WO2021193098A1 - プローブヘッド - Google Patents

プローブヘッド Download PDF

Info

Publication number
WO2021193098A1
WO2021193098A1 PCT/JP2021/009786 JP2021009786W WO2021193098A1 WO 2021193098 A1 WO2021193098 A1 WO 2021193098A1 JP 2021009786 W JP2021009786 W JP 2021009786W WO 2021193098 A1 WO2021193098 A1 WO 2021193098A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
guide pin
substrate
diameter
hole
Prior art date
Application number
PCT/JP2021/009786
Other languages
English (en)
French (fr)
Inventor
岳史 軣木
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Publication of WO2021193098A1 publication Critical patent/WO2021193098A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes

Definitions

  • the present invention relates to a probe head.
  • a probe head for electrically connecting the device to be inspected and the inspection device may be used, for example, as described in Patent Document 1.
  • the probe head is provided with a guide pin.
  • the guide pin is inserted into a guide hole formed in a substrate of an inspection device such as a wiring substrate.
  • the probe head is positioned with respect to the substrate of the inspection device.
  • the diameter of the guide hole on the board of the inspection device may vary due to tolerance.
  • the diameter of the outer wall of the guide pin is constant as in the guide pin of Patent Document 1
  • the probe head is displaced from the position where the probe contacts the pad of the substrate. May be done. In this case, the probe may not come into contact with the pad of the substrate, and the inspection device may not be able to perform an accurate inspection.
  • An example of an object of the present invention is to suppress the influence of the tolerance of the guide hole of the substrate and bring the probe into contact with the pad of the substrate.
  • the guide pin is a probe head having a tapered portion in which the diameter of the outer wall increases from one end side to the other end side of the guide pin.
  • the portion of the tapered portion having a diameter substantially equal to the diameter of the guide hole of the substrate and a diameter smaller than the diameter of the guide hole can be fitted into the opening of the guide hole of the substrate. Therefore, it is possible to suppress the influence of the tolerance of the guide hole of the substrate and bring the probe into contact with the pad of the substrate.
  • FIG. It is a figure which shows the probe head which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the method of making a probe of the probe head which concerns on Embodiment 1 come into contact with a pad of a substrate. It is a figure for demonstrating the method of making a probe of the probe head which concerns on Embodiment 1 come into contact with a pad of a substrate. It is a figure which shows the probe head which concerns on Embodiment 2. It is a figure for demonstrating the method of making a probe of the probe head which concerns on Embodiment 2 come into contact with a pad of a substrate. It is a figure which shows the probe head which concerns on Embodiment 3.
  • FIG. 1 is a diagram showing a probe head 10A according to the first embodiment.
  • a cross section showing a cross section passing through the center of the guide hole 22 described later along the thickness direction of the substrate 20 is shown.
  • a cross section showing a cross section passing through the first mounting hole 212 and the second mounting hole 222 described later along the thickness direction of the socket 200 is shown.
  • the side surfaces of the guide pin 100 and the probe 300, which will be described later, are shown.
  • the probe head 10A includes a guide pin 100, a socket 200, and a probe 300.
  • the guide pin 100 has a first guide portion 110 and a second guide portion 120.
  • the socket 200 has a pin block 210 and a pin plate 220.
  • the pin block 210 and the pin plate 220 are overlapped in this order from the upper side to the lower side of the probe head 10A.
  • the probe 300 is inserted into the socket 200 along the vertical direction of the probe head 10A.
  • a substrate of a device to be inspected (not shown) such as a semiconductor device to be inspected by an inspection device having a substrate 20 described later is arranged above the probe head 10A.
  • the substrate 20 of the inspection device is arranged below the probe head 10A.
  • the substrate 20 is, for example, a PCB (Printed Circuit Board).
  • a guide hole 22 is formed in the substrate 20.
  • the substrate 20 has a pad 20a located on the upper surface side of the substrate 20.
  • the lower end side of the guide pin 100 is the side on which the substrate 20 is located.
  • the substrate of the device to be inspected and the substrate 20 of the inspection device are electrically connected via the probe 300.
  • the first guide portion 110 is inserted into the first mounting hole 212 formed in the pin block 210 and the second mounting hole 222 formed in the pin plate 220.
  • the first mounting hole 212 has a first hole portion 212a and a second hole portion 212b.
  • the first hole portion 212a and the second hole portion 212b are arranged in this order from the upper side to the lower side of the probe head 10A.
  • the diameter of the first hole portion 212a is smaller than the diameter of the outer edge of the flange 112 attached to the outer wall of the first guide portion 110.
  • the diameter of the second hole portion 212b is larger than the diameter of the first hole portion 212a and the diameter of the second mounting hole 222, and is equal to or larger than the diameter of the outer edge of the flange 112 of the first guide portion 110.
  • a part of the guide pin 100, specifically, the flange 112 is located in a part of the first mounting hole 212 and the second mounting hole 222, specifically in the second hole portion 212b, and is first mounted. It has a diameter larger than the diameter of each of the holes 212 and other portions of the second mounting hole 222, specifically, the diameter of the first hole 212a and the diameter of the second mounting hole 222. Therefore, the flange 112 of the first guide portion 110 can move only in the second hole portion 212b along the vertical direction of the probe head 10A.
  • the second guide portion 120 projects downward from the lower end of the first guide portion 110.
  • the diameter of the second guide portion 120 is smaller than the diameter of the first guide portion 110. Further, the diameter of the second guide portion 120 is smaller than the diameter of the guide hole 22 of the substrate 20.
  • the second guide portion 120 has a cylindrical shape. In this case, the guide pin 100 is less likely to fall when the second guide portion 120 is inserted into the guide hole 22 of the substrate 20, as compared with the case where the second guide portion 120 has a conical shape.
  • the second guide portion 120 may have a shape different from the cylindrical shape, for example, a conical shape.
  • the diameter of the outer wall of at least a part of the guide pin 100 increases from one end side to the other end side of the guide pin 100.
  • the outer wall of the guide pin 100 is provided with a first tapered portion 132 and a second tapered portion 134.
  • the guide pin 100 may not be provided with the second tapered portion 134.
  • the first tapered portion 132 is provided between the first guide portion 110 and the second guide portion 120.
  • the outer wall of the guide pin 100 in the first tapered portion 132 extends substantially linearly from the lower end side to the upper end side of the guide pin 100. However, the outer wall of the guide pin 100 in the first tapered portion 132 may expand while being curved.
  • the portion of the first tapered portion 132 having a diameter substantially equal to the diameter of the guide hole 22 and a diameter smaller than the diameter of the guide hole 22 is opened in the guide hole 22 of the substrate 20. Can be fitted. Therefore, the probe 300 can be brought into contact with the pad 20a of the substrate 20 while suppressing the influence of the tolerance of the guide hole 22 of the substrate 20.
  • the minimum value of the diameter of the outer wall of the guide pin 100 in the first tapered portion 132 is smaller than the diameter of the guide hole 22 of the substrate 20.
  • the diameter of the outer wall of the guide pin 100 in the first tapered portion 132 has a minimum value at the lowermost end of the first tapered portion 132.
  • the maximum value of the diameter of the outer wall of the guide pin 100 in the first tapered portion 132 is larger than the diameter of the guide hole 22 of the substrate 20.
  • the diameter of the outer wall of the guide pin 100 in the first tapered portion 132 has a maximum value at the uppermost end of the first tapered portion 132. Therefore, the diameter of any portion of the first tapered portion 132 can be made substantially equal to the diameter of the guide hole 22.
  • the second tapered portion 134 is provided on the upper end side of the first guide portion 110.
  • the outer wall of the guide pin 100 in the second tapered portion 134 extends substantially linearly from the upper end side to the lower end side of the guide pin 100.
  • the outer wall of the guide pin 100 in the second tapered portion 134 may be curved and widened.
  • the second tapered portion 134 is provided, when the first guide portion 110 is passed through the first mounting hole 212 of the socket 200 from the upper end side of the guide pin 100, the guide pin 100 passes through the first mounting hole 212 of the socket 200.
