WO2021196340A1 - 一种液固相催化合成1-丁烯-3,4-二醇的方法 - Google Patents

一种液固相催化合成1-丁烯-3,4-二醇的方法 Download PDF

Info

Publication number
WO2021196340A1
WO2021196340A1 PCT/CN2020/088956 CN2020088956W WO2021196340A1 WO 2021196340 A1 WO2021196340 A1 WO 2021196340A1 CN 2020088956 W CN2020088956 W CN 2020088956W WO 2021196340 A1 WO2021196340 A1 WO 2021196340A1
Authority
WO
WIPO (PCT)
Prior art keywords
butene
diol
liquid
metal salt
solid phase
Prior art date
Application number
PCT/CN2020/088956
Other languages
English (en)
French (fr)
Inventor
傅人俊
薛冰
路珊
Original Assignee
常熟市常吉化工有限公司
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常熟市常吉化工有限公司, 常州大学 filed Critical 常熟市常吉化工有限公司
Publication of WO2021196340A1 publication Critical patent/WO2021196340A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7676MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/56Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by isomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the field of heterogeneous catalysis, in particular to a method for synthesizing 1-butene-3,4-diol through heterogeneous catalysis.
  • 1-Butene-3,4-diol is an important raw material for the synthesis of vinyl ethylene carbonate and vinyl vinyl sulfite as additives for lithium ion electrolytes. It is also an important pharmaceutical intermediate and has important industrial economic value.
  • 1-Butene-3,4-diol can be prepared by hydrogenation of polybutadiene peroxide, while polybutadiene peroxide is prepared by oxidation of butadiene.
  • the disadvantage of this method is 1-butene -3,4-diol contains 2-butene-1,4-diol as a by-product.
  • 1-Butene-3,4-diol can also be prepared by hydrolysis of vinyl epoxide. The disadvantage of this process is also that vinyl epoxide needs to be prepared by oxidation of butadiene.
  • 1-Butene-3,4-diol can also be obtained from the acetoxylated by-products of butadiene, 1,4-diacetoxy-2-butene and 3,4-diacetoxy-1-butene It is produced by hydrolysis of ene.
  • the disadvantage is that it is difficult to separate 3,4-diacetoxy-1-butene from the by-product diacetoxy isomers.
  • 1-butene 3,4-diol can also be obtained by isomerization of 2-butene-1,4-diol.
  • US Patent No. 5,336,815 uses rhenium oxide as a catalyst for isomerization. However, because rhenium oxide is extremely expensive, it is not suitable for use from a cost perspective; British patent GB794685A uses mercury salt as a catalyst for isomerization. Because mercury salt is highly toxic and causes great damage to the environment, it is not suitable for use.
  • U.S. Patent No. 4,661,646 uses copper or cuprous salts as catalysts.
  • the raw materials are easily available, the price is cheap, and the process is relatively simple. It is currently a more suitable industrial synthesis method. According to this method, the conversion rate of isomerization to synthesize 1-butene-3,4 diol is about 50%, and about 50% of the raw materials still have no reaction or side reactions.
  • the copper salt or cuprous salt is converted into hydroxide and precipitated out, but because copper hydroxide or cuprous hydroxide is slightly soluble in water, there is still a certain degree of solubility in water, which has been proved by a large number of experiments.
  • the technical problem to be solved by the present invention is to provide a heterogeneous preparation and synthesis for the problems of strong catalyst corrosion, poor reusability, cumbersome post-processing, and low product purity in the current 1-butene 3,4-diol synthesis process.
  • -Butene 3,4-diol method The catalyst of the method is green and environmentally friendly, has high activity, long life, and simple process.
  • the technical solution adopted by the present invention is:
  • a method for synthesizing 1-butene-3,4-diol by liquid-solid phase catalysis characterized in that the method uses 2-butene-1,4-diol as a raw material, a mixed solid as a catalyst, and a liquid solid
  • the reaction is carried out in the system, the reaction temperature is 50-120°C, and the reaction time is 2-10h.
