所述红外模组相对设置;所述旋转件与所述红外模组相对的表面具有环形区域,所述环形区域上设置有反射面,沿所述环形区域的周长方向,所述反射面的宽度逐渐增大或者逐渐减小;所述红外模组包括红外发射器和红外接收器,所述红外发射器发射的光线经过所述反射面的反射,被所 述红外接收器接收;其中,在所述旋转件转动的过程中,所述红外接收器接收的光线随着所述反射面与所述红外模组正对部分的宽度的增大而增强。
第二方面,本发明实施例还提供了一种交互方法,应用于如上述第一方面所述的电子设备,包括:在所述红外模组位于所述旋转件的第一相对位置时,获取第一红外能量;在所述红外模组位于所述旋转件的第二相对位置时,获取第二红外能量;根据所述第一红外能量和所述第二红外能量,确定所述旋转件的转动角度和/或转动方向;其中,所述第一相对位置为在所述旋转件转动前所述红外模组相对于所述旋转件的位置,所述第二相对位置为在所述旋转件转动后所述红外模组相对于所述旋转件的位置。
第三方面,本发明实施例还提供了一种交互装置,应用于如上述第二方面所述的交互方法,包括:第一获取模块,用于在所述红外模组位于所述旋转件的第一相对位置时,获取第一红外能量;第二获取模块,用于在所述红外模组位于所述旋转件的第二相对位置时,获取第二红外能量;第一确定模块,用于根据所述第一红外能量和所述第二红外能量,确定所述旋转件的转动角度和/或转动方向;其中,所述第一相对位置为在所述旋转件转动前所述红外模组相对于所述旋转件的位置,所述第二相对位置为在所述旋转件转动后所述红外模组相对于所述旋转件的位置。
第四方面,本发明实施例还提供了一种电子设备,包括:存储器,存储有计算机程序指令;处理器,当所述计算机程序指令被所述处理器执行时实现如上述第二方面所述的交互方法。
第五方面,本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质包括指令,当所述指令在计算机上运行时,使得所述计算机执行如上述第二方面所述的交互方法。
本发明实施例提供的电子设备,仅通过在电子设备中设置红外模组,即可采集电子设备反射的光线,相较于传统的在设备中添加磁铁等易对设备造成干扰、且使设备易受外界干扰的器件,该电子设备结构简单,易于实现。
进一步地,本发明实施例提供的应用于上述电子设备的交互方法,通过获取红外模组在不同位置时的红外能量,并根据红外能量确定旋转件的转动角度和/或转动方向,进而实现设备交互,解决了设备在旋转交互过程中抗干扰能力差的问题,提高了交互结果的准确率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的一个实施例中一种电子设备的结构示意图。
图2是本发明的一个实施例中旋转件的环形区域示意图。
图3是本发明的一个实施例中一种交互方法的示意性流程图。
图4是本发明的一个实施例中一种红外能量与角度之间的对应关系图。
图5是本发明的另一个实施例中一种设备交互方法的示意性流程图。
图6是本发明的一个实施例中一种交互装置的结构示意图。
图7是本发明的一个实施例中一种电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明的一个实施例中一种电子设备的结构示意图。如图1所示,该电子设备包括:旋转件11和红外模组12,旋转件11和红外模组12相对 设置。旋转件11与红外模组12相对的表面具有环形区域(如图2所示),环形区域上设置有反射面111,沿环形区域的周长方向,反射面的宽度逐渐增大或者逐渐减小。
红外模组12包括红外发射器121和红外接收器122,红外发射器121发射的光线经过反射面111的反射,被红外接收器122接收;其中,在旋转件11转动的过程中,红外接收器122接收的光线随着反射面111与红外模组12正对部分的宽度的增大而增强。
在一个实施例中,电子设备可以为带旋转表圈的手表、带旋转组件的机床等包含旋转件的设备。
以电子设备为带旋转表圈的智能手表为例,旋转件11包括环形表圈,可以相对底座转动,底座上设置有红外模组12。表圈与底座相对的面包括反射面和非反射面,其中反射面对红外光有优良的反射能力,非反射面对红外光有优良的吸收能力。反射面的宽度沿表圈的周长方向逐渐增大或者逐渐减小,也即,沿着顺时针或者逆时针方向,反射面的宽度逐渐增大或者逐渐减小。一种可能的情况为,沿着顺时针方向,表圈上反射面的宽度逐渐增大,也即随着表圈相对于底座顺时针方向的转动,表圈上与红外模组12相对的区域对红外光的反射能力逐渐增强。红外发射器121发射的光线经过表圈上与红外模组12相对区域的反射,被红外接收器122接收,在表圈顺时针旋转的过程中,红外接收器122接收的光线强度逐渐增大。应当说明的是,沿着顺时针方向,反射面的宽度也可以逐渐减小,本发明实施例对此不作限制。
在一个实施例中,反射面111涂覆有反光层。反光层可以增大反射面111对红外线的吸收能力。可选的,反光层为红外反射颜料涂层,对红外线有很高的反射率,如纳米二氧化硅或者纳米二氧化钛涂层。相应的,旋转件11上反射面111以外的区域可以涂覆吸光层,如炭黑涂层。通过在反射面涂覆反光层和在反射面以外的区域涂覆吸光层,可以增大反射面和反射面以外区域对红外光反射能力的差异,进而在旋转件转动的过程中,红外模组检测到的 信号变化率大,有利于提高检测精度。
