WO2021193413A1 - 太陽電池および太陽電池製造方法 - Google Patents

太陽電池および太陽電池製造方法 Download PDF

Info

Publication number
WO2021193413A1
WO2021193413A1 PCT/JP2021/011331 JP2021011331W WO2021193413A1 WO 2021193413 A1 WO2021193413 A1 WO 2021193413A1 JP 2021011331 W JP2021011331 W JP 2021011331W WO 2021193413 A1 WO2021193413 A1 WO 2021193413A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
surface side
back surface
semiconductor layer
insulating
Prior art date
Application number
PCT/JP2021/011331
Other languages
English (en)
French (fr)
Inventor
暢 入江
訓太 吉河
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022510412A priority Critical patent/JPWO2021193413A1/ja
Publication of WO2021193413A1 publication Critical patent/WO2021193413A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell and a method for manufacturing a solar cell.
  • Patent Document 1 discloses a back electrode type solar cell.
  • the solar cell described in Patent Document 1 is laminated on a semiconductor substrate, a strip-shaped first conductive semiconductor layer and a second conductive semiconductor layer alternately laminated on the back surface side of the semiconductor substrate, and a first conductive semiconductor layer.
  • the first transparent electrode and the first electrode layer to be formed, and the second transparent electrode and the second electrode layer laminated on the second conductive type semiconductor layer are provided.
  • the first transparent electrode and the second transparent electrode, and the first electrode layer and the second electrode layer are formed by separating a single material layer by etching.
  • Separation by etching between the first transparent electrode and the second transparent electrode and between the first electrode layer and the second electrode layer requires a step of forming a resist pattern and a step of removing the resist pattern after etching. Therefore, the manufacturing process of the solar cell becomes complicated. Therefore, it is an object of the present invention to provide a solar cell and a method for manufacturing a solar cell, which are easy to manufacture.
  • the solar cell according to one aspect of the present invention is formed on the semiconductor substrate and the back surface side of the semiconductor substrate in a band shape extending in the first direction, and is alternately laminated in the second direction intersecting the first direction.
  • the first semiconductor layer and the second semiconductor layer are laminated on the back surface side of the central portion of the first semiconductor layer and the back surface side of the central portion of the second semiconductor layer in the second direction in a strip shape extending in the first direction, respectively.
  • the transparent electrode, the base electrode laminated on the back surface side of the central portion of the transparent electrode in the second direction so as to extend in the first direction, and the transparent electrode on both sides of the second direction in the first direction.
  • An insulating member having an auxiliary insulating portion laminated so as to extend in the first direction on the back surface side of the central portion of the second direction of the connection region, and the auxiliary insulating portion on the back surface side of the connection region of the base electrode. It is provided with a cap electrode laminated so as to cover the above.
  • a strip-shaped first semiconductor layer and a second semiconductor layer extending in the first direction are alternately formed on the back surface of the semiconductor substrate in a second direction intersecting the first direction.
  • the transparent electrode layer is laminated on the back surface side of the semiconductor substrate, the transparent electrode layer is laminated so as to cover the first semiconductor layer and the second semiconductor layer, and the transparent electrode layer is printed by printing the first conductive paste.
  • a step of forming the transparent electrode layer and a step of partially removing the transparent electrode layer by etching using the main insulating portion and the cap electrode as a mask are provided.
  • FIG. 5 is a cross-sectional view taken along the line AA of the solar cell of FIG. Back view showing the laminated region of the insulating member of the solar cell of FIG.
  • It is a flowchart which shows the procedure of the manufacturing method of the solar cell of FIG. It is sectional drawing which shows one process of the solar cell manufacturing method of FIG. It is sectional drawing which shows the next process of FIG. 5 of the solar cell manufacturing method of FIG. It is sectional drawing which shows the next process of FIG. 6 of the solar cell manufacturing method of FIG. It is sectional drawing which shows the next process of FIG. 7 of the solar cell manufacturing method of FIG. It is sectional drawing which shows the next process of FIG.
  • FIG. 1 is a schematic back view showing the configuration of the solar cell 1 according to the embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA of the solar cell 1 of FIG.
  • the solar cell 1 is a so-called heterojunction back contact type solar cell.
  • the solar cell 1 includes a semiconductor substrate 11, a first semiconductor layer 21 and a second semiconductor layer 22 arranged on the back surface side (opposite the light incident surface) of the semiconductor substrate 11, and a first semiconductor layer 21 and a first.
  • the first transparent electrode 31 and the second transparent electrode 32 arranged on the back surface side of the semiconductor layer 22, and the first base electrode arranged on the back surface side of the first transparent electrode 31 and the second transparent electrode 32, respectively.
  • the first insulating member 51, the second insulating member 52, the second transparent electrode 32, and the second base electrode are arranged so as to straddle the 41 and the second base electrode 42, the first transparent electrode 31 and the first base electrode 41.
  • the second insulating member 52 is arranged so as to straddle the above, the first cap electrode 61 and the second cap electrode 62 arranged on the first base electrode 41 and the second base electrode 42, respectively, and the first cap electrode 61.
  • the semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon.
  • the semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P).
  • the semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes). By using crystalline silicon as the material of the semiconductor substrate 11, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
  • the first semiconductor layer 21 and the second semiconductor layer 22 are formed on the back surface of the semiconductor substrate 11 in a band shape extending in the second direction, respectively.
  • the first semiconductor layer 21 and the second semiconductor layer 22 are alternately provided in the second direction intersecting the first direction.
  • the first semiconductor layer 21 and the second semiconductor layer 22 are preferably arranged so as to cover substantially the entire surface of the semiconductor substrate 11.
  • the first semiconductor layer 21 and the second semiconductor layer 22 have different conductive types from each other.
  • the first semiconductor layer 21 is formed of a p-type semiconductor
  • the second semiconductor layer 22 is formed of an n-type semiconductor.
  • the first semiconductor layer 21 and the second semiconductor layer 22 can be formed of, for example, an amorphous silicon material containing a dopant that imparts a desired conductive type.
  • Examples of the p-type dopant include boron (B), and examples of the n-type dopant include phosphorus (P) described above.
  • the first transparent electrode 31 is laminated in a band shape extending in the first direction on the back surface side of the central portion in the second direction of each of the first semiconductor layers 21, and the second transparent electrode 32 is formed of each of the second semiconductor layers 22. It is laminated in a band shape extending in the first direction on the back surface side of the central portion in the second direction.
  • the first transparent electrode 31 and the second transparent electrode 32 are thin layers that collect current from the first semiconductor layer 21 and the second semiconductor layer 22 and connect to the first base electrode 41 and the second base electrode 42.
  • the first transparent electrode 31 and the second transparent electrode 32 have adhesiveness caused by a difference in material between the first semiconductor layer 21 and the second semiconductor layer 22 and the first base electrode 41 and the second base electrode 42. It functions as an intermediate layer that prevents a decrease and an increase in electrical resistance at the interface.
  • the first transparent electrode 31 and the second transparent electrode 32 can be formed from the same material.
  • the material forming the first transparent electrode 31 and the second transparent electrode 32 include ITO (Indium Tin Oxide) and zinc oxide (ZnO).