  • the socket 200 can be guided by the second taper portion 134 so as to be inserted into.
  • FIGS. 1 to 3 are views for explaining a method of bringing the probe 300 of the probe head 10A according to the first embodiment into contact with the pad 20a of the substrate 20. 2 and 3 show the latter part of FIG. 1 in this method.
  • the probe head 10A is arranged above the substrate 20. At this point, at least a part of the guide pin 100 overlaps with the guide hole 22 of the substrate 20 in the vertical direction of the probe head 10A.
  • the second guide portion 120 of the guide pin 100 is inserted into the guide hole 22 of the substrate 20 from the lower end side of the guide pin 100.
  • the minimum value of the diameter of the outer wall of the guide pin 100 in the first tapered portion 132 is smaller than the diameter of the guide hole 22 of the substrate 20, and the diameter of the outer wall of the guide pin 100 in the first tapered portion 132.
  • the maximum value is larger than the diameter of the guide hole 22 of the substrate 20. Therefore, the first tapered portion 132 of the guide pin 100 can be slid with respect to the opening edge of the guide hole 22 of the substrate 20 until the first tapered portion 132 is fitted into the guide hole 22 of the substrate 20.
  • the guide pin 100 can be aligned with the appropriate position of the guide hole 22, that is, the position where the pad 20a of the substrate 20 is located directly below the lower end of the probe 300.
  • the center of the guide pin 100 can be aligned with the center of the guide hole 22.
  • the probe head 10A can be guided to an appropriate position by the first tapered portion 132.
  • the socket 200 is pushed toward the substrate 20.
  • the lower end of the probe 300 comes into contact with the pad 20a of the substrate 20.
  • FIG. 4 is a diagram showing a probe head 10B according to the second embodiment.
  • the probe head 10B according to the second embodiment is the same as the probe head 10A according to the first embodiment except for the following points.
  • the guide pin 100 is removable from the socket 200. Further, the first guide portion 110 of the guide pin 100 can be passed through the second mounting hole 222 and the first mounting hole 212 of the socket 200 from the upper end side of the guide pin 100.
  • FIG. 5 is a diagram for explaining a method of bringing the probe 300 of the probe head 10B according to the second embodiment into contact with the pad 20a of the substrate 20. Further, FIG. 5 shows the latter part of FIG. 4 in this method.
  • the second guide portion 120 of the guide pin 100 is inserted into the guide hole 22 of the substrate 20.
  • the minimum value of the diameter of the outer wall of the guide pin 100 in the first tapered portion 132 is smaller than the diameter of the guide hole 22 of the substrate 20, and the diameter of the outer wall of the guide pin 100 in the first tapered portion 132.
  • the maximum value of is larger than the diameter of the guide hole 22 of the substrate 20. Therefore, the first tapered portion 132 of the guide pin 100 can be slid with respect to the opening edge of the guide hole 22 of the substrate 20 until the first tapered portion 132 is fitted into the guide hole 22 of the substrate 20.
  • the guide pin 100 is placed at an appropriate position of the guide hole 22, that is, when the socket 200 is attached to the guide pin 100 as shown in FIG. 5 described later, the pad 20a of the substrate 20 is directly below the lower end of the probe 300. Can be adjusted to the position where.
  • the first guide portion 110 of the guide pin 100 is passed through the second mounting hole 222 and the first mounting hole 212 of the socket 200 from the upper end side of the guide pin 100.
  • the socket 200 can be guided by the second tapered portion 134 so that the guide pin 100 is inserted into the second mounting hole 222 and the first mounting hole 212 of the socket 200. Further, the socket 200 is pushed toward the substrate 20.
  • the guide pin 100 is located at an appropriate position of the guide hole 22, that is, when the socket 200 is attached to the guide pin 100, the guide pin 100 is directly below the lower end of the probe 300. It can be adjusted to the position where the pad 20a of 20 is located. Therefore, the influence of the tolerance of the guide hole 22 of the substrate 20 can be suppressed so that the lower end of the probe 300 can be brought into contact with the pad 20a of the substrate 20.
  • FIG. 6 is a diagram showing a probe head 10C according to the third embodiment.
  • the probe head 10C according to the third embodiment is the same as the probe head 10A according to the first embodiment except for the following points.
  • the first tapered portion 132 of the guide pin 100 is not exposed from the lower surface of the pin plate 220 before the guide pin 100 is pushed toward the substrate 20, as will be described later with reference to FIGS. 7 and 8.
  • 7 and 8 are views for explaining a method of bringing the probe 300 of the probe head 10C according to the third embodiment into contact with the pad 20a of the substrate 20. Further, FIGS. 7 and 8 show the latter part of FIG. 6 in this method.
  • the probe head 10C is arranged above the substrate 20. At this point, at least a part of the guide pin 100 overlaps with the guide hole 22 of the substrate 20 in the vertical direction of the probe head 10C.
  • the second guide portion 120 of the guide pin 100 is inserted into the guide hole 22 of the substrate 20 from the lower end side of the second guide portion 120.
  • the guide pin 100 is pushed toward the guide hole 22 of the substrate 20 from the upper end side of the guide pin 100.
  • the first tapered portion 132 of the guide pin 100 is formed in the guide hole 22 of the substrate 20 until the first tapered portion 132 of the guide pin 100 is fitted into the guide hole 22 of the substrate 20.
  • the guide pin 100 can be aligned with the appropriate position of the guide hole 22, that is, the position where the lower end of the probe 300 comes into contact with the pad 20a of the substrate 20. Therefore, the influence of the tolerance of the guide hole 22 of the substrate 20 can be suppressed so that the lower end of the probe 300 can be brought into contact with the pad 20a of the substrate 20.
  • FIG. 9 is a diagram showing the probe head 10D according to the first modification.
  • the probe head 10D according to the first modification is the same as the probe head 10A according to the first embodiment except for the following points.
  • the guide pin 100 is urged toward the substrate 20.
  • the upper end of the guide pin 100 is attached to the socket 200 via an elastic body 140 such as a spring.
  • the upper end of the first mounting hole 212 of the pin block 210 is a closed end.
  • the upper end of the elastic body 140 is attached to this closed end of the pin block 210.
  • the upper end of the guide pin 100 is attached to the lower end of the elastic body 140.
  • the guide pin 100 when the second guide portion 120 of the guide pin 100 is passed through the guide hole 22 of the substrate 20, the guide pin 100 can be pressed toward the substrate 20 by the elastic body 140. Also in this modification, the minimum value of the diameter of the outer wall of the guide pin 100 in the first tapered portion 132 is smaller than the diameter of the guide hole 22 of the substrate 20, and the diameter of the outer wall of the guide pin 100 in the first tapered portion 132. The maximum value of is larger than the diameter of the guide hole 22 of the substrate 20. Therefore, due to the urging by the elastic body 140, the first tapered portion 132 of the guide pin 100 is attached to the opening edge of the guide hole 22 of the substrate 20 until the first tapered portion 132 is fitted into the guide hole 22 of the substrate 20. Can be slid.
  • the guide pin 100 can be aligned with the appropriate position of the guide hole 22, that is, the position where the pad 20a of the substrate 20 is located directly below the lower end of the probe 300.
  • the probe head 10D can be guided to an appropriate position by the first tapered portion 132.
  • FIG. 10 is a side view of the guide pin 100A according to the second modification.
  • the guide pin 100A according to the second modification is the same as the guide pin 100 according to the first embodiment except for the following points.
  • the substrate 20 shown in FIGS. 1 to 3 will be referred to as necessary.
  • the guide pin 100A has a first guide portion 110A and a second guide portion 120A.
  • the second guide portion 120A includes a plurality of tip portions branched from each other, that is, a first tip portion 122A and a second tip portion 124A.
  • the first tip portion 122A and the second tip portion 124A are aligned in the width direction of the guide pin 100A, that is, in a direction orthogonal to the direction between + Z and ⁇ Z.
  • the first tip portion 122A and the second tip portion 124A can be inserted into the guide hole 22 of the substrate 20, and the first tip portion 122A and the second tip portion 124A can be sandwiched between the inner side walls of the guide hole 22. Therefore, even if the diameter of the guide hole 22 of the substrate 20 varies due to the tolerance, the guide pin 100A can be adjusted to an appropriate position of the guide hole 22 so that the probe 300 comes into contact with the pad 20a of the substrate 20.
