WO2021194019A1 - 이미지 획득 장치 - Google Patents

이미지 획득 장치 Download PDF

Info

Publication number
WO2021194019A1
WO2021194019A1 PCT/KR2020/009111 KR2020009111W WO2021194019A1 WO 2021194019 A1 WO2021194019 A1 WO 2021194019A1 KR 2020009111 W KR2020009111 W KR 2020009111W WO 2021194019 A1 WO2021194019 A1 WO 2021194019A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitter
unit
segments
wavelength
image acquisition
Prior art date
Application number
PCT/KR2020/009111
Other languages
English (en)
French (fr)
Inventor
조아영
이창환
신윤섭
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2021194019A1 publication Critical patent/WO2021194019A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18397Plurality of active layers vertically stacked in a cavity for multi-wavelength emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • H01S5/426Vertically stacked cavities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/131Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing infrared wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/14Controlling the light source in response to determined parameters by determining electrical parameters of the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion

Definitions

  • the present invention relates to an image acquisition device for acquiring an image of a subject, including lighting and a camera.
  • the image acquisition device refers to a device having an optical system for acquiring an image of a subject.
  • the image acquisition device may be implemented in the form of a dedicated device that performs only an image acquisition function, such as a digital camera or an infrared camera, or a terminal that performs other functions, such as a smart phone.
  • hyperspectral hyperspectral
  • RGB images in the visible ray region but also components in a wider and more subdivided wavelength region.
  • the demand for an image acquisition device for acquiring an image or a multispectral image is also increasing.
  • a camera or lighting In order to obtain a hyperspectral or multispectral image, a camera or lighting must have corresponding specifications. That is, a camera capable of receiving light by distinguishing a plurality of wavelengths or an illumination capable of emitting light for a plurality of wavelengths is required.
  • a light covering a wide wavelength band such as UV, halogen, or LED is used, and a camera capable of receiving light separately is used.
  • the controller for controlling such lighting has a problem of occupying a large volume, making it unsuitable for a small device.
  • the present invention solves the above-mentioned problems, such as a problem that lighting for acquiring a multispectral or hyperspectral image is inadequate to be provided in a small device, and a problem that accurate information cannot be obtained because an image having only a desired wavelength component cannot be acquired The purpose.
  • the light source unit includes a plurality of emitters each of a plurality of types emitting light of different wavelengths
  • the emitter unit divided into a plurality of segments, and a circuit unit configured to independently circuit each of the divided segments, and a driving unit for driving the circuit unit so that the plurality of segments are driven at different intensities or times It provides an image acquisition device comprising.
  • each of the segments includes a plurality of emitters.
  • the driving unit provides an image acquisition device that drives the plurality of segments to be sequentially driven.
  • the driving unit provides an image acquisition device in which the plurality of emitters belonging to the same segment are all driven simultaneously, and the sensor unit varies the wavelength of light received according to time or region.
  • the driving unit sequentially drives one type of emitter according to the driving order of the plurality of segments, and then another type of emitter drives the plurality of segments in the driving order of the plurality of segments.
  • an image acquisition device driven to be sequentially driven according to
  • the sensor unit provides an image acquisition device that receives light without different wavelengths or different wavelengths according to time or region.
  • the time in which each type of emitter sequentially drives for all the plurality of segments corresponds to a unit frame time of the image acquisition device.
  • each of the segments provides an image acquisition device in which a plurality of emitters are disposed in the same pattern.
  • the sensor unit forms a unit pixel, which is a minimum unit capable of receiving a plurality of wavelengths of light by being divided by region, and the wavelength pattern of the unit pixel is an emitter provided in each of the segments.
  • An image acquisition device corresponding to a pattern of a wavelength of
  • an image acquisition device in which a plurality of pixels corresponding to the unit pixel are spatially adjacent to adjacent wavelengths.
  • each of the segments includes one type of emitter.
  • the plurality of segments are arranged in a matrix form (m * n, m and n are natural numbers), and the plurality of emitters in each segment are (p * q, p and q are Provided is an image acquisition device arranged in the form of a matrix of natural numbers).
  • an image acquisition device wherein the plurality of types of emitters include an R-wavelength emitter, a G-wavelength emitter, a B-wavelength emitter and an IR-wavelength emitter. .
  • an image acquisition device in which the emitter is a vertical cavity surface emitting laser (VCSEL).
  • VCSEL vertical cavity surface emitting laser
  • an image acquisition device in which at least two sensor units are provided, and the emitter arrangement patterns of each of the segments are different from each other.
  • an image acquisition device in which the driving unit drives so that an emitter brightness of an outer segment among the plurality of segments is brighter than an emitter brightness of an inner segment.
  • power consumption for acquiring a multispectral or hyperspectral image may be reduced.
  • various types of multispectral or hyperspectral images can be obtained, so that usability is increased.
  • the wavelength resolution of the image is increased, so that high usability is expected.
  • FIG. 1 is a conceptual diagram sequentially expressing an RGB spectrum, a multi-spectrum, and a hyper-spectrum related to the present invention.
  • FIG. 2 is a conceptual diagram of an image acquisition device related to the present invention.
  • FIG 3 shows one form of an emitter unit related to the present invention.
  • 4 and 5 are conceptual diagrams of two embodiments of an image acquisition device related to the present invention.
  • 6 to 12 are conceptual views of some embodiments of a light source unit related to the present invention.
  • FIG. 13 is a conceptual diagram of another embodiment of a light source unit and a sensor unit related to the present invention.
  • FIG. 1 is a conceptual diagram sequentially expressing an RGB spectrum, a multi-spectrum, and a hyper-spectrum related to the present invention.
  • an RGB image typically includes information of three main wavelengths. These three wavelengths correspond to red, green and blue.
  • a multispectrum is defined as a spectrum that includes information in 3 to 10 wavelength bands more than in general RGB-wavelengths.
  • a hyperspectrum is defined as a spectrum including information of hundreds of wavelengths more than RGB-wavelengths.
  • An image having a wavelength component of an RGB spectrum is defined as an RGB image
  • an image having a wavelength component of a multispectrum is defined as a multispectral image
  • an image having a wavelength component of a hyperspectrum is defined as a hyperspectral image.
  • a multispectrum or hyperspectrum not only includes wavelengths corresponding to values between RGB-wavelengths, but also includes wavelengths smaller than the smallest wavelength in the RGB spectrum (435 nm), or larger than the largest wavelength in the RGB spectrum (630 nm).
  • multispectral or hyperspectral may include the infrared (IR) region.
  • the present invention includes features for obtaining a multispectral or hyperspectral image.
  • this is a feature that is easy to obtain a multispectral image or a hyperspectral image, and does not mean that it cannot be used to obtain a conventional RGB image or an RGB-IR image. For this reason, hereinafter, all images will be described using a hyperspectral image as an example.
  • FIG. 2 is a conceptual diagram of an image acquisition device related to the present invention
  • FIG. 3 shows a form of an emitter unit 210 related to the present invention.
  • FIG. 2A is a conceptual diagram of the light source unit 200
  • FIG. 2B is a conceptual diagram of the sensor unit 300
  • the light source unit 200 is a concept corresponding to the above-described lighting
  • the sensor unit 300 is a concept corresponding to the camera.
  • the image acquisition device includes a light source unit 200 and a sensor unit 300 .
  • the light source unit 200 emits light of a preset wavelength to the subject or a wavelength band of the wavelength.
  • the light emitted from the light source unit 200 is reflected by the subject, and a part of the reflected light is received by the sensor unit 300 to obtain an image.
  • the light source unit 200 includes an emitter part 210 including at least one emitter 211 and an optical member 250 .
  • the optical member 250 functions to diffract or refract the emitted light.
  • the optical member 250 may include a lens which is a refractive element, a diffuser which is a diffractive element, a diffractive optical element (DOE), or a composite structure of a lens and a diffractive element.
  • DOE diffractive optical element
  • the emitter 211 is defined as a minimum unit of a member that emits light.
  • each emitter 211 may be independently driven from other emitters 211 .
  • the emitter unit 210 may be divided into a plurality of segments 1 and driven independently. That is, the plurality of emitters 211 of the emitter unit 210 may perform operations such as on/off and intensity control in units of segments 1 .
  • Each segment 1 may correspond to at least one emitter 211 .
  • the operations of the plurality of emitters 211 corresponding to one segment 1 may be performed simultaneously, but this is not always the case, and may be performed individually.
  • each segment 1 is separately and controllably connected to the circuit unit. Furthermore, when it is necessary to independently drive a plurality of emitters 211 corresponding to one segment 1 , the circuit unit may be further subdivided and connected so that each emitter 211 can be divided and controlled.
  • the driving unit may independently drive each segment 1 or each emitter 211 through the circuit unit connected in this way.
  • the sensor unit 300 receives the light reflected by the subject and forms an image.
  • the sensor unit 300 includes a lens 310 , a filter 320 , and an image sensor 330 .
  • the lens 310 adjusts the focus so that the light properly reaches the filter 320 and the image sensor 330 .
  • the image sensor 330 may obtain a clear image by the lens 310 .
  • the filter 320 selectively transmits light that has passed through the lens 310 according to a wavelength to reach the image sensor 330 .
  • the sensor unit 300 may be provided in the form of a multi-sensor unit that can receive light by dividing a plurality of wavelengths, or a single sensor unit that receives light without discrimination of wavelengths. More specifically, the multi-sensor unit may acquire an image corresponding to the desired wavelength by means of the filter 320 that selectively transmits the wavelength.
  • the filter 320 may be divided by space to transmit a plurality of wavelengths, or may be divided by time to transmit a plurality of wavelengths.
  • the sensor unit 300 performed in the former form is defined as a spatial multi-sensor unit, and the sensor unit 300 performed in the latter form is defined as a temporal multi-sensor unit.
  • the filter 320 is divided into a plurality of regions that transmit different wavelengths, it is possible to simultaneously transmit light of different wavelengths for each region to obtain an image.
  • a plurality of filters 320 that transmit different wavelengths are selectively used to make the light reach the image sensor 330 .
  • the time-type multi-sensor unit is provided in a circular member in which a plurality of filters 320 that transmit a single wavelength are rotated so that each filter 320 is sequentially disposed between the lens 310 and the image sensor 330 . can be taken as
  • the spatial multi-sensor unit can obtain information on all wavelength components in one frame, the resolution is poor, so an algorithm that compensates for this is required.
  • the temporal multi-sensor unit requires a drive system and space for physical driving in that the filter 320 must be physically replaced, and when a general sensor is used, the frame rate may be relatively reduced. .
