WO2021192647A1 - パック電池 - Google Patents

パック電池 Download PDF

Info

Publication number
WO2021192647A1
WO2021192647A1 PCT/JP2021/004106 JP2021004106W WO2021192647A1 WO 2021192647 A1 WO2021192647 A1 WO 2021192647A1 JP 2021004106 W JP2021004106 W JP 2021004106W WO 2021192647 A1 WO2021192647 A1 WO 2021192647A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
voltage
control unit
charge
Prior art date
Application number
PCT/JP2021/004106
Other languages
English (en)
French (fr)
Inventor
佑亮 草茅
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Priority to KR1020227032924A priority Critical patent/KR20220140635A/ko
Priority to US17/905,144 priority patent/US20230118823A1/en
Priority to CN202180024955.9A priority patent/CN115398710A/zh
Priority to EP21774904.3A priority patent/EP4131694A1/en
Publication of WO2021192647A1 publication Critical patent/WO2021192647A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/105NTC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • H02H5/042Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature using temperature dependent resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a packed battery.
  • Patent Document 1 discloses a packed battery having three electrode terminals including a temperature terminal in addition to a positive terminal and a negative terminal responsible for charging and discharging.
  • Such a 3-terminal pack battery is provided so that the thermistor for measuring the battery temperature of the internal secondary battery and the electrode terminal are connected to each other. Therefore, when the electrode terminal of the pack battery is connected, the charger can apply a predetermined voltage to the electrode terminal and measure the battery temperature of the secondary battery based on the change in the resistance value of the thermistor. , Charge control can be performed according to the battery temperature.
  • a general charger for charging a 3-terminal pack battery is a charger side using the above temperature terminals even for a pack battery that does not have a control unit for controlling charging. Since it is possible to control charging only, it can be used as a general-purpose charger as long as the terminals can be connected to each other.
  • the packed battery disclosed in Patent Document 1 is provided with a control circuit for controlling the charge state according to the battery voltage and the battery temperature, and the pack battery side also performs charge control according to the battery voltage of each battery cell. It is configured to be manageable.
  • the charger as described above is not always in the charge control state when connected to the pack battery, for example, in the case of a type capable of refresh discharge, the control state for discharging the secondary battery. It is also possible that. Even in such a case, the above-mentioned packed battery cannot recognize the state of the connection destination, so that there is a possibility that the secondary battery cannot be protected according to the control state of the charger, for example. Further, in the packed battery, not only the charger but also the load may be connected to the electrode terminal as described above, but in the above-mentioned prior art, it is possible to distinguish between the connected state and the unconnected state of the load. Since it cannot be performed and the load control state cannot be recognized, there is a possibility that the secondary battery cannot be protected according to these situations.
  • both control units can share the state recognition.
  • a pack battery having such a 4-terminal electrode terminal can be charged only by a dedicated charger having a common communication format, it cannot be charged by using the general-purpose charger as described above.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a packed battery capable of recognizing the state of a connection destination even if the electrode terminals are three terminals. be.
  • the pack battery of the present invention is a pack battery that is charged by being connected to a charger and discharged by being connected to a load, and is connected to a pair of power supply terminals and a temperature terminal.
  • a charge / discharge terminal a secondary battery that charges / discharges through the pair of power supply terminals, a current measuring unit that measures the charge / discharge current of the secondary battery, and a secondary battery that is connected to the temperature terminal.
  • a thermister that measures the battery temperature of the battery, a voltage switching unit that intermittently outputs the applied voltage that operates the thermista to the temperature terminal, the voltage of the temperature terminal during the ON period and the OFF period of the applied voltage, and the above.
  • a control unit that recognizes the connection state of the charge / discharge terminal based on the charge / discharge current is provided.
  • the present invention it is possible to provide a packed battery capable of recognizing the state of the connection destination even if the electrode terminals are three terminals.
  • FIG. 1 is a configuration diagram showing a schematic configuration of the pack battery 1.
  • the pack battery 1 includes a charge / discharge terminal 1a, a secondary battery 10, a current measurement unit 11, a thermistor 12, a regulator 13, a voltage switching unit 14, and a control unit 15 as main configurations. Then, the pack battery 1 is charged by being connected to the charger 2 as a general-purpose charger, and is discharged by being connected to the load 3 described later to supply electric power to the load 3.
  • the charge / discharge terminal 1a is composed of a positive electrode terminal B +, a negative electrode terminal B-, and a temperature terminal TH, and the pack battery 1 is charged / discharged via a pair of power supply terminals including the positive electrode terminal B + and the negative electrode terminal B-.
  • the temperature terminal TH is connected to the thermista 12 described later, and a predetermined applied voltage Va (generally 5V) is input from the charger 2 to obtain a voltage corresponding to the battery temperature Tbat of the secondary battery 10. By doing so, the charger 2 is made to recognize the battery temperature Tbat.
  • the charger 2 is a general-purpose charger having a charging port 2a that can be connected to the charging / discharging terminal 1a.
  • the charging port 2a is composed of a positive electrode terminal B +, a negative electrode terminal B-, and a temperature terminal TH.
  • the charger 2 Based on the control by the internal charge control unit 2b, the charger 2 outputs the applied voltage Va formed by stepping down the internal power supply Vreg with the internal resistor Rc in the charger from the temperature terminal TH, and outputs the applied voltage Va from the temperature terminal TH to the inside of the pack battery 1.
  • the battery temperature Tbat of the secondary battery 10 in the above is measured. As a result, the charger 2 can charge the secondary battery 10 via the positive electrode terminal B + and the negative electrode terminal B-while monitoring the battery temperature Tbat.
  • the secondary battery 10 is composed of, for example, a nickel hydrogen battery or a lithium ion battery, and in the present embodiment, it is configured as an assembled battery in which a plurality of battery cells are connected in series.
  • the secondary battery 10 is configured such that the positive electrode and the negative electrode are electrically connected to the positive electrode terminal B + and the negative electrode terminal B ⁇ of the charge / discharge terminal 1a, respectively.
  • the positive electrode of the secondary battery 10 has a charging path in which the charging current Ic is supplied from the positive electrode terminal B + via the charging switch SWc, the first diode D1, and the first fuse F1.
  • a discharge path for supplying the discharge current Id to the positive electrode terminal B + via the first fuse F1, the second diode D2, and the discharge switch SWd is configured.
  • the charging switch SWc and the discharging switch SWd are, for example, N-channel MOSFETs (Metal-Oxide Semiconductor Field-Effect Transistors), and the gate is controlled by the control unit 15 described later, so that charging and discharging can be performed as necessary. Each discharge can be stopped.
  • the negative electrode of the secondary battery 10 is connected to the negative electrode terminal B- via the current measuring unit 11.
  • the current measuring unit 11 includes a first resistor R1 and an operational amplifier OP, and the charge / discharge current I is measured by the operational amplifier OP based on the voltage drop in the first resistor R1 accompanying the charge / discharge current I of the secondary battery 10. NS. Since the sign of the measured value of the charge / discharge current I differs depending on the direction of the current, the charge current Ic and the discharge current Id are determined depending on whether it is in the charging direction or the discharging direction.
  • the thermistor 12 is provided adjacent to the secondary battery 10 with one end connected to the temperature terminal TH and the other end grounded.
  • a predetermined applied voltage Va is input to one end of the thermistor 12
  • the resistance value changes according to the battery temperature Tbat of the secondary battery 10. Therefore, the voltage at one end of the thermistor 12 changes the resistance value of the secondary battery 10.
  • the battery temperature Tbat can be expressed.
  • the conductive path voltage becomes common by being connected to the temperature terminal TH and the thermistor 12, and be expressed as a temperature measurement line L T.
  • the regulator 13 is an internal power source that forms the electric power required for the control operation of the pack battery 1. More specifically, the regulator 13 steps down the input voltage Vin input from the charger 2 or the secondary battery 10 via the third diode D3 and the second fuse F2, and the portion of the packed battery 1 that requires electric power. Outputs a predetermined output voltage Vout to. In the present embodiment, the regulator 13 supplies the output voltage Vout to the voltage switching unit 14 and the control unit 15. Here, the regulator 13 may be a so-called linear regulator or a switching regulator.