在一个实施例中,反射面111和反射面111以外的区域灰度不同。如图2所示,反射面111设置为白色,环形区域上除反射面111之外的区域设置为黑色。白色和黑色的灰度不同,对红外光的反射能力也不同。白色区域对红外光的反射能力强,黑色区域对红外光的反射能力弱,因此,随着旋转件的转动,白色反射面与红外模组相对区域的宽度逐渐变化,红外模组接收到的信号强度随之逐渐变化,可以根据红外模组接收的信号强度判断旋转件11与红外模组12的相对位置,进而获取旋转件11的转动角度和方向。通过不同颜色的设置,可以提高反射面与反射面以外区域对红外光反射能力的差异,进而提高红外接收器的检测精度。
本发明实施例提供的电子设备,通过在电子设备中设置红外模组,在旋转件与红外模组相对的环形区域设置宽度沿周长方向逐渐变化的反射面,通过采集旋转件与红外模组相对区域反射的红外光的反射强度,即可确定旋转件与所述红外模组的相对位置,进而确定旋转件的转动角度和方向。相较于传统的在设备中添加磁铁等易对设备造成干扰、且使设备易受外界干扰的器件,该电子设备结构简单,易于实现。
图3是本发明的一个实施例中一种交互方法的示意性流程图,应用于图1-图2所示的电子设备。图3的方法可包括如下步骤。
S302,在红外模组位于旋转件的第一相对位置时,获取第一红外能量。
其中,第一相对位置为在旋转件转动前红外模组相对于旋转件的位置。
S304,在红外模组位于旋转件的第二相对位置时,获取第二红外能量。
其中,第二相对位置为在旋转件转动后红外模组相对于旋转件的位置。
S306,根据第一红外能量和第二红外能量,确定旋转件的转动角度和/或转动方向。
本发明实施例提供的应用于电子设备的交互方法,通过获取红外模组在不同位置时的红外能量,并根据红外能量确定旋转件的转动角度和/或转动方 向,进而实现设备交互。解决了设备在旋转交互过程中抗干扰能力差的问题,提高了交互结果的准确率。
在一个实施例中,根据第一红外能量和第二红外能量,确定旋转件的转动角度和/或转动方向时,可根据预设的红外能量与角度之间的对应关系,分别确定第一红外能量对应的第一角度和第二红外能量对应的第二角度,并根据第一角度与第二角度之间的角度差,确定旋转件的转动角度、转动方向等。
在红外能量与角度之间的对应关系中,“角度”指的是:红外模组位于旋转件的某一相对位置时,该相对位置相对于旋转件的初始转动位置在指定方向上的偏离角度(以旋转件的中心点为圆点)。其中,初始转动位置可以任意指定,比如,初始转动位置为红外模组位于旋转件的环形区域上的反射面宽度最小或最大的位置。指定方向可以是沿环形区域周长的顺时针方向或逆时针方向。
基于上述对角度的定义,第一红外能量对应的第一角度即为第一相对位置相对于旋转件的初始转动位置在指定方向上的偏离角度,第二红外能量对应的第二角度即为第二相对位置相对于旋转件的初始转动位置在指定方向上的偏离角度。
其中,红外能量与角度α之间的对应关系如图4所示。已知,角度0°对应的红外能量为A1,角度360°对应的红外能量为A2,则A1、A2之间任意一个红外能量X与角度α之间的对应关系可用如下公式表征:α=360°*(A1-X)/(A1-A2)。红外能量和角度之间负相关。
本实施例中,若第一红外能量大于第二红外能量,则由图4可确定,第一红外能量对应的第一角度小于第二红外能量对应的第二角度,即第一角度与第二角度之间的角度差小于0,此时可确定旋转件的转动方向为沿反射面宽度逐渐减小的方向;若第一红外能量小于第二红外能量,则第一红外能量对应的第一角度大于第二红外能量对应的第二角度,即第一角度与第二角度之间的角度差大于0,此时可确定旋转件的转动方向为沿反射面宽度逐渐增 大的方向。
以图2所示的电子设备为例,若第一红外能量大于第二红外能量,即第一角度与第二角度之间的角度差小于0,则旋转件的转动方向为顺时针方向;若第一红外能量小于第二红外能量,即第一角度与第二角度之间的角度差大于0,则旋转件的转动方向为逆时针方向。
本实施例中,根据第一红外能量和第二红外能量,即可确定旋转件的转动角度、转动方向,使得旋转件的转动角度、转动方向的确定方式简单、快速,且由于通过红外模组接收红外能量,而红外模组不会对电子设备造成干扰,因此与传统方式相比,提高了确定出的旋转件的转动角度、转动方向的结果的准确性。
在一个实施例中,可根据预设的转动角度和/或转动方向与设备交互指令之间的对应关系,确定旋转件的转动角度和/或转动方向对应的第一交互指令。
其中,设备交互指令可为翻页指令、调节指令等;第一交互指令用于指示电子设备执行与第一交互指令相应的操作。
例如,沿反射面宽度逐渐增大的方向旋转执行翻页指令,预设每转动30°对应向后翻1页。当转动方向为沿反射面宽度逐渐增大的方向、转动角度为120°时,可确定第一交互指令为向后翻4页。
沿用上述举例,假设带有可旋转表圈的手表的显示界面上包含5个显示页面,依次设有“通话”、“位置”、“设置”、“运动”、“健康”5个功能选项,且当前显示界面为“位置”功能选项。当转动方向为沿反射面宽度逐渐增大的方向、转动角度为60°时,确定向后翻页2个功能选项,即翻页至“运动”功能选项的显示页面。