  • the first transparent electrode 31 and the second transparent electrode 32 are laminated in a wider area than the first base electrode 41 and the second base electrode 42, which will be described later, so that the first base electrode 41 and the second base electrode 42 are laminated. The current collecting capacity can be improved.
  • the first base electrode 41 is laminated so as to extend in the first direction on the back surface side of the central portion of the first transparent electrode 31 in the second direction
  • the second base electrode 42 is the second of the second transparent electrode 32. It is laminated so as to extend in the first direction on the back surface side of the central portion in two directions.
  • the first base electrode 41 and the second base electrode 42 collect electric power from the first semiconductor layer 21 and the second semiconductor layer 22 via the first transparent electrode 31 and the second transparent electrode 32.
  • the first base electrode 41 and the second base electrode 42 can be formed from a material containing conductive particles and their binder.
  • the material of the conductive particles include metals such as silver and copper.
  • the binder include a resin such as an epoxy resin. That is, the first base electrode 41 and the second base electrode 42 can be formed by curing the conductive paste. Therefore, the first base electrode 41 and the second base electrode 42 may have pores formed by volatilizing the solvent of the conductive paste.
  • the widths of the first base electrode 41 and the second base electrode 42 in the second direction decrease monotonically toward the back surface side.
  • the first base electrode 41 and the second base electrode 42 are formed by laminating the conductive pastes so as to have a square cross section with the back surface side facing up, the conductive paste flows and is formed on the upper side. It can be formed by eliminating the corners and collapsing the shape so that the lower portions at both ends spread outward. Therefore, the cross-sectional shape of the first base electrode 41 and the second base electrode 42 in the second direction is, for example, a Gaussian distribution curve having the back surfaces of the first transparent electrode 31 and the second transparent electrode 32 as baselines. obtain.
  • the first insulating member 51 is formed on the back surface side of the strip-shaped side end region A1 extending in the first direction on both sides of the first transparent electrode 31 in the second direction and the first base electrode 41.
  • the second insulating member 52 is intermittent in the back surface side of the strip-shaped side end region A1 extending in the first direction on both sides of the second transparent electrode 32 and in the first direction of the second base electrode 42.
  • a plurality of second main insulating portions 55 laminated over the back surface side of the rectangular insulating region A2, and the back surface of the central portion of the connection region A3 complementary to the insulating region A2 of the second base electrode 42 in the second direction. It has a second auxiliary insulating portion 56 that is laminated on the side so as to extend in the first direction.
  • the first insulating member 51 and the second insulating member 52 can be formed from a material having an insulating property, for example, a resin composition containing an epoxy resin or the like as a main component.
  • the first main insulating portion 53 prevents a short circuit between the first wiring material 71 and the second base electrode 42
  • the second main insulating portion 55 prevents a short circuit between the second wiring material 72 and the first base electrode 41.
  • the insulating region A2 is a region that insulates the back surface sides of the first base electrode 41 and the second base electrode 42
  • the connection region A3 is the first base electrode 41 and the second base electrode 42 on the back surface side. This is a region connecting the cap electrode 61 and the second cap electrode 62.
  • the insulation region A2 of the first base electrode 41 and the connection region A3 of the second base electrode 42 overlap, and the insulation region A2 of the second base electrode 42 and the connection of the first base electrode 41 are connected. It overlaps with the region A3.
  • the insulating region A2 and the connecting region A3 of the first base electrode 41 and the insulating region A2 and the connecting region A3 of the second base electrode 42 are set so that their positions in the first direction are staggered.
  • the first main insulating portion 53 and the second main insulating portion 55 are integrated with the first cap electrode 61 and the second cap electrode 62 at the time of manufacturing the solar cell 1, respectively. It functions as an etching mask that defines the outer edges of the first transparent electrode 31 and the second transparent electrode 32. Therefore, the first main insulating portion 53 and the second main insulating portion 55 are continuously laminated between the side end region A1 and the insulating region A2.
  • the first auxiliary insulating portion 54 and the second auxiliary insulating portion 56 are selectively laminated on the central portion of the first base electrode 41 and the second base electrode 42 in the second direction, and the first base electrode 41 and the second base electrode 42 are laminated. Both sides of 42 in the second direction are exposed.
  • the first cap electrode 61 and the second cap electrode 62 protrude toward the back surface side from the first main insulating portion 53 and the second main insulating portion 55, and the first auxiliary insulating portion 54 and the second auxiliary insulating portion 56 are second. 1 Secure the connection with the wiring material 71 and the second wiring material 72.
  • the first main insulating portion 53 and the second main insulating portion 55 are formed by printing the insulating paste IP, the first auxiliary insulating portion 54 and the second auxiliary insulating portion 56 are simultaneously formed.
  • the first main insulating portion 53 and the second main insulating portion 55 can be accurately formed.
  • the first cap electrode 61 and the second cap electrode 62 are laminated on the back surface side of the connection region complementary to the insulating region of the first base electrode 41 and the second base electrode 42, respectively.
  • the planar shape of the first insulating member 51 and the first cap electrode 61 is substantially the same as the planar shape of the first transparent electrode 31, and the planar shape of the second insulating member 52 and the second cap electrode 62 is the same. It is substantially the same as the planar shape of the second transparent electrode 32.
  • the first cap electrode 61 and the second cap electrode 62 are the first insulating member 51 and the second insulating member in order to prevent a gap from being formed between the first insulating member 51 and the second insulating member 52. It is preferably formed so as to overlap the edges of the 52.
  • the first cap electrode 61 and the second cap electrode 62 can be formed from a material containing conductive particles and a binder thereof, like the first base electrode 41 and the second base electrode 42, but have etching resistance. Therefore, it is preferable that the porosity is smaller than that of the first base electrode 41 and the second base electrode 42.
  • the first wiring material 71 and the second wiring material 72 connect a plurality of first cap electrodes 61 and second cap electrodes 62 arranged in the second direction, respectively.
  • the first wiring material 71 and the second wiring material 72 can be formed of a conductor such as a copper wire.
  • the first wiring material 71 and the second wiring material 72 and the first cap electrode 61 and the second cap electrode 62 can be connected by, for example, solder, a conductive adhesive, or the like.
  • As the first wiring material 71 and the second wiring material 72 a metal wire coated with solder for connecting the outer surface to the first cap electrode 61 and the second cap electrode 62 may be used.
  • the solar cell 1 can be manufactured by the solar cell manufacturing method shown in FIG.
  • the solar cell manufacturing method of FIG. 4 is an embodiment of the solar cell manufacturing method according to the present invention.
  • the solar cell manufacturing method of the present embodiment includes a semiconductor layer forming step (step S01), a transparent electrode layer laminating step (step S02), a base electrode forming step (step S03), and an insulating member forming step (step S04).
  • a cap electrode forming step (step S05), an etching step (step S06), a firing step (step S7), and a wiring material connecting step (step S08) are provided.
  • the first semiconductor layer 21 and the second semiconductor layer 22 are formed so as to be alternately arranged in the second direction on the back surface of the semiconductor substrate 11.