  • the dosage of the mixed solid catalyst is 1% to 5% of the mass of the raw material.
  • the mixed solid catalyst is a mixture of acidic solid molecular sieve and metal salt modified carbon material.
  • the mass ratio of the acidic solid molecular sieve and the metal salt modified carbon material in the mixed solid catalyst of the present invention is 1:3-5:1.
  • the mass ratio of the metal salt on the carbon material in the metal salt modified carbon material is 1:100-1:5.
  • the acidic solid molecular sieve of the present invention is ZSM-5 molecular sieve, MCM-22 molecular sieve, HY molecular sieve, H ⁇ molecular sieve or mordenite, among which HY molecular sieve is preferred;
  • the metal salt modified carbon material is Metal-modified carbon nitride, graphene oxide, activated carbon or carbon nanotubes, of which carbon nitride is preferred.
  • the preparation method of graphene oxide is as follows:
  • the metal salt in the metal salt-modified carbon material of the present invention is a metal nitrate, sulfate or acetate of group VIII, IB or IIB.
  • the metal in the metal salt in the metal salt modified carbon material is Fe, Co, Ni, Cu or Zn.
  • the metal salt modified carbon material is operated by the impregnation method, and the specific operation steps are as follows:
  • the ultrasonic treatment needs to be treated 2-4 times at an ultrasonic power of 60-200W, each time for 5-10 minutes.
  • the present invention uses a solid catalyst instead of traditional hydrochloric acid or sulfuric acid, which can completely eliminate the problem of equipment corrosion, and there is no acidic substance in the product, and the post-treatment is greatly simplified;
  • the metal salt is immobilized on the surface of the carbon material, which effectively overcomes the problem of the loss of metal ions;
  • the present invention adopts a non-phase catalytic process, the catalyst and the product are directly separated, the process is simple, the product post-treatment is simple and the purity is high.
  • Figure 1 is: XRD characterization results of MCM-22+Cat6 mixture (mass ratio 4:1)
  • the copper nitrate is completely dissolved in deionized water, then carbon nitride is added to the above solution, and the mixture is uniformly mixed by mechanical stirring, wherein the mass ratio of copper nitrate to carbon nitride is 1:5. Then let it stand for 20 hours, then dry it at 110°C, and reserve it as Cat11.
  • the copper acetate is completely dissolved in deionized water, and then carbon nitride is added to the above solution, and the mixture is uniformly mixed by mechanical rotation, wherein the mass ratio of copper acetate to carbon nitride is 1:5. Then let it stand for 20 hours, then dry it at 110°C, and reserve it as Cat12.
  • the zinc sulfate is completely dissolved in deionized water, and then carbon nitride is added to the above solution, and the mixture is uniformly mixed by mechanical shaking.
  • the mass ratio of zinc sulfate to carbon nitride is 1:5. Then let it stand for 20 hours, and then dry it at 110°C for later use, and record it as Cat13.
  • the catalyst obtained in the above embodiment is used in the liquid-solid phase isomerization of 2-butene-1,4-diol to synthesize 1-butene-3,4-diol.
  • the reaction equation is as follows:
  • the catalyst prepared by the present invention has good catalytic performance for the liquid-solid phase isomerization of 2-butene-1,4-diol to the synthesis of 1-butene-3,4-diol. A high conversion rate of raw materials is achieved, and good product selectivity is also obtained.
  • the catalyst prepared by the present invention has good recycling performance for the liquid-solid phase isomerization of 2-butene-1,4-diol to synthesize 1-butene-3,4-diol. After the evaluation is over, 4 cycles of use can be realized only after simple filtration, and the raw material conversion rate and product selectivity have not changed significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种液固相催化合成1-丁烯-3,4-二醇的方法,该方法以酸性固体分子筛和金属盐改性碳材料的混合物为催化剂,以2-丁烯-1,4-二醇为原料,在50-120℃、反应2-10h,常压条件下即可实现1-丁烯-3,4-二醇的高效合成,2-丁烯-1,4-二醇转化率高于79%,1-丁烯-3,4-二醇选择性高于67%。该方法操作简单,过程绿色,环境友好,催化剂经过滤后即可循环使用。

Description

一种液固相催化合成1-丁烯-3,4-二醇的方法 技术领域
本发明涉及多相催化领域,特别涉及一种非均相催化合成1-丁烯-3,4-二醇的方法。
背景技术
1-丁烯-3,4-二醇是合成锂离子电解液添加剂的乙烯基碳酸乙烯酯、乙烯基亚硫酸乙烯酯的重要原料,也是重要的医药中间体,具有重要的工业经济价值。
1-丁烯-3,4-二醇可以由聚丁二烯过氧化物加氢制备,而聚丁二烯过氧化物是由丁二烯氧化制得,该法的缺点是1-丁烯-3,4-二醇中含有副产物2-丁烯-1,4-二醇。1-丁烯-3,4-二醇也可以由乙烯基环氧化物的水解制得,该过程的缺点同样在于乙烯基环氧化物需由丁二烯氧化制得。1-丁烯-3,4-二醇还可从丁二烯的乙酰氧基化副产物1,4-二乙酰氧基-2-丁烯和3,4-二乙酰氧基-1-丁烯水解制得,其缺点在于3,4-二乙酰氧基-1-丁烯与副产的二乙酰氧基异构物难以分离。
1-丁烯3,4-二醇也可以由2-丁烯-1,4-二醇异构化得到。美国专利US5336815以氧化铼为催化剂异构化。但是,由于氧化铼的价格极其昂贵,因而从成本角度考虑不宜采用;英国专利GB794685A以汞盐为催化剂异构化,由于汞盐的毒性大,对环境的破坏比较大,不宜采用。
相比较而言,美国专利US4661646使用铜盐或亚铜盐作为催化剂,原料易得,价格便宜并且工艺也相对简单,是目前较为合适的工业化合成方法。按照该方法异构化合成1-丁烯-3,4二醇的转化率在50%左右,仍有50%左右的原料没有反应或发生副反应。虽然反应液中和后,铜盐或亚铜盐转化成氢氧化物沉淀析出,但由于氢氧化铜或氢氧化亚铜是微溶于水,在水中仍有一定的溶解度,经大量的实验证明和分析检测,中和后的反应液滤液中仍含有1000~2000ppm的 铜离子或亚铜离子。这些铜离子或亚铜离子在后续的脱水、精馏提纯过程中,仍然会催化相关副反应,形成大量的杂质,以致难以精馏提纯得到98%以上的高纯度产品。且易造成2-丁烯-1,4-二醇回收困难,致物料损耗严重,收率降低。国内也有相关2-丁烯-1,4-二醇异构化合成1-丁烯3,4-二醇的报道,但绝大部分都需要使用盐酸、硫酸等强酸做催化剂,这不仅会对设备和管道带来严重的腐蚀,还会给后续的产物分离带来极大难度。
因此开发一种用于2-丁烯-1,4-二醇异构化合成1-丁烯3,4-二醇的绿色过程具有积极意义。
发明内容
本发明要解决的技术问题是针对当前1-丁烯3,4-二醇合成过程中催化剂腐蚀性强、复用性差、后处理繁琐、产物纯度低等问题,提供一种非均制备合成1-丁烯3,4-二醇的方法。该方法催化剂绿色环保、活性高、寿命长,工艺简单。
为解决上述技术问题,本发明采用的技术方案是:
一种液固相催化合成1-丁烯-3,4-二醇的方法,其特征在于该方法以2-丁烯-1,4-二醇为原料,以混合固体为催化剂,在液固体系中进行反应,反应温度为50-120℃,反应时间为2-10h。其中所述的混合固体催化剂用量为原料质量的1%-5%。所述的混合固体催化剂为酸性固体分子筛和金属盐改性碳材料的混合物。
作为对本发明的限定,本发明所述的混合固体催化剂中酸性固体分子筛和金属盐改性碳材料的质量比为1:3-5:1。
所述的金属盐改性碳材料中金属盐在碳材料上的质量比为1:100-1:5。
作为对本发明的再次限定,本发明所述的酸性固体分子筛为ZSM-5分子筛、MCM-22分子筛、HY分子筛、Hβ分子筛或丝光沸石,其中优选HY分子筛; 所述的金属盐改性碳材料为金属改性氮化碳、氧化石墨烯、活性炭或碳纳米管,其中优选氮化碳。
其中氮化碳的制备方法如下:
取6g三聚氰胺置于带盖的坩埚中,然后在马弗炉中以3℃min-1的升温速率加热到550℃并保持3h,得到2g左右淡黄色固体即为氮化碳材料。
氧化石墨烯的制备方法如下:
在冰水浴中,将5g鳞片石墨和2.5g硝酸钠与115mL的浓硫酸混合均匀,搅拌中缓慢加入15gKMnO4,保持2℃以下持续反应1h,将其转移至35℃水浴反应30min,逐步加入250mL去离子水,温度升至98℃继续反应1h后,可明显观察到混合物由棕褐色变成亮黄色。进一步连续加水稀释,并用质量分数30%的H2O2溶液处理。将上述溶液抽滤,用5%HCl溶液洗涤至中性,将滤饼放入烘箱中80℃充分干燥即得氧化石墨。取0.1g氧化石墨放入50mL去离子水中,超声处理1.5h(180W,60Hz),随后进行抽滤,将滤饼放入真空烘箱中40℃(10Pa)干燥6h即得所需的氧化石墨烯。
作为对本发明的又一次限定,本发明所述的金属盐改性碳材料中金属盐是VIII、IB或IIB族的金属硝酸盐、硫酸盐或醋酸盐。所述的金属盐改性碳材料中金属盐中的金属为Fe、Co、Ni、Cu或Zn。
所述的金属盐改性碳材料以浸渍法操作,其具体操作步骤为:
首先将金属盐溶解于去离子水中,再将碳材料加入到上述溶液中,然后将碳材料加入到上述金属盐溶液中,再用机械搅拌、机械振荡、机械回转或超声处理方式将溶液搅拌均匀,静置5-20h,最后在100-120℃下烘干即可。
其中超声处理时需在超声功率60-200W下,处理2-4次,每次5-10分钟。
采用上述技术方案后,本发明取得的有益效果是:
(1)本发明使用固体催化剂,替代传统的盐酸或硫酸,可以完全杜绝设备腐蚀问题,而且产物中没有酸性物质出现,后处理大大简化;
(2)本发明将金属盐固载于碳材料表面,有效克服了金属离子的流失问题;
(3)本发明采用非相催化工艺,催化剂与产物直接分离,工艺简单,产物后处理简单且纯度高。
附图说明
图1为:MCM-22+Cat6混合物(质量比4:1)的XRD表征结果
其中(1)为未使用过的MCM-22+Cat6混合物(质量比4:1)的XRD表征结果
(2)为使用4次后MCM-22+Cat6混合物(质量比4:1)的XRD表征结果
由图1可见,催化剂经过4次使用后,与新制备的催化剂相比,结构和晶相上没有显著差异。这说明本发明所制备的催化剂在2-丁烯-1,4-二醇液固相异构化合成1-丁烯3,4-二醇过程中稳定性较好。
具体实施方式
下面结合实施例进一步说明本发明,但不限于此。
实施例1
将硝酸铜完全溶解于去离子水中,然后将氮化碳加入上述溶液中,搅拌均匀,其中硝酸铜与氮化碳的质量比为1:20,将上述混合物在60W条件下超声处理2次,每次5分钟。随后静置10h,然后在100℃条件下烘干,备用,记为Cat1。
实施例2
将醋酸铜完全溶解于去离子水中,然后将氮化碳加入上述溶液中,搅拌均匀,其中醋酸铜与氮化碳的质量比为1:100,将上述混合物在100W条件下超声 处理4次,每次10分钟。随后静置20h,然后在100℃条件下烘干,备用,记为Cat2。
实施例3
将硫酸铁完全溶解于去离子水中,然后将氧化石墨烯加入上述溶液中,搅拌均匀,其中硫酸铁与氧化石墨烯的质量比为1:10,将上述混合物在200W条件下超声处理2次,每次6分钟。随后静置10h,然后在120℃条件下烘干,备用,记为Cat3。
实施例4
将硝酸镍完全溶解于去离子水中,然后将活性炭加入上述溶液中,搅拌均匀,其中硝酸镍与活性炭的质量比为1:10,将上述混合物在150W条件下超声处理3次,每次8分钟。随后静置12h,然后在100℃条件下烘干,备用,记为Cat4。
实施例5
将醋酸锌完全溶解于去离子水中,然后将碳纳米管加入上述溶液中,搅拌均匀,其中醋酸锌与碳纳米管的质量比为1:5,将上述混合物在120W条件下超声处理4次,每次10分钟。随后静置12h,然后在110℃条件下烘干,备用,记为Cat5。
实施例6
将硝酸铜完全溶解于去离子水中,然后将活性炭加入上述溶液中,搅拌均匀,其中硝酸铜与活性炭的质量比为1:10,将上述混合物在200W条件下超声处理2次,每次5分钟。随后静置10h,然后在100℃条件下烘干,备用,记为Cat6。
实施例7
将硫酸锌完全溶解于去离子水中,然后将氧化石墨烯加入上述溶液中,搅拌均匀,其中硫酸锌与氧化石墨烯的质量比为1:10,将上述混合物在200W条件下超声处理2次,每次5分钟。随后静置10h,然后在120℃条件下烘干,备用,记为Cat7。
实施例8
将硝酸钴完全溶解于去离子水中,然后将氮化碳加入上述溶液中,搅拌均匀,其中硝酸钴与氮化碳的质量比为1:5,将上述混合物在200W条件下超声处理2次,每次10分钟。随后静置12h,然后在120℃条件下烘干,备用,记为Cat8。
实施例9
将醋酸钴完全溶解于去离子水中,然后将氧化石墨烯加入上述溶液中,搅拌均匀,其中醋酸钴与氧化石墨烯的质量比为1:10,将上述混合物在160W条件下超声处理4次,每次10分钟。随后静置10h,然后在100℃条件下烘干,备用,记为Cat9。
实施例10
将硝酸铜完全溶解于去离子水中,然后将氮化碳加入上述溶液中,搅拌均匀,其中硝酸铜与氮化碳的质量比为1:5,将上述混合物在200W条件下超声处理4次,每次10分钟。随后静置20h,然后在110℃条件下烘干,备用,记为Cat10。
实施例11
将硝酸铜完全溶解于去离子水中,然后将氮化碳加入上述溶液中,用机械搅拌的方式混合均匀,其中硝酸铜与氮化碳的质量比为1:5。随后静置20h,然后在110℃条件下烘干,备用,记为Cat11。
实施例12
将醋酸铜完全溶解于去离子水中,然后将氮化碳加入上述溶液中,用机械回转的方式混合均匀,其中醋酸铜与氮化碳的质量比为1:5。随后静置20h,然后在110℃条件下烘干,备用,记为Cat12。
实施例13
将硫酸锌完全溶解于去离子水中,然后将氮化碳加入上述溶液中,用机械震荡的方式混合均匀,其中硫酸锌与氮化碳的质量比为1:5。随后静置20h,然后在110℃条件下烘干,备用,记为Cat13。
将上述实施例中的得到的催化剂用于2-丁烯-1,4-二醇液固相异构化合成1-丁烯-3,4-二醇过程中,反应方程式如下所示:
Figure PCTCN2020088956-appb-000001
各催化剂的催化性能如表1所示:
表1 催化剂性能评价结果
Figure PCTCN2020088956-appb-000002
由表1结果可见,本发明所制备的催化剂对2-丁烯-1,4-二醇液固相异构化合成1-丁烯-3,4-二醇有很好的催化性能,不仅实现了较高的原料转化率,而且还获得了很好的产物选择性。
表2 催化剂重复使用性能评价结果
m(HY)/m(Cat10)=5:1
Figure PCTCN2020088956-appb-000003
由表1结果可见,本发明所制备的催化剂对2-丁烯-1,4-二醇液固相异构化合成1-丁烯-3,4-二醇有很好的循环复用性能,评价结束后,仅仅经过简单的过滤即可实现4次循环使用,原料转化率和产物选择性均没有显著改变。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种液固相催化合成1-丁烯-3,4-二醇的方法,其特征在于该方法以2-丁烯-1,4-二醇为原料,以混合固体为催化剂,在液固体系中进行反应,反应温度为50-120℃,反应时间为2-10h。
  2. 根据权利要求1所述的一种液固相催化合成1-丁烯-3,4-二醇的方法,其特征在于所述的混合固体催化剂用量为原料质量的1%-5%。
  3. 根据权利要求1所述的一种液固相催化合成1-丁烯-3,4-二醇的方法,其特征在于所述的混合固体催化剂为酸性固体分子筛和金属盐改性碳材料的混合物,其中酸性固体分子筛和金属盐改性碳材料的质量比为1:3-5:1。
  4. 根据权利要求3所述的一种液固相催化合成1-丁烯-3,4-二醇的方法,其特征在于所述的酸性固体分子筛为ZSM-5分子筛、MCM-22分子筛、HY分子筛、Hβ分子筛或丝光沸石,其中优选HY分子筛。
  5. 根据权利要求3所述的一种液固相催化合成1-丁烯-3,4-二醇的方法,其特征在于所述的金属盐改性碳材料中的金属盐是VIII、IB或IIB族的水溶性金属盐,其中优选金属硝酸盐、硫酸盐或醋酸盐。
  6. 根据权利要求3所述的一种液固相催化合成1-丁烯-3,4-二醇的方法,其特征在于所述的金属盐改性碳材料中金属盐中的金属为Fe、Co、Ni、Cu或Zn。
  7. 根据权利要求3所述的一种液固相催化合成1-丁烯-3,4-二醇的方法,其特征在于所述的金属盐改性碳材料中的碳材料为氮化碳、氧化石墨烯、活性炭或碳纳米管,其中优选氮化碳。
  8. 根据权利要求3所述的一种液固相催化合成1-丁烯-3,4-二醇的方法,其特征在于所述的金属盐改性碳材料中金属盐在碳材料上的质量比为1:100-1:5。
  9. 根据权利要求3所述的一种液固相催化合成1-丁烯-3,4-二醇的方法,其特征在于所述的金属盐改性碳材料以浸渍法操作,其具体操作步骤为:
    首先将金属盐溶解于去离子水中,然后将碳材料加入到上述金属盐溶液中,再用机械搅拌、机械振荡、机械回转或超声处理方式将溶液搅拌均匀,静置5-20h,最后在100-120℃下烘干即可。
  10. 根据权利要求9所述的一种液固相催化合成1-丁烯-3,4-二醇的方法,其特征在于所述的超声处理需在60-200W的功率下,超声2-4次,每次5-10分钟。
PCT/CN2020/088956 2020-04-03 2020-05-07 一种液固相催化合成1-丁烯-3,4-二醇的方法 WO2021196340A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010257332.3A CN111389455B (zh) 2020-04-03 2020-04-03 一种液固相催化合成1-丁烯-3,4-二醇的方法
CN202010257332.3 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021196340A1 true WO2021196340A1 (zh) 2021-10-07

Family

ID=71417525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088956 WO2021196340A1 (zh) 2020-04-03 2020-05-07 一种液固相催化合成1-丁烯-3,4-二醇的方法

Country Status (2)

Country Link
CN (1) CN111389455B (zh)
WO (1) WO2021196340A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115254170A (zh) * 2022-08-19 2022-11-01 浙江师范大学 一种用于1,3-丁二烯选择性加氢的钴基催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661646A (en) * 1983-09-24 1987-04-28 Bayer Aktiengesellschaft Process for the preparation of 1-butene-3,4-diol
CN101838183A (zh) * 2009-03-16 2010-09-22 福建创鑫科技开发有限公司 2-丁烯-1,4-二醇的异构化方法
US20180117566A1 (en) * 2015-03-20 2018-05-03 Basf Corporation Pt and/or pd egg-shell catalyst and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725192B (zh) * 2015-03-24 2016-08-24 常熟市常吉化工有限公司 1-丁烯-3,4-二醇的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661646A (en) * 1983-09-24 1987-04-28 Bayer Aktiengesellschaft Process for the preparation of 1-butene-3,4-diol
CN101838183A (zh) * 2009-03-16 2010-09-22 福建创鑫科技开发有限公司 2-丁烯-1,4-二醇的异构化方法
US20180117566A1 (en) * 2015-03-20 2018-05-03 Basf Corporation Pt and/or pd egg-shell catalyst and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115254170A (zh) * 2022-08-19 2022-11-01 浙江师范大学 一种用于1,3-丁二烯选择性加氢的钴基催化剂及其制备方法和应用
CN115254170B (zh) * 2022-08-19 2023-05-16 浙江师范大学 一种用于1,3-丁二烯选择性加氢的钴基催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN111389455A (zh) 2020-07-10
CN111389455B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN110156620A (zh) 一种氨甲环酸的制备方法
WO2021196340A1 (zh) 一种液固相催化合成1-丁烯-3,4-二醇的方法
WO2016045584A1 (zh) 一种耐酸合金催化剂
CN102311332A (zh) 一种生产丁二酸的方法
WO2022028236A1 (zh) 一种气相催化合成二氟甲烷的方法
CN103721709A (zh) 一种苯选择加氢制环己烯催化剂的制备方法
CN106588658B (zh) 一种合成碳酸二甲酯的方法
CN109317164B (zh) 非晶态金属催化剂及醇铝的制备方法
CN103044190B (zh) 一种三氟乙烯的制备方法
CN103819344A (zh) 一种1,2-丙二胺的合成方法
CN113908841A (zh) 一种Cu基催化剂在糠醇氢解制备戊二醇中的应用
WO2018209842A1 (zh) 一种三氟乙酸的制备工艺
JP2011507830A (ja) N−メチルピロリドンの製造方法
CN101126163A (zh) 一种辉光放电电解乙醇溶液制备乙醛的方法
WO2018233461A1 (zh) 一种拉氧头孢羧基及羟基保护基的脱除方法
CN111423309B (zh) 一种气固相连续异构化合成1-丁烯-3,4-二醇的方法
CN114621097B (zh) 一种2,4-二氟硝基苯催化加氢制备2,4-二氟苯胺的方法
CN106316915B (zh) 一种邻乙基苯胺脱氢环化制吲哚的方法
CN108440286A (zh) 一种乙酰水杨酸的制备方法
CN100519495C (zh) 近临界水介质中米糠蜡无催化水解制备高级脂肪醇的方法
CN113603626A (zh) 一种自由基引发剂的制备方法及其在氧化反应中的应用
JPH0216736B2 (zh)
WO2021103256A1 (zh) 2-氯嘧啶-4-甲酸类化合物的连续性合成方法
CN110639552A (zh) 一种连续化生产2b油的铂基复合炭铝催化剂和方法
US1956718A (en) Production of monocarboxylic acids and their derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928465

Country of ref document: EP

Kind code of ref document: A1