WO2021193073A1 - 作業機械の遠隔操縦システム - Google Patents

作業機械の遠隔操縦システム Download PDF

Info

Publication number
WO2021193073A1
WO2021193073A1 PCT/JP2021/009621 JP2021009621W WO2021193073A1 WO 2021193073 A1 WO2021193073 A1 WO 2021193073A1 JP 2021009621 W JP2021009621 W JP 2021009621W WO 2021193073 A1 WO2021193073 A1 WO 2021193073A1
Authority
WO
WIPO (PCT)
Prior art keywords
remote control
work machine
command
command signal
communication
Prior art date
Application number
PCT/JP2021/009621
Other languages
English (en)
French (fr)
Inventor
輝樹 五十嵐
賢人 熊谷
昭広 楢▲崎▼
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to KR1020227006040A priority Critical patent/KR102681620B1/ko
Priority to CN202180004921.3A priority patent/CN114222953B/zh
Priority to US17/637,598 priority patent/US12037772B2/en
Priority to EP21774630.4A priority patent/EP4130399A4/en
Publication of WO2021193073A1 publication Critical patent/WO2021193073A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/221Remote-control arrangements
    • G05D1/222Remote-control arrangements operated by humans
    • G05D1/223Command input arrangements on the remote controller, e.g. joysticks or touch screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • H04Q9/02Automatically-operated arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/23Pc programming
    • G05B2219/23051Remote control, enter program remote, detachable programmer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture

Definitions

  • the present invention relates to a remote control system for a work machine having a plurality of actuators.
  • a camera mounted on the work machine which is a control target device, is used to capture an image of the control target device and its surroundings, and the captured image is transmitted from the control target device to the remote control device, and the image is transmitted.
  • the operated control signal is transmitted from the remote control device to the control target device to remotely operate the control target device.
  • a wireless communication network is often used between the controlled object device and the communication network.
  • Patent Document 1 There is a conventional technique shown in Patent Document 1 as a technique for solving the communication delay of the remote control system described above.
  • the amount of overshoot that may occur due to the communication delay time is calculated from the communication delay time and the operation speed of the control target, and the overshoot amount is calculated.
  • the operating speed is limited so that the overshoot amount is less than a preset threshold.
  • the arm speed alone or the communication delay time causes an overshoot of the actual speed with respect to the speed desired by the operator
  • the arm speed Only the command speed of the arm is limited so that the overshoot amount is less than a predetermined value.
  • the command speed of the boom and the bucket is not limited. Therefore, only the speed of the arm is limited more than the operator's intention, so that the work machine cannot be operated as the operator intended, and the operability deteriorates.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a remote control system for a work machine capable of improving stability and effectively improving operability. ..
  • the remote control system of the work machine of the present invention includes an operation lever for the operator to operate a plurality of actuators provided in the work machine, and the operation lever generated by the operation of the operation lever.
  • a remote control device on the operator side that transmits command signals for operating a plurality of actuators via a communication network
  • a remote control device on the work machine side that receives the command signals via the communication network and transmits the command signals to the work machine.
  • the control device, the delay state determination device for determining the communication delay state of the command signal received by the work machine side remote control device with respect to the command signal transmitted from the operator side remote control device, and the communication delay state.
  • Is a command signal correction device that corrects all the command signals of the plurality of actuators being operated so as to maintain the ratio when it is determined that is worse than the preset delay state judgment threshold. It is characterized by having and.
  • a remote control system of a work machine having a plurality of actuators all commands of the plurality of actuators being operated are commanded even if a communication delay time occurs while operating the plurality of actuators.
  • restrictions are applied to multiple actuators while maintaining the ratio of command signals (operation signals), so that the operator can easily maintain the desired balance of operation of the multiple actuators and operate the actuators. It becomes easier to remove.
  • by limiting the command signal it is possible to reduce the discrepancy between the operating state of the work machine that the operator can grasp on the monitor and the actual operating state of the work machine, so that the visual result of the work machine displayed on the monitor can be reduced. Accurate feedback can be input to the operation lever based on the above, and work can be done efficiently.
  • the schematic block diagram of the remote control system of the hydraulic excavator which is an example of the work machine which concerns on 1st Embodiment.
  • the block block diagram of the remote control system of the hydraulic excavator which is an example of the work machine which concerns on 1st Embodiment.
  • the block block diagram of the command signal correction part which concerns on 1st Embodiment.
  • the calculation table of the command value calculation unit based on the delay state according to the first and second embodiments.
  • a calculation table of the command value calculation unit based on the delay time according to the first and second embodiments.
  • a modification of the calculation table of the command value calculation unit based on the delay state according to the first and second embodiments.
  • a calculation table of the correction state threshold value based on the maximum operation command signal according to the first and second embodiments.
  • the block block diagram of the remote control system of the hydraulic excavator which is an example of the work machine which concerns on 2nd Embodiment.
  • the calculation table of the command value calculation unit based on the delay state according to the third embodiment.
  • a calculation table of the correction state threshold value based on the maximum operation command signal according to the third embodiment A modification of the calculation table of the command value calculation unit based on the delay time according to the third embodiment.
  • a hydraulic excavator will be illustrated as an example of the work machine.
  • remote control remote control
  • hydraulic pressure is used.
  • it is not limited to excavators, but can be applied to construction machines such as wheel loaders, cranes, bulldozers, dumps, and road machines, and general work machines other than construction machines.
  • FIG. 1 and 2 show a remote control system for a hydraulic excavator, which is an example of a work machine according to the first embodiment, FIG. 1 is a schematic configuration diagram, and FIG. 2 is a block configuration diagram.
  • the hydraulic excavator (working machine) 1 includes a crawler type lower traveling body 2, an upper swivel body 3 provided so as to be swivel with respect to the lower traveling body 2, and a front of the upper swivel body 3. It is roughly composed of a front device 7 which is attached to a portion so as to be able to move up and down and performs excavation work and the like.
  • a pair of left and right traveling motors 11 (hereinafter, may be referred to as a right traveling motor 11 and a left traveling motor 11) are installed in the lower traveling body 2.
  • a prime mover such as an engine, a hydraulic pump, a swivel motor 12, and the like are installed in the upper swivel body 3.
  • the front device 7 has a boom 8, an arm 9, and a bucket 10 (driven by a boom cylinder, an arm cylinder, and a bucket cylinder, which are hydraulic cylinders driven by hydraulic oil).
  • the boom 8, arm 9, bucket 10, swivel motor 12, and traveling motor 11 each constitute an actuator 31 of the work machine of the present embodiment (see FIG. 2).
  • the hydraulic excavator 1 is provided with a work machine side remote control device 21 provided with a command information transmission / reception unit 27 for transmitting / receiving command information (command signal).
  • An operator-side remote control device (also referred to as a wireless remote control device) 20 provided with a command information transmission / reception unit 24 for transmitting / receiving command information (command signal) is installed outside the hydraulic excavator 1, for example, in the cockpit. ..
  • the remote control device 20 on the operator side (command information transmission / reception unit 24) and the remote control device 21 on the work machine side (command information transmission / reception unit 27) are connected via a communication network 34. Therefore, information or signals can be wirelessly communicated (transmitted and received).
  • the operator operates each of a plurality of actuators 31 (boom 8, arm 9, bucket 10, left and right traveling motors 11, swivel motor 12).
  • a plurality of remote control operation levers (hereinafter, simply referred to as operation levers) 22 are provided. Each operation for operating the actuator 31 (boom 8, arm 9, bucket 10, left and right traveling motor 11, swivel motor 12) corresponding to each operating lever 22 by the operator operating each operating lever 22.
  • a command signal corresponding to the operation of the lever 22 (operation lever input amount) is generated and output to the command information transmission / reception unit 24.
  • the hydraulic excavator 1 has, as a basic configuration, for controlling the operation (state) of a plurality of solenoid valves 30 for generating hydraulic signals for operating a plurality of actuators 31 and a plurality of actuators 31. It also has a controller 29 that converts a command signal input from the outside (here, a command information transmission / reception unit 27 of the work machine side remote control device 21) into an electric current and commands the solenoid valve 30.
  • a command signal generated by the operation of the operation lever 22 in the cockpit as shown in FIGS. 1 and 2 is commanded to the solenoid valve 30 via the controller 29, and is controlled by the oil pressure output from the solenoid valve 30.
  • the present embodiment is different from the basic configuration of a general hydraulic excavator 1 having an electric lever system for operating an actuator 31 (boom 8, arm 9, bucket 10, left and right traveling motors 11, swivel motor 12) via a valve. An embodiment to which the remote control system is applied will be described.
  • the operation lever 22 and the operator side remote control device 20 may be configured as one device (in other words, even if the operation lever 22 is provided in the operator side remote control device 20). Of course, they may be configured as separate devices. Further, as shown in the drawing, the hydraulic excavator (working machine) 1 and the work machine side remote control device 21 may be configured as separate devices, or they may be configured as one device (in other words, work). The machine-side remote control device 21 may be built in the hydraulic excavator 1).
  • the operator-side remote control device 20 and the work machine-side remote control device 21 described above are a CPU (Central Processing Unit) that performs various calculations and a ROM (ROM) that stores a program for executing calculations by the CPU. It is configured as a microcomputer (microcomputer) including a storage device such as Read Only Memory) and HDD (Hard Disk Drive), and RAM (Random Access Memory) which is a work area when the CPU executes a program.
  • microcomputer including a storage device such as Read Only Memory) and HDD (Hard Disk Drive), and RAM (Random Access Memory) which is a work area when the CPU executes a program.
  • Each function of the operator side remote control device 20 and the work machine side remote control device 21 is realized by the CPU loading various programs stored in the storage device into the RAM and executing them.
  • the operator operates the actuator 31 (boom 8, arm 9, bucket 10, left and right traveling motors 11, swivel motor 12) of the work machine by the operation lever 22 in the operator-side remote control device 20 shown in FIG. conduct.
  • actuator 31 boom 8, arm 9, bucket 10, left and right traveling motors 11, swivel motor 12
  • the operator displays the operating state of the hydraulic excavator 1 (plural actuators 31) on the monitor 33 via the communication network 34 from the outside, for example, the image taken by the camera 32 from the cockpit, and the monitor 33.
  • the operation lever 22 on the operator side remote control device 20 is operated to remotely control (remote control) the actuator 31 of the work machine.
  • the camera 32 is an operation state confirmation device for confirming the operation state of the hydraulic excavator 1 (a plurality of actuators 31) from the outside
  • the monitor 33 is an output (video) of the camera (operation state confirmation device) 32.
  • Is an operation state display device that receives the signal via the communication network 34 and makes it visible to the operator.
  • the operator-side remote control device 20 corrects the command signal generated in response to the operation of the operation lever 22 based on the output of the delay state determination unit (delay state determination device) 26.
  • Correction unit (command signal correction device) 23 command information transmission / reception unit 24 for transmitting command information (specifically, a command signal output from the command signal correction unit 23) via the communication network 34, operator-side remote control device 20
  • Communication status determination unit 25 that determines the communication status of the communication status
  • the communication status determination unit 28 that determines the communication status of the work machine side remote control device 21, and the communication status determination that determines the communication status of the operator side remote control device 20.
  • It has a delay state determination unit 26 that determines a communication delay state (hereinafter, may be simply referred to as a delay state) with the remote control device 21 on the work machine side based on the output of the unit 25.
  • the work machine side remote control device 21 on the hydraulic excavator 1 side receives the command information (command signal) transmitted from the operator side remote control device 20 (command information transmission / reception unit 24) via the communication network 34. It has a command information transmission / reception unit 27 that transmits the command signal to the controller 29 of the hydraulic excavator 1, and a communication state determination unit 28 that determines the communication state of the work machine side control device 21.
  • the delay state determination unit 26 controls the work machine side remotely based on the outputs of the communication state determination unit 25 of the operator side remote control device 20 and the communication state determination unit 28 of the work machine side remote control device 21.
  • the communication delay state with the device 21 is determined.
  • the delay state determination unit 26 is based on the output of the communication state determination unit 25 of the operator side remote control device 20 and the communication state determination unit 28 of the work machine side remote control device 21, and the operator side remote control device 20.
  • the communication delay state of the command signal received by the command information transmission / reception unit 27 of the work machine side remote control device 21 with respect to the command signal transmitted from the command information transmission / reception unit 24 of the above is determined.
  • the communication status determination units 25 and 28 monitor the radio field strengths of the remote control devices (20, 21) on the operator side and the work machine side, respectively. , There is a method of outputting a comprehensive communication delay state based on the two results.
  • the delay state is set.
  • the command value correction unit 23 includes a correction value calculation unit 35 and a correction value multiplication unit 36.
  • the correction value calculation unit 35 corrects the command signal output from the operation lever 22 based on the delay state Ls, which is the output result of the delay state determination unit 26, according to the graph (calculation table) shown in FIG. Is output.
  • the correction value multiplication unit 36 the correction value calculation is performed on all the command signals output from the operated operation lever 22 (in other words, all the command signals of the plurality of actuators 31 operated via the operation lever 22).
  • the command correction value calculated in unit 35 is multiplied to correct (uniformly).
  • the command signal output from the operation lever 22 is operated in the operator side remote control device 20 (in other words, the command signal output from the operation lever 22 is operated so as to maintain the ratio of the plurality of operation lever input amounts input to the operation lever 22 by the operator. All command signals are uniformly corrected (before being transmitted from the remote control device 20 on the user side to the remote control device 21 on the work machine side).
  • the command information transmission / reception unit 24 transmits the (corrected) command signal output from the correction value multiplication unit 36 of the command value correction unit 23 to the command information transmission / reception unit 27 of the remote control device 21 on the work machine side via the communication network 34.
  • the command information transmission / reception unit 27 of the work machine side remote control device 21 transmits a command signal received from the command information transmission / reception unit 24 of the operator side remote control device 20 via the communication network 34 to the controller 29 of the hydraulic excavator 1. .
  • the controller 29 controls the operation (state) of the plurality of actuators 31 according to the method described above.
  • the actual speed of the actuator 31 becomes faster than the speed of the actuator 31 that the operator was aiming for, resulting in an overshoot.
  • excavation operation is performed by boom raising, arm cloud, or bucket cloud operation
  • the boom rises too much and the intended earth and sand cannot be excavated, resulting in poor efficiency.
  • the arm cloud speed the arm will cloud too much and excavate too much earth and sand, which will lead to efficiency deterioration if repair work is required.
  • the command correction value according to the delay state is (uniformly) multiplied by the boom-raising command signal, the arm cloud command signal, and the bucket cloud command signal.
  • the command signal maintains the operation balance intended by the operator, and suppresses the overshoot of the speed of the actuator 31 of the actual work machine with respect to the speed of the actuator 31 aimed at by the operator, and controls the operation. It becomes easier for the person to perform the intended operation. As a result, in remote control of the work machine, even if a communication delay occurs while operating a plurality of actuators 31, it is possible to prevent deterioration of efficiency.
  • the operating lever 22 for the operator to operate the plurality of actuators 31 provided in the work machine, and the plurality of operating levers 22 generated by the operation of the operating lever 22.
  • the operator-side remote control device 20 that transmits the command signal for operating the actuator 31 of the above via the communication network 34, and the work of receiving the command signal via the communication network 34 and transmitting the command signal to the work machine.
  • a delay state determination unit that determines the communication delay state of the command signal received by the work machine side remote control device 21 with respect to the command signal transmitted from the machine side remote control device 21 and the operator side remote control device 20.
  • Delay state determination device 26 and all the command signals of the plurality of actuators 31 being operated when it is determined that the communication delay state is worse than the preset delay state determination threshold.
  • command signal correction unit (command signal correction device) 23 is operated so that the operating speed of the plurality of actuators 31 becomes slower as the communication delay state worsens, and all of the plurality of actuators 31 are operated. The command signal is corrected.
  • the command signal correction unit (command signal correction device) 23 determines that the communication is interrupted. Then, all the command signals of the plurality of actuators 31 being operated are corrected so that the plurality of actuators 31 do not operate.
  • the operator-side remote control device maintains the ratio of the input amounts of the plurality of operation levers input to the operation lever 22 by the operator. All operation signals are uniformly corrected within 20.
  • a plurality of actuators 31 are operated even if a communication delay time occurs while operating the plurality of actuators 31.
  • the operation balance of the plurality of actuators 31 desired by the operator is adjusted in order to limit the plurality of actuators 31 while maintaining the ratio of the command signals (operation signals). It will be easier to maintain and operate, and it will be easier to operate.
  • the command signal for example, the discrepancy between the operating state of the working machine that the operator can grasp on the monitor 33 and the operating state of the actual working machine can be reduced, so that the working machine displayed on the monitor 33 can be reduced. Accurate feedback can be input to the operation lever 22 based on the visual result, and the work can be performed efficiently.
  • the delay state determination unit (delay state determination device) 26 and the command signal correction unit (command signal correction device) 23 are provided in the operator side remote control device 20.
  • the command signal correction unit (command signal correction device) 23 is operated by the plurality of actuators before the command signal is transmitted from the operator side remote control device 20 to the work machine side remote control device 21. All 31 of the command signals are corrected.
  • the correction in anticipation of a delay in the command signal transmitted from the operator side remote control device 20 which is a wireless remote control device to the work machine side remote control device 21 (via the communication network 34). Can be applied. Further, for example, assuming that one operator-side remote control device 20 operates while switching a plurality of hydraulic excavators 1, the number of components on the hydraulic excavator 1 side (that is, the work machine side remote control device 21) can be reduced. Therefore, the cost can be reduced as compared with, for example, the second embodiment described later.
  • Modification example (1) As a method of determining the communication delay state performed by the delay state determination unit 26, the transmission time of the command signal transmitted from the operator side remote control device 20 by the communication state determination units 25 and 28 and the work machine side remote control device 21 There is also a method of monitoring the reception time when the command signal is received and outputting the communication delay state based on the two results.
  • the correction value calculation unit 35 of the command value correction unit 23 is output from the operation lever 22 based on the delay time Lt which is the output result of the delay state determination unit 26 according to the graph (calculation table) shown in FIG. Outputs the command correction value that corrects the command signal.
  • the command correction value less than 1.0 that corrects the command signal is It is output.
  • Lt 0.5
  • the work machine actuator 31 (boom 8, arm 9, arm 9) becomes worse as the delay time Lt worsens.
  • the operating speeds of the bucket 10, the left and right traveling motors 11, and the swivel motor 12) are (uniformly) limited (decelerated).
  • the relationship between the delay state Ls used by the command value correction unit 23 (correction value calculation unit 35) and the command correction value may be set as shown in FIG.
  • the threshold value of the delay state Ls (the delay state determination threshold value for determining the necessity of correction, hereinafter also referred to as the correction state threshold value) LsX at which the command correction value starts to decrease from 1.0 is determined.
  • the graph (calculation table) of FIG. 7 shows the relationship between the maximum operation command signal (hereinafter referred to as the maximum operation command signal) among the command signals of the actuator 31 operated by the work machine and the correction state threshold value LsX.
  • the maximum operation command signal hereinafter referred to as the maximum operation command signal
  • the larger the maximum operation command signal the larger the correction state threshold LsX at which the command correction value starts to decrease from 1.0
  • the smaller the maximum operation command signal the 1.0 the command correction value.
  • the correction state threshold LsX that starts to fall from is small.
  • the smaller the maximum operation command signal the smaller the correction state threshold LsX at which the command correction value starts to decrease from 1.0.
  • the maximum operation command signal is small, that is, when the operating speed of the actuator 31 of the work machine is slow, the operating amount of the actuator 31 of the work machine per unit time caused by the communication delay and the operating amount of the work machine assumed by the operator.
  • the deviation from the operating amount of the actuator 31 is small. That is, when the operating speed of the actuator 31 is low, the command signal is not corrected until the communication is significantly delayed by reducing the correction state threshold value LsX at which the command correction value starts to decrease.
  • the correction state threshold value (delay state determination threshold value) LsX of the delay state Ls at which the command correction value starts to decrease from 1.0 is set according to the operating speeds of the plurality of actuators 31 of the work machine.
  • FIG. 10 shows a block configuration diagram of a remote control system for a hydraulic excavator, which is an example of a work machine according to a second embodiment.
  • the operation is based on the outputs of the delay state determination unit 26 and the delay state determination unit 26 that determine the communication delay state between the operator side remote control device 20 and the work machine side remote control device 21.
  • a command signal correction unit 23 that corrects the command signal generated in response to the operation of the lever 22 is provided in the operator-side remote control device 20. Then, all the command signals are corrected before the command signals output from the operation lever 22 are transmitted from the operator side remote control device 20 to the work machine side remote control device 21.
  • the work machine side remote control device 21 includes a delay state determination unit (delay state determination device) 37 and a command signal correction unit (command signal correction device) 38. Then, the command signal output from the operation lever 22 and transmitted from the command information transmission / reception unit 24 of the operator side remote control device 20 to the command information transmission / reception unit 27 of the work machine side remote control device 21 via the communication network 34 works. All command signals are corrected before being transmitted from the command information transmission / reception unit 27 of the machine-side remote control device 21 to the controller 29 of the hydraulic excavator 1.
  • the delay state determination unit 37 functions in the same manner as the delay state determination unit 26 described in the first embodiment. However, the delay state determination unit 37 receives the signal of the communication state determination unit 25 of the operator side remote control device 20 via the communication network 34, and the signal of the communication state determination unit 28 of the work machine side remote control device 21 is received. Receive directly in the device.
  • the delay state determination unit 37 controls the operator side remotely based on the outputs of the communication state determination unit 25 of the operator side remote control device 20 and the communication state determination unit 28 of the work machine side remote control device 21.
  • the communication delay state with the device 20 is determined.
  • the delay state determination unit 37 is based on the output of the communication state determination unit 25 of the operator side remote control device 20 and the communication state determination unit 28 of the work machine side remote control device 21, and the operator side remote control device 20.
  • the communication delay state of the command signal received by the command information transmission / reception unit 27 of the work machine side remote control device 21 with respect to the command signal transmitted from the command information transmission / reception unit 24 of the above is determined.
  • the specific communication state determination method of the delay state determination unit 37 is the same as that of the first embodiment.
  • the command value correction unit 38 has the same configuration as the command signal correction unit 23 (including the correction value calculation unit 35 and the correction value multiplication unit 36) shown in FIG.
  • the correction value calculation unit 35 corrects the command signal output from the operation lever 22 based on the delay state Ls, which is the output result of the delay state determination unit 37, according to the graph (calculation table) shown in FIG. Is output.
  • all the command signals (in other words, the command information transmission / reception unit 24) output from the operated operation lever 22 and received from the operator side remote control device 20 (command information transmission / reception unit 24) via the communication network 34 (in other words, All command signals of the plurality of actuators 31 operated via the operation lever 22) are multiplied by the command correction value calculated by the correction value calculation unit 35 to correct (uniformly).
  • the work machine side remote control device 21 in other words, output from the operation lever 22 and remote to the operator side
  • the command signal transmitted from the command information transmission / reception unit 24 of the control device 20 to the command information transmission / reception unit 27 of the work machine side remote control device 21 via the communication network 34 is from the command information transmission / reception unit 27 of the work machine side remote control device 21. All operation signals are uniformly corrected (before being transmitted to the controller 29 of the hydraulic excavator 1).
  • the correction value multiplication unit 36 transmits a command signal (after correction), which is an output result, to the controller 29 of the hydraulic excavator 1.
  • the delay state determination unit (delay state determination device) 37 and the command signal correction unit (command signal correction device) 38 are provided in the work machine side remote control device 21.
  • the command signal correction unit (command signal correction device) 38 is operated by the plurality of actuators before the command signal is transmitted from the work machine side remote control device 21 to the work machine (controller 29). All 31 of the command signals are corrected.
  • the correction information (corrected command signal) is transmitted to the controller 29 of the hydraulic excavator (working machine) 1 without going through the communication network 34. It can be immediately reflected in the operation of the actuator 31. Further, for example, assuming that one hydraulic excavator 1 is moved while switching a plurality of operator-side remote control devices 20, the number of components of the operator-side remote control device 20 which is a wireless remote control device can be reduced, for example. Compared with the first embodiment described above, the cost can be reduced.
  • the second embodiment can also include the contents described with reference to FIGS. 5 to 9 in addition to FIG.
  • FIG. 11 shows a block configuration diagram of a command value correction unit in a remote control system for a hydraulic excavator, which is an example of a work machine according to a third embodiment.
  • the third embodiment will be described as a modification of the command value correction unit 23 of the operator side remote control device 20 in the first embodiment, but the work machine side remote control in the second embodiment will be described. Needless to say, it can be applied to the command value correction unit 38 of the control device 21 in detail.
  • the configuration of the command value correction unit 23 (or the command value correction unit 38 in the second embodiment) in the first embodiment is as shown in FIG. 11, and the command value correction unit 23 Is a correction calculation unit that outputs a command correction value for correcting a command signal output from the operation lever 22 based on the delay state Ls that is the output result of the delay state determination unit 26, and is a boom 8 based on the delay state Ls.
  • the command signal (swivel command) of the correction value A calculation unit 39 and the swivel motor 12 for calculating the command correction value A for correcting the command signals (boom command signal, arm command signal, bucket command signal) of the arm 9 and the bucket 10.
  • Command to correct the command correction value B to correct the correction value B Calculation unit 40, the command to correct the command signals (running right command signal, running left command signal) of the right traveling motor 11 and the left traveling motor 11 It has a correction value C calculation unit 41 that calculates a correction value C.
  • the command correction value A, the command correction value B, and the command are based on the delay state Ls with reference to the calculation table as shown in FIG.
  • the correction value C is calculated (details will be explained later).
  • the command correction value A calculated by the correction value A calculation unit 39 is multiplied by the command signals (boom command signal, arm command signal, bucket command signal) of the boom 8, arm 9, and bucket 10 in the correction value A multiplication unit 42, respectively. Will be done.
  • the command correction value B calculated by the correction value B calculation unit 40 is multiplied by the command signal (swivel command signal) of the swivel motor 12 in the correction value B multiplication unit 43.
  • the correction value C calculated by the correction value C calculation unit 41 is multiplied by the command signals (running right command signal, running left command signal) of the right traveling motor 11 and the left traveling motor 11 in the correction value C multiplication unit 44, respectively. ..
  • the correction value A calculation unit 39, the correction value B calculation unit 40, and the correction value C calculation unit 41 calculate the command correction value A, the command correction value B, and the command correction value C based on the graph (calculation table) shown in FIG. In this case, the command correction value of each actuator 31 can be changed for the communication delay state Ls.
  • the graph of FIG. 12 represents a command correction value A, a command correction value B, and a command correction value C calculated based on the delay state Ls.
  • the communication state is in a good state.
  • the command correction value A, the command correction value B, and the command correction value C are 0.5, 0.25, and 0, respectively, and the command signals of the boom 8, arm 9, and bucket 10 are 0.5.
  • the command signal of the swivel motor 12 is reduced to 0.25 times, and the command signals of the right traveling motor 11 and the left traveling motor 11 are reduced to 0 times.
  • the correction value A multiplication unit 42, the correction value B multiplication unit 43, and the correction value C multiplication unit 44 all the command signals output from the operating lever 22 (in other words, the correction value C is operated via the operation lever 22).
  • the command correction value A, the command correction value B, and the command correction value C calculated by the correction value A calculation unit 39, the correction value B calculation unit 40, and the correction value C calculation unit 41 for all the command signals of the plurality of actuators 31). Is multiplied and corrected, and the command signal is corrected for each of the plurality of actuators 31 operated via the operating lever 22.
  • the communication delay time exceeds a certain threshold value, the method of limiting (decelerating) is changed for the specific actuator 31.
  • the command correction value A, the command correction value B, and the command correction value C are set to 0.5, 0.25, and 0, respectively, and the boom. 8.
  • the arm 9 and the bucket 10 operate with half the operation command, and the swivel motor 12 operates with the operation command of 1/4. Further, with respect to the right traveling motor 11 and the left traveling motor 11, the command signal is multiplied by zero, and the operator does not operate even if the operating lever 22 is operated.
  • the tuner 31 can be set, and it is possible to reduce the possibility that the work machine falls into a dangerous state when the communication state is poor, while maintaining the work efficiency without stopping the work that does not become a dangerous state.
  • the command signal correction unit (command signal correction device) 23 corrects the command signal for each of the plurality of actuators 31 being operated.
  • command signal correction unit (command signal correction device) 23 has, for each of the plurality of actuators 31, the delay state determination threshold value and the command correction value according to the communication delay state for correcting the command signal. Is set.
  • the third embodiment when an overshoot of the operating speed of the actuator 31 occurs due to the communication delay time, a plurality of operating speeds of the actuator 31 being operated are not unbalanced. Limit the command speed. Further, when the communication delay exceeds a certain threshold value, for a specific actuator 31, giving priority to limiting the speed rather than maintaining the operating speed balance of the actuator 31 being operated, for example, during traveling. Prevents the hydraulic excavator 1 from falling. As a method of limiting the command speed so as not to disturb the balance of the operation speed intended by the operator, when the communication delay time exceeds a certain threshold value, the method of limiting the specific actuator 31 is changed.
  • the communication delay time is time when the plurality of actuators 31 are operated. Even if it occurs, by correcting all the command signals of the plurality of actuators 31 being operated, the operator limits the plurality of actuators 31 while maintaining the ratio of the command signals (operation signals). It becomes possible to easily maintain the operation balance of the desired plurality of actuators 31 and to operate the actuators 31 easily. Further, by limiting the command signal, for example, the discrepancy between the operating state of the working machine that the operator can grasp on the monitor 33 and the operating state of the actual working machine can be reduced, so that the working machine displayed on the monitor 33 can be reduced. Accurate feedback can be input to the operation lever 22 based on the visual result, and the work can be performed efficiently.
  • the hydraulic excavator 1 during traveling falls. Etc. can be prevented.
  • the delay state determination unit 26 the transmission time of the command signal transmitted from the operator side remote control device 20 by the communication state determination units 25 and 28 and the reception when the work machine side remote control device 21 receives the command signal.
  • the correction value A calculation unit 39 and the correction value B calculation unit 40 of the command value correction unit 23 calculates the command correction value A, the command correction value B, and the command correction value C based on the delay time Lt according to the graph (calculation table) shown in FIG.
  • the graph of FIG. 13 represents a command correction value A, a command correction value B, and a command correction value C calculated based on the delay time Lt.
  • the communication state is in a good state.
  • the command signal of the swivel motor 12 is reduced to 0.25 times, and the command signals of the right traveling motor 11 and the left traveling motor 11 are reduced to 0 times.
  • the correction value A multiplication unit 42, the correction value B multiplication unit 43, and the correction value C multiplication unit 44 of the command correction unit 23 all the command signals output from the operating lever 22 being operated (in other words, the operation lever 22).
  • the command correction value A and the command correction value calculated by the correction value A calculation unit 39, the correction value B calculation unit 40, and the correction value C calculation unit 41 are applied to all the command signals of the plurality of actuators 31 operated via the above.
  • B and the command correction value C are multiplied to correct, and the command signal is corrected for each of the plurality of actuators 31 operated via the operation lever 22.
  • the communication delay time exceeds a certain threshold value, the method of limiting (decelerating) is changed for the specific actuator 31.
  • the smaller the maximum operation command signal the smaller the correction state thresholds LsXA, LsXB, and LsXC at which the command correction value starts to decrease from 1.0.
  • the maximum operation command signal is small, that is, when the operating speed of the actuator 31 of the work machine is slow, the operating amount of the actuator 31 of the work machine per unit time caused by the communication delay and the operating amount of the work machine assumed by the operator.
  • the deviation from the operating amount of the actuator is small. That is, when the operating speed of the actuator 31 is low, the command correction value starts to decrease.
  • the correction state thresholds LsXA, LsXB, and LsXC the command signal is not corrected until the communication is significantly delayed.
  • the correction state thresholds (delay state determination thresholds) LsXA, LsXB, and LsXC of the delay state Ls at which the command correction values A, B, and C start to decrease from 1.0 are set to the operation of the plurality of actuators 31 of the work machine. Set according to the speed. Thereby, the stability can be further improved and the operability can be improved more effectively.
  • each command correction value is based on the same concept as in FIGS. 14 and 15 described above.
  • the delay time Lt correction time threshold (delay state judgment threshold) LsXA, LsXB, and LsXC are set according to the operating speeds of a plurality of actuators 31 of the work machine.
  • the relationship between Lt and the respective command correction values A, B, and C is as shown in FIG. 16, and the relationship between the maximum operation command signal and each correction state threshold LtXA, LtXB, and LtXC is as shown in FIG.
  • the present invention is not limited to the above-described embodiment, but includes various modified forms.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • each function of the controller of the above-described embodiment may be realized by hardware by designing a part or all of them by, for example, an integrated circuit.
  • the processor may interpret and execute a program that realizes each function, thereby realizing the program by software.
  • Information such as programs, tables, and files that realize each function can be stored in a storage device in the controller, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD. Can be placed in.
  • Communication status determination unit (work machine side remote control device side), 29 ... Controller, 30 ... Electromagnetic valve, 31 ... Actuator, 32 ... Camera (operation status confirmation device), 33 ... Monitor (operation status display device), 34 ... Communication network, 35 ... Correction value calculation unit, 36 ... Correction value multiplication unit, 37 ... Delay state determination unit (delay state determination device), 38 ... Command signal correction unit (command signal correction device), 39 ... Correction value A Calculation unit, 40 ... Correction value B calculation unit, 41 ... Correction value C calculation unit, 42 ... Correction value A multiplication unit, 43 ... Correction value B multiplication unit, 44 ... Correction value C multiplication unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Operation Control Of Excavators (AREA)
  • Selective Calling Equipment (AREA)
  • Telephonic Communication Services (AREA)

