WO2020075932A1 - 3차원 영상 생성 장치 및 방법 - Google Patents

3차원 영상 생성 장치 및 방법 Download PDF

Info

Publication number
WO2020075932A1
WO2020075932A1 PCT/KR2019/003979 KR2019003979W WO2020075932A1 WO 2020075932 A1 WO2020075932 A1 WO 2020075932A1 KR 2019003979 W KR2019003979 W KR 2019003979W WO 2020075932 A1 WO2020075932 A1 WO 2020075932A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light sources
depth
dot pattern
light source
Prior art date
Application number
PCT/KR2019/003979
Other languages
English (en)
French (fr)
Inventor
조용호
남효진
이상근
정찬성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/284,410 priority Critical patent/US11483539B2/en
Priority to KR1020217004742A priority patent/KR102431989B1/ko
Publication of WO2020075932A1 publication Critical patent/WO2020075932A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/271Image signal generators wherein the generated image signals comprise depth maps or disparity maps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/156Mixing image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/705Pixels for depth measurement, e.g. RGBZ

Definitions

  • the present invention relates to an apparatus and method for generating a 3D image, and more particularly, to an apparatus and method for measuring depth information of an object and generating a 3D image based on the measured depth information of the object. .
  • the 3D stereoscopic image is generated based on the depth image of the object together with the color image so as to give a stereoscopic and immersive sense. At this time, in order to generate the depth image of the object, the depth of the object must be measured.
  • the TOF method is a method of measuring the depth of an object by directly irradiating the object and calculating the time of reflected light returning from the object.
  • the TOF camera 100 is largely composed of a light transmitting unit 110 and a light receiving unit 120 that irradiate light toward an object. That is, the TOF camera 100 acquires depth information, which is a distance between the object and the camera, using a phase difference between light irradiated from the light transmitting unit 110 and light reflected from the object.
  • depth information which is a distance between the object and the camera
  • an in-phase receptor that receives in-phase light from light reflected by an object and an out-phase receptor that receives out-phase light constitute one pixel of the image sensor.
  • the TOF camera compares the amount of light received by the in-phase receptor and the out-phase receptor, and measures the phase difference between the light irradiated from the light source and the received light, thereby obtaining depth information of the object.
  • FIG. 2 shows the optical structure of the conventional TOF camera 100
  • FIG. 3 shows a block diagram of the conventional TOF camera 100.
  • the transmitter 110 of the conventional TOF camera 100 includes a light source 111 for generating light and a diffuser 112 for irradiating the light generated from the light source 110 in the form of a surface light source at a specific angle.
  • the light irradiated from the light transmitting unit 110 is reflected by the object 300 and is incident on the light receiving unit 120, but the light receiving unit 120 is an Rx lens that guides light reflected by the object 300 to the image sensor 122 ( 121), an image sensor 122 that converts the received light into an electrical signal, and an image processor 123 that generates a depth image through the electrical signal of the image sensor 122.
  • the light receiving unit 120 may further include a filter that passes only a specific wavelength.
  • the TOF camera 100 limits the intensity of light in order to protect the eyes of the subject (person) by measuring the depth information by irradiating light from the transmitter 100.
  • SNR signal to noise rate
  • the present invention is to solve the above problems, the object of the present invention is to limit the amount of light generated by the light source for eye protection, but to increase the reliability of the depth image obtained by long-distance imaging.
  • a plurality of light sources generating light irradiated toward an object, and light generated from each of the plurality of light sources are irradiated to the object in a dot pattern
  • a first optical system an image sensor for receiving light reflected by the object and converting it into an electrical signal, an image processor and a light source for acquiring depth data through the electrical signal, the first optical system, the image sensor, and the image processor
  • a control unit connected to the control unit, wherein the control unit controls the light emission pattern of the plurality of light sources to control the light source to scan the object.
  • the plurality of light sources provide a depth image generating apparatus characterized in that it emits light independently.
  • the dot pattern irradiated light generated from each of the plurality of light sources corresponds one-to-one to a divided region corresponding to a plurality of receiving elements constituting the image sensor. It provides a depth image generating apparatus characterized in that.
  • the divided area includes sub-division areas corresponding to each of the plurality of light sources, and the irradiation light of the dot pattern generated from each of the plurality of light sources is a corresponding sub-division area. It provides a depth image generating apparatus characterized in that the irradiation.
  • the sub-division area provides a depth image generating apparatus characterized by having an area proportional to the maximum emission amount of each of the corresponding light sources.
  • control unit controls the plurality of light sources to sequentially emit light during one frame, and merges the depth data obtained by using the location information of the sub-division area, respectively. It provides a depth image generating apparatus characterized in that the control.
  • the control unit provides a depth image generating apparatus characterized by controlling the amount of light emitted by the plurality of light sources in response to at least one of a distance from the object and a signal-to-noise ratio (SNR).
  • SNR signal-to-noise ratio
  • control unit controls the number of light sources simultaneously emitting among the plurality of light sources during one frame in response to at least one of a distance from the object and a signal-to-noise ratio (SNR). It provides a depth image generating apparatus characterized in that.
  • control unit controls the image processor to increase a frame rate when emitting at least one light source of the plurality of light sources simultaneously.
  • a depth image generating device is provided.
  • control unit controls the plurality of light sources to emit light twice during one frame, and controls the image processor to implement HDR through the acquired depth data, respectively.
  • a plurality of light sources provide a depth image generating apparatus characterized in that the number is differently divided.
  • the controller differently controls the amount of light emission of the plurality of light sources in each of the N frames and N + 1 frames, and controls the image processor to implement HDR through the acquired depth data, respectively. It provides a depth image generating apparatus characterized in that.
  • the first optical system collimates a collimator lens condensing light irradiated from the plurality of light sources into parallel light and the parallel light toward the object in the dot pattern It provides a depth image generating apparatus comprising a diffractive optical element to be irradiated.
  • the image sensor provides a depth image generating apparatus comprising a multi-array receiving element in the form of a single photon avalanche diode (SPAD) array corresponding to the dot pattern.
  • a depth image generating apparatus comprising a multi-array receiving element in the form of a single photon avalanche diode (SPAD) array corresponding to the dot pattern.
  • SPAD photon avalanche diode
  • the depth image generating apparatus provides a depth image generating apparatus characterized in that it further comprises a second optical system incident upon matching the dot pattern reflected light to the multi-array receiving element. do.
  • the plurality of light sources provides a depth image generating apparatus characterized in that it is a plurality of vertical resonant surface emitting lasers (Vertical Cavity Surface Emitting Laser, VCSEL).
  • VCSEL Vertical Cavity Surface Emitting Laser
  • irradiating light in a dot pattern toward an object using at least one of a plurality of light sources and obtaining primary depth data, the photographing environment and the primary depth data Obtaining distance information of an object, setting light emission patterns of the plurality of light sources based on the obtained shooting environment and distance information, and obtaining second depth data corresponding to the set light emission pattern
  • a method of controlling a depth image generating device is provided.
  • the method for controlling the depth image generating apparatus further comprises changing the set light emission pattern based on the photographing environment and distance information obtained through the second depth data.
  • the method for controlling the depth image generating apparatus further comprises changing the set light emission pattern based on the photographing environment and distance information obtained through the second depth data.
  • the present invention can solve the problem of insufficient light reception that can occur when irradiating light at a long distance in the form of a surface light source.
  • the amount of light generated by the light source is maintained, and the amount of light received is sufficiently secured by irradiating light with the condensed dot pattern, and constraints for eye protection can be satisfied.
  • the present invention can obtain a high-resolution depth image by controlling the emission patterns of a plurality of light sources.
  • the present invention can obtain reliable depth data for a distant object by controlling the emission patterns of a plurality of light sources.
  • the present invention can be implemented by HDR by controlling the emission pattern of a plurality of light sources.
  • FIG. 1 shows the structure of a typical TOF camera.
  • FIG. 2 shows an optical structure of a conventional TOF camera.
  • FIG. 3 shows a block diagram of a conventional TOF camera.
  • FIG. 4 shows an optical structure of a TOF camera, according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a TOF camera according to an embodiment of the present invention.
  • FIG. 6 illustrates a light source of a TOF camera and a diffraction optical element irradiating light emitted from the light source in a dot pattern according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining a dot pattern irradiated through the light source and the diffraction optical element of FIG. 6 according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an irradiation region to which irradiation light of a dot pattern is irradiated, according to an embodiment of the present invention.
  • FIG. 9 is a diagram for explaining the size and arrangement of sub-segmentation areas according to an embodiment of the present invention.
  • FIG. 10 is a view for explaining a pattern for emitting a plurality of light sources to obtain a high resolution depth image, according to an embodiment of the present invention.
  • FIG. 11 is a diagram for describing a method of obtaining a high resolution depth image through the method of FIG. 10 according to an embodiment of the present invention.
  • FIG. 12 is a view for explaining a pattern for emitting a plurality of light sources to photograph a short-range object with high resolution according to an embodiment of the present invention.
  • FIG. 13 is a view for explaining a pattern for emitting a plurality of light sources in response to at least one of an object distance and a shooting environment without a resolution gain according to an embodiment of the present invention.
  • FIG. 14 is a diagram for explaining an emission pattern in which an object is photographed without a resolution gain but a frame rate is varied according to an embodiment of the present invention.
  • 15 is a view for explaining a pattern for emitting a plurality of light sources in order to implement HDR, according to an embodiment of the present invention.
  • 16 illustrates an overall flow chart of setting light emission patterns of a plurality of light sources and obtaining depth data according to an embodiment of the present invention.
  • FIG. 4 illustrates an optical structure of a TOF camera according to an embodiment of the present invention
  • FIG. 5 illustrates a block diagram of a TOF camera according to an embodiment of the present invention.
  • the present invention relates to a TOF camera that acquires depth data of the object 300 by using the distance difference received by the light receiving unit 220 by reflecting the light irradiated from the light transmitting unit 210 to the object 300.
  • the light transmitting unit 210 is a light source 211 for generating light irradiated toward the object 300, and first optical systems 212 and 213 for irradiating the light generated by the light source 211 with a dot pattern 214 to the object ).
  • the light source 211 may be a vertical cavity surface emitting laser (VCSEL).
  • VCSEL is a laser that emits light in a vertical direction to the surface of an epi wafer, unlike a general side emitting laser.
  • the VCSEL includes a number of cavities from which light is emitted, which may be advantageous for irradiating light in a dot pattern.
  • VCSEL has strong linearity of light to be irradiated, and light irradiated through one cavity can have a divergence angle of 10 to 20 degrees.
  • VCSEL can generate and irradiate light having a wavelength of 905 to 960 nm to obtain 3D data.
  • the light source 211 may include a plurality of light sources that emit light independently, and each light source may irradiate light in a dot pattern so that they do not overlap with each other.
  • the structure of the light source 211 and the irradiation light of the dot pattern irradiated from the light source will be described in detail with reference to FIGS. 6 and 7.
  • the first optical systems 212 and 213 collimate the light irradiated from the light source 211 as collimator lenses 212 and collimate the collimated light toward the object 300 using a dot pattern 214 It may include a diffractive optical element (DOE, 213).
  • DOE diffractive optical element
  • the collimator lens 212 may condense light emitted from each cavity of the VCSEL, thereby forming parallel light.
  • the diffractive optical element 213 may sail and irradiate the object 300 onto the dot pattern 214 by diffraction characteristics and interference phenomena of light by a micro-pattern from the collimated light emitted from the collier lens 212.
  • the micro-pattern of the diffractive optical element 213 may be made of UV resin having a nano-structure periodic pattern on a glass substrate.
  • the light irradiated from the light transmitting unit 210 is reflected by the object 300 and is incident on the light receiving unit 220, and the light receiving unit 220 is an Rx lens that guides light reflected by the object 300 to the image sensor 222 ( 221), an image sensor 222 that converts the received light into an electrical signal, and an image processor 223 that generates a depth image through the electrical signal of the image sensor 222.
  • the light receiving unit 220 may further include a filter that passes only a specific wavelength.
  • the image sensor 222 may be a VGA class (480 ⁇ 640) or more, and may include a multiple array receiving device in the form of a single photon avalanche diode (SPAD) array, or a CMOS image sensor may be used.
  • Each receiving element of the image sensor may include an in-phase receptor that receives in-phase light from light reflected by an object and an out-phase receptor that receives out-phase light.
  • the image processor 223 may measure the phase difference between the light irradiated through the light received by the in-phase receptor and the out-phase receptor and the light reflected by the object, and obtain depth information of the object.
  • the image sensor 222 includes a plurality of receiving elements, and the irradiation light of the dot patterns 214a to 214d irradiated from each of the plurality of light sources 211 is one-to-one with each receiving element. Can be countered. That is, the number of dot patterns 214a to 214d irradiated from each of the plurality of light sources 211 may be greater than the resolution of the image sensor 222.
  • the plurality of light sources 211 respectively irradiate the dot patterns 214a to 214d with the irradiation area 310, but dots may be incident one by one into the divided areas 311 corresponding to each receiving element. In this regard, it will be described in detail through FIG. 7.
  • the dot patterns 214a to 214d irradiated from each of the plurality of light sources 211 may be incident on the corresponding receiving element by the second optical system Rx lens 221.
  • the present invention may include a control unit for controlling the light transmitting unit 210 and the light receiving unit 220, the control unit may control the light source 211 to scan the object 300 by controlling the emission pattern of a plurality of light sources. .
  • the present invention has an object to solve the above problems that may occur when irradiating light to a surface light source, such as the conventional TOF camera 100 described in FIG. 2, when the object 300 is located at a long distance.
  • a surface light source such as the conventional TOF camera 100 described in FIG. 2