  • the distance between them increases from the tips of the first tip 122A and the second tip 124A toward the opposite side of the tips.
  • the tips of the first tip 122A and the second tip 124A are the lower ends of the first tip 122A and the second tip 124A.
  • at least a part of the first tip portion 122A and the second tip portion 124A on the opposite side of the tip is approximately the central portion of the first tip portion 122A and the second tip portion 124A.
  • the distance between the outermost edges of the first tip portion 122A and the second tip portion 124A is a distance orthogonal to the direction connecting the tips of the first tip portion 122A and the second tip portion 124A and the opposite side of the tip. It has become. Further, in the example shown in FIG. 10, the distance between the outermost edges of the first tip portion 122A and the second tip portion 124A is between the left outer edge of the first tip portion 122A and the right outer edge of the second tip portion 124A. Interval. In this case, the first tip portion 122A and the second tip portion 124A can be slid with respect to the opening edge of the guide hole 22 to insert the first tip portion 122A and the second tip portion 124A into the guide hole 22.
  • the distance between the outermost edges of the first tip portion 122A and the second tip portion 124A may be constant.
  • the minimum value of the above-mentioned interval that spreads from the lower end to the upper end side of the guide pin 100A is smaller than the diameter of the guide hole 22. Therefore, the first tip portion 122A and the second tip portion 124A can be inserted into the guide hole 22.
  • the maximum value of the above-mentioned interval that spreads from the lower end to the upper end side of the guide pin 100A is larger than the diameter of the guide hole 22. Therefore, when the first tip portion 122A and the second tip portion 124A are inserted into the guide hole 22, the first tip portion 122A and the second tip portion 124A come into contact with the inner side wall of the guide hole 22, and the first tip portion The 122A and the second tip portion 124A can be sandwiched between the inner side walls of the guide hole 22.
  • FIG. 11 is a cross-sectional view of the guide pin 100B according to the third modification.
  • FIG. 11 shows a cross section through which the screw hole 112B and the wedge hole 122B, which will be described later, pass along the vertical direction of the guide pin 100B.
  • the guide pin 100B according to the third modification is the same as the guide pin 100 according to the first embodiment except for the following points.
  • the guide pin 100B has a member that pushes the outer wall of at least a part of the first guide portion 110B from the inside of the guide pin 100B, that is, a screw portion 114B and a wedge portion 124B described later.
  • the guide pin 100B has a first guide portion 110B and a second guide portion 120B. Inside the first guide portion 110B, a screw hole 112B extending along the vertical direction of the guide pin 100B is formed. A screw portion 114B is inserted into the screw hole 112B. Inside the second guide portion 120B, a wedge hole 122B extending in the vertical direction of the guide pin 100B is formed. A wedge portion 124B is inserted into the wedge hole 122B.
  • each of the wedge hole 122B and the wedge portion 124B narrows from the upper end side to the lower end side of the second guide portion 120B. In this case, by pushing the screw portion 114B into the wedge portion 124B, the outer wall of the second guide portion 120B can be expanded by the wedge portion 124B.
  • the second guide portion 120B of the guide pin 100B is inserted into the guide hole 22 of the board 20 from the lower end side of the guide pin 100B.
  • the diameter of the outer wall of the second guide portion 120B becomes smaller than the diameter of the guide hole 22 of the substrate 20. There is. Therefore, the second guide portion 120B can be inserted into the guide hole 22 without the outer surface of the second guide portion 120B being caught on the inner surface of the guide hole 22.
  • the screw portion 114B is screwed inward along the screw hole 112B toward the lower side of the guide pin 100B. ..
  • the wedge portion 124B is pushed downward by the screw portion 114B.
  • the wedge portion 124B expands the wedge hole 122B and the diameter of the outer wall of the second guide portion 120B is increased. Therefore, the guide pin 100B can be sandwiched between the inner side walls of the guide hole 22. Therefore, even if the diameter of the guide hole 22 of the substrate 20 varies due to the tolerance, the guide pin 100B can be aligned with the appropriate position of the guide hole 22 so that the probe comes into contact with the pad 20a of the substrate 20.
  • Aspect 1-1 is Equipped with a guide pin
  • the guide pin is a probe head having a tapered portion in which the diameter of the outer wall increases from one end side to the other end side of the guide pin.
  • a portion of the tapered portion having a diameter substantially equal to the diameter of the guide hole of the substrate and a diameter smaller than the diameter of the guide hole can be fitted into the opening of the guide hole of the substrate. Therefore, it is possible to suppress the influence of the tolerance of the guide hole of the substrate and bring the probe into contact with the pad of the substrate.
  • Aspect 1-2 is The probe head according to aspect 1-1, wherein one end side of the guide pin is the side on which the substrate of the inspection device is located. According to Aspect 1-2, the probe can be brought into contact with the pad of the substrate by suppressing the influence of the tolerance of the guide hole of the substrate in the same manner as in Aspect 1-1.
  • Aspect 1-3 are The minimum value of the diameter of the tapered portion is smaller than the diameter of the guide hole of the substrate into which the guide pin is inserted.
  • Aspect 1-2 wherein the maximum value of the diameter of the tapered portion is larger than the diameter of the guide hole.
  • the diameter of any portion of the tapered portion can be made substantially equal to the diameter of the guide hole.
  • Aspect 1-4 Further provided with a socket having a mounting hole into which the guide pin is inserted. The diameter of one part of the mounting hole is wider than the diameter of the other part of the mounting hole. 13. Probe head. According to Aspect 1-4, the part of the guide pin can be moved only within the part of the mounting hole.
  • Aspect 2-1 Aspect 2-1 is Equipped with a guide pin The guide pin is a probe head having a plurality of tips branched from each other.
  • a plurality of tip portions can be inserted into the guide holes of the substrate, and the plurality of tip portions can be sandwiched between the inner side walls of the guide holes. Therefore, even if the diameter of the guide hole of the substrate varies due to the tolerance, the guide pin can be adjusted to an appropriate position of the guide hole so that the probe contacts the pad of the substrate.
  • Aspect 2-2 Aspect 2-2 The most of the plurality of tips in a direction orthogonal to the direction connecting the tip and the opposite side of the tip from the tips of the plurality of tips to at least a part of the tips opposite to the tips.
  • the probe head according to aspect 2-1 in which the distance between the outer edges increases from the tip of the plurality of tips toward the opposite side of the tip.
  • the plurality of tip portions can be inserted into the guide hole by sliding the plurality of tip portions with respect to the opening edge of the guide hole. Therefore, it is easier to insert the plurality of tip portions into the guide holes as compared with the case where the distance between the outermost edges of the plurality of tip portions is constant.
  • Aspect 2-3 The probe according to aspect 2-2, wherein the maximum value of the interval extending from the tip of the plurality of tips toward the opposite side of the tip is larger than the diameter of the guide hole into which the guide pin is inserted. The head.
  • Aspect 2-3 when a plurality of tip portions are inserted into the guide hole, the plurality of tip portions may come into contact with the inner side wall of the guide hole and sandwich the plurality of tip portions into the inner side wall of the guide hole.
  • Aspect 3-1 is Equipped with a guide pin
  • the guide pin is a probe head having a member that pushes the outer wall of at least a part of the guide pin from the inside of the guide pin.
  • the outer wall of the guide pin can be spread out to sandwich the guide pin in the inner side wall of the guide hole of the substrate.
  • the guide pin can be adjusted to an appropriate position of the guide hole so that the probe contacts the pad of the substrate.
  • the member of the guide pin is the probe head according to aspect 3-1 including a wedge portion and a screw portion for pushing the wedge portion.
  • the outer wall of the guide pin can be expanded by pushing the threaded portion into the wedge portion.
  • the diameter of the outer wall of the guide pin before the outer wall of the guide pin is expanded by the member is smaller than the diameter of the guide hole into which the guide pin is inserted.
  • the outer wall of the guide pin after inserting the guide pin into the guide hole, the outer wall of the guide pin can be expanded to sandwich the guide pin in the inner side wall of the guide hole of the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