Abstract

安定性を高めることができ、操作性を効果的に向上させることのできる作業機械の遠隔操縦システムを提供する。複数のアクチュエータ31を有する作業機械の遠隔操縦システムにおいて、複数のアクチュエータ31を操作しているときに、通信遅延時間が生じた場合でも、操作されている複数のアクチュエータ31の全ての指令信号を補正することで、複数のアクチュエータ31に対して指令信号(操作信号)の比率を保ちながら制限をかける。

Description

作業機械の遠隔操縦システム
 本発明は、複数のアクチュエータを有する作業機械の遠隔操縦システムに関する。
 近年のインターネット等の普及および通信速度の高速化に伴い、自動車、ドローン、ロボット、作業機械といった様々な分野において、通信ネットワークを介して遠隔操縦を行う遠隔操縦システムを構築する取り組みが行われている。
 特に作業機械においては、制御対象装置である作業機械に搭載したカメラを用いて、制御対象装置やその周囲の映像を撮影し、撮影した映像を制御対象装置から遠隔制御装置に送信し、当該映像を遠隔制御装置に映し出してモニタリングしながら操作者が操作し、操作された制御信号を遠隔制御装置から制御対象装置に送信することで、制御対象装置を遠隔操作する。また、制御対象装置が屋外で使用される場合、制御対象装置と通信ネットワークとの間には無線通信ネットワークを用いることが多い。
 一方、無線通信ネットワークでは、受信信号品質の変化や通信回線の混雑などにより、データパケットの損失、通信遅延や通信速度の変動が生じることがあり、リアルタイムに制御を行う遠隔操縦システムの安定性や操作性が悪化する可能性がある。例えば、油圧ショベルのフロント装置を操縦者が所望する軌跡に沿うように動作させたい場合、無線通信ネットワークで大きな通信遅延が生じると、モニタに表示される映像に遅れが生じ、操縦者がフロント装置の実状態を正確に把握することができなくなる。そのため、リアルタイムで正確にフロント装置を移動させることが困難となり、作業効率が低下する可能性がある。そこで、遠隔制御装置と制御対象装置との間で通信遅延や通信速度の変動が発生した場合にも、安定した遠隔制御を可能にする検討が行われている。
 上述した遠隔操縦システムの通信遅延を解決する技術として特許文献1に示される従来技術がある。この従来技術は、通信ネットワークを介して制御対象装置を遠隔制御する遠隔制御装置において、通信遅延時間と制御対象の動作速度から、通信遅延時間によって生じる可能性があるオーバーシュート量を算出し、そのオーバーシュート量があらかじめ設定された閾値未満となるように、動作速度を制限する、というものである。
特開2018-107568号公報
 複数のアクチュエータを同時に操作する必要がある作業機械に、特許文献1に所載の技術を適用しようとした場合、通信遅延に起因するオーバーシュート量の算出および閾値の設定は、アクチュエータごとになされる。そのため、ある通信遅延状態において、あるアクチュエータのみが動作速度制限にかかった場合、特定のアクチュエータのみが減速され、作業機械の複合動作バランスが崩れてしまう。すなわち、作業機械において複数のアクチュエータの操作を遠隔操縦で行っているとき、ある特定のアクチュエータのみ通信遅延によるオーバーシュートが発生すると、操縦者の意図しない作業機械の動作となってしまい非効率的となる。
 例えば、ブーム、アーム、バケット操作による土砂の掘削作業を行っている場合に、アームの速度のみ、通信遅延時間によって、操縦者が所望する速度に対する実際の速度のオーバーシュートが発生すると、アーム速度のオーバーシュート量が所定値未満となるようにアームの指令速度のみが制限される。このとき、ブームとバケットに関しては通信遅延時間によるオーバーシュートが発生していないとすると、ブームとバケットの指令速度は制限されない。そのため、アームの速度のみが操縦者の意図よりも制限されることになるため、操縦者の意図した通りに作業機械を操作することができず、操作性が悪化してしまう。
 また、遠隔操縦の一般的な問題点として、通信遅延時間が大きくなると、操縦者が通信ネットワークを介してカメラで見た作業機械の状態と、実際の作業機械の状態との乖離が大きくなってしまうため、操縦者の意図するものとは大きくかけ離れた動作をするなどの状態が起こりうる。
 本発明は上記課題に鑑みてなされたものであって、その目的は、安定性を高めることができ、操作性を効果的に向上させることのできる作業機械の遠隔操縦システムを提供することにある。
 上記課題を解決するために、本発明の作業機械の遠隔操縦システムは、作業機械に備えられた複数のアクチュエータを操縦者が操作するための操作レバーと、前記操作レバーの操作により生成される前記複数のアクチュエータを動作させるための指令信号を、通信ネットワークを介して送信する操縦者側遠隔制御装置と、前記指令信号を前記通信ネットワークを介して受信して前記作業機械に送信する作業機械側遠隔制御装置と、前記操縦者側遠隔制御装置から送信される前記指令信号に対する、前記作業機械側遠隔制御装置が受信する前記指令信号の通信遅れ状態を判断する遅れ状態判断装置と、前記通信遅れ状態があらかじめ設定された遅れ状態判断閾値よりも悪化していると判断される場合に、操作されている前記複数のアクチュエータの全ての前記指令信号をその比率を維持するように補正する指令信号補正装置と、を備えることを特徴とする。
 本発明によれば、複数のアクチュエータを有する作業機械の遠隔操縦システムにおいて、複数のアクチュエータを操作しているときに、通信遅延時間が生じた場合でも、操作されている複数のアクチュエータの全ての指令信号を補正することで、複数のアクチュエータに対して指令信号(操作信号)の比率を保ちながら制限をかけるため、操縦者が所望する複数のアクチュエータの動作バランスを保ちやすく操縦できるようになり、操作がしやすくなる。また、指令信号を制限することで、例えばモニタで操縦者が把握できる作業機械の動作状態と実際の作業機械の動作状態との乖離を低減できるため、モニタに表示されている作業機械の目視結果を基に操作レバーに的確なフィードバックを入力でき、効率的に作業を行える。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
第一の実施形態に係る作業機械の一例である油圧ショベルの遠隔操縦システムの概略構成図。 第一の実施形態に係る作業機械の一例である油圧ショベルの遠隔操縦システムのブロック構成図。 第一の実施形態に係る指令信号補正部のブロック構成図。 第一、第二の実施形態に係る遅れ状態に基づいた指令値演算部の演算テーブル。 第一、第二の実施形態に係る遅れ時間に基づいた指令値演算部の演算テーブル。 第一、第二の実施形態に係る遅れ状態に基づいた指令値演算部の演算テーブルの変形例。 第一、第二の実施形態に係る最大操作指令信号に基づいた補正状態閾値の演算テーブル。 第一、第二の実施形態に係る遅れ時間に基づいた指令値演算部の演算テーブルの変形例。 第一、第二の実施形態に係る最大操作指令信号に基づいた補正時間閾値の演算テーブル。 第二の実施形態に係る作業機械の一例である油圧ショベルの遠隔操縦システムのブロック構成図。 第三の実施形態に係る指令信号補正部のブロック構成図。 第三の実施形態に係る遅れ状態に基づいた指令値演算部の演算テーブル。 第三の実施形態に係る遅れ時間に基づいた指令値演算部の演算テーブル。 第三の実施形態に係る遅れ状態に基づいた指令値演算部の演算テーブルの変形例。 第三の実施形態に係る最大操作指令信号に基づいた補正状態閾値の演算テーブル。 第三の実施形態に係る遅れ時間に基づいた指令値演算部の演算テーブルの変形例。 第三の実施形態に係る最大操作指令信号に基づいた補正時間閾値の演算テーブル。
 以下、本発明の実施形態を図面を用いて説明する。各図において、同一の機能を有する部分には同一の符号を付して繰り返し説明を省略する場合がある。なお、本実施形態は、作業機械の一例として、油圧ショベルを例示して説明するが、遠隔操縦(遠隔制御)により作業機械に備えられた複数のアクチュエータを操縦者が操作可能であれば、油圧ショベルに限定されず、ホイールローダやクレーン、ブルドーザ、ダンプ、道路機械といった建設機械、建設機械以外の作業機械全般に適用可能であることは勿論である。
<第一の実施形態>
[遠隔操縦システムの全体構成]
 図1および図2は、第一の実施形態に係る作業機械の一例である油圧ショベルの遠隔操縦システムを示し、図1は、概略構成図、図2は、ブロック構成図である。
 図1に示すように、油圧ショベル(作業機械)1は、クローラ式の下部走行体2と、下部走行体2に対して旋回可能に設けられた上部旋回体3と、上部旋回体3の前部に俯仰動可能に取り付けられ、掘削作業などを行うフロント装置7とから概略構成されている。
 下部走行体2には左右一対の走行モータ11(以下、右走行モータ11、左走行モータ11という場合がある)が設置されている。上部旋回体3には、エンジン等の原動機、油圧ポンプ、旋回モータ12などが設置されている。フロント装置7は、(作動油によって駆動される油圧シリンダであるブームシリンダ、アームシリンダ、バケットシリンダにより駆動される)ブーム8、アーム9、バケット10を有する。ブーム8、アーム9、バケット10、旋回モータ12、走行モータ11はそれぞれ、本実施形態の作業機械のアクチュエータ31を構成している(図2参照)。
 油圧ショベル1には、指令情報(指令信号)を送受信する指令情報送受信部27などが設けられた作業機械側遠隔制御装置21が付設されている。油圧ショベル1の外部、例えば操縦室内には、指令情報(指令信号)を送受信する指令情報送受信部24などが設けられた操縦者側遠隔制御装置(無線リモコン装置ともいう)20が設置されている。本実施形態の遠隔操縦システムは、操縦者側遠隔制御装置20(の指令情報送受信部24)と作業機械側遠隔制御装置21(の指令情報送受信部27)との間で、通信ネットワーク34を介して、情報ないし信号を無線通信可能(送受信可能)となっている。
 また、本実施形態において、操縦者側遠隔制御装置20には、操縦者が複数のアクチュエータ31(ブーム8、アーム9、バケット10、左右の走行モータ11、旋回モータ12)の各々を操作するための複数の遠隔操作用操作レバー(以下、単に操作レバーという)22が配備されている。操縦者が各操作レバー22を操作することにより、各操作レバー22に対応したアクチュエータ31(ブーム8、アーム9、バケット10、左右の走行モータ11、旋回モータ12)を動作させるための、各操作レバー22の操作(操作レバー入力量)に応じた指令信号が生成され、指令情報送受信部24に出力される。
 油圧ショベル1は、図2に示すように、基本構成として、複数のアクチェエータ31を動作させるための油圧信号を生成する複数の電磁弁30と、複数のアクチェエータ31の動作(状態)を制御するために、外部(ここでは、作業機械側遠隔制御装置21の指令情報送受信部27)から入力される指令信号を電流に変換して電磁弁30に指令するコントローラ29とを有する。
 ここでは、図1、2に示すような操縦室内の操作レバー22の操作により生成される指令信号を、コントローラ29を介して電磁弁30に指令し、その電磁弁30から出力される油圧によってコントロールバルブを介してアクチュエータ31(ブーム8、アーム9、バケット10、左右の走行モータ11、旋回モータ12)を動作させる電気レバーシステムを有する一般的な油圧ショベル1の基本構成に対し、本実施形態の遠隔操縦システムを適用する実施形態について述べる。
 一般的な油圧ショベル1の構成の詳細説明はここでは省略する。
 なお、図示のように、操作レバー22と操縦者側遠隔制御装置20を一つの装置として構成してもよい(換言すれば、操作レバー22が操縦者側遠隔制御装置20に備えられていてもよい)し、それらを別装置として構成してもよいことは当然である。また、図示のように、油圧ショベル(作業機械)1と作業機械側遠隔制御装置21を別装置として構成してもよいし、それらを一つの装置として構成してもよい(換言すれば、作業機械側遠隔制御装置21が油圧ショベル1に内蔵されていてもよい)ことは当然である。
[遠隔操縦システムのブロック構成]
 前述した操縦者側遠隔制御装置20および作業機械側遠隔制御装置21は、図示は省略するが、各種演算を行うCPU(Central Processing Unit)、CPUによる演算を実行するためのプログラムを格納するROM(Read Only Memory)やHDD(Hard Disk Drive)などの記憶装置、CPUがプログラムを実行する際の作業領域となるRAM(Random Access Memory)などを含むマイクロコンピュータ(マイコン)として構成されている。操縦者側遠隔制御装置20および作業機械側遠隔制御装置21の各機能は、CPUが、記憶装置に格納された各種プログラムをRAMにロードして実行することにより、実現される。
 操縦者は、図2に示す操縦者側遠隔制御装置20にある操作レバー22によって、作業機械のアクチュエータ31(ブーム8、アーム9、バケット10、左右の走行モータ11、旋回モータ12)の操作を行う。
 詳しくは、操縦者は、油圧ショベル1(の複数のアクチュエータ31)の動作状態を外部、例えば操縦室内からカメラ32で撮影した映像を通信ネットワーク34を介してモニタ33に表示し、このモニタ33の映像を見ながら操縦者側遠隔制御装置20にある操作レバー22を操作し、作業機械のアクチュエータ31の遠隔操縦(遠隔制御)を行う。つまり、カメラ32は、油圧ショベル1(の複数のアクチュエータ31)の動作状態を外部から確認するための動作状態確認装置であり、モニタ33は、カメラ(動作状態確認装置)32の出力(映像)を、通信ネットワーク34を介して受信し、操縦者が視認できるようにする動作状態表示装置である。
 図2に示すように、操縦者側遠隔制御装置20は、遅れ状態判断部(遅れ状態判断装置)26の出力に基づき操作レバー22の操作に応じて生成される指令信号の補正を行う指令信号補正部(指令信号補正装置)23、指令情報(詳しくは、指令信号補正部23から出力される指令信号)を通信ネットワーク34を介して送信する指令情報送受信部24、操縦者側遠隔制御装置20の通信状態の判別を行う通信状態判断部25、作業機械側遠隔制御装置21の通信状態の判別を行う通信状態判断部28と操縦者側遠隔制御装置20の通信状態の判別を行う通信状態判断部25の出力を基に、作業機械側遠隔制御装置21との間の通信遅れ状態(以下、単に遅れ状態という場合がある)の判断を行う遅れ状態判断部26を有する。
 一方、油圧ショベル1側の作業機械側遠隔制御装置21は、操縦者側遠隔制御装置20(の指令情報送受信部24)から送信された指令情報(指令信号)を通信ネットワーク34を介して受信し、油圧ショベル1のコントローラ29へその指令信号を送信する指令情報送受信部27、作業機械側制御装置21の通信状態の判断を行う通信状態判断部28を有する。
[操縦者側遠隔制御装置20の遅れ状態判断部26の動作]
 前述したように、遅れ状態判断部26は、操縦者側遠隔制御装置20の通信状態判断部25と作業機械側遠隔制御装置21の通信状態判断部28の出力を基に、作業機械側遠隔制御装置21との間の通信遅れ状態の判断を行う。詳しくは、遅れ状態判断部26は、操縦者側遠隔制御装置20の通信状態判断部25と作業機械側遠隔制御装置21の通信状態判断部28の出力を基に、操縦者側遠隔制御装置20の指令情報送受信部24から送信される指令信号に対する、作業機械側遠隔制御装置21の指令情報送受信部27が受信する指令信号の通信遅れ状態を判断する。
 遅れ状態判断部26の具体的な通信遅れ状態の判断方法としては、通信状態判断部25、28にて操縦者側と作業機械側それぞれの遠隔制御装置(20、21)の電波強度をモニタリングし、その2つの結果を基に総合的な通信遅れ状態を出力する方法がある。
 操縦者側遠隔制御装置20の電波強度をα(通信状態判断部25にてモニタ)、作業機械側遠隔制御装置21の電波強度をβ(通信状態判断部28にてモニタ)とすると、遅れ状態判断部26は、遅れ状態Ls=α×βとして算出する。電波強度α、βは大きいほど通信状態が良好であり、小さいほど通信状態が悪いことを表す。
[操縦者側遠隔制御装置20の指令信号補正部23の動作]
 指令値補正部23は、図3に示すように、補正値演算部35と補正値乗算部36で構成されている。補正値演算部35では、図4に示すグラフ(演算テーブル)に従い、遅れ状態判断部26の出力結果である遅れ状態Lsを基に、操作レバー22から出力される指令信号を補正する指令補正値を出力する。図4のグラフは、遅れ状態Lsに基づき算出される指令補正値を表しており、例えば、通信状態が良好な状態であると判断されるLs=80~100の間は指令信号の補正を行わない1.0が指令補正値として出力されるが、Ls=20~80の間では遅れ状態Lsが小さくなる(つまり通信状態が悪くなる)ほど指令補正値は1.0から0.5まで次第に(ここでは比例的に)減少する。つまり、ここでは、Ls=80が、遅れ状態判断部26から出力される遅れ状態Lsを基に補正の要否を判断する遅れ状態判断閾値に設定されており、遅れ状態判断部26から出力される遅れ状態Lsが遅れ状態判断閾値であるLs=80よりも小さい(つまり悪化している)と判断される場合に、指令信号の補正を行う1.0未満の指令補正値が出力される。更に、遅れ状態Ls=3未満の場合は極めて通信状態が悪いと判断し、遅れ状態の指令補正値を直ちに0まで低下させる。つまり、ここでは、Ls=3が、極めて通信状態が悪く、通信が途絶していると判断する通信途絶判断閾値に設定されており、遅れ状態判断部26から出力される遅れ状態Lsが通信途絶判断閾値であるLs=3よりも小さい(つまり悪化している)と判断される場合は、通信が途絶していると判断し、複数のアクチュエータ31が動作しないように指令信号を補正する0が指令補正値として出力される。
 補正値乗算部36では、操作されている操作レバー22から出力された指令信号全て(換言すれば、操作レバー22を介して操作されている複数のアクチュエータ31の全ての指令信号)に補正値演算部35で演算された指令補正値を乗算して(一律に)補正する。これによって、操縦者が操作レバー22に入力した複数の操作レバー入力量の比率を維持するように、操縦者側遠隔制御装置20内で(言い換えれば、操作レバー22から出力される指令信号が操縦者側遠隔制御装置20から作業機械側遠隔制御装置21に送信される前に)一律に全ての指令信号を補正する。