  • the image acquisition device In order for the image acquisition device to obtain a hyperspectral image using broadband illumination (or sunlight) provided without distinction of wavelength, it is provided in the form of a spatial multi-sensor unit or a temporal multi-sensor unit to target multiple It should have a filter 320 corresponding to the wavelength of .
  • the light source unit 200 is provided in the form of a narrow band having a narrow width of each wavelength. That is, the light source unit 200 may be provided separately for each of a plurality of target wavelengths.
  • the light source unit 200 of the present invention includes an emitter unit 210 formed of a plurality of emitters 211 that emit light of different wavelengths.
  • the emitter unit 210 may include a first type emitter, a second type emitter, a third type emitter, and a fourth type emitter, and more specifically, the first type emitter is R- An emitter emitting light of wavelength 211a, a type 2 emitter is an emitter emitting light of a G-wavelength (211b), a type 3 emitter is an emitter emitting light of a B-wavelength (211c), and a type 4 emitter
  • the emitter may be an emitter 211d that emits IR-wavelength light.
  • the wavelengths of R, G, B, and IR are only an example, and may be freely changed according to a target wavelength, and the number is not limited to four and may be smaller or larger.
  • Each emitter 211 is implemented with a laser diode (LD), in particular a vertical cavity surface emitting laser (VCSEL, or Vickel) to have a very narrow band width, for example 3 nm. width can be formed.
  • LD laser diode
  • VCSEL vertical cavity surface emitting laser
  • Vickel Vickel
  • the plurality of emitters 211 may be driven simultaneously or may be driven at the same time.
  • the meaning that a plurality of emitters 211 are driven at this time means that only the emitters 211 of the same wavelength can be driven at the same time.
  • the second type of emitter emits light and goes off
  • the third type of emitter emits light and goes off, and so on.
  • This is distinct from the temporal actuation of the segment 1 , in which at least one emitter 211 belonging to the first segment 1 is driven, followed by the second segment 1 , in the temporal actuation of the segment 1 . It means that at least one emitter 211 belonging to is driven.
  • the shape of the sensor unit 300 is not limited. That is, the sensor unit 300 may be implemented in any form of a temporal multi-sensor unit or a spatial multi-sensor unit.
  • the sensor unit 300 may be provided in the form of a multi-filter that transmits numerous wavelengths, an RGB filter that transmits RGB-wavelengths, or an RGB-IR filter that transmits RGB-IR-wavelengths.
  • the case of a single sensor unit implemented as a mono filter is also possible.
  • the sensor unit 300 when a plurality of emitters 211 are simultaneously driven, the sensor unit 300 must be implemented in the form of a temporal multi-sensor unit or a spatial multi-sensor unit to obtain an image having multiple wavelength components.
  • 4 and 5 are conceptual diagrams of two embodiments of the image acquisition apparatus 100 related to the present invention.
  • the image acquisition apparatus 100 may include a single-member camera printed circuit board (PCB) 410 for mounting the light source unit 200 and the sensor unit 300 .
  • PCB printed circuit board
  • the light source unit 200 and the sensor unit 300 may be separately mounted and connected on a plurality of printed circuit boards.
  • the mounted light source unit 200 and the sensor unit 300 are synchronized with each other, so that the light source unit 200 needs to be activated when acquiring an image.
  • the driving unit 420 may control a pulse of the light source unit 200 or may control on/off in units of segments.
  • the emitter corresponding to each wavelength may be sequentially turned on/off. This is based on the assumption that the circuit structure of the sensor unit 300 mounted on the camera printed circuit board 410 has a circuit structure that can be performed in response to the control.
  • the camera printed circuit board 410 is provided perpendicular to the first direction, and the light source unit ( 200 is provided such that the light emission direction is the first direction, and the sensor unit 300 is provided to receive light coming in the opposite direction to the first direction.
  • the light source unit 200 and the sensor unit 300 may be provided one by one, and the light source unit 200 and the sensor unit 300 are adjacent to each other in a second direction perpendicular to the first direction on the camera printed circuit board 410 and are side by side. can be placed.
  • the driving unit 420 may be provided on the outside of both components so as not to interfere with the light source unit 200 and the sensor unit 300 being provided adjacent to each other.
  • a combination of one light source unit 200 and one sensor unit 300 may obtain a 2D (2-dimensional) image.
  • the image acquisition apparatus 100 may include one light source unit 200 and two sensor units 300 .
  • the features of the present embodiment have the same features as those of the image acquisition apparatus 100 of FIG. 4 within a range that does not contradict them.
  • the image acquisition apparatus 100 may additionally include a depth processor.
  • the depth processor is used to obtain depth information through the two sensor units 300 .
  • 6 to 12 are conceptual views of some embodiments of the light source unit 200 related to the present invention.
  • the plurality of segments 1 provided in the light source unit 200 are independently driven. That is, the plurality of segments 1 may be sequentially driven at different times without being driven simultaneously. Furthermore, the driving time interval and driving intensity may be adjusted differently. For example, the plurality of segments 1 may be sequentially driven with directionality. When defined based on (row, column), (1, 1) -> (1, 2) -> (1, 3) -> (1, 4) -> (2, 1) -> (2, 2) It can be driven in the order of .
  • the segment 1 of the light source 200 may be provided in the form of a (m * n) matrix, and a plurality of emitters 211 provided in each segment 1 are provided in the form of a (p * q) matrix.
  • a matrix arrangement can increase the degree of directness and effectively utilize the advantage of division driving in that each region is clearly separated.
  • 6, 7, 9, and 10 include a case in which a plurality of emitters 211 are included in each segment 1, and the embodiment of FIG. A case in which the emitter 211 of the type is shown is shown.
  • 11 and 12 illustrate the emitter unit 210 without segments.
  • a plurality of emitters 211 in the driven segment 1 may be simultaneously driven.
  • each segment 1 includes an R-wavelength emitter 211a, a G-wavelength emitter 211b, a B-wavelength emitter 211c, and an IR-wavelength emitter 211d.
  • the R-wavelength emitter 211a, the G-wavelength emitter 211b, the B-wavelength emitter 211c and the IR-wavelength emitter 211d are all turned on at the same time, or can be turned off at the same time.
  • this cannot be regarded as simultaneous driving of a plurality of emitters it means that the sensor unit must be driven by a temporal multi-sensor unit or a spatial multi-sensor unit.
  • FIG. 7 has the same arrangement as the embodiment of FIG. 6 , and sequential driving of the same segment 1 may be implemented.
  • the R-wavelength emitter 211a is driven up to the last segment (1) as (1, 1) segment -> (1, 2) segment -> (1, 3) segment j
  • G -Wavelength emitter 211b is driven up to the last segment (1) as (1, 1) segment -> (1, 2) segment -> (1, 3) segment Up to 211 may be sequentially driven.
  • the sensor unit includes a plurality of wavelength components not only in the form of a spatial multi-sensor unit or a temporal multi-sensor unit as described above, but also in the form of a mono sensor. It has the advantage of being able to acquire images.
  • each segment 1 includes the emitter 211 of the same type. And when one segment 1 is driven, all emitters 211 in the segment 1 are driven simultaneously.
  • the sensor unit is not only in the form of a spatial multi-sensor unit or a temporal multi-sensor unit, but also in the form of a mono sensor for multiple wavelength components. image acquisition is possible.
  • the segment 1 having the same type of emitter 211 has an advantage in that segment control can be performed with different intensity according to wavelength, considering that efficiency characteristics are different for each wavelength.
  • the arrangement of the emitter 211 in the segment 1 is irregular, unlike the previous embodiment of FIGS. 6 to 8 . That is, based on one segment 1 , the plurality of emitters 211 may be disposed so as not to be left and right, vertical, or origin symmetric. Irregular arrangement within one segment 1 provides a reference point for dividing space. Therefore, such an arrangement may be usefully used to acquire a 3D image as in the embodiment of FIG. 5 .
  • the irregular arrangement of the emitters 211 in the segment 1 may be different from the arrangement of the emitters 211 in other segments 1 .
  • the irregular arrangement between each segment 1 can be usefully used to obtain a 3D image as well as to distinguish the segments 1 of the light source.
  • FIG. 9 shows that a plurality of emitters 211 in the segment 1 are simultaneously driven like the embodiment of FIG. 6
  • the embodiment of FIG. 10 shows the same segment ( 1) It indicates that different types of emitters 211 are not driven at the same time, but are driven at this time.
  • the specific features are the same as those described in FIGS. 6 and 7 .
  • the light source unit 200 may be dividedly driven in units of each emitter 211 without the concept of a segment 1 .
  • there may be an emitter unit 210 composed of a combination of four wavelengths as shown in FIG. 11 , or may be provided as an emitter unit 210 composed of a combination of three wavelengths as shown in FIG. 12 .
  • the four wavelengths may be R-wavelength, G-wavelength, B-wavelength, and IR-wavelength
  • the three wavelengths may be R-wavelength, G-wavelength, and B-wavelength, and There is no restriction on the type, and it may vary according to needs.
  • each emitter 211 may be implemented in the form of a vixel in both the embodiments of FIGS. 6 to 12 and the embodiments of FIG. 13 to be described later.
  • FIG. 13 is a conceptual diagram of another embodiment of the light source unit 200 and the sensor unit 300 related to the present invention.
  • the arrangement of the filters for each wavelength may be provided in a form in which a minimum unit (hereinafter referred to as a 'unit pixel (2)') in which a pixel pattern having a different wavelength is repeated is repeated.
  • a minimum unit hereinafter referred to as a 'unit pixel (2)'
  • the pixel arrangement pattern of the unit pixel 2 and the arrangement pattern of the emitter 211 of the segment 1 of the light source unit 200 may correspond to each other.
  • each of the 16 pixels of the unit pixel 2 may receive light of different wavelengths.
  • the segment 1 of the light source unit 200 may also be provided with 16 types of emitters 211 in a 4 * 4 matrix arrangement corresponding thereto, and the wavelength of each corresponding position corresponds to the same or similar range. can do.
  • the wavelength received by the (1, 1) pixel of the unit pixel 2 is the same as the wavelength of the (1, 1) emitter 211 of the segment 1, and (1) of the unit pixel 2 , 2)
  • the wavelength that the pixel receives may be the same as the wavelength of the (1,2) emitter 211 of the segment 1 .
  • the distance between each pixel and the emitter 211 can be minimized, so that efficiency can be increased.
  • the number of pixels of the unit pixel 2 and the number of emitters 211 of the segment 1 may not be the same.
  • the number of wavelengths included in the unit pixel 2 may be different from the number of wavelengths included in the segment 1 .
  • the light source 200 is also provided as an emitter 211 of a corresponding type, 2 * 2 It can be divided and driven into segments (1) of
  • the plurality of pixels 21 corresponding to the unit pixel 2 may be provided to be spatially adjacent to adjacent wavelengths. These characteristics may be equally applied to the light source unit 200 as well as the sensor unit 300 . When adjacent wavelengths are provided spatially adjacent to each other, there is an advantage in that light emission and light receiving efficiency can be maximized.
  • the driving unit may drive so that the brightness of the emitter 211 of the segment 1 provided on the outside of the plurality of segments 1 is brighter than the brightness of the emitter 211 of the segment 1 provided on the inside.
  • the outside brightness of the light source unit 200 is darker than the inside brightness, more energy can be supplied to the outside area in consideration of this. This feature is not limited to this embodiment and may be equally applied to all embodiments.
  • the image acquisition device can use power efficiently, and in particular, there is an advantage in terms of peak power. Reducing the peak power means that smaller devices can be used, which in turn can help miniaturize the image acquisition device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Endoscopes (AREA)