  • Voltage switching unit 14 is composed of a second resistor R2 and the series connection of the measuring switch SWm, a voltage formed from the output voltage Vout of the regulator 13 and outputs the temperature measurement line L T as described above.
  • Measuring switch SWm is, for example, a N-channel type MOSFET, the drain of which is connected to the regulator 13 via the second resistor R2, a source connected to the temperature measurement line L T, the control unit having the gate will be described later It is connected to 15.
  • the voltage switching unit 14 the resistance value of the second resistor R2 is set up to output the same voltage as the applied voltage Va as described above for operating the thermistor 12 to the temperature measurement line L T, the control unit 15
  • the applied voltage Va is intermittently output to the thermistor 12 based on the ON / OFF control of.
  • the control unit 15 is composed of, for example, a known microcomputer control circuit, grasps the state of the secondary battery 10 such as the battery temperature Tbat and the state of charge (SOC), and the charge / discharge terminal 1a as described in detail later.
  • the entire pack battery 1 is managed in an integrated manner, such as recognizing the presence / absence of connection of the secondary battery 10 and executing charge / discharge control of the secondary battery 10 according to the situation.
  • control unit 15 includes a power input terminal Vcc, a pulse output terminal P OUT , a temperature measurement terminal TH IN , a current measurement terminal I IN , and a ground terminal.
  • the control unit 15 operates by supplying the output voltage Vout of the regulator 13 to the power input terminal Vcc, controls the gate of the measurement switch SWm by the pulse output terminal P OUT, and also controls the temperature measurement terminal TH IN and
  • the battery temperature Tbat and the charge / discharge current I are calculated based on the voltage input from the current measurement terminal I IN.
  • FIG. 2 is a diagram schematically showing a voltage range of the temperature measurement line L T.
  • the control unit 15 calculates the battery temperature Tbat of the secondary battery 10 corresponding to the voltage input to the temperature measurement terminal TH IN.
  • the control unit 15 can recognize even if a voltage lower than the voltage V1 in FIG. 2 or a voltage higher than the voltage V6 is input to the temperature measurement terminal TH IN due to restrictions such as the number of bits of the microcomputer control circuit. Instead, it will be measured as the same voltage of voltage V1 and voltage V6, respectively. That is, the control unit 15, the voltage of the temperature measurement line L T becomes readable in the range from the voltage V1 to the voltage V6.
  • the control unit 15 when the voltage of the temperature measurement line L T is included in the range reading, but calculates the temperature corresponding to the voltage range from the voltage V1 in FIG. 2 to the voltage V2, or the voltage V5 When the calculated temperature is in a range that cannot be assumed as the temperature of the secondary battery 10, such as the range from to voltage V6, it is determined that the battery temperature Tbat is in a range that cannot be calculated. That is, the control unit 15, the voltage of the temperature measurement line L T is the temperature can be calculated battery temperature Tbat ranging from the voltage V2 to the voltage V5.
  • the control unit 15 in the present embodiment determines that even if the battery temperature Tbat generates heat abnormally, the temperature can be calculated within the range as long as the actual temperature of the secondary battery 10 is measured. It is supposed to be.
  • control unit 15 determines that when the voltage of the temperature measurement line L T is included in the temperature calculation range, when the calculated temperature is appropriate as the operating temperature of the secondary battery 10 is normal temperature range do.
  • V1 V2
  • V5 V6
  • Figure 3 is a voltage of the temperature measurement line L T for ON / OFF period of the measurement switch SWm, and the relationship between the temperature measurement period is a timing chart schematically showing.
  • the measurement switch SWm that is repeatedly ON / OFF controlled
  • the first period term1 and the third period term3 are the ON periods
  • the second period term2 and the fourth period term4 are the OFF periods.
  • the voltage of the temperature measurement line L T is assumed to be included in at least a temperature calculated range.
  • the control unit 15 calculates the battery temperature Tbat three times in each period when the ON period and the OFF period of the measurement switch SWm are at equal intervals.
  • the control interval of the measurement switch SWm and the timing for calculating the battery temperature Tbat are not limited to the form shown in FIG.
  • the ON period may be set to 50 ms and the OFF period may be set to 950 ms
  • the ON period may be set to 50 ms and the OFF period may be set to 225 ms. good.
  • the temperature measurement line L T by applying voltage Va via a temperature terminal TH is input constantly, As shown in FIG. 3A, the voltage Vbat corresponding to the battery temperature Tbat stabilizes.
  • the control unit 15 as shown in FIG. 3 (B), the measuring switch SWm is regardless of whether the OFF period is ON period, battery temperature Tbat based on the voltage of the temperature measurement line L T Can be measured.
  • the charger 2 is not connected to the battery pack 1, the voltage of the temperature measurement line L T, as shown in FIG. 3 (C), the first period term1 and the is ON period of the measurement switch SWm
  • the voltage Vbat is shown in the 3rd period term3, and 0V in the 2nd period term2 and the 4th period term4, which are the OFF periods, that is, the voltage value outside the temperature calculationable range is shown.
  • the control unit 15, the measuring switch SWm is by whether it can calculate the battery temperature Tbat based on the temperature voltage measurement line L T of the OFF period, the charger 2 is connected to the battery pack 1 It is possible to recognize whether or not.
  • the control unit 15 confirms whether it is possible to calculate the battery temperature Tbat measurement switch SWm is based on the temperature voltage measurement line L T when the ON period, the calculated battery temperature Tbat temperature can be calculated If it is out of the range, it can be recognized as a measurement abnormality in the thermistor 12. This may occur, for example, when the thermistor 12 itself fails, or when the thermistor 12 comes off from the secondary battery 10.
  • FIG. 4 is a schematic view showing a connection form of the pack battery 1 and the load 3. Since the configuration of the packed battery 1 is the same as that of FIG. 1, detailed description thereof will be omitted here.
  • the load 3 has a power supply port 3a that can be connected to the charge / discharge terminal 1a of the pack battery 1, and the positive electrode terminal B + and the negative electrode terminal B- provided in the power supply port 3a are the positive electrode terminal B + and the negative electrode terminal B of the charge / discharge terminal 1a. By connecting to each, power can be received from the pack battery 1.
  • the power port 3a is not provided with the temperature terminal TH because the load 3 does not recognize the battery temperature Tbat of the secondary battery 10.
  • the load 3 is driven by the electric power supplied from the secondary battery 10 of the pack battery 1 via the discharge path described above when the power port 3a is connected to the charge / discharge terminal 1a.
  • the load 3 When the load 3 can be regeneratively driven, the load 3 outputs the regenerative power between the positive electrode terminal B + and the negative electrode terminal B-, so that the regenerative power is transferred to the packed battery 1 via the charging path described above. It can be supplied and the secondary battery 10 can be charged.
  • the pack battery 1 has a state in which the charger 2 is connected, a state in which the load 3 is connected, and a state in which nothing is connected.
  • the charger 2 or the load 3 is connected, the charging current is further increased. Since there are a state in which Ic is supplied and a state in which the discharge current Id is supplied, it is necessary to recognize these states and perform appropriate control for each state.
  • the control procedure for recognizing the state of the packed battery 1 will be described.
  • FIG. 5 is a flowchart showing a state recognition control procedure executed by the control unit 15 of the pack battery 1.
  • the control unit 15 is activated by supplying electric power to the power input terminal Vcc, performs standard charge / discharge control on the secondary battery 10, and starts the control procedure shown in FIG. 5 to charge / discharge terminal 1a.
  • the state of the above is recognized, and appropriate charge / discharge control is performed according to the recognized state.
  • the control unit 15 confirms various operation abnormalities such as when the battery temperature Tbat of the secondary battery 10 is outside the normal temperature range and within the temperature calculationable range during the execution of the control procedure, ,
  • the charging / discharging of the secondary battery 10 may be prohibited, the control procedure may be terminated, and the user may be notified of an error state, for example.
  • control unit 15 starts continuous ON / OFF control of the measurement switch SWm by the control signal from the pulse output terminal P OUT (step S1). Accordingly, the temperature measurement line L T, the applied voltage Va of 5V is intermittently output from the voltage switching unit 14.
  • control unit 15 the voltage of the temperature terminal TH when the applied voltage Va output from the voltage switching unit 14 to the temperature measurement line L T is ON period, that the calculation of the battery temperature Tbat by the voltage of the temperature measurement line L T Is possible (step S3, first period term1 and third period term3 in FIG. 3).
  • the control unit 15 if it is impossible to calculate the battery temperature Tbat despite a ON period the applied voltage Va to the temperature measurement line L T is outputted (No in step S3), and It is determined that the thermistor 12 has an abnormality (step S4), the charge / discharge control is stopped, and the control procedure is terminated. On the other hand, if the battery temperature Tbat can be calculated during the ON period of the applied voltage Va (Yes in step S3), the control unit 15 continues the control procedure assuming that there is no abnormality in the temperature measurement in the thermistor 12. ..
  • control unit 15, or the applied voltage Va from the voltage switching unit 14 is capable of calculating the battery temperature Tbat voltage of the temperature terminal TH, i.e. the voltage of the temperature measurement line L T when a OFF period not (Step S5, second period term2 and fourth period term4 in FIG. 3).
  • the control unit 15 if it is possible to calculate the battery temperature Tbat (Yes in step S5), and the applied voltage Va to the temperature measurement line L T through the temperature terminal TH from the charger 2 is applied It can be judged that there is. That is, the control unit 15 recognizes the connection state of the charger 2 on condition that the battery temperature Tbat can be calculated from the voltage of the temperature terminal TH when the voltage Va applied from the voltage switching unit 14 is in the OFF period. do.
  • control unit 15 determines the direction of the charge / discharge current I based on the voltage input from the current measurement terminal I IN (step S6), and when the charge / discharge current I is the charge current Ic (step S6). Yes), it can be recognized that the charger 2 is connected and the charger 2 is in the charge control state (step S7).
  • step S6 when the charge / discharge current I is the discharge current Id (No in step S6), the control unit 15 recognizes that the charger 2 is connected and the charger 2 is in the refresh discharge control state. Can be done (step S8). That is, the control unit 15 can recognize the refresh discharge control state even when the charger 2 is provided with the refresh discharge function.
  • step S5 determines that at least the charger 2 is not connected, and then the charge / discharge current is based on the voltage input from the current measurement terminal I IN. It is determined whether or not I is the discharge current Id (step S9).
  • step S9 when the charge / discharge current I is determined to be the discharge current Id (Yes in step S9), the control unit 15 recognizes that the load 3 is connected and the load 3 is in the power consumption state. Can be done (step S10).
  • step S9 the control unit 15 determines whether or not the charge / discharge current I is the charge current Ic (step). S11). At this time, if it is determined that the charge / discharge current I is the charge current Ic (Yes in step S11), the control unit 15 recognizes that the load 3 is connected and the load 3 is in the regenerative control state. Can be done (step S12).
  • step S11 the control unit 15 recognizes that neither the charger 2 nor the load 3 is connected because the charge / discharge current I has not been measured. Can be done (step S13). That is, the control unit 15 is conditioned on the condition that the battery temperature Tbat cannot be calculated from the voltage of the temperature terminal TH when the voltage Va applied from the voltage switching unit 14 is in the OFF period, and the charge / discharge current I is measured. , The connection state of the charger 2 can be recognized.
  • control unit 15 returns to step S3 after recognizing each connection state and the control state of the connection destination, and by repeating the above routine, the state recognition can be continuously performed unless an abnormal stop occurs during startup. ..
  • control unit 15 does not rely only on the charge control by the charger 2 or the control state of the connection destination such as the power request from the load 3, but the pack battery 1 that can grasp the state of the secondary battery 10 in more detail.
  • the charging / discharging of the secondary battery 10 can also be managed on the side.
  • control unit 15 monitors the charging current Ic in a situation where the charger 2 is connected and the charger 2 is in the charging control state (step S7), and the charging current Ic is defined.
  • the charging switch SWc is controlled to be OFF.
  • control unit 15 monitors the battery voltage of the secondary battery 10 under the condition that the charger 2 is connected and the charger 2 is in the refresh discharge control state (step S8), and the battery voltage is defined. When the voltage falls below the over-discharge threshold, the discharge switch SWd is controlled to be OFF.
  • control unit 15 monitors the discharge current Id in a state where the load 3 is connected and the load 3 is in the power consumption state (step S10), and the discharge current Id is higher than the specified discharge current upper limit value. When it rises, the discharge switch SWd is controlled to OFF.
  • control unit 15 monitors the battery voltage of the secondary battery 10 under the condition that the load 3 is connected and the load 3 is in the regenerative control state (step S12), and the battery voltage is the specified overcharge threshold value.
  • the charging switch SWc is controlled to be OFF.
  • control unit 15 shifts to the sleep state when, for example, neither the charger 2 nor the load 3 is connected (step S13) and the state where the charge / discharge current I is 0 continues for a predetermined period.
  • the standby power can be suppressed.
  • the pack battery 1 intermittently outputs the applied voltage Va for operating the thermistor 12 to the temperature terminal TH, and also the voltage of the temperature terminal TH during the ON period and the OFF period of the applied voltage Va, and the charge / discharge current. Based on I, the connection state of the charge / discharge terminal 1a is recognized. Therefore, the pack battery 1 can recognize the state of the connection destination even if the charge / discharge terminals 1a are three terminals.
  • the first aspect of the present invention is a pack battery that is charged by being connected to a charger and discharged by being connected to a load, and is a charge / discharge terminal composed of a pair of power supply terminals and a temperature terminal.
  • a secondary battery that charges and discharges via the pair of power supply terminals, a current measuring unit that measures the charge and discharge current of the secondary battery, and a battery temperature of the secondary battery that is connected to the temperature terminal and measures the battery temperature of the secondary battery.
  • the voltage switching unit that intermittently outputs the applied voltage for operating the thermistor to the temperature terminal, the voltage of the temperature terminal during the ON period and OFF period of the applied voltage, and the charge / discharge current.
  • a pack battery including a control unit that recognizes the connection state of the charge / discharge terminal.
  • a second aspect of the present invention is that, in the first aspect of the present invention described above, the control unit can calculate the battery temperature from the voltage of the temperature terminal when the applied voltage is in the OFF period. As a condition, it is a pack battery that recognizes the connection of the charger.
  • the third aspect of the present invention is the condition that the direction of the charge / discharge current is the charging direction when the control unit recognizes the connection of the charger in the second aspect of the present invention described above. It is a pack battery that recognizes that the charger is in the charge control state.
  • a fourth aspect of the present invention is the condition that the control unit recognizes the connection of the charger and the direction of the charge / discharge current is the discharge direction in the second aspect of the present invention described above. It is a pack battery that recognizes that the charger is in the refresh discharge control state.
  • a fifth aspect of the present invention is that in any one of the first to fourth aspects of the present invention described above, the control unit uses the voltage of the temperature terminal when the applied voltage is in the OFF period to obtain the secondary battery. It is a pack battery that recognizes the connection of the load on the condition that the temperature cannot be calculated and the charge / discharge current is measured.
  • a sixth aspect of the present invention is the fifth aspect of the present invention described above, provided that the control unit recognizes the connection of the load and the direction of the charge / discharge current is the discharge direction. , A pack battery that recognizes that the load is in a power consuming state.
  • a seventh aspect of the present invention is the fifth aspect of the present invention, provided that the control unit recognizes the connection of the load and the direction of the charge / discharge current is the charging direction. , A pack battery that recognizes that the load is in the regeneration control state.
  • the control unit calculates the battery temperature from the voltage of the temperature terminal when the applied voltage is in the OFF period. It is a pack battery that recognizes that the charge / discharge terminals are not connected, provided that it is impossible and the charge / discharge current is not measured.
  • the control unit calculates the battery temperature from the voltage of the temperature terminal when the applied voltage is the ON period. It is a pack battery that recognizes a measurement abnormality of the thermistor on condition that it is impossible.
  • a tenth aspect of the present invention is, in any one of the first to ninth aspects of the present invention described above, the control unit is the battery calculated from the voltage of the temperature terminal when the applied voltage is in the ON period. It is a pack battery that prohibits charging and discharging of the secondary battery on condition that the temperature is not within a predetermined normal temperature range.

Abstract

充電器2に接続されることで充電され、負荷3に接続されることにより放電するパック電池1であって、正極端子B+、負極端子B-、及び温度端子THからなる充放電端子1aと、正極端子B+及び負極端子B-を介して充放電を行う二次電池10と、二次電池10の充放電電流Iを測定する電流計測部11と、温度端子THに接続されると共に二次電池10の電池温度Tbatを測定するサーミスタ12と、サーミスタ12を動作させる印加電圧Vaを間欠的に温度端子THに出力する電圧切替部14と、印加電圧VaのON期間及びOFF期間における温度端子THの電圧、並びに充放電電流Iに基づいて、充放電端子1aの接続状態を認識する制御部15と、を備えるパック電池1。

Description

パック電池
 本発明は、パック電池に関する。
 充電器に接続されることにより充電され、負荷装置に接続されることにより放電するパック電池が知られている。例えば特許文献1には、充放電を担うプラス端子及びマイナス端子に加え、温度端子を含む3つの電極端子を備えるパック電池が開示されている。このような3端子のパック電池は、内部の二次電池の電池温度を測定するためのサーミスタと電極端子とが接続されるように設けられている。このため、充電器は、パック電池の電極端子が接続された場合に、電極端子に所定の電圧を印加し、サーミスタの抵抗値の変化に基づいて二次電池の電池温度を測定することができ、当該電池温度に応じた充電制御を行うことができる。
 ここで、3端子のパック電池を充電するための一般的な充電器は、充電を制御するための制御部を有しないパック電池に対しても、上記のような温度端子を用いた充電器側のみの充電制御を行うことができるため、端子同士が接続可能である限り汎用充電器として使用することができる。
 また、特許文献1に開示されたパック電池は、電池電圧及び電池温度により充電状態を制御するための制御回路が設けられ、個々の電池セルの電池電圧に応じてパック電池側においても充電制御を管理できるよう構成されている。
特開2010-11698号公報
 しかしながら、上記のような充電器は、パック電池に接続されている場合に必ずしも充電制御状態であるとは限らず、例えばリフレッシュ放電が可能なタイプである場合には二次電池を放電させる制御状態である可能性もある。上記のパック電池では、このような場合であっても接続先の状態を認識することができないため、例えば充電器の制御状態に応じて二次電池の保護を行うことができない虞が生じる。また、パック電池は、上記のように電極端子に対して充電器だけでなく負荷が接続される可能性があるものの、上記の従来技術では負荷の接続状態と未接続状態とを識別することができず、更には負荷の制御状態を認識することもできないため、これらの状況に応じて二次電池の保護を行うことができない虞が生じる。
 ここで、充電器とパック電池とを接続する電極端子が上記の3端子に加えて更に通信用の端子を備える場合には、双方の制御部同士が状態認識を共有することができる。しかしながら、このような4端子の電極端子を有するパック電池は、通信形式が共通の専用充電器でしか充電できないため、上記のような汎用充電器を使用して充電することができなくなってしまう。
 本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、電極端子が3端子であっても接続先の状態を認識することができるパック電池を提供することにある。
 上記した目的を達成するため、本発明のパック電池は、充電器に接続されることで充電され、負荷に接続されることにより放電するパック電池であって、一対の電源端子、及び温度端子からなる充放電端子と、前記一対の電源端子を介して充放電を行う二次電池と、前記二次電池の充放電電流を測定する電流計測部と、前記温度端子に接続されると共に前記二次電池の電池温度を測定するサーミスタと、前記サーミスタを動作させる印加電圧を間欠的に前記温度端子に出力する電圧切替部と、前記印加電圧のON期間及びOFF期間における前記温度端子の電圧、並びに前記充放電電流に基づいて、前記充放電端子の接続状態を認識する制御部と、を備える。
 本発明によれば、電極端子が3端子であっても接続先の状態を認識することができるパック電池を提供することができる。
パック電池の概略構成を表す構成図である。 温度測定ラインの電圧範囲を模式的に表す図である。 測定用スイッチのON/OFF期間に対する温度測定ラインの電圧、及び温度測定期間の関係を模式的に表すタイミングチャートである。 パック電池及び負荷の接続形態を示す模式図である。 パック電池の制御部が実行する状態認識の制御手順を表すフローチャートである。
 以下、図面を参照し、発明の実施形態について詳細に説明する。なお、発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。
 図1は、パック電池1の概略構成を表す構成図である。パック電池1は、主要構成として充放電端子1a、二次電池10、電流計測部11、サーミスタ12、レギュレータ13、電圧切替部14、及び制御部15を備える。そして、パック電池1は、汎用充電器としての充電器2に接続されることで充電され、後述する負荷3に接続されることにより放電して負荷3に電力を供給する。
 充放電端子1aは、正極端子B+、負極端子B-、及び温度端子THから構成され、正極端子B+及び負極端子B-からなる一対の電源端子を介してパック電池1の充放電が行われる。また、温度端子THは、後述するサーミスタ12に接続され、充電器2から所定の印加電圧Va(一般的には5V)が入力されることにより二次電池10の電池温度Tbatに応じた電圧となることで、充電器2に当該電池温度Tbatを認識させる。
 ここで、充電器2は、充放電端子1aに接続可能な充電ポート2aを有する汎用充電器である。充電ポート2aは、パック電池1と同様に正極端子B+、負極端子B-、及び温度端子THから構成される。充電器2は、内部の充電制御部2bによる制御に基づいて、内部電源Vregを充電器内抵抗器Rcで降圧することにより形成した印加電圧Vaを温度端子THから出力し、パック電池1の内部における二次電池10の電池温度Tbatを測定する。これにより、充電器2は、電池温度Tbatを監視しながら正極端子B+及び負極端子B-を介して二次電池10を充電することができる。
 二次電池10は、例えばニッケル水素電池やリチウムイオン電池からなり、本実施形態においては複数の電池セルが直列に接続されてなる組電池として構成されている。二次電池10は、正極及び負極が充放電端子1aの正極端子B+及び負極端子B-にそれぞれ導通するよう構成されている。