[操縦者側遠隔制御装置20の指令情報送受信部24などの動作]
 指令情報送受信部24は、指令値補正部23の補正値乗算部36から出力される(補正後の)指令信号を通信ネットワーク34を介して作業機械側遠隔制御装置21の指令情報送受信部27に送信する。作業機械側遠隔制御装置21の指令情報送受信部27は、操縦者側遠隔制御装置20の指令情報送受信部24から通信ネットワーク34を介して受信した指令信号を、油圧ショベル1のコントローラ29に送信する。コントローラ29は、前述した方法に従って、複数のアクチェエータ31の動作(状態)を制御する。
 これにより、操縦者側遠隔制御装置20と作業機械側遠隔制御装置21との間の通信状態が良好な状態であると判断されるLs=80~100の間は作業機械のアクチュエータ31(ブーム8、アーム9、バケット10、左右の走行モータ11、旋回モータ12)の動作速度が制限(減速)されないが、Ls=20~80の間では(言い換えれば、遅れ状態判断部26から出力される遅れ状態Lsが遅れ状態判断閾値であるLs=80よりも悪化していると判断される場合は)遅れ状態Lsが悪化するほど作業機械のアクチュエータ31(ブーム8、アーム9、バケット10、左右の走行モータ11、旋回モータ12)の動作速度が(一律に)制限(減速)される。更に、遅れ状態Ls=3未満の場合は(言い換えれば、遅れ状態判断部26から出力される遅れ状態Lsが通信途絶判断閾値であるLs=3よりも悪化していると判断される場合は)、通信が途絶していると判断し、操縦者が操作レバー22を操作しても作業機械のアクチュエータ31(ブーム8、アーム9、バケット10、左右の走行モータ11、旋回モータ12)が動作しなくなる。
[効果]
 通常、複数のアクチュエータ31を操作している場合に通信遅延が発生すると、操縦者が操作レバー22を介して入力している指令信号に対して、実際の作業機械の動作が遅れてしまうため、モニタ33に表示されている作業機械の動きを見た操縦者は意図通りにアクチュエータ31が動いていないと認識し、操作レバー22の操作(すなわち指令信号)を大きくする。
 その結果、操縦者が狙っていたアクチュエータ31の速度に対して、実際のアクチュエータ31の速度が速くなって、オーバーシュートが生じてしまう。ブーム上げ、アームクラウド、バケットクラウド操作による掘削動作を行っている場合、ブーム上げ速度に関してオーバーシュートが発生すると、ブームが上がりすぎて意図した土砂を掘削することができず、効率が悪化する。逆にアームクラウド速度に関してオーバーシュートが発生すると、アームがクラウドしすぎて土砂を掘削しすぎてしまい、直し作業を要する場合、効率悪化に繋がる。
 ここで特許文献1の制御が働いている場合を想定すると、ブーム上げに関してオーバーシュートが発生する場合、ブーム上げの指令信号のみが補正されてしまい、ブームが上がらず、土砂を掘削しすぎてしまい、効率悪化に繋がる。
 このような場合に、本実施形態を適用すると、ブーム上げの指令信号とアームクラウドの指令信号とバケットクラウドの指令信号全てに、遅れ状態に応じた指令補正値が(一律に)乗算されるため、遅れ状態に応じて、指令信号が操縦者の意図した動作バランスを維持し、かつ操縦者が狙っていたアクチュエータ31の速度に対する実際の作業機械のアクチュエータ31の速度のオーバーシュートを抑制し、操縦者の意図した動作を行いやすくなる。その結果、作業機械の遠隔操縦において、複数のアクチュエータ31を操作しているときに通信遅延が発生した場合でも、効率の悪化を防ぐことができる。
 以上で説明したように、本第一の実施形態は、作業機械に備えられた複数のアクチュエータ31を操縦者が操作するための操作レバー22と、前記操作レバー22の操作により生成される前記複数のアクチュエータ31を動作させるための指令信号を、通信ネットワーク34を介して送信する操縦者側遠隔制御装置20と、前記指令信号を前記通信ネットワーク34を介して受信して前記作業機械に送信する作業機械側遠隔制御装置21と、前記操縦者側遠隔制御装置20から送信される前記指令信号に対する、前記作業機械側遠隔制御装置21が受信する前記指令信号の通信遅れ状態を判断する遅れ状態判断部(遅れ状態判断装置)26と、前記通信遅れ状態があらかじめ設定された遅れ状態判断閾値よりも悪化していると判断される場合に、操作されている前記複数のアクチュエータ31の全ての前記指令信号をその比率を維持するように補正する指令信号補正部(指令信号補正装置)23と、を備えることを特徴とする。
 また、前記指令信号補正部(指令信号補正装置)23は、前記通信遅れ状態が悪化するほど前記複数のアクチュエータ31の動作速度が遅くなるように、操作されている前記複数のアクチュエータ31の全ての前記指令信号を補正する。
 また、前記指令信号補正部(指令信号補正装置)23は、前記通信遅れ状態があらかじめ設定された通信途絶判断閾値よりも悪化していると判断される場合は、通信が途絶していると判断し、前記複数のアクチュエータ31が動作しないように、操作されている前記複数のアクチュエータ31の全ての前記指令信号を補正する。
 換言すれば、本第一の実施形態は、通信遅延時間によるアクチュエータ31の動作速度のオーバーシュートが発生する場合に、操作をしているアクチュエータ31の動作速度のバランスが崩れないように、複数の指令速度を制限する。オペレータの意図する動作速度のバランスを崩さないように指令速度を制限する方法として、操縦者が操作レバー22に入力した複数の操作レバー入力量の比率を維持するように、操縦者側遠隔制御装置20内で一律に全ての操作信号を補正する。
 本第一の実施形態によれば、複数のアクチュエータ31を有する作業機械の遠隔操縦システムにおいて、複数のアクチュエータ31を操作しているときに、通信遅延時間が生じた場合でも、操作されている複数のアクチュエータ31の全ての指令信号を補正することで、複数のアクチュエータ31に対して指令信号(操作信号)の比率を保ちながら制限をかけるため、操縦者が所望する複数のアクチュエータ31の動作バランスを保ちやすく操縦できるようになり、操作がしやすくなる。また、指令信号を制限することで、例えばモニタ33で操縦者が把握できる作業機械の動作状態と実際の作業機械の動作状態との乖離を低減できるため、モニタ33に表示されている作業機械の目視結果を基に操作レバー22に的確なフィードバックを入力でき、効率的に作業を行える。
 また、本第一の実施形態は、前記遅れ状態判断部(遅れ状態判断装置)26と前記指令信号補正部(指令信号補正装置)23は、前記操縦者側遠隔制御装置20内に設けられ、前記指令信号補正部(指令信号補正装置)23は、前記指令信号が前記操縦者側遠隔制御装置20から前記作業機械側遠隔制御装置21に送信される前に、操作されている前記複数のアクチュエータ31の全ての前記指令信号を補正する。
 本第一の実施形態によれば、無線リモコン装置である操縦者側遠隔制御装置20から作業機械側遠隔制御装置21に送信する指令信号が(通信ネットワーク34を介して)遅れることを見越した補正をかけることができる。また、例えば1台の操縦者側遠隔制御装置20で複数の油圧ショベル1を切り替えながら動かすことを想定すると、油圧ショベル1側(つまり、作業機械側遠隔制御装置21)の構成要素が少なくて済むため、例えば後述する第二の実施形態に比べて、コストを低減することができる。
[変形例(その1)]
 遅れ状態判断部26で行う通信遅れ状態の判断方法としては、通信状態判断部25、28にて操縦者側遠隔制御装置20から送信される指令信号の送信時間と作業機械側遠隔制御装置21がその指令信号を受信したときの受信時間をモニタリングし、その2つの結果を基に通信遅れ状態を出力する方法もある。
 ある信号を操縦者側遠隔制御装置20が送信した時間をT1(通信状態判断部25にてモニタ)、作業機械側遠隔制御装置21がその信号を受信した時間T2(通信状態判断部28にてモニタ)とすると、遅れ状態判断部26は、遅れ時間Lt=T2-T1として算出できる。遅れ時間Ltは小さいほど通信状態が良好であり、大きいほど通信状態が悪いことを表す。
 この場合、指令値補正部23の補正値演算部35は、図5に示すグラフ(演算テーブル)に従い、遅れ状態判断部26の出力結果である遅れ時間Ltを基に、操作レバー22から出力される指令信号を補正する指令補正値を出力する。図5のグラフは、遅れ時間Ltに基づき算出される指令補正値を表しており、例えば、通信状態が良好な状態であると判断されるLt=0~0.5秒の間は指令信号の補正を行わない1.0が指令補正値として出力されるが、Lt=0.5~1の間では遅れ時間Ltが大きくなる(つまり通信状態が悪くなる)ほど指令補正値は1.0から0.5まで次第に(ここでは比例的に)減少する。つまり、ここでは、Lt=0.5が、遅れ状態判断部26から出力される遅れ時間Ltを基に補正の要否を判断する遅れ状態判断閾値に設定されており、遅れ状態判断部26から出力される遅れ時間Ltが遅れ状態判断閾値であるLt=0.5よりも大きい(つまり悪化している)と判断される場合に、指令信号の補正を行う1.0未満の指令補正値が出力される。更に、遅れ時間Lt=5より大きい場合は極めて通信状態が悪いと判断し、遅れ状態の指令補正値を直ちに0まで低下させる。つまり、ここでは、Lt=5が、極めて通信状態が悪く、通信が途絶していると判断する通信途絶判断閾値に設定されており、遅れ状態判断部26から出力される遅れ時間Ltが通信途絶判断閾値であるLt=5よりも大きい(つまり悪化している)と判断される場合は、通信が途絶していると判断し、複数のアクチュエータ31が動作しないように指令信号を補正する0が指令補正値として出力される。
 指令補正部23の補正値乗算部36においては、操作されている操作レバー22から出力された指令信号全て(換言すれば、操作レバー22を介して操作されている複数のアクチュエータ31の全ての指令信号)に補正値演算部35で演算された指令補正値を乗算して(一律に)補正する。これによって、操縦者が操作レバー22に入力した複数の操作レバー入力量の比率を維持するように、操縦者側遠隔制御装置20内で(言い換えれば、操作レバー22から出力される指令信号が操縦者側遠隔制御装置20から作業機械側遠隔制御装置21に送信される前に)一律に全ての指令信号を補正する。
 これにより、操縦者側遠隔制御装置20と作業機械側遠隔制御装置21との間の通信状態が良好な状態であると判断されるLt=0~0.5の間は作業機械のアクチュエータ31(ブーム8、アーム9、バケット10、左右の走行モータ11、旋回モータ12)の動作速度が制限(減速)されないが、Lt=0.5~1の間では(言い換えれば、遅れ状態判断部26から出力される遅れ時間Ltが遅れ状態判断閾値であるLt=0.5よりも悪化していると判断される場合は)遅れ時間Ltが悪化するほど作業機械のアクチュエータ31(ブーム8、アーム9、バケット10、左右の走行モータ11、旋回モータ12)の動作速度が(一律に)制限(減速)される。更に、遅れ時間Lt=5より大きい場合は(言い換えれば、遅れ状態判断部26から出力される遅れ時間Ltが通信途絶判断閾値であるLt=5よりも悪化していると判断される場合は)、通信が途絶していると判断し、操縦者が操作レバー22を操作しても作業機械のアクチュエータ31(ブーム8、アーム9、バケット10、左右の走行モータ11、旋回モータ12)が動作しなくなる。
[変形例(その2)]
 また、指令値補正部23(の補正値演算部35)で用いる遅れ状態Lsと指令補正値の関係は、図6のように設定されても良い。図6のグラフ(演算テーブル)では、指令補正値が1.0から下降し始める遅れ状態Lsの閾値(補正の要否を判断する遅れ状態判断閾値、以下、補正状態閾値ともいう)LsXが、図7のグラフ(演算テーブル)によって決定される。図7は、作業機械で操作されているアクチュエータ31の指令信号のうちの最大の操作指令信号(以下、最大操作指令信号とする)と補正状態閾値LsXの関係を示したものである。この図7のグラフによれば、最大操作指令信号が大きいほど、指令補正値が1.0から下降し始める補正状態閾値LsXは大きく、最大操作指令信号が小さいほど、指令補正値が1.0から下降し始める補正状態閾値LsXは小さい。
 これは、最大操作指令信号が大きい場合、つまり作業機械のアクチュエータ31の動作スピードが速い場合は、通信遅延によって生じる単位時間あたりの作業機械のアクチュエータ31の稼働量と操縦者が想定する作業機械のアクチュエータ31の稼働量との乖離が大きいためで、指令補正値が下降し始める補正状態閾値LsXを大きくすることで、通信遅延が少しでも生じたときに指令信号を補正するためである。こうすることで、作業機械のアクチュエータ稼働速度が速いときに通信遅延が生じた場合、その通信遅延時間が小さくとも、指令信号が小さく補正されるため、通信遅延によって生じる単位時間あたりの作業機械のアクチュエータ31の稼働量と操縦者が想定する作業機械のアクチュエータ31の稼働量との乖離を小さくすることができる。
 一方、この図7のグラフによれば、最大操作指令信号が小さいほど、指令補正値が1.0から下降し始める補正状態閾値LsXは小さい。これは、最大操作指令信号が小さい場合、つまり作業機械のアクチュエータ31の動作スピードが遅い場合は、通信遅延によって生じる単位時間あたりの作業機械のアクチュエータ31の稼働量と操縦者が想定する作業機械のアクチュエータ31の稼働量との乖離は小さいためである。つまり、アクチュエータ31の稼働速度が小さい場合は指令補正値が下降し始める補正状態閾値LsXを小さくすることで、通信が大きく遅延するまで指令信号を補正しない。こうすることで、作業機械のアクチュエータ稼働速度が遅いときに通信遅延が生じた場合、通信遅延によって生じる単位時間あたりの作業機械のアクチュエータ31の稼働量と操縦者が想定する作業機械のアクチュエータ31の稼働量との乖離を小さいと想定される範囲では指令信号を補正せずに速度を低下させることなく操作することができる。
 このように、指令補正値が1.0から下降し始める遅れ状態Lsの補正状態閾値(遅れ状態判断閾値)LsXを、作業機械の複数のアクチュエータ31の動作速度に応じて設定する。これにより、安定性をより高めることができ、操作性をより効果的に向上させることができる。
[変形例(その3)]
 また、遅れ状態判断部26で行う通信遅れ状態の判断方法として、通信状態判断部25、28にて操縦者側遠隔制御装置20から送信される指令信号の送信時間と作業機械側遠隔制御装置21がその指令信号を受信したときの受信時間をモニタリングし、その2つの結果を基に通信遅れ状態を出力する方法を採用する場合、前述の図6および図7と同様の考え方で、指令補正値が1.0から下降し始める遅れ時間Ltの補正時間閾値(遅れ状態判断閾値)LtXを作業機械の複数のアクチュエータ31の動作速度に応じて設定すると、遅れ時間Ltと指令補正値の関係は図8、最大操作指令信号と補正状態閾値LtXの関係は図9のようになる。
<第二の実施形態>
[遠隔操縦システムのブロック構成]
 第二の実施形態に係る作業機械の一例である油圧ショベルの遠隔操縦システムのブロック構成図を図10に示す。
 上述した第一の実施形態では、操縦者側遠隔制御装置20と作業機械側遠隔制御装置21の間の通信遅れ状態の判断を行う遅れ状態判断部26、遅れ状態判断部26の出力に基づき操作レバー22の操作に応じて生成される指令信号の補正を行う指令信号補正部23が操縦者側遠隔制御装置20内に備えられている。そして、操作レバー22から出力される指令信号が操縦者側遠隔制御装置20から作業機械側遠隔制御装置21に送信される前に、全ての指令信号を補正する。
 一方、第二の実施形態では、作業機械側遠隔制御装置21内に遅れ状態判断部(遅れ状態判断装置)37、指令信号補正部(指令信号補正装置)38を備えている。そして、操作レバー22から出力され、操縦者側遠隔制御装置20の指令情報送受信部24から通信ネットワーク34を介して作業機械側遠隔制御装置21の指令情報送受信部27に送信された指令信号が作業機械側遠隔制御装置21の指令情報送受信部27から油圧ショベル1のコントローラ29に送信される前に、全ての指令信号を補正する。
 遅れ状態判断部37は、第一の実施形態で述べた遅れ状態判断部26と同様の働きをする。ただし、遅れ状態判断部37は、操縦者側遠隔制御装置20の通信状態判断部25の信号は通信ネットワーク34を介して受信し、作業機械側遠隔制御装置21の通信状態判断部28の信号は装置内で直接受信する。
[作業機械側遠隔制御装置21の遅れ状態判断部37の動作]
 前述したように、遅れ状態判断部37は、操縦者側遠隔制御装置20の通信状態判断部25と作業機械側遠隔制御装置21の通信状態判断部28の出力を基に、操縦者側遠隔制御装置20との間の通信遅れ状態の判断を行う。詳しくは、遅れ状態判断部37は、操縦者側遠隔制御装置20の通信状態判断部25と作業機械側遠隔制御装置21の通信状態判断部28の出力を基に、操縦者側遠隔制御装置20の指令情報送受信部24から送信される指令信号に対する、作業機械側遠隔制御装置21の指令情報送受信部27が受信する指令信号の通信遅れ状態を判断する。
 遅れ状態判断部37の具体的な通信状態の判断方法としては、第一の実施形態と同様である。
[作業機械側遠隔制御装置21の指令信号補正部38の動作]
 指令値補正部38は、図3に示す指令信号補正部23(補正値演算部35と補正値乗算部36を含む)と同様の構成となっている。補正値演算部35では、図4に示すグラフ(演算テーブル)に従い、遅れ状態判断部37の出力結果である遅れ状態Lsを基に、操作レバー22から出力される指令信号を補正する指令補正値を出力する。
 補正値乗算部36では、操作されている操作レバー22から出力され、通信ネットワーク34を介して操縦者側遠隔制御装置20(の指令情報送受信部24)から受信した指令信号全て(換言すれば、操作レバー22を介して操作されている複数のアクチュエータ31の全ての指令信号)に補正値演算部35で演算された指令補正値を乗算して(一律に)補正する。これによって、操縦者が操作レバー22に入力した複数の操作レバー入力量の比率を維持するように、作業機械側遠隔制御装置21内で(言い換えれば、操作レバー22から出力され、操縦者側遠隔制御装置20の指令情報送受信部24から通信ネットワーク34を介して作業機械側遠隔制御装置21の指令情報送受信部27に送信された指令信号が作業機械側遠隔制御装置21の指令情報送受信部27から油圧ショベル1のコントローラ29に送信される前に)一律に全ての操作信号を補正する。
 補正値乗算部36は、出力結果である(補正後の)指令信号を、油圧ショベル1のコントローラ29に送信する。
[効果]
 第二の実施形態においても、通信遅延時間によるアクチュエータ31の動作速度のオーバーシュートが発生する場合に、操作をしているアクチュエータ31の動作速度のバランスが崩れないように、複数の指令速度を制限する。オペレータの意図する動作速度のバランスを崩さないように指令速度を制限する方法として、操縦者が操作レバー22に入力した複数の操作レバー入力量の比率を維持するように、作業機械側遠隔制御装置21内で一律に全ての操作信号を補正する。そのため、第一の実施形態と同様の効果を得ることができる。
 また、本第二の実施形態は、前記遅れ状態判断部(遅れ状態判断装置)37と前記指令信号補正部(指令信号補正装置)38は、前記作業機械側遠隔制御装置21内に設けられ、前記指令信号補正部(指令信号補正装置)38は、前記指令信号が前記作業機械側遠隔制御装置21から前記作業機械(のコントローラ29)に送信される前に、操作されている前記複数のアクチュエータ31の全ての前記指令信号を補正する。
 本第二の実施形態によれば、通信遅延を検知した場合、補正情報(補正後の指令信号)は通信ネットワーク34を介さずに油圧ショベル(作業機械)1のコントローラ29に送信されるため、即座にアクチュエータ31の動作に反映することができる。また、例えば複数の操縦者側遠隔制御装置20を切り替えながら1台の油圧ショベル1を動かすことを想定すると、無線リモコン装置である操縦者側遠隔制御装置20の構成要素が少なくて済むため、例えば上述した第一の実施形態に比べて、コストを低減することができる。
 なお、第二の実施形態においても、図4に加えて図5~図9に基づき説明した内容を含むことができることは勿論である。
<第三の実施形態>
[遠隔操縦システムのブロック構成]
 第三の実施形態に係る作業機械の一例である油圧ショベルの遠隔操縦システムにおける指令値補正部のブロック構成図を図11に示す。なお、ここでは、本第三の実施形態を、第一の実施形態における操縦者側遠隔制御装置20の指令値補正部23の変形例として説明するが、第二の実施形態における作業機械側遠隔制御装置21の指令値補正部38にも適用できることは詳述するまでもない。
 第三の実施形態では、第一の実施形態における指令値補正部23(或いは、第二の実施形態における指令値補正部38)の構成が図11のようになっており、指令値補正部23は、遅れ状態判断部26の出力結果である遅れ状態Lsを基に、操作レバー22から出力される指令信号を補正する指令補正値を出力する補正演算部として、遅れ状態Lsに基づいてブーム8とアーム9とバケット10の指令信号(ブーム指令信号、アーム指令信号、バケット指令信号)を補正するための指令補正値Aを演算する補正値A演算部39、旋回モータ12の指令信号(旋回指令信号)を補正するための指令補正値Bを演算する補正値B演算部40、右走行モータ11と左走行モータ11の指令信号(走行右指令信号、走行左指令信号)を補正するための指令補正値Cを演算する補正値C演算部41を有する。
 補正値A演算部39、補正値B演算部40、補正値C演算部41では、図12に示すような演算テーブルを参照して遅れ状態Lsに基づき指令補正値A、指令補正値B、指令補正値Cが演算される(詳細は後で説明)。
 補正値A演算部39で演算された指令補正値Aは、補正値A乗算部42においてブーム8とアーム9とバケット10の指令信号(ブーム指令信号、アーム指令信号、バケット指令信号)にそれぞれ乗算される。補正値B演算部40で演算された指令補正値Bは、補正値B乗算部43において旋回モータ12の指令信号(旋回指令信号)に乗算される。補正値C演算部41で演算された補正値Cは、補正値C乗算部44において右走行モータ11と左走行モータ11の指令信号(走行右指令信号、走行左指令信号)にそれぞれ乗算される。
[操縦者側遠隔制御装置20の指令信号補正部23の動作]
 補正値A演算部39、補正値B演算部40、補正値C演算部41において、図12に示すグラフ(演算テーブル)に基づいて指令補正値A、指令補正値B、指令補正値Cを演算する場合、通信遅れ状態Lsに対する、各アクチュエータ31の指令補正値を変更することができる。
 図12のグラフは、遅れ状態Lsに基づき算出される指令補正値A、指令補正値B、指令補正値Cを表しており、例えば、指令補正値Aにおいては、通信状態が良好な状態であると判断されるLs=80~100の間は指令信号の補正を行わない1.0が指令補正値Aとして出力されるが、Ls=20~80の間では遅れ状態Lsが小さくなる(つまり通信状態が悪くなる)ほど指令補正値Aは次第に小さくなる。指令補正値Bにおいては、通信状態が良好な状態であると判断されるLs=90~100の間は指令信号の補正を行わない1.0が指令補正値Bとして出力されるが、Ls=20~90の間では遅れ状態Lsが小さくなる(つまり通信状態が悪くなる)ほど指令補正値Bは次第に小さくなる。指令補正値Cにおいては、Ls=100のときは指令信号の補正を行わない1.0が指令補正値Cとして出力されるが、Ls=20~100の間では通信遅れ状態Lsが小さくなる(つまり通信状態が悪くなる)ほど指令補正値Cは次第に小さくなる。遅れ状態Ls=20の場合、指令補正値A、指令補正値B、指令補正値Cはそれぞれ0.5、0.25、0となり、ブーム8とアーム9とバケット10の指令信号は0.5倍、旋回モータ12の指令信号は0.25倍、右走行モータ11、左走行モータ11の指令信号は0倍まで小さくなる。更に、遅れ状態Ls=3未満の場合は極めて通信状態が悪いと判断し、指令補正値A、指令補正値Bについても直ちに0まで低下させる。
 補正値A乗算部42、補正値B乗算部43、補正値C乗算部44では、操作されている操作レバー22から出力された指令信号全て(換言すれば、操作レバー22を介して操作されている複数のアクチュエータ31の全ての指令信号)に補正値A演算部39、補正値B演算部40、補正値C演算部41で演算された指令補正値A、指令補正値B、指令補正値Cを乗算して補正し、操作レバー22を介して操作されている複数のアクチュエータ31ごとに指令信号を補正する。これによって、通信遅延時間がある閾値を超過した場合、特定のアクチュエータ31については、制限(減速)のかけ方を変更する。
[効果]
 このように、アクチュエータ31に応じて、遅れ状態に基づく指令補正値を変更することで、通信状態に応じた各アクチュエータ31の動作制限の振る舞いを変更できる。
 例えば、遅れ状態Ls=20の場合、通信遅れ状態が非常に悪いと判断し、指令補正値A、指令補正値B、指令補正値Cはそれぞれ0.5、0.25、0とされ、ブーム8、アーム9、バケット10は半分の操作指令で動作し、旋回モータ12は1/4の操作指令で動作する。さらに右走行モータ11、左走行モータ11に関しては、指令信号がゼロ倍され、操縦者が操作レバー22を操作しても動作しない状態となる。
 こうすることで、モニタ33に表示される作業機械の動作と実際の作業機械の動作に乖離が大きいときに、動作を遅くするアクチェチュエータ31と、動作させない(もしくは極めて動作を遅くする)アクチチュエータ31を設定することができ、危険な状態にはならない作業を止めずに作業効率を維持しながら、通信状態が悪い場合に作業機械が危険な状態に陥る可能性を低減させることができる。
 以上で説明したように、本第三の実施形態は、前記指令信号補正部(指令信号補正装置)23は、操作されている前記複数のアクチュエータ31ごとに前記指令信号を補正する。
 また、前記指令信号補正部(指令信号補正装置)23は、前記複数のアクチュエータ31ごとに、前記遅れ状態判断閾値と、前記指令信号を補正するための前記通信遅れ状態に応じた指令補正値とが設定されている。
 換言すれば、本第三の実施形態は、通信遅延時間によるアクチュエータ31の動作速度のオーバーシュートが発生する場合に、操作をしているアクチュエータ31の動作速度のバランスが崩れないように、複数の指令速度を制限する。更に、通信遅延時がある閾値を超過する場合は、特定のアクチュエータ31に関しては、操作しているアクチュエータ31の動作速度バランスを保つことよりも、速度を制限することを優先し、例えば走行中に油圧ショベル1が転落するなどの状態を防ぐ。オペレータの意図する動作速度のバランスを崩さないように指令速度を制限する方法として、通信遅延時間がある閾値を超過した場合、特定のアクチュエータ31については、制限のかけ方を変更する。
 本第三の実施形態においても、第一、第二の実施形態と同様、複数のアクチュエータ31を有する作業機械の遠隔操縦システムにおいて、複数のアクチュエータ31を操作しているときに、通信遅延時間が生じた場合でも、操作されている複数のアクチュエータ31の全ての指令信号を補正することで、複数のアクチュエータ31に対して指令信号(操作信号)の比率を保ちながら制限をかけるため、操縦者が所望する複数のアクチュエータ31の動作バランスを保ちやすく操縦できるようになり、操作がしやすくなる。また、指令信号を制限することで、例えばモニタ33で操縦者が把握できる作業機械の動作状態と実際の作業機械の動作状態との乖離を低減できるため、モニタ33に表示されている作業機械の目視結果を基に操作レバー22に的確なフィードバックを入力でき、効率的に作業を行える。
 また、本第三の実施形態によれば、通信遅延時間が大きくなった場合であっても、特定のアクチュエータ31に関しては制限のかけ方を変更することで、例えば走行中の油圧ショベル1の転落などを防ぐことができる。
[変形例(その1)]
 遅れ状態判断部26において、通信状態判断部25、28にて操縦者側遠隔制御装置20から送信される指令信号の送信時間と作業機械側遠隔制御装置21がその指令信号を受信したときの受信時間をモニタリングし、その2つの結果を基に出力した通信遅れ遅れ時間Ltを用いて通信遅れ状態を判断する場合、指令値補正部23の補正値A演算部39、補正値B演算部40、補正値C演算部41は、図13に示すグラフ(演算テーブル)に従い、遅れ時間Ltに基づき、指令補正値A、指令補正値B、指令補正値Cを演算する。図13のグラフは、遅れ時間Ltに基づき算出される指令補正値A、指令補正値B、指令補正値Cを表しており、例えば、指令補正値Aにおいては、通信状態が良好な状態であると判断されるLt=0~0.5の間は指令信号の補正を行わない1.0が指令補正値Aとして出力されるが、Lt=0.5~1.0の間では遅れ時間Ltが大きくなる(つまり通信状態が悪くなる)ほど指令補正値Aは次第に小さくなる。指令補正値Bにおいては、通信状態が良好な状態であると判断されるLt=0~0.35の間は指令信号の補正を行わない1.0が指令補正値Bとして出力されるが、Lt=0.35~1.0の間では遅れ時間Ltが大きくなる(つまり通信状態が悪くなる)ほど指令補正値Bは次第に小さくなる。指令補正値Cにおいては、通信状態が良好な状態であると判断されるLt=0~0.2の間は指令信号の補正を行わない1.0が指令補正値Cとして出力されるが、Lt=0.2~1.0の間では遅れ時間Ltが大きくなる(つまり通信状態が悪くなる)ほど指令補正値Cは次第に小さくなる。遅れ時間Lt=1.0の場合、指令補正値A、指令補正値B、指令補正値Cはそれぞれ0.5、0.25、0となり、ブーム8とアーム9とバケット10の指令信号は0.5倍、旋回モータ12の指令信号は0.25倍、右走行モータ11、左走行モータ11の指令信号は0倍まで小さくなる。更に、遅れ時間Lt=5.0より大きい場合は極めて通信状態が悪いと判断し、指令補正値A、指令補正値Bについても直ちに0まで低下させる。
 指令補正部23の補正値A乗算部42、補正値B乗算部43、補正値C乗算部44においては、操作されている操作レバー22から出力された指令信号全て(換言すれば、操作レバー22を介して操作されている複数のアクチュエータ31の全ての指令信号)に補正値A演算部39、補正値B演算部40、補正値C演算部41で演算された指令補正値A、指令補正値B、指令補正値Cを乗算して補正し、操作レバー22を介して操作されている複数のアクチュエータ31ごとに指令信号を補正する。これによって、通信遅延時間がある閾値を超過した場合、特定のアクチュエータ31については、制限(減速)のかけ方を変更する。
[変形例(その2)]
 また、指令値補正部23(の補正値A演算部39、補正値B演算部40、補正値C演算部41)で用いる遅れ状態Lsと指令補正値の関係は、図14のように設定されても良い。図14のグラフ(演算テーブル)では、各指令補正値A、B、Cが1.0から下降し始める遅れ状態Lsの閾値(補正の要否を判断する遅れ状態判断閾値、以下、補正状態閾値ともいう)LsXA、LsXB、LsXCが、図15のグラフ(演算テーブル)によって決定される。図15は、作業機械で操作されているアクチュエータ31の指令信号のうちの最大の操作指令信号(最大操作指令信号)と各補正状態閾値LsXA、LsXB、LsXCの関係を示したものである。この図15のグラフによれば、最大操作指令信号が大きいほど、指令補正値が1.0から下降し始める各補正状態閾値LsXA、LsXB、LsXCは大きく、最大操作指令信号が小さいほど、指令補正値が1.0から下降し始める各補正状態閾値LsXA、LsXB、LsXCは小さい。
 これは、最大操作指令信号が大きい場合、つまり作業機械のアクチュエータ31の動作スピードが速い場合は、通信遅延によって生じる単位時間あたりの作業機械のアクチュエータ31の稼働量と操縦者が想定する作業機械のアクチュエータ31の稼働量との乖離が大きいためで、指令補正値が下降し始める各補正状態閾値LsXA、LsXB、LsXCを大きくすることで、通信遅延が少しでも生じたときに指令信号を補正するためである。こうすることで、作業機械のアクチュエータ稼働速度が速いときに通信遅延が生じた場合、その通信遅延時間が小さくとも、指令信号が小さく補正されるため、通信遅延によって生じる単位時間あたりの作業機械のアクチュエータ31の稼働量と操縦者が想定する作業機械のアクチュエータ31の稼働量との乖離を小さくすることができる。
 一方、この図15のグラフによれば、最大操作指令信号が小さいほど、指令補正値が1.0から下降し始める各補正状態閾値LsXA、LsXB、LsXCは小さい。これは、最大操作指令信号が小さい場合、つまり作業機械のアクチュエータ31の動作スピードが遅い場合は、通信遅延によって生じる単位時間あたりの作業機械のアクチュエータ31の稼働量と操縦者が想定する作業機械のアクチュエータの稼働量との乖離は小さいためである。つまり、アクチュエータ31の稼働速度が小さい場合は指令補正値が下降し始める各補正状態閾値LsXA、LsXB、LsXCを小さくすることで、通信が大きく遅延するまで指令信号を補正しない。こうすることで、作業機械のアクチュエータ稼働速度が遅いときに通信遅延が生じた場合、通信遅延によって生じる単位時間あたりの作業機械のアクチュエータ31の稼働量と操縦者が想定する作業機械のアクチュエータ31の稼働量との乖離を小さいと想定される範囲では指令信号を補正せずに速度を低下させることなく操作することができる。
 このように、各指令補正値A、B、Cが1.0から下降し始める遅れ状態Lsの補正状態閾値(遅れ状態判断閾値)LsXA、LsXB、LsXCを、作業機械の複数のアクチュエータ31の動作速度に応じて設定する。これにより、安定性をより高めることができ、操作性をより効果的に向上させることができる。
[変形例(その3)]
 また、遅れ状態判断部26で行う通信状態の判断方法として、通信状態判断部25、28にて操縦者側遠隔制御装置20から送信される指令信号の送信時間と作業機械側遠隔制御装置21がその指令信号を受信したときの受信時間をモニタリングし、その2つの結果を基に通信遅れ状態を出力する方法を採用する場合、前述の図14および図15と同様の考え方で、各指令補正値A、B、Cが1.0から下降し始める遅れ時間Ltの補正時間閾値(遅れ状態判断閾値)LsXA、LsXB、LsXCを作業機械の複数のアクチュエータ31の動作速度に応じて設定すると、遅れ時間Ltと各指令補正値A、B、Cの関係は図16、最大操作指令信号と各補正状態閾値LtXA、LtXB、LtXCの関係は図17のようになる。
 なお、本発明は上記した実施形態に限られるものではなく、様々な変形形態が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、上記した実施形態のコントローラの各機能は、それらの一部または全部を、例えば集積回路で設計することによりハードウェアで実現してもよい。また、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、コントローラ内の記憶装置の他に、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
1…油圧ショベル(作業機械ないし建設機械)、2…下部走行体、3…上部旋回体、7…フロント装置、8…ブーム、9…アーム、10…バケット、11…走行モータ、12…旋回モータ、20…操縦者側遠隔制御装置、21…作業機械側遠隔制御装置、22…遠隔操作用操作レバー、23…指令信号補正部(指令信号補正装置)、24…指令情報送受信部(操縦者側遠隔制御装置側)、25…通信状態判断部(操縦者側遠隔制御装置側)、26…遅れ状態判断部(遅れ状態判断装置)、27…指令情報送受信部(作業機械側遠隔制御装置側)、28…通信状態判断部(作業機械側遠隔制御装置側)、29…コントローラ、30…電磁弁、31…アクチュエータ、32…カメラ(動作状態確認装置)、33…モニタ(動作状態表示装置)、34…通信ネットワーク、35…補正値演算部、36…補正値乗算部、37…遅れ状態判断部(遅れ状態判断装置)、38…指令信号補正部(指令信号補正装置)、39…補正値A演算部、40…補正値B演算部、41…補正値C演算部、42…補正値A乗算部、43…補正値B乗算部、44…補正値C乗算部

Claims (10)

  1.  作業機械に備えられた複数のアクチュエータを操縦者が操作するための操作レバーと、
     前記操作レバーの操作により生成される前記複数のアクチュエータを動作させるための指令信号を、通信ネットワークを介して送信する操縦者側遠隔制御装置と、
     前記指令信号を前記通信ネットワークを介して受信して前記作業機械に送信する作業機械側遠隔制御装置と、
     前記操縦者側遠隔制御装置から送信される前記指令信号に対する、前記作業機械側遠隔制御装置が受信する前記指令信号の通信遅れ状態を判断する遅れ状態判断装置と、
     前記通信遅れ状態があらかじめ設定された遅れ状態判断閾値よりも悪化していると判断される場合に、操作されている前記複数のアクチュエータの全ての前記指令信号をその比率を維持するように補正する指令信号補正装置と、を備えることを特徴とする作業機械の遠隔操縦システム。
  2.  請求項1に記載の作業機械の遠隔操縦システムにおいて、
     前記指令信号補正装置は、前記通信遅れ状態が悪化するほど前記複数のアクチュエータの動作速度が遅くなるように、操作されている前記複数のアクチュエータの全ての前記指令信号を補正することを特徴とする作業機械の遠隔操縦システム。
  3.  請求項1に記載の作業機械の遠隔操縦システムにおいて、
     前記指令信号補正装置は、前記通信遅れ状態があらかじめ設定された通信途絶判断閾値よりも悪化していると判断される場合は、通信が途絶していると判断し、前記複数のアクチュエータが動作しないように、操作されている前記複数のアクチュエータの全ての前記指令信号を補正することを特徴とする作業機械の遠隔操縦システム。
  4.  請求項1に記載の作業機械の遠隔操縦システムにおいて、
     前記遅れ状態判断閾値は、前記複数のアクチュエータの動作速度に応じて設定されることを特徴とする作業機械の遠隔操縦システム。
  5.  請求項1に記載の作業機械の遠隔操縦システムにおいて、
     前記遅れ状態判断装置と前記指令信号補正装置は、前記操縦者側遠隔制御装置内に設けられ、
     前記指令信号補正装置は、前記指令信号が前記操縦者側遠隔制御装置から前記作業機械側遠隔制御装置に送信される前に、操作されている前記複数のアクチュエータの全ての前記指令信号を補正することを特徴とする作業機械の遠隔操縦システム。
  6.  請求項1に記載の作業機械の遠隔操縦システムにおいて、
     前記遅れ状態判断装置と前記指令信号補正装置は、前記作業機械側遠隔制御装置内に設けられ、
     前記指令信号補正装置は、前記指令信号が前記作業機械側遠隔制御装置から前記作業機械に送信される前に、操作されている前記複数のアクチュエータの全ての前記指令信号を補正することを特徴とする作業機械の遠隔操縦システム。
  7.  請求項1に記載の作業機械の遠隔操縦システムにおいて、
     前記指令信号補正装置は、前記通信遅れ状態があらかじめ設定された遅れ状態判断閾値よりも悪化していると判断される場合に、前記通信遅れ状態に応じた指令補正値を出力し、操作されている前記複数のアクチュエータの全ての前記指令信号に前記指令補正値を乗算して補正することを特徴とする作業機械の遠隔操縦システム。
  8.  請求項1に記載の作業機械の遠隔操縦システムにおいて、
     前記指令信号補正装置は、操作されている前記複数のアクチュエータごとに前記指令信号を補正することを特徴とする作業機械の遠隔操縦システム。
  9.  請求項8に記載の作業機械の遠隔操縦システムにおいて、
     前記指令信号補正装置は、前記複数のアクチュエータごとに、前記遅れ状態判断閾値と、前記指令信号を補正するための前記通信遅れ状態に応じた指令補正値とが設定されていることを特徴とする作業機械の遠隔操縦システム。
  10.  請求項1に記載の作業機械の遠隔操縦システムにおいて、
     前記作業機械の動作状態を外部から確認するための動作状態確認装置と、
     前記動作状態確認装置の出力を、前記通信ネットワークを介して受信し、操縦者が視認できるようにする動作状態表示装置と、を備えることを特徴とする作業機械の遠隔操縦システム。
PCT/JP2021/009621 2020-03-27 2021-03-10 作業機械の遠隔操縦システム WO2021193073A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227006040A KR102681620B1 (ko) 2020-03-27 2021-03-10 작업 기계의 원격 조종 시스템
CN202180004921.3A CN114222953B (zh) 2020-03-27 2021-03-10 作业机械的远程操纵系统
US17/637,598 US12037772B2 (en) 2020-03-27 2021-03-10 Remote control system for work machine
EP21774630.4A EP4130399A4 (en) 2020-03-27 2021-03-10 REMOTE CONTROL SYSTEM FOR WORK MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020057933A JP7164278B2 (ja) 2020-03-27 2020-03-27 作業機械の遠隔操縦システム
JP2020-057933 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193073A1 true WO2021193073A1 (ja) 2021-09-30

