WO2021193611A1 - 光学反射素子及び光制御システム - Google Patents

光学反射素子及び光制御システム Download PDF

Info

Publication number
WO2021193611A1
WO2021193611A1 PCT/JP2021/011940 JP2021011940W WO2021193611A1 WO 2021193611 A1 WO2021193611 A1 WO 2021193611A1 JP 2021011940 W JP2021011940 W JP 2021011940W WO 2021193611 A1 WO2021193611 A1 WO 2021193611A1
Authority
WO
WIPO (PCT)
Prior art keywords
swinging
drive
axis
vibrating
auxiliary
Prior art date
Application number
PCT/JP2021/011940
Other languages
English (en)
French (fr)
Inventor
健介 水原
高山 了一
小牧 一樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180018055.3A priority Critical patent/CN115210628A/zh
Priority to JP2022510532A priority patent/JPWO2021193611A1/ja
Publication of WO2021193611A1 publication Critical patent/WO2021193611A1/ja
Priority to US17/939,669 priority patent/US20230003997A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]

Definitions

  • the present invention relates to an optical reflecting element and an optical control system that reciprocate an irradiation position such as a laser beam.
  • Conventional optical reflectors that reciprocate the irradiation position of laser light include, as shown in Patent Document 1, for example, a reflector that reflects laser light and the like, and a reflector that is connected to this reflector and twists itself.
  • An object of the present invention is to improve the performance of an optical reflecting element.
  • the optical reflecting element is an optical reflecting element that reflects light and reciprocates, and is arranged at a position that sandwiches the reflecting body that reflects light and the reflecting body along the first axis, respectively.
  • a first swinging portion and a second swinging portion for swinging the reflector, and a third swinging portion for swinging the first swinging portion and the second swinging portion are provided.
  • Each of the one swinging portion and the second swinging portion is arranged along the first axis, extends in the direction intersecting the first axis with the first connecting body to which the reflector and the tip portion are connected.
  • the third swinging portion is provided with a support extending in a direction intersecting the first axis and a second connecting body for oscillatingly connecting the first vibrating body and the second vibrating body to the support.
  • the first auxiliary that connects and operates the support of the first swinging portion and the support of the second swinging portion with respect to one of the pair of substrates arranged at positions sandwiching the first shaft.
  • a body and a second auxiliary body that connects and operates a support of the first swinging portion and a support of the second swinging portion with respect to the other substrate of the pair of substrates are provided.
  • the optical reflecting element is an optical reflecting element that reflects light and reciprocates, and is arranged with a reflecting body that reflects light and a reflecting body along the first axis.
  • a sub-swinging portion is provided, and the main swinging portion extends in a direction intersecting the first shaft and is connected to the base end portion of the first connecting body with respect to the first vibrating body and the first shaft.
  • a second drive body connected to the tip of the second vibrating body and operating the first connecting body via the second vibrating body, a support extending in a direction intersecting the first axis, and a second support body with respect to the support body.
  • a vibrating body and a second connecting body for oscillatingly connecting the second vibrating body are provided, and the sub-oscillating portion is a main rocking portion with respect to a pair of substrates and one of the pair of substrates. It is provided with a first auxiliary body for connecting and operating the support of the above, and a second auxiliary body for connecting and operating the support of the main swinging portion with respect to the other base of the pair of bases.
  • the optical control system is an optical control system including the above-mentioned optical reflection element and a control device for controlling the optical reflection element, and the control device has a main swing portion as the first axis.
  • the first drive body and the second drive body of the main swing portion and the first auxiliary body and the second auxiliary body of the sub swing portion are vibrated so as to rotate and swing around.
  • the performance of the optical reflecting element can be improved.
  • FIG. 1 is a plan view showing an optical reflecting element according to the first embodiment.
  • FIG. 2 is a block diagram showing a control configuration of the optical control system according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing an example of a drive signal for operating the optical reflection element according to the first embodiment.
  • FIG. 4 is a perspective view showing a state of each part when the optical reflection element according to the first embodiment is operating.
  • FIG. 5 is a graph schematically showing each vibration when the resonance frequency of the first mode is applied to the drive body according to the first embodiment and when the resonance frequency of the second mode is applied. ..
  • FIG. 6 is a schematic view showing the nodes generated in the optical reflecting element according to the second embodiment.
  • FIG. 7 is a plan view showing the optical reflecting element according to the third embodiment.
  • FIG. 8 is a plan view showing the optical reflecting element according to the fourth embodiment.
  • FIG. 9 is a plan view showing the reflector according to the fifth embodiment.
  • FIG. 10 is a plan view showing
  • drawings are schematic drawings in which emphasis, omission, and ratio are adjusted as appropriate to show the present invention, and may differ from the actual shape, positional relationship, and ratio.
  • the thickness direction of the optical reflecting element is defined as the Z-axis direction.
  • the direction parallel to the first axis of the optical reflecting element is defined as the Y-axis direction, and the direction intersecting the first axis is defined as the X-axis direction.
  • These X-axis directions, Y-axis directions, and Z-axis directions are directions that intersect each other (hereinafter, orthogonal to each other in the embodiment).
  • expressions indicating relative directions or postures such as parallel and orthogonal include cases where they are not strictly the directions or postures.
  • the fact that two directions are orthogonal not only means that the two directions are completely orthogonal, but also that they are substantially orthogonal, that is, a difference of, for example, about several percent. It also means to include.
  • FIG. 1 is a plan view showing the optical reflecting element 100 according to the first embodiment.
  • the optical reflection element 100 is a device that periodically changes the reflection angle of light such as laser light to periodically sweep the light irradiation position.
  • the optical reflecting element 100 includes a pair of substrates 105, a reflector 110, a first swinging portion 210 and a second swinging portion 220 for swinging the reflector 110, and a third swinging portion 210. It is provided with a swinging portion 230.
  • the 105 is integrally molded by removing unnecessary portions from one substrate.
  • the optical reflecting element 100 is a so-called MEMS (Micro Electro Mechanical Systems).
  • the material constituting the substrate is not particularly limited, but a material having mechanical strength and a high Young's modulus such as metal, crystal, glass, and resin is preferable.
  • a material having mechanical strength and a high Young's modulus such as metal, crystal, glass, and resin is preferable.
  • Specific examples thereof include metals and alloys such as silicon, titanium, stainless steel, Elinvar, and brass alloys. By using these metals, alloys, and the like, it is possible to realize an optical reflecting element 100 having excellent vibration characteristics and workability.
  • the reflector 110 is a portion that reflects light by swinging.
  • the shape of the reflector 110 is not particularly limited, but in the case of the present embodiment, the reflector 110 has a circular plate shape, and the reflecting portion capable of reflecting the light to be reflected with a high reflectance.
  • 111 is provided on the surface.
  • the material of the reflective portion 111 can be arbitrarily selected, and examples thereof include metals such as gold, silver, copper, and aluminum, and metal compounds.
  • the reflection unit 111 may be composed of a plurality of layers.
  • the reflecting portion 111 may be formed by smoothing the surface of the reflecting body 110.
  • the reflecting portion 111 may be a curved surface as well as a flat surface.
  • the first axis 11 is a central axis that passes through the center of the reflector 110.
  • the first swinging portion 210 and the second swinging portion 220 are arranged at positions that sandwich the reflector 110 along the first axis, respectively. Specifically, the first swinging portion 210 is arranged in the Y-axis minus direction with respect to the reflector 110, and the second swinging portion 220 is arranged in the Y-axis plus direction with respect to the reflector 110. ..
  • the first swinging portion 210 and the second swinging portion 220 have the same basic configuration, and are arranged so as to be point-symmetrical with respect to the center point of the optical reflecting element 100. Therefore, the specific configuration of the first swinging portion 210 will be described in detail, and the specific structure of the second swinging portion 220 will be briefly described.
  • the first swinging portion 210 includes a first connecting body 211, a first vibrating body 212, a second vibrating body 213, a first driving body 214, a second driving body 215, and a second connecting body 216. It includes a support 2111.
  • the first connecting body 211 is a long rod-shaped portion extending along the first shaft 11.
  • a reflector 110 is connected to the tip end portion of the first connecting body 211, and the base end portion of the first vibrating body 212 and the base end portion of the second vibrating body 213 are connected to the base end portion of the first connecting body 211.
  • Each of the parts is connected.
  • the first connecting body 211 is a portion for transmitting power to the reflector 110 held at the tip end portion. Specifically, when the first connecting body 211 is twisted about the first shaft 11, the rotational swing around the first shaft 11 is transmitted to the reflector 110.
  • the shape of the first connecting body 211 is not particularly limited, but since it is a member that rotates and swings the reflector 110 by twisting itself, it is wider than the reflector 110 (length in the X-axis direction in the drawing). It has a narrow, thin rod shape.
  • “Along the first axis 11" means not only when the first connecting body 211 is along a straight line as in the present embodiment, but also when the first connecting body 211 is curved in a meandering shape or bent in a zigzag manner. Even if it does, it is included if it follows the virtually straight first axis 11 as a whole.
  • intersection is used to include not only an intersection where two lines contact but also a grade separation where two lines do not contact.
  • the vibrating body including the first vibrating body 212 and the second vibrating body 213 is a portion extending in the X-axis direction, and is an arm-shaped portion for operating the reflecting body 110 by vibrating. Specifically, the first vibrating body 212 and the second vibrating body 213 vibrate in the circumferential direction around the first shaft 11 to rotate and swing the reflector 110 around the first shaft 11. Generates torque.
  • the first vibrating body 212 is arranged in a direction intersecting the first shaft 11 and is connected to the base end portion of the first connecting body 211.
  • the second vibrating body 213 is arranged in a direction intersecting the first shaft 11 on the opposite side of the first vibrating body 212 with respect to the first shaft 11, and is connected to the base end portion of the first connecting body 211.
  • the first vibrating body 212 is a rectangular rod-shaped member extending in the X-axis direction
  • the second vibrating body 213 extends in the opposite direction of the first vibrating body 212 in the X-axis direction. It is a rectangular rod-shaped member.
  • first vibrating body 212 and the base end portion of the second vibrating body 213 are integrally connected by the connecting body 217.
  • the first vibrating body 212 and the second vibrating body 213 have a straight rod shape extending in the orthogonal direction about the first axis 11.
  • the drive body including the first drive body 214 and the second drive body 215 is a member that generates a driving force for vibrating the vibrating body.
  • the first driving body 214 is a member that is connected to the tip end portion of the first vibrating body 212 and vibrates the first vibrating body 212.
  • the second drive body 215 is a member that is connected to the tip end portion of the second vibrating body 213 and vibrates the second vibrating body 213.
  • the first drive body 214 includes a first drive main body portion 2141 and a first piezoelectric element 2142.
  • the first drive main body portion 2141 is a rod-shaped body whose base end portion is integrally connected to the tip end portion of the first vibrating body 212 and extends toward the reflector 110 along the first shaft 11.
  • the total length (length in the Y-axis direction) of the first drive main body 2141 is longer than the total length (length in the X-axis direction) of the first vibrating body 212.
  • a first piezoelectric element 2142 is provided on the surface of the first drive main body 2141.
  • the first piezoelectric element 2142 is an elongated plate-shaped piezoelectric element arranged along the first axis 11 on the surface of the first drive main body 2141.
  • the first piezoelectric element 2142 is arranged at a position including the central portion of the first drive body 214. Specifically, the first piezoelectric element 2142 is arranged over the entire length of the first drive main body 2141.
  • the first piezoelectric element 2142 By applying a voltage that fluctuates periodically to the first piezoelectric element 2142, the first piezoelectric element 2142 repeatedly expands and contracts.
  • the first drive main body 2141 repeats bending and returning in response to the movement of the first piezoelectric element 2142.
  • the tip of the first drive main body 2141 vibrates more than the base end connected to the first vibrating body 212, and the vibration energy of the entire first driving body 214 is the tip of the first vibrating body 212. Communicate to.
  • the second drive body 215 also includes a second drive main body 2151 and a second piezoelectric element 2152, and is formed on a virtual surface including the first axis 11 and orthogonal to the surface of the reflector 110. On the other hand, it is arranged at a position symmetrical with the first drive body 214.
  • the base end of the second drive body 215 is connected to the tip of the second vibrating body 213. Further, the operation of the second drive body 215 is the same as the operation of the first drive body 214.
  • the piezoelectric element is, for example, a thin film laminated piezoelectric actuator.
  • the thin-film laminated piezoelectric actuator has a laminated structure in which electrodes and piezoelectric bodies are laminated in the thickness direction, which is formed on the surface of the drive main body. As a result, the drive body can be made thinner.
  • the drive body does not have to be the one that vibrates due to the distortion of the piezoelectric element.
  • Other driving bodies include, for example, a magnetic field, a member or device that generates a force by interacting with an electric field, change at least one of a magnetic field and an electric field generated by an external device, and a magnetic field generated by itself. And it may vibrate by changing at least one of the electric fields.
  • a piezoelectric material having a high piezoelectric constant such as lead zirconate titanate (PZT) can be exemplified.
  • the second connecting body 216 is a portion that oscillateably connects the first vibrating body 212 and the second vibrating body 213.
  • the second connecting body 216 is arranged along the first shaft 11, the base end portion is connected to the support 2111, and the tip end portion is connected to the base end portion and the first vibrating body 212 of the first vibrating body 212 via the connecting body 217. It is connected to the base end portion of the two vibrating body 213.
  • the shape of the second connecting body 216 is not particularly limited, but the first connecting body 211 is twisted with respect to the support 2111 by twisting itself due to the vibration of the first vibrating body 212 and the second vibrating body 213. Since it is a member that allows twisting, it has a rod shape with higher torsional rigidity than the first connecting body 211.
  • the second connecting body 216 may be curved in a meandering shape or bent in a zigzag manner as well as in the case of being straight along the first shaft 11. Even in such a case, when the torsional rigidity around the first shaft 11 is compared between the first connecting body 211 and the second connecting body 216, the torsional rigidity of the first connecting body 211 is weak.
  • the support 2111 is a long portion in the X-axis direction, and the base end portion of the second connecting body 216 is connected to the central portion thereof.
  • the first auxiliary body 231 and the second auxiliary body 232 of the third swinging portion 230 are connected to both ends of the support body 2111, respectively.
  • the second swinging portion 220 has the same basic configuration as the first swinging portion 210.
  • the second swinging portion 220 is arranged so as to be point-symmetrical with respect to the first swinging portion 210 with respect to the center point of the optical reflecting element 100. Therefore, the correspondence between each part of the second swinging portion 220 and each part of the first swinging portion 210 will be mainly described.
  • the second swinging portion 220 includes a first connecting body 221, a first vibrating body 222, a second vibrating body 223, a first driving body 224, a second driving body 225, and a second connecting body 226. It includes a support 2211.
  • the first connecting body 221 is a portion corresponding to the first connecting body 211 of the first swinging portion 210.
  • the first vibrating body 222 is a portion corresponding to the first vibrating body 212 of the first rocking portion 210
  • the second vibrating body 223 is a portion corresponding to the second vibrating body 213 of the first rocking portion 210.
  • the first vibrating body 222 and the second vibrating body 223 have opposite positional relationships in the X-axis direction with respect to the first vibrating body 212 and the second vibrating body 213 of the first swinging portion 210.
  • the base end portion of the first vibrating body 222 and the base end portion of the second vibrating body 223 are integrally connected by a connecting body 227.
  • the first drive body 224 is a portion corresponding to the first drive body 214 of the first swing portion 210
  • the second drive body 225 is a portion corresponding to the second drive body 215 of the first swing portion 210.
  • the first drive body 224 and the second drive body 225 have opposite positional relationships in the X-axis direction with respect to the first drive body 214 and the second drive body 225 of the first swinging portion 210.
  • the first drive body 224 has a first drive main body 2241 and a first piezoelectric element 2242, and these correspond to the first drive main body 2141 and the first piezoelectric element 2142 of the first drive body 214.
  • the second drive body 225 has a second drive main body 2251 and a second piezoelectric element 2252, which correspond to the second drive main body 2151 and the second piezoelectric element 2152 of the second drive 215. There is.
  • the second connecting body 226 is a portion of the first swinging portion 210 corresponding to the second connecting body 216.
  • the second connecting body 226 is arranged along the first shaft 11, the base end portion is connected to the support 2211, and the tip end portion is connected to the base end portion and the first vibrating body 222 via the connecting body 227. It is connected to the base end portion of the two vibrating body 223.
  • the support 2211 is a portion corresponding to the support 2111 of the first swinging portion 210.
  • the support 2211 is a portion elongated in the X-axis direction, and the base end portion of the second connecting body 226 is connected to the central portion thereof.
  • the first auxiliary body 231 and the second auxiliary body 232 of the third swinging portion 230 are connected to both ends of the support body 2211, respectively.
  • the pair of bases 105 are members for attaching the optical reflection element 100 to an external structural member or the like, and have a long rod shape in the Y-axis direction. Specifically, the pair of substrates 105 are arranged at positions sandwiching the first shaft 11.
  • the first auxiliary body 231 of the third swinging portion 230 is connected to one of the pair of bases 105, and the second auxiliary body 232 is connected to the other.
  • the third swinging portion 230 vibrates by itself, so that the first swinging portion 210 And it is a part where an auxiliary force is applied to the second swinging portion 220.
  • the third swing portion 230 includes a first auxiliary body 231 and a second auxiliary body 232.
  • the first auxiliary body 231 is arranged in the minus direction of the X axis with respect to the first axis 11, and first swings with respect to one of the pair of bases 105 arranged in the minus direction of the X axis.
  • the support 2111 of the portion 210 and the support 2211 of the second swinging portion 220 are connected and operated.
  • the first auxiliary body 231 includes a first auxiliary main body 2311 and a third piezoelectric element 2312.
  • the first auxiliary main body 2311 is a rectangular portion elongated in the Y-axis direction that is continuously extended from one base 105 to the respective supports 2111 and 2211. That is, the end of the first auxiliary main body 2311 on the minus side of the X axis is connected to one of the substrates 105 over the entire length in the Y axis direction.
  • the corner on the minus side in the Y-axis direction is connected to the support 2111 of the first swing portion 210, and the corner on the minus side of the X-axis is the second swing. It is connected to the support 2211 of the moving portion 220.
  • the first auxiliary main body 2311 is arranged apart from each of the second drive body 215 of the first swing portion 210 and the first drive body 224 of the second swing portion 220 in the X-axis direction.
  • the third piezoelectric element 2312 is an elongated plate-shaped piezoelectric element arranged along the first axis 11 on the surface of the first auxiliary main body 2311.
  • the third piezoelectric element 2312 is arranged at a position including the central portion of the first auxiliary main body 2311. Specifically, the third piezoelectric element 2312 is arranged so as to spread out in a plane over substantially the entire surface of the first auxiliary main body 2311.
  • the third piezoelectric element 2312 By applying a voltage that fluctuates periodically to the third piezoelectric element 2312, the third piezoelectric element 2312 repeatedly expands and contracts.
  • the first auxiliary main body 2311 repeats bending and returning in response to the movement of the third piezoelectric element 2312.
  • the vibration energy of the first auxiliary main body 2311 is transmitted to the support 2111 of the first rocking portion 210 and the support 2211 of the second rocking portion 220.
  • the support 2111 of the first swing portion 210 and the support 2211 of the second swing portion 220 can be swung.
  • the second auxiliary body 232 is arranged in the X-axis plus direction with respect to the first axis 11, and is the first swing with respect to the other base 105 of the pair of bases 105 arranged in the X-axis plus direction.
  • the support 2111 of the portion 210 and the support 2211 of the second swinging portion 220 are connected and operated.
  • the second auxiliary body 232 has the same basic configuration as the first auxiliary body 231.
  • the second auxiliary body 232 is arranged so as to be symmetrical with the first auxiliary body 231 with respect to a virtual surface including the first axis 11 and orthogonal to the surface of the reflector 110. Therefore, the correspondence between each part of the second auxiliary body 232 and each part of the first auxiliary body 231 will be mainly described.
  • the second auxiliary body 232 includes a second auxiliary main body 2321 and a fourth piezoelectric element 2322.
  • the second auxiliary main body 2321 is a portion corresponding to the first auxiliary main body 2311
  • the fourth piezoelectric element 2322 is a portion corresponding to the third piezoelectric element 2312.
  • the second auxiliary main body 2321 extends continuously from the other base 105 to the supports 2111 and 2211, respectively.
  • the fourth piezoelectric element 2322 repeats expansion and contraction.
  • the second auxiliary main body 2321 repeats bending and returning in response to the movement of the fourth piezoelectric element 2322.
  • the vibration energy of the second auxiliary main body 2321 is transmitted to the support 2111 of the first rocking portion 210 and the support 2211 of the second rocking portion 220.
  • the support 2111 of the first swing portion 210 and the support 2211 of the second swing portion 220 can be swung.
  • the auxiliary body does not have to be the one that vibrates due to the distortion of the piezoelectric element.
  • Other auxiliary bodies include, for example, a magnetic field, a member or device that generates a force by interacting with an electric field, change at least one of a magnetic field and an electric field generated by an external device, and a magnetic field generated by itself. And it may vibrate by changing at least one of the electric fields.
  • FIG. 2 is a block diagram showing a control configuration of the optical control system 10 according to the first embodiment.
  • the optical control system 10 includes an optical reflection element 100 and a control device 20 that controls the optical reflection element 100.
  • a plurality of monitor elements are attached to the optical reflection element 100 at appropriate positions.
  • the monitor element is an element that detects the curved state of each vibrating body as distortion. By measuring the output from the monitor element, the swinging state of the reflector 110 can be accurately monitored.
  • the first swinging portion 210 is provided with a first monitor element 218 for detecting the distortion of the first vibrating body 212 and a second monitor element 219 for detecting the distortion of the second vibrating body 213.
  • the second swinging portion 220 is provided with a first monitor element 228 that detects the distortion of the first vibrating body 222 and a second monitor element 229 that detects the distortion of the second vibrating body 223.
  • the control device 20 includes an angle detection circuit 21, a drive circuit 22, and a control circuit 23.
  • the angle detection circuit 21 receives detection signals from each monitor element (first monitor element 218, 228, second monitor element 219, 229), and detects angle information of the reflector 110 based on the detection signal. , A circuit that outputs the angle information to the control circuit 23.
  • the drive circuit 22 cycles through each piezoelectric element (first piezoelectric element 2142, 2242, second piezoelectric element 2152, 2252, third piezoelectric element 2312, fourth piezoelectric element 2322) based on the drive signal from the control circuit 23. It is a circuit that outputs a typical voltage.
  • the control circuit 23 is a circuit that adjusts the drive signal output to the drive circuit 22 so that the reflector 110 has an arbitrary angle based on the angle information of the reflector 110 input from the angle detection circuit 21.
  • the control device 20 may be executed by one or more electronic circuits including a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (large scale integration).
  • the LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips.
  • monitor element may or may not be provided on the reflector 110 or may not be provided on the optical reflector 100.
  • the optical reflection element 100 operates based on the control of the control device 20.
  • the control device 20 rotates and swings the reflector 110 around the first axis 11. That is, the control device 20 rotationally swings the first swinging portion 210 and the second swinging portion 220 around the first shaft 11 in the same direction.
  • the control device 20 in each of the first drive body 214 and the second drive body 215 of the first rocking portion 210, the first portion in which the direction of vibration in the thickness direction of the optical reflecting element 100 is opposite.
  • the first drive body 214 and the second drive body 215 of the first swing portion 210 are vibrated so as to generate the second portion.
  • the first drive body 224 and the second drive body 225 of the second swing portion 220 have the third portion and the fourth portion in which the vibration directions in the thickness direction are opposite to each other.
  • the first drive body 224 and the second drive body 225 of the second swinging portion 220 are vibrated so as to be generated.
  • control device 20 sets the first auxiliary body 231 and the second auxiliary body 232 of the third rocking portion 230 so as to amplify the rotational swing of the first rocking portion 210 and the second rocking portion 220. Vibrate.
  • FIG. 3 is an explanatory diagram showing an example of a drive signal for operating the optical reflection element 100 according to the first embodiment.
  • the drive signal is a signal for applying an AC voltage that fluctuates periodically to each piezoelectric element, and has a resonance frequency at which each drive body can vibrate.
  • the waveform of the first drive signal W1 and the waveform of the second drive signal W2 are shown for only one cycle.
  • the second drive signal W2 has a waveform having a phase opposite to that of the first drive signal W1.
  • the control device 20 applies the first drive signal W1 to the first piezoelectric element 2142 of the first rocking portion 210 and the second piezoelectric element 2252 of the second rocking portion 220, and the second of the first rocking portion 210.
  • a second drive signal W2 is applied to the piezoelectric element 2152 and the first piezoelectric element 2242 of the second swing portion 220.
  • the control device 20 together with the first auxiliary body 231 and the second auxiliary body 232 of the third rocking portion 230 so as to amplify the rotational swing of the first rocking portion 210 and the second rocking portion 220.
  • the control device 20 applies the second drive signal W2 to the third piezoelectric element 2312 of the first auxiliary body 231 and applies the first drive signal W1 to the fourth piezoelectric element 2322.
  • the first swinging portion 210 and the second swinging portion 220 vibrate, and the vibration is transmitted to the support 2111 of the first swinging portion 210 and the support 2211 of the second swinging portion 220. Therefore, the rotational oscillation of the first oscillating portion 210 and the second oscillating portion 220 is amplified.
  • the first drive signal W1 is the first portion 214a, 215a and the second portion 214a, 215a and the second portion in which the direction of vibration in the thickness direction is opposite in each of the first drive body 214 and the second drive body 215 of the first swing portion 210.
  • the resonance frequency is set to resonate in a mode that generates parts 214b and 215b. That is, it can be said that the first drive signal W1 is determined based on the natural frequency of the first swing portion 210.
  • the second drive signal W2 has a phase opposite to that of the first drive signal W1, it is set to substantially the same frequency.
  • the first drive signal W1 and the second drive signal W2 are the first parts 214a and 215a and the first parts 214a and 215a in the first drive body 214 and the second drive body 215 of the first swing unit 210, respectively.
  • the frequency is set to resonate in a unique mode such that it has one inflection point between the two parts 214b and 215b.
  • the first drive signal W1 and the second drive signal W2 have frequencies that resonate in a unique mode such that they have two or more inflection points between the first part 214a, 215a and the second part 214b, 215b. It may be.
  • the first drive signal W1 corresponds to the second drive body 225
  • the second drive signal W2 corresponds to the first drive body 224.
  • FIG. 4 is a perspective view showing a state of each part when the optical reflecting element 100 according to the first embodiment is operating.
  • the first auxiliary body 231 and the second auxiliary body 232 of the third swinging portion 230 are shown by broken lines.
  • the control device 20 applies the first drive signal W1 to the first piezoelectric element 2142 and the second drive signal W2 to the second piezoelectric element 2152. Then, the first portion 214a, 215a and the second portion 214b, 215b, whose vibration directions are opposite to each other in the thickness direction, are generated in the first drive body 214 and the second drive body 215, respectively.
  • the first portion 214a is the base end portion of the first driving body 214
  • the second portion 214b is the tip end portion of the first driving body 214.
  • the second portion 214b moves in the negative direction on the Z axis (arrow Z12 in FIG. 4).
  • the first portion 214a of the first driving body 214 moves in the negative direction of the Z axis
  • the second portion 214b moves in the positive direction of the Z axis.
  • the first portion 215a is the tip end portion of the second drive body 215, and the second portion 215b is the base end portion of the second drive body 215.
  • the first portion 215a of the second drive body 215 moves in the positive direction on the Z axis (arrow Z21 in FIG. 4)
  • the second portion 215b moves in the negative direction on the Z axis (arrow Z22 in FIG. 4).
  • the first portion 215a of the second drive body 215 moves in the negative direction on the Z axis
  • the second portion 215b moves in the positive direction on the Z axis.
  • the first driving body 214 and the first vibrating body 212 and the second driving body 215 and the second vibrating body 213 are the same in the circumferential direction centered on the first shaft 11. Rotates and oscillates in the direction.
  • the first drive is performed.
  • Third portions 224c, 225c and fourth portions 224d and 225d are generated in the body 224 and the second driving body 225, respectively, in which the directions of vibration in the thickness direction are opposite to each other.
  • the third portion 224c is the tip end portion of the first drive body 224
  • the fourth portion 224d is the base end portion of the first drive body 224.
  • the third portion 225c is the base end portion of the second drive body 225
  • the fourth portion 225d is the tip end portion of the second drive body 225.
  • the third portion 225c of the second drive body 225 moves in the positive direction on the Z axis (arrow Z41 in FIG. 4)
  • the fourth portion 225d moves in the negative direction on the Z axis (arrow Z42 in FIG. 4).
  • the third portion 225c of the second drive body 225 moves in the Z-axis minus direction
  • the fourth portion 225d moves in the Z-axis plus direction.
  • the first driving body 224 and the first vibrating body 222, and the second driving body 225 and the second vibrating body 223 are the first shafts as in the first swinging portion 210. Rotates and oscillates in the same direction in the circumferential direction centered on 11.
  • the reflector 110 when the first swinging portion 210 and the second swinging portion 220 rotationally swing around the first shaft 11 in the same direction, the first connecting bodies 211 and 221 are centered on the first shaft 11. Since the twisting occurs, the reflector 110 also rotates and swings around the first axis 11 (see arrow Y1 in FIG. 1). In the present embodiment, when the first swinging portion 210 and the second swinging portion 220 rotationally swing around the first shaft 11 in the same direction, the reflector 110 also centers on the first shaft 11 in the same direction. And swing around.
  • FIG. 5 shows a case where a resonance frequency that does not generate an inflection point is applied to the drive bodies (first drive body 214, 224 and second drive body 215, 225) according to the first embodiment (first mode). It is a graph which schematically shows each vibration in the case where the resonance frequency which generates an inflection point is given (the second mode). It can be seen that the displacement of the base end portion of the drive body is larger in the second mode than in the first mode. As a result, the first vibrating body 212, 222 and the second vibrating body 213, 223 also largely rotate and swing, so that the first connecting bodies 211 and 221 are also greatly twisted. Therefore, the touch angle of the reflector 110 is also increased.
  • the first auxiliary body 231 is applied.
  • the second auxiliary body 232 vibrate in the opposite direction in the thickness direction. Specifically, when the first auxiliary body 231 moves in the negative direction on the Z axis (arrow Z52 in FIG. 4), the second auxiliary body 232 moves in the positive direction on the Z axis (arrow Z51 in FIG. 4). ). On the contrary, when the first auxiliary body 231 moves in the Z-axis positive direction, the second auxiliary body 232 moves in the Z-axis negative direction.
  • the support 2111 of the first swing portion 210 and the support 2211 of the second swing portion rotate and swing in the circumferential direction around the first shaft 11 (arrows in FIG. 4). Z60).
  • the rotational swing of the supports 2111 and 2211 is in the same direction as the rotary swing of the first swing portion 210 and the second swing portion 220. Therefore, the rotational sway of the supports 2111 and 2211 is transmitted to the first oscillating portion 210 and the second oscillating portion 220, so that the rotational sway of the first oscillating portion 210 and the second oscillating portion 220
  • the motion is amplified. That is, the rotational fluctuation of the reflector 110 is also amplified.
  • the optical reflecting element 100 that reflects light and reciprocates is a position that sandwiches the reflecting body 110 that reflects light and the reflecting body 110 along the first axis 11, respectively.
  • Each of the first swinging portion 210 and the second swinging portion 220 is arranged along the first shaft 11, and the first connecting body 211, 221 and the first shaft 11 to which the reflector 110 and the tip portion are connected are connected.
  • the second vibrating bodies 213 and 223 extending in the direction intersecting the first shaft 11 and being connected to the base ends of the first connecting bodies 211 and 221 and extending along the first shaft 11 and extending at the base end.
  • the portions are connected to the tip portions of the first vibrating bodies 212 and 222, and are connected to the first driving bodies 214 and 224 and the first shaft 11 that operate the first connecting bodies 211 and 221 via the first vibrating bodies 212 and 222.
  • the second drive body 215, which extends along the base end portion and is connected to the tip end portion of the second vibrating body 213 and 223 to operate the first connecting bodies 211 and 221 via the second vibrating body 213 and 223.
  • the first vibrating body 212, 222 and the second vibrating body 213, 223 are oscillatingly connected to the 225, the supports 2111 and 2211 extending in the direction intersecting the first shaft 11, and the supports 2111 and 2211. It includes a second connector 216 and 226.
  • the third swinging portion 230 has a support 2111 of the first swinging portion 210 and a second swinging portion 220 with respect to one of the pair of substrates 105 arranged at positions sandwiching the first shaft 11.
  • the optical control system 10 includes the optical reflection element 100 and a control device 20 for controlling the optical reflection element 100.
  • the first driving body 214 and the second swinging portion 210 of the first swinging portion 210 rotate and swing in the same direction around the first shaft 11 so that the first swinging portion 210 and the second swinging portion 220 rotate and swing in the same direction.
  • the drive body 215, the first drive body 224 and the second drive body 225 of the second swing portion 220, and the first auxiliary body 231 and the second auxiliary body 232 of the third swing portion 230 are vibrated.
  • the first auxiliary body 231 of the third swinging portion 230 is connected to the support 2111 of the first swinging portion 210 and the support 2211 of the second swinging portion 220, and the second auxiliary body is connected.
  • the 232 is connected to the support 2111 of the first swing portion 210 and the support 2211 of the second swing portion 220. Therefore, if the control device 20 vibrates the first auxiliary body 231 and the second auxiliary body 232 in the opposite directions in the thickness direction, the vibration causes the first swinging portion 210 and the second swinging portion 210 via the supports 2111 and 2211. It is transmitted to the two swinging portions 220. That is, the rotational swing of the first swing portion 210 and the second swing portion 220 can be amplified. As a result, the first connecting bodies 211 and 221 are also greatly twisted, and the contact angle of the reflector 110 can be increased. Therefore, the swing range of the reflector 110 can be widened, and the performance of the optical reflector 100 can be improved.
  • the first drive body 214 and 224 are provided with the first piezoelectric elements 2142 and 2242, and the second drive bodies 215 and 225 are provided with the second piezoelectric elements 2152 and 2252.
  • the first auxiliary body 231 includes a first auxiliary main body 2311 that is continuously extended from one base 105 to the support 2111 of the first swinging portion 210 and the support 2211 of the second swinging portion 220, and the first auxiliary body 231.
  • a third piezoelectric element 2312 laminated on substantially the entire surface of the auxiliary main body 2311 is provided.
  • the second auxiliary body 232 includes a second auxiliary main body 2321 extending continuously from the other base 105 to the support 2111 of the first swinging portion 210 and the support 2211 of the second swinging portion 220, and the second auxiliary body 2321. It includes a fourth piezoelectric element 2322 laminated on substantially the entire surface of the auxiliary main body 2321.
  • the third piezoelectric element 2312 is laminated on substantially the entire surface of the first auxiliary main body 2311
  • the fourth piezoelectric element 2322 is laminated on substantially the entire surface of the second auxiliary main body 2321.
  • the piezoelectric element 2312 and the fourth piezoelectric element 2322 can be laminated in a wide range.
  • the volumes of the third piezoelectric element 2312 and the fourth piezoelectric element 2322 can be made relatively large.
  • the larger the volume of the third piezoelectric element 2312 and the fourth piezoelectric element 2322 the larger the vibration can be generated.
  • the rotational swing of the first swing portion 210 and the second swing portion 220 can be further amplified. .. Therefore, the swing range of the reflector 110 can be further expanded, and the performance of the optical reflector 100 can be further enhanced.
  • each of the first drive body 214, 224 and the second drive body 215, 225 is longer than the total length of each of the first vibrating body 212, 222 and the second vibrating body 213, 223.
  • the rotational torque with respect to the base end portion of the first drive body 214 can be increased.
  • other drive bodies first drive body 224, second drive body 215, 225. In this way, the rotational torque with respect to the base end portion of each first drive body is increased, so that the drive efficiency can be improved.
  • the ratio of the total length of the drive body (first drive body 214, 224, second drive body 215, 225) to the total length of the vibrating body (first vibrating body 212, 222, second vibrating body 213, 223) is , 0.15 or more and 0.5 or less is preferable. With this relationship, it is possible to suitably increase the rotational torque with respect to the base end portion of the drive body. Further, in each drive body having a longer overall length than each vibrating body, piezoelectric elements (first piezoelectric elements 2142 and 2242 and second piezoelectric elements 2152 and 2252) are provided over the entire length. Therefore, the volume of the piezoelectric element can be made relatively large. The larger the volume of the piezoelectric element, the larger the vibration can be generated in each drive body, so that the drive efficiency can be improved.
  • the reflector 110 when the first swinging portion 210 and the second swinging portion 220 rotate and swing in the same direction around the first shaft 11, the reflector 110 also centers on the first shaft 11 in the same direction. The case of rotating and swinging was illustrated.
  • the first swinging portion 210 and the second swinging portion 220 rotate and swing in the same direction around the first shaft 11, the reflector 110 rotates and swings in the opposite direction. Will be described. Further, in the second embodiment, the control method thereof will be described by exemplifying the optical reflection element 100 of the first embodiment.
  • each of the first connecting bodies 211 and 221 for example, the first driving signal W1 and the second driving signal W2 are applied to the first driving body 214, 224 and the second driving body 215, 225.
  • it has a shape in which an odd number of nodes are generated. For example, by adjusting the total length, cross-sectional shape, outer shape, etc. of each of the first connecting bodies 211 and 221, an odd number of nodes are formed.
  • FIG. 6 is a schematic view showing the nodes generated in the optical reflecting element 100 according to the second embodiment.
  • the third rocking portion 230 is not shown.
  • one node 211s and 221s are generated at the intermediate positions of the first connecting bodies 211 and 221.
  • the "knot” refers to a portion where the twisting direction of the first connecting bodies 211 and 221 is reversed at the peripheral position thereof.
  • the reflector 110 first swings.
  • the portion 210 and the second swing portion 220 rotate and swing in opposite directions.
  • the first connecting bodies 211 and 221 of the first swinging portion 210 and the second swinging portion 220 are the first swinging portion 210 and the second swinging portion. It has a shape in which odd nodes 211s and 221s are generated when the 220 is rotationally swung in the same direction.
  • the reflector 110 rotates and swings in the opposite direction.
  • the resonance sharpness (Q value) of the resonance mode for rotating the reflector 110 that is, the resonance mode (drive mode) of the optical reflecting element 100 is increased.
  • the higher the resonance sharpness (Q value) the higher the deflection angle characteristic of the reflector 110. That is, in the third embodiment, the reflector 110 can be rotationally swung in a range larger than that of the reflector 110 of the first embodiment.
  • the case where one node 211s and 221s are generated in each of the first connecting bodies 211 and 221 is illustrated, but the number of nodes generated in one connecting body is an odd number of 3 or more. May be good. If the number of nodes generated is an odd number, when the first swinging portion 210 and the second swinging portion 220 rotate and swing in the same direction around the first shaft 11, the reflector 110 moves in the opposite direction. It will rotate and swing.
  • the first drive body 214 and the second drive body 215 of the first swing portion 210 are generated so as to generate the first portion 214a, 215a and the second portion 214b, 215b in which the direction of vibration in the thickness direction is opposite.
  • the directions of vibration in the thickness direction are opposite to those of the third portion 224c, 225c and the fourth portion.
  • the first drive body 224 and the second drive body 225 of the second swing portion 220 are vibrated so as to generate 224d and 225d.
  • each of the first drive body 224 and the second drive body 225 of the second swing portion 220 the third portion 224c, 225c and the fourth portion 224d, 225d in which the direction of vibration in the thickness direction is opposite is appear.
  • the displacement at the base end portion of each of the first drive body 224 and the second drive body 225 can be increased.
  • the first vibrating body 212, 222 and the second vibrating body 213, 223 also largely rotate and swing, so that the first connecting bodies 211 and 221 are also greatly twisted, and the contact angle of the reflector 110 is also larger. can do. Therefore, the swing range of the reflector 110 can be further expanded, and the performance of the optical reflector 100 can be further enhanced.
  • the first auxiliary body 231 and the second auxiliary body 232 are continuous from the support 2111 of the first swinging portion 210 to the support 2211 of the second swinging portion 220.
  • the case where it is done is illustrated.
  • each of the first auxiliary body and the second auxiliary body may be divided.
  • FIG. 7 is a plan view showing the optical reflecting element 100A according to the third embodiment. As shown in FIG. 7, in the optical reflection element 100A according to the third embodiment, each of the first auxiliary body 231a and the second auxiliary body 232a in the third swinging portion 230a is divided in the Y-axis direction.
  • the first auxiliary body 231a includes a pair of first auxiliary main bodies 2311a and a pair of third piezoelectric elements 2312a.
  • the pair of first auxiliary main bodies 2311 are arranged apart from each other in the Y-axis direction.
  • one of the first auxiliary main bodies 2311 has a long shape in the X-axis direction, and the support 2111 of the first swinging portion 210 and the one base 105 are connected to each other. There is.
  • one of the third piezoelectric elements 2312a of the pair of third piezoelectric elements 2312a is laminated.
  • the other first auxiliary main body 2311 has a long shape in the X-axis direction, and connects the support 2211 of the second swinging portion 220 and the one base 105. doing.
  • the other third piezoelectric element 2312a of the pair of third piezoelectric elements 2312a is laminated on the surface of the other first auxiliary main body 2311.
  • the second auxiliary body 232a includes a pair of the second auxiliary main body 2321a and a pair of the fourth piezoelectric elements 2322a. Since the second auxiliary body 232a is basically the same as the first auxiliary body 231a, the details will be omitted.
  • the control device 20 first drives the pair of fourth piezoelectric elements 2322a.
  • the signal W1 and applying the second drive signal W2 to the pair of third piezoelectric elements 2312a, it is possible to amplify the rotational fluctuation between the first swing portion 210 and the second swing portion 220. be.
  • each of the first auxiliary body 231a and the second auxiliary body 232a is divided in the Y-axis direction is illustrated, but it may be divided in the X-axis direction.
  • FIG. 8 is a plan view showing the optical reflection element 100B according to the fourth embodiment. Specifically, FIG. 8 is a diagram corresponding to FIG. The description of the auxiliary body will be omitted here.
  • the first vibrating body 212b includes the fifth piezoelectric element 2122
  • the second vibrating body 213b includes the sixth piezoelectric element 2132.
  • the fifth piezoelectric element 2122 is arranged on the surface of the first vibrating body 212b.
  • the fifth piezoelectric element 2122 is arranged at a position including the central portion of the first vibrating body 212b.
  • the fifth piezoelectric element 2122 is arranged over the entire length of the first vibrating body 212b.
  • the first piezoelectric element 2142 is arranged over the entire length of the first drive body 214.
  • the bending points of the first drive body 214 and the first vibrating body 212b that occur when the first driving body 214 and the first vibrating body 212b vibrate are included in the first piezoelectric element 2142. It has been. That is, between the base point of the first vibrating body 212b and the inflection point, the entire fifth piezoelectric element 2122 and at least a part of the first piezoelectric element 2142 are included.
  • the sixth piezoelectric element 2132 is arranged on the surface of the second vibrating body 213b.
  • the sixth piezoelectric element 2132 is arranged at a position including the central portion of the second vibrating body 213b.
  • the sixth piezoelectric element 2132 is arranged over the entire length of the second vibrating body 213b.
  • the second piezoelectric element 2152 is arranged over the entire length of the second drive body 215. Therefore, the bending points of the second drive body 215 and the second vibrating body 213b that occur when the second driving body 215 and the second vibrating body 213b vibrate are included in the second piezoelectric element 2152. It has been. That is, between the base point of the second vibrating body 213b and the inflection point, the entire sixth piezoelectric element 2132 and at least a part of the second piezoelectric element 2152 are included.
  • the first vibrating body 222b is provided with the sixth piezoelectric element 2222 and the second vibrating body 223b is provided with the sixth piezoelectric element 2232. Since it is the same as the moving part 210b, the description thereof will be omitted.
  • the fifth piezoelectric elements 2122 and 2222 and the sixth piezoelectric elements 2132 and 2232 are electrically connected to the control device 20, respectively.
  • the control device 20 rotationally swings the first swinging portion 210b and the second swinging portion 220b so as to rotate in the same direction around the first shaft 11, the fifth piezoelectric elements 2122 and 2222 and the second (Vi)
  • the piezoelectric elements 2132 and 2232 are vibrated.
  • the control device 20 includes the first piezoelectric element 2142 and the sixth piezoelectric element 2132 of the first swinging portion 210b, and the second piezoelectric element 2252 and the fifth piezoelectric element 2222 of the second swinging portion 220b.
  • a first drive signal W1 is applied to the second piezoelectric element 2152 and the fifth piezoelectric element 2122 of the first swinging portion 210b, and the first piezoelectric element 2242 and the sixth piezoelectric element 2232 of the second swinging portion 220b.
  • a drive signal W2 is applied.
  • the first vibrating body 212b vibrates in the direction opposite to the thickness direction of the first driving body 214, and the second vibrating body 213b vibrates in the thickness direction of the second driving body 215. It vibrates in the opposite direction.
  • the first vibrating body 222a vibrates in the direction opposite to that of the first driving body 224 in the thickness direction, while the second vibrating body 223b is opposite to the second driving body 225 in the thickness direction. It vibrates in the direction.
  • the first driving body 214 vibrates more because it is excited by the stimulation of the vibration of the first vibrating body 212b. Since this is the same for each drive body, each of the first swinging portion 210b and the second swinging portion 220b will largely rotate and swing.
  • the control device 20 first vibrates the first vibrating body 212b of the first swinging portion 210b in the direction opposite to that of the first driving body 214 in the thickness direction.
  • the second vibrating body 213b of the swinging portion 210b is vibrated in the direction opposite to that of the second driving body 215 in the thickness direction
  • the first vibrating body 222b of the second rocking portion 220b is vibrated in the thickness direction of the first driving body 224.
  • the second vibrating body 223b of the second swinging portion 220b is vibrated in the opposite direction to the thickness direction of the second driving body 225 while vibrating in the opposite direction.
  • each vibrating body excites each driving body, the vibration of each driving body can be amplified. Therefore, each of the first swinging portion 210b and the second swinging portion 220b will largely rotate and swing, and the drive efficiency can be improved.
  • first vibrating bodies 212b and 222b include fifth piezoelectric elements 2122 and 2222.
  • the second vibrating bodies 213b and 223b include sixth piezoelectric elements 2132 and 2232.
  • the first piezoelectric elements 2142 and 2242 are arranged at positions including the inflection point during vibration in the entire first drive body 214 and 224 and the first vibrating body 212b and 222b.
  • the second piezoelectric elements 2152 and 2252 are arranged at positions including the inflection point during vibration in the entire second drive body 215, 225 and the second vibrating body 213b and 223b.
  • the fifth piezoelectric element 2122 which is located between the base point and the inflection point of the first vibrating body 212b and 222b.
  • the entire 2222 and at least a part of the first piezoelectric elements 2142 and 2242 will be included. That is, since a plurality of piezoelectric elements are included between the base point and the inflection point of the first vibrating body 212b and 222b, it is easy to excite the first driving body 214 and 224 and the first vibrating body 212b and 222b. Can be done.
  • the sixth piezoelectric element 2132, 2232 is located between the base point and the inflection point of the second vibrating body 213b, 223b.
  • the whole and at least a part of the second piezoelectric elements 2152 and 2252 will be included. That is, since a plurality of piezoelectric elements are included between the base point and the inflection point of the second vibrating body 213b and 223b, it is easy to excite the second driving body 215 and 225 and the second vibrating body 213b and 223b. Can be done.
  • the disc-shaped reflector 110 is illustrated, but in the fifth embodiment, the reflector 110b having a higher stress relaxation effect than the disc-shaped reflector 110 will be described.
  • FIG. 9 is a plan view showing the reflector 110b according to the fifth embodiment.
  • the reflector 110b includes a reflector main body 114, a plurality of pillar portions 115, and a frame body 116.
  • the reflector main body 114 has a disk shape, and a reflecting portion 111 is provided on the surface thereof.
  • the plurality of pillar portions 115 are arranged at predetermined intervals in the circumferential direction from the peripheral edge of the reflector main body 114. Each pillar portion 115 projects outward from the outer peripheral surface of the reflector main body 114.
  • the frame 116 has an annular shape and is arranged so as to be concentric with the reflector main body 114.
  • the frame body 116 is connected to the tip portions of a plurality of pillar portions 115.
  • the tip of the first connecting body 211 of the first swinging portion 210 and the tip of the first connecting body 221 of the second swinging portion 220 are connected to the outer peripheral surface of the frame body 116.
  • the twists and vibrations from the first connecting bodies 211 and 221 are transmitted to the reflector main body 114 via the frame body 116 and the plurality of column portions 115. That is, since the twist and vibration from the first connecting bodies 211 and 221 are not directly transmitted to the reflector main body 114, the stress applied to the reflector main body 114 is relaxed.
  • FIG. 10 is a plan view showing a modified example of the reflector 110c according to the fifth embodiment.
  • the reflector 110c does not have a pillar portion, and the frame body 116c is a substantially hexagonal ring.
  • the frame body 116c has a pair of corner portions facing each other in the Y-axis direction, a tip portion of the first connecting body 211 of the first swinging portion 210, and a tip portion of the first connecting body 221 of the second swinging portion 220. Is joined.
  • a reflector body 114c is joined to a pair of sides facing each other in the X-axis direction. As described above, the stress relaxation effect can be obtained even in the reflector 110c having a gap between a part of the frame 116c and the reflector main body 114c.
  • the present invention is not limited to the above embodiment.
  • another embodiment realized by arbitrarily combining the components described in the present specification and excluding some of the components may be the embodiment of the present invention.
  • the present invention also includes modifications obtained by making various modifications that can be conceived by those skilled in the art within the scope of the gist of the present invention, that is, the meaning indicated by the wording described in the claims, with respect to the above-described embodiment. Is done.
  • the first portion 214a, 215a and the second portion 214b vibrate in the opposite directions in the thickness direction.
  • 215b was generated. That is, for example, in the first drive body 214, two places (first part 214a and second part 214b) vibrate in the opposite direction, and in the second drive body 215, two places vibrate in the opposite direction. (First site 215a, second site 215b) The case where it occurred was illustrated. However, in one driving body, three or more places that vibrate in the opposite direction may be provided. This also applies to each of the first drive body 224 and the second drive body 225 of the second swing portion 220.
  • the optical control system 10 including the two swinging portions of the first swinging portion 210 and the second swinging portion 220 is exemplified.
  • the optical control system may be provided with only one swinging portion.
  • the optical reflecting element is arranged along the first axis with a reflector that reflects light, a main swinging portion for swinging the reflector, and a reflector along the first axis. It includes a first connecting body for transmitting the swing of the main swing portion to the reflector, and a sub swing portion for swinging the main swing portion.
  • the main vibrating portion extends in the direction intersecting the first axis, and is connected to the base end portion of the first connecting body with the first vibrating body and on the opposite side of the first vibrating body with respect to the first axis.
  • a second vibrating body that extends in the direction intersecting the first axis and is connected to the base end of the first connecting body, and a second vibrating body that extends along the first axis and the base end is the tip of the first vibrating body.
  • the first driving body which is connected to the part and operates the first connecting body via the first vibrating body, extends along the first axis, and the base end part is connected to the tip part of the second vibrating body.
  • a second drive body that operates the first connecting body via the second vibrating body, and a second connecting body that oscillatingly connects the first vibrating body and the second vibrating body to the support of the sub-oscillating portion. I have.
  • the sub-oscillating portion is a first auxiliary body that operates by connecting a support extending in a direction intersecting the first axis, a pair of substrates, and one of the pair of substrates. And a second auxiliary that connects and operates a support with respect to the other substrate of the pair of substrates.
  • the first drive body and the second drive body of the main swing portion and the second swing portion of the sub swing portion are arranged so that the main swing portion rotates and swings around the first axis.
  • the first auxiliary body and the second auxiliary body are vibrated.
  • the main rocking portion corresponds to the first rocking portion 210
  • the sub rocking portion includes the pair of base 105 and the third rocking portion. Corresponds to 230.
  • the support 2111 a part of the sub-vibration portion, the vibrations of the main swing portion and the sub-vibration portion can be effectively superposed.
  • the rotary swing of the main swing portion can be amplified by the rotary swing of the sub swing portion.
  • the first connector is also greatly twisted, and the contact angle of the reflector can be increased. Therefore, the swing range of the reflector can be widened, and the performance of the optical reflecting element can be improved.
  • the resonance frequencies of the main rocking portion and the sub rocking portion are the same, a stable amplification effect can be obtained, which is preferable.
  • the resonance frequency of the structure in which the main rocking portion and the sub-vibrating portion are connected and the structure in which the reflector and the first connecting body are connected are the same.
  • the present invention can be used, for example, in optical devices such as small display devices, small projectors, in-vehicle head-up display devices, electrophotographic copiers, laser printers, optical scanners, and optical radars.
  • optical devices such as small display devices, small projectors, in-vehicle head-up display devices, electrophotographic copiers, laser printers, optical scanners, and optical radars.
  • Optical control system 11 First axis 20 Control device 21 Angle detection circuit 22 Drive circuit 23 Control circuit 100, 100A Optical reflector 105 Base 110, 110b, 110c Reflector 111 Reflector 114, 114c Reflector body 115 Pillar 116, 116c Frame 210, 210a, 210b First swinging part 211, 221 First connecting body 211s, 221s Section 212, 212b, 222, 222b First vibrating body 213, 213b, 223, 223b Second vibrating body 214, 224th 1 Drive body 214a, 215a First part 214b, 215b Second part 215, 225 Second drive body 216, 226 Second connection 217, 227 Connector 218, 228 First monitor element 219, 229 Second monitor element 220, 220a, 220b Second swinging part 224c, 225c Third part 224d, 225d Fourth part 230, 230a Third swinging part 231, 231a First auxiliary body 232, 232a Second auxiliary body