プローブヘッド(10A)は、ガイドピン(100)を備え、ガイドピン(100)は、外側壁の直径がガイドピン(100)の一端側から他端側に向かうにつれて広がるテーパ部を有している。

Description

プローブヘッド
 本発明は、プローブヘッドに関する。
 半導体デバイス等の基板を検査装置によって検査するため、例えば特許文献1に記載されているように、被検査装置と検査装置とを電気的に接続するためのプローブヘッドが用いられることがある。プローブヘッドは、ガイドピンを備えている。ガイドピンは、配線基板等、検査装置の基板に形成されたガイド穴に挿入される。これによって、プローブヘッドが検査装置の基板に対して位置決めされる。プローブヘッドが検査装置の基板に対して位置決めされることで、プローブヘッドのプローブが検査装置の基板のパッドに接触することができるようになる。
特開2006-250901号公報
 検査装置の基板のガイド穴の直径には、公差によるばらつきが生じ得る。例えば特許文献1のガイドピンのようにガイドピンの外側壁の直径が一定であるとき、ガイドピンがガイド穴に挿入されても、プローブが基板のパッドに接触する位置からプローブヘッドがずれて配置される場合がある。この場合、プローブが基板のパッドに接触せず、検査装置が正確な検査を行えない可能性がある。
 本発明の目的の一例は、基板のガイド穴の公差の影響を抑制してプローブを基板のパッドに接触させることにある。本発明の他の目的は、本明細書の記載から明らかになるであろう。
 本発明の一態様は、
 ガイドピンを備え、
 前記ガイドピンは、外側壁の直径が前記ガイドピンの一端側から他端側に向かうにつれて広がるテーパ部を有する、プローブヘッドである。
 上記態様によれば、テーパ部のうち基板のガイド穴の直径と略等しい直径及びガイド穴の直径より小さい直径を有する部分を基板のガイド穴の開口にはめ込むことができる。したがって、基板のガイド穴の公差の影響を抑制してプローブを基板のパッドに接触させることができる。
実施形態1に係るプローブヘッドを示す図である。 実施形態1に係るプローブヘッドのプローブを基板のパッドに接触させる方法を説明するための図である。 実施形態1に係るプローブヘッドのプローブを基板のパッドに接触させる方法を説明するための図である。 実施形態2に係るプローブヘッドを示す図である。 実施形態2に係るプローブヘッドのプローブを基板のパッドに接触させる方法を説明するための図である。 実施形態3に係るプローブヘッドを示す図である。 実施形態3に係るプローブヘッドのプローブを基板のパッドに接触させる方法を説明するための図である。 実施形態3に係るプローブヘッドのプローブを基板のパッドに接触させる方法を説明するための図である。 変形例1に係るプローブヘッドを示す図である。 変形例2に係るガイドピンの側面図である。 変形例3に係るガイドピンの断面図である。
 以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(実施形態1)
 図1は、実施形態1に係るプローブヘッド10Aを示す図である。図1内において、後述する基板20については、後述するガイド穴22の中心を基板20の厚さ方向に沿って通過する断面が示されている。また、後述するソケット200については、後述する第1取付孔212及び第2取付孔222をソケット200の厚さ方向に沿って通過する断面が示されている。また、後述するガイドピン100及びプローブ300については、側面が示されている。
 図1において、「+Z」は、プローブヘッド10Aの上方向を示しており、「-Z」は、プローブヘッド10Aの下方向を示している。図1以降の図についても同様である。
 プローブヘッド10Aは、ガイドピン100、ソケット200及びプローブ300を備えている。ガイドピン100は、第1案内部110及び第2案内部120を有している。ソケット200は、ピンブロック210及びピンプレート220を有している。
 ピンブロック210及びピンプレート220は、プローブヘッド10Aの上方から下方に向けてこの順に重なっている。プローブ300は、プローブヘッド10Aの上下方向に沿ってソケット200に挿入されている。
 プローブヘッド10Aの使用に際しては、プローブヘッド10Aの上方には、後述する基板20を有する検査装置によって検査される半導体デバイス等の不図示の被検査装置の基板が配置される。一方、プローブヘッド10Aの下方には、検査装置の基板20が配置される。基板20は、例えば、PCB(Printed Circuit Board)である。基板20には、ガイド穴22が形成されている。基板20は、基板20の上面側に位置するパッド20aを有している。ガイドピン100の下端側は、基板20が位置する側となっている。被検査装置の基板と、検査装置の基板20と、は、プローブ300を介して電気的に接続される。
 第1案内部110は、ピンブロック210に形成された第1取付孔212と、ピンプレート220に形成された第2取付孔222と、に挿入されている。第1取付孔212は、第1孔部212a及び第2孔部212bを有している。第1孔部212a及び第2孔部212bは、プローブヘッド10Aの上方から下方に向けてこの順に並んでいる。第1孔部212aの直径は、第1案内部110の外側壁に取り付けられたフランジ112の外縁の直径より小さくなっている。第2孔部212bの直径は、第1孔部212aの直径及び第2取付孔222の直径の各々より大きくなっており、第1案内部110のフランジ112の外縁の直径以上となっている。さらに、ガイドピン100の一部分、具体的にはフランジ112は、第1取付孔212及び第2取付孔222の一部分内、具体的には第2孔部212b内に位置しており、第1取付孔212及び第2取付孔222の他の部分の直径、具体的には第1孔部212aの直径及び第2取付孔222の直径の各々より大きい直径を有している。したがって、第1案内部110のフランジ112は、プローブヘッド10Aの上下方向に沿って第2孔部212b内に限って移動可能になっている。
 第2案内部120は、第1案内部110の下端から下方にむけて突出している。第2案内部120の直径は、第1案内部110の直径より小さくなっている。また、第2案内部120の直径は、基板20のガイド穴22の直径よりも小さくなっている。本実施形態では、第2案内部120は、円柱形状を有している。この場合、第2案内部120が円錐形状を有する場合と比較して、第2案内部120が基板20のガイド穴22に挿入されたときガイドピン100が倒れにくくなる。しかしながら、第2案内部120は、円柱形状と異なる形状、例えば、円錐形状を有していてもよい。
 ガイドピン100の少なくとも一部分の外側壁の直径は、ガイドピン100の一端側から他端側に向かうにつれて広がっている。具体的には、ガイドピン100の外側壁には、第1テーパ部132及び第2テーパ部134が設けられている。なお、ガイドピン100に第2テーパ部134が設けられていなくてもよい。
 第1テーパ部132は、第1案内部110と第2案内部120との間に設けられている。第1テーパ部132におけるガイドピン100の外側壁は、ガイドピン100の下端側から上端側に向かうにつれて略線型に広がっている。しかしながら、第1テーパ部132におけるガイドピン100の外側壁は、湾曲しながら広がっていてもよい。
 第1テーパ部132が設けられていることによって、第1テーパ部132のうちガイド穴22の直径と略等しい直径及びガイド穴22の直径より小さい直径を有する部分を基板20のガイド穴22の開口にはめ込むことができる。したがって、基板20のガイド穴22の公差の影響を抑制してプローブ300を基板20のパッド20aに接触させることができる。具体的には、第1テーパ部132におけるガイドピン100の外側壁の直径の最小値は、基板20のガイド穴22の直径より小さくなっている。本実施形態では、第1テーパ部132におけるガイドピン100の外側壁の直径は、第1テーパ部132の最下端において最小値をとる。これに対して、第1テーパ部132におけるガイドピン100の外側壁の直径の最大値は、基板20のガイド穴22の直径より大きくなっている。本実施形態では、第1テーパ部132におけるガイドピン100の外側壁の直径は、第1テーパ部132の最上端において最大値をとる。したがって、第1テーパ部132のいずれかの部分の直径が、ガイド穴22の直径と略等しくなるようにすることができる。
 第2テーパ部134は、第1案内部110の上端側に設けられている。第2テーパ部134におけるガイドピン100の外側壁は、ガイドピン100の上端側から下端側に向かうにつれて略線型に広がっている。しかしながら、第2テーパ部134におけるガイドピン100の外側壁は、湾曲しながら広がっていてもよい。
 第2テーパ部134が設けられていることで、ガイドピン100の上端側から第1案内部110をソケット200の第1取付孔212に通すとき、ガイドピン100がソケット200の第1取付孔212に挿入されるように、第2テーパ部134によってソケット200を案内することができる。
 次に、図1~図3を用いて、プローブヘッド10Aのプローブ300を基板20のパッド20aに接触させる方法を説明する。図2及び図3は、実施形態1に係るプローブヘッド10Aのプローブ300を基板20のパッド20aに接触させる方法を説明するための図である。また、図2及び図3は、この方法における図1の後段を示している。
 まず、図1に示すように、基板20の上方にプローブヘッド10Aを配置する。この時点において、プローブヘッド10Aの上下方向において、ガイドピン100の少なくとも一部分が基板20のガイド穴22と重なるようにする。
 次いで、図2に示すように、ガイドピン100の下端側からガイドピン100の第2案内部120を基板20のガイド穴22に挿入する。本実施形態では、第1テーパ部132におけるガイドピン100の外側壁の直径の最小値が基板20のガイド穴22の直径より小さく、かつ第1テーパ部132におけるガイドピン100の外側壁の直径の最大値が基板20のガイド穴22の直径より大きくなっている。このため、ガイドピン100の第1テーパ部132は、第1テーパ部132が基板20のガイド穴22にはめ込まれるまで、基板20のガイド穴22の開口縁に対して滑らせることができる。これによって、ガイドピン100を、ガイド穴22の適切な位置、すなわち、プローブ300の下端の直下に基板20のパッド20aが位置する位置に合わせることができる。具体的には、ガイドピン100の中心をガイド穴22の中心に合わせることができる。この場合、基板20のガイド穴22の直径が公差によってばらついても、第1テーパ部132によって、プローブヘッド10Aを適切な位置に案内することができる。
 次いで、図3に示すように、ソケット200を基板20に向けて押し込む。これにより、プローブ300の下端が基板20のパッド20aに接触する。
(実施形態2)
 図4は、実施形態2に係るプローブヘッド10Bを示す図である。実施形態2に係るプローブヘッド10Bは、以下の点を除いて、実施形態1に係るプローブヘッド10Aと同様である。
 ガイドピン100は、ソケット200から取り外し可能になっている。また、ガイドピン100の第1案内部110は、ガイドピン100の上端側からソケット200の第2取付孔222及び第1取付孔212に通すことが可能になっている。
 図4及び図5を用いて、プローブヘッド10Bのプローブ300を基板20のパッド20aに接触させる方法を説明する。図5は、実施形態2に係るプローブヘッド10Bのプローブ300を基板20のパッド20aに接触させる方法を説明するための図である。また、図5は、この方法における図4の後段を示している。
 まず、図4に示すように、ガイドピン100がソケット200から取り外された状態で、ガイドピン100の第2案内部120を基板20のガイド穴22に挿入する。本実施形態においても、第1テーパ部132におけるガイドピン100の外側壁の直径の最小値が基板20のガイド穴22の直径より小さく、かつ第1テーパ部132におけるガイドピン100の外側壁の直径の最大値が基板20のガイド穴22の直径より大きくなっている。このため、ガイドピン100の第1テーパ部132は、第1テーパ部132が基板20のガイド穴22にはめ込まれるまで、基板20のガイド穴22の開口縁に対して滑らせることができる。これによって、ガイドピン100を、ガイド穴22の適切な位置、すなわち、後述する図5に示すようにソケット200がガイドピン100に取り付けられたときにプローブ300の下端の直下に基板20のパッド20aが位置する位置に合わせることができる。
 次いで、図5に示すように、ガイドピン100の上端側から、ガイドピン100の第1案内部110をソケット200の第2取付孔222及び第1取付孔212に通す。この場合、ガイドピン100がソケット200の第2取付孔222及び第1取付孔212に挿入されるように、第2テーパ部134によって、ソケット200を案内することができる。さらに、ソケット200を基板20に向けて押し込む。図4を用いて説明したように、本実施形態では、ガイドピン100は、ガイド穴22の適切な位置、すなわち、ソケット200がガイドピン100に取り付けられたときにプローブ300の下端の直下に基板20のパッド20aが位置する位置に合わせることができる。したがって、基板20のガイド穴22の公差の影響を抑制してプローブ300の下端を基板20のパッド20aに接触させることができる。
(実施形態3)
 図6は、実施形態3に係るプローブヘッド10Cを示す図である。実施形態3に係るプローブヘッド10Cは、以下の点を除いて、実施形態1に係るプローブヘッド10Aと同様である。
 ガイドピン100の第1テーパ部132は、図7及び図8を用いて後述するようにガイドピン100が基板20に向けて押し込まれる前は、ピンプレート220の下面から露出していない。
 図6~図8を用いて、プローブヘッド10Cのプローブ300を基板20のパッド20aに接触させる方法を説明する。図7及び図8は、実施形態3に係るプローブヘッド10Cのプローブ300を基板20のパッド20aに接触させる方法を説明するための図である。また、図7及び図8は、この方法における図6の後段を示している。
 まず、図6に示すように、基板20の上方にプローブヘッド10Cを配置する。この時点において、プローブヘッド10Cの上下方向において、ガイドピン100の少なくとも一部分が基板20のガイド穴22と重なるようにする。
 次いで、図7に示すように、第2案内部120の下端側からガイドピン100の第2案内部120を基板20のガイド穴22に挿入する。