本实施例中,能够根据预设的转动角度和/或转动方向与设备交互指令之间的对应关系,确定旋转件的转动角度和/或转动方向对应的第一交互指令,并执行与第一交互指令相应的操作,即通过电子设备的转动角度和/或转动方向就能确定对应的交互指令,实现了旋转交互,提高了用户的旋转交互体验 度。
图5是本发明的另一个实施例中一种交互方法的示意性流程图。本实施例中,交互方法应用于设置有旋转表圈和红外模组的手表中。该手表的结构如图1-图2所示,图5的方法可包括如下步骤。
S501,在红外模组位于旋转表圈的第一相对位置时,获取第一红外能量。
其中,第一相对位置为在旋转表圈转动前红外模组相对于旋转表圈的位置。
S502,在红外模组位于旋转表圈的第二相对位置时,获取第二红外能量。
其中,第二相对位置为在旋转表圈转动后红外模组相对于旋转表圈的位置。
S503,根据预设的红外能量与角度之间的对应关系,分别确定第一红外能量对应的第一角度和第二红外能量对应的第二角度。
在红外能量与角度之间的对应关系中,“角度”指的是:红外模组位于旋转表圈的某一相对位置时,该相对位置相对于旋转表圈的初始转动位置在指定方向上的偏离角度(以旋转表圈的中心点为圆点)。其中,初始转动位置可以任意指定,比如,初始转动位置为红外模组位于旋转表圈的环形区域上的反射面宽度最小或最大的位置。指定方向可以是沿环形区域周长的顺时针方向或逆时针方向。
基于上述对角度的定义,第一红外能量对应的第一角度即为第一相对位置相对于旋转表圈的初始转动位置在指定方向上的偏离角度,第二红外能量对应的第二角度即为第二相对位置相对于旋转表圈的初始转动位置在指定方向上的偏离角度。
其中,红外能量与角度α之间的对应关系如图4所示。已知,角度0°对应的红外能量为A1,角度360°对应的红外能量为A2,则A1、A2之间任意一个红外能量X与角度α之间的对应关系可用如下公式表征:α=360°*(A1-X)/(A1-A2)。红外能量和角度之间负相关。
S504,根据第一角度与第二角度之间的角度差,确定旋转表圈的转动角度和/或转动方向。
本实施例中,若第一红外能量大于第二红外能量,则由图4可确定,第一红外能量对应的第一角度小于第二红外能量对应的第二角度,即第一角度与第二角度之间的角度差小于0,此时可确定旋转表圈的转动方向为沿反射面宽度逐渐减小的方向;若第一红外能量小于第二红外能量,则第一红外能量对应的第一角度大于第二红外能量对应的第二角度,即第一角度与第二角度之间的角度差大于0,此时可确定旋转表圈的转动方向为沿反射面宽度逐渐增大的方向。
S505,根据预设的转动角度和/或转动方向与设备交互指令之间的对应关系,确定旋转表圈的转动角度和/或转动方向对应的第一交互指令。
其中,第一交互指令用于指示手表执行与第一交互指令相应的操作。
例如,沿反射面宽度逐渐增大的方向旋转执行翻页指令,预设每转动30°对应向后翻1页。假设手表的显示界面上包含5个显示页面,依次设有“通话”、“位置”、“设置”、“运动”、“健康”5个功能选项,且当前显示界面为“位置”功能选项。当转动方向为沿反射面宽度逐渐增大的方向、转动角度为60°时,确定向后翻页2个功能选项,即翻页至“运动”功能选项的显示页面。
本发明实施例提供的应用于手表的交互方法,通过获取红外模组在不同位置时的红外能量,并根据红外能量确定旋转表圈的转动角度和/或转动方向,进而实现设备交互。解决了手表在旋转交互过程中抗干扰能力差的问题,提高了交互结果的准确率。
图6是本发明的一个实施例中一种交互装置的结构示意图。请参考图6,一种交互装置包括:第一获取模块610,用于在红外模组位于旋转件的第一相对位置时,获取第一红外能量;第二获取模块620,用于在红外模组位于旋转件的第二相对位置时,获取第二红外能量;第一确定模块630,用于根据第 一红外能量和第二红外能量,确定旋转件的转动角度和/或转动方向;其中,第一相对位置为在旋转件转动前红外模组相对于旋转件的位置,第二相对位置为在旋转件转动后红外模组相对于旋转件的位置。
在一个实施例中,第一确定模块630包括:第一确定单元,用于根据预设的红外能量与角度之间的对应关系,分别确定第一红外能量对应的第一角度和第二红外能量对应的第二角度;其中,第一角度为第一相对位置相对于旋转件的初始转动位置在指定方向上的偏离角度;第二角度为第二相对位置相对于初始转动位置在指定方向上的偏离角度;第二确定单元,用于根据第一角度与第二角度之间的角度差,确定旋转件的转动角度和/或转动方向。
在一个实施例中,交互装置还包括:第二确定模块,用于根据预设的转动角度和/或转动方向与设备交互指令之间的对应关系,确定旋转件的转动角度和/或转动方向对应的第一交互指令;第一交互指令用于指示电子设备执行与第一交互指令相应的操作。
本发明实施例提供的交互装置能够实现上述方法实施例中交互方法实现的各个过程,为避免重复,这里不再赘述。
本发明实施例提供的应用于交互方法的交互装置,通过获取红外模组在不同位置时的红外能量,并根据红外能量确定旋转件的转动角度和/或转动方向,进而实现设备交互。解决了设备在旋转交互过程中抗干扰能力差的问题,提高了交互结果的准确率。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