 ここで、二次電池10の正極は、本実施形態においては、正極端子B+から充電用スイッチSWc、第1ダイオードD1、及び第1ヒューズF1を介して充電電流Icが供給される充電経路と、第1ヒューズF1、第2ダイオードD2、及び放電用スイッチSWdを介して正極端子B+へ放電電流Idを供給する放電経路が構成されている。充電用スイッチSWc及び放電用スイッチSWdは、例えばNチャネル型のMOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)であり、ゲートが後述する制御部15により制御されることで、必要に応じて充電及び放電をそれぞれ停止させることができる。
 また、二次電池10の負極は、本実施形態においては、電流計測部11を介して負極端子B-に接続されている。電流計測部11は、第1抵抗器R1及びオペアンプOPからなり、二次電池10の充放電電流Iに伴う第1抵抗器R1における電圧降下に基づいて、オペアンプOPにより充放電電流Iが測定される。尚、充放電電流Iは、電流の向きにより測定値の符号が異なるため、充電方向であるか放電方向であるかによって充電電流Ic及び放電電流Idが判別される。
 サーミスタ12は、一端部が温度端子THに接続されると共に他端部が接地され、二次電池10に隣接して設けられる。サーミスタ12は、一端部に所定の印加電圧Vaが入力された場合に、二次電池10の電池温度Tbatに応じて抵抗値が変化するため、そのときの一端部の電圧により二次電池10の電池温度Tbatを表すことができる。本実施形態においては、温度端子TH及びサーミスタ12に接続されることにより電圧が共通となる導電路を、温度測定ラインLとして表すこととする。
 レギュレータ13は、パック電池1の制御動作に必要な電力を形成する内部電源である。より具体的には、レギュレータ13は、充電器2又は二次電池10から第3ダイオードD3及び第2ヒューズF2を介して入力される入力電圧Vinを降圧し、パック電池1において電力が必要な部分に所定の出力電圧Voutを出力する。本実施形態においては、レギュレータ13は、電圧切替部14及び制御部15に出力電圧Voutを供給する。ここで、レギュレータ13は、いわゆるリニアレギュレータであってもよく、又はスイッチングレギュレータであってもよい。
 電圧切替部14は、第2抵抗器R2及び測定用スイッチSWmの直列接続体からなり、レギュレータ13の出力電圧Voutから形成される電圧を上記した温度測定ラインLに出力する。測定用スイッチSWmは、例えばNチャネル型のMOSFETであり、ドレインが第2抵抗器R2を介してレギュレータ13に接続され、ソースが温度測定ラインLに接続されると共に、ゲートが後述する制御部15に接続されている。
 ここで、電圧切替部14は、サーミスタ12を動作させるための上記した印加電圧Vaと同じ電圧を温度測定ラインLに出力できるよう第2抵抗器R2の抵抗値が設定され、制御部15からのON/OFF制御に基づいて当該印加電圧Vaを間欠的にサーミスタ12に出力する。
 制御部15は、例えば公知のマイコン制御回路からなり、電池温度Tbatや充電状態(SOC:State Of Charge)等の二次電池10の状態を把握すると共に、詳細を後述するように充放電端子1aの接続有無等を認識し、状況に応じて二次電池10の充放電制御を実行するなど、パック電池1の全体を統括管理する。
 また、制御部15は、電源入力端子Vcc、パルス出力端子POUT、温度測定端子THIN、電流測定端子IIN、及び接地端子を備える。これにより制御部15は、電源入力端子Vccにレギュレータ13の出力電圧Voutが供給されることで動作し、パルス出力端子POUTにより測定用スイッチSWmのゲートを制御すると共に、温度測定端子THIN及び電流測定端子IINから入力される電圧に基づいて電池温度Tbat及び充放電電流Iを算出する。
 図2は、温度測定ラインLの電圧範囲を模式的に表す図である。制御部15は、温度測定端子THINに入力される電圧に対応する二次電池10の電池温度Tbatを算出する。ただし、制御部15は、マイコン制御回路のビット数等の制約から、例えば図2における電圧V1よりも低い電圧、又は電圧V6よりも高い電圧が温度測定端子THINに入力されたとしても認識できず、それぞれ電圧V1及び電圧V6のそのままの電圧として測定されることになる。つまり、制御部15は、温度測定ラインLの電圧が電圧V1から電圧V6までの範囲で読取可能となる。
 また、制御部15は、温度測定ラインLの電圧が読取可能範囲に含まれる場合に、当該電圧に対応する温度を算出するが、図2における電圧V1から電圧V2までの範囲、又は電圧V5から電圧V6までの範囲のように、算出された温度が二次電池10の温度として想定し得ない範囲である場合には、電池温度Tbatが算出不可能な範囲であると判断する。つまり、制御部15は、温度測定ラインLの電圧が電圧V2から電圧V5までの範囲で電池温度Tbatの温度算出が可能となる。尚、本実施形態における制御部15は、仮に電池温度Tbatが異常に発熱した場合であっても、二次電池10の実際の温度が測定されている限り、温度算出可能範囲であると判断することとしている。
 更に、制御部15は、温度測定ラインLの電圧が温度算出範囲に含まれる場合に、算出された温度が二次電池10の動作温度として適正である場合には正常温度範囲であると判断する。
 尚、温度測定ラインLの電圧と電池温度Tbatとの対応関係によっては、上記の読取可能範囲と温度算出可能範囲とが一致してもよい(V1=V2、V5=V6)。この場合には、温度測定ラインLの電圧が温度算出可能範囲になければ、下限値である電圧V2(=V1)、又は上限値である電圧V5(=V6)が温度測定端子THINに入力されることになる。
 次に、制御部15が実行する温度測定のタイミングについて説明する。図3は、測定用スイッチSWmのON/OFF期間に対する温度測定ラインLの電圧、及び温度測定期間の関係を模式的に表すタイミングチャートである。ここでは、繰り返しON/OFF制御される測定用スイッチSWmについて、第1期間term1及び第3期間term3がON期間であり、第2期間term2及び第4期間term4がOFF期間である。また、温度測定ラインLの電圧は、少なくとも温度算出可能範囲に含まれているものとする。
 尚、図3においては、制御部15は、測定用スイッチSWmのON期間及びOFF期間が等間隔で、それぞれの期間において3回ずつ電池温度Tbatを算出することとしている。しかし、測定用スイッチSWmの制御間隔、及び電池温度Tbatを算出するタイミングは、図3の形態に限定されるものではない。例えば、測定用スイッチSWmについてはON期間を50msとし、OFF期間を950msとしてもよく、また、電池温度Tbatの測定についてはON期間を50msとし、OFF期間を225msとする動作周期に設定してもよい。
 パック電池1の充放電端子1aと充電器2の充電ポート2aとが接続されている場合、温度測定ラインLは、温度端子THを介して印加電圧Vaが定常的に入力されることにより、図3(A)に示すように電池温度Tbatに応じた電圧Vbatで安定することになる。
 このため、制御部15は、図3(B)に示すように、測定用スイッチSWmがON期間であるかOFF期間であるかを問わず、温度測定ラインLの電圧に基づいて電池温度Tbatを測定することができる。
 一方、充電器2がパック電池1に接続されていない場合、温度測定ラインLの電圧は、図3(C)に示すように、測定用スイッチSWmのON期間である第1期間term1及び第3期間term3において電圧Vbatを示し、OFF期間である第2期間term2及び第4期間term4において0V、すなわち温度算出可能範囲から外れた電圧値を示すことになる。
 このため、制御部15は、図3(D)に示すように、測定用スイッチSWmのOFF期間においては、温度測定ラインLの電圧に基づいて電池温度Tbatを測定することができないことなる。
 つまり、制御部15は、測定用スイッチSWmがOFF期間のときの温度測定ラインLの電圧に基づいて電池温度Tbatが算出できるか否かによって、充電器2がパック電池1に接続されているか否かを認識することができる。
 また、制御部15は、測定用スイッチSWmがON期間のときの温度測定ラインLの電圧に基づいて電池温度Tbatが算出できるか否かを確認し、算出された電池温度Tbatが温度算出可能範囲から外れている場合には、サーミスタ12における測定異常であると認識することができる。これは例えば、サーミスタ12自体が故障した場合や、二次電池10からサーミスタ12が外れた場合等に生じ得る。
 続いて、パック電池1に負荷3が接続された場合について説明する。図4は、パック電池1及び負荷3の接続形態を示す模式図である。パック電池1の構成については図1と同一であるため、ここでは詳細な説明を省略する。
 負荷3は、パック電池1の充放電端子1aに接続可能な電源ポート3aを有し、電源ポート3aに備えられる正極端子B+及び負極端子B-が充放電端子1aの正極端子B+及び負極端子B-にそれぞれ接続されることにより、パック電池1から電力供給を受けることができる。尚、電源ポート3aは、負荷3が二次電池10の電池温度Tbatを認識することがないため、温度端子THが設けられていない。
 負荷3は、より具体的には、電源ポート3aが充放電端子1aに接続された場合に、パック電池1の二次電池10から上記した放電経路を介して供給される電力により駆動する。また、負荷3は、回生駆動が可能である場合には、正極端子B+及び負極端子B-の間に回生電力を出力することで、上記した充電経路を介して当該回生電力をパック電池1に供給し、二次電池10を充電することができる。
 すなわち、パック電池1は、充電器2が接続される状態、負荷3が接続される状態、及び何も接続されない状態があり、充電器2又は負荷3が接続される場合には、更に充電電流Icが供給される状態及び放電電流Idを供給する状態があるため、これらの状態を認識して状態ごとの適切な制御を行う必要が生じる。以下では、パック電池1の状態認識を行う制御手順について説明する。
 図5は、パック電池1の制御部15が実行する状態認識の制御手順を表すフローチャートである。制御部15は、電源入力端子Vccに電力が供給されることにより起動し、二次電池10に標準的な充放電制御を行うと共に、図5に示す制御手順を開始することにより充放電端子1aに係る状態認識を行い、認識される状態に応じて適切な充放電制御を行う。尚、制御部15は、制御手順の実行中において、二次電池10の電池温度Tbatが例えば正常温度範囲外で且つ温度算出可能範囲内である場合など、各種動作異常が確認された場合には、二次電池10の充放電を禁止すると共に当該制御手順を終了し、例えばユーザにエラー状態を通知してもよい。
 制御部15は、まず、パルス出力端子POUTからの制御信号により測定用スイッチSWmの連続的なON/OFF制御を開始する(ステップS1)。これにより、温度測定ラインLには、5Vの印加電圧Vaが電圧切替部14から間欠的に出力される。
 また、制御部15は、温度測定端子THINにより、図3で説明したような温度測定ラインLの電圧測定を開始する(ステップS2)。すなわち制御部15は、ステップS2において電圧測定が開始されることにより、起動中における以降の処理では常に二次電池10の電池温度Tbatの算出を試みることになる。
 そして、制御部15は、電圧切替部14から温度測定ラインLへ出力する印加電圧VaがON期間であるときの温度端子THの電圧、すなわち温度測定ラインLの電圧により電池温度Tbatの算出が可能であるか否かを判定する(ステップS3、図3における第1期間term1及び第3期間term3)。
 このとき、制御部15は、温度測定ラインLへ印加電圧Vaが出力されているON期間であるにも拘らず電池温度Tbatの算出が不可能である場合には(ステップS3でNo)、サーミスタ12に異常があるものと判断し(ステップS4)、充放電制御を停止すると共に当該制御手順を終了する。一方、制御部15は、印加電圧VaのON期間に電池温度Tbatの算出が可能である場合には(ステップS3でYes)、サーミスタ12における温度測定には異常ないものとして当該制御手順を継続する。
 次に、制御部15は、電圧切替部14からの印加電圧VaがOFF期間であるときの温度端子THの電圧、すなわち温度測定ラインLの電圧により電池温度Tbatの算出が可能であるか否かを判定する(ステップS5、図3における第2期間term2及び第4期間term4)。
 このとき、制御部15は、電池温度Tbatの算出が可能である場合には(ステップS5でYes)、充電器2から温度端子THを介して温度測定ラインLに印加電圧Vaが印加されているものと判断することができる。すなわち、制御部15は、電圧切替部14からの印加電圧VaがOFF期間のときの温度端子THの電圧から電池温度Tbatの算出が可能であることを条件として、充電器2の接続状態を認識する。
 そして、制御部15は、電流測定端子IINから入力される電圧に基づいて充放電電流Iの向きを判定し(ステップS6)、充放電電流Iが充電電流Icである場合には(ステップS6でYes)、充電器2の接続状態で且つ充電器2が充電制御状態であることを認識することができる(ステップS7)。
 また、制御部15は、充放電電流Iが放電電流Idである場合には(ステップS6でNo)、充電器2の接続状態で且つ充電器2がリフレッシュ放電制御状態であることを認識することができる(ステップS8)。すなわち、制御部15は、充電器2にリフレッシュ放電の機能が備わっている場合であっても、当該リフレッシュ放電制御状態を認識することができる。
 一方、ステップS5においてNoと判定された場合には、制御部15は、少なくとも充電器2が接続されていないこと判断し、次に電流測定端子IINから入力される電圧に基づいて充放電電流Iが放電電流Idであるか否かを判定する(ステップS9)。