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

光学反射素子(100)は、それぞれ第一軸(11)に沿って反射体(110)を挟む位置に配置され、反射体(110)を揺動させるための第一揺動部(210)及び第二揺動部(220)と、第一揺動部(210)及び第二揺動部(220)を揺動させるための第三揺動部(230)と、を備えている。第三揺動部(230)は、第一軸(11)を挟む位置に配置された一対の基体のうち一方の基体(105)に対して、第一揺動部(210)の支持体(2111)と、第二揺動部(220)の支持体(2211)とを接続して動作させる第一補助体(231)と、一対の基体(105)のうち他方の基体(105)に対して、第一揺動部(210)の支持体(2111)と、第二揺動部(220)の支持体(2211)とを接続して動作させる第二補助体(232)と、を備えている。

Description

光学反射素子及び光制御システム
 本発明は、レーザ光などの照射位置を往復動させる光学反射素子及び光制御システムに関する。
 従来のレーザ光の照射位置を往復動させる光学反射素子は、例えば特許文献1に示されるように、レーザ光などを反射する反射体と、この反射体に接続されて自らがねじれることにより反射体を回転揺動させる接続体と、接続体に往復のねじれを発生させるために反射体の回転軸と交差する方向に延在する二本のアーム状の振動体と、これらの振動体をそれぞれ振動させる圧電素子などを備えた駆動体とを備えている。このような光学反射素子は、接続体のねじれ方向にのみ反射体が回転するようになっている。
特開2009-244602号公報
 本発明は、光学反射素子の性能を高めることを目的とする。
 本開示の一態様に係る光学反射素子は、光を反射して往復動させる光学反射素子であって、光を反射する反射体と、それぞれ第一軸に沿って反射体を挟む位置に配置され、反射体を揺動させるための第一揺動部及び第二揺動部と、第一揺動部及び第二揺動部を揺動させるための第三揺動部と、を備え、第一揺動部及び第二揺動部のそれぞれは、第一軸に沿って配置され、反射体と先端部が連結される第一接続体と、第一軸と交差する方向に延在し、第一接続体の基端部に連結される第一振動体と、第一軸に対し第一振動体の逆側において第一軸と交差する方向に延在し、第一接続体の基端部に連結される第二振動体と、第一軸に沿って延在し、基端部が第一振動体の先端部に連結され、第一振動体を介して第一接続体を動作させる第一駆動体と、第一軸に沿って延在し、基端部が第二振動体の先端部に連結され、第二振動体を介して第一接続体を動作させる第二駆動体と、第一軸と交差する方向に延在した支持体と、支持体に対し第一振動体及び第二振動体を振動自在に接続する第二接続体とを備え、第三揺動部は、第一軸を挟む位置に配置された一対の基体のうち一方の基体に対して、第一揺動部の支持体と、第二揺動部の支持体とを接続して動作させる第一補助体と、一対の基体のうち他方の基体に対して、第一揺動部の支持体と、第二揺動部の支持体とを接続して動作させる第二補助体と、を備える。
 本開示の他の態様に係る光制御システムは、上記光学反射素子と、光学反射素子を制御する制御装置とを備えた光制御システムであって、制御装置は、第一揺動部及び第二揺動部が第一軸回りに同じ方向に回転揺動するように、第一揺動部の第一駆動体及び第二駆動体と、第二揺動部の第一駆動体及び第二駆動体と、第三揺動部の第一補助体及び第二補助体とを振動させる。
 本開示の一態様に係る光学反射素子は、光を反射して往復動させる光学反射素子であって、光を反射する反射体と、第一軸に沿って反射体と並び、当該反射体を揺動させるための主揺動部と、第一軸に沿って配置され、主揺動部の揺動を反射体に伝えるための第一接続体と、主揺動部を揺動させるための副揺動部と、を備え、主揺動部は、第一軸と交差する方向に延在し、第一接続体の基端部に連結される第一振動体と、第一軸に対し、第一振動体の逆側において前記第一軸と交差する方向に延在し、第一接続体の基端部に連結される第二振動体と、第一軸に沿って延在し、基端部が第一振動体の先端部に連結され、第一振動体を介して第一接続体を動作させる第一駆動体と、第一軸に沿って延在し、基端部が第二振動体の先端部に連結され、第二振動体を介して第一接続体を動作させる第二駆動体と、第一軸と交差する方向に延在した支持体と、支持体に対し第一振動体及び前記第二振動体を振動自在に接続する第二接続体とを備え、副揺動部は、一対の基体と、一対の基体のうち一方の基体に対して、主揺動部の支持体を接続して動作させる第一補助体と、一対の基体のうち他方の基体に対して、主揺動部の支持体を接続して動作させる第二補助体と、を備える。
 本開示の他の態様に係る光制御システムは、上記光学反射素子と、光学反射素子を制御する制御装置とを備えた光制御システムであって、制御装置は、主揺動部が第一軸回りに回転揺動するように、主揺動部の第一駆動体及び第二駆動体と、副揺動部の第一補助体及び第二補助体とを振動させる。
 本発明により、光学反射素子の性能を高めることができる。
図1は、実施の形態1に係る光学反射素子を示す平面図である。 図2は、実施の形態1に係る光制御システムの制御構成を示すブロック図である。 図3は、実施の形態1に係る光学反射素子を動作させるための駆動信号の一例を示す説明図である。 図4は、実施の形態1に係る光学反射素子が動作している際の各部の状態を示す斜視図である。 図5は、実施の形態1に係る駆動体に対して第1モードの共振周波数を付与した場合と、第2モードの共振周波数を付与した場合との各振動を模式的に示したグラフである。 図6は、実施の形態2に係る光学反射素子に発生した節を示す模式図である。 図7は、実施の形態3に係る光学反射素子を示す平面図である。 図8は、実施の形態4に係る光学反射素子を示す平面図である。 図9は、実施の形態5に係る反射体を示す平面図である。 図10は、実施の形態5に係る反射体の変形例を示す平面図である。
 次に、本発明に係る光制御システムの実施の形態について、図面を参照しつつ説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、図面は、本発明を示すために適宜強調や省略、比率の調整を行った模式的な図となっており、実際の形状や位置関係、比率とは異なる場合がある。
 また、以下の説明及び図面中において、光学反射素子の厚み方向をZ軸方向と定義する。光学反射素子の第一軸と平行な方向をY軸方向と定義し、第一軸に交差する方向をX軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(以下実施の形態では、直交)する方向である。さらに、平行及び直交などの、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。例えば、2つの方向が直交している、とは、当該2つの方向が完全に直交していることを意味するだけでなく、実質的に直交していること、すなわち、例えば数%程度の差異を含むことも意味する。
 [実施の形態1]
 (光学反射素子)
 まず、本発明に係る光学反射素子100について説明する。図1は、実施の形態1に係る光学反射素子100を示す平面図である。
 光学反射素子100は、レーザ光などの光の反射角度を周期的に変更して光の照射位置を周期的に掃引する装置である。図1に示すように、光学反射素子100は、一対の基体105と、反射体110と、反射体110を揺動させるための第一揺動部210及び第二揺動部220と、第三揺動部230とを備えている。本実施の形態では、反射体110の一部と、第一揺動部210の一部と、第二揺動部220の一部と、第三揺動部230の一部と、一対の基体105とは、1つの基板から不要部分を除去することにより一体的に成形されたものである。具体的に例えば、半導体製造過程で用いられるエッチング技術を用いてシリコン基板の不要部分を除去することで、反射体110の一部と、第一揺動部210の一部と、第二揺動部220の一部と、第三揺動部230の一部と、一対の基体105とが一体的に形成されている。光学反射素子100は、いわゆるMEMS(メムス:Micro Electro Mechanical Systems)である。
 ここで、基板を構成する材料は、特に限定されるものではないが、金属、結晶体、ガラス、樹脂など機械的強度及び高いヤング率を有する材料が好ましい。具体的には、シリコン、チタン、ステンレス、エリンバー、黄銅合金などの金属や合金などが例示される。これら金属、合金などを用いれば、振動特性、加工性に優れた光学反射素子100を実現できる。
 反射体110は、揺動することで光を反射する部分である。反射体110の形状は、特に限定されるものではないが、本実施の形態の場合、反射体110は円形の板状であり、反射対象の光を高い反射率で反射することができる反射部111を表面に備えている。反射部111の材質は、任意に選定することができ、例えば、金、銀、銅、アルミニウムなどの金属や金属化合物などが挙げられる。また、反射部111は複数層で構成されたものでもよい。さらに、反射部111は、反射体110の表面を平滑に磨くことにより形成されてもかまわない。反射部111は、平面ばかりでなく曲面であってもよい。第一軸11は、反射体110の中心を通過する中心軸である。
 第一揺動部210及び第二揺動部220は、それぞれ第一軸に沿って反射体110を挟む位置に配置されている。具体的には、第一揺動部210は、反射体110よりもY軸マイナス方向に配置されており、第二揺動部220は、反射体110よりもY軸プラス方向に配置されている。
 第一揺動部210と第二揺動部220とは、基本的な構成は同様であり、光学反射素子100の中心点を基準とした点対称となるように配置されている。このため、第一揺動部210の具体的構成について詳細に説明し、第二揺動部220の具体的構造については簡単に説明する。
 第一揺動部210は、第一接続体211と、第一振動体212と、第二振動体213と、第一駆動体214と、第二駆動体215と、第二接続体216と、支持体2111とを備えている。
 第一接続体211は、第一軸11に沿って延設された長尺棒状の部位である。第一接続体211の先端部には、反射体110が連結されており、第一接続体211の基端部には、第一振動体212の基端部及び第二振動体213の基端部のそれぞれが連結されている。第一接続体211は、先端部で保持した反射体110に対して、動力を伝達するための部位である。具体的には、第一接続体211が第一軸11を中心にねじれた場合には、反射体110に対して第一軸11を中心とした回転揺動を伝達する。
 第一接続体211の形状は、特に限定されるものではないが、自身がねじれることにより反射体110を回転揺動させる部材であるため、反射体110よりも幅(図中X軸方向の長さ)の狭い細い棒状となっている。
 「第一軸11に沿う」とは、本実施の形態のように、第一接続体211が真っ直ぐに沿う場合ばかりでなく、第一接続体211が蛇行状に湾曲したり、ジグザグに屈曲したりしていても、仮想的に真っ直ぐな第一軸11に全体として沿う場合は、含まれるものとしている。
 また、本明細書、及び請求の範囲において「交差」とは、二本の線が接触する交差ばかりでなく二本の線が接触しない立体交差も含むものとして用いている。
 第一振動体212及び第二振動体213を含む振動体は、X軸方向に延在する部位であり、振動することにより反射体110を動作させるためのアーム状の部位である。具体的には、第一振動体212及び第二振動体213は、第一軸11を中心とする周方向に振動することにより、第一軸11を中心に反射体110を回転揺動させるためのトルクを発生させる。
 第一振動体212は、第一軸11と交差する方向に配置され、第一接続体211の基端部に連結されている。第二振動体213は、第一軸11に対し第一振動体212の逆側において第一軸11と交差する方向に配置され、第一接続体211の基端部に連結されている。
 本実施の形態の場合、第一振動体212は、X軸方向に延在する矩形棒状の部材であり、第二振動体213は、X軸方向において第一振動体212の逆方向に延在する矩形棒状の部材である。
 また、第一振動体212の基端部と第二振動体213の基端部とは連結体217により一体に連結されている。これにより、第一振動体212と第二振動体213とは、第一軸11を中心にして直交方向に延在する真っ直ぐな棒状となっている。
 第一駆動体214及び第二駆動体215を含む駆動体は、振動体を振動させるための駆動力を発生させる部材である。第一駆動体214は、第一振動体212の先端部に連結され、第一振動体212を振動させる部材である。第二駆動体215は、第二振動体213の先端部に連結され、第二振動体213を振動させる部材である。
 第一駆動体214は、第一駆動本体部2141と、第一圧電素子2142とを備えている。第一駆動本体部2141は、基端部が第一振動体212の先端部に一体に連結され、第一軸11に沿って反射体110に向かって延在した棒状体である。第一駆動本体部2141の全長(Y軸方向の長さ)は、第一振動体212の全長(X軸方向の長さ)よりも長い。第一駆動本体部2141の表面には、第一圧電素子2142が設けられている。
 第一圧電素子2142は、第一駆動本体部2141の表面に第一軸11に沿って配置された細長い板形状の圧電素子である。第一圧電素子2142は、第一駆動体214の中央部を含む位置に配置されている。具体的には、第一圧電素子2142は、第一駆動本体部2141の全長にわたって配置されている。
 この第一圧電素子2142に周期的に変動する電圧を印加することにより第一圧電素子2142が伸縮を繰り返す。この第一圧電素子2142の動きに対応して第一駆動本体部2141が湾曲と復帰とを繰り返す。第一駆動本体部2141は、第一振動体212に連結している基端部よりも突出している先端部が大きく振動し、第一駆動体214全体の振動エネルギーが第一振動体212の先端に伝達する。
 第二駆動体215も第一駆動体214と同様に、第二駆動本体部2151と第二圧電素子2152とを備え、第一軸11を含み反射体110の表面に直交する仮想的な面に対し第一駆動体214と対称の位置に配置されている。第二駆動体215は、基端部が第二振動体213の先端に接続されている。また、第二駆動体215の動作も第一駆動体214の動作と同様である。
 本実施の形態の場合、圧電素子は、例えば、薄膜積層型圧電アクチュエータである。薄膜積層型圧電アクチュエータは、駆動本体部の表面に形成された、電極と圧電体とを厚さ方向に積層した積層体構造からなる。これによって、駆動体をより薄型にすることができる。
 なお、駆動体は、圧電素子の歪により振動するものばかりでなくともよい。その他の駆動体としては、例えば、磁場、電場との相互作用により力が発生する部材、装置などを備え、外部装置により発生させた磁場及び電場の少なくとも一方を変化させ、また自身が発生させる磁場及び電場の少なくとも一方を変化させることにより振動するものでもかまわない。また、圧電体を構成する材料としては、チタン酸ジルコン酸鉛(PZT)などの高い圧電定数を有する圧電体材料を例示することができる。
 第二接続体216は、第一振動体212及び第二振動体213を振動自在に接続する部位である。第二接続体216は、第一軸11に沿って配置されており、基端部が支持体2111に連結され、先端部が連結体217を介して第一振動体212の基端部及び第二振動体213の基端部に連結されている。
 第二接続体216の形状は、特に限定されるものではないが、第一振動体212及び第二振動体213の振動により自身がねじれることにより、支持体2111に対して第一接続体211のねじれを許容する部材であるため、第一接続体211よりもねじり剛性が高い棒状となっている。
 なお、第二接続体216も第一接続体211と同様、第一軸11に真っ直ぐに沿う場合ばかりでなく、蛇行状に湾曲したり、ジグザグに屈曲したりしていてもかまわない。このような場合も、第一軸11回りのねじり剛性を、第一接続体211と第二接続体216とで比較した場合、第一接続体211のねじり剛性が弱い。
 支持体2111は、X軸方向に長尺な部位であり、その中央部に第二接続体216の基端部が連結されている。支持体2111の両端部には、それぞれ第三揺動部230の第一補助体231と第二補助体232とが連結されている。
 次に、第二揺動部220の具体的構造について説明する。上述したように、第二揺動部220は、第一揺動部210と基本的な構成は同様である。第二揺動部220は、第一揺動部210に対して、光学反射素子100の中心点を基準とした点対称となるように配置されている。このため、第二揺動部220の各部と、第一揺動部210の各部との対応関係を中心に説明する。
 第二揺動部220は、第一接続体221と、第一振動体222と、第二振動体223と、第一駆動体224と、第二駆動体225と、第二接続体226と、支持体2211とを備えている。
 第一接続体221は、第一揺動部210の第一接続体211に対応する部位である。第一振動体222は、第一揺動部210の第一振動体212に対応する部位であり、第二振動体223は、第一揺動部210の第二振動体213に対応する部位である。第一振動体222及び第二振動体223は、第一揺動部210の第一振動体212及び第二振動体213に対してX軸方向における位置関係が逆となっている。第一振動体222の基端部と第二振動体223の基端部とは連結体227により一体に連結されている。
 第一駆動体224は、第一揺動部210の第一駆動体214に対応する部位であり、第二駆動体225は、第一揺動部210の第二駆動体215に対応する部位である。第一駆動体224及び第二駆動体225は、第一揺動部210の第一駆動体214及び第二駆動体225に対してX軸方向における位置関係が逆となっている。第一駆動体224は、第一駆動本体部2241と第一圧電素子2242とを有しており、これらが第一駆動体214の第一駆動本体部2141と第一圧電素子2142に対応している。第二駆動体225は、第二駆動本体部2251と第二圧電素子2252とを有しており、これらが第二駆動体215の第二駆動本体部2151と第二圧電素子2152に対応している。
 第二接続体226は、第一揺動部210の第二接続体216に対応する部位である。第二接続体226は、第一軸11に沿って配置されており、基端部が支持体2211に連結され、先端部が連結体227を介して第一振動体222の基端部及び第二振動体223の基端部に連結されている。
 支持体2211は、第一揺動部210の支持体2111に対応する部位である。支持体2211は、X軸方向に長尺な部位であり、その中央部に第二接続体226の基端部が連結されている。支持体2211の両端部には、それぞれ第三揺動部230の第一補助体231と第二補助体232とが連結されている。
 一対の基体105は、光学反射素子100を外部の構造部材などに取り付けるための部材であり、Y軸方向に長尺な棒形状を有している。具体的には、一対の基体105は、第一軸11を挟む位置に配置されている。一対の基体105の一方には、第三揺動部230の第一補助体231が連結され、他方には第二補助体232が連結されている。
 次に、第三揺動部230の具体的構造について説明する。
 第三揺動部230は、第一揺動部210及び第二揺動部220が第一軸11回りに同方向に回転揺動する際に、自らが振動することで第一揺動部210及び第二揺動部220に対して補助的な力を作用させる部位である。第三揺動部230は、第一補助体231と、第二補助体232とを備えている。
 第一補助体231は、第一軸11よりもX軸マイナス方向に配置されており、一対の基体105のうち、X軸マイナス方向に配置された一方の基体105に対して、第一揺動部210の支持体2111と第二揺動部220の支持体2211とを接続して動作させる。
 具体的には、第一補助体231は、第一補助本体2311と、第三圧電素子2312とを備えている。第一補助本体2311は、一方の基体105から各支持体2111、2211まで連続的に延設された、Y軸方向に長尺な矩形状の部位である。つまり、第一補助本体2311のX軸マイナス側の端部は、Y軸方向の全長にわたって一方の基体105に連結されている。第一補助本体2311のX軸プラス側の端部は、そのY軸方向マイナス側の角部が第一揺動部210の支持体2111に連結され、X軸マイナス側の角部が第二揺動部220の支持体2211に連結されている。第一補助本体2311は、第一揺動部210の第二駆動体215及び第二揺動部220の第一駆動体224のそれぞれとX軸方向で離間して配置されている。
 第三圧電素子2312は、第一補助本体2311の表面に第一軸11に沿って配置された細長い板形状の圧電素子である。第三圧電素子2312は、第一補助本体2311の中央部を含む位置に配置されている。具体的には、第三圧電素子2312は、第一補助本体2311の表面の略全体にわたって平面状に広がって配置されている。
 この第三圧電素子2312に周期的に変動する電圧を印加することにより第三圧電素子2312が伸縮を繰り返す。この第三圧電素子2312の動きに対応して第一補助本体2311が湾曲と復帰とを繰り返す。第一補助本体2311は、その全体の振動エネルギーが第一揺動部210の支持体2111と第二揺動部220の支持体2211とに伝達される。これにより、第一揺動部210の支持体2111と第二揺動部220の支持体2211とを揺動させることができる。
 第二補助体232は、第一軸11よりもX軸プラス方向に配置されており、一対の基体105のうち、X軸プラス方向に配置された他方の基体105に対して、第一揺動部210の支持体2111と第二揺動部220の支持体2211とを接続して動作させる。
 第二補助体232は、第一補助体231と基本的な構成は同様である。第二補助体232は、第一軸11を含み反射体110の表面に直交する仮想的な面に対し、第一補助体231と対称となるように配置されている。このため、第二補助体232の各部と、第一補助体231の各部との対応関係を中心に説明する。
 第二補助体232は、第二補助本体2321と、第四圧電素子2322とを備えている。第二補助本体2321は、第一補助本体2311に対応する部位であり、第四圧電素子2322は、第三圧電素子2312に対応する部位である。
 第二補助本体2321は、他方の基体105から各支持体2111、2211まで連続的に延設されている。第四圧電素子2322に周期的に変動する電圧を印加することにより第四圧電素子2322が伸縮を繰り返す。この第四圧電素子2322の動きに対応して第二補助本体2321が湾曲と復帰とを繰り返す。第二補助本体2321は、その全体の振動エネルギーが第一揺動部210の支持体2111と第二揺動部220の支持体2211とに伝達される。これにより、第一揺動部210の支持体2111と第二揺動部220の支持体2211とを揺動させることができる。
 なお、補助体は、圧電素子の歪により振動するものばかりでなくともよい。その他の補助体としては、例えば、磁場、電場との相互作用により力が発生する部材、装置などを備え、外部装置により発生させた磁場及び電場の少なくとも一方を変化させ、また自身が発生させる磁場及び電場の少なくとも一方を変化させることにより振動するものでもかまわない。
 (光制御システム)
 次に、上記の光学反射素子100を備えた光制御システム10について説明する。図2は、実施の形態1に係る光制御システム10の制御構成を示すブロック図である。
 図2に示すように、光制御システム10は、光学反射素子100と、光学反射素子100を制御する制御装置20とを備えている。光学反射素子100には、複数のモニタ素子が適切な位置に取り付けられている。モニタ素子は、各振動体の湾曲状態を歪みとして検出する素子である。モニタ素子からの出力を測定することにより反射体110の揺動の状態を正確にモニタリングすることができる。具体的には、第一揺動部210には、第一振動体212の歪みを検出する第一モニタ素子218と、第二振動体213の歪みを検出する第二モニタ素子219とが設けられている。第二揺動部220には、第一振動体222の歪みを検出する第一モニタ素子228と、第二振動体223の歪みを検出する第二モニタ素子229とが設けられている。
 制御装置20は、角度検出回路21と、駆動回路22と、制御回路23とを備えている。角度検出回路21は、各モニタ素子(第一モニタ素子218、228、第二モニタ素子219、229)からの検出信号を受信し、当該検出信号に基づいて、反射体110の角度情報を検出し、当該角度情報を制御回路23に出力する回路である。
 駆動回路22は、制御回路23からの駆動信号に基づいて、各圧電素子(第一圧電素子2142、2242、第二圧電素子2152、2252、第三圧電素子2312、第四圧電素子2322)に周期的な電圧を出力する回路である。
 制御回路23は、角度検出回路21から入力された反射体110の角度情報に基づき、反射体110が任意の角度となるように、駆動回路22に出力する駆動信号を調整する回路である。
 なお、ここでは、角度検出回路21と、駆動回路22と、制御回路23とが専用の回路である場合を例示した。しかしながら、制御装置20は、半導体装置、半導体集積回路(IC)、又はLSI(large scale integration)を含む一つ又は一つ以上の電子回路によって実行されてもよい。LSI又はICは、一つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。
 また、モニタ素子は、反射体110に設けられていてもよいし、光学反射素子100に設けられていなくてもよい。
 (動作)
 次に、光学反射素子100の動作について説明する。光学反射素子100は、制御装置20の制御に基づき動作する。制御装置20は、反射体110を第一軸11回りに回転揺動させる。つまり、制御装置20は、第一揺動部210及び第二揺動部220を、第一軸11回りに同じ方向に回転揺動させる。このとき、制御装置20は、第一揺動部210の第一駆動体214及び第二駆動体215のそれぞれにおいて、光学反射素子100の厚み方向での振動の方向が逆方向となる第一部位及び第二部位を発生させるように、第一揺動部210の第一駆動体214及び第二駆動体215を振動させる。同様に、制御装置20は、第二揺動部220の第一駆動体224及び第二駆動体225のそれぞれにおいて、厚み方向での振動の方向が逆方向となる第三部位及び第四部位を発生させるように、第二揺動部220の第一駆動体224及び第二駆動体225を振動させる。
 ここで、制御装置20は、第一揺動部210及び第二揺動部220の回転揺動を増幅させるように、第三揺動部230の第一補助体231及び第二補助体232を振動させる。
 以下、制御装置20による制御方法について説明する。
 図3は、実施の形態1に係る光学反射素子100を動作させるための駆動信号の一例を示す説明図である。駆動信号は、各圧電素子を周期的に変動するAC電圧を印加するための信号であり、各駆動体を振動可能な共振周波数となっている。図3では、駆動信号の一例として、第一駆動信号W1の波形と、第二駆動信号W2の波形とを一周期だけ図示している。第二駆動信号W2は、第一駆動信号W1に対して逆位相の波形となっている。制御装置20は、第一揺動部210の第一圧電素子2142と第二揺動部220の第二圧電素子2252とに第一駆動信号W1を付与し、第一揺動部210の第二圧電素子2152と第二揺動部220の第一圧電素子2242とに第二駆動信号W2を付与する。これにより、第一揺動部210及び第二揺動部220が、第一軸11回りに同方向に回転揺動する。
 このとき、制御装置20は、第一揺動部210及び第二揺動部220の回転揺動を増幅させるように、第三揺動部230の第一補助体231及び第二補助体232とを振動させる。具体的には、制御装置20は、第一補助体231の第三圧電素子2312に第二駆動信号W2を付与し、第四圧電素子2322に第一駆動信号W1を付与する。これにより、第一揺動部210及び第二揺動部220が振動するので、当該振動が第一揺動部210の支持体2111と、第二揺動部220の支持体2211とに伝達されて、第一揺動部210及び第二揺動部220の回転揺動が増幅される。
 ここで、第一揺動部210を例示して、第一駆動信号W1と第二駆動信号W2との具体例について説明する。第一駆動信号W1は、第一揺動部210の第一駆動体214及び第二駆動体215のそれぞれにおいて、厚み方向での振動の方向が逆方向となる第一部位214a、215a及び第二部位214b、215bを発生させるようなモードで共振する共振周波数に設定されている。つまり、第一駆動信号W1は、第一揺動部210の固有振動数に基づいて決定されているとも言える。第二駆動信号W2は、第一駆動信号W1に対して逆位相であるものの実質的に同じ周波数に設定されている。本実施の形態では、第一駆動信号W1と第二駆動信号W2とは、第一揺動部210の第一駆動体214及び第二駆動体215のそれぞれにおいて、第一部位214a、215aと第二部位214b、215bとの間に1つの変曲点を有するような固有モードで共振する周波数としている。なお、第一駆動信号W1と第二駆動信号W2とは、第一部位214a、215aと第二部位214b、215bとの間に2つ以上の変曲点を有するような固有モードで共振する周波数であってもよい。
 第二揺動部220においては、第一駆動信号W1が第二駆動体225に対応し、第二駆動信号W2が第一駆動体224に対応する。
 図4は、実施の形態1に係る光学反射素子100が動作している際の各部の状態を示す斜視図である。図4では、第三揺動部230の第一補助体231及び第二補助体232を破線で示している。
 図4に示すように、第一揺動部210では、制御装置20によって、第一圧電素子2142に第一駆動信号W1が付与され、第二圧電素子2152に第二駆動信号W2が付与されると、第一駆動体214及び第二駆動体215のそれぞれに、厚み方向で振動の方向が逆となる第一部位214a、215a及び第二部位214b、215bが発生する。具体的には、第一駆動体214では、第一部位214aは第一駆動体214の基端部であり、第二部位214bは、第一駆動体214の先端部である。第一駆動体214の第一部位214aがZ軸プラス方向に移動する(図4中、矢印Z11)と、第二部位214bがZ軸マイナス方向に移動する(図4中、矢印Z12)。逆に、第一駆動体214の第一部位214aがZ軸マイナス方向に移動すると、第二部位214bがZ軸プラス方向に移動する。
 第二駆動体215では、第一部位215aは第二駆動体215の先端部であり、第二部位215bは、第二駆動体215の基端部である。第二駆動体215の第一部位215aがZ軸プラス方向に移動する(図4中、矢印Z21)と、第二部位215bがZ軸マイナス方向に移動する(図4中、矢印Z22)。逆に、第二駆動体215の第一部位215aがZ軸マイナス方向に移動すると、第二部位215bがZ軸プラス方向に移動する。
 これにより、第一揺動部210では、第一駆動体214及び第一振動体212と、第二駆動体215及び第二振動体213とが第一軸11を中心にした周方向で、同一方向に回転揺動する。
 一方、第二揺動部220では、制御装置20によって、第二圧電素子2252に第一駆動信号W1が付与され、第一圧電素子2242に第二駆動信号W2が付与されると、第一駆動体224及び第二駆動体225のそれぞれに、厚み方向での振動の方向が逆となる第三部位224c、225c及び第四部位224d、225dが発生する。具体的には、第一駆動体224では、第三部位224cは第一駆動体224の先端部であり、第四部位224dは、第一駆動体224の基端部である。第一駆動体224の第三部位224cがZ軸プラス方向に移動(図4中、矢印Z31)すると、第四部位224dがZ軸マイナス方向に移動する(図4中、矢印Z32参照)。逆に、第一駆動体224の第三部位224cがZ軸マイナス方向に移動すると、第四部位224dがZ軸プラス方向に移動する。
 第二駆動体225では、第三部位225cは第二駆動体225の基端部であり、第四部位225dは、第二駆動体225の先端部である。第二駆動体225の第三部位225cがZ軸プラス方向に移動する(図4中、矢印Z41)と、第四部位225dがZ軸マイナス方向に移動する(図4中、矢印Z42)。逆に、第二駆動体225の第三部位225cがZ軸マイナス方向に移動すると、第四部位225dがZ軸プラス方向に移動する。つまり、第二揺動部220においても、第一揺動部210と同様に、第一駆動体224及び第一振動体222と、第二駆動体225及び第二振動体223とが第一軸11を中心にした周方向で、同一方向に回転揺動する。
 このように、第一揺動部210と第二揺動部220とが第一軸11回りに同じ方向に回転揺動すると、第一接続体211、221には、第一軸11を中心としたねじれが生じるので、反射体110も第一軸11を中心にして回転揺動することなる(図1における矢印Y1参照)。本実施の形態では、第一揺動部210と第二揺動部220とが第一軸11回りに同じ方向で回転揺動すると、反射体110もこれらと同じ方向で第一軸11を中心にして回転揺動する。
 図5は、実施の形態1に係る駆動体(第一駆動体214、224及び第二駆動体215、225)に対して、変曲点を発生させない共振周波数を付与した場合(第1モード)と、変曲点を発生させる共振周波数を付与した場合(第2モード)との各振動を模式的に示したグラフである。第1モードよりも第2モードの方が、駆動体の基端部の変位が大きいことがわかる。これにより、第一振動体212、222及び第二振動体213、223も大きく回転揺動するので、第一接続体211、221も大きくねじられる。したがって、反射体110の触れ角も大きくなる。
 第三揺動部230では、制御装置20によって、第三圧電素子2312に第二駆動信号W2が付与され、第四圧電素子2322に第一駆動信号W1が付与されると、第一補助体231と第二補助体232とが厚み方向で逆方向に振動する。具体的には、第一補助体231がZ軸マイナス方向に移動した場合(図4中、矢印Z52)には、第二補助体232がZ軸プラス方向に移動する(図4中、矢印Z51)。逆に、第一補助体231がZ軸プラス方向に移動した場合には、第二補助体232がZ軸マイナス方向に移動する。この振動が繰り返されることで、第一揺動部210の支持体2111及び第二揺動部の支持体2211が第一軸11を中心にした周方向で回転揺動する(図4中、矢印Z60)。支持体2111、2211の回転揺動は、第一揺動部210と第二揺動部220との回転揺動と同じ方向である。このため、支持体2111、2211の回転揺動が、第一揺動部210及び第二揺動部220に伝達されることで、第一揺動部210及び第二揺動部220の回転揺動が増幅される。つまり、反射体110の回転揺動も増幅される。
 (効果など)
 以上のように、本実施の形態によれば、光を反射して往復動させる光学反射素子100は、光を反射する反射体110と、それぞれ第一軸11に沿って反射体110を挟む位置に配置され、反射体110を揺動させるための第一揺動部210及び第二揺動部220と、第一揺動部210及び第二揺動部220を揺動させるための第三揺動部230と、を備えている。第一揺動部210及び第二揺動部220のそれぞれは、第一軸11に沿って配置され、反射体110と先端部が連結される第一接続体211、221と、第一軸11と交差する方向に延在し、第一接続体211、221の基端部に連結される第一振動体212、222と、第一軸11に対し第一振動体212、222の逆側において第一軸11と交差する方向に延在し、第一接続体211、221の基端部に連結される第二振動体213、223と、第一軸11に沿って延在し、基端部が第一振動体212、222の先端部に連結され、第一振動体212、222を介して第一接続体211、221を動作させる第一駆動体214、224と、第一軸11に沿って延在し、基端部が第二振動体213、223の先端部に連結され、第二振動体213、223を介して第一接続体211、221を動作させる第二駆動体215、225と、第一軸11と交差する方向に延在した支持体2111、2211と、支持体2111、2211に対し第一振動体212、222及び第二振動体213、223を振動自在に接続する第二接続体216、226とを備えている。第三揺動部230は、第一軸11を挟む位置に配置された一対の基体のうち一方の基体105に対して、第一揺動部210の支持体2111と、第二揺動部220の支持体2211とを接続して動作させる第一補助体231と、一対の基体105のうち他方の基体105に対して、第一揺動部210の支持体2111と、第二揺動部220の支持体2211とを接続して動作させる第二補助体232と、を備えている。
 また、本実施の形態によれば、光制御システム10は、上記光学反射素子100と、光学反射素子100を制御する制御装置20とを備えている。制御装置20は、第一揺動部210及び第二揺動部220が第一軸11回りに同じ方向に回転揺動するように、第一揺動部210の第一駆動体214及び第二駆動体215と、第二揺動部220の第一駆動体224及び第二駆動体225と、第三揺動部230の第一補助体231及び第二補助体232とを振動させる。
 これによれば、第三揺動部230の第一補助体231が第一揺動部210の支持体2111と第二揺動部220の支持体2211とに接続されるとともに、第二補助体232が第一揺動部210の支持体2111と第二揺動部220の支持体2211とに接続されている。このため、制御装置20が第一補助体231と第二補助体232とを厚み方向で逆方向に振動させれば、その振動が支持体2111、2211を介して第一揺動部210及び第二揺動部220に伝達される。つまり、第一揺動部210及び第二揺動部220の回転揺動を増幅することができる。これにより、第一接続体211、221も大きくねじられて、反射体110の触れ角も大きくすることができる。したがって、反射体110の揺動範囲を広げることができ、光学反射素子100の性能を高めることが可能である。
 また、第一駆動体214、224は第一圧電素子2142、2242を備え、第二駆動体215、225は第二圧電素子2152、2252を備えている。第一補助体231は、一方の基体105から第一揺動部210の支持体2111及び第二揺動部220の支持体2211まで連続的に延設された第一補助本体2311と、第一補助本体2311の表面の略全体に積層された第三圧電素子2312とを備えている。第二補助体232は、他方の基体105から第一揺動部210の支持体2111及び第二揺動部220の支持体2211まで連続的に延設された第二補助本体2321と、第二補助本体2321の表面の略全体に積層された第四圧電素子2322とを備えている。
 これによれば、第三圧電素子2312が第一補助本体2311の表面の略全体に積層され、第四圧電素子2322が第二補助本体2321の表面の略全体に積層されているので、第三圧電素子2312及び第四圧電素子2322を広範囲に積層することができる。これにより、第三圧電素子2312及び第四圧電素子2322の体積を比較的大きくすることができる。第三圧電素子2312及び第四圧電素子2322の体積が大きければそれだけ大きな振動を発生できるので、結果として第一揺動部210及び第二揺動部220の回転揺動をより増幅することができる。したがって、反射体110の揺動範囲をより広げることができ、光学反射素子100の性能をより高めることが可能である。
 また、第一駆動体214、224及び第二駆動体215、225のそれぞれの全長は、第一振動体212、222及び第二振動体213、223のそれぞれの全長よりも長い。
 これによれば、例えば、第一駆動体214の全長が、第一振動体212の全長よりも長いので、第一駆動体214の基端部に対する回転トルクを大きくすることができる。これは、他の駆動体(第一駆動体224、第二駆動体215、225)においても同様である。このように、各第一駆動体の基端部に対する回転トルクが増加されるので、駆動効率を高めることが可能である。
 なお、駆動体(第一駆動体214、224、第二駆動体215、225)の全長と、振動体(第一振動体212、222、第二振動体213、223)の全長との比率は、0.15以上0.5以下であることが好ましい。この関係性であれば駆動体の基端部に対する回転トルクを好適に増加させることが可能である。また、各振動体よりも全長の長い各駆動体においては、その全長にわたって圧電素子(第一圧電素子2142、2242、第二圧電素子2152、2252)が設けられている。このため、圧電素子の体積を比較的大きくすることができる。圧電素子の体積が大きければそれだけ大きな振動を各駆動体に発生させることができるので、駆動効率も高められる。
 [実施の形態2]
 次に、実施の形態2について説明する。なお、以降の説明において、上記実施の形態1と同一の部分については、同一の符号を付してその説明を省略する場合がある。
 実施の形態1では、第一揺動部210と第二揺動部220とが第一軸11回りに同じ方向に回転揺動すると、反射体110もこれらと同じ方向に第一軸11を中心にして回転揺動する場合を例示した。実施の形態2では、第一揺動部210と第二揺動部220とが第一軸11回りに同じ方向に回転揺動すると、反射体110がこれらとは逆方向に回転揺動する場合について説明する。また、実施の形態2では、実施の形態1の光学反射素子100を例示してその制御方法について説明する。
 具体的には、各第一接続体211、221は、例えば、第一駆動信号W1と第二駆動信号W2とが、第一駆動体214、224及び第二駆動体215、225に付与された場合に、奇数の節が発生する形状を有している。例えば、各第一接続体211、221の全長、断面形状、外形などを調整することにより、奇数の節が発生する形状としている。
 図6は、実施の形態2に係る光学反射素子100に発生した節を示す模式図である。図6では、第三揺動部230の図示は省略している。図6に示すように、第一接続体211、221のそれぞれの中間位置に1つの節211s、221sが発生している。ここで、「節」とは、その周辺位置で第一接続体211、221のねじれの方向が反転する部位を言う。
 制御装置20の制御によって、第一接続体211、221の基端部で、第一軸11回りに反時計回りの回転(図6の矢印Y11)が生まれる際には、節211s、221sよりも先端部では第一軸11回りに時計回りの回転(図6の矢印Y12)が生まれる。これにより、反射体110も時計回りに回転する。逆に、第一接続体211、221の基端部で、第一軸11回りに時計回りの回転が生まれる際には、節211s、221sよりも先端部では第一軸11回りに反時計回りの回転が生まれる。これにより、反射体110も反時計回りに回転する。
 つまり、これらの動作が繰り返し行われることで、第一揺動部210と第二揺動部220とが第一軸11回りに同じ方向に回転揺動すると、反射体110は、第一揺動部210と第二揺動部220とは逆方向に回転揺動する。
 (効果など)
 以上のように、本実施の形態によれば、第一揺動部210及び第二揺動部220のそれぞれの第一接続体211、221は、第一揺動部210及び第二揺動部220が同じ方向に回転揺動される際に、奇数の節211s、221sが発生する形状を有する。
 これによれば、第一揺動部210と第二揺動部220とが第一軸11回りに同じ方向に回転揺動すると、反射体110は、これらとは逆方向に回転揺動する。このとき、第一接続体211、221内では、節211s、221sを基準としてねじれの方向が反転しているので、振動の閉じ込め効果が発生する。これにより、反射体110を回転させるための共振モード、つまり光学反射素子100が有する共振モード(駆動モード)の共振尖鋭度(Q値)が高くなる。共振尖鋭度(Q値)が高くなれば、反射体110の振れ角特性を高くすることができる。つまり、実施の形態3では、実施の形態1の反射体110よりも大きな範囲で反射体110を回転揺動させることが可能である。
 なお、本実施の形態では、第一接続体211、221のそれぞれに1つの節211s、221sが発生する場合を例示したが、1つの接続体に対する節の発生個数は3以上の奇数であってもよい。節の発生個数が奇数であれば、第一揺動部210と第二揺動部220とが第一軸11回りに同じ方向に回転揺動すると、反射体110が、これらとは逆方向に回転揺動することになる。
 また、制御装置20は、第一揺動部210及び第二揺動部220を同じ方向に揺動させる際に、第一揺動部210の第一駆動体214及び第二駆動体215のそれぞれにおいて、厚み方向での振動の方向が逆方向となる第一部位214a、215a及び第二部位214b、215bを発生させるように、第一揺動部210の第一駆動体214及び第二駆動体215を振動させるとともに、第二揺動部220の第一駆動体224及び第二駆動体225のそれぞれにおいて、厚み方向での振動の方向が逆方向となる第三部位224c、225c及び第四部位224d、225dを発生させるように、第二揺動部220の第一駆動体224及び第二駆動体225を振動させる。
 これによれば、第一揺動部210の第一駆動体214及び第二駆動体215のそれぞれにおいて、厚み方向での振動の方向が逆方向となる第一部位214a、215a及び第二部位214b、215bが発生する。これにより、第一駆動体214及び第二駆動体215のそれぞれの基端部での変位を大きくすることができる。
 一方、第二揺動部220の第一駆動体224及び第二駆動体225のそれぞれにおいて、厚み方向での振動の方向が逆方向となる第三部位224c、225c及び第四部位224d、225dが発生する。これにより、第一駆動体224及び第二駆動体225のそれぞれの基端部での変位を大きくすることができる。
 これらのことにより、第一振動体212、222及び第二振動体213、223も大きく回転揺動するので、第一接続体211、221も大きくねじられて、反射体110の触れ角もより大きくすることができる。したがって、反射体110の揺動範囲をより広げることができ、光学反射素子100の性能を一層高めることが可能である。
 [実施の形態3]
 次に、実施の形態3について説明する。なお、以降の説明において、上記実施の形態1と同一の部分については、同一の符号を付してその説明を省略する場合がある。
 上記実施の形態では、第三揺動部230において第一補助体231と第二補助体232とが、第一揺動部210の支持体2111から第二揺動部220の支持体2211まで連続している場合を例示した。しかしながら、第一補助体及び第二補助体のそれぞれは分割されていてもよい。
 図7は、実施の形態3に係る光学反射素子100Aを示す平面図である。図7に示すように、実施の形態3に係る光学反射素子100Aでは、第三揺動部230aにおける第一補助体231a及び第二補助体232aのそれぞれがY軸方向で分割されている。
 具体的には、第一補助体231aは、一対の第一補助本体2311aと、一対の第三圧電素子2312aとを備えている。一対の第一補助本体2311は、Y軸方向で離間して配置されている。一対の第一補助本体2311のうち、一方の第一補助本体2311は、X軸方向に長尺な形状であり、第一揺動部210の支持体2111と一方の基体105とを連結している。一方の第一補助本体2311の表面には、一対の第三圧電素子2312aのうち一方の第三圧電素子2312aが積層されている。
 また、一対の第一補助本体2311のうち、他方の第一補助本体2311は、X軸方向に長尺な形状であり、第二揺動部220の支持体2211と一方の基体105とを連結している。他方の第一補助本体2311の表面には、一対の第三圧電素子2312aのうち他方の第三圧電素子2312aが積層されている。
 また、第二補助体232aは、一対の第二補助本体2321aと、一対の第四圧電素子2322aとを備えている。第二補助体232aは、基本的には第一補助体231aと同様なので詳細については省略する。
 この場合、第一揺動部210と第二揺動部220とが第一軸11回りに同じ方向に回転揺動する際に、制御装置20が、一対の第四圧電素子2322aに第一駆動信号W1を付与し、一対の第三圧電素子2312aに第二駆動信号W2を付与することで、第一揺動部210と第二揺動部220との回転揺動を増幅することが可能である。
 なお、本実施の形態では、第一補助体231a及び第二補助体232aのそれぞれがY軸方向で分割されている場合を例示したが、X軸方向で分割されていてもよい。
 [実施の形態4]
 次に、実施の形態4について説明する。なお、以降の説明において、上記実施の形態1と同一の部分については、同一の符号を付してその説明を省略する場合がある。
 実施の形態4では、第一振動体及び第二振動体に圧電素子が設けられた光学反射素子100Bを例示する。図8は、実施の形態4に係る光学反射素子100Bを示す平面図である。具体的には、図8は図1に対応する図である。なお、ここでは、補助体についての説明は省略する。
 図8に示すように、光学反射素子100Bの第一揺動部210bでは、第一振動体212bが第五圧電素子2122を備え、第二振動体213bが第六圧電素子2132を備えている。具体的には、第一振動体212bの表面には、第五圧電素子2122が配置されている。第五圧電素子2122は、第一振動体212bの中央部を含む位置に配置されている。本実施の形態では、第五圧電素子2122は、第一振動体212bの全長にわたって配置されている。前述したように第一圧電素子2142は、第一駆動体214の全長にわたって配置されている。このため、第一駆動体214と第一振動体212bとが振動したときに発生する第一駆動体214と第一振動体212bとの全体における変曲点は、第一圧電素子2142内に含まれている。つまり、第一振動体212bの基点と、変曲点との間には、第五圧電素子2122の全体と、第一圧電素子2142の少なくとも一部とが含まれることになる。
 一方、第二振動体213bの表面には、第六圧電素子2132が配置されている。第六圧電素子2132は、第二振動体213bの中央部を含む位置に配置されている。本実施の形態では、第六圧電素子2132は、第二振動体213bの全長にわたって配置されている。前述したように第二圧電素子2152は、第二駆動体215の全長にわたって配置されている。このため、第二駆動体215と第二振動体213bとが振動したときに発生する第二駆動体215と第二振動体213bとの全体における変曲点は、第二圧電素子2152内に含まれている。つまり、第二振動体213bの基点と、変曲点との間には、第六圧電素子2132の全体と、第二圧電素子2152の少なくとも一部とが含まれることになる。
 なお、第二揺動部220bにおいても、第一振動体222bが第六圧電素子2222を備え、第二振動体223bが第六圧電素子2232を備えているが、基本的には、第一揺動部210bと同様なのでそれらの説明については省略する。
 これらの第五圧電素子2122、2222と、第六圧電素子2132、2232とは、それぞれ制御装置20に電気的に接続されている。制御装置20は、第一揺動部210b及び第二揺動部220bを、第一軸11回りに同じ方向に回転するように回転揺動させる際に、第五圧電素子2122、2222と、第六圧電素子2132、2232とを振動させる。
 具体的には、制御装置20は、第一揺動部210bの第一圧電素子2142と第六圧電素子2132と、第二揺動部220bの第二圧電素子2252と第五圧電素子2222とに第一駆動信号W1を付与し、第一揺動部210bの第二圧電素子2152と第五圧電素子2122と、第二揺動部220bの第一圧電素子2242と第六圧電素子2232とに第二駆動信号W2を付与する。
 これにより、第一揺動部210bでは、第一振動体212bが第一駆動体214とは厚み方向とは逆方向に振動し、第二振動体213bが第二駆動体215とは厚み方向で逆方向に振動する。一方、第二揺動部220bでは、第一振動体222aが第一駆動体224とは厚み方向で逆方向に振動しながら、第二振動体223bが第二駆動体225とは厚み方向で逆方向に振動する。これにより、例えば、第一駆動体214では、第一振動体212bの振動の刺激によって励振されるので、より大きく振動する。これは、各駆動体でも同様であるので、第一揺動部210b及び第二揺動部220bのそれぞれが大きく回転揺動することになる。
 (効果など)
 以上のように、本実施の形態によれば、制御装置20は、第一揺動部210bの第一振動体212bを第一駆動体214とは厚み方向で逆方向に振動させながら、第一揺動部210bの第二振動体213bを第二駆動体215とは厚み方向で逆方向に振動させるとともに、第二揺動部220bの第一振動体222bを第一駆動体224とは厚み方向で逆方向に振動させながら、第二揺動部220bの第二振動体223bを第二駆動体225とは厚み方向で逆方向に振動させる。
 これによれば、各振動体の振動が各駆動体を励振させるので、各駆動体の振動を増幅することができる。したがって、第一揺動部210b及び第二揺動部220bのそれぞれが大きく回転揺動することになり、駆動効率を高めることができる。
 また、第一振動体212b、222bは、第五圧電素子2122、2222を備えている。第二振動体213b、223bは、第六圧電素子2132、2232を備えている。第一圧電素子2142、2242は、第一駆動体214、224及び第一振動体212b、222bの全体において、振動時における変曲点を含む位置に配置されている。第二圧電素子2152、2252は、第二駆動体215、225及び第二振動体213b、223bの全体において、振動時における変曲点を含む位置に配置されている。
 これによれば、第一駆動体214、224と第一振動体212b、222bとの全体において、第一振動体212b、222bの基点と変曲点との間には、第五圧電素子2122、2222の全体と第一圧電素子2142、2242の少なくとも一部とが含まれることになる。つまり、第一振動体212b、222bの基点と変曲点との間に複数の圧電素子が含まれるので、第一駆動体214、224と第一振動体212b、222bとを励振させやすくすることができる。
 同様に、第二駆動体215、225と第二振動体213b、223bとの全体において、第二振動体213b、223bの基点と変曲点との間には、第六圧電素子2132、2232の全体と第二圧電素子2152、2252の少なくとも一部とが含まれることになる。つまり、第二振動体213b、223bの基点と変曲点との間に複数の圧電素子が含まれるので、第二駆動体215、225と第二振動体213b、223bとを励振させやすくすることができる。
 [実施の形態5]
 次に、実施の形態5について説明する。なお、以降の説明において、上記実施の形態1と同一の部分については、同一の符号を付してその説明を省略する場合がある。
 上記実施の形態1では、円板状の反射体110を例示したが、この実施の形態5では、円板状の反射体110よりも応力緩和効果の高い反射体110bについて説明する。
 図9は、実施の形態5に係る反射体110bを示す平面図である。図9に示すように、反射体110bは、反射体本体114と、複数の柱部115と、枠体116とを備えている。
 反射体本体114は、円板状であり、その表面に反射部111が設けられている。複数の柱部115は、反射体本体114の周縁から周方向に所定の間隔をあけて配置されている。各柱部115は、反射体本体114の外周面から外方に向けて突出している。枠体116は、円環状であり、反射体本体114と同心円上となるように配置されている。枠体116は、複数の柱部115の先端部に連結されている。枠体116の外周面には、第一揺動部210の第一接続体211の先端部と、第二揺動部220の第一接続体221の先端部とが接続されている。このため、第一接続体211、221からのねじれや振動は、枠体116及び複数の柱部115を介して、反射体本体114に伝達される。つまり、反射体本体114には、第一接続体211、221からのねじれや振動が直接的に伝達されないために、反射体本体114に付与される応力が緩和されている。
 なお、応力緩和効果が得られるのであれば、反射体の形状は如何様でもよい。図10は、実施の形態5に係る反射体110cの変形例を示す平面図である。図10に示すように、反射体110cは、柱部を有しておらず、枠体116cが略六角環状である。枠体116cには、Y軸方向で対向する一対の角部に、第一揺動部210の第一接続体211の先端部と、第二揺動部220の第一接続体221の先端部とが接合されている。また、枠体116cの内方には、X軸方向で対向する一対の辺に反射体本体114cが接合されている。このように枠体116cの一部と、反射体本体114cとの間に隙間を有した反射体110cにおいても応力緩和効果を得ることができる。
 [その他]
 なお、本発明は、上記実施の形態に限定されるものではない。例えば、本明細書において記載した構成要素を任意に組み合わせて、また、構成要素のいくつかを除外して実現される別の実施の形態を本発明の実施の形態としてもよい。また、上記実施の形態に対して本発明の主旨、すなわち、請求の範囲に記載される文言が示す意味を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本発明に含まれる。
 例えば、上記実施の形態1では、第一揺動部210の第一駆動体214及び第二駆動体215のそれぞれにおいて、厚み方向で逆方向に振動する第一部位214a、215a及び第二部位214b、215bが発生していた。つまり、例えば、第一駆動体214では、逆方向に振動する箇所が二箇所(第一部位214a、第二部位214b)発生し、第二駆動体215では、逆方向に振動する箇所が二箇所(第一部位215a、第二部位215b)発生している場合を例示した。しかしながら、1つの駆動体内において、逆方向に振動する箇所は、3箇所以上設けられていてもよい。これは、第二揺動部220の第一駆動体224及び第二駆動体225のそれぞれにおいても同様である。
 また、上記実施の形態1では、第一揺動部210と第二揺動部220との2つの揺動部を備えた光制御システム10を例示した。しかしながら、光制御システムには揺動部が一つのみ備えられていてもよい。
 つまり、光学反射素子は、光を反射する反射体と、第一軸に沿って反射体と並び、当該反射体を揺動させるための主揺動部と、第一軸に沿って配置され、主揺動部の揺動を反射体に伝えるための第一接続体と、主揺動部を揺動させるための副揺動部と、を備えている。主揺動部は、第一軸と交差する方向に延在し、第一接続体の基端部に連結される第一振動体と、第一軸に対し、第一振動体の逆側において第一軸と交差する方向に延在し、第一接続体の基端部に連結される第二振動体と、第一軸に沿って延在し、基端部が第一振動体の先端部に連結され、第一振動体を介して第一接続体を動作させる第一駆動体と、第一軸に沿って延在し、基端部が第二振動体の先端部に連結され、第二振動体を介して第一接続体を動作させる第二駆動体と、副揺動部の支持体に対し第一振動体及び第二振動体を振動自在に接続する第二接続体とを備えている。副揺動部は、第一軸と交差する方向に延在した支持体と、一対の基体と、一対の基体のうち一方の基体に対して、支持体を接続して動作させる第一補助体と、一対の基体のうち他方の基体に対して、支持体を接続して動作させる第二補助体と、を備えていてもよい。
 このとき、光制御システムの制御装置は、主揺動部が第一軸回りに回転揺動するように、主揺動部の第一駆動体及び第二駆動体と、副揺動部の第一補助体及び第二補助体とを振動させる。
 例えば、上記実施の形態1から第二揺動部220を除いた場合、主揺動部は第一揺動部210に対応し、副揺動部は、一対の基体105及び第三揺動部230に対応する。なお、この場合、支持体2111を副揺動部の一部とすることで、主揺動部と副揺動部とのそれぞれの振動を効果的に重畳させることができる。
 この場合においても、副揺動部の回転揺動によって主揺動部の回転揺動を増幅することができる。これにより、第一接続体も大きくねじられて、反射体の触れ角も大きくすることができる。したがって、反射体の揺動範囲を広げることができ、光学反射素子の性能を高めることが可能である。
 また、この場合、主揺動部と副揺動部との共振周波数が同一であれば、安定した増幅効果が得られ、好ましい。特に、主揺動部と副揺動部とを連結した構造体と、反射体と第一接続体とを連結した構造体との共振周波数が同一であれば、より好ましい。
 本発明は、例えば小型のディスプレイ装置、小型のプロジェクタ、車載用のヘッドアップディスプレイ装置、電子写真方式の複写機、レーザープリンタ、光学スキャナ、光学レーダーなどの光学装置に利用することができる。
10 光制御システム
11 第一軸
20 制御装置
21 角度検出回路
22 駆動回路
23 制御回路
100、100A 光学反射素子
105 基体
110、110b、110c 反射体
111 反射部
114、114c 反射体本体
115 柱部
116、116c 枠体
210、210a、210b 第一揺動部
211、221 第一接続体
211s、221s 節
212、212b、222、222b 第一振動体
213、213b、223、223b 第二振動体
214、224 第一駆動体
214a、215a 第一部位
214b、215b 第二部位
215、225 第二駆動体
216、226 第二接続体
217、227 連結体
218、228 第一モニタ素子
219、229 第二モニタ素子
220、220a、220b 第二揺動部
224c、225c 第三部位
224d、225d 第四部位
230、230a 第三揺動部
231、231a 第一補助体
232、232a 第二補助体
2111、2211 支持体
2122、2222 第五圧電素子
2132、2232 第六圧電素子
2141、2241 第一駆動本体部
2142、2242 第一圧電素子
2151、2251 第二駆動本体部
2152、2252 第二圧電素子
2311、2311a 第一補助本体
2312、2312a 第三圧電素子
2321、2321a 第二補助本体
2322、2322a 第四圧電素子
W1 第一駆動信号
W2 第二駆動信号

Claims (18)

  1.  光を反射して往復動させる光学反射素子であって、
     前記光を反射する反射体と、
     それぞれ第一軸に沿って前記反射体を挟む位置に配置され、前記反射体を揺動させるための第一揺動部及び第二揺動部と、前記第一揺動部及び前記第二揺動部を揺動させるための第三揺動部と、を備え、
     前記第一揺動部及び前記第二揺動部のそれぞれは、
     前記第一軸に沿って配置され、前記反射体と先端部が連結される第一接続体と、
     前記第一軸と交差する方向に延在し、前記第一接続体の基端部に連結される第一振動体と、
     前記第一軸に対し前記第一振動体の逆側において前記第一軸と交差する方向に延在し、前記第一接続体の基端部に連結される第二振動体と、
     前記第一軸に沿って延在し、基端部が前記第一振動体の先端部に連結され、前記第一振動体を介して前記第一接続体を動作させる第一駆動体と、
     前記第一軸に沿って延在し、基端部が前記第二振動体の先端部に連結され、前記第二振動体を介して前記第一接続体を動作させる第二駆動体と、
     前記第一軸と交差する方向に延在した支持体と、
     前記支持体に対し前記第一振動体及び前記第二振動体を振動自在に接続する第二接続体とを備え、
     前記第三揺動部は、
     前記第一軸を挟む位置に配置された一対の基体のうち一方の基体に対して、前記第一揺動部の前記支持体と、前記第二揺動部の支持体とを接続して動作させる第一補助体と、
     前記一対の基体のうち他方の基体に対して、前記第一揺動部の前記支持体と、前記第二揺動部の支持体とを接続して動作させる第二補助体と、を備える
     光学反射素子。
  2.  前記第一駆動体は、第一圧電素子を備え、
     前記第二駆動体は、第二圧電素子を備え、
     前記第一補助体は、前記一方の基体から前記第一揺動部の前記支持体及び前記第二揺動部の支持体まで連続的に延設された第一補助本体と、前記第一補助本体の表面の略全体に積層された第三圧電素子とを備え、
     前記第二補助体は、前記他方の基体から前記第一揺動部の前記支持体及び前記第二揺動部の支持体まで連続的に延設された第二補助本体と、前記第二補助本体の表面の略全体に積層された第四圧電素子とを備えている
     請求項1に記載の光学反射素子。
  3.  前記第一振動体は、第五圧電素子を備え、
     前記第二振動体は、第六圧電素子を備えている
     請求項2に記載の光学反射素子。
  4.  前記第一圧電素子は、前記第一駆動体及び前記第一振動体の全体において、振動時における変曲点を含む位置に配置されており、
     前記第二圧電素子は、前記第二駆動体及び前記第二振動体の全体において、振動時における変曲点を含む位置に配置されている
     請求項2または3に記載の光学反射素子。
  5.  前記第一駆動体及び前記第二駆動体のそれぞれの全長は、前記第一振動体及び前記第二振動体のそれぞれの全長よりも長い
     請求項1~4のいずれか一項に記載の光学反射素子。
  6.  前記第一揺動部及び前記第二揺動部のそれぞれの前記第一接続体は、前記第一揺動部及び前記第二揺動部が同じ方向に揺動される際に、奇数の節が発生する形状を有する
     請求項1~5のいずれか一項に記載の光学反射素子。
  7.  請求項1~6のいずれか一項に記載の光学反射素子と、前記光学反射素子を制御する制御装置とを備えた光制御システムであって、
     前記制御装置は、前記第一揺動部及び前記第二揺動部が前記第一軸回りに同じ方向に回転揺動するように、前記第一揺動部の前記第一駆動体及び前記第二駆動体と、前記第二揺動部の前記第一駆動体及び前記第二駆動体と、前記第三揺動部の前記第一補助体及び前記第二補助体とを振動させる
     光制御システム。
  8.  前記制御装置は、前記第一揺動部及び前記第二揺動部を前記第一軸回りに同じ方向で回転揺動させる際に、
     前記第一揺動部の前記第一駆動体及び前記第二駆動体のそれぞれにおいて、前記光学反射素子の厚み方向での振動の方向が逆方向となる第一部位及び第二部位を発生させるように、前記第一揺動部の前記第一駆動体及び前記第二駆動体を振動させるとともに、
     前記第二揺動部の前記第一駆動体及び前記第二駆動体のそれぞれにおいて、前記厚み方向での振動の方向が逆方向となる第三部位及び第四部位を発生させるように、前記第二揺動部の前記第一駆動体及び前記第二駆動体を振動させる
     請求項7に記載の光制御システム。
  9.  光を反射して往復動させる光学反射素子であって、
     前記光を反射する反射体と、
     第一軸に沿って前記反射体と並び、当該反射体を揺動させるための主揺動部と、
     前記第一軸に沿って配置され、前記主揺動部の揺動を反射体に伝えるための第一接続体と、
     前記主揺動部を揺動させるための副揺動部と、を備え、
     前記主揺動部は、
     前記第一軸と交差する方向に延在し、前記第一接続体の基端部に連結される第一振動体と、
     前記第一軸に対し、前記第一振動体の逆側において前記第一軸と交差する方向に延在し、前記第一接続体の基端部に連結される第二振動体と、
     前記第一軸に沿って延在し、基端部が前記第一振動体の先端部に連結され、前記第一振動体を介して前記第一接続体を動作させる第一駆動体と、
     前記第一軸に沿って延在し、基端部が前記第二振動体の先端部に連結され、前記第二振動体を介して前記第一接続体を動作させる第二駆動体と、
     前記副揺動部の支持体に対し前記第一振動体及び前記第二振動体を振動自在に接続する第二接続体とを備え、
     前記副揺動部は、
     前記第一軸と交差する方向に延在した支持体と、
     一対の基体と、
     前記一対の基体のうち一方の基体に対して、前記支持体を接続して動作させる第一補助体と、
     前記一対の基体のうち他方の基体に対して、前記支持体を接続して動作させる第二補助体と、を備える
     光学反射素子。
  10.  前記主揺動部と前記副揺動部との共振周波数が同一である
     請求項9に記載の光学反射素子。
  11.  前記主揺動部と前記副揺動部とを連結した構造体と、前記反射体と前記第一接続体とを連結した構造体との共振周波数が同一である
     請求項10に記載の光学反射素子。
  12.  前記第一駆動体は、第一圧電素子を備え、
     前記第二駆動体は、第二圧電素子を備え
     前記第一補助体は、
     前記一方の基体から前記支持体まで連続的に延設された第一補助本体と、前記第一補助本体の表面の略全体に積層された第三圧電素子とを備え、
     前記第二補助体は、
     前記他方の基体から前記支持体まで連続的に延設された第二補助本体と、前記第二補助本体の表面の略全体に積層された第四圧電素子とを備えている
     請求項9~11のいずれか一項に記載の光学反射素子。
  13.  前記第一振動体は、第五圧電素子を備え、
     前記第二振動体は、第六圧電素子を備えている
     請求項12に記載の光学反射素子
  14.  前記第一圧電素子は、前記第一駆動体及び前記第一振動体の全体において、振動時における変曲点を含む位置に配置されており、
     前記第二圧電素子は、前記第二駆動体及び前記第二振動体の全体において、振動時における変曲点を含む位置に配置されている
     請求項12または13に記載の光学反射素子。
  15.  前記第一駆動体及び前記第二駆動体のそれぞれの全長は、前記第一振動体及び前記第二振動体のそれぞれの全長よりも長い
     請求項9~14のいずれか一項に記載の光学反射素子。
  16.  前記主揺動部の前記第一接続体は、前記主揺動部が揺動される際に、奇数の節が発生する形状を有する
     請求項9~15のいずれか一項に記載の光学反射素子。
  17.  請求項9~16のいずれか一項に記載の光学反射素子と、前記光学反射素子を制御する制御装置とを備えた光制御システムであって、
     前記制御装置は、前記主揺動部が前記第一軸回りに回転揺動するように、前記主揺動部の前記第一駆動体及び前記第二駆動体と、前記副揺動部の前記第一補助体及び前記第二補助体とを振動させる
     光制御システム。
  18.  前記制御装置は、前記主揺動部を前記第一軸回りに回転揺動させる際に、
     前記主揺動部の前記第一駆動体及び前記第二駆動体のそれぞれにおいて、前記光学反射素子の厚み方向での振動の方向が逆方向となる第一部位及び第二部位を発生させるように、前記主揺動部の前記第一駆動体及び前記第二駆動体を振動させる
     請求項17に記載の光制御システム。
PCT/JP2021/011940 2020-03-25 2021-03-23 光学反射素子及び光制御システム WO2021193611A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180018055.3A CN115210628A (zh) 2020-03-25 2021-03-23 光学反射元件以及光控制系统
JP2022510532A JPWO2021193611A1 (ja) 2020-03-25 2021-03-23
US17/939,669 US20230003997A1 (en) 2020-03-25 2022-09-07 Optical reflector element and light control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020054663 2020-03-25
JP2020-054663 2020-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/939,669 Continuation US20230003997A1 (en) 2020-03-25 2022-09-07 Optical reflector element and light control system

Publications (1)

Publication Number Publication Date
WO2021193611A1 true WO2021193611A1 (ja) 2021-09-30

Family

ID=77890419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011940 WO2021193611A1 (ja) 2020-03-25 2021-03-23 光学反射素子及び光制御システム

Country Status (4)

Country Link
US (1) US20230003997A1 (ja)
JP (1) JPWO2021193611A1 (ja)
CN (1) CN115210628A (ja)
WO (1) WO2021193611A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096750A (ja) * 2006-10-12 2008-04-24 Seiko Epson Corp アクチュエータ、光スキャナおよび画像形成装置
JP2009223115A (ja) * 2008-03-18 2009-10-01 Panasonic Corp 光学反射素子
US20130278986A1 (en) * 2012-04-19 2013-10-24 Touch Micro-System Technology Corp. Annular structure and micro scanning mirror

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096750A (ja) * 2006-10-12 2008-04-24 Seiko Epson Corp アクチュエータ、光スキャナおよび画像形成装置
JP2009223115A (ja) * 2008-03-18 2009-10-01 Panasonic Corp 光学反射素子
US20130278986A1 (en) * 2012-04-19 2013-10-24 Touch Micro-System Technology Corp. Annular structure and micro scanning mirror

Also Published As

Publication number Publication date
US20230003997A1 (en) 2023-01-05
JPWO2021193611A1 (ja) 2021-09-30
CN115210628A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
JP5229704B2 (ja) 光走査装置
WO2009130902A1 (ja) ミアンダ形振動子およびこれを用いた光学反射素子およびこれを用いた画像投影装置
JP5239379B2 (ja) 光学反射素子
JPWO2020045152A1 (ja) 光学反射素子
US11262576B2 (en) Reflective optical element
JP5761350B2 (ja) 振動子および振動ジャイロ
JP2009258210A (ja) 光学反射素子
JP2009265560A (ja) 光学反射素子
JP5045470B2 (ja) 光学反射素子
WO2021193611A1 (ja) 光学反射素子及び光制御システム
WO2021193466A1 (ja) 光制御システム
JP2019082625A (ja) 光学反射素子
JP7557748B2 (ja) 光制御システム及び光学反射素子
JP5239382B2 (ja) 光学反射素子
WO2021193669A1 (ja) 光学反射素子、および光学反射システム
JP5045532B2 (ja) 光学反射素子
JP5045463B2 (ja) 光学反射素子
JP2010060688A (ja) 光学反射素子
JP5846097B2 (ja) 光走査装置
JP2009244602A (ja) 光学反射素子
JP2009217093A (ja) 光学反射素子
JP2009192781A (ja) 光学反射素子
JP2009223271A (ja) 光学反射素子
JP2009217207A (ja) 光学反射素子
JP2001095269A (ja) 振動アクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774937

Country of ref document: EP

Kind code of ref document: A1