  • the conventional TOF camera 100 photographs the object 300 at a long distance
  • first there is a problem in that the area of the divided area of each receiving element of the image sensor 222 is increased, resulting in a decrease in resolution.
  • a problem of an increase in signal to noise rate (SNR) due to a lack of light reception amount received by each receiving element may occur.
  • the first problem cannot be solved by increasing the light emission amount of (211).
  • the present invention adopts the technical idea of condensing and irradiating light generated from a plurality of light sources with a dot pattern 214, and scanning an object by controlling the light emission patterns of the plurality of light sources.
  • FIG. 6 illustrates a light source of a TOF camera and a diffraction optical element irradiating light emitted from the light source in a dot pattern according to an embodiment of the present invention.
  • 7 is a view for explaining a dot pattern irradiated through the light source and the diffraction optical element of FIG. 6 according to an embodiment of the present invention.
  • the light source 211 of the present invention may include a plurality of light sources 211a to 211b that emit light independently.
  • Each light source 211a to 211b may be a VSCEL that emits light independently.
  • FIG. 6 (a) shows a plurality of light sources 211a to 211b composed of four VSCELs.
  • Each light source 211a to 211b is connected to a drive and can emit light independently.
  • each of the light sources 211a to 211b may irradiate light of a dot pattern toward an object by the diffractive optical element 213 provided as shown in FIG. 6 (b).
  • Fig. 6 (a) shows four light sources 211a to 211b, but the number of light sources is not necessarily four.
  • the light generated from one light source may be irradiated in a dot pattern to correspond one-to-one to the divided region 311.
  • the divided area 311 may correspond to each receiving element 2221 of the image sensor 222 on a one-to-one basis. That is, the number of dot patterns generated by one light source (one of 211a to 211b) may be the same as the resolution of the image sensor 222.
  • the dot pattern irradiated from each of the light sources 211a to 211b may have a different position in the divided area 311 constituting the irradiation area 310 after the diffraction optical element 213.
  • FIG. 7A shows an embodiment in which the dot pattern generated by the light irradiated from the first light source 211a is formed in the second quadrant in the divided region 311.
  • FIG. 7B shows an embodiment in which a dot pattern generated by light irradiated from the second light source 211b is formed in one quadrant in the divided region 311.
  • 7C shows an embodiment in which a dot pattern generated by light irradiated from the third light source 211c is formed in the third quadrant in the divided region 311.
  • 7 (d) shows an embodiment in which the dot pattern generated by the light irradiated from the fourth light source 211d is formed in the fourth quadrant in the divided region 311.
  • the present invention includes a plurality of light sources 211a to 211b, and a plurality of light sources 211a to 211b generates dot pattern irradiated light to be irradiated to different positions of the divided region 311.
  • FIG. 8 is a diagram illustrating an irradiation region to which irradiation light of a dot pattern is irradiated, according to an embodiment of the present invention.
  • the irradiation area 310 is an area to which the dot pattern generated from the light sources 211a to 211b (see FIG. 6) is irradiated, and may be an area including an object (see FIG. 5).
  • the irradiation area 310 may include a divided area 311 corresponding to the receiving element 2221 (see FIG. 7) of the image sensor 222 (see FIG. 7). That is, the number of divided regions 311 may correspond to the number of resolutions of the image sensor 222.
  • the divided area 311 may be divided into sub-divided areas 312a to 312d according to a position at which irradiated light of a dot pattern generated from each light source 211a to 211b is irradiated.
  • the dot pattern generated by the first light source 211a may be irradiated to the first sub-division area 312a of the division area 311, and the dot pattern generated by the second light source 211b may be generated by the dot pattern of the division area 311.
  • the second sub-division region 312b may be irradiated, and the dot pattern generated by the third light source 211c may be irradiated to the third sub-division region 312c of the division region 311, and the fourth light source ( The dot pattern generated in 211d) may be irradiated to the fourth sub-division region 312d of the division region 311. That is, the dot patterns generated by each of the light sources 211a to 211b may correspond one-to-one to the divided regions 311, and all the dot patterns generated by the plurality of light sources 211a to 211b are each of the sub-division regions ( 312a to 312d).
  • the dot patterns generated by the respective light sources 211a to 211b may blink independently.
  • FIG. 9 is a diagram for explaining the size and arrangement of sub-segmentation areas according to an embodiment of the present invention.
  • FIG 8 illustrates the sub-division regions 312a to 312d with the same size, but the sub-division regions 312a to 312d may have different sizes, and the arrangement also shows the micropattern and Rx lens of the diffractive optical element 213 (221) It can be freely selected.
  • FIGS. 9 (a) and 9 (b) show an embodiment in which the sub-division regions 312a to 312d are arranged in a quadrant shape, and FIGS. 9 (c) and 9 (d) are shown horizontally. Arranged sub-division areas 312a to 312d are illustrated, and FIG. 9 (e) shows vertically arranged sub-division regions 312a to 312d.
  • the area of the sub-division regions 312a to 312d can be controlled by the micro pattern of the diffractive optical element 213. Or it may be controlled by the irradiation angle of the light irradiated from each of the plurality of light sources (211a to 211d).
  • the area of the sub-division regions 312a to 312d may correspond to the maximum amount of light generated by the plurality of light sources 211a to 211d. That is, the first light source 211a corresponding to the wide sub-division area 312a (FIG. 9 (b)) is the first light source 211a corresponding to the sub-division area 312b (FIG. 9 (b)). 2 It may be greater than the maximum amount of light that can be output from the light source 211b.
  • the control unit of the present invention can selectively emit light sources 211a to 211b according to the photographing environment.
  • a light source having a large amount of light that can output the maximum may be used, and when a short-range object is photographed, a light source having a small amount of light that can be output at the maximum may be used.
  • the resolution of the depth image is generally determined by the image sensor 222 (see FIG. 7), but the present invention may optionally increase the resolution. This will be described below.
  • FIG. 10 is a view for explaining a pattern for emitting a plurality of light sources to obtain a high resolution depth image, according to an embodiment of the present invention.
  • a plurality of light sources 211a to 211d may be sequentially emitted during one frame for photographing an object, and depth data obtained from each light source 211a to 211d may be merged to increase resolution.
  • a depth image may be acquired at a resolution four times the resolution of the image sensor 222 (see FIG. 7). Resolution may be controlled by the number of light sources that emit light when sequentially emitting light sources 211a to 211d.
  • FIG. 10 shows an embodiment in which four light sources 211a to 211d are sequentially emitted for one frame to obtain a depth image at a resolution four times the resolution of the image sensor 222.
  • FIG. 11 is a diagram for describing a method of obtaining a high resolution depth image through the method of FIG. 10 according to an embodiment of the present invention.
  • the region 310 to which the light sources 211a to 211d are irradiated may be divided into a divided region 311 corresponding to the receiving element of the image sensor 222.
  • a surface light source like a conventional TOF camera only a depth image corresponding to the resolution of the image sensor 222 can be obtained.
  • the present invention sub-divides the dot patterns 214a to 214d generated by the respective light sources 211a to 211d so as to correspond one-to-one to the sub-division regions 312a to 312d of the division region 311.
  • the resolution may be increased in multiples by the number of regions 312a to 312d.
  • the controller of the present invention may recognize coordinate information of the corresponding sub-division regions 312a to 312d from the emitted light sources 211a to 211d.
  • the controller of the present invention can increase the resolution by merging depth data obtained through coordinate information of the sub-division regions 312a to 312d, respectively.
  • the controller may recognize depth data acquired by the image processor 223 (see FIG. 5) as depth data of the first sub-division area 312a.
  • the controller may recognize depth data acquired by the image processor 223 (see FIG.
  • the controller may recognize depth data acquired by the image processor 223 (see FIG. 5) as depth data of the third sub-division area 312c.
  • the controller may recognize depth data acquired by the image processor 223 (see FIG. 5) as depth data of the fourth sub-division area 312d.
  • the controller may acquire depth data at a resolution higher than that of the image sensor 222 by merging depth data obtained using coordinate information of each of the first to fourth sub-division regions 312a to 312d.
  • the present invention can obtain a depth image by controlling the power of the light source, which will be described with reference to FIG. 12.
  • FIG. 12 is a view for explaining a pattern for emitting a plurality of light sources to photograph a short-range object with high resolution according to an embodiment of the present invention.
  • FIG. 12 illustrates an embodiment in which light is sequentially generated at a light emission amount lower than the maximum emission amount that each light source 211a to 211d can emit.
  • the depth images are obtained by sequentially emitting the light sources 211a to 211d, a depth image with a high resolution can be obtained, and the light sources 211a to 211d can be driven with low power.
  • FIG. 13 or 14 may be unsuitable. In this case, it may be desirable to emit a higher light source from the light source. In this regard, it will be described in detail through FIG. 13.
  • FIG. 13 is a view for explaining a pattern for emitting a plurality of light sources in response to at least one of an object distance and a shooting environment without a resolution gain according to an embodiment of the present invention.
  • the light emission pattern described in FIG. 10 may obtain a resolution gain, but the light emission amount does not exceed the maximum light emission amount of each light source. Accordingly, when the distance of the object is long or the SNR is high due to the influence of external light, depth data obtained by the light emission pattern of FIG. 10 may be less reliable.
  • the control unit of the present invention may simultaneously emit at least two light sources among the plurality of light sources 211a to 211d during one frame.
  • FIG. 13 (a) shows an embodiment in which all of the plurality of light sources 211a to 211d emit light during one frame.
  • the number of light sources that emit light at the same time may be varied in correspondence to at least one of the object distance and the SNR. This may increase the amount of light emission when all of a plurality of light sources are simultaneously emitted, but may irritate the eyes when irradiated toward the eyes, and may consume power more than necessary. Therefore, it is possible to control the number of light sources simultaneously emitting in the next frame based on the distance and SNR information of the object acquired in one frame.
  • FIG. 13 (b) shows an embodiment in which the number of light sources simultaneously emitting light in a continuous frame is varied.
  • FIG. 14 is a diagram for explaining an emission pattern in which an object is photographed without a resolution gain but a frame rate is varied according to an embodiment of the present invention.
  • the frame rate refers to a ratio of the speed of capturing or reproducing consecutive images. The higher the frame rate, the faster the depth data acquired per second can be.
  • the plurality of light sources 211a to 211d simultaneously emit (blink), thereby increasing the frame rate.
  • FIG. 14 (a) shows a light emission pattern for a resolution gain
  • FIG. 14 (b) shows a light emission pattern in which a resolution gain is abandoned but a frame gain is obtained. That is, FIG. 14 (b) can give distance gain, SNR gain, and frame rate gain, while giving up the gain of resolution.
  • 15 is a view for explaining a pattern for emitting a plurality of light sources in order to implement HDR, according to an embodiment of the present invention.
  • DR Dynamic Range
  • the brightness range (DR) perceived by the human eye is about 10,000 nits, but the image input to the existing general display is ⁇ LDR (Low Dynamic Range) or SDR (Standard Dynamic Range) of about 100 nits.
  • LDR Low Dynamic Range
  • SDR Standard Dynamic Range
  • HDR expands the existing DR more widely, increasing the contrast ratio of the image (the difference between the brightest and darkest parts) and expressing various brightnesses present in reality, from the intense light of the sun to the starlight in the dark night sky. Conveys realistically.
  • HDR technology is an abbreviation of High Daynamic Range, which means a technique of combining photos of various gradations into one. Such HDR technology can be applied to the present invention. That is, according to the present invention, a depth image of an object may be obtained by combining depth images obtained by varying the amount of emitted light.
  • the control unit of the present invention controls to emit light twice by dividing the plurality of light sources 211a to 211d for one frame, and uses an image processor 223 (see FIG. 5) to implement HDR through the acquired depth data.
  • the plurality of light sources 211a to 211d may be divided in different numbers.
  • An embodiment related to this is shown in Fig. 15 (a). Specifically, FIG. 15 (a) firstly emits first to third light sources 211a to 211c among a plurality of light sources 211a to 211d to obtain a depth image, and emits the remaining fourth light source 211d to emit depth. An example of obtaining an image is shown.
  • Each acquired depth data is obtained based on a different amount of light emission, and the present invention can implement HDR by merging each acquired depth data.
  • the frame rate is not reduced.
  • HDR may be implemented by merging depth data obtained by different frames.
  • FIG. 15 (b) shows an embodiment of implementing HDR by merging depth data obtained by different frames.
  • the plurality of light sources 211a to 211d may simultaneously emit light at the maximum emission amount, and in the next frame, the amount of each bladder may be reduced to emit light simultaneously.
  • depth images may be obtained by varying the number of light sources that emit light.
  • 16 illustrates an overall flow chart of setting light emission patterns of a plurality of light sources and obtaining depth data according to an embodiment of the present invention.
  • the present invention may require prior information for setting the emission patterns of the plurality of light sources 211a to 211d in the control unit.
  • the pre-information may include whether it is long-distance or short-distance shooting, whether the SNR is high, whether the resolution is appropriate, or whether a higher frame rate is required.
  • the present invention may set a light emission pattern after the first shooting to obtain the prior information and take a second shooting based thereon.
  • the first photographing may be performed to acquire the dictionary information.
  • depth data may be acquired during at least one frame.
  • the primary photographing is a step of setting an appropriate photographing mode for acquiring depth data for an object, and may be a step of acquiring primary depth data by changing the emission patterns of the plurality of light sources 211a to 211d.
  • distance information of the photographing environment and object which are the prior information, may be obtained, and (S203), emission patterns of a plurality of light sources corresponding thereto may be set. (S204) However, in some cases, the emission patterns of the plurality of light sources may be changed by a user's selection.
  • Secondary imaging may be performed based on the set light emission pattern (S205), and second depth data may be obtained corresponding thereto.
  • the obtained second depth data may be transmitted to a display and provided as a preview screen or stored in a memory.
  • Secondary depth data may be used to change the set emission pattern. That is, when the photographing environment or the distance information of the object is changed through the second depth data, the emission pattern may be changed and the photographing may be performed thereafter.
  • the set emission pattern may be stored in the memory and primary shooting may be performed thereafter. It can be used to reduce the number of frames used to perform secondary imaging by setting an appropriate emission pattern.
  • the primary photographing may be a step of performing photographing with a preset emission pattern.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

본 발명은 원거리 오브젝트를 촬영함에 있어 발광량을 증가하지 않으면서 해상도 저하, 수광량 부족으로 인한 SNR 문제를 해결하기 위해 오브젝트를 향해 조사되는 빛을 생성하는 광원, 상기 광원에서 생성된 빛을 상기 오브젝트에 도트 패턴(dot pattern)으로 조사하는 제1 광학계, 상기 오브젝트에 반사된 광을 수신하여 전기 신호로 변환하는 이미지 센서, 상기 전기 신호를 통해 깊이 데이터를 획득하는 이미지 프로세서 및 상기 광원, 상기 제1 광학계, 상기 이미지 센서 및 상기 이미지 프로세서에 연결된 제어부를 포함하고, 상기 제어부는 상기 도트 패턴을 기 설정 패턴으로 움직여 상기 오브젝트를 스캐닝하도록 상기 제1 광학계를 제어하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공할 수 있다.

Description

3차원 영상 생성 장치 및 방법
본 발명은 3차원 영상 생성 장치 및 방법에 관한 것으로서, 상세하게는 물체의 깊이 정보(depth information)을 측정하고, 측정된 물체의 깊이 정보를 기반으로 3차원 영상을 생성하는 장치 및 방법에 관한 것이다.
3차원 입체 영상은 입체감과 몰입 감을 줄 수 있도록 색상 영상과 함께 물체(object)의 깊이 영상을 기반으로 생성된다. 이때, 물체의 깊이 영상을 생성하기 위해서는 물체의 깊이를 측정해야 한다.
물체의 깊이를 측정하는 방법 중 하나로 TOF(Time of Flight) 방식이 있다. TOF 방식은 물체에 직접적으로 광을 조사하고 물체로부터 되돌아오는 반사광의 시간을 계산함으로써 물체의 깊이를 측정하는 방식이다.
도 1은 일반적인 TOF 카메라(100)의 구조를 도시하고 있다. TOF 카메라(100)는 크게 오브젝트를 향해 빛을 조사하는 송광부(110)와 수광부(120)로 구성이 된다. 즉, TOF 카메라(100)는 송광부(110)에서 조사된 광과 물체에서 반사된 광의 위상차를 이용하여 물체와 카메라 사이의 거리인 깊이 정보를 취득한다. 구체적으로 TOF 카메라는 물체에 반사되는 광에서 in phase 광을 수광하는 in phase receptor와 out phase 광을 수광하는 out phase receptor가 이미지 센서의 한 픽셀을 구성한다. TOF 카메라는 in phase receptor와 out phase receptor가 수광한 수광량을 비교하여 광원에서 조사된 광과 수신한 광의 위상차를 측정하고 이를 통해 오브젝트의 깊이 정보를 획득할 수 있다.
도 2는 기존의 TOF 카메라(100) 광학 구조를 도시하고 있으며, 도 3은 기존의 TOF 카메라(100)의 블록도를 도시하고 있다.
기존의 TOF 카메라(100)의 송광부(110)는 빛을 생성하는 광원(111) 및 광원(110)에서 생성된 빛을 특정 각도로 면광원 형태로 조사하는 디퓨져(112)를 포함한다.
송광부(110)에서 조사된 광은 물체(300)에 반사되어 수광부(120)로 입사되는데, 수광부(120)는 물체(300)에 반사된 빛을 이미지 센서(122)로 유도하는 Rx 렌즈(121), 수신된 빛을 전기 신호로 전환하는 이미지 센서(122) 및 이미지 센서(122)의 전기 신호를 통해 깊이 이미지를 생성하는 이미지 프로세서(123)를 포함할 수 있다. 경우에 따라서는 수광부(120)는 특정 파장만을 통과하는 필터를 더 포함할 수 있다.
이 TOF 방식을 응용한 TOF Camera는 Automotive(차량용 카메라), VR, Robot, People Counting(인원 계수), Surveillance(보안) 등 다양한 분야에서 적용될 수 있다. 다만, TOF 카메라(100)는 송광부(100)에서 빛을 조사하여 깊이 정보를 측정하는 점에서 피사체(사람)의 눈을 보호하기 위해 빛의 세기에 제약을 두고 있다. 다만, 오브젝트에 조사되는 빛의 세기를 감소하게 되면, 수광부(110)에서 수신한 수광량 부족으로 인한 신호대비잡음비(Signal to noise rate, SNR) 증가의 문제가 발생할 수 있다. 즉, 원거리의 피사체를 촬영하거나, 외부광의 영향이 많은 경우 획득한 깊이 이미지의 신뢰성이 떨어지는 문제점이 있다.
또한, 원거리의 피사체를 촬영하는 경우, 이미지 센서의 각 수신 소자에 대응되는 분할 영역의 면적이 커지기 되고 이로 인해 깊이 이미지의 해상도가 상대적으로 감소하는 문제가 발생한다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 눈 보호를 위해 광원에서 생성되는 광량을 제약하되 원거리 촬영으로 획득한 깊이 이미지의 신뢰성을 높이는데 목적이 있다.
상기 목적을 달성하기 위해, 본 발명은 일 실시예에 따라, 오브젝트를 향해 조사되는 광을 생성하는 복수의 광원, 상기 복수의 광원 각각에서 생성된 광을 상기 오브젝트에 도트 패턴(dot pattern)으로 조사하는 제1 광학계, 상기 오브젝트에 반사된 광을 수신하여 전기 신호로 변환하는 이미지 센서, 상기 전기 신호를 통해 깊이 데이터를 획득하는 이미지 프로세서 및 상기 광원, 상기 제1 광학계, 상기 이미지 센서 및 상기 이미지 프로세서에 연결된 제어부를 포함하고, 상기 제어부는 상기 복수의 광원의 발광 패턴을 제어하여 상기 오브젝트를 스캐닝하도록 상기 광원을 제어하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 복수의 광원은 독립적으로 발광하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 복수의 광원 각각에서 생성된 도트 패턴의 조사광은 상기 이미지 센서를 구성하는 복수의 수신 소자에 대응되는 분할 영역에 일대일(one-to-one) 대응하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 분할 영역은 상기 복수의 광원 각각에 대응되는 서브 분할 영역을 포함하고, 상기 복수의 광원 각각에서 생성된 도트 패턴의 조사광은 대응되는 서브 분할 영역으로 조사되는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 서브 분할 영역은 대응되는 상기 복수의 광원 각각의 최대 발광량에 비례하는 면적을 가지는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 제어부는 일 프레임 동안 상기 복수의 광원이 순차적으로 발광하도록 제어하고, 상기 서브 분할 영역의 위치 정보를 이용하여 각각 획득한 깊이 데이터를 병합하도록 상기 이미지 프로세서를 제어하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 제어부는 상기 오브젝트와의 거리 및 신호대비잡음비(SNR) 중 적어도 하나에 대응하여, 상기 복수의 광원의 발광량을 제어하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 제어부는 상기 오브젝트와의 거리 및 신호대비잡음비(SNR) 중 적어도 하나에 대응하여, 일 프레임 동안 상기 복수의 광원 중 동시에 발광하는 광원의 개수를 제어하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 제어부는 상기 복수의 광원 중 적어도 하나의 광원을 동시에 1회 발광하는 경우, 프레임 레이트(fame rate)를 증가하도록 상기 이미지 프로세서를 제어하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 제어부는 일 프레임 동안 상기 복수의 광원을 구분하여 2회 발광하도록 제어하고, 각각 획득한 깊이 데이터를 통해 HDR을 구현하도록 상기 이미지 프로세서를 제어하되, 상기 복수의 광원은 개수가 상이하게 구분되는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 제어부는 N 프레임 및 N+1 프레임 각각에서 상기 복수의 광원의 발광량을 달리 제어하고, 각각 획득한 깊이 데이터를 통해 HDR을 구현하도록 상기 이미지 프로세서를 제어하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 제1 광학계는 상기 복수의 광원에서 조사된 빛을 평행광으로 집광하는 콜리메터 렌즈(collimator lens) 및 상기 평행광을 상기 도트 패턴으로 상기 오브젝트를 향해 조사하는 회절 광학 소자를 포함하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 이미지 센서는 상기 도트 패턴에 대응되는 SPAD(Single Photon Avalanche Diode) 어레이 형태의 다중 배열 수신 소자를 포함하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 깊이 영상 생성 장치는 상기 도트 패턴의 반사광을 상기 다중 배열 수신 소자에 매칭하여 입사하는 제2 광학계를 더 포함하는 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 복수의 광원은 복수의 수직 공진 표면 발광 레이저(Vertical Cavity Surface Emitting Laser, VCSEL)인 것을 특징으로 하는 깊이 영상 생성 장치를 제공한다.
또한, 본 발명은 일 실시예에 따라, 복수의 광원 중 적어도 하나를 이용하여 오브젝트를 향해 도트 패턴으로 빛을 조사하고 1차 깊이 데이터를 획득하는 단계, 상기 1차 깊이 데이터를 통해 촬영 환경 및 상기 오브젝트의 거리 정보를 획득하는 단계 및 상기 획득된 촬영 환경 및 거리 정보에 기초하여 상기 복수의 광원의 발광 패턴을 설정하는 단계, 상기 설정된 발광 패턴에 대응하여 2차 깊이 데이터를 획득하는 단계를 포함하는 깊이 영상 생성 장치 제어 방법을 제공한다.
또한, 본 발명은 일 실시예에 따라, 상기 깊이 영상 생성 장치 제어 방법은 상기 2차 깊이 데이터를 통해 획득한 촬영 환경 및 거리 정보에 기초하여 상기 설정된 발광 패턴을 변경하는 단계를 더 포함하는 것을 특징으로 하는 깊이 영상 생성 장치 제어 방법을 제공한다.
본 발명은 면 광원 형태로 원거리에 빛을 조사하는 경우 발생할 수 있는 수광량 부족의 문제를 해결할 수 있다.
본 발명은 광원에서 생성하는 광량을 유지하고, 집광된 도트 패턴으로 빛을 조사함으로써 수광량을 충분히 확보하고, 눈 보호를 위한 제약을 만족할 수 있다.
본 발명은 복수의 광원의 발광 패턴을 제어함으로써 고해상도의 깊이 이미지를 획득할 수 있다.
본 발명은 복수의 광원의 발광 패턴을 제어함으로써 원거리 오브젝트에 대한 신뢰할 수 있는 깊이 데이터를 획득할 수 있다.
본 발명은 복수의 광원의 발광 패턴을 제어함으로써 HDR 구현할 수 있다.
본 발명의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 본 발명의 사상 및 범위 내에서 다양한 변경 및 수정은 해당 기술 분야의 통상의 기술자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 발명의 바람직한 실시 예와 같은 특정 실시 예는 단지 예시로 주어진 것으로 이해되어야 한다.
도 1은 일반적인 TOF 카메라의 구조를 도시하고 있다.
도 2는 기존의 TOF 카메라의 광학 구조를 도시하고 있다.
도 3은 기존의 TOF 카메라의 블록도를 도시하고 있다.
도 4는 본 발명의 일 실시예에 따른, TOF 카메라의 광학 구조를 도시하고 있다.
도 5는 본 발명의 일 실시예에 따른, TOF 카메라의 블록도를 도시하고 있다.
도 6은 본 발명의 일 실시예에 따른, TOF 카메라의 광원 및 광원에서 조사하는 광을 도트 패턴으로 조사하는 회절 광학 소자를 도시하고 있다.
도 7은 본 발명의 일 실시예에 따라, 도 6의 광원 및 회절 광학 소자를 통해 조사되는 도트 패턴을 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따라, 도트 패턴의 조사광이 조사되는 조사 영역을 구체적으로 도시하고 있다.
도 9은 본 발명의 일 실시예에 따라, 서브 분할 영역 크기 및 배열을 설명하기 위한 도면이다.
도 10은 본 발명의 일 실시예에 따라, 고 해상도의 깊이 이미지를 획득하기 위해 복수의 광원을 발광하는 패턴을 설명하기 위한 도면이다.
도 11은 본 발명의 일 실시예에 따라, 도 10의 방법을 통해 고 해상도의 깊이 이미지를 획득하는 방법을 설명하기 위한 도면이다.
도 12는 본 발명의 일 실시예에 따라, 근거리의 오브젝트를 고 해상도로 촬영하기 위해 복수의 광원을 발광하는 패턴을 설명하기 위한 도면이다.
도 13은 본 발명의 일 실시예에 따라, 해상도 이득 없이 오브젝트의 거리 및 촬영 환경 중 적어도 하나에 대응하여 복수의 광원을 발광하는 패턴을 설명하기 위한 도면이다.
도 14는 본 발명의 일 실시예에 따라, 해상도 이득 없이 오브젝트를 촬영하되 프레임 레이트를 가변하는 발광 패턴을 설명하기 위한 도면이다.
도 15는 본 발명의 일 실시예에 따라, HDR를 구현하기 위해 복수의 광원을 발광하는 패턴을 설명하기 위한 도면이다.
도 16는 본 발명의 일 실시예에 따라, 복수의 광원의 발광 패턴을 설정하고 깊이 데이터를 획득하는 전체 흐름도를 도시하고 있다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 4는 본 발명의 일 실시예에 따른, TOF 카메라의 광학 구조를 도시하고 있고, 도 5는 본 발명의 일 실시예에 따른, TOF 카메라의 블록도를 도시하고 있다.
본 발명은 송광부(210)에서 조사된 광이 오브젝트(300)에 반사되어 수광부(220)에 수신된 거리차를 이용하여 오브젝트(300)의 깊이 데이터를 획득하는 TOF 카메라에 관한 발명이다.
송광부(210)는 오브젝트(300)를 향해 조사되는 광을 생성하는 광원(211), 광원(211)에서 생성된 광을 상기 오브젝트에 도트 패턴(214)으로 조사하는 제1 광학계(212, 213)를 포함할 수 있다.
광원(211)은 수직 공진 표면 발광 레이저(Vertical Cavity Surface Emitting Laser, VCSEL)일 수 있다. VCSEL은 일반적인 측면발광 레이저와는 달리 에피웨이퍼(EPI Wafer)의 표면에 수직 방향으로 빛을 방출하는 레이저 이다. VCSEL은 광이 나오는 수많은 구멍(Cavity)를 포함하고 있으며, 이를 통해 도트 패턴으로 광을 조사하는데 유리할 수 있다. 또한, VCSEL은 조사하는 광의 직진 성이 강하며, 하나의 구멍(Cavity)를 통해 조사되는 광은 10도에서 20도의 발산 각을 가질 수 있다. 또한, VCSEL은 3차원 데이터를 획득하기 위해 905~960nm의 파장의 광을 생성 및 조사할 수 있다.
또한, 광원(211)은 독립적으로 발광하는 복수의 광원을 포함할 수 있으며, 각각의 광원은 상호 오버랩되지 않도록 도트 패턴으로 광을 조사할 수 있다. 광원(211)의 구조 및 광원에서 조사되는 도트 패턴의 조사광에 대해서는 도 6 및 도 7을 통해 구체적으로 살펴본다.
제1 광학계(212, 213)는 광원(211)에서 조사된 빛을 평행광으로 집광하는 콜리메터 렌즈(collimator lens, 212) 및 상기 평행광을 도트 패턴(214)으로 오브젝트(300)를 향해 조사하는 회절 광학 소자(DOE, 213)를 포함할 수 있다.
콜리메터 렌즈(212)는 VCSEL의 각 구멍(Cavity)에서 출사되는 광을 각각 집광하여 평행광으로 만들 수 있다.
회절 광학 소자(213)는 콜리페터 렌즈(212)에서 출사되는 평행광을 미소 패턴에 의한 빛의 회절 성질 및 간섭 현상에 의해 도트 패턴(214)으로 오브젝트(300)를 항해 조사할 수 있다. 회절 광학 소사(213)의 미소 패턴은 유리 기판에 나노 구조의 주기 패턴을 갖는 UV 레진으로 제작될 수 있다.
송광부(210)에서 조사된 광은 물체(300)에 반사되어 수광부(220)로 입사되는데, 수광부(220)는 물체(300)에 반사된 빛을 이미지 센서(222)로 유도하는 Rx 렌즈(221), 수신된 빛을 전기 신호로 전환하는 이미지 센서(222) 및 이미지 센서(222)의 전기 신호를 통해 깊이 이미지를 생성하는 이미지 프로세서(223)를 포함할 수 있다. 경우에 따라서는 수광부(220)는 특정 파장만을 통과하는 필터를 더 포함할 수 있다.
이미지 센서(222)는 이미지 센서(222)는 VGA급(480×640) 이상이 사용될 수 있으며, SPAD(single photon avalanche diode) 어레이 형태의 다중 배열 수신 소자를 포함하거나, CMOS 이미지 센서가 사용될 수 있다. 이미지 센서의 각 수신 소자는 물체에 반사되는 광에서 in phase 광을 수광하는 in phase receptor와 out phase 광을 수광하는 out phase receptor로 구성될 수 있다. 이미지 프로세서(223)은 in phase receptor와 out phase receptor가 수광한 수광을 통해 조사된 광과 물체에 반사된 광의 위상차를 측정하고 이를 통해 오브젝트의 깊이 정보를 획득할 수 있다.
이미지 센서(222)는 복수의 수신 소자를 포함하고, 복수의 광원(211) 각각에서 조사된 도트 패턴(214a 내지 214d)의 조사광은 각각의 수신 소자에 일대다(one-to-one)하게 대응될 수 있다. 즉, 복수의 광원(211) 각각에서 조사된 도트 패턴(214a 내지 214d)의 개수는 이미지 센서(222)의 해상도 보다 많을 수 있다. 구체적으로 복수의 광원(211)은 각각 도트 패턴(214a 내지 214d)을 조사 영역(310)으로 조사하되, 각각의 수신 소자에 대응되는 분할 영역(311)에 도트가 하나씩 입사될 수 있다. 이와 관련하여서는 도 7을 통해 구체적으로 살펴본다.
각각의 복수의 광원(211)에서 조사된 도트 패턴(214a 내지 214d) 조사광은 제2 광학계(Rx lens, 221)에 의해 대응되는 수신 소사로 입사될 수 있다.
본 발명은 송광부(210)와 수광부(220)를 제어하는 제어부를 포함할 수 있으며, 제어부는 복수의 광원의 발광 패턴을 제어하여 오브젝트(300)을 스캐닝하도록 광원(211)을 제어할 수 있다.
본 발명은 원거리에 오브젝트(300)가 있는 경우, 도 2에서 설명한 종래의 TOF 카메라(100)와 같이 면광원으로 광을 조사하여 발생할 수 있는 상기 문제점을 해결하는데 목적이 있다. 종래의 TOF 카메라(100)는 원거리의 오브젝트(300)를 촬영하는 경우, 첫째로 이미지 센서(222)의 각 수신 소자가 담당하는 분할 영역의 면적이 커져 해상도가 떨어지는 문제가 있다. 둘째로, 각 수신 소자가 수신하는 수광량 부족으로 인한 신호대비잡음비(Signal to noise rate, SNR) 증가의 문제가 발생할 수 있다. 두 번째 문제는 광원(211)의 파워를 증가(=광원(211)하여 해결할 수 있지만 광원(211)의 파워는 눈 보호를 위해 증가하는데 제약이 있으며, 비용의 문제가 발생할 수 있다. 또한, 광원(211)의 발광량 증가만으로는 첫 번째 문제를 해결할 수 없다.
상기 문제를 해결하기 위해, 본 발명은 복수의 광원에서 생성된 광을 도트 패턴(214)으로 집광하여 조사하고, 복수의 광원의 발광 패턴을 제어하여 오브젝트를 스캐닝 하는 기술 사상을 채택한다.
도 6은 본 발명의 일 실시예에 따른, TOF 카메라의 광원 및 광원에서 조사하는 광을 도트 패턴으로 조사하는 회절 광학 소자를 도시하고 있다. 도 7은 본 발명의 일 실시예에 따라, 도 6의 광원 및 회절 광학 소자를 통해 조사되는 도트 패턴을 설명하기 위한 도면이다.
본 발명의 광원(211)은 독립 적으로 발광하는 복수의 광원(211a 내지 211b)를 포함할 수 있다. 각각의 광원(211a 내지 211b)은 독립적으로 발광하는 VSCEL일 수 있다. 구체적으로, 도 6(a)는 네 개의 VSCEL로 구성된 복수의 광원(211a 내지 211b)을 도시하고 있다. 각각의 광원(211a 내지 211b)은 드라이브에 연결되어 독립적으로 발광할 수 있다. 또한, 각각의 광원(211a 내지 211b)은 도 6(b)와 같이 구비된 회절 광학 소자(213)에 의해 각각 도트 패턴의 광을 오브젝트를 향해 조사할 수 있다. 도 6(a)는 네 개의 광원(211a 내지 211b)을 도시하고 있으나, 광원의 개수는 반드시 네 개일 필요는 없다.
하나의 광원(211a 내지 211b 중 하나)에서 생성된 광은 분할 영역(311)에 일대일 대응되도록 도트 패턴으로 조사될 수 있다. 또한, 분할 영역(311)은 이미지 센서(222)의 각 수신 소자(2221)에 일대일 대응될 수 있다. 즉, 하나의 광원(211a 내지 211b 중 하나)에 의해 생성된 도트 패턴의 개수는 이미지 센서(222)의 해상도와 동일 할 수 있다.
각각의 광원(211a 내지 211b)에서 조사되는 도트 패턴은 회절 광학 소사(213)을 지나 조사 영역(310)을 구성하는 분할 영역(311)에서 위치가 상이할 수 있다. 구체적으로 도 7(a)는 제1 광원(211a)에서 조사된 광에 의해 생성된 도트 패턴이 분할 영역(311)에서 2 사분면에 맺히는 실시예를 도시하고 있다. 도7(b)는 제2 광원(211b)에서 조사된 광에 의해 생성된 도트 패턴이 분할 영역(311)에서 1사분면에 맺히는 실시예를 도시하고 있다. 또한, 도7(c)는 제3 광원(211c)에서 조사된 광에 의해 생성된 도트 패턴이 분할 영역(311)에서 3사분면에 맺히는 실시예를 도시하고 있다. 또한 도 7(d)는 제4 광원(211d)에서 조사된 광에 의해 생성된 도트 패턴이 분할 영역(311)에서 4사분면에 맺히는 실시예를 도시하고 있다.
즉, 본 발명은 복수의 광원(211a 내지 211b)을 포함하고 복수의 광원(211a 내지 211b) 각각이 생성하는 도트 패턴의 조사광은 분할 영역(311)의 상이한 위치로 조사될 수 있다.
도 8은 본 발명의 일 실시예에 따라, 도트 패턴의 조사광이 조사되는 조사 영역을 구체적으로 도시하고 있다.
조사 영역(310)은 광원(211a 내지 211b, 도 6 참조)에서 생성된 도트 패턴이 조사되는 영역으로 오브젝트(300도 5 참조)를 포함하는 영역일 수 있다.
조사 영역(310)은 이미지 센서(222, 도 7 참조)의 수신 소자(2221, 도 7 참조)에 대응되는 분할 영역(311)을 포함할 수 있다. 즉, 분할 영역(311)의 개수는 이미지 센서(222)의 해상도 개수에 대응될 수 있다.
분할 영역(311)은 각각의 광원(211a 내지 211b)에서 생성된 도트 패턴의 조사광이 조사되는 위치에 따라 서브 분할 영역(312a 내지 312d)로 분할 될 수 있다. 제1 광원(211a)에서 생성된 도트 패턴은 분할 영역(311)의 제1 서브 분할 영역(312a)로 조사될 수 있고, 제2 광원(211b)에서 생성된 도트 패턴은 분할 영역(311)의 제2 서브 분할 영역(312b)로 조사될 수 있고, 제3 광원(211c)에서 생성된 도트 패턴은 분할 영역(311)의 제3 서브 분할 영역(312c)로 조사될 수 있고, 제4 광원(211d)에서 생성된 도트 패턴은 분할 영역(311)의 제4 서브 분할 영역(312d)로 조사될 수 있다. 즉, 각각의 광원(211a 내지 211b)에서 생성된 도트 패턴은 각각 분할 영역(311)에 일대일 대응될 수 있으며, 복수의 광원(211a 내지 211b)에서 생성된 모든 도트 패턴은 각각의 서브 분할 영역(312a 내지 312d)에 일대일 대응될 수 있다.
복수의 광원(211a 내지 211b)는 독립적으로 발광되므로, 각각의 광원(211a 내지 211b)에서 생성된 도트 패턴은 독립적으로 점멸될 수 있다.
도 9은 본 발명의 일 실시예에 따라, 서브 분할 영역 크기 및 배열을 설명하기 위한 도면이다.
도 8은 서브 분할 영역(312a 내지 312d)을 동일한 크기로 예시하고 있으나, 서브 분할 영역(312a 내지 312d)은 그 크기가 상이할 수 있으며, 배열 역시 회절 광학 소자(213)의 미소 패턴 및 Rx렌즈(221) 자유롭게 선택될 수 있다.
구체적으로, 도 9(a) 및 9(b)는 4분면 형태로 서브 분할 영역(312a 내지 312d)이 배열된 실시예를 도시하고 있으며, 도 9(c) 및 도 9(d)는 가로로 배열된 서브 분할 영역(312a 내지 312d)을 도시하고 있으며, 도 9(e)는 세로로 배열된 서브 분할 영역 (312a 내지 312d)을 도시하고 있다.
서브 분할 영역(312a 내지 312d)의 면적은 회절 광학 소자(213)의 미소 패턴에 의해서 제어될 수 있다. 또는 복수의 광원(211a 내지 211d)에서 각각 조사되는 광의 조사 각에 의해서 제어될 수 있다.
서브 분할 영역(312a 내지 312d)의 면적은 복수의 광원(211a 내지 211d)은 최대로 생성하는 광량에 대응될 수 있다. 즉, 넓은 서브 분할 영역(312a, 도 9(b))에 대응되는 제1 광원(211a)는 최대로 출력할 수 있는 광량이 좁은 서브 분할 영역(312b, 도 9(b))에 대응되는 제2 광원(211b)에서 최대로 출력할 수 있는 광량 보다 클 수 있다. 이를 통해 본 발명의 제어부는 촬영 환경에 따라 선택적으로 광원(211a 내지 211b)을 발광할 수 있다. 예를 들어 원거리의 오브젝트를 촬영하는 경우 최대로 출력할 수 있는 광량이 큰 광원을 이용하고, 근거리의 오브젝트를 촬영하는 경우, 최대로 출력할 수 있는 광량이 작은 광원을 이용할 수 있다.
깊이 이미지의 해상도는 이미지 센서(222, 도 7 참조)에 의해 결정됨이 일반적이나, 본 발명은 선택적으로 해상도를 증가할 수 있다. 이와 관련하여 이하에서 설명한다.
도 10은 본 발명의 일 실시예에 따라, 고 해상도의 깊이 이미지를 획득하기 위해 복수의 광원을 발광하는 패턴을 설명하기 위한 도면이다.
본 발명은 오브젝트를 촬영하는 일 프레임 동안 복수의 광원(211a 내지 211d)을 순차적으로 발광하고, 각각의 광원 (211a 내지 211d)에서 획득된 깊이 데이터를 병합하여 해상도를 높일 수 있다. 예를 들어, 복수의 광원 (211a 내지 211d)이 네 개인 경우 최대로 이미지 센서(222, 도 7 참조)의 해상도의 네 배의 해상도로 깊이 이미지를 획득할 수 있다. 해상도는 순차적으로 광원 (211a 내지 211d)을 발광할 때 발광하는 광원의 개수로 제어될 수 있다. 즉, 네 개의 광원을 가진 경우 순차적으로 모든 광원을 발광한다면 이미지 센서(222)의 해상도의 네 배 해상도를 획득할 수 있고, 세 개의 광원을 발광한다면 이미지 센서(222)의 해상도의 세 배 해상도를 획득할 수 있다.
구체적으로, 도 10은 네 개의 광원(211a 내지 211d)을 일 프레임 동안 순차적으로 발광하여 이미지 센서(222)가 가지는 해상도의 네 배 해상도로 깊이 이미지를 획득하는 실시예를 도시하고 있다.
도 11은 본 발명의 일 실시예에 따라, 도 10의 방법을 통해 고 해상도의 깊이 이미지를 획득하는 방법을 설명하기 위한 도면이다.
광원(211a 내지 211d)이 조사되는 영역(310)은 이미지 센서(222)의 수신소자에 대응하여 분할 영역(311)으로 분할될 수 있다. 기존의 TOF 카메라와 같이 면광원으로 조사 영역(310)에 광을 조사하는 경우 이미지 센서(222)의 해상도에 대응되는 깊이 이미지만을 획득할 수 있다. 다만, 본 발명은 각각의 광원(211a 내지 211d)에 의해서 생성되는 도트 패턴(214 a 내지 214d)을 분할 영역(311)의 서브 분할 영역(312a 내지 312d)에 일대일 대응되도록 광을 조사함으로써 서브 분할 영역(312a 내지 312d)의 개수만큼 해상도를 배수로 증가할 수 있다.
순차적으로 광원(211a 내지 211d)을 발광하는 경우 본 발명의 제어부는 발광되는 광원(211a 내지 211d)으로부터 대응되는 서브 분할 영역(312a 내지 312d)을 좌표 정보를 인지할 수 있다. 본 발명의 제어부는 서브 분할 영역(312a 내지 312d)의 좌표 정보를 통해 각각 획득한 깊이 데이터를 병합하여 해상도를 증가할 수 있다. 예를 들어, 제1 광원(221a)이 발광된 경우 제어부는 이미지 프로세서(223, 도 5 참조)에서 획득한 깊이 데이터를 제1 서브 분할 영역(312a)의 깊이 데이터로 인식할 수 있다. 또한, 제2 광원(221b)이 발광된 경우 제어부는 이미지 프로세서(223, 도 5 참조)에서 획득한 깊이 데이터를 제2 서브 분할 영역(312b)의 깊이 데이터로 인식할 수 있다. 또한, 제3 광원(221c)이 발광된 경우 제어부는 이미지 프로세서(223, 도 5 참조)에서 획득한 깊이 데이터를 제3 서브 분할 영역(312c)의 깊이 데이터로 인식할 수 있다. 또한, 또한, 제4 광원(221d)이 발광된 경우 제어부는 이미지 프로세서(223, 도 5 참조)에서 획득한 깊이 데이터를 제4 서브 분할 영역(312d)의 깊이 데이터로 인식할 수 있다. 제어부는 제1 내지 제4 서브 분할 영역(312a 내지 312d)각각의 좌표 정보를 이용하여 획득한 깊이 데이터를 병합함으로써 이미지 센서(222)의 해상도 보다 높은 해상도로 깊이 데이터를 획득할 수 있다.
본 발명은 광원의 파워를 조절하여 깊이 이미지를 획득할 수 있는데 이와 관련하여 도 12를 통해 설명한다.
도 12는 본 발명의 일 실시예에 따라, 근거리의 오브젝트를 고 해상도로 촬영하기 위해 복수의 광원을 발광하는 패턴을 설명하기 위한 도면이다.
원거리에 위치한 오브젝트를 촬영하는 경우 각 광원의 파워를 최대로 하여 순차적으로 촬영함이 고해상도의 깊이 이미지를 획득하면서 SNR 문제를 회피할 수 있는 방법이다.
다만, 근거리에 위치한 오브젝트를 촬영하는 경우 광원의 파워가 약하더라도 SNR 문제에서 자유로울 수 있다. 또한, SNR 문제 외에도 소모되는 전력을 감소할 수 있다는 장점이 있다.
따라서, 근거리에 위치한 오브젝트를 고 해상도로 촬영할 때 광원(211a 내지 211d)을 순차적으로 발광하여 촬영하되 각 광원(211a 내지 211d)의 발광량을 감소하여 촬영해도 낮은 SNR로 깊이 이미지를 획득할 수 있다.
구체적으로, 도 12는 각 광원(211a 내지 211d)이 발광할 수 있는 최대 발광량 보다 낮은 발광량으로 순차적으로 광을 생성하는 실시예를 도시하고 있다. 이 경우, 광원(211a 내지 211d)을 순차적으로 발광하여 깊이 이미지를 획득하였으므로 높은 해상도의 깊이 이미지를 획득할 수 있으며, 저전력으로 광원(211a 내지 211d)을 구동할 수 있다.
다만, 오브젝트의 거리가 멀리 있거나, 외부 광의 영향으로 SNR이 높은 경우, 도 13 또는 도 14 방법이 부적합할 수 있다. 이 경우, 광원에서 보다 높은 광원을 발광함이 바람직할 수 있다. 이와 관련하여서는 도 13을 통해 구체적으로 살펴본다.
도 13은 본 발명의 일 실시예에 따라, 해상도 이득 없이 오브젝트의 거리 및 촬영 환경 중 적어도 하나에 대응하여 복수의 광원을 발광하는 패턴을 설명하기 위한 도면이다.
도 10에서 설명한 발광 패턴은 해상도의 이득을 얻을 수 있으나 발광량은 각 광원의 최대 발광량을 넘지 못한다. 따라서, 오브젝트의 거리가 멀거나 외부광의 영향으로 SNR이 높은 경우, 도 10의 발광 패턴으로 획득한 깊이 데이터는 신뢰성이 떨어질 수 있다.
오브젝트의 거리가 멀고 외부광의 영향으로 SNR이 높은 경우 최대 발광량을 키우는 것이 바람직할 수 있다. 발광량을 증가하기 위해 본 발명의 제어부는 일 프레임 동안 복수의 광원(211a 내지 211d) 중 적어도 두 개의 광원을 동시에 발광할 수 있다. 구체적으로, 도 13(a)는 일 프레임 동안 복수의 광원(211a 내지 211d)을 모두 발광하는 실시예를 도시하고 있다.
동시에 발광하는 광원의 개수는 오브젝트의 거리 및 SNR 중 적어도 하나에 대응하여 가변될 수 있다. 이는 복수의 광원을 동시에 모두 발광하는 경우 발광량을 키울 수 있지만 눈을 향해 조사되는 경우 눈을 상하게 할 수 있고, 필요 이상으로 전력을 소모할 수 있다. 따라서, 일 프레임에서 획득한 오브젝트의 거리 및 SNR 정보에 기초하여 다음 프레임에서 동시에 발광되는 광원의 개수를 제어할 수 있다. 구체적으로, 도 13(b)는 연속하는 프레임에서 동시에 발광하는 광원의 개수를 가변하는 실시예를 도시하고 있다.
복수의 광원(211a 내지 211d)을 동시에 발광하는 경우 해상도에 이득을 보긴 어렵지만 프레임 레이트에서 이득을 볼 수 있다. 이와 관련하여 이하 도 14에서 설명한다.
도 14는 본 발명의 일 실시예에 따라, 해상도 이득 없이 오브젝트를 촬영하되 프레임 레이트를 가변하는 발광 패턴을 설명하기 위한 도면이다.
프레임 레이트(frame rate)는 연속된 이미지들을 촬영하거나 재현하는 속도의 비율을 의미하며 프레임 레이트가 높을수록 초당 획득하는 깊이 데이터가 빨라질 수 있다.
해상도의 이득을 위한 발광 패턴은 복수의 광원(211a 내지 211d)을 각각 순차적으로 발광(점멸)하는데 시간이 소요되므로 프레임 레이트를 높이기 어렵다.
다만, 해상도의 이득을 포기하는 경우 복수의 광원(211a 내지 211d)을 동시에 발광(점멸)하므로 프레임 레이트를 높일 수 있다.
구체적으로 도 14(a)는 해상도 이득을 위한 발광 패턴을 도시하고 있으며, 도 14(b)는 해상도 이득을 포기하되 프레임 이득을 획득한 발광 패턴을 도시하고 있다. 즉, 도 14(b)는 해상도의 이득은 포기하지만, 거리 이득, SNR 이득 및 프레임레이트 이득을 획득할 수 있다.
도 15는 본 발명의 일 실시예에 따라, HDR를 구현하기 위해 복수의 광원을 발광하는 패턴을 설명하기 위한 도면이다.
DR(Dynamic Range)은 가장 밝은 부분부터 가장 어두운 부분까지의 범위를 의미한다. 사람의 눈으로 지각되는 밝기 범위(DR)는 약 10,000 니트(nits) 정도인데, 기존 일반 디스플레이에 입력되는 영상은 약 100 니트 정도의 LDR(Low Dynamic Range) 또는 SDR(Standard Dynamic Range)로, 실감 화질을 구현하는 데 한계가 있다. HDR은 기존 DR을 더 넓게 확장시켜, 영상의 명암비(contrast ratio, 가장 밝은 부분과 가장 어두운 부분의 차이)를 높이고, 태양의 강렬한 빛부터 어두운 밤하늘의 별빛까지 현실에 존재하는 다양한 밝기를 표현하여 영상을 실감 나게 전달한다.
HDR 기술은 High Daynamic Range의 약자로 다양한 계조의 사진들을 하나로 합치는 기법을 의미한다. 이런한 HDR 기술은 본 발명에 적용될 수 있다. 즉, 본 발명은 발광량을 달리하여 획득한 깊이 이미지를 합쳐 오브젝트의 깊이 이미지를 획득할 수 있다.
이를 위해, 본 발명의 제어부는 일 프레임 동안 복수의 광원(211a 내지 211d)을 구분하여 2회 발광하도록 제어하고, 각각 획득한 깊이 데이터를 통해 HDR을 구현하도록 이미지 프로세서(223, 도 5 참조)를 제어하되, 복수의 광원(211a 내지 211d)은 개수가 상이하게 구분될 수 있다. 이와 관련된 실시예는 도 15(a)에서 도시되고 있다. 구체적으로 도 15(a)는 먼저 복수의 광원(211a 내지 211d) 중 제1 내지 제 3 광원(211a 내지 211c)을 동시에 발광하여 깊이 이미지를 획득하고, 나머지 제4 광원(211d)을 발광하여 깊이 이미지를 획득하는 실시예를 도시하고 있다. 각각 획득된 깊이 데이터는 상이한 발광량에 기초하여 획득된 것으로 본 발명은 각각 획득한 깊이 데이터를 병합하여 HDR을 구현할 수 있다. 일 프레임 동안 복수의 광원을 구분하여 발광하는 경우 프레임 레이트를 감소하지 않는 점에서 이득이 될 수 있다.
다만, 최대 발광량을 이용하기 위해서는 복수의 광원(211a 내지 211d)을 모두 동시에 발광할 필요가 있을 수 있다. 이 경우 프레임을 달리하여 획득한 깊이 데이터를 병합하여 HDR를 구현할 수 있다. 구체적으로 도 15(b)는 프레임을 달리하여 획득한 깊이 데이터를 병합하여 HDR를 구현하는 실시예를 도시하고 있다. 일 프레임에서는 복수의 광원(211a 내지 211d)을 각각 최대 발광량으로 동시에 발광하고 다음 프레임에서는 각각의 방광량을 줄여 동시에 발광할 수 있다. 경우에 따라서는 다름 프레임에서는 발광하는 광원의 개수를 달리하여 깊이 이미지를 획득할 수 있다.
도 16는 본 발명의 일 실시예에 따라, 복수의 광원의 발광 패턴을 설정하고 깊이 데이터를 획득하는 전체 흐름도를 도시하고 있다.
본 발명은 제어부에서 복수의 광원(211a 내지 211d)의 발광 패턴을 설정하기 위한 사전 정보가 필요할 수 있다. 상기 사전 정보는 원거리 촬영 또는 근거리 촬영인지 여부, SNR이 높은지 여부, 해상도가 적절한지 여부, 더 높은 프레임레이트가 요구되는지 여부 등이 있을 수 있다.
본 발명은 상기 사전 정보를 획득하기 위해 1차 촬영 후 발광 패턴을 설정하고 이를 기초하여 2차 촬영할 수 있다.
구체적으로, 본 발명은 깊이 영상 처리 장치의 전원이 온 된 경우(S201), 상기 사전 정보를 획득하기 위해 1차 촬영 할 수 있다. (S202) 상기 1차 촬영은 적어도 하나의 프레임 동안 깊이 데이터를 획득할 수 이 있다. 상기 1차 촬영은 오브젝트에 대한 깊이 데이터를 획득하기 위한 적절한 촬영 모드를 설정하는 단계로 복수의 광원(211a 내지 211d) 의 발광 패턴을 변경하며 1차 깊이 데이터를 획득하는 단계일 수 있다.
상기 1차 촬영을 통해 상기 사전 정보인 촬영 환경 및 오브젝트의 거리 정보을 획득하고, (S203) 이에 대응되는 복수의 광원의 발광 패턴을 설정할 수 있다. (S204) 다만, 경우에 따라서는 상기 복수의 광원의 발광 패턴은 사용자의 선택에 의해 변경될 수 있다.
복수의 광원의 발광 패턴이 설정된 경우, 설정된 발광 패턴에 기초하여 2차 촬영을 수행하고, (S205) 이에 대응하여 2차 깊이 데이터를 획득할 수 있다. 획득된 2차 깊이 데이터는 디스플레이로 전송되어 프리뷰 화면으로 제공되거나 메모리에 저장될 수 있다. (S206) 2차 깊이 데이터는 설정된 발광 패턴을 변경하는데 사용될 수 있다. 즉, 2차 깊이 데이터를 통해 촬영 환경 또는 오브젝트의 거리 정보가 가변 되는 경우 대응하여 발광 패턴을 변경하고 이후 촬영을 진행할 수 있다.
이후 사용자의 선택에 의해 전원이 오프 (S207) 된 경우, 설정된 발광 패턴을 메모리에 저장하고 이후 이를 기초로 1차 촬영을 수행할 수 있다. 적절한 발광 패턴을 설정하여 2차 촬영을 수행하는데 소용되는 프레임 수를 줄이는데 이용될 수 있다. 다만, 경우에 따라서는 1차 촬영은 기 설정된 발광 패턴으로 촬영을 수행하는 단계일 수 있다.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (17)

  1. 오브젝트를 향해 조사되는 광을 생성하는 복수의 광원;
    상기 복수의 광원 각각에서 생성된 광을 상기 오브젝트에 도트 패턴(dot pattern)으로 조사하는 제1 광학계;
    상기 오브젝트에 반사된 광을 수신하여 전기 신호로 변환하는 이미지 센서;
    상기 전기 신호를 통해 깊이 데이터를 획득하는 이미지 프로세서; 및
    상기 광원, 상기 제1 광학계, 상기 이미지 센서 및 상기 이미지 프로세서에 연결된 제어부;를 포함하고,
    상기 제어부는
    상기 복수의 광원의 발광 패턴을 제어하여 상기 오브젝트를 스캐닝하도록 상기 광원을 제어하는 것을 특징으로 하는 깊이 영상 생성 장치.
  2. 제1 항에 있어서,
    상기 복수의 광원은
    독립적으로 발광하는 것을 특징으로 하는 깊이 영상 생성 장치.
  3. 제2항에 있어서,
    상기 복수의 광원 각각에서 생성된 도트 패턴의 조사광은
    상기 이미지 센서를 구성하는 복수의 수신 소자에 대응되는 분할 영역에 일대일(one-to-one) 대응하는 것을 특징으로 하는 깊이 영상 생성 장치.
  4. 제3항에 있어서,
    상기 분할 영역은
    상기 복수의 광원 각각에 대응되는 서브 분할 영역을 포함하고,
    상기 복수의 광원 각각에서 생성된 도트 패턴의 조사광은
    대응되는 서브 분할 영역으로 조사되는 것을 특징으로 하는 깊이 영상 생성 장치.
  5. 제4항에 있어서,
    상기 서브 분할 영역은
    대응되는 상기 복수의 광원 각각의 최대 발광량에 비례하는 면적을 가지는 것을 특징으로 하는 깊이 영상 생성 장치.
  6. 제4항에 있어서,
    상기 제어부는
    일 프레임 동안 상기 복수의 광원이 순차적으로 발광하도록 제어하고,
    상기 서브 분할 영역의 위치 정보를 이용하여 각각 획득한 깊이 데이터를 병합하도록 상기 이미지 프로세서를 제어하는 것을 특징으로 하는 깊이 영상 생성 장치.
  7. 제6항에 있어서,
    상기 제어부는
    상기 오브젝트와의 거리 및 신호대비잡음비(Signal to Noise Ratio, SNR) 중 적어도 하나에 대응하여, 상기 복수의 광원의 발광량을 제어하는 것을 특징으로 하는 깊이 영상 생성 장치.
  8. 제4항에 있어서,
    상기 제어부는
    상기 오브젝트와의 거리 및 신호대비잡음비(Signal to Noise Ratio, SNR) 중 적어도 하나에 대응하여, 일 프레임 동안 상기 복수의 광원 중 동시에 발광하는 광원의 개수를 제어하는 것을 특징으로 하는 깊이 영상 생성 장치.
  9. 제8항에 있어서,
    상기 제어부는
    상기 복수의 광원 중 적어도 하나의 광원을 동시에 1회 발광하는 경우, 프레임 레이트를 증가하도록 상기 이미지 프로세서를 제어하는 것을 특징으로 하는 깊이 영상 생성 장치.
  10. 제4항에 있어서,
    상기 제어부는
    일 프레임 동안 상기 복수의 광원을 구분하여 2회 발광하도록 제어하고,
    각각 획득한 깊이 데이터를 통해 HDR을 구현하도록 상기 이미지 프로세서를 제어하되,
    상기 복수의 광원은 개수가 상이하게 구분되는 것을 특징으로 하는 깊이 영상 생성 장치.
  11. 제4항에 있어서,
    상기 제어부는
    N 프레임 및 N+1 프레임 각각에서 상기 복수의 광원의 발광량을 달리 제어하고,
    각각 획득한 깊이 데이터를 통해 HDR을 구현하도록 상기 이미지 프로세서를 제어하는 것을 특징으로 하는 깊이 영상 생성 장치.
  12. 제1항에 있어서,
    상기 제1 광학계는
    상기 복수의 광원에서 조사된 빛을 평행광으로 집광하는 콜리메터 렌즈(collimator lens); 및
    상기 평행광을 상기 도트 패턴으로 상기 오브젝트를 향해 조사하는 회절 광학 소자;를 포함하는 것을 특징으로 하는 깊이 영상 생성 장치.
  13. 제1항에 있어서,
    상기 이미지 센서는
    상기 도트 패턴에 대응되는 SPAD(Single Photon Avalanche Diode) 어레이 형태의 다중 배열 수신 소자를 포함하는 것을 특징으로 하는 깊이 영상 생성 장치.
  14. 제13항에 있어서,
    상기 깊이 영상 생성 장치는
    상기 도트 패턴의 반사광을 상기 다중 배열 수신 소자에 매칭하여 입사하는 제2 광학계를 더 포함하는 것을 특징으로 하는 깊이 영상 생성 장치.
  15. 제14항에 있어서,
    상기 복수의 광원은
    복수의 수직 공진 표면 발광 레이저(Vertical Cavity Surface Emitting Laser, VCSEL)인 것을 특징으로 하는 깊이 영상 생성 장치.
  16. 복수의 광원 중 적어도 하나를 이용하여 오브젝트를 향해 도트 패턴으로 빛을 조사하고 1차 깊이 데이터를 획득하는 단계;
    상기 1차 깊이 데이터를 통해 촬영 환경 및 상기 오브젝트의 거리 정보를 획득하는 단계; 및
    상기 획득된 촬영 환경 및 거리 정보에 기초하여 상기 복수의 광원의 발광 패턴을 설정하는 단계;
    상기 설정된 발광 패턴에 대응하여 2차 깊이 데이터를 획득하는 단계;를 포함하는 깊이 영상 생성 장치 제어 방법.
  17. 제16항에 있어서,
    상기 깊이 영상 생성 장치 제어 방법은
    상기 2차 깊이 데이터를 통해 획득한 촬영 환경 및 거리 정보에 기초하여 상기 설정된 발광 패턴을 변경하는 단계를 더 포함하는 것을 특징으로 하는 깊이 영상 생성 장치 제어 방법.
PCT/KR2019/003979 2018-10-10 2019-04-04 3차원 영상 생성 장치 및 방법 WO2020075932A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/284,410 US11483539B2 (en) 2018-10-10 2019-04-04 Apparatus and method for generating three-dimensional image using optical system directing light in a dot pattern
KR1020217004742A KR102431989B1 (ko) 2018-10-10 2019-04-04 3차원 영상 생성 장치 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862743553P 2018-10-10 2018-10-10
US62/743,553 2018-10-10

Publications (1)

Publication Number Publication Date
WO2020075932A1 true WO2020075932A1 (ko) 2020-04-16

Family

ID=70165074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003979 WO2020075932A1 (ko) 2018-10-10 2019-04-04 3차원 영상 생성 장치 및 방법

Country Status (3)

Country Link
US (1) US11483539B2 (ko)
KR (1) KR102431989B1 (ko)
WO (1) WO2020075932A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215752A1 (ko) * 2020-04-22 2021-10-28 엘지전자 주식회사 광학 장치 및 이를 구비하는 카메라 장치와 전자기기

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023055180A1 (ko) * 2021-09-30 2023-04-06 엘지이노텍 주식회사 카메라 장치
KR102529593B1 (ko) 2022-10-25 2023-05-08 성형원 대상체에 대한 3d 정보를 획득하는 디바이스 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130408A (ja) * 2008-11-28 2010-06-10 Keyence Corp 撮像装置
US20150062558A1 (en) * 2013-09-05 2015-03-05 Texas Instruments Incorporated Time-of-Flight (TOF) Assisted Structured Light Imaging
KR20160142839A (ko) * 2014-04-07 2016-12-13 삼성전자주식회사 고해상도, 고프레임률, 저전력 이미지 센서
US20170030708A1 (en) * 2015-07-31 2017-02-02 Sick Ag Distance Sensor
US20180100733A1 (en) * 2015-06-23 2018-04-12 Hand Held Products, Inc. Optical pattern projector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11425357B2 (en) * 2015-02-13 2022-08-23 Carnegie Mellon University Method for epipolar time of flight imaging
US10257498B2 (en) * 2015-12-04 2019-04-09 Empire Technology Development Llc Coordination of multiple structured light-based 3D image detectors
US10957059B1 (en) * 2016-09-08 2021-03-23 Facebook Technologies, Llc Multi-pattern depth camera assembly
CN109194869A (zh) * 2018-10-09 2019-01-11 Oppo广东移动通信有限公司 控制方法、控制装置、深度相机和电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130408A (ja) * 2008-11-28 2010-06-10 Keyence Corp 撮像装置
US20150062558A1 (en) * 2013-09-05 2015-03-05 Texas Instruments Incorporated Time-of-Flight (TOF) Assisted Structured Light Imaging
KR20160142839A (ko) * 2014-04-07 2016-12-13 삼성전자주식회사 고해상도, 고프레임률, 저전력 이미지 센서
US20180100733A1 (en) * 2015-06-23 2018-04-12 Hand Held Products, Inc. Optical pattern projector
US20170030708A1 (en) * 2015-07-31 2017-02-02 Sick Ag Distance Sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215752A1 (ko) * 2020-04-22 2021-10-28 엘지전자 주식회사 광학 장치 및 이를 구비하는 카메라 장치와 전자기기
US12014509B2 (en) 2020-04-22 2024-06-18 Lg Electronics Inc. Optical device, camera device, and electronic apparatus including the same

Also Published As

Publication number Publication date
KR20210029269A (ko) 2021-03-15
US20220007003A1 (en) 2022-01-06
KR102431989B1 (ko) 2022-08-12
US11483539B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2020075932A1 (ko) 3차원 영상 생성 장치 및 방법
EP3110139B1 (en) Projection system and semiconductor integrated circuit
CN102027388B (zh) 采用显示器作为照明源的基于飞行时间的成像系统
US20080285056A1 (en) Compact 3D scanner with fixed pattern projector and dual band image sensor
WO2013100743A1 (ko) 깜빡임이 없는 칼라 가시광 통신 시스템
WO2014035128A1 (en) Image processing system
KR20160007361A (ko) 투영광원을 구비한 촬영방법 및 그 촬영장치
WO2018044111A2 (ko) 색수차를 이용한 3차원 스캐너 및 스캐닝 방법
US9134593B1 (en) Generation and modulation of non-visible structured light for augmented reality projection system
US11061139B2 (en) Ranging sensor
JP7005175B2 (ja) 距離測定装置、距離測定方法及び撮像装置
WO2011071313A2 (ko) 텍스쳐 영상과 깊이 영상을 추출하는 장치 및 방법
CN108683908A (zh) 多功能标定装置
CN109141506B (zh) 多功能标定系统
TW201621451A (zh) 投影裝置及將影像用像素方式投影的方法
WO2022154160A1 (ko) 카메라 모듈
WO2022002174A1 (zh) 图像传感器、3d摄像头、图像传感器的控制方法
WO2020045932A1 (ko) 영상 처리 장치 및 영상 처리 방법
JP2012027104A (ja) 表示装置
CN214480802U (zh) 基于光同步的激光电视投影装置
WO2018038347A2 (ko) 레이저빔의 형상조절이 가능한 레이저시스템
TWI245966B (en) Display device and image processing method therefor
JP2009109962A (ja) リアプロジェクタ装置及びマルチディスプレイシステム
WO2021137329A1 (ko) 광학 장치
JPH11134505A (ja) 画像抽出装置およびこれを用いた画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217004742

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870261

Country of ref document: EP

Kind code of ref document: A1