 そして、制御部15は、充放電電流Iが放電電流Idであると判定された場合には(ステップS9でYes)、負荷3の接続状態で且つ負荷3が電力消費状態であることを認識することができる(ステップS10)。
 これに対し、制御部15は、充放電電流Iが放電電流Idでないと判定された場合には(ステップS9でNo)、充放電電流Iが充電電流Icであるか否かを判定する(ステップS11)。このとき、充放電電流Iが充電電流Icであると判定された場合には(ステップS11でYes)、制御部15は、負荷3の接続状態で且つ負荷3が回生制御状態であることを認識することができる(ステップS12)。
 また、ステップS11においてNoと判定された場合には、制御部15は、充放電電流Iが測定されていないことから、充電器2及び負荷3がいずれも接続されていない状態であることを認識することができる(ステップS13)。すなわち、制御部15は、電圧切替部14からの印加電圧VaがOFF期間のときの温度端子THの電圧から電池温度Tbatの算出が不可能で且つ充放電電流Iが測定されたことを条件として、充電器2の接続状態を認識することができる。
 更に制御部15は、それぞれの接続状態及び接続先の制御状態を認識した後ステップS3に戻り、上記のルーチンを繰り返すことにより、起動中において異常停止しない限り状態認識を継続的に行うことができる。
 そのため、制御部15は、充電器2による充電制御、又は負荷3からの電力要求などの接続先の制御状態のみに任せるのではなく、二次電池10の状態をより詳細に把握できるパック電池1側においても二次電池10の充放電を管理することができる。
 より具体的には、制御部15は、例えば充電器2の接続状態で且つ充電器2が充電制御状態である状況下において(ステップS7)、充電電流Icを監視し、充電電流Icが規定の充電電流上限値よりも上昇した場合に充電用スイッチSWcをOFFに制御する。
 また、制御部15は、例えば充電器2の接続状態で且つ充電器2がリフレッシュ放電制御状態である状況下において(ステップS8)、二次電池10の電池電圧を監視し、電池電圧が規定の過放電閾値よりも低下した場合に、放電用スイッチSWdをOFFに制御する。
 更に、制御部15は、例えば負荷3の接続状態で且つ負荷3が電力消費状態である状況下において(ステップS10)、放電電流Idを監視し、放電電流Idが規定の放電電流上限値よりも上昇した場合に、放電用スイッチSWdをOFFに制御する。
 そして、制御部15は、例えば負荷3の接続状態で且つ負荷3が回生制御状態である状況下において(ステップS12)、二次電池10の電池電圧を監視し、電池電圧が規定の過充電閾値よりも上昇した場合に、充電用スイッチSWcをOFFに制御する。
 また、制御部15は、例えば充電器2及び負荷3のいずれも接続されていない状況下において(ステップS13)、充放電電流Iが0の状態が所定期間だけ継続した場合に、スリープ状態に移行して待機電力を抑制することができる。
 以上のように、パック電池1は、サーミスタ12を動作させる印加電圧Vaを間欠的に温度端子THに出力すると共に、印加電圧VaのON期間及びOFF期間における温度端子THの電圧、並びに充放電電流Iに基づいて、充放電端子1aの接続状態を認識する。従って、パック電池1は、充放電端子1aが3端子であっても接続先の状態を認識することができる。
<本発明の実施態様>
 本発明の第1の態様は、充電器に接続されることで充電され、負荷に接続されることにより放電するパック電池であって、一対の電源端子、及び温度端子からなる充放電端子と、前記一対の電源端子を介して充放電を行う二次電池と、前記二次電池の充放電電流を測定する電流計測部と、前記温度端子に接続されると共に前記二次電池の電池温度を測定するサーミスタと、前記サーミスタを動作させる印加電圧を間欠的に前記温度端子に出力する電圧切替部と、前記印加電圧のON期間及びOFF期間における前記温度端子の電圧、並びに前記充放電電流に基づいて、前記充放電端子の接続状態を認識する制御部と、を備えるパック電池である。
 本発明の第2の態様は、上記した本発明の第1の態様において、前記制御部は、前記印加電圧がOFF期間のときの前記温度端子の電圧から前記電池温度が算出可能であることを条件として、前記充電器の接続を認識する、パック電池である。
 本発明の第3の態様は、上記した本発明の第2の態様において、前記制御部は、前記充電器の接続を認識した場合において、前記充放電電流の向きが充電方向であることを条件として、前記充電器が充電制御状態であることを認識する、パック電池である。
 本発明の第4の態様は、上記した本発明の第2の態様において、前記制御部は、前記充電器の接続を認識した場合において、前記充放電電流の向きが放電方向であることを条件として、前記充電器がリフレッシュ放電制御状態であることを認識する、パック電池である。
 本発明の第5の態様は、上記した本発明の第1乃至4のいずれかの態様において、前記制御部は、前記印加電圧がOFF期間のときの前記温度端子の電圧から前記二次電池の温度を算出不可能で且つ前記充放電電流が測定されたことを条件として、前記負荷の接続を認識する、パック電池である。
 本発明の第6の態様は、上記した本発明の第5の態様において、前記制御部は、前記負荷の接続を認識した場合において、前記充放電電流の向きが放電方向であることを条件として、前記負荷が電力消費状態であることを認識する、パック電池である。
 本発明の第7の態様は、上記した本発明の第5の態様において、前記制御部は、前記負荷の接続を認識した場合において、前記充放電電流の向きが充電方向であることを条件として、前記負荷が回生制御状態であることを認識する、パック電池である。
 本発明の第8の態様は、上記した本発明の第1乃至7のいずれかの態様において、前記制御部は、前記印加電圧がOFF期間のときの前記温度端子の電圧から前記電池温度を算出不可能で且つ前記充放電電流が測定されないことを条件として、前記充放電端子の接続がないことを認識する、パック電池である。
 本発明の第9の態様は、上記した本発明の第1乃至8のいずれかの態様において、前記制御部は、前記印加電圧がON期間のときの前記温度端子の電圧から前記電池温度を算出不可能であることを条件として、前記サーミスタの測定異常を認識する、パック電池である。
 本発明の第10の態様は、上記した本発明の第1乃至9のいずれかの態様において、前記制御部は、前記印加電圧がON期間のときの前記温度端子の電圧から算出される前記電池温度が所定の正常温度範囲にないことを条件として、前記二次電池の充放電を禁止する、パック電池である。
  1 パック電池
  2 充電器
  3 負荷
 10 二次電池
 11 電流計測部
 12 サーミスタ
 13 レギュレータ
 14 電圧切替部
 15 制御部
 1a 充放電端子
 B+ 正極端子
 B- 負極端子
 TH 温度端子
 L 温度測定ライン
 