Family

ID=77890202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009621 WO2021193073A1 (ja) 2020-03-27 2021-03-10 作業機械の遠隔操縦システム

Country Status (6)

Country Link
US (1) US12037772B2 (ja)
EP (1) EP4130399A4 (ja)
JP (1) JP7164278B2 (ja)
KR (1) KR102681620B1 (ja)
CN (1) CN114222953B (ja)
WO (1) WO2021193073A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023044227A (ja) * 2021-09-17 2023-03-30 トヨタ自動車株式会社 遠隔操作装置及び遠隔操作システム
US20230128665A1 (en) * 2021-10-25 2023-04-27 Corindus, Inc. Medical device systems, methods and computer-readable mediums for operating the same
JP2023149698A (ja) * 2022-03-31 2023-10-13 日立建機株式会社 作業機械及び遠隔操作型作業機械システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08237758A (ja) * 1995-02-22 1996-09-13 Hitachi Constr Mach Co Ltd 建設機械の無線操縦装置
WO2012061888A1 (en) * 2010-11-12 2012-05-18 Jason James Mordey Material clearing machine
JP2017005416A (ja) * 2015-06-08 2017-01-05 ナブテスコ株式会社 操作装置、被操作装置、遠隔制御システム、遠隔制御方法、プログラム
JP2018107568A (ja) 2016-12-26 2018-07-05 日本電気株式会社 遠隔制御装置、遠隔制御システム、遠隔制御方法及び遠隔制御プログラム
JP2019065657A (ja) * 2017-10-04 2019-04-25 株式会社小松製作所 作業システム、作業機械および制御方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468331B2 (ja) * 1996-03-21 2003-11-17 日立建機株式会社 建設機械の干渉防止装置
JPH10191308A (ja) * 1996-12-27 1998-07-21 Toshiba Corp 遠隔監視システム
JPH11350537A (ja) * 1998-06-08 1999-12-21 Hitachi Constr Mach Co Ltd 油圧作業機械の制御装置
JP2005316937A (ja) * 2004-04-02 2005-11-10 Yaskawa Electric Corp 制御装置およびその制御方法
JP2006000977A (ja) * 2004-06-17 2006-01-05 National Univ Corp Shizuoka Univ ロボット環境間力作用状態呈示装置
US8340819B2 (en) * 2008-09-18 2012-12-25 Intouch Technologies, Inc. Mobile videoconferencing robot system with network adaptive driving
CN105342705A (zh) * 2009-03-24 2016-02-24 伊顿株式会社 利用增强现实技术的手术机器人系统及其控制方法
US12093036B2 (en) * 2011-01-21 2024-09-17 Teladoc Health, Inc. Telerobotic system with a dual application screen presentation
JP6073827B2 (ja) * 2014-03-27 2017-02-01 日立建機株式会社 建設機械の遠隔操縦システム
KR101756572B1 (ko) * 2014-06-04 2017-07-10 가부시키가이샤 고마쓰 세이사쿠쇼 건설 기계의 제어 시스템, 건설 기계, 및 건설 기계의 제어 방법
JP6297444B2 (ja) * 2014-08-07 2018-03-20 Ntn株式会社 自動車向け車輪周辺部品の状態監視装置
US10371142B2 (en) 2015-07-27 2019-08-06 Bristol, Inc. Methods and apparatus for pairing rod pump controller position and load values
US10120388B2 (en) * 2016-03-31 2018-11-06 Komatsu Ltd. Control system for work machine, work machine, and control method for work machine
JP6706171B2 (ja) 2016-08-04 2020-06-03 日立建機株式会社 建設機械の遠隔操作システム
US10607425B2 (en) * 2018-01-31 2020-03-31 TrueLite Trace, Inc. Vehicle electronic logging device (ELD) hour-of-service (HoS) audit and correction guidance system and method of operating thereof
CN112135715B (zh) * 2018-05-18 2024-03-19 科林达斯公司 用于机器人介入过程的远程通信和控制系统
US11137754B2 (en) * 2018-10-24 2021-10-05 Ford Global Technologies, Llc Intermittent delay mitigation for remote vehicle operation
US20230128665A1 (en) * 2021-10-25 2023-04-27 Corindus, Inc. Medical device systems, methods and computer-readable mediums for operating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08237758A (ja) * 1995-02-22 1996-09-13 Hitachi Constr Mach Co Ltd 建設機械の無線操縦装置
WO2012061888A1 (en) * 2010-11-12 2012-05-18 Jason James Mordey Material clearing machine
JP2017005416A (ja) * 2015-06-08 2017-01-05 ナブテスコ株式会社 操作装置、被操作装置、遠隔制御システム、遠隔制御方法、プログラム
JP2018107568A (ja) 2016-12-26 2018-07-05 日本電気株式会社 遠隔制御装置、遠隔制御システム、遠隔制御方法及び遠隔制御プログラム
JP2019065657A (ja) * 2017-10-04 2019-04-25 株式会社小松製作所 作業システム、作業機械および制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130399A4

Also Published As

Publication number Publication date
JP2021156030A (ja) 2021-10-07
KR20220038735A (ko) 2022-03-29
US20220275604A1 (en) 2022-09-01
EP4130399A1 (en) 2023-02-08
US12037772B2 (en) 2024-07-16
CN114222953B (zh) 2024-09-06
KR102681620B1 (ko) 2024-07-05
JP7164278B2 (ja) 2022-11-01
EP4130399A4 (en) 2024-05-22
CN114222953A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2021193073A1 (ja) 作業機械の遠隔操縦システム
KR101948465B1 (ko) 건설 기계의 제어 장치
KR102091504B1 (ko) 건설 기계
EP0695875B1 (en) Hydraulic pump controller
US9303636B2 (en) System for controlling hydraulic pump in construction machine
WO2018008188A1 (ja) 作業機械
EP2600010A1 (en) Swirl flow control system for construction equipment and method of controlling the same
WO2017051483A1 (ja) 作業機械の油圧システム
EP3647500B1 (en) Travel control system for construction machinery and travel control method for construction machinery
US20130000930A1 (en) Control device and pitch angle control method
US10677268B2 (en) Construction machine
CN109667309B (zh) 温度响应的液压降低
WO2019088065A1 (ja) 作業機械
KR20150105961A (ko) 건설기계의 주행속도 제어방법
KR101760589B1 (ko) 건설기계의 스풀 변위 가변 제어장치 및 제어방법
KR20140037007A (ko) 건설장비용 유압시스템
JPH10147959A (ja) 油圧モータの制御装置
US6895319B2 (en) Valve command signal processing system
WO2022201905A1 (ja) 作業機械
US20060042129A1 (en) Construction machine
US10662616B2 (en) Control device and control method for construction machine
US11391020B2 (en) Work machine
US20240003118A1 (en) Electro-hydraulic controlled excavator travel to tool control priority function
WO2011140184A2 (en) Pump power control method for preventing stall
JPH0132361B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227006040

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021774630

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021774630

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE