WO2021192935A1 - 静電チャック装置、静電チャック装置用スリーブ - Google Patents

静電チャック装置、静電チャック装置用スリーブ Download PDF

Info

Publication number
WO2021192935A1
WO2021192935A1 PCT/JP2021/008815 JP2021008815W WO2021192935A1 WO 2021192935 A1 WO2021192935 A1 WO 2021192935A1 JP 2021008815 W JP2021008815 W JP 2021008815W WO 2021192935 A1 WO2021192935 A1 WO 2021192935A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
layer
electrostatic chuck
chuck device
thickness direction
Prior art date
Application number
PCT/JP2021/008815
Other languages
English (en)
French (fr)
Inventor
允義 山崎
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Priority to CN202180019517.3A priority Critical patent/CN115244678A/zh
Priority to JP2022509496A priority patent/JP7465338B2/ja
Priority to KR1020227028170A priority patent/KR20220126766A/ko
Priority to US17/911,440 priority patent/US20230115256A1/en
Publication of WO2021192935A1 publication Critical patent/WO2021192935A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Definitions

  • the present invention relates to an electrostatic chuck device and a sleeve for an electrostatic chuck device used therein.
  • the present application claims priority based on Japanese Patent Application No. 2020-055844 filed in Japan on March 26, 2020, the contents of which are incorporated herein by reference.
  • a base material such as a semiconductor wafer, a glass substrate, or an insulating substrate is used. It is necessary to adsorb and hold it at a predetermined site. Therefore, in order to adsorb and hold those base materials, a mechanical chuck, a vacuum chuck, or the like by a mechanical method has been used.
  • these holding methods have problems such as difficulty in uniformly holding the base material (adsorbed body), inability to use in vacuum, and excessive rise in the temperature of the sample surface. Therefore, in recent years, an electrostatic chuck device capable of solving these problems has been used for holding the adsorbed body.
  • the electrostatic chuck device includes, as a main part, a conductive support member serving as an internal electrode and a dielectric layer made of a dielectric material covering the conductive support member.
  • the object to be adsorbed can be adsorbed by this main part.
  • a voltage is applied to the internal electrodes in the electrostatic chuck device to generate a potential difference between the object to be attracted and the conductive support member, an electrostatic attraction force is generated between the dielectric layers.
  • the adsorbed body is supported substantially flatly with respect to the conductive support member.
  • an electrostatic chuck device in which an insulating organic film is laminated on an internal electrode to form a dielectric layer is known.
  • Such an electrostatic chuck device is provided with a through hole for cooling the holding semiconductor wafer with gas (see, for example, Patent Document 1).
  • a substrate, a laminate laminated on the substrate and including an internal electrode, a ceramic layer laminated on the upper surface in the thickness direction of the laminate, and a semiconductor wafer are cooled by gas.
  • a configuration may be used that includes an insulating sleeve inserted into a through hole formed for this purpose, and a packing layer provided between the laminate and the insulating sleeve.
  • the interfaces of a plurality of materials having different coefficients of linear expansion may be concentrated in the vicinity of the laminate and the insulating sleeve, and when the material of the ceramic layer is sprayed onto the laminate, the packing layer is used. Due to thermal expansion and concentration of stress at one point, cracks may occur in the ceramic layer.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrostatic chuck device that suppresses cracks in the ceramic layer, and a sleeve for the electrostatic chuck device used therefor. ..
  • a substrate, a laminate including at least an internal electrode laminated on the substrate, and a ceramic layer laminated on the upper surface in the thickness direction of the laminate are provided, and the substrate and the laminate are thickened.
  • a through hole penetrating in the longitudinal direction is provided, a sleeve made of an insulating material is inserted into the through hole, and the upper surface of the sleeve in the thickness direction is located on the same surface as the upper surface of the substrate in the thickness direction.
  • the laminated body has a two-stage structure consisting of a first upper surface and a second upper surface located above the first upper surface in the thickness direction of the sleeve and close to the ceramic layer.
  • An electrostatic chuck device characterized in that the edge portion of the is arranged on the first upper surface.
  • a sleeve used in an electrostatic chuck device which is located on the upper surface of the sleeve in the thickness direction, a first upper surface, and above the first upper surface in the thickness direction of the sleeve.
  • a sleeve for an electrostatic chuck device which has two upper surfaces.
  • the filler filled between the end face of the laminate containing at least the internal electrode and the insulating organic film and the outer face of the sleeve expands thermally. It is possible to provide an electrostatic chuck device that disperses the stress generated in the process to prevent cracks from being generated in the ceramic layer due to the stress, and a sleeve for the electrostatic chuck device used for the electrostatic chuck device.
  • the schematic configuration of the electrostatic chuck device which concerns on this invention is shown, and it is sectional drawing along the height direction of the electrostatic chuck device.
  • the schematic configuration of the electrostatic chuck device which concerns on this invention is shown, and it is the figure which enlarged the region ⁇ shown in FIG.
  • the schematic configuration of the electrostatic chuck device of Example 1 is shown, and it is the figure which enlarged the region corresponding to the region ⁇ shown in FIG.
  • the schematic configuration of the electrostatic chuck device of Example 2 is shown, and it is the figure which enlarged the region corresponding to the region ⁇ shown in FIG.
  • the schematic configuration of the electrostatic chuck device of Comparative Example 1 is shown, and it is the figure which enlarged the region corresponding to the region ⁇ shown in FIG.
  • FIG. 1 It is a perspective view which shows the schematic structure of the sleeve for the electrostatic chuck device which concerns on this invention.
  • the schematic configuration of the electrostatic chuck device of Comparative Example 2 is shown, and it is the figure which enlarged the region corresponding to the region ⁇ shown in FIG.
  • FIG. 1 shows a schematic configuration of the electrostatic chuck device of the present embodiment, and is a cross-sectional view taken along the height direction of the electrostatic chuck device.
  • FIG. 2 shows the first embodiment of the schematic configuration of the electrostatic chuck device according to the present invention, and is an enlarged view of the region ⁇ shown in FIG.
  • the electrostatic chuck device 1 of the present embodiment includes a substrate 10, a laminate 2 including at least a plurality of internal electrodes 20, and ceramics laminated on the upper surface 2a of the laminate 2 in the thickness direction.
  • a layer 50 is provided.
  • the laminate 2 may include the adhesive layer 30 and the insulating organic film 40 in addition to the internal electrodes 20.
  • the adhesive layer 30 is composed of a first adhesive layer 31 and a second adhesive layer 32.
  • the insulating organic film 40 is composed of a first insulating organic film 41 and a second insulating organic film 42.
  • the first adhesive layer 31, the first insulating organic film 41, and the internal electrodes are formed on the surface of the substrate 10 (upper surface in the thickness direction of the substrate 10) 10a. 20, the second adhesive layer 32, the second insulating organic film 42, the intermediate layer 90, and the ceramics layer 50 are laminated in this order.
  • the electrostatic chuck device 1 of the present embodiment includes an internal electrode 20, a first adhesive layer 31, a second adhesive layer 32, a first insulating organic film 41, and a second insulating organic film 42.
  • the structure is called a laminated body 2.
  • the laminated body 2 has both sides of the internal electrode 20 in the thickness direction (the upper surface 20a of the internal electrode 20 in the thickness direction and the thickness of the internal electrode 20). It may contain at least the insulating organic film 40 provided on each of the lower surface 20b) sides in the direction. Specifically, the second insulating organic film 42 may be provided on the upper surface 20a side in the thickness direction of the internal electrode 20, and the first insulation may be provided on the lower surface 20b side in the thickness direction of the internal electrode 20.
  • the sex organic film 41 may be provided.
  • the first adhesive layer 31 is provided on the surface of the first insulating organic film 41 opposite to the internal electrode 20 (lower surface 41b of the first insulating organic film 41).
  • a second adhesive layer 32 is provided between the internal electrode 20 provided on the upper surface 41a of the first insulating organic film 41 and the first insulating organic film 41 in the thickness direction and the second insulating organic film 42. Is provided.
  • the electrostatic chuck device 1 of the present embodiment is provided with a through hole 60 that penetrates the substrate 10 and the laminate 2 in the thickness direction.
  • a sleeve 70 made of an insulating material is inserted into the through hole 60.
  • the through hole 60 is a hole for inserting a lift pin or the like for cooling the ceramic layer 50 with gas or for lifting up the adsorbed body adhered to the electrostatic chuck device 1.
  • the upper surface 71 in the thickness direction of the sleeve 70 is above the first upper surface 72 located on the same surface as the upper surface 10a in the thickness direction of the substrate 10 and above the first upper surface 72 in the thickness direction of the sleeve 70. It is located and has a two-stage structure with a second upper surface 73 close to the ceramic layer 50. That is, the height of the first upper surface 72 of the sleeve 70 is equal to the height of the upper surface 10a of the substrate 10 in the thickness direction of the substrate 10.
  • the edge portion 2A of the laminated body 2 is arranged on the first upper surface 72 of the sleeve 70.
  • the range of the horizontal length of the edge portion 2A arranged on the first upper surface 72 of the sleeve 70 is not particularly limited, but the first upper surface 72 and the first upper surface 72 and the first upper surface 72 are based on the outer edge 72a of the first upper surface 72.
  • the length from the outer surface 70a between the upper surfaces 73 of 2 to the outer edge 72a of the first upper surface 72 is preferably 10% to 90%, more preferably 30% to 70%.
  • a filler 80 is provided between the end surface 2b of the laminate 2 (outer surface of the edge 2A) and the outer surface 70a of the sleeve 70 (outer surface 70a between the first upper surface 72 and the second upper surface 73). It may be filled or void.
  • the ceramic layer 50 includes a ceramic base layer 51 and a ceramic surface layer 52 formed on the upper surface of the ceramic base layer 51 (upper surface in the thickness direction of the ceramic base layer 51) 51a and having irregularities. It is preferable to have. Further, the ceramic base layer 51 is provided with a through hole 51b penetrating in the thickness direction thereof. The inner diameter of the through hole 51b (diameter perpendicular to the thickness direction of the ceramic base layer 51) is smaller than the inner diameter of the through hole 60 (diameter perpendicular to the thickness direction of the substrate 10 and the laminate 2).
  • the internal electrode 20 may be in contact with the first insulating organic film 41 or the second insulating organic film 42. Further, as shown in FIG. 1, the internal electrode 20 may be formed inside the second adhesive layer 32. The arrangement of the internal electrodes 20 can be appropriately designed.
  • the electrode pattern and shape of the internal electrode 20 are not particularly limited as long as it can adsorb an object to be adsorbed such as a conductor, a semiconductor, and an insulator. Further, the internal electrodes 20 do not have to be independent.
  • a laminated body 2 including at least an internal electrode 20 is laminated on a substrate 10 and a sleeve 70, and a ceramic layer 50 is further laminated on an upper surface 2a of the laminated body 2.
  • the substrate 10 may not be present.
  • the substrate 10 is not particularly limited, and examples thereof include a ceramic substrate, a silicon carbide substrate, and a metal substrate made of aluminum, stainless steel, or the like.
  • the internal electrode 20 is not particularly limited as long as it is made of a conductive substance capable of exhibiting electrostatic adsorption force when a voltage is applied.