Abstract

소형 장치에서 하이퍼스펙트럴 이미지를 용이하게 획득하고, 파장에 대한 해상력을 높이기 위해, 광원부 및 센서부를 포함하는 이미지 획득 장치에 있어서, 상기 광원부는, 서로 다른 파장의 빛을 발산하는 복수 류의 에미터 각각이 복수로 구비된 에미터부, 상기 에미터부를 복수의 세그먼트로 구획하고, 상기 구획된 복수의 세그먼트 각각을 독립적으로 회로 구성하는 회로부 및 상기 복수의 세그먼트가 서로 다른 강도 또는 시간에 구동되도록 상기 회로부를 구동하는 구동부를 포함하는 이미지 획득 장치를 제공한다.

Description

이미지 획득 장치
본 발명은 조명 및 카메라를 포함하여 피사체에 대한 이미지를 획득하는 이미지 획득 장치에 관한 것이다.
이미지 획득 장치는 피사체에 대한 이미지를 획득하는 광학 시스템을 구비한 장치를 말한다. 이미지 획득 장치는 디지털 카메라, 또는 적외선 카메라 등 이미지 획득 기능만을 수행하는 전용 기기의 형태 또는 스마트폰과 같은 다른 기능을 수행하는 단말기의 형태 등으로 구현될 수 있다.
특히 최근에는 스마트폰의 개발과 보급에 따라, 이미지의 활용성이 대폭 향상되었으며, 이에 따라 최근에는 가시광선 영역의 RGB 이미지뿐만 아니라 더 넓고 세분화된 파장 영역의 성분을 포함하는 하이퍼스펙트럴(hyperspectral) 이미지 또는 멀티스펙트럴(multispectral) 이미지를 얻기 위한 이미지 획득 장치에 대한 요구도 커지고 있다.
하이퍼스펙트럴 또는 멀티스펙트럴 이미지를 얻기 위해서는 카메라 또는 조명이 그에 대응하는 제원을 갖춰야한다. 즉 복수의 파장을 구분하여 수광 가능한 카메라, 또는 복수의 파장에 대해 발광 가능한 조명을 필요로 한다.
하이퍼스펙트럴 또는 멀티스펙트럴 이미지를 얻기 위해 종래에는 UV, 할로겐, 또는 LED와 같이 넓은 파장 대역을 커버하는 조명을 사용함과 동시에, 이를 구분하여 수광할 수 있는 카메라를 사용하였다.
하지만 이러한 전형적인 조명들은 할로겐을 사용해야 하는 점, 상대적으로 큰 발열을 갖는 점 및 상대적으로 큰 소비 전력을 갖는 점 등의 문제들이 있다. 특히 이러한 문제점들은 최근 추세인 소형 장치에서 더더욱 큰 단점이 된다.
뿐만 아니라, 이러한 조명을 제어하기 위한 컨트롤러는 큰 부피를 차지하는 문제가 있어 소형 장치에는 부적합하다.
또한 종래의 조명은 파장 폭이 넓어 목표하는 파장에 대한 정보만을 추출하여 사용하기 어렵다.
본 발명은 전술한 문제인 멀티스펙트럴 또는 하이퍼스펙트럴 이미지를 획득하기 위한 조명이 소형 장치에 구비되기 부적절한 문제, 원하는 파장 성분만을 갖는 이미지를 획득하지 못해 정확한 정보를 얻을 수 없던 문제 등을 해결하는 것을 목적으로 한다.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 광원부 및 센서부를 포함하는 이미지 획득 장치에 있어서, 상기 광원부는, 서로 다른 파장의 빛을 발산하는 복수 류의 에미터 각각이 복수로 구비된 에미터부, 상기 에미터부를 복수의 세그먼트로 구획하고, 상기 구획된 복수의 세그먼트 각각을 독립적으로 회로 구성하는 회로부 및 상기 복수의 세그먼트가 서로 다른 강도 또는 시간에 구동되도록 상기 회로부를 구동하는 구동부를 포함하는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 세그먼트 각각은 복수 류의 에미터를 포함하는 이미지 획득 장치 를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 구동부는 상기 복수의 세그먼트가 순차적으로 구동하도록 구동하는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 구동부는 동일한 세그먼트에 속하는 복수의 에미터가 모두 동시에 구동하도록 구동하고, 상기 센서부는 시간 또는 영역에 따라 수광하는 파장을 달리하는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 구동부는 하나의 류의 에미터가 상기 복수의 세그먼트의 구동 순서에 따라 순차적으로 구동한 다음, 다른 하나의 류의 에미터가 상기 복수의 세그먼트의 구동 순서에 따라 순차적으로 구동하도록 구동하는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 센서부는 시간 또는 영역에 따라 수광하는 파장을 달리하거나, 파장의 구분없이 수광하는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 각 류의 에미터가 상기 복수의 세그먼트 전체에 대해 순차적으로 구동하는 시간은 상기 이미지 획득 장치의 단위 프레임(frame) 시간에 대응하는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 세그먼트 각각은 복수의 에미터가 동일한 패턴으로 배치되는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 센서부는, 영역별로 구분되어 복수 파장 빛을 수광할 수 있는 최소 단위인 단위 픽셀을 형성하고, 상기 단위 픽셀의 파장 패턴은 상기 세그먼트 각각에 구비되는 에미터의 파장의 패턴에 대응되는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 단위 픽셀에 대응하는 복수의 픽셀은 인접한 파장끼리 공간적으로 인접하여 구비되는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 세그먼트 각각은 한 류의 에미터를 포함하는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 복수의 세그먼트는 (m * n, m 및 n은 자연수)의 행렬 형태로 배치되고, 상기 각 세그먼트 내의 복수의 에미터는 (p * q, p 및 q은 자연수)의 행렬 형태로 배치되는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 복수의 류의 에미터는, R-파장 에미터, G-파장 에미터, B-파장 에미터 및 IR-파장 에미터를 포함하는 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 에미터는 수직 캐비티 표면 발광 레이저(vertical cavity surface emitting laser; VCSEL)인 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 센서부가 적어도 두 개 구비되고, 상기 세그먼트 각각의 에미터 배열 패턴은 서로 다른 이미지 획득 장치를 제공한다.
또한, 본 발명의 다른 측면에 따르면, 상기 구동부는, 상기 복수의 세그먼트 중 외측에 구비된 세그먼트의 에미터 밝기가 내측에 구비된 세그먼트의 에미터 밝기보다 밝도록 구동하는 이미지 획득 장치를 제공한다.
본 발명에 따른 이미지 획득 장치의 효과에 대해 설명하면 다음과 같다.
본 발명의 실시 예들 중 적어도 하나에 의하면, 멀티스펙트럴 또는 하이퍼스펙트럴 이미지를 획득할 수 있는 소형 장치의 구현이 가능하다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 멀티스펙트럴 또는 하이퍼스펙트럴 이미지 획득을 위한 전력 소모를 절감할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 다양한 형태의 멀티스펙트럴 또는 하이퍼스펙트럴 이미지를 얻을 수 있어 활용성이 증대된다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 이미지의 파장 해상력이 높아져 높은 활용성이 기대된다.
본 발명의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 본 발명의 사상 및 범위 내에서 다양한 변경 및 수정은 해당 기술 분야의 통상의 기술자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 발명의 바람직한 실시 예와 같은 특정 실시 예는 단지 예시로 주어진 것으로 이해되어야 한다.
도 1은 본 발명과 관련된 RGB스펙트럼, 멀티스펙트럼 및 하이퍼스펙트럼을 순차적으로 표현한 개념도이다.
도 2는 본 발명과 관련된 이미지 획득 장치에 관한 개념도이다.
도 3은 본 발명과 관련된 에미터부의 일 형태를 도시한 것이다.
도 4 및 도 5는 본 발명과 관련된 이미지 획득 장치에 관한 두 실시 예의 개념도이다.
도 6 내지 도 12는 본 발명과 관련된 광원부의 몇 가지 실시 예들에 대한 개념도이다.
도 13은 본 발명과 관련된 광원부 및 센서부의 또 다른 실시 예에 대한 개념도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
도 1은 본 발명과 관련된 RGB스펙트럼, 멀티스펙트럼 및 하이퍼스펙트럼을 순차적으로 표현한 개념도이다.
도 1(a)를 참조하면, 통상적으로 RGB 이미지는 세 개의 주요 파장의 정보를 포함한다. 이 세 개의 파장은 red, green 및 blue에 대응된다.
도 1(b)를 참조하면, 멀티스펙트럼은 통상 RGB-파장보다 3개 내지 10개의 파장 영역대의 정보를 더 포함하는 스펙트럼으로 정의된다.
도 1(c)를 참조하면, 하이퍼스펙트럼은 RGB-파장보다 수백개의 파장의 정보를 더 포함하는 스펙트럼으로 정의된다.
RGB 스펙트럼의 파장 성분을 갖는 이미지를 RGB 이미지, 멀티스펙트럼의 파장 성분을 갖는 이미지를 멀티스펙트럴 이미지, 그리고 하이퍼스펙트럼의 파장 성분을 갖는 이미지를 하이퍼스펙트럴 이미지로 정의된다.
멀티스펙트럼 또는 하이퍼스펙트럼은 RGB-파장 사이 값에 대응하는 파장을 포함할뿐만 아니라, RGB 스펙트럼 중 최소 파장(435nm)보다 더 작은 파장, 또는 RGB 스펙트럼 중 최대 파장(630nm)보다 더 큰 파장을 포함할 수 있다. 예를 들어, 멀티스펙트럴 또는 하이퍼스펙트럴은 적외선(IR) 영역을 포함할 수 있다.
본 발명에서는 멀티스펙트럴 또는 하이퍼스펙트럴 이미지를 얻기 위한 특징을 포함한다. 다만 이는 멀티스펙트럴 이미지 또는 하이퍼스펙트럴 이미지를 얻기에 용이한 특징인 것이며, 종래의 RGB 이미지, 또는 RGB-IR 이미지 등을 얻는데 사용할 수 없음을 뜻하는 것은 아니다. 이러한 이유로, 이후에서는 모든 이미지를 하이퍼스펙트럴 이미지를 예로 하여 설명한다.
도 2는 본 발명과 관련된 이미지 획득 장치에 관한 개념도이고, 도 3은 본 발명과 관련된 에미터부(210)의 일 형태를 도시한 것이다.
도 2(a)는 광원부(200)에 관한 개념도이고, 도 2(b)는 센서부(300)에 관한 개념도이다. 광원부(200)는 전술한 조명에 대응하는 개념이고, 센서부(300)는 카메라에 대응하는 개념이다.
이미지 획득 장치는 광원부(200) 및 센서부(300)를 포함한다. 광원부(200)는 피사체에 기 설정된 파장 또는 그 파장을 파장 영역대 빛을 출사한다. 광원부(200)에서 출사된 빛은 피사체에 반사되고, 반사된 빛의 일부는 센서부(300)에 수광되어 이미지로 획득된다.
좀 더 구체적으로, 광원부(200)는 적어도 하나의 에미터(emitter, 211)를 포함하는 에미터부(emitter part, 210) 및 광학 부재(250)를 포함한다.
광학 부재(250)는 출사된 빛을 회절 또는 굴절시키는 기능을 수행한다. 광학 부재(250)는 굴절 소자인 렌즈, 회절 소자인 디퓨져(diffuser), 회절 광학 소자(diffractive optical elements; DOE) 혹은 렌즈와 회절 소자의 복합구성으로 구성될 수 있다.
에미터(211)는 빛을 발산하는 부재의 최소 단위로 정의된다. 에미터부(210)가 복수의 에미터(211)를 포함하는 경우, 각 에미터(211)는 다른 에미터(211)와 독립적으로 구동될 수 있다는 점에서 구분의 의의를 가진다.
에미터부(210)는 복수의 세그먼트(1)로 구획되어 독립적으로 구동될 수 있다. 즉 에미터부(210)의 복수 에미터(211)는 세그먼트(1) 단위로 온/오프, 강도 조절 등의 동작이 수행될 수 있다.
각 세그먼트(1)는 적어도 하나의 에미터(211)와 대응될 수 있다. 하나의 세그먼트(1)에 대응하는 복수의 에미터(211)의 동작은 동시에 수행될 수도 있으나, 반드시 그러한 것은 아니며, 개별적으로 수행될 수도 있다.
세그먼트(1)들의 독립 구동을 위해, 회로부는 적어도 각 세그먼트(1)가 구분되어 제어 가능하도록 연결된다. 나아가, 하나의 세그먼트(1)에 대응하는 복수의 에미터(211)들을 독립적으로 구동시킬 필요가 있는 경우, 회로부는 각 에미터(211)가 구분되어 제어 가능하도록 더 세분화 되어 연결될 수 있다.
구동부는 이렇게 연결된 회로부를 통해 각 세그먼트(1), 또는 각 에미터(211)를 독립적으로 구동시킬 수 있다.
센서부(300)는 피사체에 반사된 빛을 수광하여 이미지화 한다. 센서부(300)는 렌즈(310), 필터(320) 및 이미지 센서(330)를 포함한다.
렌즈(310)는 필터(320) 및 이미지 센서(330)로 빛이 적절히 도달하기 위해 초점을 조절한다. 렌즈(310)에 의해 이미지 센서(330)는 선명한 이미지를 얻을 수 있다.
필터(320)는 렌즈(310)를 통과한 빛을 파장에 따라 선택적으로 투과시켜 이미지 센서(330)에 도달할 수 있도록 한다.
센서부(300)는 복수의 파장을 구분하여 수광할 수 있는 형태인 멀티 센서부, 또는 파장의 구분없이 수광하는 싱글 센서부의 형태로 구비될 수 있다. 좀 더 구체적으로, 멀티 센서부는 파장을 선택적으로 투과시키는 필터(320)에 의해 얻고자 하는 파장에 대응하는 이미지를 획득할 수 있다.
필터(320)는 공간으로 구분되어 복수의 파장을 투과시킬 수도 있고, 또는 시간으로 구분되어 복수의 파장을 투과시킬 수도 있다. 전자의 형태로 수행되는 센서부(300)를 공간식 멀티 센서부, 후자의 형태로 수행되는 센서부(300)를 시간식 멀티 센서부로 정의한다.
공간식 멀티 센서부에서는, 필터(320)가 서로 다른 파장을 투과시키는 복수의 영역으로 구획됨으로써 영역별로 서로 다른 파장의 빛을 동시에 투과시켜 이미지를 얻도록 할 수 있다. 시간식 멀티 센서부에서는, 서로 다른 파장을 투과시키는 복수의 필터(320)가 선택적으로 사용되어 이미지 센서(330)에 빛을 도달하게 한다. 예를 들어 시간식 멀티 센서부는 단일 파장을 투과시키는 복수의 필터(320)가 회전하는 원형 부재에 구비되어 각 필터(320)가 순차적으로 렌즈(310) 및 이미지 센서(330) 사이에 배치되는 형태를 띨 수 있다.
공간식 멀티 센서부는 한 프레임에 모든 파장 성분에 대한 정보를 얻을 수 있는 반면 해상력이 떨어져 이를 보완하는 알고리즘이 필요하다. 한편 시간식 멀티 센서부는 물리적으로 필터(320)가 교체되어야 한다는 점에서 물리적 구동을 위한 구동계, 공간 등이 필요하하고, 일반 센서를 사용하는 경우 프레임 레이트(frame rate)가 상대적으로 저하될 수도 있다.
이미지 획득 장치가 파장의 구분없이 제공되는 광대역(broadband) 조명(또는 태양광)을 이용하여 하이퍼스펙트럴 이미지를 얻기 위해서는 공간식 멀티 센서부, 또는 시간식 멀티 센서부의 형태로 구비되어 목표로 하는 복수의 파장에 대응하는 필터(320)를 가져야 한다.
그런데 광대역 조명은 파장 폭이 높아 목표로 하는 파장 성분에 대한 데이터를 정확하게 얻기 어렵다. 따라서, 광원부(200)는 각 파장의 폭이 좁은 협대역(narrow band) 형태로 제공되는 것이 바람직하다. 즉 광원부(200)는 목표로 하는 복수의 파장 별로 구분되어 제공될 수 있다. 개별 파장의 광원을 공급하기 위해, 본 발명의 광원부(200)는 서로 다른 파장의 빛을 발산하는 복수 류의 에미터(211)들로 형성되는 에미터부(210)를 포함한다. 예를 들어, 에미터부(210)는 제1 류 에미터, 제2 류 에미터, 제3 류 에미터 및 제4 류 에미터로 구성될 수 있으며, 더 구체적으로는 제1 류 에미터는 R-파장의 빛을 내는 에미터(211a), 제 2 류 에미터는 G-파장의 빛을 내는 에미터(211b), 제3 류 에미터는 B-파장의 빛을 내는 에미터(211c), 제4 류 에미터는 IR-파장의 빛을 내는 에미터(211d)가 될 수 있다. R, G, B, IR의 파장은 일 실시 예이며, 목표로 하는 파장에 따라 얼마든지 변경될 수 있으며, 그 개수 또한 4개에 제한되지 않고 더 적거나 많아질 수 있다.
각 에미터(211)는 레이저 다이오드(laser diode; LD), 특히 수직 캐비티 표면 발광 레이저(vertical cavity surface emitting laser; VCSEL, 또는 빅셀)로 구현되어 매우 좁은 파장(narrow band) 폭, 예를 들어 3nm의 폭을 형성할 수 있다.
복수 류의 에미터(211)는 동시에 구동되거나, 또는 이시에 구동될 수 있다.
여기서 복수 류의 에미터(211)가 이시에 구동된다는 의미는, 동시간대에는 같은 파장의 에미터(211)만 구동될 수 있음을 의미한다. 예를 들어, 제1 류의 에미터가 발광하고 꺼진 뒤, 제2 류의 에미터가 발광하고 꺼지고, 그 다음 제3 류의 에미터가 발광하고 꺼지는 등의 동작을 의미한다. 이는 세그먼트(1)의 이시 구동과는 구분되는 것으로, 세그먼트(1)의 이시 구동은 제1 세그먼트(1)에 속하는 적어도 하나의 에미터(211)가 구동되고, 그 다음 제2 세그먼트(1)에 속하는 적어도 하나의 에미터(211)가 구동되는 형태를 의미한다.
복수 류의 에미터(211)가 이시에 구동되는 경우, 센서부(300)의 형태에는 제한이 없다. 즉 센서부(300)는 시간식 멀티 센서부, 또는 공간식 멀티 센서부의 모든 형태로 구현될 수 있다. 예를 들어, 센서부(300)는 수많은 파장을 투과시키는 멀티 필터, RGB-파장을 투과시키는 RGB 필터 또는 RGB-IR-파장을 투과시키는RGB-IR 필터의 형태로 구비될 수 있다. 뿐만 아니라 모노(mono) 필터로 구현되는 싱글 센서부의 경우도 가능하다.
한편 복수 류의 에미터(211)가 동시에 구동되는 경우 센서부(300)는 반드시 시간식 멀티 센서부, 또는 공간식 멀티 센서부의 형태로 구현되어야 복수 파장 성분을 갖는 이미지를 얻을 수 있다.
도 4 및 도 5는 본 발명과 관련된 이미지 획득 장치(100)에 관한 두 실시 예의 개념도이다.
도 4를 참조하면, 이미지 획득 장치(100)는 광원부(200) 및 센서부(300)를 실장하기 위한 단일 부재의 카메라 인쇄회로기판(printed circuit board; PCB, 410)을 구비할 수 있다. 또는, 복수 부재의 인쇄회로기판 상에 광원부(200) 및 센서부(300)가 별도로 실장되어 연결될 수도 있다.
실장된 광원부(200)와 센서부(300)는 상호 연동(sync) 되어 이미지 획득시 광원부(200)가 활성화 될 필요가 있다. 앞서 설명한 바와 같이, 구동부(420)는 광원부(200)의 펄스(pulse)를 제어하거나, 세그먼트 단위로 온/오프를 제어할 수 있다. 또는 각 파장에 대응하는 에미터를 순차적으로 온/오프 시킬 수도 있다. 이는 카메라 인쇄회로기판(410)에 실장된 센서부(300)의 회로부 구조가 상기 제어에 대응하여 수행될 수 있는 회로 구성을 갖는 것을 전제로 한다.
이미지 획득 장치(100)에서 광원부(200) 및 센서부(300)가 노출되어 구비되는 방향을 제1 방향으로 정의하면, 카메라 인쇄회로기판(410)은 제1 방향에 수직하게 구비되며, 광원부(200)는 빛의 출사 방향이 제1 방향이 되도록 구비되며, 센서부(300)는 제1 방향의 반대 방향으로 오는 빛을 수광하도록 구비된다.
광원부(200)와 센서부(300)는 하나씩 구비될 수 있으며, 광원부(200) 및 센서부(300)는 카메라 인쇄회로기판(410) 상에서 제1 방향에 수직한 제2 방향으로 인접하여 나란이 배치될 수 있다. 구동부(420)는 광원부(200) 및 센서부(300)가 인접하여 구비되는데 방해되지 않도록 양 구성의 외측에 구비될 수 있다.
하나의 광원부(200)와 하나의 센서부(300)의 조합은 2D(2-dimensional) 이미지를 획득할 수 있다.
도 5를 참조하면, 이미지 획득 장치(100)는 하나의 광원부(200)와 두 개의 센서부(300)를 포함할 수 있다. 본 실시 예의 특징은 도 4의 이미지 획득 장치(100) 실시예와 모순되지 않는 범위 내에서 동일한 특징을 가진다.
두 개의 센서부(300)가 구비되는 경우 3D(3-dimensional) 이미지를 획득할 수 있다. 이때 이미지 획득 장치(100)는 뎁스(depth) 프로세서(processor)를 추가적으로 구비할 수 있다. 뎁스 프로세서는 두 개의 센서부(300)를 통해 뎁스(depth) 정보를 얻는데 사용된다.
도 6 내지 도 12는 본 발명과 관련된 광원부(200)의 몇 가지 실시 예들에 대한 개념도이다.
도 6 내지 도 10 및 도 13에 관한 실시 예들은 모두 세그먼트(1)를 갖는다. 광원부(200)에 구비된 복수의 세그먼트(1)는 독립적으로 구동된다. 즉, 복수의 세그먼트(1)는 동시에 구동되지 않고 서로 다른 시간에 순차적으로 구동될 수 있다. 나아가 구동 시간 간격 및 구동 강도 등도 상이하게 조절될 수 있다. 예를 들어, 복수의 세그먼트(1)는 방향성을 가지며 순차적으로 구동될 수 있다. (행, 렬)을 기준으로 정의했을 때, (1, 1) -> (1, 2) -> (1, 3) -> (1, 4) -> (2, 1) -> (2, 2) 쪋 의 순서대로 구동될 수 있다.
광원부(200)의 세그먼트(1)는 (m * n) 행렬의 형태로 구비될 수 있으며, 각 세그먼트(1)에 구비되는 복수의 에미터(211)는 (p * q) 행렬의 형태로 구비될 수 있다. 이러한 행렬 형태의 배치는 직접도를 높일 수 있으며, 각 영역이 명확하게 구분된다는 점에서 분할 구동의 이점을 효과적으로 살릴 수 있다.
다만 이에 한정될 필요는 없으며, 다른 조건에 따라 원형, 다각형의 형태로 구비될 수도 있으며, 나아가 불규칙 형태를 띨 수 있음은 물론이다. 도 9 및 도 10은 에미터(211)가 행렬 형태로 구비되지 않은 실시 예로 볼 수 있다.
도 6, 도 7, 도 9 및 도 10에 관한 실시 예들은 각 세그먼트(1) 내에 복수 류의 에미터(211)를 포함하는 경우를, 도 8에 관한 실시 예는 각 세그먼트(1) 내에 단일 류의 에미터(211)를 포함하는 경우를 도시하고 있다. 도 11 및 도 12에 관한 실시 예들은 세그먼트가 없는 에미터부(210)를 도시하고 있다.
도 6을 참조하면, 세그먼트(1)의 순차 구동 시, 구동되는 세그먼트(1) 내의 복수 류의 에미터(211)는 동시에 구동될 수 있다. 예를 들어, 각 세그먼트(1)에 R-파장 에미터(211a), G-파장 에미터(211b), B-파장 에미터(211c), IR-파장 에미터(211d)가 모두 포함된다고 하면, 각 세그먼트(1)가 구동될 때 R-파장 에미터(211a), G-파장 에미터(211b), B-파장 에미터(211c) 및 IR-파장 에미터(211d)가 모두 동시에 켜지거나 동시에 꺼질 수 있다. 그리고 이는, 복수 류의 에미터의 이시 구동으로 볼 수 없으므로, 센서부가 시간식 멀티 센서부, 또는 공간식 멀티 센서부로 구동되어야 함을 의미한다.
도 7의 실시 예는 도 6의 실시 예와 동일한 배열을 가지며, 동일한 세그먼트(1)의 순차 구동을 구현할 수 있다.
다만, 도 6의 실시 예와 달리, 동일한 세그먼트(1) 내에 구비되는 서로 다른 류의 에미터(211)는 이시에 구동될 수 있다. 예를 들어, R-파장 에미터(211a)가 (1, 1) 세그먼트 -> (1, 2) 세그먼트 -> (1, 3) 세그먼트 쪋 과 같이 마지막 세그먼트(1)까지 구동되고, 다음으로 G-파장 에미터(211b)가 (1, 1) 세그먼트 -> (1, 2) 세그먼트 -> (1, 3) 세그먼트 쪋 과 같이 마지막 세그먼트(1)까지 구동되고, 이러한 규칙으로 모든 파장의 에미터(211)까지 순차 구동될 수 있다.
이는 복수 류의 에미터(211)가 이시 구동하는 것에 해당하므로, 센서부는 상술한 바와 같이 공간식 멀티 센서부, 또는 시간식 멀티 센서부의 형태뿐만 아니라, 모노 센서의 형태에서도 복수 파장 성분을 포함하는 이미지 획득이 가능하다는 장점이 있다.
도 8에 관련된 실시 예의 경우, 도 6 또는 도 7의 실시 예와 달리 각 세그먼트(1)는 동일 류의 에미터(211)를 포함한다. 그리고 하나의 세그먼트(1)가 구동될 때 그 세그먼트(1) 내의 모든 에미터(211)가 동시에 구동된다.
본 실시 예도 복수 류의 에미터(211)를 이시 구동하는 것과 같은 결과에 해당하므로, 센서부는 공간식 멀티 센서부, 또는 시간식 멀티 센서부의 형태뿐만 아니라, 모노 센서의 형태에서도 복수 파장 성분에 대한 이미지 획득이 가능하다.
동일 류의 에미터(211)가 구비된 세그먼트(1) 형태는, 파장별로 효율 특성이 다른 점을 고려했을 때, 파장에 따라 다른 강도로 세그먼트 제어를 할 수 있다는 장점이 있다.
도 9 및 도 10의 실시 예는 앞선 도 6 내지 도 8의 실시 예와 달리, 세그먼트(1) 내의 에미터(211) 배열이 불규칙적이다. 즉 하나의 세그먼트(1)를 기준으로 복수의 에미터(211)는 좌우, 상하, 또는 원점 대칭 등이 되지 않게 배치될 수 있다. 한 세그먼트(1) 내에서의 불규칙적인 배열은 공간을 구분할 수 있는 기준점을 제공한다. 따라서 이러한 배열은 도 5의 실시 예와 같은 3D 이미지를 획득하는데 유용하게 사용될 수 있다.
또 한 세그먼트(1) 내의 불규칙적인 에미터(211) 배열은 다른 세그먼트(1) 내의 에미터(211) 배열과도 다를 수 있다. 각 세그먼트(1) 사이에서의 불규칙적인 배열은 3D 이미지를 획득하는데 유용하게 사용될 수 있을뿐만 아니라 광원의 세그먼트(1)를 구분하는데도 유용하게 사용될 수 있다.
특히 도 9의 실시 예는 도 6의 실시 예와 같이 세그먼트(1) 내의 복수 류의 에미터(211)가 동시에 구동되는 것을 나타내고, 도 10의 실시 예는 도 7의 실시 예와 같이 같은 세그먼트(1) 내라도 서로 다른 류의 에미터(211)는 동시에 구동되지 않고 이시에 구동됨을 나타낸다. 그 구체적 특징에 대해서는 도 6 및 도 7에 설명한 바와 같다.
도 11 및 도 12의 실시 예와 같이, 광원부(200)는 세그먼트(1)의 개념없이 각 에미터(211) 단위로 분할 구동될 수도 있다. 예를 들어, 도 11과 같이 4개의 파장의 조합으로 구성된 에미터부(210)가 있을 수도 있고, 도 12와 같이 3개의 파장의 조합으로 구성된 에미터부(210)로 구비될 수도 있다. 구체적으로는 4개의 파장은 R-파장, G-파장, B-파장, IR-파장이 될 수 있으며, 3개의 파장은 R-파장, G-파장, B-파장이 될 수도 있으며, 그 파장의 종류에는 제한이 없고 필요에 따라 달라질 수 있다.
나아가 상술한 바와 같이, 상술한 도 6 내지 도 12의 실시 예, 나아가 후술하는 도 13의 실시 예 모두에서 각 에미터(211)는 빅셀의 형태로 구현될 수 있음은 물론이다.
도 13은 본 발명과 관련된 광원부(200) 및 센서부(300)의 또 다른 실시 예에 대한 개념도이다.
공간식 멀티 센서부를 구현하는 경우에 있어서, 필터의 파장별 배치는 파장이 상이한 픽셀 패턴이 반복되는 최소의 단위(이하 '단위 픽셀(2)'이라 한다)가 반복되는 형태로 구비될 수 있다.
이러한 단위 픽셀(2)의 픽셀 배치 패턴과 광원부(200) 세그먼트(1)의 에미터(211) 배치 패턴은 대응되도록 구비될 수 있다. 예를 들어 4 * 4 행렬의 배치를 전제로, 단위 픽셀(2)의 16 픽셀 각각은 서로 다른 파장의 빛을 수광할 수 있다.
또, 광원부(200)의 세그먼트(1)도 그에 대응하여 4 * 4 행렬의 배치로 16개 류의 에미터(211)가 구비될 수 있으며, 각 대응하는 위치의 파장은 동일하거나 유사한 범위에 해당할 수 있다. 예를 들어, 단위 픽셀(2)의 (1, 1) 픽셀이 수광하는 파장은 세그먼트(1)의 (1, 1) 에미터(211)의 파장과 동일하고, 단위 픽셀(2)의 (1, 2) 픽셀이 수광하는 파장은 세그먼트(1)의 (1, 2) 에미터(211) 파장과 동일할 수 있다. 이렇게 동일한 경향의 패턴으로 광원부(200) 및 센서부(300)가 구비되는 경우, 각 픽셀과 에미터(211)의 거리를 최소화할 수 있어 효율이 증가될 수 있다.
경우에 따라 단위 픽셀(2)의 픽셀 개수와 세그먼트(1)의 에미터(211) 개수는 동일하지 않을 수도 있다. 또 단위 픽셀(2)이 포함하는 파장 개수와, 세그먼트(1)가 포함하는 파장 개수가 다를 수도 있다. 예를 들어 단위 픽셀(2)이 4 * 4의 형태로서 서로 다른 파장의 픽셀(21)로 구성되는 경우, 광원부(200)도 이에 대응하는 류의 에미터(211)로 구비되되, 2 * 2의 세그먼트(1)로 분할되어 구동될 수 있다.
단위 픽셀(2)에 대응하는 복수의 픽셀(21)은 인접한 파장끼리 공간적으로 인접하여 구비될 수 있다. 이러한 특징은 센서부(300)뿐만 아니라 광원부(200)에도 동일하게 적용될 수 있을 것이다. 인접한 파장끼리 공간적으로 인접하여 구비되는 경우 발광 및 수광효율을 극대화할 수 있는 장점이 있다.
또, 구동부는 복수의 세그먼트(1) 중 외측에 구비된 세그먼트(1)의 에미터(211) 밝기가 내측에 구비된 세그먼트(1)의 에미터(211) 밝기보다 밝도록 구동할 수 있다. 통상적으로 광원부(200) 외측의 밝기가 내측의 밝기보다 어두우므로, 이를 고려하여 외측 영역에 더 많은 에너지를 공급할 수 있다. 이 특징은 본 실시 예에 한정됨이 없이 모든 실시 예에 동일하게 적용될 수 있다.
상기와 같은 세그먼트 개별 제어를 통해 이미지 획득 장치는 전력을 효율적으로 사용할 수 있으며, 특히, 피크 파워(peak power) 측면에서 이점이 있다. 피크 파워를 낮추는 것은 결과적으로 작은 소자를 사용할 수 있음을 뜻하며, 결과적으로 이미지 획득 장치의 소형화에 도움을 줄 수 있음을 의미한다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 해당 기술 분야의 통상의 기술자에게 자명하다.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 본 발명의 특징들은 전체적, 또는 부분적으로 이미지 획득 장치와 동일/유사한 기능을 수행하는 장치에 적용될 수 있다.

Claims (16)

  1. 광원부 및 센서부를 포함하는 이미지 획득 장치에 있어서,
    상기 광원부는,
    서로 다른 파장의 빛을 발산하는 복수 류의 에미터 각각이 복수로 구비된 에미터부;
    상기 에미터부를 복수의 세그먼트로 구획하고, 상기 구획된 복수의 세그먼트 각각을 독립적으로 회로 구성하는 회로부; 및
    상기 복수의 세그먼트가 서로 다른 강도 또는 시간에 구동되도록 상기 회로부를 구동하는 구동부를 포함하는 이미지 획득 장치.
  2. 제1 항에 있어서,
    상기 세그먼트 각각은 복수 류의 에미터를 포함하는 이미지 획득 장치.
  3. 제2 항에 있어서,
    상기 구동부는 상기 복수의 세그먼트가 순차적으로 구동하도록 구동하는 이미지 획득 장치.
  4. 제3 항에 있어서,
    상기 구동부는 동일한 세그먼트에 속하는 복수의 에미터가 모두 동시에 구동하도록 구동하고,
    상기 센서부는 시간 또는 영역에 따라 수광하는 파장을 달리하는 이미지 획득 장치.
  5. 제3 항에 있어서,
    상기 구동부는 하나의 류의 에미터가 상기 복수의 세그먼트의 구동 순서에 따라 순차적으로 구동한 다음, 다른 하나의 류의 에미터가 상기 복수의 세그먼트의 구동 순서에 따라 순차적으로 구동하도록 구동하는 이미지 획득 장치.
  6. 제5 항에 있어서,
    상기 센서부는 시간 또는 영역에 따라 수광하는 파장을 달리하거나, 파장의 구분없이 수광하는 이미지 획득 장치.
  7. 제5 항에 있어서,
    상기 각 류의 에미터가 상기 복수의 세그먼트 전체에 대해 순차적으로 구동하는 시간은 상기 이미지 획득 장치의 단위 프레임(frame) 시간에 대응하는 이미지 획득 장치.
  8. 제1 항에 있어서,
    상기 세그먼트 각각은 복수의 에미터가 동일한 패턴으로 배치되는 이미지 획득 장치.
  9. 제8 항에 있어서,
    상기 센서부는, 영역별로 구분되어 복수 파장 빛을 수광할 수 있는 최소 단위인 단위 픽셀을 형성하고,
    상기 단위 픽셀의 파장 패턴은 상기 세그먼트 각각에 구비되는 에미터의 파장의 패턴에 대응되는 이미지 획득 장치.
  10. 제9 항에 있어서,
    상기 단위 픽셀에 대응하는 복수의 픽셀은 인접한 파장끼리 공간적으로 인접하여 구비되는 이미지 획득 장치.
  11. 제1 항에 있어서,
    상기 세그먼트 각각은 한 류의 에미터를 포함하는 이미지 획득 장치.
  12. 제1 항에 있어서,
    상기 복수의 세그먼트는 (m * n, m 및 n은 자연수)의 행렬 형태로 배치되고,
    상기 각 세그먼트 내의 복수의 에미터는 (p * q, p 및 q은 자연수)의 행렬 형태로 배치되는 이미지 획득 장치.
  13. 제1 항에 있어서,
    상기 복수의 류의 에미터는, R-파장 에미터, G-파장 에미터, B-파장 에미터 및 IR-파장 에미터를 포함하는 이미지 획득 장치.
  14. 제1 항에 있어서,
    상기 에미터는 수직 캐비티 표면 발광 레이저(vertical cavity surface emitting laser; VCSEL)인 이미지 획득 장치.
  15. 제1 항에 있어서,
    상기 센서부가 적어도 두 개 구비되고,
    상기 세그먼트 각각의 에미터 배열 패턴은 서로 다른 이미지 획득 장치.
  16. 제1 항에 있어서,
    상기 구동부는, 상기 복수의 세그먼트 중 외측에 구비된 세그먼트의 에미터 밝기가 내측에 구비된 세그먼트의 에미터 밝기보다 밝도록 구동하는 이미지 획득 장치.
PCT/KR2020/009111 2020-03-27 2020-07-10 이미지 획득 장치 WO2021194019A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200037364A KR20210120535A (ko) 2020-03-27 2020-03-27 이미지 획득 장치
KR10-2020-0037364 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021194019A1 true WO2021194019A1 (ko) 2021-09-30

Family

ID=77856743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009111 WO2021194019A1 (ko) 2020-03-27 2020-07-10 이미지 획득 장치

Country Status (3)

Country Link
US (1) US11888292B2 (ko)
KR (1) KR20210120535A (ko)
WO (1) WO2021194019A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039769A (ko) * 2006-11-01 2008-05-07 (주)이글 모듈 제어 엘이디 교통 신호등
JP2015099910A (ja) * 2013-06-20 2015-05-28 株式会社リコー 面発光レーザアレイ、光走査装置、画像形成装置、及び面発光レーザアレイの製造方法
US20150227790A1 (en) * 2014-02-12 2015-08-13 Samsung Electronics Co., Ltd. Agile biometric camera with bandpass filter and variable light source
KR20190028429A (ko) * 2016-06-09 2019-03-18 인사이트 시스템즈 생물학적 특성을 검출하는 일체형 발광 디스플레이 및 센서
KR20200024914A (ko) * 2017-07-05 2020-03-09 아우스터, 인크. 전자적으로 스캔되는 방출기 어레이 및 동기화된 센서 어레이를 갖는 광 레인징 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672767C1 (ru) * 2015-02-19 2018-11-19 Конинклейке Филипс Н.В. Устройство инфракрасного лазерного освещения
US10713458B2 (en) 2016-05-23 2020-07-14 InSyte Systems Integrated light emitting display and sensors for detecting biologic characteristics
US10412806B2 (en) * 2016-11-10 2019-09-10 Hong Kong Beida Jade Bird Display Limited Multi-color micro-LED array light source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039769A (ko) * 2006-11-01 2008-05-07 (주)이글 모듈 제어 엘이디 교통 신호등
JP2015099910A (ja) * 2013-06-20 2015-05-28 株式会社リコー 面発光レーザアレイ、光走査装置、画像形成装置、及び面発光レーザアレイの製造方法
US20150227790A1 (en) * 2014-02-12 2015-08-13 Samsung Electronics Co., Ltd. Agile biometric camera with bandpass filter and variable light source
KR20190028429A (ko) * 2016-06-09 2019-03-18 인사이트 시스템즈 생물학적 특성을 검출하는 일체형 발광 디스플레이 및 센서
KR20200024914A (ko) * 2017-07-05 2020-03-09 아우스터, 인크. 전자적으로 스캔되는 방출기 어레이 및 동기화된 센서 어레이를 갖는 광 레인징 장치

Also Published As

Publication number Publication date
US11888292B2 (en) 2024-01-30
KR20210120535A (ko) 2021-10-07
US20210305784A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US20120212707A1 (en) Multi-Segment Imager
KR101244295B1 (ko) 세그먼트화된 광 센서들 상의 상 맵핑에 의한 광 피드백을갖는 led 조명 기구
WO2014035127A1 (en) Apparatus for generating depth image
US8482816B2 (en) Document acquisition system and document acquisition method
WO2014035128A1 (en) Image processing system
CN103583038A (zh) 摄像系统、摄像方法
KR960001799A (ko) 헬멧 장착 디스플레이 시스템
JP2008546023A (ja) 複数位置照明システム及びそれを使用する投影ディスプレイシステム
KR20090016378A (ko) 위치 검출 장치
KR20130107235A (ko) 광원 장치 및 프로젝터
JPH0876078A (ja) 画像表示装置
WO2021194019A1 (ko) 이미지 획득 장치
WO2020075932A1 (ko) 3차원 영상 생성 장치 및 방법
CN114719233A (zh) 一种可发出自定义光照的视觉光源及其系统
JP2006308714A (ja) 照明装置
CN111649822A (zh) 一种光源一体化成像镜头及光谱图像摄取装置、方法
US20220149016A1 (en) Display device and electronic device including the display device
WO2022054975A1 (ko) 하이브리드 광원으로 구성된 광학계 및 그를 포함하는 프로젝터 장치
JP7307031B2 (ja) 虚像投射装置
JP7165133B2 (ja) 遠隔通信機能付きフラッシュライト発光器
JPH01105989A (ja) アクティブスクリーン
WO2015023016A1 (ko) 각도 조정형 스커트모듈
JP4552213B2 (ja) 発光素子による照明灯
JP5331298B2 (ja) 光源装置
EP2820847B1 (en) Multi-segment imager

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927935

Country of ref document: EP

Kind code of ref document: A1