图7是本发明的一个实施例中一种电子设备的结构示意图。该电子设备700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入 单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,电子设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器710,用于在红外模组位于旋转件的第一相对位置时,获取第一红外能量;在红外模组位于旋转件的第二相对位置时,获取第二红外能量;根据第一红外能量和第二红外能量,确定旋转件的转动角度和/或转动方向;其中,第一相对位置为在旋转件转动前红外模组相对于旋转件的位置,第二相对位置为在旋转件转动后红外模组相对于旋转件的位置。
本发明实施例提供的应用于交互方法的电子设备,通过获取红外模组在不同位置时的红外能量,并根据红外能量确定旋转件的转动角度和/或转动方向,进而实现设备交互。解决了设备在旋转交互过程中抗干扰能力差的问题,提高了交互结果的准确率。
应理解的是,本发明实施例中,射频单元701可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信系统与网络和其他设备通信。
电子设备通过网络模块702为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元703还可以提供与电子设备700执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、 蜂鸣器以及受话器等。
输入单元704用于接收音频或视频信号。输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元706上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。
电子设备700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在电子设备700移动到耳边时,关闭显示面板7061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别电子设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板7061。
用户输入单元707可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707 包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板7071上或在触控面板7071附近的操作)。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7071。除了触控面板7071,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板7071可覆盖在显示面板7061上,当触控面板7071检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然在图7中,触控面板7071与显示面板7061是作为两个独立的部件来实现电子设备的输入和输出功能,但是在某些实施例中,可以将触控面板7071与显示面板7061集成而实现电子设备的输入和输出功能,具体此处不做限定。
接口单元708为外部装置与电子设备700连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元708可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到电子设备700内的一个或多个元件或者可以用于在电子设备700和外部装置之间传输数据。
存储器709可用于存储软件程序以及各种数据。存储器709可主要包括 存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器709内的软件程序和/或模块,以及调用存储在存储器709内的数据,执行电子设备的各种功能和处理数据,从而对电子设备进行整体监控。处理器710可包括一个或多个处理单元;优选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
电子设备700还可以包括给各个部件供电的电源711(比如电池),优选的,电源711可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,电子设备700包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种电子设备,包括处理器710,存储器709,存储在存储器709上并可在所述处理器710上运行的计算机程序,该计算机程序被处理器710执行时实现上述交互方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述交互方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (11)

  1. 一种电子设备,包括旋转件和红外模组,所述旋转件和所述红外模组相对设置;
    所述旋转件与所述红外模组相对的表面具有环形区域,所述环形区域上设置有反射面,沿所述环形区域的周长方向,所述反射面的宽度逐渐增大或者逐渐减小;
    所述红外模组包括红外发射器和红外接收器,所述红外发射器发射的光线经过所述反射面的反射,被所述红外接收器接收;
    其中,在所述旋转件转动的过程中,所述红外接收器接收的光线随着所述反射面与所述红外模组正对部分的宽度的增大而增强。
  2. 根据权利要求1所述的电子设备,其中,所述反射面涂覆有反光层。
  3. 根据权利要求1所述的电子设备,其中,所述反射面涂覆为白色。
  4. 一种交互方法,应用于如权利要求1至3中任一项所述的电子设备,包括:
    在所述红外模组位于所述旋转件的第一相对位置时,获取第一红外能量;
    在所述红外模组位于所述旋转件的第二相对位置时,获取第二红外能量;
    根据所述第一红外能量和所述第二红外能量,确定所述旋转件的转动角度和/或转动方向;
    其中,所述第一相对位置为在所述旋转件转动前所述红外模组相对于所述旋转件的位置,所述第二相对位置为在所述旋转件转动后所述红外模组相对于所述旋转件的位置。
  5. 根据权利要求4所述的方法,其中,所述根据所述第一红外能量和所述第二红外能量,确定所述旋转件的转动角度和/或转动方向,包括:
    根据预设的红外能量与角度之间的对应关系,分别确定所述第一红外能量对应的第一角度和所述第二红外能量对应的第二角度;
    其中,所述第一角度为所述第一相对位置相对于所述旋转件的初始转动位置在指定方向上的偏离角度;所述第二角度为所述第二相对位置相对于所述初始转动位置在所述指定方向上的偏离角度;
    根据所述第一角度与所述第二角度之间的角度差,确定所述旋转件的转 动角度和/或转动方向。
  6. 根据权利要求4所述的方法,其中,还包括:
    根据预设的转动角度和/或转动方向与设备交互指令之间的对应关系,确定所述旋转件的转动角度和/或转动方向对应的第一交互指令;所述第一交互指令用于指示所述电子设备执行与所述第一交互指令相应的操作。
  7. 一种交互装置,其中,包括:
    第一获取模块,用于在红外模组位于旋转件的第一相对位置时,获取第一红外能量;
    第二获取模块,用于在所述红外模组位于所述旋转件的第二相对位置时,获取第二红外能量;
    第一确定模块,用于根据所述第一红外能量和所述第二红外能量,确定所述旋转件的转动角度和/或转动方向;
    其中,所述第一相对位置为在所述旋转件转动前所述红外模组相对于所述旋转件的位置,所述第二相对位置为在所述旋转件转动后所述红外模组相对于所述旋转件的位置。
  8. 根据权利要求7所述的装置,其中,所述第一确定模块包括:
    第一确定单元,用于根据预设的红外能量与角度之间的对应关系,分别确定所述第一红外能量对应的第一角度和所述第二红外能量对应的第二角度;其中,所述第一角度为所述第一相对位置相对于所述旋转件的初始转动位置在指定方向上的偏离角度;所述第二角度为所述第二相对位置相对于所述初始转动位置在所述指定方向上的偏离角度;
    第二确定单元,用于根据所述第一角度与所述第二角度之间的角度差,确定所述旋转件的转动角度和/或转动方向。
  9. 根据权利要求7所述的装置,其中,还包括:
    第二确定模块,用于根据预设的转动角度和/或转动方向与设备交互指令之间的对应关系,确定所述旋转件的转动角度和/或转动方向对应的第一交互指令;所述第一交互指令用于指示电子设备执行与所述第一交互指令相应的操作。
  10. 一种电子设备,包括:
    存储器,存储有计算机程序指令;
    处理器,当所述计算机程序指令被所述处理器执行时实现如权利要求4至6中任一项所述的交互方法。
  11. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求4至6中任一项所述的交互方法。
PCT/CN2021/075753 2020-04-03 2021-02-07 电子设备、交互方法及装置 WO2021196894A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022559469A JP2023519403A (ja) 2020-04-03 2021-02-07 電子機器、インタラクション方法、インタラクション装置、および記憶媒体
EP21780676.9A EP4120030A4 (en) 2020-04-03 2021-02-07 ELECTRONIC DEVICE AND INTERACTION METHOD AND DEVICE
US17/954,405 US20230019967A1 (en) 2020-04-03 2022-09-28 Electronic device, and interaction method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010261292.XA CN111552166B (zh) 2020-04-03 2020-04-03 电子设备、交互方法及装置
CN202010261292.X 2020-04-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/954,405 Continuation US20230019967A1 (en) 2020-04-03 2022-09-28 Electronic device, and interaction method and device

Publications (1)

Publication Number Publication Date
WO2021196894A1 true WO2021196894A1 (zh) 2021-10-07

Family

ID=72007352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075753 WO2021196894A1 (zh) 2020-04-03 2021-02-07 电子设备、交互方法及装置

Country Status (5)

Country Link
US (1) US20230019967A1 (zh)
EP (1) EP4120030A4 (zh)
JP (1) JP2023519403A (zh)
CN (1) CN111552166B (zh)
WO (1) WO2021196894A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111552166B (zh) * 2020-04-03 2021-05-25 维沃移动通信有限公司 电子设备、交互方法及装置
CN114355756A (zh) * 2021-12-30 2022-04-15 歌尔科技有限公司 一种电子设备及一种电子设备的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743134A (ja) * 1993-07-30 1995-02-10 Optec Dai Ichi Denko Co Ltd 回転角検出装置
CN101982736A (zh) * 2010-10-28 2011-03-02 朱孝立 一种光电旋转编码器的编码盘
CN207976717U (zh) * 2018-01-10 2018-10-16 何屹 360度旋转摄像手表
CN108803780A (zh) * 2017-05-02 2018-11-13 精工爱普生株式会社 可佩戴设备以及显示方法
CN111552166A (zh) * 2020-04-03 2020-08-18 维沃移动通信有限公司 电子设备、交互方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327362A (en) * 1978-10-23 1982-04-27 Rockwell International Corporation Meter rotor rotation optical sensor
JPH0787393A (ja) * 1993-09-13 1995-03-31 Fujitsu Ltd 赤外線映像装置
JP3627531B2 (ja) * 1998-09-30 2005-03-09 セイコーエプソン株式会社 情報処理装置
US6020967A (en) * 1999-03-31 2000-02-01 Gregorio; Pedro Differential displacement optical sensor
DE602004020883D1 (de) * 2004-07-22 2009-06-10 Bea Sa Thermo-empfindliche Vorrichtung zur Anwesenheitsbestimmung von automatischen Türen
JP2006106240A (ja) * 2004-10-04 2006-04-20 Sharp Corp 回転速度検出回路及び該回路を用いた投射型表示装置
JP2007266344A (ja) * 2006-03-29 2007-10-11 Dainippon Screen Mfg Co Ltd 位置検出センサ、モータおよび基板処理装置
KR101589743B1 (ko) * 2008-11-07 2016-01-28 삼성전자주식회사 휠 구동 장치 및 상기 장치를 구비한 휴대용 전자기기
US9574050B2 (en) * 2010-03-23 2017-02-21 Asahi Rubber Inc. Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
JP2015111772A (ja) * 2013-12-06 2015-06-18 シチズンホールディングス株式会社 投影装置
JP6341720B2 (ja) * 2014-03-27 2018-06-13 日本電産コパル株式会社 テープフィーダ及びこのテープフィーダの制御方法
WO2017126727A1 (ko) * 2016-01-22 2017-07-27 엘지전자 주식회사 와치 타입 이동 단말기 및 그의 동작 방법
US10203662B1 (en) * 2017-09-25 2019-02-12 Apple Inc. Optical position sensor for a crown
CN108592827A (zh) * 2018-06-28 2018-09-28 北方民族大学 精密测角传感器及其测量方法
CN109257466B (zh) * 2018-10-18 2021-01-08 维沃移动通信有限公司 移动终端及移动终端的控制方法
CN109861757B (zh) * 2019-03-26 2021-03-09 Oppo广东移动通信有限公司 控制方法、飞行时间组件、电子装置及可读存储介质
CN209461483U (zh) * 2019-04-15 2019-10-01 扬州乾照光电有限公司 一种自带反射碗杯的红外led芯片
CN110332950A (zh) * 2019-06-26 2019-10-15 维沃移动通信有限公司 红外传感模组、终端设备及其控制方法和控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743134A (ja) * 1993-07-30 1995-02-10 Optec Dai Ichi Denko Co Ltd 回転角検出装置
CN101982736A (zh) * 2010-10-28 2011-03-02 朱孝立 一种光电旋转编码器的编码盘
CN108803780A (zh) * 2017-05-02 2018-11-13 精工爱普生株式会社 可佩戴设备以及显示方法
CN207976717U (zh) * 2018-01-10 2018-10-16 何屹 360度旋转摄像手表
CN111552166A (zh) * 2020-04-03 2020-08-18 维沃移动通信有限公司 电子设备、交互方法及装置

Also Published As

Publication number Publication date
EP4120030A1 (en) 2023-01-18
JP2023519403A (ja) 2023-05-10
EP4120030A4 (en) 2023-09-06
US20230019967A1 (en) 2023-01-19
CN111552166A (zh) 2020-08-18
CN111552166B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2021004350A1 (zh) 发射天线的切换方法及终端设备
WO2021098697A1 (zh) 屏幕显示的控制方法及电子设备
CN108628565B (zh) 一种移动终端操作方法及移动终端
US20200257433A1 (en) Display method and mobile terminal
WO2021004317A1 (zh) 发射天线的切换方法及终端设备
US20230019967A1 (en) Electronic device, and interaction method and device
WO2020215932A1 (zh) 显示未读消息的方法及终端设备
CN109032486B (zh) 一种显示控制方法及终端设备
WO2020186964A1 (zh) 音频信号的输出方法及终端设备
US11354017B2 (en) Display method and mobile terminal
WO2019218862A1 (zh) 屏幕操作方法及移动终端
WO2020253340A1 (zh) 导航方法及移动终端
CN107635072B (zh) 一种移动终端的控制方法及移动终端
WO2019228296A1 (zh) 显示处理方法及终端设备
US20210028851A1 (en) Terminal detection method and terminal
WO2021164716A1 (zh) 显示方法及电子设备
WO2021129732A1 (zh) 显示处理方法及电子设备
WO2020220893A1 (zh) 截图方法及移动终端
WO2019154360A1 (zh) 界面切换方法及移动终端
WO2021093772A1 (zh) 通知消息的处理方法及电子设备
CN111338489B (zh) 参数调整方法、电子设备
WO2020151490A1 (zh) 应用的控制方法及终端设备
CN109445589B (zh) 一种多媒体文件播放控制方法及终端设备
WO2021208890A1 (zh) 截屏方法及电子设备
WO2021129745A1 (zh) 触控按键、控制方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559469

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021780676

Country of ref document: EP

Effective date: 20221012

NENP Non-entry into the national phase

Ref country code: DE