  • a thin film made of a metal such as copper, aluminum, gold, silver, platinum, chromium, nickel, and tungsten, and a thin film made of at least two kinds of metals selected from the above metals are preferably used. Be done. Examples of such a metal thin film include those formed by vapor deposition, plating, sputtering, etc., those formed by applying and drying a conductive paste, and specifically, metal foils such as copper foil. Be done.
  • the thickness of the internal electrode 20 is not particularly limited as long as the thickness of the second adhesive layer 32 is larger than the thickness of the internal electrode 20.
  • the thickness of the internal electrode 20 is preferably 20 ⁇ m or less. When the thickness of the internal electrode 20 is 20 ⁇ m or less, unevenness is unlikely to occur on the upper surface 42a of the second insulating organic film 42 when it is formed. As a result, defects are unlikely to occur when the ceramic layer 50 is formed on the second insulating organic film 42 or when the ceramic layer 50 is polished.
  • the thickness of the internal electrode 20 is preferably 1 ⁇ m or more. When the thickness of the internal electrode 20 is 1 ⁇ m or more, sufficient bonding strength can be obtained when the internal electrode 20 is bonded to the first insulating organic film 41 or the second insulating organic film 42.
  • the distance between adjacent internal electrodes 20 is preferably 2 mm or less.
  • the distance between the adjacent internal electrodes 20 is 2 mm or less, a sufficient electrostatic force is generated between the adjacent internal electrodes 20, and a sufficient suction force is generated.
  • the distance from the internal electrode 20 to the object to be adsorbed that is, the distance from the upper surface 20a of the internal electrode 20 to the object to be adsorbed on the ceramic surface layer 52 (the second adhesive existing on the upper surface 20a of the internal electrode 20).
  • the total thickness of the layer 32, the second insulating organic film 42, the ceramic base layer 51, and the ceramic surface layer 52) is preferably 50 ⁇ m to 125 ⁇ m.
  • the insulating property of the laminate composed of the second adhesive layer 32, the second insulating organic film 42, the ceramic base layer 51 and the ceramic surface layer 52 is improved. Can be secured.
  • the distance from the internal electrode 20 to the object to be adsorbed is 125 ⁇ m or less, a sufficient adsorption force is generated.
  • Examples of the adhesive constituting the adhesive layer 30 include epoxy resin, phenol resin, styrene block copolymer, polyamide resin, acrylonitrile-butadiene copolymer, polyester resin, polyimide resin, silicone resin, amine compound, and bismaleimide compound.
  • An adhesive containing one or more kinds of resins selected from the above and the like as a main component is used.
  • the epoxy resin examples include bisphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, trihydroxyphenylmethane type epoxy resin, and tetraglycidyl.
  • examples thereof include bifunctional groups such as phenol alkane type epoxy resin, naphthalene type epoxy resin, diglycidyl diphenylmethane type epoxy resin, and diglycidyl biphenyl type epoxy resin, or polyfunctional epoxy resin.
  • bisphenol type epoxy resin is preferable.
  • the bisphenol A type epoxy resin is particularly preferable.
  • epoxy resin is the main component
  • a curing agent for epoxy resins such as imidazoles, tertiary amines, phenols, dicyandiamides, aromatic diamines, and organic peroxides, and curing acceleration. Agents can also be added.
  • phenol resin examples include novolak phenol resins such as alkylphenol resins, p-phenylphenol resins and bisphenol A type phenol resins, resolphenol resins, and polyphenylparaphenol resins.
  • styrene-based block copolymer examples include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), and styrene-ethylene-propylene-styrene copolymer (SEPS). Can be mentioned.
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEPS styrene-ethylene-propylene-styrene copolymer
  • the thickness of the adhesive layer 30 is not particularly limited, but is preferably 5 ⁇ m to 20 ⁇ m, and more preferably 10 ⁇ m to 20 ⁇ m. When the thickness of the adhesive layer 30 (first adhesive layer 31, second adhesive layer 32) is 5 ⁇ m or more, it functions sufficiently as an adhesive. On the other hand, if the thickness of the adhesive layer 30 (first adhesive layer 31, second adhesive layer 32) is 20 ⁇ m or less, the electrode-to-electrode insulation of the internal electrodes 20 is ensured without impairing the adsorption force. be able to.
  • the material constituting the insulating organic film 40 is not particularly limited, and for example, polyesters such as polyethylene terephthalate, polyolefins such as polyethylene, polyimide, polyamide, polyamideimide, polyether sulfone, polyphenylene sulfide, and polyetherketone. , Polyetherimide, triacetyl cellulose, silicone rubber, polytetrafluoroethylene and the like are used. Among these, polyesters, polyolefins, polyimides, silicone rubbers, polyetherimides, polyethersulfone, and polytetrafluoroethylene are preferable, and polyimides are more preferable because of their excellent insulating properties.
  • Kapton trade name
  • Upirex trade name
  • the thickness of the insulating organic film 40 is not particularly limited, but is preferably 10 ⁇ m to 100 ⁇ m, and preferably 10 ⁇ m to 50 ⁇ m. More preferred. When the thickness of the insulating organic film 40 (the first insulating organic film 41 and the second insulating organic film 42) is 10 ⁇ m or more, the insulating property can be ensured. On the other hand, if the thickness of the insulating organic film 40 (first insulating organic film 41, second insulating organic film 42) is 100 ⁇ m or less, sufficient adsorption force is generated. Further, instead of the insulating organic film 40 (the first insulating organic film 41 and the second insulating organic film 42), a ceramic plate made of a ceramic material may be used.
  • the through hole 60 penetrates the substrate 10 and the laminate 2 in the thickness direction, but the shape in a plan view (the shape seen from the upper surface 51a side of the ceramic base layer 51) is not particularly limited.
  • Examples of the plan view shape of the through hole 60 include a circular shape and a rectangular shape.
  • the inner diameter of the through hole 60 is not particularly limited, but is preferably, for example, 5 mm to 15 mm, and more preferably 5 mm to 13 mm.
  • the inner diameter of the through hole 60 is the diameter of the through hole 60 when the shape of the through hole 60 in a plan view is circular, and when the shape of the through hole 60 in a plan view is other than a circular shape. Is the length of the largest portion of the through hole 60.
  • Examples of the insulating material constituting the sleeve 70 include aluminum oxide (alumina), yttrium oxide (itria), zirconium oxide (zirconia), and resin.
  • the sleeve 70 is a columnar member as shown in FIG. 6, and is located on the upper surface in the thickness direction of the sleeve, the first upper surface 72, and above the first upper surface in the thickness direction of the sleeve. It has a second upper surface 73.
  • the sleeve 70 has a through hole 75 in the vicinity of the central portion of the columnar column.
  • the through hole 75 is a hole for inserting a lift pin or the like for cooling the ceramic layer 50 with gas or for lifting up the adsorbed body adhered to the electrostatic chuck device 1.
  • the cross-sectional shape of the sleeve 70 perpendicular to the longitudinal direction is not particularly limited, and the sleeve 70 is appropriately set according to the shape of the through hole 60 in a plan view.
  • the diameter of the through hole 75 in the sleeve 70 is not particularly limited, but is preferably 0.5 mm to 5 mm, more preferably 0.3 mm to 3 mm, for example.
  • the sleeve 70 can be manufactured by molding the insulating material with a mold, or by cutting a columnar insulating material.
  • the outer diameter of the sleeve 70 below the first upper surface 72 (in the thickness direction of the sleeve 70) is not particularly limited, but is preferably 4 mm to 15 mm, more preferably 4 mm to 10 mm, for example.
  • the outer diameter of the sleeve 70 above the first upper surface 72 (in the thickness direction of the sleeve 70) is not particularly limited, but is preferably 1 mm to 7 mm, more preferably 2 mm to 4 mm, for example. ..
  • the outer diameter of the sleeve 70 is the diameter of the cross section perpendicular to the longitudinal direction of the sleeve 70 when the cross-sectional shape perpendicular to the longitudinal direction of the sleeve 70 is circular, and is perpendicular to the longitudinal direction of the sleeve 70.
  • the cross-sectional shape is other than a circular shape, it is the length of the largest portion of the cross section perpendicular to the longitudinal direction of the sleeve 70.
  • the size of the first upper surface 72 of the sleeve 70 is not particularly limited, and for example, the length from the outer surface 70a between the first upper surface 71 and the second upper surface 72 to the outer edge 72a of the first upper surface 72. Is preferably 1 mm to 5 mm, and more preferably 1 mm to 3 mm.
  • the adhesive is not particularly limited, and examples thereof include an epoxy resin, a polyimide resin, an acrylic resin, a silane resin, and a silicone resin.
  • the material constituting the ceramic layer 50 is not particularly limited, and for example, boron nitride, aluminum nitride, aluminum oxide (alumina), zirconium oxide, silicon oxide, tin oxide, indium oxide, quartz glass, soda glass, lead glass, and the like. Borosilicate glass, zirconium nitride, titanium oxide and the like are used, and aluminum oxide is preferably used. One of these materials may be used alone, or two or more of these materials may be mixed and used. These materials are preferably powders having an average particle size of 1 ⁇ m to 25 ⁇ m. By using such powder, the voids in the ceramic layer 50 can be reduced and the withstand voltage of the ceramic layer 50 can be improved.
  • the thickness of the ceramic base layer 51 is preferably 10 ⁇ m to 80 ⁇ m, and more preferably 40 ⁇ m to 60 ⁇ m. When the thickness of the ceramic base layer 51 is 10 ⁇ m or more, sufficient plasma resistance and withstand voltage resistance are exhibited. On the other hand, if the thickness of the ceramic base layer 51 is 80 ⁇ m or less, sufficient adsorption force is generated.
  • the thickness of the ceramic surface layer 52 is preferably 5 ⁇ m to 20 ⁇ m. When the thickness of the ceramic surface layer 52 is 5 ⁇ m or more, unevenness can be formed over the entire area of the ceramic surface layer 52. On the other hand, if the thickness of the ceramic surface layer 52 is 20 ⁇ m or less, sufficient adsorption force is generated.
  • the surface roughness Ra means a value measured by the method specified in JIS B0601-1994.
  • the surface roughness Ra of the ceramic surface layer 52 is preferably 0.05 ⁇ m to 0.5 ⁇ m.
  • the surface roughness Ra of the ceramic surface layer 52 is within the above range, the object to be adsorbed can be adsorbed satisfactorily.
  • the surface roughness Ra of the ceramic surface layer 52 becomes large, the contact area between the object to be adsorbed and the ceramic surface layer 52 becomes small, so that the adsorption force also becomes small.
  • the electrostatic chuck device 1 of the present embodiment is intermediate between the upper surface 2a (upper surface 42a of the second insulating organic film 42) of the laminate 2 including at least the internal electrode 20 in the thickness direction.
  • the ceramic layer 50 may be laminated via the layer 90.
  • the intermediate layer 90 preferably contains at least one of an organic insulating resin and an inorganic insulating resin, and at least one of an inorganic filler and a fibrous filler.
  • the organic insulating resin is not particularly limited, and examples thereof include a polyimide resin, an epoxy resin, and an acrylic resin.
  • the inorganic insulating resin is not particularly limited, and examples thereof include a silane resin and a silicone resin.
  • the intermediate layer 90 contains polysilazane.
  • polysilazane examples include those known in the art.
  • the polysilazane may be an organic polysilazane or an inorganic polysilazane. One of these materials may be used alone, or two or more of these materials may be mixed and used.
  • the content of the inorganic filler in the intermediate layer 90 is preferably 100 parts by mass to 300 parts by mass, and more preferably 150 parts by mass to 250 parts by mass with respect to 100 parts by mass of polysilazane.
  • the inorganic filler particles can form irregularities on the surface of the resin film which is the cured product of the intermediate layer 90, so that the powder of the thermal spray material can be obtained. It is easy to bite between the inorganic filler particles, and the thermal spray material can be firmly adhered to the surface of the resin film.
  • the inorganic filler is not particularly limited, but is preferably at least one selected from the group consisting of alumina, silica and yttria, and alumina is more preferable.
  • the inorganic filler is preferably at least one of a spherical powder and an amorphous powder.
  • the spherical powder is a sphere in which the corners of the powder particles are rounded.
  • the amorphous powder is a powder having a crushed shape, a plate shape, a scale shape, a needle shape, or the like, which does not have a constant shape.
  • the average particle size of the inorganic filler is preferably 1 ⁇ m to 20 ⁇ m.
  • its diameter (outer diameter) is defined as the particle diameter
  • the longest portion of the shape is defined as the particle diameter.
  • the fibrous filler is preferably at least one selected from the group consisting of plant fibers, inorganic fibers and fibrous organic resins.
  • plant fibers include pulp and the like.
  • inorganic fiber include fibers made of alumina and the like.
  • fibrous organic resin include fibers made of aramid, Teflon (registered trademark), and the like.
  • the inorganic filler is preferably used in combination with the fibrous filler, and the total content of the inorganic filler and the fibrous filler with respect to the entire intermediate layer 90 (100% by volume) is 10% by volume to 80% by volume. Is preferable.
  • the ceramic layer can be uniformly formed on the intermediate layer 90 by thermal spraying.
  • the thickness of the intermediate layer 90 is preferably 1 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m.
  • the thickness of the intermediate layer 90 is 1 ⁇ m or more, the intermediate layer 90 does not become thin locally, and the ceramic layer 50 can be uniformly formed on the intermediate layer 90 by thermal spraying.
  • the thickness of the intermediate layer 90 is 40 ⁇ m or less, sufficient adsorption force is generated.
  • a through hole 60 is provided so as to penetrate the substrate 10 and the laminate 2 in the thickness direction, and the sleeve 70 is inserted into the through hole 60 to form the sleeve 70.
  • the upper surface 71 in the thickness direction is located above the first upper surface 72 located on the same plane as the upper surface 10a in the thickness direction of the substrate 10 and the upper surface 72 in the thickness direction of the sleeve 70. It has a two-stage structure with a second upper surface 73 close to the ceramic layer 50, and the edge portion 2A of the laminated body 2 is arranged on the first upper surface 72 in a plan view.
  • the stress generated by the thermal expansion of the filler 80 filled between the end surface 2b of the laminate 2 and the outer surface 70a of the sleeve 70 due to the heat generated when the ceramic layer 50 is formed is dispersed. It is possible to prevent the ceramic layer 50 (particularly the ceramic base layer 51) from being cracked due to the above stress.
  • the ceramic layer 50 has a ceramic base layer 51 and a ceramic surface layer 52 formed on the upper surface 51a of the ceramic base layer 51 and having irregularities, whereby a desired adsorption force is obtained. Can be controlled to.
  • the withstand voltage resistance is further improved.
  • a method of manufacturing the electrostatic chuck device 1 of the present embodiment will be described with reference to FIG.
  • a metal such as copper is vapor-deposited on the surface of the first insulating organic film 41 (the upper surface of the first insulating organic film 41 in the thickness direction) 41a to form a thin metal film. After that, etching is performed to pattern the metal thin film into a predetermined shape to form the internal electrode 20.
  • the second insulating organic film 42 is attached to the upper surface 20a of the internal electrode 20 via the second adhesive layer 32.
  • the first adhesive layer 31 is formed on the surface of the first insulating organic film 41 opposite to the surface on which the internal electrode 20 is formed, and the first adhesive layer 31 and the first insulation are formed.
  • a laminate 2 in which the sex organic film 41, the internal electrode 20, the second adhesive layer 32, and the second insulating organic film 42 are laminated is obtained.
  • a laser beam is irradiated from above the surface of the laminated body 2 (the surface of the second insulating organic film 42) to form holes in the laminated body in accordance with the through holes 60 in the substrate 10.
  • a sleeve 70 having a two-stage structure of the first upper surface 72 and the second upper surface 73 is joined in the through hole 60.
  • the laminated body 2 having holes is joined to the surface 10a of the substrate 10 and the first upper surface 72 of the sleeve 70 via the first adhesive layer 31.
  • the intermediate layer 90 is formed on the entire outer surface of the laminate 2 laminated on the surface 10a of the substrate 10 and the first upper surface 72 of the sleeve 70 and on the second upper surface 73 of the sleeve 70, and then the intermediate layer 90.
  • the ceramic base layer 51 is formed so as to cover the entire outer surface of the ceramic base layer 51.
  • the method of forming the ceramic base layer 51 is, for example, a method of applying a slurry containing a material constituting the ceramic base layer 51 to the entire outer surface of the intermediate layer 90 and sintering the ceramic base layer 51 to form the ceramic base layer 51. Examples thereof include a method of forming the ceramic base layer 51 by spraying the material constituting the 51 onto the entire outer surface of the intermediate layer 90.
  • thermal spraying is a method of forming a film by heating and melting a material to be a coating film (ceramic base layer 51 in this embodiment) and then injecting it into an object to be treated using a compressed gas.
  • the ceramic surface layer 52 is formed on the upper surface 51a of the ceramic base layer 51.
  • the upper surface 51a of the ceramic base layer 51 is masked in a predetermined shape, and then the material constituting the ceramic surface layer 52 is sprayed onto the upper surface 51a of the ceramic base layer 51 to form ceramics.
  • Method of forming the surface layer 52 The material constituting the ceramic surface layer 52 is sprayed on the entire upper surface 51a of the ceramic base layer 51 to form the ceramic surface layer 52, and then the ceramic surface layer 52 is scraped by a blast treatment to form the ceramic surface layer 52. Examples thereof include a method of forming the ceramic into a concave-convex shape.
  • the electrostatic chuck device 1 of the present embodiment can be manufactured.
  • Example 1 As the first insulating organic film 41, copper was plated on one side of a polyimide film having a film thickness of 12.5 ⁇ m (trade name: Kapton, manufactured by Toray DuPont) to a thickness of 9 ⁇ m. After applying a photoresist to the surface of the copper foil, a development process was performed after pattern exposure, and unnecessary copper foil was removed by etching. Then, by cleaning the copper foil on the polyimide film, the photoresist was removed and the internal electrode 20 was formed. On the internal electrode 20, an insulating adhesive sheet semi-cured by drying and heating was laminated as a second adhesive layer 32.
  • a polyimide film having a film thickness of 12.5 ⁇ m trade name: Kapton, manufactured by Toray DuPont
  • the insulating adhesive sheet 27 parts by mass of bismaleimide resin, 3 parts by mass of diaminosiloxane, 20 parts by mass of resolphenol resin, 10 parts by mass of biphenyl epoxy resin, and 240 parts by mass of ethyl acrylate-butyl acrylate-acrylonitrile copolymer were used. , A sheet-like product obtained by mixing and dissolving in an appropriate amount of tetrahydrofuran was used. Then, as the second insulating organic film 42, a polyimide film having a thickness of 12.5 ⁇ m (trade name: Kapton, manufactured by Toray DuPont) was attached, and a laminate 2 was obtained by heat treatment. The thickness of the second adhesive layer 32 after drying was 20 ⁇ m.
  • the semi-cured insulating adhesive sheet as the first adhesive layer 31 is applied. Sheets made of an insulating adhesive having the same composition were laminated, and holes were formed in accordance with the through holes 60 in the substrate 10 by a laser beam.
  • the substrate 10 has a two-stage structure of a first upper surface 72 and a second upper surface 73 in the through hole 60, and is made of alumina (Al 2 O 3). ), The sleeve 70 formed in) was joined. Then, the laminate 2 was attached to the aluminum substrate 10 and adhered by heat treatment. The thickness of the first adhesive layer 31 after drying was 10 ⁇ m.
  • the paint was sprayed on the surface of the second insulating organic film 42 of the laminate adhered to the substrate 10 and then heat-dried to form the intermediate layer 90.
  • the thickness of the intermediate layer 90 after drying on the surface of the second insulating organic film 42 was 10 ⁇ m.
  • a powder of alumina (Al 2 O 3 ) (average particle size: 8 ⁇ m) was sprayed onto the upper surface of the intermediate layer 50 by a plasma spraying method to form a ceramic base layer 51 having a thickness of 50 ⁇ m.
  • the above-mentioned alumina (Al 2 O 3 ) powder (average particle size: 8 ⁇ m) is sprayed onto the surface of the ceramic base layer 51 to make it thicker.
  • a ceramic surface layer 52 having a size of 15 ⁇ m was formed.
  • the adsorption surface of the ceramic surface layer 52 that adsorbs the object to be adsorbed was surface-ground with a diamond grindstone to obtain the electrostatic chuck device of Example 1 shown in FIG.
  • the unevenness on the outer surface of the ceramic layer 50 formed by the ceramic surface layer 52 is omitted.
  • the edge portion 2A of the laminated body 2 is arranged on the first upper surface 72 of the sleeve 70, and the horizontal length of the edge portion 2A on the first upper surface 72 is the first. It was 75% of the length from the outer surface 70a between the first upper surface 72 and the second upper surface 73 to the outer edge 72a of the first upper surface 72 with reference to the outer edge 72a of the upper surface 72 of 1.
  • the presence or absence of cracks in the ceramic layer 50 was visually confirmed. The case where no cracks occurred was evaluated as " ⁇ ", and the case where cracks occurred was evaluated as "x". The results are shown in Table 1.
  • the horizontal length of the edge portion 2A on the first upper surface 72 is between the first upper surface 72 and the second upper surface 73 with reference to the outer edge 72a of the first upper surface 72.
  • Example 1 except that the edge portion 2A of the laminated body 2 is arranged on the first upper surface 72 of the sleeve 70 so as to be 30% of the length from the outer side surface 70a to the outer edge 72a of the first upper surface 72.
  • the electrostatic chuck device of Example 2 shown in FIG. 4 was obtained. With respect to the obtained electrostatic chuck device, the presence or absence of cracks in the ceramic layer 50 was confirmed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 1 The electrostatic chuck device of Comparative Example 1 shown in FIG. 5 is the same as that of Example 1 except that the edge portion 2A of the laminated body 2 is not arranged on the first upper surface 72 of the sleeve 70 in the first embodiment. Got With respect to the obtained electrostatic chuck device, the presence or absence of cracks in the ceramic layer 50 was confirmed in the same manner as in Example 1. The results are shown in Table 1.
  • the upper surface 71 of the sleeve 70 has a two-stage structure of a first upper surface 72 and a second upper surface 73, and the edge portion 2A of the laminated body 2 is arranged on the first upper surface 72 to form a ceramic layer. It was confirmed that the formation of cracks in 50 could be suppressed.
  • through holes such as gas supply holes (lift pin holes) are provided so as to penetrate the substrate and the laminate in the thickness direction, and the sleeve is inserted into the through holes to obtain the thickness of the sleeve.
  • the upper surface in the longitudinal direction is a first upper surface located on the same plane as the upper surface in the thickness direction of the substrate, and a second upper surface located above the first upper surface in the thickness direction of the sleeve and close to the ceramic layer. It has a two-stage structure with the upper surface of the laminated body, and the edge portion of the laminated body is arranged on the first upper surface in a plan view.
  • the stress generated by the thermal expansion of the filler filled between the end face of the laminate and the outer surface of the sleeve due to the heat generated when the ceramic layer is formed is dispersed, and the ceramic layer is generated by the above stress. It is possible to suppress the occurrence of cracks in the ceramic.
  • Electrostatic chuck device 2 Laminated body 10 Substrate 20 Internal electrode 30 Adhesive layer 31 First adhesive layer 32 Second adhesive layer 40 Insulating organic film 41 First insulating organic film 42 Second insulating property Organic film 50 Ceramic layer 51 Ceramic base layer 52 Ceramic surface layer 60 Through hole 70 Sleeve 71 Upper surface 72 First upper surface 73 Second upper surface 75 Through hole 80 Filler 90 Intermediate layer

Abstract

基板(10)と、基板(10)の厚さ方向の上面に積層された積層体(2)と、積層体(2)の厚さ方向の上面に積層されたセラミックス層(50)とを備える静電チャック装置(1)において、基板(10)及び積層体(2)を厚さ方向に貫通する貫通穴(60)に絶縁性材料からなるスリーブ(70)が挿入され、スリーブ(70)の厚さ方向の上面(71)は、基板(10)の厚さ方向の上面(10a)と同一面上に位置する第1の上面(72)と、それよりもスリーブ(70)の厚さ方向の上方に位置しセラミックス層(50)に近接する第2の上面(73)との2段構造をなし、平面視において積層体(2)の縁部(2A)が第1の上面(72)上に配置されている。

Description

静電チャック装置、静電チャック装置用スリーブ
 本発明は、静電チャック装置、およびこれに用いられる静電チャック装置用スリーブに関する。
 本願は、2020年3月26日に、日本に出願された特願2020-055844号に基づき優先権を主張し、その内容をここに援用する。
 半導体ウエハを使用して半導体集積回路を製造する場合や、ガラス基板、フィルム等の絶縁性基板を使用した液晶パネルを製造する場合には、半導体ウエハ、ガラス基板、絶縁性基板等の基材を所定部位に吸着保持する必要がある。そのため、それらの基材を吸着保持するために、機械的方法によるメカニカルチャックや真空チャック等が用いられていた。しかしながら、これらの保持方法は、基材(被吸着体)を均一に保持することが困難である、真空中で使用することができない、試料表面の温度が上昇し過ぎる等の問題があった。そこで、近年、被吸着体の保持には、これらの問題を解決することができる静電チャック装置が用いられている。
 静電チャック装置は、内部電極となる導電性支持部材と、それを被覆する誘電性材料からなる誘電層と、を主要部として備える。この主要部により被吸着体を吸着させることができる。静電チャック装置内の内部電極に電圧を印加して、被吸着体と導電性支持部材との間に電位差を生じさせると、誘電層の間に静電気的な吸着力が発生する。これにより、被吸着体は導電性支持部材に対しほぼ平坦に支持される。
 従来の静電チャック装置としては、内部電極上に絶縁性有機フィルムを積層して、誘電層を形成した静電チャック装置が知られている。このような静電チャック装置には、保持している半導体ウエハをガスで冷却するための貫通穴が設けられている(例えば、特許文献1参照)。
 このような静電チャック装置において、例えば、基板と、基板上に積層され、内部電極を含む積層体と、積層体の厚さ方向の上面に積層されたセラミックス層と、半導体ウエハをガスで冷却するために形成された貫通穴に挿入された絶縁スリーブと、積層体と絶縁スリーブとの間に設けられた充填層と、を備える構成が使用されることがある。
国際公開第2004/084298号
 前記静電チャック装置では、複数の線膨張係数の異なる材料の界面が、積層体と絶縁スリーブの近傍に集中することがあり、積層体上に、セラミックス層の材料を溶射した際に、充填層が熱膨張し、応力が1点に集中することで、セラミックス層に亀裂が生じることがあった。
 本発明は、上記事情に鑑みてなされたものであって、セラミックス層に亀裂が生じることを抑制した静電チャック装置、およびこれに用いられる静電チャック装置用スリーブを提供することを課題とする。
 本発明は、以下の態様を有する。
[1]基板と、該基板上に積層された内部電極を少なくとも含む積層体と、該積層体の厚さ方向の上面に積層されたセラミックス層と、を備え、前記基板および前記積層体を厚さ方向に貫通する貫通穴が設けられ、前記貫通穴に絶縁性材料からなるスリーブが挿入され、前記スリーブの厚さ方向の上面は、前記基板の厚さ方向の上面と同一面上に位置する第1の上面と、該第1の上面よりも前記スリーブの厚さ方向の上方に位置し、前記セラミックス層に近接する第2の上面との2段構造をなし、平面視において、前記積層体の縁部が前記第1の上面上に配置されていることを特徴とする静電チャック装置。
[2]前記セラミックス層は、下地層と、該下地層の上面に形成され、凹凸を有する表層と、を有することを特徴とする[1]に記載の静電チャック装置。
[3]静電チャック装置に用いられるスリーブであって、前記スリーブの厚さ方向の上面に、第1の上面と、該第1の上面よりも前記スリーブの厚さ方向の上方に位置する第2の上面とを有することを特徴とする静電チャック装置用スリーブ。
 本発明によれば、セラミックス層を形成する際に発生する熱により、内部電極および絶縁性有機フィルムを少なくとも含む積層体の端面とスリーブの外側面との間に充填された充填剤が熱膨張して発生する応力を分散させて、前記の応力によりセラミックス層に亀裂が生じることを抑制した静電チャック装置、およびこれに用いられる静電チャック装置用スリーブを提供することができる。
本発明に係る静電チャック装置の概略構成を示し、静電チャック装置の高さ方向に沿う断面図である。 本発明に係る静電チャック装置の概略構成を示し、図1に示す領域αを拡大した図である。 実施例1の静電チャック装置の概略構成を示し、図1に示す領域αに相当する領域を拡大した図である。 実施例2の静電チャック装置の概略構成を示し、図1に示す領域αに相当する領域を拡大した図である。 比較例1の静電チャック装置の概略構成を示し、図1に示す領域αに相当する領域を拡大した図である。 本発明に係る静電チャック装置用スリーブの概略構成を示す斜視図である。 比較例2の静電チャック装置の概略構成を示し、図1に示す領域αに相当する領域を拡大した図である。
 以下、本発明を適用した実施形態の静電チャック装置について説明する。なお、以下の説明で用いる図面において、各構成要素の寸法比率等が実際と同じであるとは限らない。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[静電チャック装置]
(第1の実施形態)
 図1は、本実施形態の静電チャック装置の概略構成を示し、静電チャック装置の高さ方向に沿う断面図である。図2は、本発明に係る静電チャック装置の概略構成の第1の実施形態を示し、図1に示す領域αを拡大した図である。
 図1に示すように、本実施形態の静電チャック装置1は、基板10と、複数の内部電極20を少なくとも含む積層体2と、積層体2の厚さ方向の上面2aに積層されたセラミックス層50と、を備える。
 本実施形態の静電チャック装置1は、積層体2が、内部電極20の他に、接着剤層30および絶縁性有機フィルム40を含んでいてもよい。接着剤層30は、第1の接着剤層31と第2の接着剤層32からなる。絶縁性有機フィルム40は、第1の絶縁性有機フィルム41と第2の絶縁性有機フィルム42からなる。
 本実施形態の静電チャック装置1では、基板10の表面(基板10の厚さ方向の上面)10aにて、第1の接着剤層31と、第1の絶縁性有機フィルム41と、内部電極20と、第2の接着剤層32と、第2の絶縁性有機フィルム42と、中間層90と、セラミックス層50とがこの順に積層されている。
 本実施形態の静電チャック装置1では、内部電極20、第1の接着剤層31、第2の接着剤層32、第1の絶縁性有機フィルム41および第2の絶縁性有機フィルム42を含む構造を積層体2と言う。
 本実施形態の静電チャック装置1では、図1に示すように、積層体2が、内部電極20の厚さ方向の両面(内部電極20の厚さ方向の上面20a、内部電極20の厚さ方向の下面20b)側にそれぞれ設けられた絶縁性有機フィルム40を少なくとも含んでいてもよい。詳細には、内部電極20の厚さ方向の上面20a側に、第2の絶縁性有機フィルム42が設けられていてもよく、内部電極20の厚さ方向の下面20b側に、第1の絶縁性有機フィルム41が設けられていてもよい。
 第1の絶縁性有機フィルム41の内部電極20とは反対側の面(第1の絶縁性有機フィルム41の下面41b)に第1の接着剤層31が設けられている。第1の絶縁性有機フィルム41および第1の絶縁性有機フィルム41の厚さ方向の上面41aに設けられた内部電極20と第2の絶縁性有機フィルム42の間に第2の接着剤層32が設けられている。
 本実施形態の静電チャック装置1では、基板10および積層体2を厚さ方向に貫通する貫通穴60が設けられている。貫通穴60には、絶縁性材料からなるスリーブ70が挿入されている。
 貫通穴60は、セラミックス層50をガスで冷却するためや、静電チャック装置1に被着される被吸着体をリフトアップするためのリフトピン等を挿入するための穴である。
 スリーブ70の厚さ方向の上面71は、基板10の厚さ方向の上面10aと同一面上に位置する第1の上面72と、第1の上面72よりもスリーブ70の厚さ方向の上方に位置し、セラミックス層50に近接する第2の上面73との2段構造をなしている。すなわち、スリーブ70の第1の上面72は、基板10の厚さ方向において、基板10の上面10aと高さが等しい。
 静電チャック装置1の平面視において、図2に示すように、積層体2の縁部2Aがスリーブ70の第1の上面72上に配置されている。スリーブ70の第1の上面72上に配置される縁部2Aの水平方向における長さの範囲は、特に限定されないが、第1の上面72の外縁72aを基準として、第1の上面72と第2の上面73の間の外側面70aから第1の上面72の外縁72aまでの長さの10%~90%であることが好ましく、30%~70%であることがより好ましい。
 積層体2の端面2b(縁部2Aの外側面)とスリーブ70の外側面70a(第1の上面72と第2の上面73の間の外側面70a)との間には、充填剤80が充填されていてもよく、空隙であってもよい。
 図1に示すように、セラミックス層50は、セラミックス下地層51と、セラミックス下地層51の上面(セラミックス下地層51の厚さ方向の上面)51aに形成され、凹凸を有するセラミックス表層52と、を有することが好ましい。また、セラミックス下地層51には、その厚さ方向に貫通する貫通穴51bが設けられている。貫通穴51bの内径(セラミックス下地層51の厚さ方向に対して垂直な径)は、貫通穴60の内径(基板10および積層体2の厚さ方向に対して垂直な径)よりも小さい。
 内部電極20は、第1の絶縁性有機フィルム41または第2の絶縁性有機フィルム42に接していてもよい。また、内部電極20は、図1に示すように、第2の接着剤層32の内部に形成されていてもよい。内部電極20の配置は、適宜設計することができる。
 複数の内部電極20は、図1に示すように、それぞれ独立している場合、同一極性の電圧を印加するだけではなく、極性の異なる電圧を印加することもできる。内部電極20は、導電体、半導体および絶縁体等の被吸着体を吸着することができれば、その電極パターンや形状は特に限定されない。また、内部電極20は独立していなくてもよい。
 図1において、本実施形態の静電チャック装置1は、基板10およびスリーブ70上に内部電極20を少なくとも含む積層体2が積層され、さらに積層体2の上面2aにセラミックス層50が積層されているが、基板10はなくてもよい。
 基板10としては、特に限定されないが、セラミックス基板、炭化ケイ素基板、アルミニウムやステンレス等からなる金属基板等が挙げられる。
 内部電極20としては、電圧を印加した際に静電吸着力を発現できる導電性物質からなるものであれば特に限定されない。内部電極20としては、例えば、銅、アルミニウム、金、銀、白金、クロム、ニッケル、タングステン等の金属からなる薄膜、および前記の金属から選択される少なくとも2種の金属からなる薄膜が好適に用いられる。このような金属の薄膜としては、蒸着、メッキ、スパッタリング等により成膜されたものや、導電性ペーストを塗布乾燥して成膜されたもの、具体的には、銅箔等の金属箔が挙げられる。
 第2の接着剤層32の厚さが、内部電極20の厚さよりも大きくなっていれば、内部電極20の厚さは特に限定されない。内部電極20の厚さは、20μm以下であることが好ましい。内部電極20の厚さが、20μm以下であれば、第2の絶縁性有機フィルム42を形成する際に、その上面42aに凹凸が生じ難い。その結果、第2の絶縁性有機フィルム42上にセラミックス層50を形成する際や、セラミックス層50を研磨する際に、不良が生じ難い。
 内部電極20の厚さは、1μm以上であることが好ましい。内部電極20の厚さが1μm以上であれば、内部電極20と、第1の絶縁性有機フィルム41または第2の絶縁性有機フィルム42とを接合する際に、十分な接合強度が得られる。
 複数の内部電極20のそれぞれに、極性の異なる電圧を印加する場合、隣接する内部電極20の間隔(内部電極20の厚さ方向と垂直な方向の間隔)は、2mm以下であることが好ましい。隣接する内部電極20の間隔が2mm以下であれば、隣接する内部電極20の間に十分な静電力が発生し、十分な吸着力が発生する。
 内部電極20から被吸着体までの距離、すなわち、内部電極20の上面20aからセラミックス表層52上に吸着される被吸着体までの距離(内部電極20の上面20aに存在する、第2の接着剤層32、第2の絶縁性有機フィルム42、セラミックス下地層51およびセラミックス表層52の厚さの合計)は、50μm~125μmであることが好ましい。内部電極20から被吸着体までの距離が50μm以上であれば、第2の接着剤層32、第2の絶縁性有機フィルム42、セラミックス下地層51およびセラミックス表層52からなる積層体の絶縁性を確保することができる。一方、内部電極20から被吸着体までの距離が125μm以下であれば、十分な吸着力が発生する。
 接着剤層30を構成する接着剤としては、エポキシ樹脂、フェノール樹脂、スチレン系ブロック共重合体、ポリアミド樹脂、アクリロニトリル-ブタジエン共重合体、ポリエステル樹脂、ポリイミド樹脂、シリコーン樹脂、アミン化合物、ビスマレイミド化合物等から選択される1種または2種以上の樹脂を主成分とする接着剤が用いられる。
 エポキシ樹脂としては、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、テトラグリシジルフェノールアルカン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジグリシジルジフェニルメタン型エポキシ樹脂、ジグリシジルビフェニル型エポキシ樹脂等の2官能基または多官能エポキシ樹脂等が挙げられる。これらの中でも、ビスフェノール型エポキシ樹脂が好ましい。ビスフェノール型エポキシ樹脂の中でも、ビスフェノールA型エポキシ樹脂が特に好ましい。また、エポキシ樹脂を主成分とする場合、必要に応じて、イミダゾール類、第3アミン類、フェノール類、ジシアンジアミド類、芳香族ジアミン類、有機過酸化物等のエポキシ樹脂用の硬化剤や硬化促進剤を配合することもできる。
 フェノール樹脂としては、アルキルフェノール樹脂、p-フェニルフェノール樹脂、ビスフェノールA型フェノール樹脂等のノボラックフェノール樹脂、レゾールフェノール樹脂、ポリフェニルパラフェノール樹脂等が挙げられる。
 スチレン系ブロック共重合体としては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレン-プロピレン-スチレン共重合体(SEPS)等が挙げられる。
 接着剤層30(第1の接着剤層31、第2の接着剤層32)の厚さは、特に限定されないが、5μm~20μmであることが好ましく、10μm~20μmであることがより好ましい。接着剤層30(第1の接着剤層31、第2の接着剤層32)の厚さが5μm以上であれば、接着剤として十分に機能する。一方、接着剤層30(第1の接着剤層31、第2の接着剤層32)の厚さが20μm以下であれば、吸着力を損なうことなく、内部電極20の電極間絶縁を確保することができる。
 絶縁性有機フィルム40を構成する材料としては、特に限定されず、例えば、ポリエチレンテレフタレート等のポリエステル類、ポリエチレン等のポリオレフィン類、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルイミド、トリアセチルセルロース、シリコーンゴム、ポリテトラフルオロエチレン等が用いられる。これらの中でも、絶縁性に優れることから、ポリエステル類、ポリオレフィン類、ポリイミド、シリコーンゴム、ポリエーテルイミド、ポリエーテルサルフォン、ポリテトラフルオロエチレンが好ましく、ポリイミドがより好ましい。ポリイミドフィルムとして、例えば、東レ・デュポン社製のカプトン(商品名)、宇部興産社製のユーピレックス(商品名)等が用いられる。
 絶縁性有機フィルム40(第1の絶縁性有機フィルム41、第2の絶縁性有機フィルム42)の厚さは、特に限定されないが、10μm~100μmであることが好ましく、10μm~50μmであることがより好ましい。絶縁性有機フィルム40(第1の絶縁性有機フィルム41、第2の絶縁性有機フィルム42)の厚さが10μm以上であれば、絶縁性を確保することができる。一方、絶縁性有機フィルム40(第1の絶縁性有機フィルム41、第2の絶縁性有機フィルム42)の厚さが100μm以下であれば、十分な吸着力が発生する。
 また、絶縁性有機フィルム40(第1の絶縁性有機フィルム41、第2の絶縁性有機フィルム42)の替わりに、セラミックス材からなるセラミックス板を用いてもよい。
 貫通穴60は、基板10および積層体2を厚さ方向に貫通するが、その平面視の形状(セラミックス下地層51の上面51a側から見た形状)は特に限定されない。貫通穴60の平面視の形状としては、円形状、矩形状等が挙げられる。貫通穴60の内径は、特に限定されないが、例えば、5mm~15mmであることが好ましく、5mm~13mmであることがより好ましい。貫通穴60の内径とは、貫通穴60の平面視の形状が円形状である場合には、貫通穴60の直径のことであり、貫通穴60の平面視の形状が円形状以外である場合には、貫通穴60の最も大きい部分の長さのことである。
 スリーブ70を構成する絶縁性材料としては、例えば、酸化アルミニウム(アルミナ)、酸化イットリウム(イットリア)、酸化ジルコニウム(ジルコニア)、樹脂等が挙げられる。
 スリーブ70は、図6に示すように柱状の部材であり、スリーブの厚さ方向の上面に、第1の上面72と、該第1の上面よりも前記スリーブの厚さ方向の上方に位置する第2の上面73とを有する。スリーブ70は、柱状の中心部近傍に貫通孔75を有する。貫通孔75は、前記のセラミックス層50をガスで冷却するためや、静電チャック装置1に被着される被吸着体をリフトアップするためのリフトピン等を挿入するための孔である。スリーブ70は、その長手方向と垂直な断面形状は、特に限定されず、前記の貫通穴60の平面視の形状に応じて適宜設定される。
 スリーブ70における貫通孔75の直径は、特に限定されないが、例えば、0.5mm~5mmであることが好ましく、0.3mm~3mmであることがより好ましい。
 スリーブ70は、前記の絶縁性材料を金型により成形して製造したり、柱状の絶縁性材料を切削して製造することができる。
 第1の上面72から下方(スリーブ70の厚さ方向)のスリーブ70の外径は、特に限定されないが、例えば、4mm~15mmであることが好ましく、4mm~10mmであることがより好ましい。また、第1の上面72から上方(スリーブ70の厚さ方向)のスリーブ70の外径は、特に限定されないが、例えば、1mm~7mmであることが好ましく、2mm~4mmであることがより好ましい。スリーブ70の外径とは、スリーブ70の長手方向と垂直な断面形状が円形状である場合には、スリーブ70の長手方向と垂直な断面の直径のことであり、スリーブ70の長手方向と垂直な断面形状が円形状以外である場合には、スリーブ70の長手方向と垂直な断面の最も大きい部分の長さのことである。
 スリーブ70の第1の上面72の大きさは、特に限定されず、例えば、第1の上面71と第2の上面72の間の外側面70aから第1の上面72の外縁72aまでの長さが1mm~5mmであることが好ましく、1mm~3mmであることがより好ましい。
 充填剤80としては、接着剤が用いられている。
 接着剤としては、特に限定されないが、例えば、エポキシ樹脂、ポリイミド系樹脂、アクリル系樹脂、シラン系樹脂、シリコーン樹脂等が挙げられる。
 セラミックス層50を構成する材料としては、特に限定されず、例えば、窒化ホウ素、窒化アルミニウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム、酸化ケイ素、酸化スズ、酸化インジウム、石英ガラス、ソーダガラス、鉛ガラス、硼珪酸ガラス、窒化ジルコニウム、酸化チタン等が用いられ、酸化アルミニウムが好ましく用いられる。これらの材料は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの材料は、平均粒子径が1μm~25μmの粉体であることが好ましい。このような粉体を用いることにより、セラミックス層50の空隙を減少させ、セラミックス層50の耐電圧を向上させることができる。
 セラミックス下地層51の厚さは、10μm~80μmであることが好ましく、40μm~60μmであることがより好ましい。セラミックス下地層51の厚さが10μm以上であれば、十分な耐プラズマ性および耐電圧性を示す。一方、セラミックス下地層51の厚さが80μm以下であれば、十分な吸着力が発生する。
 セラミックス表層52の厚さは、5μm~20μmであることが好ましい。セラミックス表層52の厚さが5μm以上であれば、セラミックス表層52の全域にわたって、凹凸を形成できる。一方、セラミックス表層52の厚さが20μm以下であれば、十分な吸着力が発生する。
 セラミックス表層52は、その表面を研磨することによって、その吸着力を向上することができ、その表面の凹凸を表面粗さRaとして調整することができる。
 ここで、表面粗さRaとは、JIS B0601-1994に規定される方法により測定した値を意味する。
 セラミックス表層52の表面粗さRaは、0.05μm~0.5μmであることが好ましい。セラミックス表層52の表面粗さRaが前記の範囲内であれば、被吸着体を良好に吸着することができる。セラミックス表層52の表面粗さRaが大きくなると、被吸着体とセラミックス表層52との接触面積が小さくなるため、吸着力も小さくなる。
 本実施形態の静電チャック装置1では、図1に示すように、少なくとも内部電極20を含む積層体2の厚さ方向の上面2a(第2の絶縁性有機フィルム42の上面42a)に、中間層90を介してセラミックス層50が積層されていてもよい。
 中間層90は、有機絶縁性樹脂および無機絶縁性樹脂の少なくとも一方と、無機充填剤および繊維状充填剤の少なくとも一方と、を含むことが好ましい。
 有機絶縁性樹脂としては、特に限定されず、例えば、ポリイミド系樹脂、エポキシ系樹脂、アクリル系樹脂等が挙げられる。
 無機絶縁性樹脂としては、特に限定されず、例えば、シラン系樹脂、シリコーン系樹脂等が挙げられる。
 中間層90には、ポリシラザンを含有させることが好ましい。ポリシラザンとしては、例えば、当該分野で公知のものが挙げられる。ポリシラザンは、有機ポリシラザンであってもよく、無機ポリシラザンであってもよい。これらの材料は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 中間層90中の無機充填剤の含有量は、ポリシラザン100質量部に対して100質量部~300質量部であることが好ましく、150質量部~250質量部であることがより好ましい。中間層90中の無機充填剤の含有量が前記範囲内であれば、中間層90の硬化物である樹脂膜表面に無機充填剤粒子が凹凸を形成することができるため、溶射材の粉末が無機充填剤粒子間に食い込み易く、前記樹脂膜表面に溶射材を強固に接着させることができる。
 無機充填剤としては、特に限定されないが、アルミナ、シリカおよびイットリアからなる群から選択される少なくとも1種であることが好ましく、アルミナがより好ましい。
 無機充填剤は、球形粉体および不定形粉体の少なくとも一方であることが好ましい。なお、球形粉体とは、粉体粒子の角部を丸めた球状体のことである。また、不定形粉体とは、破砕状、板状、鱗片状、針状など形状が一定な形を取らないもののことである。
 無機充填剤の平均粒子径は、1μm~20μmであることが好ましい。無機充填剤が球形粉体の場合、その直径(外径)を粒子径とし、無機充填剤が不定形粉体の場合、その形状の最も長い箇所を粒子径とする。
 繊維状充填剤は、植物繊維、無機繊維および繊維化された有機樹脂からなる群から選択される少なくとも1種であることが好ましい。
 植物繊維としては、パルプ等が挙げられる。
 無機繊維としては、アルミナからなる繊維等が挙げられる。
 繊維化された有機樹脂としては、アラミドやテフロン(登録商標)等からなる繊維が挙げられる。
 無機充填剤は、繊維状充填剤と併用することが好ましく、中間層90全体(100体積%)に対する、無機充填剤と繊維状充填剤の合計含有量は10体積%~80体積%であることが好ましい。中間層90における無機充填剤と繊維状充填剤の合計含有量が上記の範囲内であれば、溶射により、中間層90上にセラミックス層を均一に形成することができる。
 中間層90の厚さは、1μm~40μmであることが好ましく、5μm~20μmであることがより好ましい。中間層90の厚さが1μm以上であれば、局所的に中間層90が薄くなることがなく、溶射により、中間層90上にセラミックス層50を均一に形成することができる。一方、中間層90の厚さが40μm以下であれば、十分な吸着力が発生する。
 以上説明した本実施形態の静電チャック装置1においては、貫通穴60が、基板10および積層体2を厚さ方向に貫通して設けられ、貫通穴60にスリーブ70が挿入され、スリーブ70の厚さ方向の上面71は、基板10の厚さ方向の上面10aと同一面上に位置する第1の上面72と、第1の上面72よりもスリーブ70の厚さ方向の上方に位置し、セラミックス層50に近接する第2の上面73との2段構造をなし、平面視において、積層体2の縁部2Aが第1の上面72上に配置されている。したがって、セラミックス層50を形成する際に発生する熱によって積層体2の端面2bとスリーブ70の外側面70aとの間に充填された充填剤80が熱膨張して発生する応力を分散させて、前記の応力によりセラミックス層50(特にセラミックス下地層51)に亀裂が生じることを抑制できる。
 本実施形態の静電チャック装置1において、セラミックス層50が、セラミックス下地層51と、セラミックス下地層51の上面51aに形成され、凹凸を有するセラミックス表層52と、を有することにより、所望の吸着力に制御することができる。
 本実施形態の静電チャック装置1において、絶縁性有機フィルムが、ポリイミドフィルムである場合に、耐電圧性がより向上する。
[静電チャックの製造方法]
 図1を参照して、本実施形態の静電チャック装置1の製造方法を説明する。
 第1の絶縁性有機フィルム41の表面(第1の絶縁性有機フィルム41の厚さ方向の上面)41aに、銅等の金属を蒸着して、金属の薄膜を形成する。その後、エッチングを行って、金属の薄膜を所定の形状にパターニングして、内部電極20を形成する。
 次いで、内部電極20の上面20aに、第2の接着剤層32を介して、第2の絶縁性有機フィルム42を貼着する。
 次いで、第1の絶縁性有機フィルム41の内部電極20が形成された面とは反対側の面に、第1の接着剤層31を形成し、第1の接着剤層31、第1の絶縁性有機フィルム41、内部電極20、第2の接着剤層32および第2の絶縁性有機フィルム42が積層された積層体2を得る。
 次いで、上記積層体2の表面(第2の絶縁性有機フィルム42の表面)上からレーザー光線を照射して、積層体に基板10における貫通穴60にあわせて穴を形成する。
 一方、基板10には、ドリル等により貫通穴60を形成した後、貫通穴60内に、上記の第1の上面72と第2の上面73との2段構造を有するスリーブ70を接合する。
 次いで、穴を有する積層体2を第1の接着剤層31を介して、基板10の表面10aとスリーブ70の第1の上面72に接合する。
 次いで、基板10の表面10aとスリーブ70の第1の上面72に積層された積層体2の外側面全面およびスリーブ70の第2の上面73上に、中間層90を形成した後、中間層90の外面全面を覆うように、セラミックス下地層51を形成する。
 セラミックス下地層51を形成する方法は、例えば、セラミックス下地層51を構成する材料を含むスラリーを中間層90の外面全面に塗布し、焼結してセラミックス下地層51を形成する方法、セラミックス下地層51を構成する材料を中間層90の外面全面に溶射してセラミックス下地層51を形成する方法等が挙げられる。
 ここで、溶射とは、被膜(本実施形態では、セラミックス下地層51)となる材料を加熱溶融後、圧縮ガスを用いて被処理体へ射出することにより成膜する方法のことである。
 次いで、セラミックス下地層51の上面51aに、セラミックス表層52を形成する。
 セラミックス表層52を形成する方法は、例えば、セラミックス下地層51の上面51aに、所定の形状のマスキングを施した後、セラミックス表層52を構成する材料をセラミックス下地層51の上面51aに溶射してセラミックス表層52を形成する方法、セラミックス表層52を構成する材料をセラミックス下地層51の上面51a全面に溶射してセラミックス表層52を形成した後、そのセラミックス表層52を、ブラスト処理により削って、セラミックス表層52を凹凸形状に形成する方法等が挙げられる。
 以上の工程により、本実施形態の静電チャック装置1を作製することができる。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
 第1の絶縁性有機フィルム41として、膜厚12.5μmのポリイミドフィルム(商品名:カプトン、東レ・デュポン社製)の片面に銅を9μmの厚さでメッキした。その銅箔表面にフォトレジストを塗布した後、パターン露光後に現像処理を行い、エッチングにより不要な銅箔を除去した。その後、ポリイミドフィルム上の銅箔を洗浄することにより、フォトレジストを除去し、内部電極20を形成した。この内部電極20上に、第2の接着剤層32として乾燥および加熱により半硬化させた絶縁性接着剤シートを積層した。絶縁性接着剤シートとしては、ビスマレイミド樹脂27質量部、ジアミノシロキサン3質量部、レゾールフェノール樹脂20質量部、ビフェニルエポキシ樹脂10質量部、およびエチルアクリレート-ブチルアクリレート-アクリロニトリル共重合体240質量部を、適量のテトラヒドロフランに混合溶解したものをシート状に成形したものを用いた。その後、第2の絶縁性有機フィルム42として、膜厚12.5μmのポリイミドフィルム(商品名:カプトン、東レ・デュポン社製)を貼着し、熱処理によって接着させた積層体2を得た。なお、乾燥後の第2の接着剤層32の厚さは20μmであった。
 さらに、前記積層体における第1の絶縁性有機フィルム41の内部電極20が形成された面とは反対側の面に、第1の接着剤層31として上記半硬化させた絶縁性接着剤シートと同じ組成の絶縁性接着剤からなるシートを積層し、レーザー光線により基板10における貫通穴60にあわせて穴を形成した。
 一方、基板10には、ドリル等により貫通穴60を形成した後、貫通穴60内に、第1の上面72と第2の上面73との2段構造を有し、アルミナ(Al2O3)で形成されたスリーブ70を接合した。その後、積層体2をアルミニウム製の基板10に貼着し、熱処理により接着させた。なお、乾燥後の第1の接着剤層31の厚さは10μmであった。
 次に、ポリシラザン100質量部とアルミナからなる無機充填剤(平均粒子径:3μm)200質量部とを、希釈媒体としての酢酸ブチルに混合し、さらに超音分散機により無機充填剤を均一に分散させて塗料を作製した。
 次に、前記基板10に接着させた積層体の第2の絶縁性有機フィルム42の表面に、前記塗料をスプレーした後、加熱乾燥させて、中間層90を形成した。なお、第2の絶縁性有機フィルム42の表面上の乾燥後における中間層90の厚さは10μmであった。
 次に、プラズマ溶射法によりアルミナ(Al)の粉末(平均粒子径:8μm)を前記中間層50の上面に溶射し、厚さ50μmのセラミックス下地層51を形成した。
 次いで、セラミックス下地層51の表面に、所定の形状のマスキングを施した後、上記のアルミナ(Al)の粉末(平均粒子径:8μm)をセラミックス下地層51の表面に溶射し、厚さ15μmのセラミックス表層52を形成した。
 次に、被吸着物を吸着するセラミックス表層52の吸着面をダイヤモンド砥石にて平面研削し、図3に示す実施例1の静電チャック装置を得た。図3において、セラミックス表層52により形成されるセラミックス層50の外表面における凹凸は省略されている。
 得られた静電チャック装置では、スリーブ70の第1の上面72に積層体2の縁部2Aが配置されており、第1の上面72上における縁部2Aの水平方向の長さは、第1の上面72の外縁72aを基準として、第1の上面72と第2の上面73の間の外側面70aから第1の上面72の外縁72aまでの長さの75%であった。
 得られた静電チャック装置について、目視によりセラミックス層50における亀裂の有無を確認した。亀裂が生じていない場合を「○」、亀裂が生じている場合を「×」と評価した。結果を表1に示す。
[実施例2]
 前記実施例1において、第1の上面72上における縁部2Aの水平方向の長さが、第1の上面72の外縁72aを基準として、第1の上面72と第2の上面73の間の外側面70aから第1の上面72の外縁72aまでの長さの30%となるように、スリーブ70の第1の上面72に積層体2の縁部2Aを配置したこと以外は実施例1と同様にして、図4に示す実施例2の静電チャック装置を得た。
 得られた静電チャック装置について、実施例1と同様にして、セラミックス層50における亀裂の有無を確認した。結果を表1に示す。
[比較例1]
 前記実施例1において、スリーブ70の第1の上面72に積層体2の縁部2Aを配置しなかったこと以外は実施例1と同様にして、図5に示す比較例1の静電チャック装置を得た。
 得られた静電チャック装置について、実施例1と同様にして、セラミックス層50における亀裂の有無を確認した。結果を表1に示す。
[比較例2]
 前記実施例1において、スリーブ70の上面71を2段構造とせず、スリーブ70の第1の上面72に積層体2の縁部2Aを配置しなかったこと以外は実施例1と同様にして、図7に示す比較例2の静電チャック装置100を得た。
 得られた静電チャック装置について、実施例1と同様にして、セラミックス層50における亀裂の有無を確認した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、スリーブ70の上面71を第1の上面72と第2の上面73の2段構造とし、第1の上面72に積層体2の縁部2Aを配置することにより、セラミックス層50に亀裂が生じるのを抑制できることが確認された。
 本発明の静電チャック装置によれば、ガス供給穴(リフトピン穴)等の貫通穴が、基板および積層体を厚さ方向に貫通して設けられ、貫通穴にスリーブが挿入され、スリーブの厚さ方向の上面は、基板の厚さ方向の上面と同一面上に位置する第1の上面と、第1の上面よりもスリーブの厚さ方向の上方に位置し、セラミックス層に近接する第2の上面との2段構造をなし、平面視において、積層体の縁部が第1の上面上に配置されている。したがって、セラミックス層を形成する際に発生する熱によって積層体の端面とスリーブの外側面との間に充填された充填剤が熱膨張して発生する応力を分散させて、前記の応力によりセラミックス層に亀裂が生じることを抑制できる。
1 静電チャック装置
2 積層体
10 基板
20 内部電極
30 接着剤層
31 第1の接着剤層
32 第2の接着剤層
40 絶縁性有機フィルム
41 第1の絶縁性有機フィルム
42 第2の絶縁性有機フィルム
50 セラミックス層
51 セラミックス下地層
52 セラミックス表層
60 貫通穴
70 スリーブ
71 上面
72 第1の上面
73 第2の上面
75 貫通孔
80 充填剤
90 中間層

Claims (3)

  1.  基板と、該基板上に積層された内部電極を少なくとも含む積層体と、該積層体の厚さ方向の上面に積層されたセラミックス層と、を備え、
     前記基板および前記積層体を厚さ方向に貫通する貫通穴が設けられ、
     前記貫通穴に絶縁性材料からなるスリーブが挿入され、
     前記スリーブの厚さ方向の上面は、前記基板の厚さ方向の上面と同一面上に位置する第1の上面と、該第1の上面よりも前記スリーブの厚さ方向の上方に位置し、前記セラミックス層に近接する第2の上面との2段構造をなし、
     平面視において、前記積層体の縁部が前記第1の上面上に配置されていることを特徴とする静電チャック装置。
  2.  前記セラミックス層は、下地層と、該下地層の厚さ方向の上面に形成され、凹凸を有する表層と、を有することを特徴とする請求項1に記載の静電チャック装置。
  3.  静電チャック装置に用いられるスリーブであって、前記スリーブの厚さ方向の上面に、第1の上面と、該第1の上面よりも前記スリーブの厚さ方向の上方に位置する第2の上面とを有することを特徴とする静電チャック装置用スリーブ。
PCT/JP2021/008815 2020-03-26 2021-03-05 静電チャック装置、静電チャック装置用スリーブ WO2021192935A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180019517.3A CN115244678A (zh) 2020-03-26 2021-03-05 静电吸盘装置、静电吸盘装置用套筒
JP2022509496A JP7465338B2 (ja) 2020-03-26 2021-03-05 静電チャック装置
KR1020227028170A KR20220126766A (ko) 2020-03-26 2021-03-05 정전 척 장치, 정전 척 장치용 슬리브
US17/911,440 US20230115256A1 (en) 2020-03-26 2021-03-05 Electrostatic chuck device and sleeve for electrostatic chuck device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020055844 2020-03-26
JP2020-055844 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021192935A1 true WO2021192935A1 (ja) 2021-09-30

Family

ID=77891311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008815 WO2021192935A1 (ja) 2020-03-26 2021-03-05 静電チャック装置、静電チャック装置用スリーブ

Country Status (6)

Country Link
US (1) US20230115256A1 (ja)
JP (1) JP7465338B2 (ja)
KR (1) KR20220126766A (ja)
CN (1) CN115244678A (ja)
TW (1) TW202145432A (ja)
WO (1) WO2021192935A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068044A1 (ja) * 2021-10-19 2023-04-27 東レ株式会社 樹脂組成物およびその硬化物ならびにそれを用いた積層体、静電チャックおよびプラズマ処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233434A (ja) * 1997-02-21 1998-09-02 Hitachi Ltd 静電吸着体と静電吸着装置
JP2004127956A (ja) * 2002-09-30 2004-04-22 Toto Ltd 静電チャック
JP3128562U (ja) * 2006-05-03 2007-01-18 アプライド マテリアルズ インコーポレイテッド 高アスペクト比の特徴部をエッチングするのに適したインサートなしの上部チャンバーライナー
JP2019220503A (ja) * 2018-06-15 2019-12-26 新光電気工業株式会社 静電チャック及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4219927B2 (ja) 2003-03-19 2009-02-04 東京エレクトロン株式会社 基板保持機構およびその製造方法、基板処理装置
JP4557814B2 (ja) 2005-06-09 2010-10-06 パナソニック株式会社 プラズマ処理装置
JP6263484B2 (ja) 2015-01-30 2018-01-17 日本特殊陶業株式会社 静電チャックおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233434A (ja) * 1997-02-21 1998-09-02 Hitachi Ltd 静電吸着体と静電吸着装置
JP2004127956A (ja) * 2002-09-30 2004-04-22 Toto Ltd 静電チャック
JP3128562U (ja) * 2006-05-03 2007-01-18 アプライド マテリアルズ インコーポレイテッド 高アスペクト比の特徴部をエッチングするのに適したインサートなしの上部チャンバーライナー
JP2019220503A (ja) * 2018-06-15 2019-12-26 新光電気工業株式会社 静電チャック及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068044A1 (ja) * 2021-10-19 2023-04-27 東レ株式会社 樹脂組成物およびその硬化物ならびにそれを用いた積層体、静電チャックおよびプラズマ処理装置

Also Published As

Publication number Publication date
JP7465338B2 (ja) 2024-04-10
CN115244678A (zh) 2022-10-25
TW202145432A (zh) 2021-12-01
US20230115256A1 (en) 2023-04-13
JPWO2021192935A1 (ja) 2021-09-30
KR20220126766A (ko) 2022-09-16

Similar Documents

Publication Publication Date Title
JP5054022B2 (ja) 静電チャック装置
JP6686879B2 (ja) 静電チャック装置
WO2005091356A1 (ja) 双極型静電チャック
WO2021166774A1 (ja) 静電チャック装置
WO2021192935A1 (ja) 静電チャック装置、静電チャック装置用スリーブ
JP7324677B2 (ja) 静電チャック装置およびその製造方法
JP2023018840A (ja) 静電チャック、基板固定装置及び静電チャックの製造方法
JP2020178077A (ja) 静電チャック装置およびその製造方法
JP7256310B2 (ja) 静電チャック装置
JP2024055957A (ja) 静電チャック装置
KR20240055140A (ko) 정전 척 장치
JP7402022B2 (ja) 静電チャック装置用基台、静電チャック装置およびそれらの製造方法
JP7287814B2 (ja) 樹脂膜
WO2023191065A1 (ja) 静電チャック
JP4891155B2 (ja) 静電チャック装置
CN117693809A (zh) 陶瓷接合体、静电卡盘装置及陶瓷接合体的制造方法
TW202218038A (zh) 陶瓷接合體、靜電卡盤裝置及陶瓷接合體的製造方法
JP2021145114A (ja) サセプタ、静電チャック装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509496

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227028170

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775646

Country of ref document: EP

Kind code of ref document: A1