  • the first semiconductor layer 21 and the second semiconductor layer 22 can be formed in order by forming a mask on the back surface of the semiconductor substrate 11 and laminating semiconductor materials by, for example, a film forming technique such as CVD. can.
  • a film of, for example, CVD or PVD is formed on substantially the entire back surface side of the semiconductor substrate 11 on which the first semiconductor layer 21 and the second semiconductor layer 22 are formed.
  • the transparent electrode layer 30 is formed by laminating the materials forming the first transparent electrode 31 and the second transparent electrode 32 by a technique.
  • the first base electrode 41 and the second base electrode 42 are formed by printing the first conductive paste. That is, in the base electrode forming step, the first conductive paste is laminated on the back surface side of the transparent electrode layer 30 so as to overlap the central portion of the first semiconductor layer 21 and the second semiconductor layer 22 in the second direction in a plan view. As a result, the first base electrode 41 and the second base electrode 42 extending in the first direction are formed.
  • the first conductive paste one containing conductive particles, a binder and a solvent, for example, a commercially available silver paste or the like can be used.
  • the first conductive paste can be selectively laminated by screen printing. Further, in the base electrode forming step, it is preferable to volatilize the solvent contained in the first conductive paste and perform drying so that the formed first base electrode 41 and the second base electrode 42 are not easily deformed. ..
  • the first insulating member 51 and the second insulating member 52 are formed by printing the insulating paste IP. That is, in the insulating member forming step, the back surface of the side end region A1 on both sides of the first base electrode 41 and the second base electrode 42 of the transparent electrode layer 30 and not overlapping the boundary between the first semiconductor layer 21 and the second semiconductor layer 22.
  • the first main insulating portion 53 and the second main insulating portion 55 are formed by laminating the insulating paste IP on the side and the back surface side of the insulating region A2 of the first base electrode 41 and the second base electrode 42, and at the same time.
  • the first auxiliary insulating portion 54 and the second auxiliary insulating portion 56 are formed by laminating the insulating paste IP on the back surface side of the central portion in the second direction of the connection region A3 of the first base electrode 41 and the second base electrode 42. ..
  • the insulating paste IP for example, a material such as a thermosetting epoxy resin composition that can form a film having etching resistance by printing and curing can be used. Further, also in the insulating member forming step, it is preferable to volatilize the solvent contained in the insulating paste IP and perform drying so that the formed first insulating member 51 and the second insulating member 52 are not easily deformed. ..
  • Printing of the insulating paste IP can be performed using the printing plate 100 as shown in FIG.
  • the printing plate 100 used for printing the insulating paste IP preferably has a mesh base material 110 and a milk material 120 which is supported by the mesh base material 110 and has an opening of the printing area of the insulating paste IP.
  • the insulating paste IP can be accurately printed over substantially the entire length in the first direction.
  • the milk material 120 of the printing plate 100 has an electrode mask portion 121 corresponding to both side portions of the connection region A3 in the second direction, and a boundary region between the first semiconductor layer 21 and the second semiconductor layer 22. It has a boundary mask portion 122 corresponding to the above.
  • the electrode mask portion 121 that is, the portion located between the printed area corresponding to the first main insulating portion 53 of the milk material 120 and the printed area corresponding to the first auxiliary insulating portion 54 and the second main insulating portion 55.
  • the portion located between the print area and the print area corresponding to the second auxiliary insulating portion 56 is in contact with the first base electrode 41 or the second base electrode 42, and the tip portion is first.
  • the base electrode 41 or the second base electrode 42 is formed so as to be in close contact with the side surface of the first base electrode 41 or the second base electrode 42.
  • the electrode mask portion 121 masks both sides of the first base electrode 41 and the second base electrode 42 in the second direction, and is insulated by the squeegee 200.
  • the insulating paste IP can be selectively laminated on the back surface side of the central portion of the first base electrode 41 and the second base electrode 42 in the second direction.
  • the first insulating member 51 and the second insulating member 52 can be formed.
  • the second conductive paste is laminated on the back surface side of the connection region complementary to the insulating region of the first base electrode 41 and the second base electrode 42. , The first cap electrode 61 and the second cap electrode 62 are formed.
  • the second conductive paste the same one as the first conductive paste can be used, but the void ratios of the first cap electrode 61 and the second cap electrode 62 to be formed are set to the first base electrode 41 and the second. It is preferable to use an electrode that can be made smaller than the base electrode 42, has less fluidity than the first conductive paste, and does not easily lose its cross-sectional shape.
  • the first cap electrode 61 and the second cap electrode 62 are formed so as to be alternately arranged in the second direction.
  • the second conductive paste can also be selectively laminated by screen printing. Further, also in the cap electrode forming step, it is preferable to volatilize the solvent contained in the second conductive paste and perform drying so that the formed first cap electrode 61 and the second cap electrode 62 are not easily deformed. ..
  • the transparent electrode layer 30 is partially subjected to etching using the first insulating member 51, the second insulating member 52, the first cap electrode 61, and the second cap electrode 62 as masks. Specifically, by selectively removing the region of the transparent electrode layer 30 that straddles the first semiconductor layer 21 and the second semiconductor layer 22, the first semiconductor layer 21 is included in the first semiconductor layer 21 in a plan view.
  • the transparent electrode 31 and the second transparent electrode 32 included in the second semiconductor layer 22 are defined in a plan view.
  • the etching solution capable of etching the transparent electrode layer 30 formed from ITO for example, hydrochloric acid or the like can be used.
  • the first base electrode 41, the second base electrode 42, the first insulating member 51, the second insulating member 52, the first cap electrode 61, and the second cap electrode 62 are cured by heating.
  • the first wiring material 71 and the second wiring material 72 connect between the first cap electrodes 61 arranged in the second direction and between the second cap electrodes 62 arranged in the second direction, respectively. ..
  • the solar cell 1 shown in FIGS. 1 and 2 can be obtained.
  • the transparent electrode layer 30 is formed on the entire surface in the transparent electrode layer laminating step, and the first insulating member 51, the second insulating member 52, the first cap electrode 61, and the second cap electrode 62 are formed in the etching step. Since the first transparent electrode 31 and the second transparent electrode 32 are formed by performing etching using the above as a mask, it is not necessary to form a dedicated mask for forming the first transparent electrode 31 and the second transparent electrode 32. Therefore, in the solar cell manufacturing method of the present embodiment, the solar cell 1 can be manufactured in a comparatively easy manner. That is, the solar cell 1 according to the above-described embodiment can be manufactured relatively easily and inexpensively.
  • the solar cell according to the present invention has additional components such as an intrinsic semiconductor layer that insulates between the components, an antireflection film that suppresses light reflection, and a resin film that protects electrodes and the like, in addition to the components described above. May be provided.
  • firing may be performed before the etching step.
  • the solar cell manufacturing method according to the present invention does not provide an independent firing step, and performs not only drying but also firing in any one of the base electrode forming step, the insulating member forming step and the cap electrode forming step, or each step. May be good.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

製造が簡単な太陽電池を提供すること。本発明の一態様に係る太陽電池(1)は、半導体基板(11)と、半導体基板(11)の裏面側に第1方向に延びる帯状に形成され、第1方向と交差する第2方向に交互に積層される第1半導体層(21)および第2半導体層(31)と、第1半導体層(21)の中央部の裏面側および第2半導体層(31)の第2方向の中央部の裏面側に第1方向に延びる帯状に積層される透明電極(31、32)と、透明電極(31、32)の第2方向の中央部の裏面側に第1方向に延びるよう積層されるベース電極(41、42)と、透明電極(31、32)の第2方向の両側の第1方向に延びる帯状の側端領域の裏面側およびベース電極(41、42)の第1方向に間欠的な方形状の絶縁領域の裏面側に跨って積層される主絶縁部(53、55)、並びにベース電極(41、42)の絶縁領域と相補的な接続領域の第2方向の中央部の裏面側に第1方向に延びるよう積層される補助絶縁部(54、56)を有する絶縁部材と、ベース電極(41、42)の接続領域の裏面側に補助絶縁部(54、56)を覆うよう積層されるキャップ電極(61、62)と、を備える。

Description

太陽電池および太陽電池製造方法
 本発明は、太陽電池および太陽電池製造方法に関する。
 半導体基板を用いた太陽電池として、受光面側および裏面側の両面に電極が形成された両面電極型の太陽電池と、裏面側のみに電極が形成された裏面電極型の太陽電池とがある。両面電極型の太陽電池では、受光面側に電極が形成されるため、この電極により太陽光が遮蔽されてしまう。一方、裏面電極型の太陽電池では、受光面側に電極が形成されないため、両面電極型の太陽電池と比較して太陽光の受光率が高い。特許文献1には、裏面電極型の太陽電池が開示されている。
 特許文献1に記載の太陽電池は、半導体基板と、半導体基板の裏面側に交互に積層される帯状の第1導電型半導体層および第2導電型半導体層と、第1導電型半導体層に積層される第1透明電極および第1電極層と、第2導電型半導体層に積層される第2透明電極および第2電極層と、を備える。第1透明電極および第2透明電極、並びに第1電極層および第2電極層は、それぞれ単一の材料層をエッチングにより分離して形成される。
特開2013-131586号公報
 第1透明電極および第2透明電極の間並びに第1電極層および第2電極層の間のエッチングによる分離には、レジストパターンを形成する工程とエッチング後にレジストパターンを除去する工程とが必要となるため、太陽電池の製造工程が煩雑となる。このため、本発明は、製造が簡単な太陽電池および太陽電池製造方法を提供することを課題とする。
 本発明の一態様に係る太陽電池は、半導体基板と、半導体基板の裏面側に、それぞれ第1方向に延びる帯状に形成され、前記第1方向と交差する第2方向に交互に積層される第1半導体層および第2半導体層と、前記第1半導体層の中央部の裏面側および第2半導体層の前記第2方向の中央部の裏面側にそれぞれ前記第1方向に延びる帯状に積層される透明電極と、前記透明電極の前記第2方向の中央部の裏面側にそれぞれ前記第1方向に延びるよう積層されるベース電極と、前記透明電極の前記第2方向の両側の前記第1方向に延びる帯状の側端領域の裏面側および前記ベース電極の前記第1方向に間欠的な方形状の絶縁領域の裏面側に跨って積層される主絶縁部、並びに前記ベース電極の前記絶縁領域と相補的な接続領域の前記第2方向の中央部の裏面側に前記第1方向に延びるよう積層される補助絶縁部を有する絶縁部材と、前記ベース電極の前記接続領域の裏面側に前記補助絶縁部を覆うよう積層されるキャップ電極と、を備える。
 本発明の別の態様に係る太陽電池製造方法は、半導体基板の裏面に、それぞれ第1方向に延びる帯状の第1半導体層および第2半導体層を前記第1方向と交差する第2方向に交互に積層する工程と、前記半導体基板の裏面側に、前記第1半導体層および前記第2半導体層を覆うよう透明電極層を積層する工程と、第1導電性ペーストの印刷により、前記透明電極層の裏面側に平面視で前記第1半導体層および前記第2半導体層の前記第2方向の中央部に重なるようそれぞれ前記第1方向に延びるベース電極を形成する工程と、絶縁性ペーストの印刷により、前記透明電極層の前記ベース電極の両側かつ前記第1半導体層と前記第2半導体層との境界と重複しない前記第1方向に延びる帯状の側端領域の裏面側および前記ベース電極の前記第1方向に間欠的な方形状の絶縁領域の裏面側に跨って積層される主絶縁部、並びに前記ベース電極の前記絶縁領域と相補的な接続領域の前記第2方向の中央部の裏面側に前記第1方向に延びるよう積層される補助絶縁部を有する絶縁部材を形成する工程と、第2導電性ペーストの積層により、前記ベース電極の接続領域の裏面側に前記補助絶縁部を覆うキャップ電極を形成する工程と、前記主絶縁部および前記キャップ電極をマスクとするエッチングにより、前記透明電極層を部分的に除去する工程と、を備える。
 本発明によれば、製造が簡単な太陽電池および太陽電池製造方法を提供できる。
本発明の一実施形態に係る太陽電池を示す裏面図である。 図1の太陽電池のA-A線断面図である。 図1の太陽電池の絶縁部材の積層領域を示す裏面図 図1の太陽電池の製造方法の手順を示すフローチャートである。 図4の太陽電池製造方法の一工程を示す断面図である。 図4の太陽電池製造方法の図5の次の工程を示す断面図である。 図4の太陽電池製造方法の図6の次の工程を示す断面図である。 図4の太陽電池製造方法の図7の次の工程を示す断面図である。 図4の太陽電池製造方法の図8の次の工程を示す断面図である。 図4の太陽電池製造方法の図9の次の工程を示す断面図である。 図8の印刷版の平面図である。 図4の太陽電池製造方法の図10の次の工程を示す断面図である。 図4の太陽電池製造方法の図12の次の工程を示す断面図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図面ではハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面における種々部材の寸法は、便宜上、見やすいように調整されている。
 図1は、本発明の一実施形態に係る太陽電池1の構成を示す模式裏面図である。図2は、図1の太陽電池1のA-A線断面図である。
 太陽電池1は、いわゆるヘテロ接合バックコンタクト型の太陽電池セルである。太陽電池1は、半導体基板11と、半導体基板11の裏面側(光の入射面と反対側)に配設される第1半導体層21および第2半導体層22と、第1半導体層21および第2半導体層22の裏面側にそれぞれ配設される第1透明電極31および第2透明電極32と、第1透明電極31および第2透明電極32の裏面側にそれぞれ配設される第1ベース電極41および第2ベース電極42と、第1透明電極31と第1ベース電極41とに跨って配設される第1絶縁部材51および第2絶縁部材52と第2透明電極32と第2ベース電極とに跨って配設される第2絶縁部材52と、第1ベース電極41および第2ベース電極42にそれぞれ配設される第1キャップ電極61および第2キャップ電極62と、第1キャップ電極61の間および第2キャップ電極62の間をそれぞれ接続する第1配線材71および第2配線材72と、を備える。
 半導体基板11は、単結晶シリコンまたは多結晶シリコン等の結晶シリコン材料で形成される。半導体基板11は、例えば結晶シリコン材料にn型ドーパントがドープされたn型の半導体基板である。n型ドーパントとしては、例えばリン(P)が挙げられる。半導体基板11は、受光面側からの入射光を吸収して光キャリア(電子および正孔)を生成する光電変換基板として機能する。半導体基板11の材料として結晶シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。
 第1半導体層21および第2半導体層22は、半導体基板11の裏面に、それぞれ第2方向に延びる帯状に形成される。第1半導体層21および第2半導体層22は、第1方向と交差する第2方向に交互に設けられる。第1半導体層21および第2半導体層22は、半導体基板11の略全面を覆うように配設されることが好ましい。
 第1半導体層21および第2半導体層22は、互いに異なる導電型を有する。例として、第1半導体層21はp型半導体から形成され、第2半導体層22はn型半導体から形成される。第1半導体層21および第2半導体層22は、例えば所望の導電型を付与するドーパントを含有するアモルファスシリコン材料で形成することができる。p型ドーパントとしては、例えばホウ素(B)が挙げられ、n型ドーパントとしては、例えば上述したリン(P)が挙げられる。
 第1透明電極31は、それぞれの第1半導体層21の第2方向の中央部の裏面側に第1方向に延びる帯状に積層され、第2透明電極32は、それぞれの第2半導体層22の第2方向の中央部の裏面側に第1方向に延びる帯状に積層される。第1透明電極31および第2透明電極32は、第1半導体層21および第2半導体層22から集電し、第1ベース電極41および第2ベース電極42に接続する薄層である。また、第1透明電極31および第2透明電極32は、第1半導体層21および第2半導体層22と、第1ベース電極41および第2ベース電極42との材質の違い等によって生じる密着性の低下や界面における電気抵抗の増大を防止する中間層として機能する。
 第1透明電極31および第2透明電極32は、同じ材料から形成することができる。第1透明電極31および第2透明電極32を形成する材料としては、例えば、ITO(Indium Tin Oxide)、酸化亜鉛(ZnO)等を挙げることができる。また、第1透明電極31および第2透明電極32は、後述する第1ベース電極41および第2ベース電極42よりも広い面積に積層されることで、第1ベース電極41および第2ベース電極42による集電能力を向上することができる。
 第1ベース電極41は、それぞれの第1透明電極31の第2方向の中央部の裏面側に第1方向に延びるよう積層され、第2ベース電極42は、それぞれの第2透明電極32の第2方向の中央部の裏面側に第1方向に延びるよう積層される。第1ベース電極41および第2ベース電極42は、第1透明電極31および第2透明電極32を介して第1半導体層21および第2半導体層22から電力を収集する。
 第1ベース電極41および第2ベース電極42は、導電性粒子とそのバインダとを含む材料から形成することができる。導電性粒子の材質としては、例えば銀、銅等の金属が挙げられる。バインダとしては、例えばエポキシ樹脂等の樹脂が挙げられる。つまり、第1ベース電極41および第2ベース電極42は、導電性ペーストを硬化することによって形成することができる。このため、第1ベース電極41および第2ベース電極42は、導電性ペーストの溶剤が揮発して形成される空孔を有し得る。
 第1ベース電極41および第2ベース電極42の第2方向の幅は、裏面側に向かって単調減少することが好ましい。具体的には、第1ベース電極41および第2ベース電極42は、裏面側を上にしてそれぞれ導電性ペーストを方形断面となるよう積層して形成する場合、導電性ペーストが流動して、上側の角がなくなり、両端の下側部分が外側に広がるように形状が崩れることで形成され得る。このため、第1ベース電極41および第2ベース電極42の第2方向の断面形状は、例えば第1透明電極31および第2透明電極32の裏面をベースラインとするガウス分布曲線のような形状となり得る。
 第1絶縁部材51は、図3にそれぞれハッチングにより示すように、第1透明電極31の第2方向の両側の第1方向に延びる帯状の側端領域A1の裏面側および第1ベース電極41の第1方向に間欠的な方形状の絶縁領域A2の裏面側に跨って積層される複数の第1主絶縁部53と、第1ベース電極41の絶縁領域A2と相補的な接続領域A3の第2方向の中央部の裏面側に第1方向に延びるよう積層される第1補助絶縁部54と、を有する。同様に、第2絶縁部材52は、第2透明電極32の第2方向の両側の第1方向に延びる帯状の側端領域A1の裏面側および第2ベース電極42の第1方向に間欠的な方形状の絶縁領域A2の裏面側に跨って積層される複数の第2主絶縁部55と、第2ベース電極42の絶縁領域A2と相補的な接続領域A3の第2方向の中央部の裏面側に第1方向に延びるよう積層される第2補助絶縁部56と、を有する。
 第1絶縁部材51および第2絶縁部材52は、絶縁性を有する材料、例えばエポキシ樹脂等を主成分とする樹脂組成物から形成することができる。
 第1主絶縁部53は、第1配線材71と第2ベース電極42との短絡を防止し、第2主絶縁部55は、第2配線材72と第1ベース電極41との短絡を防止する。つまり、絶縁領域A2は、第1ベース電極41および第2ベース電極42の裏面側を絶縁する領域であり、接続領域A3は、第1ベース電極41および第2ベース電極42の裏面側に第1キャップ電極61および第2キャップ電極62を接続する領域である。このため、第2方向から見て、第1ベース電極41の絶縁領域A2と第2ベース電極42の接続領域A3とが重なり、第2ベース電極42の絶縁領域A2と第1ベース電極41の接続領域A3とが重なる。換言すると、第1ベース電極41の絶縁領域A2および接続領域A3と、第2ベース電極42の絶縁領域A2および接続領域A3とは、第1方向の位置が互い違いになるよう設定される。
 また、第1主絶縁部53および第2主絶縁部55は、後で詳しく説明するように、太陽電池1の製造時に、第1キャップ電極61および第2キャップ電極62とそれぞれ一体となって、第1透明電極31と第2透明電極32との外縁を画定するエッチングマスクとして機能する。このため、第1主絶縁部53および第2主絶縁部55は、側端領域A1と絶縁領域A2との間にも連続して積層される。
 第1補助絶縁部54および第2補助絶縁部56は、第1ベース電極41および第2ベース電極42の第2方向の中央部に選択的に積層され、第1ベース電極41および第2ベース電極42の第2方向両側部を露出させる。この第1補助絶縁部54および第2補助絶縁部56は、第1キャップ電極61および第2キャップ電極62が第1主絶縁部53および第2主絶縁部55よりも裏面側に突出して、第1配線材71および第2配線材72との接続を確実にする。また、後で詳しく説明するように、第1主絶縁部53および第2主絶縁部55を絶縁性ペーストIPの印刷により形成する際に、同時に第1補助絶縁部54および第2補助絶縁部56を形成することで、第1主絶縁部53および第2主絶縁部55を正確に形成することが可能となる。
 第1キャップ電極61および第2キャップ電極62は、第1ベース電極41および第2ベース電極42の絶縁領域と相補的な接続領域の裏面側にそれぞれ積層される。第1絶縁部材51と第1キャップ電極61とを合わせた平面形状は第1透明電極31の平面形状と実質的に等しく、第2絶縁部材52と第2キャップ電極62とを合わせた平面形状は第2透明電極32の平面形状と実質的に等しい。第1キャップ電極61および第2キャップ電極62は、第1絶縁部材51および第2絶縁部材52との間に隙間が形成されることを防止するために、第1絶縁部材51および第2絶縁部材52の縁部に重複するよう形成されることが好ましい。
 第1キャップ電極61および第2キャップ電極62は、第1ベース電極41および第2ベース電極42と同様に、導電性粒子とそのバインダとを含む材料から形成することができるが、エッチング耐性を得るために、第1ベース電極41および第2ベース電極42よりも空隙率が小さいことが好ましい。
 第1配線材71および第2配線材72は、第2方向に並ぶ複数の第1キャップ電極61および第2キャップ電極62をそれぞれ接続する。
 第1配線材71および第2配線材72は、例えば銅線等の導体によって形成することができる。第1配線材71および第2配線材72と第1キャップ電極61および第2キャップ電極62とは、例えば半田、導電性接着材等によって接続することができる。第1配線材71および第2配線材72として、外面を第1キャップ電極61および第2キャップ電極62と接続するための半田で被覆した金属線を用いてもよい。
 続いて、太陽電池1を製造する方法について説明する。太陽電池1は、図4に示す太陽電池製造方法によって製造することができる。図4の太陽電池製造方法は、本発明に係る太陽電池製造方法の一実施形態である。
 本実施形態の太陽電池製造方法は、半導体層形成工程(ステップS01)と、透明電極層積層工程(ステップS02)と、ベース電極形成工程(ステップS03)と、絶縁部材形成工程(ステップS04)と、キャップ電極形成工程(ステップS05)と、エッチング工程(ステップS06)と、焼成工程(ステップS7)と、配線材接続工程(ステップS08)と、を備える。
 ステップS01の半導体層形成工程では、図5に示すように、半導体基板11の裏面に、第1半導体層21および第2半導体層22を第2方向に交互に並ぶよう形成する。具体的には、第1半導体層21および第2半導体層22は、半導体基板11の裏面にマスクを形成し、例えばCVD等の成膜技術によって半導体材料を積層することによって順番に形成することができる。
 ステップS02の透明電極層積層工程では、図6に示すように、第1半導体層21および第2半導体層22を形成した半導体基板11の裏面側の略全体に、例えばCVDやPVD等の成膜技術によって第1透明電極31および第2透明電極32を形成する材料を積層することにより、透明電極層30を形成する。
 ステップS03のベース電極形成工程では、図7に示すように、第1導電性ペーストの印刷により第1ベース電極41および第2ベース電極42を形成する。つまり、ベース電極形成工程では、透明電極層30の裏面側に、平面視で第1半導体層21および第2半導体層22の第2方向の中央部に重なるよう第1導電性ペーストをそれぞれ積層することにより、第1方向に延びる第1ベース電極41および第2ベース電極42を形成する。
 第1導電性ペーストは、導電性粒子、バインダおよび溶剤を含むもの、例えば市販の銀ペースト等を用いることができる。第1導電性ペーストは、スクリーン印刷によって選択的に積層することができる。また、ベース電極形成工程では、第1導電性ペーストに含まれる溶剤を揮発させ、形成した第1ベース電極41および第2ベース電極42が容易に変形しないようにするための乾燥を行うことが好ましい。
 ステップS04の絶縁部材形成工程では、図8、9、10に順番に示すように、絶縁性ペーストIPの印刷により、第1絶縁部材51および第2絶縁部材52を形成する。つまり、絶縁部材形成工程では、透明電極層30の第1ベース電極41および第2ベース電極42の両側かつ第1半導体層21と第2半導体層22との境界と重複しない側端領域A1の裏面側および第1ベース電極41および第2ベース電極42の絶縁領域A2の裏面側に跨って絶縁性ペーストIPを積層することによって第1主絶縁部53および第2主絶縁部55を形成すると同時に、第1ベース電極41および第2ベース電極42の接続領域A3の第2方向中央部の裏面側に絶縁性ペーストIPを積層することによって第1補助絶縁部54および第2補助絶縁部56を形成する。
 絶縁性ペーストIPとしては、例えば熱硬化性エポキシ樹脂組成物等の印刷および硬化によりエッチング耐性を有する膜を形成できる材料を用いることができる。また、絶縁部材形成工程においても、絶縁性ペーストIPに含まれる溶剤を揮発させ、形成した第1絶縁部材51および第2絶縁部材52が容易に変形しないようにするための乾燥を行うことが好ましい。
 絶縁性ペーストIPの印刷は、図8に示すような印刷版100を用いて行うことができる。絶縁性ペーストIPの印刷に用いられる印刷版100は、メッシュ基材110とメッシュ基材110によって支持され、絶縁性ペーストIPの印刷領域が開口する乳材120とを有することが好ましい。このように、メッシュ基材110と乳材120とを有する印刷版100を用いることによって、第1方向の略全長に亘って絶縁性ペーストIPを正確に印刷することができる。
 印刷版100の乳材120は、図11に示すように、接続領域A3の第2方向の両側部分に対応する電極マスク部121と、第1半導体層21と第2半導体層22との境界領域に対応する境界マスク部122と、有する。電極マスク部121、つまり乳材120の第1主絶縁部53に対応する印刷領域と第1補助絶縁部54に対応する印刷領域との間に位置する部分と第2主絶縁部55に対応する印刷領域と第2補助絶縁部56に対応する印刷領域との間に位置する部分は、図9に示すように、第1ベース電極41または第2ベース電極42に当接して先端部が第1ベース電極41または第2ベース電極42の第2方向外側に逃げるよう弾性変形することで、第1ベース電極41または第2ベース電極42の側面に密着するよう形成される。
 このような、印刷版100を用い、図9に示すように、電極マスク部121によって第1ベース電極41および第2ベース電極42の第2方向の両側部をマスクした状態で、スキージ200によって絶縁性ペーストIPを乳材120の開口に押し込むことによって、第1ベース電極41および第2ベース電極42の第2方向の中央部の裏面側に選択的に絶縁性ペーストIPを積層することができる。この結果、図10に示すように第1絶縁部材51および第2絶縁部材52を形成することができる。
 ステップS05のキャップ電極形成工程では、図12に示すように、第1ベース電極41および第2ベース電極42の絶縁領域と相補的な接続領域の裏面側に第2導電性ペーストを積層することにより、第1キャップ電極61および第2キャップ電極62を形成する。第2導電性ペーストとしては、第1導電性ペーストと同様のものを用いることができるが、形成される第1キャップ電極61および第2キャップ電極62の空隙率を第1ベース電極41および第2ベース電極42よりも小さくでき、かつ第1導電性ペーストよりも流動性が小さく断面形状が崩れにくいものを使用することが好ましい。
 第1キャップ電極61および第2キャップ電極62は、第2方向に交互に配置されるよう形成される。第2導電性ペーストも、スクリーン印刷によって選択的に積層することができる。また、キャップ電極形成工程でも、第2導電性ペーストに含まれる溶剤を揮発させ、形成した第1キャップ電極61および第2キャップ電極62が容易に変形しないようにするための乾燥を行うことが好ましい。
 ステップS06のエッチング工程では、図13に示すように、第1絶縁部材51、第2絶縁部材52、第1キャップ電極61および第2キャップ電極62をマスクとするエッチングにより、透明電極層30を部分的に、具体的には透明電極層30の第1半導体層21と第2半導体層22とに跨る領域を選択的に除去することによって、平面視で第1半導体層21に内包される第1透明電極31と平面視で第2半導体層22に内包される第2透明電極32とを画定する。ITOから形成される透明電極層30をエッチングすることができるエッチング液としては、例えば塩酸などを用いることができる。
 ステップS07の焼成工程では、加熱により、第1ベース電極41、第2ベース電極42、第1絶縁部材51、第2絶縁部材52、第1キャップ電極61および第2キャップ電極62を硬化させる。
 ステップS08の配線材接続工程では、第1配線材71および第2配線材72によって第2方向に並ぶ第1キャップ電極61の間および第2方向に並ぶ第2キャップ電極62の間をそれぞれ接続する。これによって、図1および2に示す太陽電池1を得ることができる。
 以上の太陽電池製造方法では、透明電極層積層工程で全面に透明電極層30を形成し、エッチング工程で第1絶縁部材51、第2絶縁部材52、第1キャップ電極61および第2キャップ電極62をマスクとするエッチングを行うことにより第1透明電極31および第2透明電極32を形成するので、第1透明電極31第2透明電極32を形成するための専用のマスクを形成する必要がない。したがって、本実施形態の太陽電池製造方法は、太陽電池1を比較簡単に製造することができる。つまり、上述の実施形態に係る太陽電池1は、比較的簡単かつ安価に製造することができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。例えば、本発明に係る太陽電池は、上述した構成要素以外に、各構成要素間を絶縁する真性半導体層、光の反射を抑制する反射防止膜、電極等を保護する樹脂フィルムなどのさらなる構成要素を備えてもよい。
 本発明に係る太陽電池製造方法において、エッチング工程の前に焼成を行ってもよい。また、本発明に係る太陽電池製造方法は、独立した焼成工程を設けず、ベース電極形成工程、絶縁部材形成工程およびキャップ電極形成工程のいずれかまたはそれぞれの工程において乾燥だけでなく焼成まで行ってもよい。
 1 太陽電池
 11 半導体基板
 21 第1半導体層
 22 第2半導体層
 30 透明電極層
 31 第1透明電極
 32 第2透明電極
 41 第1ベース電極
 42 第2ベース電極
 51 第1絶縁部材
 52 第2絶縁部材
 53 第1主絶縁部
 54 第1補助絶縁部
 55 第2主絶縁部
 56 第2補助絶縁部
 61 第1キャップ電極
 62 第2キャップ電極
 71 第1配線材
 72 第2配線材
 100 印刷版
 110 メッシュ基材
 120 乳材
 121 電極マスク部
 122 境界マスク部
 200 スキージ
 IP 絶縁性ペースト

Claims (5)

  1.  半導体基板と、
     半導体基板の裏面側に、それぞれ第1方向に延びる帯状に形成され、前記第1方向と交差する第2方向に交互に積層される第1半導体層および第2半導体層と、
     前記第1半導体層の中央部の裏面側および第2半導体層の前記第2方向の中央部の裏面側にそれぞれ前記第1方向に延びる帯状に積層される透明電極と、
     前記透明電極の前記第2方向の中央部の裏面側にそれぞれ前記第1方向に延びるよう積層されるベース電極と、
     前記透明電極の前記第2方向の両側の前記第1方向に延びる帯状の側端領域の裏面側および前記ベース電極の前記第1方向に間欠的な方形状の絶縁領域の裏面側に跨って積層される主絶縁部、並びに前記ベース電極の前記絶縁領域と相補的な接続領域の前記第2方向の中央部の裏面側に前記第1方向に延びるよう積層される補助絶縁部を有する絶縁部材と、
     前記ベース電極の前記接続領域の裏面側に前記補助絶縁部を覆うよう積層されるキャップ電極と、
     を備える、太陽電池。
  2.  前記ベース電極の前記第2方向の幅は裏面側に向かって単調減少する、請求項1に記載の太陽電池。
  3.  前記キャップ電極は、さらに前記主絶縁部の一部の裏面側に跨って積層される、請求項1または2に記載の太陽電池。
  4.  半導体基板の裏面に、それぞれ第1方向に延びる帯状の第1半導体層および第2半導体層を前記第1方向と交差する第2方向に交互に積層する工程と、
     前記半導体基板の裏面側に、前記第1半導体層および前記第2半導体層を覆うよう透明電極層を積層する工程と、
     第1導電性ペーストの印刷により、前記透明電極層の裏面側に平面視で前記第1半導体層および前記第2半導体層の前記第2方向の中央部に重なるようそれぞれ前記第1方向に延びるベース電極を形成する工程と、
     絶縁性ペーストの印刷により、前記透明電極層の前記ベース電極の両側かつ前記第1半導体層と前記第2半導体層との境界と重複しない前記第1方向に延びる帯状の側端領域の裏面側および前記ベース電極の前記第1方向に間欠的な方形状の絶縁領域の裏面側に跨って積層される主絶縁部、並びに前記ベース電極の前記絶縁領域と相補的な接続領域の前記第2方向の中央部の裏面側に前記第1方向に延びるよう積層される補助絶縁部を有する絶縁部材を形成する工程と、
     第2導電性ペーストの積層により、前記ベース電極の接続領域の裏面側に前記補助絶縁部を覆うキャップ電極を形成する工程と、
     前記主絶縁部および前記キャップ電極をマスクとするエッチングにより、前記透明電極層を部分的に除去する工程と、
     を備える、太陽電池製造方法。
  5.  前記絶縁性ペーストの印刷を、メッシュ基材と、前記メッシュ基材によって支持され、前記絶縁性ペーストの印刷領域が開口する乳材とを有する印刷版を用いて行い、
     前記乳材の前記主絶縁部に対応する印刷領域と前記補助絶縁部に対応する印刷領域との間に位置する部分が、前記ベース電極に当接して弾性変形し、前記ベース電極の側面に密着するよう形成されている、請求項4に記載の太陽電池製造方法。
PCT/JP2021/011331 2020-03-24 2021-03-19 太陽電池および太陽電池製造方法 WO2021193413A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510412A JPWO2021193413A1 (ja) 2020-03-24 2021-03-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020052373 2020-03-24
JP2020-052373 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021193413A1 true WO2021193413A1 (ja) 2021-09-30

Family

ID=77891701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011331 WO2021193413A1 (ja) 2020-03-24 2021-03-19 太陽電池および太陽電池製造方法

Country Status (2)

Country Link
JP (1) JPWO2021193413A1 (ja)
WO (1) WO2021193413A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003933A (ja) * 2010-09-22 2011-01-06 Ulvac Japan Ltd 真空処理装置
US20140166079A1 (en) * 2012-12-18 2014-06-19 International Business Machines Corporation Monolithic integration of heterojunction solar cells
WO2018037672A1 (ja) * 2016-08-22 2018-03-01 株式会社カネカ 太陽電池および太陽電池モジュール
JP2019036652A (ja) * 2017-08-17 2019-03-07 株式会社カネカ バックコンタクト型太陽電池の製造方法
JP2019079916A (ja) * 2017-10-24 2019-05-23 株式会社カネカ バックコンタクト型太陽電池モジュール
WO2019181835A1 (ja) * 2018-03-23 2019-09-26 株式会社カネカ 太陽電池およびその太陽電池を備えた電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003933A (ja) * 2010-09-22 2011-01-06 Ulvac Japan Ltd 真空処理装置
US20140166079A1 (en) * 2012-12-18 2014-06-19 International Business Machines Corporation Monolithic integration of heterojunction solar cells
WO2018037672A1 (ja) * 2016-08-22 2018-03-01 株式会社カネカ 太陽電池および太陽電池モジュール
JP2019036652A (ja) * 2017-08-17 2019-03-07 株式会社カネカ バックコンタクト型太陽電池の製造方法
JP2019079916A (ja) * 2017-10-24 2019-05-23 株式会社カネカ バックコンタクト型太陽電池モジュール
WO2019181835A1 (ja) * 2018-03-23 2019-09-26 株式会社カネカ 太陽電池およびその太陽電池を備えた電子機器

Also Published As

Publication number Publication date
JPWO2021193413A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
KR102366908B1 (ko) 태양전지 및 그 제조 방법
KR101570881B1 (ko) 태양 전지 및 그 제조 방법
WO2012081613A1 (ja) 太陽電池および太陽電池の製造方法
WO2012002216A1 (ja) 太陽電池モジュール
JP2019523564A (ja) バックコンタクト型太陽電池ストリング及びその製造方法、モジュール、システム
CN112640133A (zh) 太阳能电池的制造方法、太阳能电池以及太阳能电池模块
JP6619273B2 (ja) 光電変換装置
WO2021193413A1 (ja) 太陽電池および太陽電池製造方法
JP4578510B2 (ja) 太陽電池の製造方法
WO2010150749A1 (ja) 太陽電池セル、配線シート付き太陽電池セルおよび太陽電池モジュール
JP2017139351A (ja) 太陽電池素子の製造方法および太陽電池素子
JP2021150578A (ja) 太陽電池および太陽電池製造方法
JPWO2019054239A1 (ja) 光電変換モジュール及び光電変換モジュールを製造する方法
JP2013058808A (ja) 太陽電池および太陽電池の製造方法
US11588061B2 (en) Photoelectric conversion module and method for manufacturing photoelectric conversion module
WO2021140897A1 (ja) 太陽電池製造方法及び太陽電池
JP2021190641A (ja) 導電接続材料及び太陽電池セル
TWI653644B (zh) 導電膠帶、太陽能電池串及太陽能電池模組
WO2021241425A1 (ja) 太陽電池および太陽電池製造方法
US20140166099A1 (en) Crystalline photovoltaic cells and methods of manufacturing
CN115136326B (zh) 太阳能电池
JP6325925B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP7330880B2 (ja) 太陽電池ストリング製造方法および太陽電池ストリング
JP2021150506A (ja) 太陽電池製造方法および太陽電池
JP2019054167A (ja) 光電変換モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776336

Country of ref document: EP

Kind code of ref document: A1