 次いで、図8に示すように、ガイドピン100の上端側からガイドピン100を基板20のガイド穴22に向けて押し込む。これによって、実施形態1と同様にして、ガイドピン100の第1テーパ部132は、ガイドピン100の第1テーパ部132が基板20のガイド穴22にはめ込まれるまで、基板20のガイド穴22の開口縁に対して滑らせることができる。このため、ガイドピン100を、ガイド穴22の適切な位置、すなわち、プローブ300の下端が基板20のパッド20aに接触する位置に合わせることができる。したがって、基板20のガイド穴22の公差の影響を抑制してプローブ300の下端を基板20のパッド20aに接触させることができる。
(変形例1)
 図9は、変形例1に係るプローブヘッド10Dを示す図である。変形例1に係るプローブヘッド10Dは、以下の点を除いて、実施形態1に係るプローブヘッド10Aと同様である。
 ガイドピン100は、基板20に向けて付勢されている。ガイドピン100の上端は、バネ等の弾性体140を介して、ソケット200に取り付けられている。具体的には、ピンブロック210の第1取付孔212の上端は、閉端となっている。弾性体140の上端は、ピンブロック210のこの閉端に取り付けられている。また、弾性体140の下端には、ガイドピン100の上端が取り付けられている。
 本変形例では、ガイドピン100の第2案内部120を基板20のガイド穴22に通したとき、ガイドピン100を弾性体140によって基板20に向けて押し付けることができる。本変形例においても、第1テーパ部132におけるガイドピン100の外側壁の直径の最小値が基板20のガイド穴22の直径より小さく、かつ第1テーパ部132におけるガイドピン100の外側壁の直径の最大値が基板20のガイド穴22の直径より大きくなっている。このため、弾性体140による付勢によって、ガイドピン100の第1テーパ部132は、第1テーパ部132が基板20のガイド穴22にはめ込まれるまで、基板20のガイド穴22の開口縁に対して滑らせることができる。これによって、ガイドピン100を、ガイド穴22の適切な位置、すなわち、プローブ300の下端の直下に基板20のパッド20aが位置する位置に合わせることができる。この場合、基板20のガイド穴22の直径が公差によってばらついても、第1テーパ部132によって、プローブヘッド10Dを適切な位置に案内することができる。
(変形例2)
 図10は、変形例2に係るガイドピン100Aの側面図である。変形例2に係るガイドピン100Aは、以下の点を除いて、実施形態1に係るガイドピン100と同様である。なお、変形例2の説明では、必要に応じて、図1~図3に示した基板20を参照する。
 ガイドピン100Aは、第1案内部110A及び第2案内部120Aを有している。第2案内部120Aは、互いに分岐された複数の先端部、すなわち、第1先端部122A及び第2先端部124Aを含んでいる。第1先端部122A及び第2先端部124Aは、ガイドピン100Aの幅方向、すなわち+Zと-Zとの間の方向に対して直交する方向に並んでいる。第1先端部122A及び第2先端部124Aを基板20のガイド穴22に挿入して、第1先端部122A及び第2先端部124Aをガイド穴22の内側壁に挟み込むことができる。したがって、基板20のガイド穴22の直径が公差によってばらついたとしても、プローブ300が基板20のパッド20aに接触するように、ガイドピン100Aをガイド穴22の適切な位置に合わせることができる。
 第1先端部122A及び第2先端部124Aの先端から第1先端部122A及び第2先端部124Aの当該先端の反対側の少なくとも一部分までにおける第1先端部122A及び第2先端部124Aの最外縁間の間隔は、第1先端部122A及び第2先端部124Aの先端から当該先端の反対側に向かうにつれて広がっている。図10に示す例において、第1先端部122A及び第2先端部124Aの先端は、第1先端部122A及び第2先端部124Aの下端となっている。また、第1先端部122A及び第2先端部124Aの当該先端の反対側の少なくとも一部分は、第1先端部122A及び第2先端部124Aのおおよそ中央部となっている。また、第1先端部122A及び第2先端部124Aの最外縁間の間隔は、第1先端部122A及び第2先端部124Aの先端と当該先端の反対側とを結ぶ方向に直交する方向の間隔となっている。また、図10に示す例において、第1先端部122A及び第2先端部124Aの最外縁間の間隔は、第1先端部122Aの左側外縁と、第2先端部124Aの右側外縁と、の間の間隔である。この場合、第1先端部122A及び第2先端部124Aをガイド穴22の開口縁に対して滑らせて第1先端部122A及び第2先端部124Aをガイド穴22に挿入することができる。したがって、第1先端部122A及び第2先端部124Aの最外縁間の間隔が一定である場合と比較して、第1先端部122A及び第2先端部124Aをガイド穴22に挿入しやすくなっている。また、図10に示す例において、第1先端部122A及び第2先端部124Aのおおよそ中央部から第1案内部110Aまでにおける、第1先端部122A及び第2先端部124Aの最外縁間の間隔は、第1先端部122A及び第2先端部124Aの先端から当該先端の反対側に向かうにつれて狭まっている。しかしながら、第1先端部122A及び第2先端部124Aの最外縁間の間隔は、一定であってもよい。
 ガイドピン100Aの下端から上端側に向かうにつれて広がっている上記間隔の最小値は、ガイド穴22の直径より小さくなっている。したがって、第1先端部122A及び第2先端部124Aをガイド穴22に挿入することができる。
 ガイドピン100Aの下端から上端側に向かうにつれて広がっている上記間隔の最大値は、ガイド穴22の直径より大きくなっている。したがって、第1先端部122A及び第2先端部124Aがガイド穴22に挿入されたとき、第1先端部122A及び第2先端部124Aがガイド穴22の内側壁に接触して、第1先端部122A及び第2先端部124Aをガイド穴22の内側壁に挟み込むことができる。
(変形例3)
 図11は、変形例3に係るガイドピン100Bの断面図である。図11は、後述するねじ穴112B及び楔穴122Bをガイドピン100Bの上下方向に沿って通過する断面を示している。変形例3に係るガイドピン100Bは、以下の点を除いて、実施形態1に係るガイドピン100と同様である。
 ガイドピン100Bは、第1案内部110Bの少なくとも一部分の外側壁をガイドピン100Bの内側から押し広げる部材、すなわち後述するねじ部114B及び楔部124Bを有している。具体的には、ガイドピン100Bは、第1案内部110B及び第2案内部120Bを有している。第1案内部110Bの内側には、ガイドピン100Bの上下方向に沿って伸びるねじ穴112Bが形成されている。ねじ穴112Bには、ねじ部114Bが挿入されている。第2案内部120Bの内側には、ガイドピン100Bの上下方向に沿って伸びる楔穴122Bが形成されている。楔穴122Bには、楔部124Bが挿入されている。楔穴122B及び楔部124Bの各々の幅は、第2案内部120Bの上端側から下端側に向かうにつれて狭まっている。この場合、ねじ部114Bを楔部124Bに押し込むことで、楔部124Bによって第2案内部120Bの外側壁を押し広げることができる。
 本変形例に係るガイドピン100Bを備えるプローブヘッドのプローブを図1~図3に示した基板20のパッド20aに接触させる方法を説明する。
 まず、ガイドピン100Bの下端側からガイドピン100Bの第2案内部120Bを基板20のガイド穴22に挿入する。この時点、すなわち、ねじ部114B及び楔部124Bによってガイドピン100Bの外側壁が押し広げられる前において、第2案内部120Bの外側壁の直径は、基板20のガイド穴22の直径より小さくなっている。したがって、第2案内部120Bの外側面がガイド穴22の内側面に引っ掛かることなく、第2案内部120Bをガイド穴22に挿入することができる。
 次いで、例えば、ドライバ等の工具をガイドピン100Bの上端側からねじ穴112Bに通してねじ部114Bを回転させることで、ねじ穴112Bに沿ってねじ部114Bをガイドピン100Bの下方に向けてねじ込む。ねじ部114Bが下方に向けてねじ込まれることで、楔部124Bがねじ部114Bによって下方に向けて押し込まれる。楔部124Bがねじ部114Bによって下方に押し込まれることで、楔部124Bが楔穴122Bを押し広げて第2案内部120Bの外側壁の直径が大きくなる。このため、ガイドピン100Bをガイド穴22の内側壁に挟み込むことができる。したがって、基板20のガイド穴22の直径が公差によってばらついても、プローブが基板20のパッド20aに接触するように、ガイドピン100Bをガイド穴22の適切な位置に合わせることができる。
 以上、図面を参照して本発明の実施形態及び変形例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 本明細書によれば、以下の態様が提供される。
(態様1-1)
 態様1-1は、
 ガイドピンを備え、
 前記ガイドピンは、外側壁の直径が前記ガイドピンの一端側から他端側に向かうにつれて広がるテーパ部を有する、プローブヘッドである。
 態様1-1によれば、テーパ部のうち基板のガイド穴の直径と略等しい直径及びガイド穴の直径より小さい直径を有する部分を基板のガイド穴の開口にはめ込むことができる。したがって、基板のガイド穴の公差の影響を抑制してプローブを基板のパッドに接触させることができる。また、態様1-1によれば、ガイドピンの一端側からガイドピンをソケットの取付孔に通すとき、ガイドピンがソケットの取付孔に挿入されるように、ソケットを案内することができる。
(態様1-2)
 態様1-2は、
 前記ガイドピンの前記一端側は、検査装置の基板が位置する側である、態様1-1に記載のプローブヘッドである。
 態様1-2によれば、態様1-1と同様にして、基板のガイド穴の公差の影響を抑制してプローブを基板のパッドに接触させることができる。
(態様1-3)
 態様1-3は、
 前記テーパ部の前記直径の最小値が、前記ガイドピンが挿入される前記基板のガイド穴の直径より小さく、
 前記テーパ部の前記直径の最大値が、前記ガイド穴の直径より大きい、態様1-2に記載のプローブヘッドである。
 態様1-3によれば、テーパ部のいずれかの部分の直径が、ガイド穴の直径と略等しくなるようにすることができる。
(態様1-4)
 前記ガイドピンが挿入される取付孔を有するソケットをさらに備え、
 前記取付孔の一部分の直径は、前記取付孔の他の部分の直径より広くなっており、
 前記ガイドピンの一部分は、前記取付孔の前記一部分内に位置しており、前記取付孔の前記他の部分の直径より大きい直径を有する、態様1-1~1-3のいずれか一に記載のプローブヘッドである。
 態様1-4によれば、ガイドピンの当該一部分を、取付孔の当該一部分内に限って移動可能にすることができる。
(態様2-1)
 態様2-1は、
 ガイドピンを備え、
 前記ガイドピンは、互いに分岐された複数の先端部を有する、プローブヘッドである。
 態様2-1によれば、複数の先端部を基板のガイド穴に挿入して、複数の先端部をガイド穴の内側壁に挟み込むことができる。したがって、基板のガイド穴の直径が公差によってばらついていても、プローブが基板のパッドに接触するように、ガイドピンをガイド穴の適切な位置に合わせることができる。
(態様2-2)
 態様2-2は、
 前記複数の先端部の先端から前記複数の先端部の前記先端の反対側の少なくとも一部分までにおける、前記先端と前記先端の前記反対側とを結ぶ方向に直交する方向の前記複数の先端部の最外縁間の間隔が、前記複数の先端部の前記先端から前記先端の前記反対側に向かうにつれて広がっている、態様2-1に記載のプローブヘッドである。
 態様2-2によれば、複数の先端部をガイド穴の開口縁に対して滑らせて複数の先端部をガイド穴に挿入することができる。したがって、複数の先端部の最外縁間の間隔が一定である場合と比較して、複数の先端部をガイド穴に挿入しやすくなっている。
(態様2-3)
 態様2-3は、
 前記複数の先端部の前記先端から前記先端の前記反対側に向かうにつれて広がっている前記間隔の最大値が、前記ガイドピンが挿入されるガイド穴の直径より大きい、態様2-2に記載のプローブヘッドである。
 態様2-3によれば、複数の先端部がガイド穴に挿入されたとき、複数の先端部がガイド穴の内側壁に接触して、複数の先端部をガイド穴の内側壁に挟み込むことができる。
(態様3-1)
 態様3-1は、
 ガイドピンを備え、
 前記ガイドピンは、前記ガイドピンの少なくとも一部分の外側壁を前記ガイドピンの内側から押し広げる部材を有する、プローブヘッドである。
 態様3-1によれば、ガイドピンの外側壁を押し広げて、ガイドピンを基板のガイド穴の内側壁に挟み込むことができる。したがって、基板のガイド穴の直径が公差によってばらついていても、プローブが基板のパッドに接触するように、ガイドピンをガイド穴の適切な位置に合わせることができる。
(態様3-2)
 態様3-2は、
 前記ガイドピンの前記部材は、楔部と、前記楔部を押し込むねじ部と、を含む、態様3-1に記載のプローブヘッドである。
 態様3-2によれば、ねじ部を楔部に押し込むことで、ガイドピンの外側壁を押し広げることができる。
(態様3-3)
 態様3-3は、
 前記部材によって前記ガイドピンの前記外側壁が押し広げられる前における前記ガイドピンの前記外側壁の直径が、前記ガイドピンが挿入されるガイド穴の直径より小さい、態様3-1又は3-2に記載のプローブヘッドである。
 態様3-3によれば、ガイドピンをガイド穴に挿入した後、ガイドピンの外側壁を押し広げて、ガイドピンを基板のガイド穴の内側壁に挟み込むことができる。
 この出願は、2020年3月23日に出願された日本出願特願2020-050842号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10A プローブヘッド
10B プローブヘッド
10C プローブヘッド
10D プローブヘッド
20 基板
20a パッド
22 ガイド穴
100 ガイドピン
100A ガイドピン
100B ガイドピン
110 第1案内部
110A 第1案内部
110B 第1案内部
112 フランジ
112B ねじ穴
114B ねじ部
120 第2案内部
120A 第2案内部
120B 第2案内部
122A 第1先端部
122B 楔穴
124A 第2先端部
124B 楔部
132 第1テーパ部
134 第2テーパ部
140 弾性体
200 ソケット
210 ピンブロック
212 第1取付孔
212a 第1孔部
212b 第2孔部
220 ピンプレート
222 第2取付孔
300 プローブ

Claims (4)

  1.  ガイドピンを備え、
     前記ガイドピンは、外側壁の直径が前記ガイドピンの一端側から他端側に向かうにつれて広がるテーパ部を有する、プローブヘッド。
  2.  前記ガイドピンの前記一端側は、検査装置の基板が位置する側である、請求項1に記載のプローブヘッド。
  3.  前記テーパ部の前記直径の最小値が、前記ガイドピンが挿入される前記基板のガイド穴の直径より小さく、
     前記テーパ部の前記直径の最大値が、前記ガイド穴の直径より大きい、請求項2に記載のプローブヘッド。
  4.  前記ガイドピンが挿入される取付孔を有するソケットをさらに備え、
     前記取付孔の一部分の直径は、前記取付孔の他の部分の直径より広くなっており、
     前記ガイドピンの一部分は、前記取付孔の前記一部分内に位置しており、前記取付孔の前記他の部分の直径より大きい直径を有する、請求項1~3のいずれか一項に記載のプローブヘッド。
PCT/JP2021/009786 2020-03-23 2021-03-11 プローブヘッド WO2021193098A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020050842A JP2021148699A (ja) 2020-03-23 2020-03-23 プローブヘッド
JP2020-050842 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021193098A1 true WO2021193098A1 (ja) 2021-09-30

Family

ID=77848493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009786 WO2021193098A1 (ja) 2020-03-23 2021-03-11 プローブヘッド

Country Status (3)

Country Link
JP (1) JP2021148699A (ja)
TW (1) TW202136787A (ja)
WO (1) WO2021193098A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221269A (ja) * 1988-07-08 1990-01-24 Tokyo Electron Ltd プローブ装置
JPH02205782A (ja) * 1989-02-06 1990-08-15 Pfu Ltd 電子機器の完成検査用ピンベースの位置決め機構
JPH04268469A (ja) * 1991-02-25 1992-09-24 Hitachi Ltd 位置決め機構付き測定用プロービング装置
JP2000147067A (ja) * 1998-11-11 2000-05-26 Matsushita Electronics Industry Corp プローブカードの位置決め機構
JP2006266869A (ja) * 2005-03-24 2006-10-05 Enplas Corp コンタクトピン及び電気部品用ソケット
JP2019212586A (ja) * 2018-06-08 2019-12-12 株式会社エンプラス Icソケット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221269A (ja) * 1988-07-08 1990-01-24 Tokyo Electron Ltd プローブ装置
JPH02205782A (ja) * 1989-02-06 1990-08-15 Pfu Ltd 電子機器の完成検査用ピンベースの位置決め機構
JPH04268469A (ja) * 1991-02-25 1992-09-24 Hitachi Ltd 位置決め機構付き測定用プロービング装置
JP2000147067A (ja) * 1998-11-11 2000-05-26 Matsushita Electronics Industry Corp プローブカードの位置決め機構
JP2006266869A (ja) * 2005-03-24 2006-10-05 Enplas Corp コンタクトピン及び電気部品用ソケット
JP2019212586A (ja) * 2018-06-08 2019-12-12 株式会社エンプラス Icソケット

Also Published As

Publication number Publication date
TW202136787A (zh) 2021-10-01
JP2021148699A (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
JP4757917B2 (ja) 集積回路テストソケット
EP3268751B1 (en) Testing head with vertical probes, particularly for high frequency applications
EP1179734A1 (en) Testing head having vertical probes
JP2500830Y2 (ja) 集積回路検査装置
US4177425A (en) Multiple contact electrical test probe assembly
US6743043B2 (en) Socket for electrical parts having separable plunger
GB1573184A (en) Electrical interconnection boards with lead sockets mounted therein and method of making same
WO2011096067A1 (ja) 接触子及び電気的接続装置
JP2007017234A (ja) 検査装置用ソケット
US10067161B2 (en) Socket
US20030102357A1 (en) Micro soldered connection
TWI680299B (zh) 線型探針用治具
WO2021193098A1 (ja) プローブヘッド
US20090267629A1 (en) Contact for interconnect system in a test socket
CN110927416B (zh) 探针卡测试装置及测试装置
TW201600863A (zh) 探針卡的定位件與探針卡的探針頭
US4935695A (en) Board alignment system
WO2020179596A1 (ja) 電気的接続装置
US10978820B2 (en) IC socket with contacts having a retained portion
US20050083071A1 (en) Electronic circuit assembly test apparatus
US7833043B2 (en) Socket connector
US8395405B2 (en) Probe
KR200388968Y1 (ko) 가이드핀과 가이드홀을 이용한 위치정렬 장치
US20230007997A1 (en) Vertical probe head
JPH0273171A (ja) ボードテスタの回路板位置決め装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776642

Country of ref document: EP

Kind code of ref document: A1