WO2021192977A1 - 組電池 - Google Patents

組電池 Download PDF

Info

Publication number
WO2021192977A1
WO2021192977A1 PCT/JP2021/009100 JP2021009100W WO2021192977A1 WO 2021192977 A1 WO2021192977 A1 WO 2021192977A1 JP 2021009100 W JP2021009100 W JP 2021009100W WO 2021192977 A1 WO2021192977 A1 WO 2021192977A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cell
assembled battery
particle size
cell group
Prior art date
Application number
PCT/JP2021/009100
Other languages
English (en)
French (fr)
Inventor
麻奈美 小田原
伊藤 武
貴志 倉林
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Publication of WO2021192977A1 publication Critical patent/WO2021192977A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an assembled battery formed by combining a plurality of cells, and more particularly to an assembled battery using a nickel-metal hydride storage battery as the cell.
  • reaction heat and Joule heat are generated by the battery reaction as the battery is charged and discharged, and the temperature rises. Since the amount of heat generated increases when the number of cells is increased in order to increase the capacity of the assembled battery, the temperature of the assembled battery tends to rise more easily than in the case of one single battery, and the frequency of exposure to high temperature is high.
  • the corrosion reaction of the active material is promoted, the active material is deteriorated, and the consumption of the alkaline electrolytic solution is increased. As a result, the discharge capacity is lowered, the alkaline electrolyte is depleted, and the cycle life of the battery is exhausted early. Therefore, there is a problem that the life of the assembled battery, whose temperature tends to rise more easily than when the cell is used alone, tends to be shortened due to the influence of heat.
  • the cell cells are compared with the assembled battery formed by combining a plurality of cylindrical batteries. Since the contact area between them becomes large, it is difficult for heat to dissipate, and especially in the central part, heat tends to accumulate, so that the temperature tends to be high. On the other hand, heat tends to be dissipated from the central portion to both end portions. Therefore, the portion away from the central portion is less likely to be in a higher temperature state than the central portion. As described above, in the assembled battery, the temperature differs depending on the part.
  • the cell cells located in the higher temperature portion are more frequently exposed to the high temperature than the cell cells located in the other portions, and are easily affected by heat.
  • a cell cell that is affected by heat and a cell cell that is not so affected by heat are mixed, and there is a tendency that an imbalance occurs in the period when the battery reaches the end of its life.
  • the cycle life of the assembled battery depends on the single battery in which the degree of decrease in the discharge capacity is large. In other words, the lower the discharge capacity of a cell that is affected by heat and the degree of decrease in discharge capacity is larger, the earlier the lower limit of the discharge capacity is lowered. ..
  • a cooling mechanism is provided in order to suppress a decrease in discharge capacity and depletion of the alkaline electrolyte due to the influence of heat.
  • a cooling mechanism for example, a heat radiating partition plate for partitioning between adjacent single batteries as shown in Patent Document 1 is known.
  • the heat radiating partition plate has a ventilation hole, and the cooling air is circulated in the ventilation hole to cool the cell.
  • the range of ambient temperature used is wide. That is, the assembled battery for in-vehicle use may be used in a low temperature environment of less than 0 ° C. from a high temperature environment such as in a car in midsummer.
  • the resistance near the surface of the negative electrode is rate-determining, so it is desirable to use hydrogen storage alloy particles with a high reactivity and a small particle size.
  • the hydrogen storage alloy particles having a small particle size are liable to deteriorate due to the influence of heat when exposed to a high temperature, and affect the cycle life characteristics of the battery. That is, in the assembled battery, there is a trade-off relationship between the low temperature discharge characteristic and the life characteristic.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide an assembled battery capable of achieving both improvement of low temperature discharge characteristics and improvement of life characteristics.
  • the battery in an assembled battery formed by arranging a large number of single batteries formed of a nickel hydrogen storage battery containing a hydrogen storage alloy in a negative electrode in a straight line, the battery is located at a central portion in the linearly extending direction.
  • the central cell group which is an aggregate of the cells
  • the end unit which is an aggregate of the cells located at both ends of the central cell group and arranged so as to sandwich the central cell group.
  • an assembled battery including a battery group, wherein the particle size of the hydrogen storage alloy contained in the central cell group is larger than the particle size of the hydrogen storage alloy contained in the end cell group. ..
  • each of the cell cells has a flat box shape, and the surfaces having the largest area among the surfaces in the box shape are combined so as to match and contact each other, and are arranged and connected in a straight line. It is preferable that the configuration is as follows.
  • the number of the cells constituting the central cell group is 33% or more and 60% or less of the total number of the cells included in the assembled battery.
  • the particle size of the hydrogen storage alloy contained in the cell of the central cell group has a volume average particle size of 50 ⁇ m or more measured by using a particle size distribution measuring device, and is included in the end cell group.
  • the particle size of the hydrogen storage alloy is preferably such that the volume average particle size measured using a particle size distribution measuring device is less than 50 ⁇ m.
  • the total number of the cell cells is 10 or more.
  • the assembled battery of the present invention is an assembled battery formed by linearly arranging a large number of single batteries formed of a nickel hydrogen storage battery containing a hydrogen storage alloy in the negative electrode, at the central portion in the linearly extending direction.
  • the central cell group which is an aggregate of the cell cells located, and the end portion, which is an assembly of the cell cells, located at both ends of the central cell group and arranged so as to sandwich the central cell group.
  • the battery group includes a cell group, and the particle size of the hydrogen storage alloy contained in the central cell group is larger than the particle size of the hydrogen storage alloy contained in the end cell group.
  • the central cell group containing a hydrogen storage alloy with a large particle size is less susceptible to heat, contributes to a longer life of the assembled battery, and is a single end unit containing a hydrogen storage alloy with a smaller particle size. Since the battery group has high reactivity, it contributes to exhibiting excellent discharge characteristics even in a low temperature environment. Therefore, according to the present invention, it is possible to provide an assembled battery capable of achieving both improvement in low temperature discharge characteristics and improvement in life characteristics.
  • FIG. 1 It is a perspective view which showed schematicly about the assembled battery which concerns on one Embodiment. It is a perspective view which showed schematicly which the assembled battery for temperature distribution measurement. It is a graph which showed the relationship between the temperature measured by each thermocouple and the elapsed time. It is a graph which showed the surface temperature of each cell by thermography. It is a graph which showed the relationship between the ratio which the central cell group occupies the whole assembled battery, and the number of cell cells contained in the assembled battery. It is a perspective view which showed schematicly about the assembled battery of the comparative example 1. FIG. It is a perspective view which showed the assembled battery of the comparative example 2 schematicly. It is a graph which showed the relationship between the capacity retention rate and the number of cycles. It is a graph which showed the relationship between the discharge capacity and the environmental temperature at the time of discharge.
  • the assembled battery 2 is formed by combining a rectangular parallelepiped-shaped single battery 4.
  • FIG. 1 when three directions are indicated by arrows X, arrow Y, and arrow Z, the base end side of arrow X is left, the tip end side of arrow X is right, and the base end side of arrow Y is. With the bottom, the tip side of the arrow Y is the top, the base end side of the arrow Z is the front, and the tip side of the arrow Z is the back.
  • the relationship between the top, bottom, left, right, front and back is the same for other figures depicting the assembled battery, which will be described later.
  • the cell 4 is located on the left side surface located on the left side, the right side surface located on the right side, the lower surface located on the lower side, the upper surface located on the upper side, the front surface and the rear side located on the front side. It has each side of the rear surface.
  • the widths of the left side surface, the upper surface, the right side surface, and the lower surface in the front-rear direction are smaller than the widths of the front surface and the rear surface in the vertical direction and the left-right direction, and the cell 4 has a flat box shape as a whole.
  • the length in the arrow Z direction is the unit length U
  • the length W in the arrow X direction is 5 to 6 times the unit length U
  • the length L in the Y direction is preferably a box shape, which is 7 to 8 times as long as the unit length U.
  • the cell 4 is a so-called square nickel-metal hydride storage battery, and contains an electrode group in which a positive electrode and a negative electrode are superposed via a separator, and an alkaline electrolytic solution.
  • the positive electrode a general one is used as the positive electrode of the nickel hydrogen storage battery.
  • a positive electrode containing nickel hydroxide is used as the positive electrode active material.
  • a negative electrode containing a hydrogen storage alloy capable of storing and releasing hydrogen as a negative electrode active material is used.
  • this negative electrode has a band-shaped conductive negative electrode core body, and the negative electrode mixture is held in the negative electrode core body.
  • the negative electrode core is formed of a sheet-shaped metal material in which through holes are distributed.
  • a punching metal sheet can be used as the negative electrode core.
  • the negative electrode mixture is not only filled in the through holes of the negative electrode core body, but is also held in layers on both sides of the negative electrode core body.
  • the negative electrode mixture contains a hydrogen storage alloy powder, a conductive material, and a binder, which are aggregates of particles of the hydrogen storage alloy.
  • the above-mentioned binder has a function of binding the particles of the hydrogen storage alloy and the conductive material to each other and at the same time binding the negative electrode mixture to the negative electrode core body.
  • a hydrophilic or hydrophobic polymer or the like can be used as the binder, and carbon black, graphite, nickel powder or the like can be used as the conductive material.
  • the hydrogen storage alloy a general hydrogen storage alloy can be used.
  • a rare earth-Mg—Ni hydrogen storage alloy containing a rare earth element, Mg, and Ni it is preferable to use an alloy having a composition represented by the following general formula (I).
  • Ln 1-x Mg x Ni y -a Al a ⁇ (I)
  • Ln is derived from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti and Zr.
  • a general one is used as a separator for nickel-metal hydride storage batteries.
  • a non-woven fabric made of polyamide fiber to which a hydrophilic functional group is imparted a non-woven fabric made of polyolefin fiber such as polyethylene or polypropylene to which a hydrophilic functional group is imparted, and the like are used.
  • alkaline electrolyte a general alkaline electrolyte for nickel-metal hydride storage batteries is used.
  • an aqueous solution containing at least one of NaOH and KOH as the solute of the alkaline component.
  • LiOH LiOH as needed.
  • a plurality of first cell 6 and a plurality of second cell 8 are prepared.
  • the respective cell cells 4 are combined and linearly connected so that the surfaces having the largest area among the surfaces in the box shape are matched and in contact with each other. Specifically, the combination is such that the rear surface of one cell 4 and the front surface of the other cell 4 are in contact with each other.
  • the assembled battery 2 is formed.
  • the assembled battery 2 is formed by combining at least three cell batteries.
  • the cell 4 located in the central portion of the assembled battery 2 is referred to as the first cell 6, and the cell 4 located in front of and behind the first cell 6 is referred to as the second cell 8. That is, the first cell 6 is sandwiched between the second cell 8.
  • first cell batteries 6 are arranged in the central portion of the assembled battery 2, and three second cell batteries 8 are arranged before and after sandwiching the central portion.
  • the four first cell batteries 6 located in the central portion are referred to as the central cell group 10, and a total of six second cell cells 8 located on both sides of the central cell group 10 are end unit.
  • the battery group is 12 (see FIG. 1).
  • the particle size of the hydrogen storage alloy particles (hereinafter, also referred to as the central particle) incorporated in the negative electrode of the first cell 6 included in the central cell group 10 is the end cell group. It is larger than the particle size of the hydrogen storage alloy particles (hereinafter, also referred to as end particles) incorporated in the negative electrode of the second cell 8 included in 12.
  • the particle size of the hydrogen storage alloy particles incorporated in the negative electrode of the first cell 6 included in the central cell group 10 located in the central portion where heat is easily accumulated is such that the heat is easily dissipated in the center. Since it is larger than the particle size of the hydrogen storage alloy particles incorporated in the negative electrode of the second cell 8 included in the end cell group 12 located at both ends where the temperature does not become higher than that of the portion, heat is generated in the central portion. Since the hydrogen storage alloy is unlikely to deteriorate even if the particles are accumulated, the life of the assembled battery can be extended and the life characteristics can be improved.
  • the assembled battery 2 can achieve both improvement in low temperature discharge characteristics and improvement in life characteristics.
  • the particle size of the central particle is preferably 50 ⁇ m or more in terms of volume average particle size (MV) obtained by a laser diffraction / scattering method using a particle size distribution measuring device.
  • MV volume average particle size
  • the volume average particle size of the central particles is less than 50 ⁇ m, it is easily affected by heat, and when exposed to a high temperature, deterioration progresses and the life characteristics of the assembled battery are deteriorated.
  • the larger the volume average particle size of the central particles the better the life characteristics of the assembled battery.
  • the volume average particle size of the central particles becomes too large, the reactivity may decrease, which may lead to a decrease in the discharge characteristics of the entire assembled battery.
  • the upper limit of the volume average particle size of the central particles is preferably 100 ⁇ m or less.
  • the preferable numerical range of the volume average particle diameter of the central particles capable of exhibiting excellent life characteristics is 55 ⁇ m or more and 75 ⁇ m or less, and more preferably 60 ⁇ m or more and 70 ⁇ m or less.
  • the particle size of the end particles is preferably less than 50 ⁇ m in terms of volume average particle size (MV) determined by a laser diffraction / scattering method using a particle size distribution measuring device.
  • MV volume average particle size
  • the lower limit of the volume average particle size of the end particles is preferably 10 ⁇ m or more.
  • the preferable numerical range of the volume average particle diameter of the end particles capable of exhibiting excellent discharge characteristics is 25 ⁇ m or more and 45 ⁇ m or less, and more preferably 30 ⁇ m or more and 40 ⁇ m or less.
  • the temperature distribution during charging and discharging of the assembled battery was obtained as follows.
  • an assembled battery 42 in which 12 box-shaped cell cells 4 were combined as shown in FIG. 2 was prepared.
  • the assembled battery 42 is a general assembled battery that has been used conventionally.
  • the intermediate position between both ends is set as the center position C.
  • the cells located on the front side of the center position C are placed in the order closer to the center position C, the front side first battery a1, the front side second battery a2, the front side third battery a3, the front side fourth battery a4, and the front side fifth battery a5.
  • the front side sixth battery a6 is a general assembled battery that has been used conventionally.
  • the rear battery b1, the rear second battery b2, the rear third battery b3, the rear fourth battery b4, and the rear batteries located on the rear side of the center position C are arranged in order from the center position C.
  • thermocouple t1 is arranged between the front first battery a1 and the rear first battery b1, that is, at the center position C, and the second thermocouple t1 is arranged between the front first battery a1 and the front second battery a2.
  • a thermocouple t2 is disposed, a third thermocouple t3 is disposed between the front second battery a2 and the front third battery a3, and a fourth thermocouple t3 is disposed between the front third battery a3 and the front fourth battery a4.
  • thermocouple t4 is arranged, a fifth thermocouple t5 is arranged between the front fourth battery a4 and the front fifth battery a5, and a sixth thermocouple t5 is arranged between the front fifth battery a5 and the front sixth battery a6.
  • a thermoelectric pair t6 was arranged. In this way, the temperature between the above-mentioned cells can be measured. In each of the batteries located in the front-rear direction with the center position C in between, the temperatures of the batteries having the same distance from the center position C (for example, the front third battery a3 and the rear third battery b3) are almost the same. Assuming that this is the case, only the temperature between the center position C and each cell on the front side is measured, and the measurement is omitted for the temperature between each cell on the rear side.
  • the assembled battery 42 in which the thermocouple was set was charged with a charging current of 25 A for 10 hours, and then paused for 1 hour.
  • the assembled battery 42 after hibernation was discharged with a discharge current of 50 A. This discharge was terminated when the voltage of the assembled battery 42 reached 12 V. After that, the assembled battery 42 was paused for 1 hour.
  • the charging / discharging operation was performed under the above conditions, and the temperature between each cell was measured at that time.
  • a graph showing the relationship between the temperature and the elapsed time between the cells is shown in FIG. In FIG.
  • reference numeral t1 is the temperature of the first thermocouple t1
  • reference numeral t2 is the temperature of the second thermocouple t2
  • reference numeral t3 is the temperature of the third thermocouple t3
  • reference numeral t4 is the fourth thermocouple.
  • the temperature of the fifth thermocouple t5 is indicated by the temperature of the fifth thermocouple t5
  • the reference reference numeral t6 is the temperature of the sixth thermocouple t6.
  • thermocouple t1 the temperature measured by the first thermocouple t1 described above represents the temperature of the front first battery a1. It is considered that the temperature of the rear first battery b1, which is symmetrical with the front first battery a1, is also substantially the same as the temperature measured by the first thermocouple t1. Further, the temperature measured by the thermocouple t2 described above represents the temperature of the front second battery a2. It is considered that the temperature of the rear second battery b2, which is symmetrical with the front second battery a2, is also substantially the same as the temperature measured by the second thermocouple t2. Further, the temperature measured by the thermocouple t3 described above represents the temperature of the front third battery a3.
  • the temperature of the rear third battery b3, which is symmetrical with the front third battery a3, is also substantially the same as the temperature measured by the third thermocouple t3.
  • the temperature measured by the fourth thermocouple t4 described above represents the temperature of the front fourth battery a4.
  • the temperature of the rear fourth battery b4, which is symmetrical with the front fourth battery a4 is also substantially the same as the temperature measured by the fourth thermocouple t4.
  • the temperature measured by the thermocouple t5 described above represents the temperature of the front fifth battery a5. It is considered that the temperature of the rear fifth battery b5, which is symmetrical with the front fifth battery a5, is also substantially the same as the temperature measured by the fifth thermocouple t5.
  • thermocouple t6 The temperature measured by the thermocouple t6 described above represents the temperature of the front sixth battery a6. It is considered that the temperature of the rear sixth battery b6, which is symmetrical with the front sixth battery a6, is also substantially the same as the temperature measured by the sixth thermocouple t6.
  • the maximum temperature measured by the first thermocouple t1 in Table 1 indicates the temperature at least reached by the first region when the region including the front first battery a1 and the rear first battery b1 is set as the first region. ing. Further, the maximum temperature measured by the second thermocouple t2 in Table 1 includes a region from the center position C to the front second battery a2 and a region including the region from the center position C to the rear second battery b2 as the second region. When, it indicates the temperature at which the second region reaches at least. Further, the maximum temperature measured by the third thermocouple t3 in Table 1 includes a region from the center position C to the front third battery a3 and a region including the region from the center position C to the rear third battery b3 as the third region.
  • the maximum temperature measured by the fourth thermocouple t4 in Table 1 includes a region from the center position C to the front fourth battery a4 and a region including the region from the center position C to the rear fourth battery b4 as the fourth region.
  • the maximum temperature measured by the fifth thermocouple t5 in Table 1 includes a region from the center position C to the front fifth battery a5 and a region including the region from the center position C to the rear fifth battery b5 as the fifth region. When, it indicates the temperature at which the fifth region reaches at least.
  • the maximum temperature measured by the sixth thermocouple t6 in Table 1 includes a region from the center position C to the front sixth battery a6 and a region including the region from the center position C to the rear sixth battery b6 as the sixth region. When, it indicates the temperature at which the sixth region reaches at least.
  • Table 1 also shows the number of cells included in each of the above-mentioned regions and the ratio of each region to the entire assembled battery 42.
  • the number of cells included in the first region described above is two, accounting for 17% of the total of 12 cells in the assembled battery 42.
  • the number of cell cells included in the second region described above is 4, which accounts for 33% of the total 12 cell cells of the assembled battery 42.
  • the number of cells included in the third region described above is 6, which accounts for 50% of the total 12 cells of the assembled battery 42.
  • the number of cells included in the fourth region described above is eight, accounting for 67% of the total of 12 cells in the assembled battery 42.
  • the number of cells included in the fifth region described above is 10, which accounts for 83% of the total 12 cells of the assembled battery 42.
  • the number of cells included in the sixth region described above is 12, which accounts for 100% of the total 12 cells of the assembled battery 42.
  • thermocouple t1 shows 33.1 ° C.
  • the second thermocouple t2 shows 32.9 ° C.
  • the range of 33% of the central part is almost the same temperature. It can be said that it generates the most heat.
  • the cell cells included in this 33% area are the cell cells forming the central cell group in which heat is likely to be accumulated.
  • thermography is used to determine the surface temperature when a battery pack consisting of 20 cells connected together is charged at 0.1 It and the state of charge (hereinafter, also referred to as SOC) reaches 100%.
  • SOC state of charge
  • the cell cell located at one end is No. No. 1 battery and the cell located at the other end are No. Twenty batteries were used, and the cells were numbered from the end. Then, the measurement result of the surface temperature of each cell was shown in FIG.
  • the eight cells of 14 are cells that form a central cell group in which heat is likely to be accumulated. In this case, the central cell group accounts for 40% of the total.
  • the life characteristics of the assembled battery can be determined by incorporating the central particle having a large volume average particle size into the cell cell included in this region. It is thought that improvement can be achieved.
  • the amount of heat accumulated in the end cell group excluding the central cell group of the assembled batteries is smaller than that in the central cell group. It is considered that the discharge characteristics of the assembled battery as a whole are enhanced by incorporating the end particles having a small volume average particle size into the end cell group, and particularly the low temperature discharge characteristics are improved.
  • the central portion of the assembled battery it is preferable to define the range of 33% or more and 60% or less of the whole as the central cell group, and the end particles having a large volume average particle size in the cell of this central cell group.
  • the total number of AA cells 4 included in the assembled battery 2 is not particularly limited, but if the number of AA cells 4 is 10 or more, the needs of the power storage / backup system can be sufficiently met, so 10 or more. Is preferable. Further, the total number of the cell cells 4 included in the assembled battery 2 is preferably as large as possible because the larger the number, the larger the capacity can be achieved. However, considering the handling of the assembled battery 2, the total number should be 30 or less. Is preferable.
  • FIG. 1 the assembled battery 2 is schematically represented, and the leads and terminals are not shown. The same applies to FIG. 1
  • Example 1 Manufacture of assembled battery (Example 1) (1) Production of hydrogen storage alloy powder A rare earth component containing 20% by mass of La and 80% by mass of Sm was prepared. The obtained rare earth components, Mg, Ni, and Al were weighed to prepare a mixture having a molar ratio of 0.99: 0.01: 3.25: 0.25. The obtained mixture was melted in an induction melting furnace, the molten metal was poured into a mold, and then cooled to room temperature of 25 ° C. to obtain an ingot of a hydrogen storage alloy. The sample collected from this ingot was subjected to composition analysis by radio frequency plasma spectroscopy (ICP). As a result, the composition of the hydrogen storage alloy was (La 0.20 Sm 0.80 ) 0.99 Mg 0.01 Ni 3.25 Al 0.25 .
  • ICP radio frequency plasma spectroscopy
  • this ingot was heat-treated to be maintained at a temperature of 1000 ° C. for 10 hours in an argon gas atmosphere. Then, after this heat treatment, the hydrogen storage alloy ingot cooled to 25 ° C. at room temperature was mechanically pulverized in an argon gas atmosphere to obtain a hydrogen storage alloy powder which is an aggregate of hydrogen storage alloy particles.
  • the obtained hydrogen storage alloy powder was sieved to obtain a powder having a first particle size and a powder having a second particle size.
  • the particle size of the particles was measured using a laser diffraction / scattering type particle size distribution measuring device.
  • the volume average particle size (MV) of the hydrogen storage alloy particles having the first particle size is 65 ⁇ 5 ⁇ m
  • the volume average particle size (MV) of the hydrogen storage alloy particles having the second particle size is 35 ⁇ 5 ⁇ m.
  • the conditions for particle size distribution measurement are: particle permeability is reflected, particle refractive index is 1.51, solvent is water, solvent refractive index is 1.33, measurement time is 30 seconds, and distribution type is volume. I set it.
  • the paste of this first negative electrode mixture was applied evenly to both sides of an iron perforated plate as a negative electrode substrate so that the thickness was constant.
  • the perforated plate has a thickness of 60 ⁇ m, and its surface is nickel-plated.
  • the perforated plate to which the hydrogen storage alloy powder or the like was attached was further rolled to increase the amount of alloy per volume, and then cut to obtain a first negative electrode.
  • This cell cell container has a flat box shape with a length of 180 mm in the arrow X direction, a length of 240 mm in the arrow Y direction, and a length of 30 mm in the arrow Z direction in FIG.
  • an alkaline electrolytic solution containing NaOH and LiOH as solutes was prepared.
  • the concentration of NaOH is adjusted to 7.50 mol / l
  • the concentration of LiOH is adjusted to 0.50 mol / l.
  • the total concentration of the alkaline components in this alkaline electrolytic solution is 8.00 mol / l.
  • the first electrode group was housed in four of the ten cell cell containers prepared as described above. A predetermined amount of alkaline electrolyte was injected into the cell cell container containing the first electrode group. Then, the container for the cell was sealed, and four cell cells 4 were manufactured. This battery is referred to as the first cell battery 6.
  • one second electrode group was housed in each of the six prepared cell cell containers.
  • a predetermined amount of alkaline electrolyte was injected into the cell cell container containing the second electrode group. Then, the container for the cell was sealed, and 6 cell cells 4 were manufactured.
  • This battery is referred to as a second cell battery 8.
  • Each cell 4 has a positive electrode terminal and a negative electrode terminal (both not shown), and these positive electrode terminals and negative electrode terminals are appropriately electrically connected in series by leads (not shown). There is.
  • Example 1 As shown in FIG. 6, in the same manner as in Example 1, except that 10 first cell batteries 6 were manufactured, the second cell battery 8 was not used, and only the first cell battery 6 was used. The assembled battery 22 in a usable state was manufactured.
  • Example 2 As shown in FIG. 7, the same as in Example 1 except that 10 second cell batteries 8 were manufactured, the first cell battery 6 was not used, and only the second cell battery 8 was used. The assembled battery 32 in a usable state was manufactured.
  • the charging / discharging cycle was set as one cycle, and the charging / discharging was repeated, and the discharge capacity in each cycle was measured.
  • the discharge capacity in the charge / discharge in the first cycle was used as the initial capacity, and the capacity retention rate in each cycle was calculated from the following equation (II).
  • Capacity retention rate [%] (Discharge capacity / initial capacity in each cycle) x 100 ... (II)
  • each of the assembled batteries of Example 1 and Comparative Examples 1 and 2 that have undergone the initial activation treatment are charged at 1.0 Itt for 0.8 hours in an environment of 25 ° C., and then in an environment of 0 ° C. Underneath, left for 3 hours. Then, in an environment of 0 ° C., the battery was discharged at 1.0 It until the battery voltage reached 10 V. The discharge capacity at this time, that is, the discharge capacity at 0 ° C. was determined.
  • each of the assembled batteries of Example 1 and Comparative Examples 1 and 2 that have undergone the initial activation treatment are charged at 1.0 Itt for 0.8 hours in an environment of 25 ° C., and then at ⁇ 10 ° C. It was left in the environment for 3 hours. Then, the battery was discharged at 1.0 It in an environment of ⁇ 10 ° C. until the battery voltage reached 10 V.
  • the discharge capacity at this time that is, the discharge capacity at ⁇ 10 ° C. was determined.
  • each of the assembled batteries of Example 1 and Comparative Examples 1 and 2 that have undergone the initial activation treatment are charged at 1.0 It for 0.8 hours in an environment of 25 ° C., and then at ⁇ 20 ° C. It was left in the environment for 3 hours. Then, the battery was discharged at 1.0 It in an environment of ⁇ 20 ° C. until the battery voltage reached 10 V.
  • the discharge capacity at this time that is, the discharge capacity at ⁇ 20 ° C. was determined.
  • each of the assembled batteries of Example 1 and Comparative Examples 1 and 2 that have undergone the initial activation treatment are charged at 1.0 It for 0.8 hours in an environment of 25 ° C., and then at ⁇ 30 ° C. It was left in the environment for 3 hours. Then, the battery was discharged at 1.0 It in an environment of ⁇ 30 ° C. until the battery voltage reached 10 V.
  • the discharge capacity at this time that is, the discharge capacity at ⁇ 30 ° C. was determined.
  • each of the assembled batteries of Example 1 and Comparative Examples 1 and 2 that have undergone the initial activation treatment are charged at 1.0 It for 0.8 hours in an environment of 25 ° C., and then at ⁇ 35 ° C. It was left in the environment for 3 hours. Then, in an environment of ⁇ 35 ° C., the battery was discharged at 1.0 It until the battery voltage reached 10 V. The discharge capacity at this time, that is, the discharge capacity at ⁇ 35 ° C. was determined.
  • each of the assembled batteries of Example 1 and Comparative Examples 1 and 2 that have undergone the initial activation treatment are charged at 1.0 It for 0.8 hours in an environment of 25 ° C., and then at ⁇ 40 ° C. It was left in the environment for 3 hours. Then, in an environment of ⁇ 40 ° C., the battery was discharged at 1.0 It until the battery voltage reached 10 V. The discharge capacity at this time, that is, the discharge capacity at ⁇ 40 ° C. was determined.
  • the assembled battery of Comparative Example 1 has a cycle life improved by about 60% as compared with the assembled battery of Comparative Example 2. It is considered that this is because the average particle size of the hydrogen storage alloy particles used in the assembled battery of Comparative Example 1 is a relatively large particle size of 65 ⁇ 5 ⁇ m, and the corrosion resistance is excellent.
  • the assembled battery of Example 1 has the same cycle life characteristics as the assembled battery of Comparative Example 1. It is considered that this is because the average particle size of the hydrogen storage alloy particles in the central portion, which is easily affected by heat in the assembled battery, is relatively large at 65 ⁇ 5 ⁇ m, so that excellent corrosion resistance is exhibited.
  • the discharge characteristics of the assembled battery of Comparative Example 1 are the lowest. Specifically, the discharge capacity of the assembled battery of Comparative Example 1 is lower than the discharge capacity of the assembled battery of Comparative Example 2 to 49% at ⁇ 20 ° C. and 8% at ⁇ 30 ° C. This is because the assembled battery of Comparative Example 2 uses hydrogen storage alloy particles having excellent reactivity and a small particle size, and therefore has excellent low temperature discharge characteristics, whereas the battery of Comparative Example 1 has hydrogen storage. It is considered that the discharge at low temperature is deteriorated because the average particle size of the alloy particles is large and the reactivity is low.
  • the assembled battery of Example 1 has the same low temperature discharge characteristics as the assembled battery of Comparative Example 2. This is because the average particle size of the hydrogen storage alloy particles at the ends of the assembled battery, excluding the central part, which is easily affected by heat, is relatively small at 35 ⁇ 5 ⁇ m, so excellent reactivity is exhibited and low-temperature discharge characteristics are improved. It is probable that it was done.
  • hydrogen storage alloy particles having a relatively large average particle size that are less deteriorated by heat are used in the central portion where heat is likely to be accumulated, as in the assembled battery of Example 1, and hydrogen storage alloy particles are used at the other ends.
  • hydrogen storage alloy particles having a relatively small average particle size, which is excellent in reactivity it can be said that an excellent assembled battery having both low temperature discharge characteristics and life characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

組電池2は、負極に水素吸蔵合金を含むニッケル水素蓄電池により形成された単電池4が、直線状に多数配設されて形成された組電池2において、前記直線状に延びる方向における中央部分に位置する単電池4(6)の集合体である中央単電池群10と、中央単電池群10の両端部に位置付けられ中央単電池群10を挟むように配設された単電池4(8)の集合体である端部単電池群12と、を備え、中央単電池群10に含まれる水素吸蔵合金の粒径は、端部単電池群12に含まれる水素吸蔵合金の粒径よりも大きい。

Description

組電池
 本発明は、複数の単電池を組み合わせて形成される組電池に関し、詳しくは、単電池としてニッケル水素蓄電池を用いた組電池に関する。
 昨今、太陽光発電などの再生可能エネルギーの有効活用、あるいは、緊急時の停電対策を目的として、蓄電・バックアップシステムのニーズが拡大している。このようなニーズに応えるため、大容量の蓄電池の需要が高まっており、アルカリ蓄電池においても大容量の製品の開発が進められている。ここで、蓄電池において大容量化を図る場合、例えば、複数の単電池を組み合わせて組電池を形成することが行われる。この組電池を構成する単電池としては、例えば、ニッケルカドミウム蓄電池に比べて高容量で、且つ、環境安全性にも優れているニッケル水素蓄電池が用いられている。
 ところで、蓄電池においては、充放電にともなって、電池反応による反応熱やジュール熱が発生し、温度が上昇する。組電池において大容量化を図るべく単電池の個数を増やすと発生する熱量が増加するので、組電池は、単電池1個の場合に比べて温度が上昇し易く高温にさらされる頻度が高い。蓄電池は高温にさらされて熱影響を受けると、活物質の腐食反応が促進されて活物質が劣化するとともに、アルカリ電解液の消費が進む。その結果、放電容量の低下が起こるとともに、アルカリ電解液の枯渇が起こり、電池のサイクル寿命が早期に尽きてしまう。このため、単電池を単独で使用する場合に比べて温度が上昇し易い組電池は、熱影響による短寿命化が起こり易いといった問題がある。
 また、単電池として角形の単電池を複数個準備し、かかる複数の角形の単電池を組み合わせて組電池を形成した場合、複数個の円筒形電池を組み合わせて形成した組電池に比べ、単電池同士の接触面積が大きくなるので熱が発散し難く、特に中央部分は、熱が蓄積しやすいので高温状態になりやすい。一方、中央部分から両端の部分にいくにしたがって熱は発散しやすくなる。このため、中央部分から離れた部分は、中央部分よりは高温状態になり難い。このように、組電池においては、部位によって温度に差が生じる。このため、より高温になる部分に位置する単電池は、他の部分に位置する単電池に比べ高温にさらされる頻度が高く熱影響を受け易い。このように、組電池内においては、熱影響を受けた単電池と、熱影響をあまり受けていない単電池とが混在しており、寿命に到達する期間にアンバランスが生じる傾向がある。
 ここで、組電池のサイクル寿命については、放電容量の低下の度合いが大きい単電池に依存する。つまり、熱影響を受けて放電容量の低下の度合いが大きくなった単電池ほど放電容量の下限値を早期に下回るので、放電容量の低下の度合いが大きい単電池を含む組電池ほど短寿命となる。
 従来の組電池においては、熱影響による放電容量の低下やアルカリ電解液の枯渇を抑制するため、冷却機構を設けることが行われている。このような冷却機構としては、例えば、特許文献1に示すような、隣り合う単電池の間を仕切る放熱用仕切板が知られている。この放熱用仕切板は、通風孔を有しており、この通風孔内に冷却風を流通させることにより、単電池の冷却を行う。
特開2010-199089号公報
 ところで、組電池においては、昨今、車載用補機の電源の用途としての需要が高まっている。
 しかしながら、各単電池の間に上記したような放熱用仕切板を介在させた場合、組電池全体としては、大型化してしまうため、このような組電池は、車載用途をはじめとする省スペース化が求められるニーズに十分に応えられない。
 また、車載用途の場合、使用される環境温度の幅が広い。つまり、車載用途の組電池は、真夏の車内のような高温環境から0℃を下回るような低温環境で使用されることがある。このように、低温環境下での使用を考慮した場合、低温放電特性の向上が不可欠である。低温環境下では、負極表面近傍での抵抗が反応律速となるので、反応性の高い小粒径の水素吸蔵合金粒子を用いることが望ましい。しかしながら、小粒径の水素吸蔵合金粒子は、高温にさらされると熱影響により劣化が起こりやすく電池のサイクル寿命特性に影響を与える。つまり、組電池においては、低温放電特性と寿命特性との間でトレードオフの関係がある。
 本発明は、上記の事情に基づいてなされたものであり、その目的とするところは、低温放電特性の向上及び寿命特性の向上の両立を図ることができる組電池を提供することにある。
 本発明によれば、負極に水素吸蔵合金を含むニッケル水素蓄電池により形成された単電池が、直線状に多数配設されて形成された組電池において、前記直線状に延びる方向における中央部分に位置する前記単電池の集合体である中央単電池群と、前記中央単電池群の両端部に位置付けられ前記中央単電池群を挟むように配設された前記単電池の集合体である端部単電池群と、を備え、前記中央単電池群に含まれる前記水素吸蔵合金の粒径は、前記端部単電池群に含まれる前記水素吸蔵合金の粒径よりも大きい、組電池が提供される。
 また、前記単電池のそれぞれは、扁平な箱形状をなしており、前記箱形状における各面のうち最も面積の大きい面同士が合致して接触するように組み合わされて直線状に配置され連結されている構成とすることが好ましい。
 また、前記中央単電池群を構成する前記単電池の数が、前記組電池に含まれる前記単電池の総数の33%以上、60%以下である構成とすることが好ましい。
 また、前記中央単電池群の前記単電池に含まれる前記水素吸蔵合金の粒径は、粒度分布測定装置を用いて測定した体積平均粒径が50μm以上であり、前記端部単電池群に含まれる前記水素吸蔵合金の粒径は、粒度分布測定装置を用いて測定した体積平均粒径が50μm未満である構成とすることが好ましい。
 また、前記単電池の総数は、10個以上である構成とすることが好ましい。
 本発明の組電池は、負極に水素吸蔵合金を含むニッケル水素蓄電池により形成された単電池が、直線状に多数配設されて形成された組電池において、前記直線状に延びる方向における中央部分に位置する前記単電池の集合体である中央単電池群と、前記中央単電池群の両端部に位置付けられ前記中央単電池群を挟むように配設された前記単電池の集合体である端部単電池群と、を備え、前記中央単電池群に含まれる前記水素吸蔵合金の粒径は、前記端部単電池群に含まれる前記水素吸蔵合金の粒径よりも大きい構成をとる。これにより、粒径の大きい水素吸蔵合金が含まれている中央単電池群は、熱影響を受け難く、組電池の長寿命化に寄与し、粒径の小さい水素吸蔵合金が含まれる端部単電池群は、反応性が高いので、低温環境下でも優れた放電特性を発揮することに寄与する。このため、本発明によれば、低温放電特性の向上と寿命特性の向上の両立を図ることができる組電池を提供することができる。
一実施形態に係る組電池を概略的に示した斜視図である。 温度分布測定用の組電池を概略的に示した斜視図である。 各熱電対により測定された温度と経過時間との関係を示したグラフである。 サーモグラフィによる各単電池の表面温度を示したグラフである。 組電池全体に対する中央単電池群が占める割合と、組電池に含まれる単電池数との関係を示したグラフである。 比較例1の組電池を概略的に示した斜視図である。 比較例2の組電池を概略的に示した斜視図である。 容量維持率とサイクル数との関係を示したグラフである。 放電容量と放電時の環境温度との関係を示したグラフである。
 以下、一実施形態に係る組電池2について図面を参照して説明する。
 組電池2は、例えば、図1に示すように、直方体形状の単電池4が組み合わされて形成されている。
 ここで、図1において、矢印X、矢印Y及び矢印Zで3方向を示した場合に、矢印Xの基端側を左とし、矢印Xの先端側を右とし、矢印Yの基端側を下とし、矢印Yの先端側を上とし、矢印Zの基端側を前とし、矢印Zの先端側を後とする。なお、後述する組電池を描いた他の図についても、上下左右前後の関係は同様とする。
 上記のように規定した場合、単電池4は、左側に位置する左側面、右側に位置する右側面、下側に位置する下面、上側に位置する上面、前側に位置する前面及び後側に位置する後面の各面を有している。ここで、左側面、上面、右側面及び下面の前後方向の幅は、前面及び後面の上下方向や左右方向の幅に比べて小さく、単電池4は全体として扁平な箱形状をしている。
 より具体的には、単電池4は、矢印Z方向の長さを単位長さUとした場合、矢印X方向の長さWは単位長さUの5~6倍の長さであり、矢印Y方向の長さLは単位長さUの7~8倍の長さである、箱形状をなしていることが好ましい。
 単電池4は、いわゆる角形のニッケル水素蓄電池であり、その内部には、正極と負極とがセパレータを介して重ね合わされた電極群と、アルカリ電解液とを含んでいる。
 正極は、ニッケル水素蓄電池の正極として一般的なものが用いられる。例えば、正極活物質として水酸化ニッケルを含む正極が用いられる。
 負極は、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金を含む負極が用いられる。詳しくは、この負極は、帯状をなす導電性の負極芯体を有し、この負極芯体に負極合剤が保持されている。
 負極芯体は、貫通孔が分布されたシート状の金属材により形成されている。この負極芯体としては、例えば、パンチングメタルシートを用いることができる。負極合剤は、負極芯体の貫通孔内に充填されるばかりでなく、負極芯体の両面上にも層状にして保持されている。
 負極合剤は、水素吸蔵合金の粒子の集合体である水素吸蔵合金粉末、導電材及び結着剤を含む。上記した結着剤は水素吸蔵合金の粒子、及び導電材を互いに結着させると同時に負極合剤を負極芯体に結着させる働きをする。ここで、結着剤としては親水性若しくは疎水性のポリマー等を用いることができ、導電材としては、カーボンブラック、黒鉛、ニッケル粉等を用いることができる。
 水素吸蔵合金としては、一般的な水素吸蔵合金を用いることができる。ここで、本実施形態においては、希土類元素、Mg、Niを含む希土類-Mg-Ni系水素吸蔵合金を用いることが好ましい。この希土類-Mg-Ni系水素吸蔵合金としては、以下に示す一般式(I)で表される組成を有している合金を用いることが好ましい。
 Ln1-xMgNiy-aAl・・・(I)
 ただし、一般式(I)中、Lnは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ti及びZrから選ばれる少なくとも1種の元素を表し、添字x、y、aは、それぞれ、0.05≦x≦0.30、2.8≦y≦3.8、0.05≦a≦0.30で示される関係を満たしている。
 セパレータとしては、ニッケル水素蓄電池のセパレータとして一般的なものが用いられる。例えば、ポリアミド繊維製不織布に親水性官能基を付与したもの、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したもの等が用いられる。
 アルカリ電解液としては、ニッケル水素蓄電池用のアルカリ電解液として一般的なものが用いられる。例えば、アルカリ成分の溶質として、NaOH及びKOHのうちの少なくとも1種を含んでいる水溶液を用いることが好ましい。なお、上記したアルカリ電解液においては、必要に応じてLiOHを添加することが好ましい。
 単電池4においては、第1の単電池6と、第2の単電池8とがそれぞれ複数個準備される。それぞれの単電池4は、箱形状における各面のうち最も面積の大きい面同士が合致して接触するように組み合わされて直線状に連結される。具体的には、一方の単電池4の後面と他方の単電池4の前面とが接触するような態様で組み合わされる。このようにして組電池2が形成される。ここで、組電池2は、少なくとも3個の単電池を組み合わせることにより形成される。そして、組電池2の中央部分に位置する単電池4を第1の単電池6とし、この第1の単電池6を挟んで前後に位置する単電池4を第2の単電池8とする。つまり、第2の単電池8で第1の単電池6を挟む態様となる。
 本実施形態では、組電池2の中央部分に第1の単電池6を4個配置し、この中央部分を挟む前後に第2の単電池8を3個ずつ配置する。ここで、中央部分に位置する4個の第1の単電池6を中央単電池群10とし、この中央単電池群10の両側に位置する合計6個の第2の単電池8を端部単電池群12とする(図1参照)。
 組電池2においては、中央単電池群10に含まれる第1の単電池6の負極に組み込まれている水素吸蔵合金粒子(以下、中央部粒子ともいう)の粒径は、端部単電池群12に含まれる第2の単電池8の負極に組み込まれている水素吸蔵合金粒子(以下、端部粒子ともいう)の粒径よりも大きい。
 このように、熱の蓄積し易い中央部分に位置する中央単電池群10に含まれる第1の単電池6の負極に組み込まれている水素吸蔵合金粒子の粒径が、熱が発散し易く中央部分に比べて高温とならない両端部に位置する端部単電池群12に含まれる第2の単電池8の負極に組み込まれている水素吸蔵合金粒子の粒径よりも大きいので、中央部分に熱が蓄積しても、水素吸蔵合金の劣化は起こり難いことから、組電池の長寿命化が図れ、寿命特性が向上する。一方、端部単電池群12に含まれる第2の単電池8の負極に組み込まれている水素吸蔵合金粒子の粒径は小さいので、反応性に優れ、低温環境下においても優れた放電特性を発揮する。このため、組電池2は低温放電特性の向上と寿命特性の向上の両立を図ることができる。
 ここで、中央部粒子の粒径は、粒度分布測定装置を用いてレーザー回折・散乱法により求めた体積平均粒径(MV)で50μm以上とすることが好ましい。中央部粒子の体積平均粒径が50μm未満の場合、熱による影響を受けやすく、高温にさらされると劣化が進み組電池の寿命特性を低下させてしまう。この中央部粒子の体積平均粒径は大きいほど組電池の寿命特性は向上する。しかしながら、中央部粒子の体積平均粒径があまり大きくなり過ぎると反応性が低下し、組電池全体における放電特性の低下を招くおそれがある。よって、中央部粒子の体積平均粒径の上限値は、100μm以下とすることが好ましい。優れた寿命特性を発揮することができる中央部粒子の体積平均粒径の好ましい数値範囲は、55μm以上、75μm以下であり、より好ましくは、60μm以上、70μm以下である。
 一方、端部粒子の粒径は、粒度分布測定装置を用いてレーザー回折・散乱法により求めた体積平均粒径(MV)で50μm未満とすることが好ましい。端部粒子の体積平均粒径が50μm以上の場合、反応性が低下し、特に低温環境下での放電が困難となる。端部粒子の体積平均粒径が小さいほど放電特性は向上し、低温環境下での放電が容易となる。しかしながら、端部粒子の体積平均粒径があまり小さくなり過ぎるとアルカリ電解液による腐食が進行しやすくなり、組電池全体における寿命特性の低下を招くおそれがある。よって、端部粒子の体積平均粒径の下限値は、10μm以上とすることが好ましい。優れた放電特性を発揮することができる端部粒子の体積平均粒径の好ましい数値範囲は、25μm以上、45μm以下であり、より好ましくは、30μm以上、40μm以下である。
 ここで、組電池において、中央部分及び端部の領域を規定するため、組電池の充放電時の温度分布を以下のようにして求めた。
 まず、温度測定用の組電池として、図2に示すような、箱型の単電池4が12個組み合わされた組電池42を準備した。この組電池42は、従来から用いられている一般的な組電池である。この組電池42において、両端間の中間の位置を中心位置Cとする。そして、この中心位置Cの前側に位置する単電池を中心位置Cから近い順に、前側第1電池a1、前側第2電池a2、前側第3電池a3、前側第4電池a4、前側第5電池a5、前側第6電池a6とする。また、この中心位置Cの後側に位置する単電池を中心位置Cから近い順に、後側第1電池b1、後側第2電池b2、後側第3電池b3、後側第4電池b4、後側第5電池b5、後側第6電池b6とする。
 次いで、前側第1電池a1と後側第1電池b1との間、つまり中心位置Cに第1熱電対t1を配設し、前側第1電池a1と前側第2電池a2との間に第2熱電対t2を配設し、前側第2電池a2と前側第3電池a3との間に第3熱電対t3を配設し、前側第3電池a3と前側第4電池a4との間に第4熱電対t4を配設し、前側第4電池a4と前側第5電池a5との間に第5熱電対t5を配設し、前側第5電池a5と前側第6電池a6との間に第6熱電対t6を配設した。このようにして、上記した単電池間の温度を測定できるようにした。なお、中心位置Cを挟んで前後に位置する各単電池においては、中心位置Cからの距離が同じ電池同士(例えば、前側第3電池a3と後側第3電池b3)は温度がほぼ同じになると想定し、中心位置C及び前側の各単電池間の温度についてのみ測定することとして後側の各単電池間の温度については測定を省略した。
 熱電対がセットされた組電池42について、充電電流が25Aで10時間の充電を行った後、1時間休止させた。次いで、休止後の組電池42について、放電電流が50Aで放電を行った。この放電は、組電池42の電圧が12Vに到達した段階で終了させた。その後、組電池42を1時間休止させた。以上のような条件で充放電操作を行い、その際の各単電池間の温度を測定した。各単電池間の温度と経過時間との関係を表したグラフを図3に示した。なお、図3中において、参照符号t1は第1熱電対t1の温度、参照符号t2は第2熱電対t2の温度、参照符号t3は第3熱電対t3の温度、参照符号t4は第4熱電対t4の温度、参照符号t5は第5熱電対t5の温度、参照符号t6は第6熱電対t6の温度をそれぞれ示している。
 一方、各熱電対が測定した最高温度を表1に示した。
 ここで、上記した第1熱電対t1により測定される温度は、前側第1電池a1の温度を表している。なお、前側第1電池a1と対称となる後側第1電池b1の温度も、この第1熱電対t1により測定される温度とほぼ同じであると考えられる。また、上記した熱電対t2により測定される温度は、前側第2電池a2の温度を表している。なお、前側第2電池a2と対称となる後側第2電池b2の温度も、この第2熱電対t2により測定される温度とほぼ同じであると考えられる。また、上記した熱電対t3により測定される温度は、前側第3電池a3の温度を表している。なお、前側第3電池a3と対称となる後側第3電池b3の温度も、この第3熱電対t3により測定される温度とほぼ同じであると考えられる。また、上記した第4熱電対t4により測定される温度は、前側第4電池a4の温度を表している。なお、前側第4電池a4と対称となる後側第4電池b4の温度も、この第4熱電対t4により測定される温度とほぼ同じであると考えられる。また、上記した熱電対t5により測定される温度は、前側第5電池a5の温度を表している。なお、前側第5電池a5と対称となる後側第5電池b5の温度も、この第5熱電対t5により測定される温度とほぼ同じであると考えられる。また、上記した熱電対t6により測定される温度は、前側第6電池a6の温度を表している。なお、前側第6電池a6と対称となる後側第6電池b6の温度も、この第6熱電対t6により測定される温度とほぼ同じであると考えられる。
 表1における第1熱電対t1が測定した最高温度は、前側第1電池a1及び後側第1電池b1を含む領域を第1領域とした場合に、当該第1領域が少なくとも到達する温度を示している。また、表1における第2熱電対t2が測定した最高温度は、中心位置Cから前側第2電池a2までの領域及び中心位置Cから後側第2電池b2までの領域を含む領域を第2領域とした場合に、当該第2領域が少なくとも到達する温度を示している。また、表1における第3熱電対t3が測定した最高温度は、中心位置Cから前側第3電池a3までの領域及び中心位置Cから後側第3電池b3までの領域を含む領域を第3領域とした場合に、当該第3領域が少なくとも到達する温度を示している。また、表1における第4熱電対t4が測定した最高温度は、中心位置Cから前側第4電池a4までの領域及び中心位置Cから後側第4電池b4までの領域を含む領域を第4領域とした場合に、当該第4領域が少なくとも到達する温度を示している。また、表1における第5熱電対t5が測定した最高温度は、中心位置Cから前側第5電池a5までの領域及び中心位置Cから後側第5電池b5までの領域を含む領域を第5領域とした場合に、当該第5領域が少なくとも到達する温度を示している。また、表1における第6熱電対t6が測定した最高温度は、中心位置Cから前側第6電池a6までの領域及び中心位置Cから後側第6電池b6までの領域を含む領域を第6領域とした場合に、当該第6領域が少なくとも到達する温度を示している。
 次に、上記した各領域に含まれる単電池の個数及び各領域が組電池42の全体に占める比率を表1に併せて示した。具体的には、上記した第1領域に含まれる単電池の個数は、2個であり、組電池42の全体の単電池12個中17%を占めている。また、上記した第2領域に含まれる単電池の個数は、4個であり、組電池42の全体の単電池12個中33%を占めている。また、上記した第3領域に含まれる単電池の個数は、6個であり、組電池42の全体の単電池12個中50%を占めている。また、上記した第4領域に含まれる単電池の個数は、8個であり、組電池42の全体の単電池12個中67%を占めている。また、上記した第5領域に含まれる単電池の個数は、10個であり、組電池42の全体の単電池12個中83%を占めている。また、上記した第6領域に含まれる単電池の個数は、12個であり、組電池42の全体の単電池12個中100%を占めている。
Figure JPOXMLDOC01-appb-T000001
 図3のグラフより、充電時の組電池42の各部の温度は、中心位置Cが最も高く、この中心位置Cから離れるにしたがって低くなっていることがわかる。ここで、中心位置Cに配設された第1熱電対t1の温度変化の挙動と第2熱電対t2の温度変化の挙動とはほぼ同じであり、温度もほぼ同じであることがわかる。
 表1より、第1熱電対t1は33.1℃を示しており、第2熱電対t2は32.9℃を示しており、組電池においては中央部分の33%の範囲がほぼ同じ温度で最も発熱するといえる。
 このことから、組電池の長手方向の全体に対し少なくとも中央部分を含む33%の領域は、熱が蓄積しやすい。つまり、この33%の領域に含まれる単電池が熱の蓄積しやすい中央単電池群を構成する単電池となる。
 更に、より多くの単電池を備えた組電池についても温度分布を把握した。具体的には、単電池を20個連結した組電池について、0.1Itで充電を行い、充電状態(State Of Charge:以下、SOCともいう)が100%になったときの表面温度を、サーモグラフィを用いて測定した。この組電池において、一方の端部に位置する単電池をNo.1電池、他方の端部に位置する単電池をNo.20電池とし、単電池に端から番号を付した。そして、各単電池の表面温度の測定結果を図4に示した。
 図4の結果から、組電池の中央に位置するNo.7~No.14の8個の単電池の表面温度が高いことが確認できる。具体的には、これらNo.7~No.14の単電池の表面温度と、端部の単電池の表面温度との差は最大で5℃以上となる。よって、No.7~No.14の8個の単電池は熱が蓄積しやすい中央単電池群を構成する単電池となる。この場合、中央単電池群は、全体の40%にあたる。
 組電池においては、単電池の数が増えるほど中央部分の熱が蓄積しやすい領域が増える。ここで、組電池に含まれる単電池数と、組電池全体に対する中央単電池群の割合(高温となる単電池の割合)との関係を求めた。その結果を図5に示した。この図5の結果より、組電池に含まれる単電池の数が、例えば、30個になった場合、中央単電池群が組電池の全体に対する割合は約60%となることが読み取れる。このことから、30個の単電池を備える組電池では、中央単電池群は60%の範囲を占め、単電池の数が18個となる。
 以上のようにして規定される中央単電池群は、特に熱が蓄積しやすいので、この領域に含まれる単電池に、体積平均粒径が大きい中央部粒子を組み込むことにより組電池の寿命特性の改善が図れると考えられる。
 一方、組電池の中央単電池群を除く端部単電池群は、熱の蓄積量は中央単電池群に比べ少ない。この端部単電池群に体積平均粒径の小さい端部粒子を組み込むことにより組電池の全体としての放電特性が高められ、特に低温放電特性が向上すると考えられる。
 つまり、組電池の中央部分においては、全体に対する33%以上60%以下の範囲を中央単電池群と規定することが好ましく、この中央単電池群の単電池に体積平均粒径の大きい端部粒子を組み込み、中央単電池群を除く端部単電池群の単電池に体積平均粒径の小さい端部粒子を組みこむことにより、中央部分での劣化抑制による寿命延長の効果と、端部での反応性向上による放電特性の向上効果が見込まれる。
 なお、組電池2に含まれる単電池4の総数は、特に限定されるものではないが、単電池4が10個以上であれば、蓄電・バックアップシステムのニーズに十分応えられるので、10個以上とすることが好ましい。また、組電池2に含まれる単電池4の総数は、多いほど大容量化が図れるので、なるべく多い個数とすることが好ましいが、組電池2の取り回し等を考慮すると、30個以下とすることが好ましい。
 なお、図1では、組電池2について概略的に表現してあり、リードや端子は図示を省略している。また、図2についても同様である。
[実施例]
1.組電池の製造
(実施例1)
(1)水素吸蔵合金粉末の製造
 20質量%のLa、80質量%のSmを含む希土類成分を調製した。得られた希土類成分、Mg、Ni、Alを計量して、これらがモル比で0.99:0.01:3.25:0.25の割合となる混合物を調製した。得られた混合物は、誘導溶解炉で溶解され、その溶湯が鋳型に流し込まれた後、室温の25℃まで冷却され水素吸蔵合金のインゴットとされた。このインゴットより採取したサンプルにつき、高周波プラズマ分光分析法(ICP)によって組成分析を行った。その結果、水素吸蔵合金の組成は、(La0.20Sm0.800.99Mg0.01Ni3.25Al0.25であった。
 次いで、このインゴットに対し、アルゴンガス雰囲気下にて温度1000℃で10時間保持する熱処理を施した。そして、この熱処理後、室温の25℃まで冷却された水素吸蔵合金のインゴットをアルゴンガス雰囲気中で機械的に粉砕し、水素吸蔵合金粒子の集合体である水素吸蔵合金粉末を得た。得られた水素吸蔵合金粉末を篩分けして、第1の粒径の粉末と、第2の粒径の粉末を得た。ここで、得られた第1の粒径の粉末及び第2の粒径の粉末について、レーザー回折・散乱式粒径分布測定装置を用いて粒子の粒径を測定した。その結果、第1の粒径の水素吸蔵合金粒子の体積平均粒径(MV)は65±5μmであり、第2の粒径の水素吸蔵合金粒子の体積平均粒径(MV)は35±5μmであった。なお、粒径分布測定の条件は、粒子透過性を反射、粒子屈折率を1.51、溶媒を水、溶媒屈折率を1.33、測定時間を30秒、及び分布形式を体積、にそれぞれ設定した。
(2)負極の製造
(i)第1の負極の製造
 第1の粒径の水素吸蔵合金の粉末100質量部に対し、ポリアクリル酸ナトリウム0.4質量部、カルボキシメチルセルロース0.1質量部、スチレンブタジエンゴム(SBR)のディスパージョン1.0質量部、カーボンブラック1.0質量部、及び水30質量部を添加して混練し、第1の負極合剤のペーストを調製した。
 この第1の負極合剤のペーストを負極基板としての鉄製の孔あき板の両面に均等、且つ、厚さが一定となるように塗布した。なお、この孔あき板は60μmの厚みを有し、その表面にはニッケルめっきが施されている。
 ペーストの乾燥後、水素吸蔵合金の粉末等が付着した孔あき板を更にロール圧延して体積当たりの合金量を高めた後、裁断し、第1の負極を得た。
(ii)第2の負極の製造
 第1の粒径の水素吸蔵合金の粉末の代わりに第2の粒径の水素吸蔵合金の粉末を用いたことを除いて、上記した第1の負極と同様な製造手順で第2の負極を製造した。
(3)単電池の製造
(i)第1の電極群の製造
 上記のようにして得られた第1の負極と、一般的なニッケル水素蓄電池に用いられるニッケル正極と、一般的なニッケル水素蓄電池に用いられるセパレータとを準備した。準備した第1の負極と、ニッケル正極とをセパレータを間に介在させた状態で重ね合わせ、第1の電極群を製造した。この第1の電極群は4個製造した。
(ii)第2の電極群の製造
 上記のようにして得られた第2の負極と、一般的なニッケル水素蓄電池に用いられるニッケル正極と、一般的なニッケル水素蓄電池に用いられるセパレータとを準備した。準備した第2の負極と、ニッケル正極とをセパレータを間に介在させた状態で重ね合わせ、第2の電極群を製造した。この第2の電極群は6個製造した。
(iii)単電池の組み立て
 単電池用容器を10個準備した。この単電池用容器は、図1における矢印X方向の長さが180mm、矢印Y方向の長さが240mm、矢印Z方向の長さが30mmの扁平な箱形状をなしている。
 更に、溶質としてNaOH及びLiOHを含んでいるアルカリ電解液を準備した。このアルカリ電解液において、NaOHの濃度は7.50mol/l、LiOHの濃度は0.50mol/lに調整されている。なお、このアルカリ電解液のアルカリ成分の濃度の総和は8.00mol/lである。
 上記のようにして準備した単電池用容器10個のうち4個の中に、それぞれ第1の電極群を1個ずつ収容した。第1の電極群を収容した単電池用容器の中にアルカリ電解液を所定量注入にした。その後、かかる単電池用容器を密閉し、単電池4を4個製造した。この電池を第1の単電池6とする。
 一方、準備した単電池用容器10個のうち6個の中に、それぞれ第2の電極群を1個ずつ収容した。第2の電極群を収容した単電池用容器の中にアルカリ電解液を所定量注入にした。その後、かかる単電池用容器を密閉し、単電池4を6個製造した。この電池を第2の単電池8とする。
(4)組電池の組立
 4個の第1の単電池6につき、それぞれ、箱形状における各面のうち最も面積の大きい面同士が合致して接触するように組み合わせて直線状に連結した。
 更に、連結された4個の第1の単電池6を挟むように両側に第2の単電池8を3個ずつ同様に連結させた。これにより、図1に示すように、中央部分に第1の単電池6が4個配置され形成された中央単電池群10と、この中央単電池群10を挟む両側に第2の単電池8が3個ずつ配置され形成された端部単電池群12、12とを備えた態様の組電池2が得られた。
 なお、各単電池4は、正極端子及び負極端子を有しており(共に図示せず)、これら正極端子及び負極端子は、リード(図示せず)により適切に電気的に直列に接続されている。
(5)初期活性化処理
 組電池2を、25℃の環境下に1日間放置後、0.1Itの充電電流で16時間の充電を行った。その後、当該組電池2を25℃の環境下で12時間放置した。その後、0.2Itの放電電流で電池電圧が10Vになるまで放電させた。このような充放電作業を2回繰り返すことにより初期活性化処理を行った。このようにして、組電池2を使用可能状態とした。
(比較例1)
 第1の単電池6を10個製造し、第2の単電池8は用いず、第1の単電池6のみを用いたことを除いて、実施例1と同様にして、図6に示すような使用可能状態の組電池22を製造した。
(比較例2)
 第2の単電池8を10個製造し、第1の単電池6は用いず、第2の単電池8のみを用いたことを除いて、実施例1と同様にして、図7に示すような使用可能状態の組電池32を製造した。
 以下の表2に、実施例1、比較例1及び比較例2の各組電池の構成をまとめて示す。
Figure JPOXMLDOC01-appb-T000002
2.組電池の評価
(1)サイクル寿命試験
 初期活性化処理済みの実施例1、比較例1~2の各組電池について、40℃の環境下にて、1.0Itで0.8時間充電を行い、その後、5分間放置した。その後、同一の環境下にて1.0Itで組電池の電圧が10Vになるまで放電した後、10分間放置した。
 上記した充放電のサイクルを1サイクルとして充放電を繰り返し、各サイクルにおける放電容量を測定した。ここで、1サイクル目の充放電での放電容量を初期容量とし、以下の(II)式から各サイクルにおける容量維持率を算出した。
 容量維持率[%]=(各サイクルにおける放電容量/初期容量)×100・・・(II)
 そして、各組電池につき容量維持率とサイクル数との関係を図8のグラフに示した。
(2)低温放電特性試験
 初期活性化処理済みの実施例1、比較例1~2の各組電池について、25℃の環境下にて、1.0Itで0.8時間充電を行い、その後、25℃の環境下にて、3時間放置した。その後、25℃の環境下にて、1.0Itで電池電圧が10Vになるまで放電を行った。このときの放電容量、すなわち25℃での放電容量を求めた。
 同様に、初期活性化処理済みの実施例1、比較例1~2の各組電池について、25℃の環境下にて、1.0Itで0.8時間充電を行い、その後、0℃の環境下にて、3時間放置した。その後、0℃の環境下にて、1.0Itで電池電圧が10Vになるまで放電を行った。このときの放電容量、すなわち0℃での放電容量を求めた。
 同様に、初期活性化処理済みの実施例1、比較例1~2の各組電池について、25℃の環境下にて、1.0Itで0.8時間充電を行い、その後、-10℃の環境下にて、3時間放置した。その後、-10℃の環境下にて、1.0Itで電池電圧が10Vになるまで放電を行った。このときの放電容量、すなわち-10℃での放電容量を求めた。
 同様に、初期活性化処理済みの実施例1、比較例1~2の各組電池について、25℃の環境下にて、1.0Itで0.8時間充電を行い、その後、-20℃の環境下にて、3時間放置した。その後、-20℃の環境下にて、1.0Itで電池電圧が10Vになるまで放電を行った。このときの放電容量、すなわち-20℃での放電容量を求めた。
 同様に、初期活性化処理済みの実施例1、比較例1~2の各組電池について、25℃の環境下にて、1.0Itで0.8時間充電を行い、その後、-30℃の環境下にて、3時間放置した。その後、-30℃の環境下にて、1.0Itで電池電圧が10Vになるまで放電を行った。このときの放電容量、すなわち-30℃での放電容量を求めた。
 同様に、初期活性化処理済みの実施例1、比較例1~2の各組電池について、25℃の環境下にて、1.0Itで0.8時間充電を行い、その後、-35℃の環境下にて、3時間放置した。その後、-35℃の環境下にて、1.0Itで電池電圧が10Vになるまで放電を行った。このときの放電容量、すなわち-35℃での放電容量を求めた。
 同様に、初期活性化処理済みの実施例1、比較例1~2の各組電池について、25℃の環境下にて、1.0Itで0.8時間充電を行い、その後、-40℃の環境下にて、3時間放置した。その後、-40℃の環境下にて、1.0Itで電池電圧が10Vになるまで放電を行った。このときの放電容量、すなわち-40℃での放電容量を求めた。
 以上のようにして求めた放電容量と、放電の際に電池が置かれた環境温度との関係を図9のグラフに示した。
(3)考察
 容量維持率とサイクル数との関係を示した図8のグラフより、比較例2の組電池が最も早く容量低下し、寿命が早期に尽きている。比較例2の組電池は、水素吸蔵合金粒子の平均粒径が35±5μmの水素吸蔵合金粉末を組電池の全体で使用している。このため、40℃の環境下での加速試験のサイクルでは、熱影響を受けやすい中央部分の合金が早期に劣化し、それにともない組電池の容量低下が進行したものと考えられる。
 一方、比較例1の組電池は、比較例2の組電池に比べサイクル寿命が60%程度向上している。これは、比較例1の組電池で使用している水素吸蔵合金粒子の平均粒径が65±5μmと比較的大粒径であり、耐食性に優れるものであるためと考えられる。
 実施例1の組電池は、図8より、比較例1の組電池と同等のサイクル寿命特性が得られている。これは、組電池において熱影響を受けやすい中央部分にある水素吸蔵合金粒子の平均粒径が65±5μmと比較的大きいため、優れた耐食性が発揮されたものと考えられる。
 次に、低温環境特性においては、比較例1の組電池の放電特性が最も低くい。詳しくは、比較例1の組電池の放電容量は、比較例2の組電池の放電容量に比べ、-20℃では49%まで、-30℃では8%まで低下している。これは、比較例2の組電池は、反応性に優れる粒径が小さい水素吸蔵合金粒子を使用しているので、低温放電特性に優れているのに対し、比較例1の電池は、水素吸蔵合金粒子の平均粒径が大きく、反応性が低いために低温での放電が悪化していると考えられる。
 実施例1の組電池は、図9より、比較例2の組電池と同等の低温放電特性が得られている。これは、組電池において熱影響を受けやすい中央部分を除いた端部にある水素吸蔵合金粒子の平均粒径が35±5μmと比較的小さいため、優れた反応性が発揮され低温放電特性が向上したものと考えられる。
 以上より、実施例1の組電池のように、熱が蓄積し易い中央部分では、熱による劣化の少ない比較的大きな平均粒径を有する水素吸蔵合金粒子を採用し、それ以外の両端部には、反応性に優れる比較的小さい平均粒径を有する水素吸蔵合金粒子を採用することにより、低温時放電特性と寿命特性とを兼ね備えた優れた組電池が得られるといえる。
  2         組電池
  4         単電池
  6         第1の単電池
  8         第2の単電池
 10        中央単電池群
 12        端部単電池群

 

Claims (5)

  1.  負極に水素吸蔵合金を含むニッケル水素蓄電池により形成された単電池が、直線状に多数配設されて形成された組電池において、
     前記直線状に延びる方向における中央部分に位置する前記単電池の集合体である中央単電池群と、
     前記中央単電池群の両端部に位置付けられ前記中央単電池群を挟むように配設された前記単電池の集合体である端部単電池群と、を備え、
     前記中央単電池群に含まれる前記水素吸蔵合金の粒径は、前記端部単電池群に含まれる前記水素吸蔵合金の粒径よりも大きい、組電池。
  2.  前記単電池のそれぞれは、扁平な箱形状をなしており、前記箱形状における各面のうち最も面積の大きい面同士が合致して接触するように組み合わされて直線状に配置され連結されている、請求項1に記載の組電池。
  3.  前記中央単電池群を構成する前記単電池の数が、前記組電池に含まれる前記単電池の総数の33%以上、60%以下である、請求項1又は2に記載の組電池。
  4.  前記中央単電池群の前記単電池に含まれる前記水素吸蔵合金の粒径は、粒度分布測定装置を用いて測定した体積平均粒径が50μm以上であり、前記端部単電池群に含まれる前記水素吸蔵合金の粒径は、粒度分布測定装置を用いて測定した体積平均粒径が50μm未満である、請求項1~3の何れかに記載の組電池。
  5.  前記単電池の総数は、10個以上である、請求項1~4の何れかに記載の組電池。
PCT/JP2021/009100 2020-03-25 2021-03-09 組電池 WO2021192977A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020054580A JP2021157880A (ja) 2020-03-25 2020-03-25 組電池
JP2020-054580 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021192977A1 true WO2021192977A1 (ja) 2021-09-30

Family

ID=77892506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009100 WO2021192977A1 (ja) 2020-03-25 2021-03-09 組電池

Country Status (2)

Country Link
JP (1) JP2021157880A (ja)
WO (1) WO2021192977A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101055A (ja) * 1989-09-13 1991-04-25 Sanyo Electric Co Ltd アルカリ蓄電池用水素吸蔵合金電極
JPH04179054A (ja) * 1990-11-09 1992-06-25 Sanyo Electric Co Ltd 金属水素化物蓄電池の製造方法
JPH0554906A (ja) * 1991-08-28 1993-03-05 Matsushita Electric Ind Co Ltd 積層型ニツケル−水素蓄電池
JPH07254439A (ja) * 1994-03-16 1995-10-03 Sanyo Electric Co Ltd 積層密閉型ニッケル−水素化物組み電池装置の充電方法及び積層密閉型ニッケル−水素化物組み電池装置
JPH07263019A (ja) * 1994-03-25 1995-10-13 Sanyo Electric Co Ltd 積層密閉型ニッケル−水素化物組み電池
JPH07263030A (ja) * 1994-03-25 1995-10-13 Sanyo Electric Co Ltd 積層密閉型ニッケル−水素組み電池及びその容量回復のためのメンテナンス方法
JPH10241727A (ja) * 1997-02-28 1998-09-11 Sanyo Electric Co Ltd ニッケル−水素組電池
JP2002334695A (ja) * 2001-03-09 2002-11-22 Canon Inc 二次電池および二次電池の製造方法
JP2017021896A (ja) * 2015-07-07 2017-01-26 Fdk株式会社 水素吸蔵合金粉末の製造方法及びニッケル水素二次電池
WO2019039098A1 (ja) * 2017-08-24 2019-02-28 Fdk株式会社 組電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101055A (ja) * 1989-09-13 1991-04-25 Sanyo Electric Co Ltd アルカリ蓄電池用水素吸蔵合金電極
JPH04179054A (ja) * 1990-11-09 1992-06-25 Sanyo Electric Co Ltd 金属水素化物蓄電池の製造方法
JPH0554906A (ja) * 1991-08-28 1993-03-05 Matsushita Electric Ind Co Ltd 積層型ニツケル−水素蓄電池
JPH07254439A (ja) * 1994-03-16 1995-10-03 Sanyo Electric Co Ltd 積層密閉型ニッケル−水素化物組み電池装置の充電方法及び積層密閉型ニッケル−水素化物組み電池装置
JPH07263019A (ja) * 1994-03-25 1995-10-13 Sanyo Electric Co Ltd 積層密閉型ニッケル−水素化物組み電池
JPH07263030A (ja) * 1994-03-25 1995-10-13 Sanyo Electric Co Ltd 積層密閉型ニッケル−水素組み電池及びその容量回復のためのメンテナンス方法
JPH10241727A (ja) * 1997-02-28 1998-09-11 Sanyo Electric Co Ltd ニッケル−水素組電池
JP2002334695A (ja) * 2001-03-09 2002-11-22 Canon Inc 二次電池および二次電池の製造方法
JP2017021896A (ja) * 2015-07-07 2017-01-26 Fdk株式会社 水素吸蔵合金粉末の製造方法及びニッケル水素二次電池
WO2019039098A1 (ja) * 2017-08-24 2019-02-28 Fdk株式会社 組電池

Also Published As

Publication number Publication date
JP2021157880A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP4524713B2 (ja) リチウム二次電池とその利用
EP1154507B1 (en) Rectangular alkaline storage battery and battery module and battery pack using the same
KR101799173B1 (ko) 비수전해질 이차 전지
JP7383501B2 (ja) 蓄電装置及び蓄電モジュール
JP2021128841A (ja) 非水電解質二次電池及び二次電池モジュール
JP5472760B2 (ja) リチウムイオン二次電池の製造方法
JP7403337B2 (ja) 非水電解質二次電池及び二次電池モジュール
WO2021192977A1 (ja) 組電池
US9225017B2 (en) Alkaline storage cell and method for manufacturing alkaline storage cell
US20150280285A1 (en) Accumulator system
US20160049651A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6394955B2 (ja) 水素吸蔵合金、電極及びニッケル水素蓄電池
JP5774647B2 (ja) ニッケル水素蓄電池
EP3483960B1 (en) Negative electrode for nickel hydrogen secondary battery, and nickel hydrogen secondary battery including the negative electrode
KR101287959B1 (ko) 에너지 저장 장치용 전극
JP3110692B2 (ja) アルカリ蓄電池
JP2016012946A (ja) 蓄電池モジュールを搭載した車両
JP3815511B2 (ja) ニッケル・金属水素化物密閉形アルカリ蓄電池
KR100790563B1 (ko) 대용량 니켈/수소저장합금 이차전지의 극판군 구조
JP7174326B2 (ja) 組電池
Lefley et al. Rechargeable batteries–Part 3: Lithium-ion batteries
JP2024015450A (ja) 蓄電素子及び蓄電素子の使用方法
JP2762662B2 (ja) 水素吸蔵Ni―Zr系合金
JP2020047529A (ja) 組電池
JP2004327146A (ja) アルカリ蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774623

Country of ref document: EP

Kind code of ref document: A1