Claims (10)

  1.  充電器に接続されることで充電され、負荷に接続されることにより放電するパック電池であって、
     一対の電源端子、及び温度端子からなる充放電端子と、
     前記一対の電源端子を介して充放電を行う二次電池と、
     前記二次電池の充放電電流を測定する電流計測部と、
     前記温度端子に接続されると共に前記二次電池の電池温度を測定するサーミスタと、
     前記サーミスタを動作させる印加電圧を間欠的に前記温度端子に出力する電圧切替部と、
     前記印加電圧のON期間及びOFF期間における前記温度端子の電圧、並びに前記充放電電流に基づいて、前記充放電端子の接続状態を認識する制御部と、を備えるパック電池。
  2.  前記制御部は、前記印加電圧がOFF期間のときの前記温度端子の電圧から前記電池温度が算出可能であることを条件として、前記充電器の接続を認識する、請求項1に記載のパック電池。
  3.  前記制御部は、前記充電器の接続を認識した場合において、前記充放電電流の向きが充電方向であることを条件として、前記充電器が充電制御状態であることを認識する、請求項2に記載のパック電池。
  4.  前記制御部は、前記充電器の接続を認識した場合において、前記充放電電流の向きが放電方向であることを条件として、前記充電器がリフレッシュ放電制御状態であることを認識する、請求項2に記載のパック電池。
  5.  前記制御部は、前記印加電圧がOFF期間のときの前記温度端子の電圧から前記二次電池の温度を算出不可能で且つ前記充放電電流が測定されたことを条件として、前記負荷の接続を認識する、請求項1乃至4のいずれかに記載のパック電池。
  6.  前記制御部は、前記負荷の接続を認識した場合において、前記充放電電流の向きが放電方向であることを条件として、前記負荷が電力消費状態であることを認識する、請求項5に記載のパック電池。
  7.  前記制御部は、前記負荷の接続を認識した場合において、前記充放電電流の向きが充電方向であることを条件として、前記負荷が回生制御状態であることを認識する、請求項5に記載のパック電池。
  8.  前記制御部は、前記印加電圧がOFF期間のときの前記温度端子の電圧から前記電池温度を算出不可能で且つ前記充放電電流が測定されないことを条件として、前記充放電端子の接続がないことを認識する、請求項1乃至7のいずれかに記載のパック電池。
  9.  前記制御部は、前記印加電圧がON期間のときの前記温度端子の電圧から前記電池温度を算出不可能であることを条件として、前記サーミスタの測定異常を認識する、請求項1乃至8のいずれかに記載のパック電池。
  10.  前記制御部は、前記印加電圧がON期間のときの前記温度端子の電圧から算出される前記電池温度が所定の正常温度範囲にないことを条件として、前記二次電池の充放電を禁止する、請求項1乃至9のいずれかに記載のパック電池。
     
PCT/JP2021/004106 2020-03-27 2021-02-04 パック電池 WO2021192647A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227032924A KR20220140635A (ko) 2020-03-27 2021-02-04 팩 전지
US17/905,144 US20230118823A1 (en) 2020-03-27 2021-02-04 Battery pack
CN202180024955.9A CN115398710A (zh) 2020-03-27 2021-02-04 电池组
EP21774904.3A EP4131694A1 (en) 2020-03-27 2021-02-04 Battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020057999A JP7473290B2 (ja) 2020-03-27 2020-03-27 パック電池
JP2020-057999 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021192647A1 true WO2021192647A1 (ja) 2021-09-30

Family

ID=77891407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004106 WO2021192647A1 (ja) 2020-03-27 2021-02-04 パック電池

Country Status (6)

Country Link
US (1) US20230118823A1 (ja)
EP (1) EP4131694A1 (ja)
JP (1) JP7473290B2 (ja)
KR (1) KR20220140635A (ja)
CN (1) CN115398710A (ja)
WO (1) WO2021192647A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239989A (ja) * 2008-03-25 2009-10-15 Sanyo Electric Co Ltd 充電器
JP2010011698A (ja) 2008-06-30 2010-01-14 Canon Inc 二次電池パック
JP2015154606A (ja) * 2014-02-14 2015-08-24 株式会社リコー 蓄電状態調整回路、蓄電状態調整システム、及び電池パック
JP2015173568A (ja) * 2014-03-12 2015-10-01 日立マクセル株式会社 電池保護回路および電池パック

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239989A (ja) * 2008-03-25 2009-10-15 Sanyo Electric Co Ltd 充電器
JP2010011698A (ja) 2008-06-30 2010-01-14 Canon Inc 二次電池パック
JP2015154606A (ja) * 2014-02-14 2015-08-24 株式会社リコー 蓄電状態調整回路、蓄電状態調整システム、及び電池パック
JP2015173568A (ja) * 2014-03-12 2015-10-01 日立マクセル株式会社 電池保護回路および電池パック

Also Published As

Publication number Publication date
JP7473290B2 (ja) 2024-04-23
CN115398710A (zh) 2022-11-25
EP4131694A1 (en) 2023-02-08
KR20220140635A (ko) 2022-10-18
JP2021157980A (ja) 2021-10-07
US20230118823A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
US8803481B2 (en) Battery pack and method of controlling the same
US8111035B2 (en) Charging system, charging device and battery pack
US8138721B2 (en) Battery pack and charging method for the same
US7045990B2 (en) Portable device having a charging circuit and semiconductor device for use in the charging circuit of the same
JP6177496B2 (ja) 保護機能付き充電制御装置および電池パック
KR101149186B1 (ko) 충방전 제어 회로 및 충전식 전원 장치
KR101030885B1 (ko) 이차전지
KR101387733B1 (ko) 배터리 팩, 배터리 팩 장치 및 전기장치
JP4832840B2 (ja) 電池制御装置
EP1868274A1 (en) Battery pack, and battery protecting method
KR100965743B1 (ko) 이차전지 전류차단방법 및 이를 이용한 배터리 팩
JP2013096752A (ja) パック電池の異常判定方法及びパック電池
US9780592B2 (en) Battery pack for selectively setting a high capacity mode having a high charge capacity until a full charge of a secondary battery
JP2010124629A (ja) 電池パック
JP2009133675A (ja) 電池パックおよび内部インピーダンスの算出方法
JP2008021417A (ja) 電池パックおよび検出方法
JP5829966B2 (ja) 電池制御用半導体装置及び電池パック
KR20180061526A (ko) 듀얼 셀 보호 ic 및 이를 포함하는 배터리 모듈
JP2009133676A (ja) 電池パックおよび充放電方法
JP2009097954A (ja) 電池パックおよび二次電池の残容量補正方法
KR100584233B1 (ko) 충방전 제어회로 및 충전형 전원장치
WO2021192647A1 (ja) パック電池
JP2016103937A (ja) 電池パック
US6518729B2 (en) Secondary battery protection circuit capable of reducing time for functional test
KR101748866B1 (ko) 배터리 충방전 보호 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227032924

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021774904

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021774904

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE