WO2021192532A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2021192532A1
WO2021192532A1 PCT/JP2021/001190 JP2021001190W WO2021192532A1 WO 2021192532 A1 WO2021192532 A1 WO 2021192532A1 JP 2021001190 W JP2021001190 W JP 2021001190W WO 2021192532 A1 WO2021192532 A1 WO 2021192532A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
ecu
control unit
transmission unit
energy
Prior art date
Application number
PCT/JP2021/001190
Other languages
English (en)
French (fr)
Inventor
金川 信康
中野 洋
純之 荒田
隆夫 福田
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202180007112.8A priority Critical patent/CN114787009A/zh
Priority to US17/777,872 priority patent/US20230076114A1/en
Publication of WO2021192532A1 publication Critical patent/WO2021192532A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/192Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes electric brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • B60W2050/0295Inhibiting action of specific actuators or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/209Fuel quantity remaining in tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control system, and more particularly to a control system capable of continuing operation in the event of a failure.
  • operation control for example, by making it possible to move to a safe place and then stop even if a failure occurs, it is possible to ensure safety as compared with the case where the vehicle stops immediately at that place. ..
  • the operation control system that realizes automatic operation is not only the upper arithmetic unit that performs operation planning (hereinafter referred to as “automatic operation control unit”), but also the engine, battery, power converter (inverter), etc. under it. It has a lower-level arithmetic unit (hereinafter referred to as “drive system control unit”) that controls a device that controls the movement of the vehicle. In order to be able to move to a safe place and then stop even if a failure occurs, not only the automatic operation control unit but also the fail operation of the drive system control unit (sustainability of operation in the event of a failure) is required.
  • a hybrid drive system that combines different power (energy) sources such as an engine and a motor is also widespread.
  • the series hybrid drive system will be widely used in the future because of its linear characteristics.
  • Patent Document 1 discloses the possibility of continuation of operation of the electronic devices that control these automobiles in the event of a failure.
  • Patent Document 1 it is possible to increase the certainty of operation continuity in the event of a failure, but it is premised on the redundancy of the control device, and further consideration is desired for cost reduction.
  • a transmission unit that transmits energy to the drive wheels, a first control unit that controls the transmission unit, and a first source that inputs energy to the transmission unit.
  • a second source for inputting energy to the transmission unit, a second control unit for controlling the first source, and a third control unit for controlling the second source are provided, and the first control unit has failed.
  • the second control unit or the third control unit controls the transmission unit.
  • Example 1 block diagram of the present invention
  • Example of parallel hybrid drive system Example of parallel hybrid drive system
  • Example of parallel hybrid drive system Example of parallel hybrid drive system A More Detailed Example of a Parallel Hybrid Drive System A More Detailed Example of a Parallel Hybrid Drive System
  • Examples of series hybrid drive system and series parallel hybrid drive system Examples of series hybrid drive system and series parallel hybrid drive system
  • Examples of series hybrid drive system and series parallel hybrid drive system More detailed examples of series hybrid drive trains More detailed examples of series hybrid drive trains More Detailed Examples of Series Parallel Hybrid Drive Systems More Detailed Examples of Series Parallel Hybrid Drive Systems
  • Example in which ECU is integrated
  • Example of signal flow between each ECU Operation example Example of operation of parallel hybrid drive system
  • Example of operation of parallel hybrid drive system Example of operation of parallel hybrid drive system
  • Example of operation of series hybrid drive system Example of operation of series hybrid drive system
  • Example of operation of series hybrid drive system Example of operation of series hybrid drive system
  • Example of operation of series hybrid drive system Example of operation of series hybrid drive system
  • FIG. 1 is a basic embodiment 1 of the present invention.
  • Power (energy) from different power (energy) sources 100 and 200 is input to the mixing transmission unit (Combiner) 300, and the mixing transmission unit 300 mixes the power (energy) from the power (energy) sources 100 and 200. Then, power (energy) is transmitted to the drive wheels 400.
  • the mixing transmission unit 300 is controlled by the electronic control unit ECU 10-3, which is the first control unit.
  • the power (energy) source 100 is controlled by the electronic control unit ECU 10-1 which is the second control unit
  • the power (energy) source 100 is controlled by the electronic control unit ECU 10-2 which is the third control unit.
  • the electronic control unit ECU 10-0 which is the fourth control unit that controls the energy management of the entire hybrid drive system, controls the mixing ratio of (energy) from the power (energy) sources 100 and 200 of the mixing transmission unit 300.
  • the above is the configuration of a normal hybrid drive system.
  • the ECU 10-3 is fail-operated (operation can be continued in the event of a failure).
  • operation can be continued in the event of a failure.
  • the ECU 10-1 and the ECU 10-2 are configured to take common cause failure countermeasures so that the control functions of both are not lost due to the same failure or the cause of the failure.
  • the mixing transmission unit 300 causes the other power (for example, ECU 10-1).
  • Energy is controlled to be transmitted to the drive wheels by power (energy) from a source (for example, 200).
  • a source for example, 200
  • different power (energy) sources 100 and 200 can be regarded as redundant power (energy) sources, and even if one fails, the other can continue to operate.
  • the hybrid drive system can be made a fail operation with less redundancy.
  • FIG. 2 shows an example in which the present invention is applied to a parallel hybrid drive system.
  • the power (energy) source 100 in the embodiment of FIG. 1 has an engine 110
  • the power (energy) source 200 has a power (energy) source 210 including a motor
  • the mixing transmission unit 300 has a transmission 310.
  • the power (energy) source 210 including the motor is composed of the motor (or motor generator) 211, the power converter 212, and the battery 213, and the driving force from the engine 110 and the motor 211 is input to the transmission 310.
  • the driving force from the engine 110 and the motor 211 is mixed at an appropriate reduction ratio by gears, clutches and the like.
  • the output shafts connected to the engine 110, the motor 211, and the drive wheels are coupled via a transmission, and the driving force of the engine 110, the motor 211, or both is used as the output shaft by a clutch inserted between them.
  • the ECUs 10-3a and ECU10-3b that control the transmission 310 are redundantly provided, but as shown in FIG. 3, the solenoid 311 that drives the hydraulic valve of the transmission 310 is not redundant and is a single system. In this case, the solenoid 311 is driven via the OR or the selector circuit 312 by the redundant control signals from the ECU 10-3a and the ECU 10-3b. As shown in FIG.
  • the redundant ECUs 10-3a and ECU10-3b can drive the solenoids 311a and 311b, respectively. It is also possible to configure an OR or selector circuit by a hydraulic circuit inside the transmission 310 (not shown).
  • the power converter (inverter) 211 not only functions as an inverter, but also uses the power generated by the output motor as a generator during deceleration so that the motor (or motor generator) 211 can handle not only driving but also regenerative braking. It is desirable to have a four-quadrant conversion function that can convert it into DC power and return it to the battery 213.
  • FIG. 5 is a more detailed example of the parallel hybrid drive system.
  • the driving force output of the engine 110 is input to the automatic transmission AT via the motor (or motor generator) 211 via the clutch CL1.
  • the automatic transmission AT includes the clutch CL2 and is controlled by the control valve unit CVU. It is desirable that the driving force from the automatic transmission AT is supplied to the drive wheels 400, and the speed difference (difference in rotation speed) differential gear 410 is passed through the inner and outer wheels when the vehicle turns a curve.
  • the clutch CL1 is engaged when the engine 110 drives the drive wheels 400 to transmit the driving force of the engine 110 to the drive wheels 400, and when the motor (or motor generator) 211 drives the drive wheels 400, the engine 110 drives the motor (or motor). It is for disconnecting so as not to become a load of the generator) 211.
  • the clutch CL2 is for generating electricity with the driving force motor (or motor generator) 211 of the engine 110 when the vehicle is stopped.
  • the clutch CL2 an example is shown in which one of the friction fastening elements built in the automatic transmission AT is diverted.
  • An example in which an independent clutch CL2 is arranged between the motor generator MG and the automatic transmission AT, and an example in which an independent clutch CL2 is arranged between the automatic transmission AT and the drive wheel 400 are also conceivable.
  • the clutch CL2 can be omitted as shown in FIG.
  • the clutch CL1 and correspond to the mixing transmission unit 300, these elements are controlled by the redundant ECUs 10-3a and 10-3b. ..
  • FIG. 7 is an example in which the present invention is applied to a series hybrid drive system or a series parallel hybrid drive system.
  • the engine-generator 120 is provided as the power (energy) source 100
  • the battery 220 is provided as the power (energy) source 200
  • the output side motor (+ power converter (inverter)) 320 is provided as the mixing transmission unit 300.
  • the engine-generator 120 is composed of an engine 121, a generator 122, and a power converter 123, and an output side motor (+ power converter (inverter)) 320 is an output side motor (or motor generator) 321 and a power converter (inverter). ) Consists of 322.
  • electric power (alternating current) from the engine-generator 120 and the battery 220 is input to the electric power converter (inverter) 322, and the electric power converter (inverter). ) 322 outputs a three-phase alternating current synchronized with one magnetic pole of the output side motor 321 to drive the output side motor 321 and the output side motor 321 drives the drive wheel 400.
  • the driving force from the engine 121 is also input to the output side motor 321.
  • the rotating shaft of the engine 121 is connected to the rotating shaft of the output-side motor 321, and the driving force generated by the output-side motor 321 and the driving force generated by the engine 121 are combined to drive the drive wheels 400.
  • the power converter (inverter) 322 is not only an inverter function, but the output side motor (or motor generator) 321 operates as a generator during deceleration so that the output side motor 321 can perform not only driving but also regenerative braking. It is desirable to have a four-quadrant conversion function that converts the generated power into DC power and returns it to the battery 220.
  • the ECUs 10-3a and ECU10-3b that control the output side motor (+ power converter (inverter)) 320 are redundantly provided, but as shown in FIG. 8, the power converter that drives the output side motor 321 is provided.
  • (Inverter) 322 is not redundant, and in the case of a single system, the power converter (inverter) 322 uses the redundant control signals from ECU 10-3a and ECU 10-3b via OR or selector circuit 323. Driven. Further, as shown in FIG. 9, when the power converters (inverters) 322a and 322b are redundantly provided, the redundant ECUs 10-3a and ECU10-3b drive the power converters (inverters) 322a and 322b, respectively. It is also possible to make the winding inside the output side motor 321 (not shown) redundant.
  • the electric power from the engine-generator 120 and the battery 220 is supplied to the electric power converter (inverter) 321 or the electric power converter (inverter) 322a and 322b via a diode OR (not shown), and the engine-generator.
  • the 120, the battery 220, and the power converters (inverters) 322a and 322b may be connected to a common bus.
  • the power of the engine-generator 120 is converted into power from the power converter (inverter) 322a and the battery 220.
  • the SoC of the battery 220 is controlled by the output voltage of the engine-generator 120 and the output voltage of the power converters (inverters) 322a and 322b at the time of regeneration.
  • ECU 10-0 outputs the command value of the output voltage of the engine-generator 120 to ECU 10-1, and the command value of the output voltage at the time of regeneration of the power converters (inverters) 322a and 322b to ECU 10-3a and 10-3b.
  • the ECU 10-2 protects the battery 220 by opening a contact (switch) connecting the battery 220 and the bus when the SoC of the battery 220 is abnormal.
  • FIG. 10 is a more detailed example in which the present invention is applied to a series hybrid drive system (including a range extender).
  • the drive output shaft of the engine 121 is mechanically connected to the generator 122, and the power terminal of the generator 122 is connected to the battery 220 and the power converters (inverters) 322a and 322b via the power converter 123.
  • the power converters (inverters) 322a and 322b convert the power (direct current) from the power converter 123 and the battery 220 into three-phase AC power to drive the output side motor (or motor generator) 321.
  • the drive output shaft that mechanically connects the engine 121 and the generator 122 is mechanically connected to the drive output shaft of the output side motor (or motor generator) 321 via the clutch CL1.
  • the drive output of the engine is directly transmitted to the drive wheels 400, so that the generator 122, the power converter 123, the power converter (inverter) 322a, 322b, and the output side motor (or motor generator) 321 It is also possible to eliminate the conversion loss due to the conversion to electric power once.
  • the output side motor (or motor generator) 321 and the power converter (inverter) 322a and 322b correspond to the mixing transmission unit 300, so that these elements are redundant. It is controlled by the converted ECUs 10-3a and 10-3b.
  • FIG. 12 is a more detailed example in which the present invention is applied to a series parallel hybrid drive system.
  • the drive output of the engine 121 is mechanically transmitted to the generator 122 and the mixing transmission unit 300 via the power distribution mechanism 124.
  • the output of the generator 122 is electrically transmitted to the battery 220 and the power converters 322a and 322b in the mixing transmission unit 300 (320) via the power converter 123.
  • the drive output of the engine 121 transmitted via the power distribution mechanism 124 is mechanically connected to the output shaft of the output side motor (or motor generator) 321 and is connected to the output side motor (or motor).
  • the generator) 321 drives the drive wheels 400.
  • the power (direct current) supplied from the power converter 123 and the battery 220 is converted into three-phase AC to drive the output side motor (or motor generator) 321.
  • the power distribution mechanism 124 has various implementation methods.
  • the power distribution mechanism 124 uses a differential gear
  • Japanese Patent Application Laid-Open No. 9-100853 uses a planetary gear
  • WO2008 / 018539 uses a motor having a plurality of rotors. The method using is shown.
  • the output side motor (or motor generator) 321 and the power converter (inverter) 322a and 322b correspond to the mixing transmission unit 300, so that these elements are redundant. It is controlled by the converted ECUs 10-3a and 10-3b.
  • the ECU that controls the portion corresponding to the mixing transmission unit 300 is redundant with the ECUs 10-3a and 10-3b.
  • the entire drive system can be continuously operated even in the event of a failure.
  • FIG. 14 is an example in which the ECU is integrated, and is an example in which the ECU 10-1 and the ECU 10-3a, and the ECU 10-2 and the ECU 10-3b are configured by a common housing, a wiring board, a semiconductor chip, and the like.
  • the ECU 10-1 and the ECU 10-2 are composed of separate housings, wiring boards, semiconductor chips, etc., it is possible to reduce the occurrence of common cause failures between the two.
  • the redundantly configured ECUs 10-3a and ECU10-3b are composed of separate housings, wiring boards, chips, etc., it is possible to reduce the occurrence of common cause failures between the two, and enhance the effect of redundancy. be able to.
  • FIG. 15 is a signal flow between each ECU. Based on the torque 11 required from the automatic operation control unit 1, the energy management ECU 10-0 sends control commands 13-1, 13-2, 13-3a, 13 to each ECU 10-1, 10-2, 10-3a, 10-3b. Output -3b.
  • the energy management ECU 10-0 is based on the diagnostic results (OK / NG) 12-1, 12-2, 12-3a, 12-3b from each ECU 10-1, 10-2, 10-3a, 10-3b. , 13-1, 13-2, 13-3a, 13-3b are output, which is a feature of the present invention. That is, when the ECU 10-0 fails in one of the power (energy) sources (for example, 100) or the control unit (for example, ECU 10-1) of the power (energy) source (for example, when the diagnosis result 12-1 is NG). Controls the mixing transmission unit 300 to transmit energy to the drive wheels by the power (energy) from the other power (energy) source (for example, 200).
  • the ECUs 10-1, 10-2, 10-3a, and 10-3b have a diagnostic function, and the normal / abnormal and controlled power (energy) of the ECUs 10-1, 10-2, 10-3a, and 10-3b.
  • the normality / abnormality of the sources 100, 200 and the mixing transmission unit 300 is judged by the diagnostic function, and the diagnostic results (OK / NG) 12-1, 12-2, 12-3a, 12-3b are sent to the energy management ECU 10-0. ..
  • the diagnosis result (OK / NG) 12-0 of the energy management ECU is sent to each ECU 10-1, 10-2, 10-3a, 10-3b, and each ECU 10-1, 10- 2, 10-3a and 10-3b operate as in the embodiment shown in FIGS. 17 to 26 based on the required torque 11 from the automatic operation control unit 1.
  • the ECUs 10-1 and 10-2 are optimally controlled by energy management to control the power (energy) sources 100 and 200, respectively, and the ECU 10-3b is used. Controls the operation of the mixing transmission unit 300 with the outputs of the power (energy) sources 100 and 200.
  • Figures 17 to 19 are examples of the operation of the parallel hybrid drive system.
  • the output torques of the engine 110 and the motor 210 are optimally distributed according to the required torque 11 in consideration of the SoC of the battery 213 and the like, and the output torque is output from the mixing transmission unit 300.
  • the engine 110 controls the mixing transmission unit 300 to output the output torque according to the required torque 11 as shown in FIG.
  • braking torque is generated by mechanical braking or engine braking using the engine 110 during braking.
  • braking with a mechanical brake which is simple to control, is desirable.
  • the motor 210 controls the mixing transmission unit 300 to output the output torque according to the required torque 11 as shown in FIG.
  • the regenerative braking by the motor 210 and the mechanical brake are coordinated to generate braking torque during braking.
  • braking with a mechanical brake which is simple to control, is desirable.
  • the ECU 10-1, the ECU 10-2, and the ECU 10 are based on the required torque indicated by the accelerator pedal opening of the driver in the automatic driving control unit 1 in the automatic driving vehicle and in the conventional driven driving vehicle.
  • -3a and ECU 10-3b may each determine and perform the operation fixed to either FIG. 18 or FIG.
  • Figures 20 to 22 are examples of the operation of the series hybrid drive system and the series parallel hybrid drive system.
  • the power energy from the engine-generator 120 and the battery 220 is optimally distributed in consideration of the SoC of the battery 220 according to the required torque 11, and the output energy (torque) is output from the mixing transmission unit 300. Control to output.
  • the mixing transmission unit 300 controls to output output energy (torque) by the electric power energy from the engine-generator 120 according to the required torque 11.
  • torque the electric power energy from the engine-generator 120
  • the energy is absorbed by the mechanical brake or the engine brake using the engine 121 during braking.
  • a method of engaging the clutch CL1 to rotate the engine 121 or operating the generator 122 as a motor via the power converter 123 with the regenerative power of the motor 321 to rotate the engine 121 is conceivable. Be done.
  • braking with a mechanical brake which is simple to control, is desirable.
  • control is performed to output output energy (torque) from the mixing transmission unit 300 by the electric power energy from the battery 220 according to the required torque 11.
  • torque output energy
  • the regenerative power can be absorbed by the battery 220
  • the regenerative braking by the motor 321 and the mechanical brake are coordinated to generate braking torque during braking.
  • braking with a mechanical brake which is simple to control, is desirable.
  • the ECU 10-1, the ECU 10-2, and the ECU 10 are based on the required torque indicated by the accelerator pedal opening of the driver in the automatic driving control unit 1 in the automatic driving vehicle and in the conventional driven driving vehicle.
  • -3a and ECU 10-3b may each determine and perform the operation fixed to either FIG. 21 or FIG. 22.
  • Figures 23 to 26 are examples of the operation of the range extender.
  • the engine-generator 120 When the SoC of the battery 220 is low in the normal state, the engine-generator 120 generates electricity as shown in FIG. 23, but when the SoC is high, the power energy from the battery 220 outputs the power from the mixing transmission unit 300. Controls to generate energy (torque).
  • the mixed transmission unit 300 controls to output the output energy (torque) by the electric power energy from the engine-generator 120 according to the required torque 11.
  • torque the electric power energy from the engine-generator 120
  • the energy is absorbed by the mechanical brake or the engine brake using the engine 121 during braking.
  • braking with a mechanical brake which is simple to control, is desirable.
  • the power energy from the battery 220 is used to control the output energy (torque) from the mixing transmission unit 300 according to the required torque 11.
  • the regenerative power can be absorbed by the battery 220, the regenerative braking by the motor 321 and the mechanical brake are coordinated to generate braking torque during braking.
  • braking with a mechanical brake which is simple to control, is desirable.
  • the ECU 10-1, the ECU 10-2, and the ECU 10 are based on the required torque indicated by the accelerator pedal opening of the driver in the automatic driving control unit 1 in the automatic driving vehicle and in the conventional driven driving vehicle.
  • -3a and ECU 10-3b may each determine and perform the operation fixed to either FIG. 25 or FIG. 26.
  • Example 6 of the present invention will be described with reference to FIG. 27. The description of the same configuration as in Example 1-5 will be omitted.
  • the ECU 10-3 that controls the mixing transmission unit 300 has a redundant configuration with the ECU 10-3a and the ECU 10-3b, whereas in this embodiment, the ECU 10-3 that controls the mixing transmission unit 300 is used.
  • the ECU 10-3 that controls the mixing transmission unit 300 is used.
  • the ECU 10-3 is set to fail operation (operation can be continued at the time of failure) without making it redundant.
  • the path that the ECU 10-2 that originally controlled the power (energy) source 200 controls the mixing transmission unit 300.
  • the SW1 switches the connection destination of the ECU 10-2, so that the mixing transmission unit 300 is controlled by the ECU 10-2 that controls the power (energy) source 200.
  • the ECU 10-2 switches the function and executes the function of the ECU 10-3.
  • the ECU 10-0 transmits a control command to the ECU 10-1 and the ECU 10-2 so as to control the drive wheels 400 by the power of the power (energy) source 100.
  • the ECU 10-4 is provided as a control unit that controls the energy input from the power 100 and the power 200 to the mixing transmission unit 300, and when the ECU 10-3 fails, the ECU 10-4 is mixed.
  • the transmission unit 300 is controlled so as to turn off the transmission of energy to the drive wheels.
  • sudden braking may occur from the power source 100 or 200, which may cause anxiety to the driver.
  • By controlling the ECU 10-4 to turn off the energy transmission of the mixing transmission unit 300 it is possible to suppress the sudden braking from being transmitted to the drive wheels, which is more preferable because smooth switching can be realized.
  • Example 11 A detailed example of controlling a relay, a clutch, and a solenoid valve for driving a motor for prevention of unnecessary sudden braking and protection coordination is shown in Example 11.
  • Example 7 of the present invention will be described with reference to FIGS. 28 to 32.
  • Example 7 is an example in which the invention described in Example 6 is applied to a parallel hybrid drive system. The description of the same configurations as those of the second and sixth embodiments will be omitted.
  • the vehicle control system in this embodiment has an engine 110 as a power (energy) source 100, a power (energy) source 210 including a motor as a power (energy) source 200, and a transmission 310 as a mixing transmission unit 300.
  • an engine 110 as a power (energy) source 100
  • a power (energy) source 210 including a motor as a power (energy) source 200
  • a transmission 310 as a mixing transmission unit 300.
  • the transmission 310 that is the mixing transmission unit 300 is connected to the ECU 10-2 that controls the motor 210 that is the power (energy) source 200 in the normal state.
  • the ECU 10-2 includes a path for controlling the transmission 310 in addition to a path for controlling the motor 210, and the connection destination can be changed by SW1.
  • the ECU 10-2 controls the transmission 310 when the ECU 10-3 fails.
  • the method of changing the control destination is not limited to SW1, and various methods such as changing the transmission address can be considered.
  • One method is to judge from the SoC (State of Charge) of the battery and the remaining amount of fuel. If the SoC (State of Charge) of the battery at the time of ECU 10-3 failure is sufficiently high and the remaining amount of fuel is low, the function of ECU 10-3 is replaced by ECU 10-1 that controls the engine 100 (110). If the SoC (State of Charge) of the battery is low and the remaining amount of fuel is sufficient, the function of the ECU 10-3 may be replaced by the ECU 10-2 that controls the motor 200 (210).
  • this method requires an extra switch, wiring (network), program file to be executed, and memory so that any of the ECUs 10-1 and 10-2 can substitute the function of the ECU 10-3, resulting in an increase in cost. Invite.
  • the ECU 10-2 that always controls the motor 200 (210) when the ECU 10-3 fails.
  • a method of substituting the function of the ECU 10-3 can be considered. According to this method, since the ECU 10-2 may be able to substitute the function of the ECU 10-3, the changeover switch, the wiring (network), and the program file to be executed can be reduced as compared with the former, and the cost can also be reduced.
  • the solenoid 311 that drives the hydraulic valve of the transmission 310 is not redundant and is a single system, the control signals from the ECU 10-3 and the ECU 10-2 are used via the OR or the selector circuit SW2. The solenoid 311 is driven.
  • the ECU 10-3 can drive the solenoid 311b and the ECU 10-2 solenoid 311a. It is also possible to configure an OR or selector circuit by a hydraulic circuit inside the transmission 310 (not shown).
  • the transmission unit 300 is controlled by the ECU 10-2 that controls the power source 200 when the ECU 10-3 that controls the transmission 310 fails, the ECU 10-1 or the ECU 10-1 or when the ECU 10-3 is normal even if the control target is redundant. Since the control target controlled by the ECU 10-2 does not operate and the control target controlled by the ECU 10-3 does not operate when the ECU 10-3 fails, the operation performance may deteriorate. Therefore, it is desirable that the ECU 10-3 and the ECU 10-2 drive the control targets (solenoids 311a and 311b) redundantly prepared via the selector circuit SW2, so that both reliability and operating performance can be improved.
  • FIG. 31 is an example in which in the parallel hybrid drive system shown in FIG. 5, another ECU substitutes the operation without making the ECU that controls the control valve unit CVU redundant.
  • the ECU 10-3 that originally controls the control valve unit CVU when the ECU 10-3 that originally controls the control valve unit CVU is normal, the ECU 10-3 controls the control valve unit CVU, and the ECU 10-2 controls the power converter 212.
  • the ECU 10-2 which originally controlled the power converter 212, stops the control of the power converter 212 and controls the control valve unit CVU.
  • the automatic transmission AT is controlled via the control valve unit CVU by substituting the operation by another ECU without making the ECU that controls the control valve unit CVU redundant. can do.
  • the ECU 10-2 stops controlling the power converter 212 and stops driving the motor (or motor generator) 211, the driving force of the engine 100 (110) causes the clutch CL1 and the automatic transmission AT.
  • the drive wheel 400 can be driven via the above.
  • the clutch CL2 can be omitted as shown in FIG. 32 if the driving force motor (or motor generator) 211 of the engine 110 does not generate electricity when the vehicle is stopped.
  • Example 8 of the present invention will be described with reference to FIGS. 33 to 40. The description of the same configurations as those of the third and sixth embodiments will be omitted.
  • This example is an example in which the invention described in Example 6 is applied to a series hybrid drive system or a series parallel hybrid drive system.
  • the engine-generator 120 is provided as the power (energy) source 100
  • the battery 220 is provided as the power (energy) source 200
  • the output side motor (+ power converter (inverter)) 320 is provided as the mixing transmission unit 300.
  • the engine-generator 120 is composed of an engine 121, a generator 122, and a power converter 123, and an output side motor (+ power converter (inverter)) 320 is an output side motor (or motor generator) 321 and a power converter (inverter). ) Consists of 322.
  • the mixing transmission unit 300 has the power converters (inverters) 322a and 322b redundantly
  • the ECUs 10-3 and ECU10-2 have the power converters (inverters) 322a and 322b, respectively.
  • To drive. It is also possible to make the winding inside the output side motor 321 (not shown) redundant.
  • the power converter (inverter) 322 is always used regardless of whether the ECU 10-3 is normal or abnormal.
  • the efficiency of using the converter (inverter) is good.
  • the ECUs 10-3a and 10-3b can simultaneously control the power converters (inverters) 322a and 322b to operate the outputs of two units in parallel, so that the power conversion can be performed.
  • the utilization efficiency of the device (inverter) does not deteriorate.
  • FIG. 36 is an example in which the ECU 10-1 and the ECU 10-3 control the power converters (inverters) 322a and 322b, respectively, to drive the output side motor 321.
  • ECU10-1 and ECU10-3 control the power converters (inverters) 322a and 322b, respectively, to drive the output side motor 321.
  • ECU10-3 controls the power converters (inverters) 322b.
  • the ECU 10-1 controls the power converter (inverter) 322a to drive the output side motor 321.
  • the advantage of controlling the mixing transmission unit 300 by the ECU 10-1, which is a control device that controls the first power source 100 when the ECU 10-3 fails, is that the switching time can be reduced. There is a shortening. This is because the control of the power converter 123 of the engine-generator 120, which is the first power source 100, and the control of the power converter (inverter) 322a included in the mixing transmission unit 300 are very similar, so that the ECU 10-1 This is because the power converter (inverter) 322a can be controlled by the ECU 10-1, which originally controlled the power converter 123 when the ECU 10-3 fails, without switching the major functions of the above.
  • FIG. 37 is a more detailed example of applying the present invention to a series hybrid drive system (including a range extender).
  • the drive output shaft of the engine 121 is mechanically connected to the generator 122, and the power terminal of the generator 122 is connected to the battery 220 and the power converter (inverter) 322 via the power converter 123.
  • the power converter (inverter) 322 converts the power (direct current) from the power converter 123 and the battery 220 into three-phase AC power to drive the output side motor (or motor generator) 321.
  • ECU 10-1 and ECU 10-3 control the power converter (inverter) 322 via the changeover switch SW2 to drive the output side motor 321.
  • ECU 10-3 converts power.
  • the device (inverter) 322 is controlled, and when the ECU 10-3 fails, the ECU 10-1 controls the power converter (inverter) 322 to drive the output side motor 321.
  • the drive output shaft that mechanically connects the engine 121 and the generator 122 is mechanically connected to the drive output shaft of the output side motor (or motor generator) 321 via the clutch CL1.
  • the drive output of the engine is directly transmitted to the drive wheels 400, so that the generator 122, the power converter 123, the power converter (inverter) 322, and the output side motor (or motor generator) 321 are once powered. It is also possible to eliminate the conversion loss due to conversion to. Also in this case, the ECU 10-1 and the ECU 10-3 control the clutch CL1 via the changeover switch SW2.
  • FIG. 39 is a more detailed example in which the present invention is applied to a series parallel hybrid drive system.
  • the ECU 10-1 and the ECU 10-3 control the power converter (inverter) 322 via the changeover switch SW2 to drive the output side motor 321.
  • the ECU 10-3 powers.
  • the converter (inverter) 322 is controlled, and when the ECU 10-3 fails, the ECU 10-1 controls the power converter (inverter) 322 to drive the output side motor 321.
  • the engine is operated by the clutch CL1 at high speed and with a light load during cruising.
  • the ECU 10-1 and the ECU 10-3 control the clutch CL1 via the changeover switch SW2.
  • Example 9 of the present invention will be described with reference to FIG. 41.
  • FIG. 41 is an example in which the ECU is integrated, and is an example in which the ECU 10-1 and the ECU 10-3 are configured by a common housing, a wiring board, a semiconductor chip, and the like.
  • the ECU 10-1 and the ECU 10-2 are composed of separate housings, wiring boards, semiconductor chips, etc., it is possible to reduce the occurrence of common cause failures between the two.
  • the ECU 10-3 and the ECU 10-2, which substitutes the function in the event of a failure are composed of separate housings, wiring boards, chips, etc., it is possible to reduce the occurrence of common cause failures between the two, resulting in redundancy. The effect can be enhanced.
  • FIG. 42 shows an example in which the integrated ECU 10-all in which the ECUs 10-1 to 3 for controlling the series hybrid are integrated is used.
  • the microcomputer cores 10-1-1 and 2 configure the ECU 10-1 and control the power (energy) source 100.
  • the microcomputer core 10-1-1 controls the engine 121
  • the microcomputer core 10-1-2 controls the generator 122.
  • the microcomputer core 10-2 constitutes the ECU 10-2 and controls the battery 210 which is the power (energy) source 200.
  • the microcomputer core 10-3 constitutes the ECU 10-3 and controls the output side motor 321 which is the transmission unit 300.
  • the microcomputer core 10-1-2 stops the generator 122 control and controls the output side motor 321 which is the transmission unit 300 instead of the microcomputer core 10-3.
  • the ECUs 10-1, 2 and 3 and the sensors and drivers connected to the engine 121, the generator 122, the battery 210 and the transmission unit 300, which are the controlled objects, are connected to each other via an interface (I / F) via a network.
  • the changeover switch SW2 is required for each wiring connected to the engine 121, generator 122, battery 210, and transmission unit 300, which are the control targets. As shown, the number of wiring points to be switched by SW2 can be significantly reduced.
  • the microcomputer cores 10-1-1 and 2 constituting the ECU 10-1 may have the same chip configuration, but from the viewpoint of the same failure countermeasures, the ECU 10 It is desirable that the microcomputer core that constitutes -1 and the microcomputer core that constitutes ECU 10-3 are separate chips, and similarly, the microcomputer core that constitutes ECU 10-1 and the microcomputer core that constitutes ECU 10-2 are separate chips. It is desirable to do.
  • FIGS. 43 and 44 are examples of motor control for prevention of unnecessary sudden braking and protection and coordination of control output.
  • the control mode signals CNTL12-1, 2, 3 are output from the microcomputers constituting the ECUs 10-1, 2, and 3, and the abnormality detection result is OK / from the abnormality detection means.
  • the microcomputer constituting the ECU 10-3 controls the transmission unit 300 (motor 321) and uses the control mode signal CNTL12-3 as the motor.
  • the control mode (H) is output, and the abnormality detection means outputs OK (H) as the abnormality detection result OK / NG13-3.
  • the non-motor control mode (L) is output as a control mode signal CNTL12-3 if the microcomputer can detect the failure. Even if the microcomputer cannot detect the failure, the abnormality detecting means outputs NG (L) as the abnormality detection result OK / NG13-3.
  • the microcomputer constituting ECU 10-1 or 2 constantly monitors the control mode signal CNTL12-3 and the abnormality detection result OK / NG13-3, and the control mode signal CNTL12-3 is in the motor control mode (H) and the abnormality detection result OK / NG13.
  • -3 OK (H)
  • the originally assigned power (energy) source 100 or power (energy) source 200 is controlled (S1 in FIG. 44).
  • S2 in FIG. 44 When a failure occurs in ECU 10-3 (S2 in FIG. 44) and the control mode signal CNTL12-3 becomes the non-motor control mode (L) or the abnormality detection result OK / NG13-3 becomes NG (L). Stops control of the originally assigned power (energy) source 100 or power (energy) source 200, and starts preparation for control of the transmission unit 300 (motor 321) (specifically, program download, initialization, etc.). (S3 in FIG. 44).
  • the ECU 10-1 or 2 After the preparation for the transmission unit 300 (motor 321) control is completed, the ECU 10-1 or 2 starts the transmission unit 300 (motor 321) control, and the control mode signals CNTL12-1 and CNT are sent from the non-motor control mode (L) to the motor.
  • the control mode (H) When the control mode (H) is set and the ECU 10-1 or 2 is normal, the abnormality detection function outputs OK (H) as the abnormality detection results OK / NG13-1 and 2 (S4 in FIG. 44).
  • the SW2 that selects the control input to the converter 322 is controlled by the control mode signal CNTL12-3 and the abnormality detection result OK / NG13-3, or the control mode signal CNTL12-1, 2 and the abnormality detection result OK / NG13-1,2. , Both operate to select the output of the ECU which is H.
  • the control output 11-3 is selected.
  • the SW3 that opens and closes the phase output of the converter 322 and the SW4 that controls the power supply to the converter 322 are the control mode signal CNTL12-3 and the abnormality detection result OK / NG13-3 are both H, or the control mode signal CNTL12-1.
  • 2 and the abnormality detection result OK / NG13-1 and 2 are both turned on when they are H, and the converter 322 can drive the output side motor 321.
  • either ECU 10-3 or ECU 10-1 or 2 can drive the motor control mode, that is, the output side motor 321 and the abnormality detection result OK / NG is ON, that is, normal.
  • the converter 322 can drive the output side motor 321 only when ing.
  • the parallel hybrid drive system is also controlled in the same manner.
  • the power converter 322 may be replaced with the solenoid driver 320, and the output side motor 321 may be replaced with the transmission 310 or the clutches CL1 and CL2 as shown in FIG.
  • the control unit of the transmission unit that mixes the power (energy) from different power (energy) sources included in the hybrid drive system and transmits the energy to the drive wheels has a redundant configuration.
  • the system as a whole can continue to operate.
  • the transmission unit supplies energy to the drive wheels by the power (energy) from the other power (energy) source. The operation can be continued by controlling the transmission.
  • control unit of the transmission unit which is a single point of failure of the entire system, with a function to continue operation in the event of a failure, control of the transmission unit can be continued even if the control unit of the transmission unit fails, and the entire system can be controlled. It is possible to continue the operation, that is, it becomes a fail operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

故障時の動作継続性を有する制御装置をより少ない冗長度で実現して、コスト低減することを目的とする。 駆動輪にエネルギを伝達する伝達部と、前記伝達部を制御する第1制御部と、前記伝達部へエネルギを入力する第1源と、前記伝達部へエネルギを入力する第2源と、前記第1源を制御する第2制御部と、前記第2源を制御する第3制御部と、を備え、前記第1制御部が故障した場合には、前記第2制御部もしくは前記第3制御部が前記伝達部を制御することを特徴とする車両制御システム。

Description

車両制御装置
 本発明は制御システムにかかり、特に、故障時動作継続可能な制御システムに関する。
 自動運転を初めとする制御の全自動化は、人為的操作を不用とし、人為的誤りに起因する事故の確率を低減し、安全性を向上させることが可能となる。高度な自動運転では、システムが車両制御の責任を持つため、高度な安全性が求められる。この安全性に対する要求のひとつとして、フェールオペレーション(故障時動作継続可能性)の要求がある。
 これは、構成要素の一箇所が故障した場合にただちに機能を停止するのではなく、残存する機能を用いて最低限の性能を維持する機能を指す。運転制御においては、例えば故障が発生しても安全な場所まで移動してから停止できるようにすることで、その場に直ちに停車する場合と比べて安全性を確保できるようにすることが挙げられる。
 自動運転を実現する運転制御システムは、運転計画を行う上位の演算部(以下、「自動運転制御部」と記す)だけでなく、その配下にエンジン-やバッテリ、電力変換器(インバータ)等の車両の運動を司る装置を制御する下位の演算部(以下、「駆動系制御部」と記す)とを有する。故障が発生しても安全な場所まで移動してから停止できるようにするためには、自動運転制御部だけでなく駆動系制御部のフェールオペレーション(故障時動作継続可能性)も求められる。
 環境保護や、人類の社会活動のサステナビリティの見地から、エンジン-とモータという異なる動力(エネルギ)源を組合せたハイブリッド駆動システムも普及している。特に自動運転の見地からは、線形な特性を有することからシリーズハイブリッド駆動系が今後広く用いられるであろう。
 これらの自動車を制御する電子機器の故障時動作継続可能性について、例えば、特許文献1が開示されている。
特開2018-016107号公報
 特許文献1によれば、故障時の動作継続性の確実性を高めることが可能になるが、制御装置の冗長化を前提としたものでコスト低減について更なる考慮が望まれる。
 そこで本発明では、故障時の動作継続性を有する制御装置をより少ない冗長度で実現して、コスト低減することを目的とする。
 上記目的を達成するために、本発明の車両制御システムでは、駆動輪にエネルギを伝達する伝達部と、前記伝達部を制御する第1制御部と、前記伝達部へエネルギを入力する第1源と、
 前記伝達部へエネルギを入力する第2源と、前記第1源を制御する第2制御部と、前記第2源を制御する第3制御部と、を備え、前記第1制御部が故障した場合には、前記第2制御部もしくは前記第3制御部が前記伝達部を制御することを特徴とする。
 ハイブリッド駆動システムが備える異なる動力(エネルギ)源を冗長化された動力(エネルギ)源と看做すことにより、さらなる冗長化が不要で、最小限の冗長化によりハイブリッド駆動系のフェールオペレーショナルを実現することができ、故障時動作継続性の実現とコスト抑制を両立できる。
本発明の基本的実施例1構成図 パラレルハイブリッド駆動系の実施例 パラレルハイブリッド駆動系の実施例 パラレルハイブリッド駆動系の実施例 パラレルハイブリッド駆動系のさらに詳細な実施例 パラレルハイブリッド駆動系のさらに詳細な実施例 シリーズハイブリッド駆動系、シリーズパラレルハイブリッド駆動系の実施例 シリーズハイブリッド駆動系、シリーズパラレルハイブリッド駆動系の実施例 シリーズハイブリッド駆動系、シリーズパラレルハイブリッド駆動系の実施例 シリーズハイブリッド駆動系のさらに詳細な実施例 シリーズハイブリッド駆動系のさらに詳細な実施例 シリーズパラレルハイブリッド駆動系のさらに詳細な実施例 シリーズパラレルハイブリッド駆動系のさらに詳細な実施例 ECUを統合化した実施例 各ECU間の信号の流れの実施例 動作例 パラレルハイブリッド駆動系の動作の実施例 パラレルハイブリッド駆動系の動作の実施例 パラレルハイブリッド駆動系の動作の実施例 シリーズハイブリッド駆動系の動作の実施例 シリーズハイブリッド駆動系の動作の実施例 シリーズハイブリッド駆動系の動作の実施例 レンジエクステンダの動作の実施例 レンジエクステンダの動作の実施例 レンジエクステンダの動作の実施例 レンジエクステンダの動作の実施例 本発明の基本的実施例2 パラレルハイブリッド駆動系の実施例 パラレルハイブリッド駆動系の実施例 パラレルハイブリッド駆動系の実施例 パラレルハイブリッド駆動系のさらに詳細な実施例 パラレルハイブリッド駆動系のさらに詳細な実施例 シリーズハイブリッド駆動系、シリーズパラレルハイブリッド駆動系の実施例 シリーズハイブリッド駆動系、シリーズパラレルハイブリッド駆動系の実施例 シリーズハイブリッド駆動系、シリーズパラレルハイブリッド駆動系の実施例 シリーズハイブリッド駆動系、シリーズパラレルハイブリッド駆動系の実施例 シリーズハイブリッド駆動系のさらに詳細な実施例 シリーズハイブリッド駆動系のさらに詳細な実施例 シリーズパラレルハイブリッド駆動系のさらに詳細な実施例 シリーズパラレルハイブリッド駆動系のさらに詳細な実施例 ECUを統合化した実施例 ECUを統合化した詳細な実施例 出力保護協調の実施例 出力保護協調の実施例 出力保護協調の実施例
 以下図に従い、本発明の実施例について説明を加える。
 図1は本発明の基本的な実施例1である。
 異なる動力(エネルギ)源100、200からの動力(エネルギ)は混合伝達部(Combiner)300に入力され、混合伝達部300では、動力(エネルギ)源100、200からの動力(エネルギ)を混合して、駆動輪400に動力(エネルギ)を伝達する。混合伝達部300は第1制御部である電子コントロールユニットECU10-3により制御される。動力(エネルギ)源100は第2制御部である電子コントロールユニットECU10-1により制御され、動力(エネルギ)源100は第3御部である電子コントロールユニットECU10-2により制御される。さらにハイブリッド駆動システム全体のエネルギマネジメントを司る第4制御部である電子コントロールユニットECU10-0により、混合伝達部300なる動力(エネルギ)源100、200からの(エネルギ)の混合比を制御する。以上が通常のハイブリッド駆動システムの構成である。
 さらに本発明では、ECU10-3をフェイルオペレーショナル(故障時動作継続可能)とする。具体的には図に示すようにECU10-3a、ECU10-3bと冗長構成とすることが考えられる。ECU10-1とECU10-2には、共通原因故障対策を施し同一の故障、もしくは故障原因では両方の制御機能を失わない構成とする。具体的には、ECU10-1とECU10-2の筐体、配線基板、半導体チップを別として物理的に分離したり、別電源で動作させて電気的に分離たりすることが考えられる。
 さらに本発明では、ECU10-0は一方の動力(エネルギ)源(例えば100)または、該動力(エネルギ)源の制御部(例えばECU10-1)の故障時には、混合伝達部300が他方の動力(エネルギ)源(例えば200)からの動力(エネルギ)により駆動輪にエネルギを伝達するように制御する。以上の制御により、異なる動力(エネルギ)源100、200を冗長な動力(エネルギ)源と看做すことが可能となり、一方が故障しても他方で動作を継続させることが可能となる。
 以上述べた本実施例によれば、ハイブリッド駆動システムが元来有している冗長性に着目することでより少ない冗長性によりハイブリッド駆動システムをフェールオペレーショナルとすることができる。
 図2はパラレルハイブリッド駆動系に本発明を適用した実施例である。図1の実施例における動力(エネルギ)源100としてエンジン110、動力(エネルギ)源200としてモータを含む動力(エネルギ)源210、混合伝達部300としてトランスミッション310を有する。本実施例では、モータを含む動力(エネルギ)源210はモータ(またはモータジェネレータ)211、電力変換器212、バッテリ213から構成され、エンジン110、モータ211からの駆動力はトランスミッション310に入力され、トランスミッション310ではギア、クラッチなどによりエンジン110、モータ211からの駆動力が適切な減速比で混合される。多くの場合、エンジン110、モータ211、駆動輪に繋がる出力軸が変速機を介して結合され、夫々の間に挿入されたクラッチによりエンジン110、モータ211、またはその両者の駆動力を出力軸に伝達する。本実施例では、トランスミッション310を制御するECU10-3a、ECU10-3bを冗長に有するが、図3に示すようにトランスミッション310の油圧弁を駆動するソレノイド311は冗長化されておらず1重系の場合には、冗長化したECU10-3a、ECU10-3bからの制御信号によりORまたはセレクタ回路312を介してソレノイド311が駆動される。
図4に示すようにソレノイド311a、311bを冗長に持つ場合には、冗長化したECU10-3a、ECU10-3bがそれぞれソレノイド311a、311bを駆動することも可能である。なお、図示しないトランスミッション310内部の油圧回路によりORまたはセレクタ回路を構成することも可能である。
 なお、モータ(またはモータジェネレータ)211は駆動だけでなく回生制動も担えるように、電力変換器(インバータ)211は、単なるインバータ機能だけでなく、減速時には出力側モータが発電機として動作した電力を直流電力に変換してバッテリ213に戻すことのできる4象限変換機能を有することが望ましい。
 図5はパラレルハイブリッド駆動系のさらに詳細な実施例である。
 エンジン110の駆動力出力はクラッチCL1を経由してモータ(またはモータジェネレータ)211を介して自動変速機ATに入力される。自動変速機ATはクラッチCL2を含み、コントロールバルブユニットCVUにより制御される。自動変速機ATからの駆動力は駆動輪400に供給され、車両がカーブを曲がる時の内側と外側の車輪に速度差(回転数の差)差動ギア410を経由するのが望ましい。
 クラッチCL1はエンジン110で駆動輪400を駆動するときには締結してエンジン110の駆動力を駆動輪400に伝え、モータ(またはモータジェネレータ)211で駆動輪400を駆動するときにはエンジン110がモータ(またはモータジェネレータ)211の負荷とならないように切り離すためのものである。バッテリ213のSoCが低下したときにクラッチCL2は停車時にエンジン110の駆動力モータ(またはモータジェネレータ)211で発電をするためのものである。クラッチCL2としては自動変速機ATに内蔵される摩擦締結要素の一つを流用する例を示した。モータジェネレータMGと自動変速機ATの間に独立のクラッチCL2を配置する例や、自動変速機ATと駆動輪400の間に独立のクラッチCL2を配置する例も考えられる。
 また、停車時にエンジン110の駆動力モータ(またはモータジェネレータ)211で発電する動作をしなければ、図6に示すようにクラッチCL2を省略することも可能である。
 本実施例では、自動変速機AT、クラッチCL1、(図5の実施例においてはクラッチCL2)が混合伝達部300に相当するためこれらの要素を冗長化したECU10-3a、10-3bで制御する。
 図7はシリーズハイブリッド駆動系、またはシリーズパラレルハイブリッド駆動系に本発明を適用した実施例である。図1の実施例における動力(エネルギ)源100としてエンジン-発電機120、動力(エネルギ)源200としてバッテリ220、混合伝達部300として出力側モータ(+電力変換器(インバータ))320を有する。エンジン-発電機120はエンジン121、発電機122、電力変換器123から構成され、出力側モータ(+電力変換器(インバータ))320は出力側モータ(またはモータジェネレータ)321と電力変換器(インバータ)322から構成される。
 本実施例の内シリーズハイブリッド駆動系では、図8、図9に示すようにエンジン-発電機120とバッテリ220からの電力(直流)が電力変換器(インバータ)322に入力され電力変換器(インバータ)322は出力側モータ321の磁極一に同期した三相交流を出力して出力側モータ321を駆動し、出力側モータ321は駆動輪400を駆動する。
 シリーズパラレルハイブリッド駆動系ではエンジン-発電機120からの電力に加えて、エンジン121からの駆動力も出力側モータ321に入力される。具体的には、出力側モータ321の回転軸にエンジン121の回転軸が接続され、出力側モータ321が発生した駆動力とエンジン121が発生した駆動力が合わさって駆動輪400を駆動する。
 なお、出力側モータ321は駆動だけでなく回生制動も担えるように、電力変換器(インバータ)322は、単なるインバータ機能だけでなく、減速時には出力側モータ(またはモータジェネレータ)321が発電機として動作した電力を直流電力に変換してバッテリ220に戻す4象限変換機能を有することが望ましい。
 本実施例では、出力側モータ(+電力変換器(インバータ))320を制御するECU10-3a、ECU10-3bを冗長に有するが、図8に示すように出力側モータ321を駆動する電力変換器(インバータ)322は冗長化されておらず1重系の場合には、冗長化したECU10-3a、ECU10-3bからの制御信号によりORまたはセレクタ回路323を介して電力変換器(インバータ)322が駆動される。また図9に示すように電力変換器(インバータ)322a、322bを冗長に持つ場合には、冗長化したECU10-3a、ECU10-3bがそれぞれ電力変換器(インバータ)322a、322bを駆動する。なお、図示しない出力側モータ321内部の巻き線も冗長とすることも可能である。
 なお、エンジン-発電機120とバッテリ220からの電力は図示しないダイオードORを介して電力変換器(インバータ)321、または電力変換器(インバータ)322a、322bに供給される場合と、エンジン-発電機120、バッテリ220、電力変換器(インバータ)322a、322bは共通の母線に接続される場合がある。前者の場合、複数の電力変換器(インバータ)322a、322bを有する実施例(図9)においては、エンジン-発電機120の電力を電力変換器(インバータ)322a、バッテリ220からの電力を電力変換器(インバータ)322bと、動力(エネルギ)源と電力変換器(インバータ)の組み合わせを固定する方法もある。また後者の場合、エンジン-発電機120の出力電圧、電力変換器(インバータ)322a、322bの回生時の出力電圧によって、バッテリ220のSoCは制御されるため、ECU10-2はバッテリ220のSoCを推定し、ECU10-0がECU10-1にエンジン-発電機120の出力電圧、ECU10-3a、10-3bに電力変換器(インバータ)322a、322bの回生時の出力電圧の指令値を出力する。以上に加えて、ECU10-2はバッテリ220のSoC異常時にはバッテリ220と母線を結ぶコンタク(開閉器)を開くことでバッテリ220を保護する。
 図10はシリーズハイブリッド駆動系(レンジエクステンダを含む)に本発明を適用したさらに詳細な実施例である。エンジン121の駆動出力軸は発電機122に機械的に接続され発電機122の電力端子は電力変換器123を介してバッテリ220、電力変換器(インバータ)322a、322bに接続されている。電力変換器(インバータ)322a、322bは、電力変換器123、バッテリ220からの電力(直流)を3相交流電力に変換して出力側モータ(またはモータジェネレータ)321を駆動する。
 なお、図11に示すようにエンジン121、発電機122を機械的に接続しているの駆動出力軸をクラッチCL1を介して出力側モータ(またはモータジェネレータ)321の駆動出力軸に機械的に接続することで、高負荷時にはエンジンの駆動出力を直接駆動輪400に伝えることで、発電機122、電力変換器123、電力変換器(インバータ)322a、322b、出力側モータ(またはモータジェネレータ)321と一旦電力に変換することによる変換損失をなくすことも可能である。
 本実施例では、出力側モータ(またはモータジェネレータ)321、電力変換器(インバータ)322a、322b、(図11の実施例においてはクラッチCL1)が混合伝達部300に相当するためこれらの要素を冗長化したECU10-3a、10-3bで制御する。
 図12はシリーズパラレルハイブリッド駆動系に本発明を適用したさらに詳細な実施例である。エンジン121の駆動出力は動力分配機構124を介して発電機122及び、混合伝達部300に機械的に伝達される。発電機122の出力は電力変換器123を介してバッテリ220及び、混合伝達部300(320)内の電力変換器322a,322bに電気的に伝達される。
 混合伝達部300(320)では、動力分配機構124を介して伝えられたエンジン121の駆動出力は出力側モータ(またはモータジェネレータ)321の出力軸に機械的に接続され、出力側モータ(またはモータジェネレータ)321は駆動輪400を駆動する。さらに電力変換器322a,322bでは電力変換器123、バッテリ220より供給された電力(直流)を三相交流に変換して出力側モータ(またはモータジェネレータ)321を駆動する。
 またさらに図13に示すよう、動力分配機構124と出力側モータ(またはモータジェネレータ)321の出力軸をクラッチCL1を介して機械的に接続することにより、高速で軽負荷で巡航時にクラッチCL1によりエンジン121を切り離すことで、エンジン121が負荷となることを防いで損失を低減することも可能である。
 なお、動力分配機構124は様々な実現方法があり、例えば、動力分配機構124では差動ギアを用いる方法、特開平9-100853では遊星ギアを用いる方法、WO2008/018539では複数のロータを備えるモータを用いる方法が示されている。
 本実施例では、出力側モータ(またはモータジェネレータ)321、電力変換器(インバータ)322a、322b、(図13の実施例においてはクラッチCL1)が混合伝達部300に相当するためこれらの要素を冗長化したECU10-3a、10-3bで制御する。
 以上述べたように、本発明によればパラレルハイブリッド駆動系、シリーズハイブリッド駆動系、シリーズパラレルハイブリッド駆動系において、混合伝達部300に相当する部位を制御するECUをECU10-3a、10-3bと冗長化するだけで、駆動系全体を故障時でも動作継続可能とすることができる。
 図14はECUを統合化した実施例で、ECU10-1とECU10-3a、ECU10-2とECU10-3bを共通の筐体、配線基板、半導体チップなどで構成した実施例である。本実施例によれば、ECU10-1とECU10-2とは別々の筐体、配線基板、半導体チップなどで構成されるため、両者の間の共通原因故障の発生を削減することができる。さらに冗長構成したECU10-3aとECU10-3bとも別々の筐体、配線基板、チップなどで構成されるため、両者の間の共通原因故障の発生を削減することができ、冗長化の効果を高めることができる。
 図15は各ECU間の信号の流れである。エネマネECU10-0は自動運転制御部1からの要求トルク11に基づき、各ECU10-1、10-2、10-3a,10-3bに制御指令13-1、13-2、13-3a,13-3bを出力する。
 ここで、エネマネECU10-0は各ECU10-1、10-2、10-3a,10-3bからの診断結果(OK/NG)12-1、12-2、12-3a,12-3bに基づき、制御指令13-1、13-2、13-3a,13-3bを出力する点が本発明の特徴である。即ち、ECU10-0は一方の動力(エネルギ)源(例えば100)または、該動力(エネルギ)源の制御部(例えばECU10-1)の故障時(例えば診断結果12-1がNGのとき)には、混合伝達部300が他方の動力(エネルギ)源(例えば200)からの動力(エネルギ)により駆動輪にエネルギを伝達するように制御する。
 ECU10-1、10-2、10-3a,10-3bは、診断機能を有し、ECU10-1、10-2、10-3a,10-3bの正常/異常、制御対象である動力(エネルギ)源100、200、混合伝達部300の正常/異常を診断機能により判断し、診断結果(OK/NG)12-1、12-2、12-3a,12-3bをエネマネECU10-0に送る。
 また、エネマネECU10-0の故障時には、エネマネECUの診断結果(OK/NG)12-0を各ECU10-1、10-2、10-3a,10-3bに送り、各ECU10-1、10-2、10-3a,10-3bは自動運転制御部1からの要求トルク11に基づき、図17~図26に示す実施例のような動作をする。
 次にそれぞれの場合の動作を図16に示す。
 Case 0、診断結果12-1、12-2、12-3a,12-3bが全てOKの場合には、ECU10-1、10-2にはエネルギマネジメントにより動力(エネルギ)源100、200をそれぞれ最適制御させ、ECU10-3a、ECU10-3bには動力(エネルギ)源100、200の出力で混合伝達部300を動作させる制御をさせる。
 Case 1、診断結果12-1のみがNG、他がOKの場合には、ECU10-1は制御不能のため動力(エネルギ)源100の動作を停止させ、ECU10-2には要求トルク11により動力(エネルギ)源200を制御させる。さらに、ECU10-3a、ECU10-3bには動力(エネルギ)源200の出力で混合伝達部300を動作させる制御をさせる。
 Case 4、診断結果12-1、2がNGの場合には、ECU10-1、2は制御不能のため動力(エネルギ)源100、200の動作を停止させ、ECU10-3a、ECU10-3bには混合伝達部300の動作を停止させる。
 Case 5、診断結果12-3aのみがNG、他がOKの場合には、ECU10-1、10-2にはエネルギマネジメントにより動力(エネルギ)源100、200をそれぞれ最適制御させ、ECU10-3bには動力(エネルギ)源100、200の出力で混合伝達部300を動作させる制御をさせる。
 図17~19はパラレルハイブリッド駆動系の動作の実施例である。正常時には図17に示すように要求トルク11に応じてエンジン110、モータ210の出力トルクをバッテリ213のSoCなどを加味して最適配分して混合伝達部300より出力トルクを出す制御をする。
 モータ210またはECU10-2故障時には図18に示すように要求トルク11に応じてエンジン110により混合伝達部300より出力トルクを出す制御をする。この場合モータ210による回生制動は不可能であるため、制動時には機械ブレーキ、またはエンジン110を用いたエンジンブレーキにより制動トルクを発生する。なお、安全のためには制御が単純な機械ブレーキによる制動が望ましい。
 続いて、エンジン110またはECU10-1故障時には図19に示すように要求トルク11に応じてモータ210により混合伝達部300より出力トルクを出す制御をする。
この場合にはモータ210による回生制動は可能であるため、制動時にはモータ210による回生制動と機械ブレーキを協調動作させて制動トルクを発生する。なお、安全のためには制御が単純な機械ブレーキによる制動が望ましい。
 またECU10-0故障時には、自動運転車においては自動運転制御部1、従来の主導運転車においては運転者のアクセルペダル開度により指示される要求トルクに基づき、ECU10-1、ECU10-2、ECU10-3a、ECU10-3bが夫々判断して図18、図19いずれかに固定させた動作をさせればよい。
 図20~22はシリーズハイブリッド駆動系やシリーズパラレルハイブリッド駆動系の動作の実施例である。正常時には図20に示すように要求トルク11に応じてバッテリ220のSoCなどを加味してエンジン-発電機120とバッテリ220からの電力エネルギを最適配分して混合伝達部300より出力エネルギ(トルク)を出す制御をする。
 バッテリ220またはECU10-2故障時には図21に示すように要求トルク11に応じてエンジン-発電機120からの電力エネルギにより混合伝達部300より出力エネルギ(トルク)を出す制御をする。この場合にはバッテリ220による回生電力の吸収が不可能であるため、制動時には機械ブレーキまたはエンジン121を用いたエンジンブレーキによりエネルギを吸収させる。エンジンブレーキによるエネルギ吸収のためには、クラッチCL1を締結させてエンジン121を回すか、モータ321による回生電力で電力変換器123経由で発電機122をモータとして動作させてエンジン121を回す方法が考えられる。なお、安全のためには制御が単純な機械ブレーキによる制動が望ましい。
 エンジン-発電機120またはECU10-1故障時には図22に示すように要求トルク11に応じてバッテリ220からの電力エネルギにより混合伝達部300より出力エネルギ(トルク)を出す制御をする。この場合にはバッテリ220による回生電力の吸収が可能であるため、制動時にはモータ321による回生制動と機械ブレーキを協調動作させて制動トルクを発生する。なお、安全のためには制御が単純な機械ブレーキによる制動が望ましい。
 またECU10-0故障時には、自動運転車においては自動運転制御部1、従来の主導運転車においては運転者のアクセルペダル開度により指示される要求トルクに基づき、ECU10-1、ECU10-2、ECU10-3a、ECU10-3bが夫々判断して図21、図22いずれかに固定させた動作をさせればよい。
 図23~26はレンジエクステンダの動作の実施例である。正常時でバッテリ220のSoCが低いときには図23に示すようにエンジン-発電機120で発電しならが、SoCが高いときには図24に示すようにバッテリ220からの電力エネルギにより混合伝達部300より出力エネルギ(トルク)を出す制御をする。
 バッテリ220またはECU10-2故障時には図25に示すように要求トルク11に応じてエンジン-発電機120からの電力エネルギにより混合伝達部300より出力エネルギ(トルク)を出す制御をする。この場合にはバッテリ220による回生電力の吸収が不可能であるため、制動時には機械ブレーキまたはエンジン121を用いたエンジンブレーキによりエネルギを吸収させる。なお、安全のためには制御が単純な機械ブレーキによる制動が望ましい。
 エンジン-発電機120またはECU10-1故障時には図26に示すように要求トルク11に応じてバッテリ220からの電力エネルギにより混合伝達部300より出力エネルギ(トルク)を出す制御をする。の場合にはバッテリ220による回生電力の吸収が可能であるため、制動時にはモータ321による回生制動と機械ブレーキを協調動作させて制動トルクを発生する。なお、安全のためには制御が単純な機械ブレーキによる制動が望ましい。
 またECU10-0故障時には、自動運転車においては自動運転制御部1、従来の主導運転車においては運転者のアクセルペダル開度により指示される要求トルクに基づき、ECU10-1、ECU10-2、ECU10-3a、ECU10-3bが夫々判断して図25、図26いずれかに固定させた動作をさせればよい。
 本発明の実施例6について、図27を用いて説明する。なお、実施例1-5と同様の構成については説明を省略する。
 前述した実施例1では混合伝達部300を制御するECU10-3を、ECU10-3a、ECU10-3bと冗長構成とするのに対して、本実施例では混合伝達部300を制御するECU10-3を冗長化せずに、ECU10-3故障時には動力(エネルギ)源100を制御していたECU10-1または動力(エネルギ)源200を制御していたECU10-2により混合伝達部300を制御することでフェイルオペレーショナルを実現する点に相違がある。
 図27に示す様に、本実施例では、ECU10-3を冗長化することをせずにフェイルオペレーショナル(故障時動作継続可能)とする。具体的には図に示すように元来混合伝達部300を制御するECU10-3に加えて、元来動力(エネルギ)源200を制御していたECU10-2が混合伝達部300を制御する経路を備えて、ECU10-3故障時には、SW1によりECU10-2の接続先を切り替えることで、動力(エネルギ)源200を制御していたECU10-2により混合伝達部300を制御する。
 ECU10-3が故障した場合には、ECU10-2がその機能を切り替えてECU10-3の機能を実施する。ECU10-0は、動力(エネルギ)源100の動力により駆動輪400を制御するように、ECU10-1とECU10-2に制御指令を送信する。
 本実施例では、動力100と動力200の何れかが駆動できていれば車両の駆動が可能というハイブリッドシステムにおける冗長性に着目し、混合伝達部300を制御するECU10-3が故障した場合に、ECU10-1またはECU10-2の何れか一方を用いて混合伝達部300を制御するようにしたことで、混合伝達部300を制御する制御装置であるECU10-3を冗長化せずにフェイルオペレーションを実現することが可能となる。本実施例によれば、システムコストを低減しつつ、フェイルオペレーションを達成することが可能となる。
 また、さらなる好例として、動力100と動力200から混合伝達部300へのエネルギ入力を制御する制御部であるECU10-4を備えており、ECU10-3が故障した際には、ECU10-4が混合伝達部300へ駆動輪へのエネルギの伝達をOFFするように制御する。ECU10-1もしくはECU10-2がECU10-3の代替となるように機能を切り替えている際に動力源100、若しくは200から急な制動が発生し、ドライバに不安感を与えてしまう虞があるところ、ECU10-4で混合伝達部300のエネルギ伝達をOFFするように制御することで、係る急制動が駆動輪に伝達することが抑制できるため、スムーズな切り替えを実現可能となるのでより好ましい。
 なお、不必要な急制動の防止、保護協調のためのモータ駆動のためのリレー、クラッチ、ソレノイドバルブ制御の詳細な実施例を実施例11に示す。
 図28から図32を用いて本発明の実施例7を説明する。実施例7は、パラレルハイブリッド駆動系に実施例6で説明した発明を適用した実施例である。実施例2と実施例6と同様の構成については説明を省略する。
 図28に示す様に、本実施例における車両制御システムは、動力(エネルギ)源100としてエンジン110、動力(エネルギ)源200としてモータを含む動力(エネルギ)源210、混合伝達部300としてトランスミッション310を有する。
 混合伝達部300であるトランスミッション310には、通常時にトランスミッション310を制御するECU10-3に加えて、通常時に動力(エネルギ)源200であるモータ210を制御するECU10-2が接続される。ECU10-2は、モータ210を制御する経路に加えて、トランスミッション310を制御する経路を備えており、SW1により接続先を変更できる。ECU10-2は、ECU10-3が故障した場合に、トランスミッション310を制御する。なお、制御先の変更方法はSW1に限られず、送信アドレスの変更等種々手法が考えられる。
 なお、正常時にトランスミッション310を制御するECU10-3故障時にその機能をECU10-1、10-2のどちらに代替させた方が良いかは、パラレルハイブリッドの場合には一概には決められない。
 一つの方法としては、バッテリーのSoC (State of Charge)や燃料の残量から判断する方法が考えられる。もしECU10-3故障時のバッテリーのSoC (State of Charge)が十分に高く、燃料の残量が少ない場合には、エンジン100(110)を制御するECU10-1によりECU10-3の機能を代替させ、もしバッテリーのSoC (State of Charge)が低く、燃料の残量が十分にある場合には、モータ200(210)を制御するECU10-2によりECU10-3の機能を代替させればよい。しかしこの方法では、ECU10-1、10-2のいずれもがECU10-3の機能を代替できるように切り替えスイッチ、配線(ネットワーク)や実行するプログラムファイルやメモリが余分に必要になりコストの上昇を招く。
 もう一つの方法としては、通常はバッテリーのSoC (State of Charge)よりも燃料の残量の方が多いことが多いので、ECU10-3の故障時には常にモータ200(210)を制御するECU10-2によりECU10-3の機能を代替させる方法が考えられる。
この方法によれば、ECU10-2がECU10-3の機能を代替できるようにすればよいので、切り替えスイッチ、配線(ネットワーク)や実行するプログラムファイルが前者よりも削減でき、コストも削減できる。
 図29に示すようにトランスミッション310の油圧弁を駆動するソレノイド311が冗長化されておらず1重系の場合には、ECU10-3、ECU10-2からの制御信号によりORまたはセレクタ回路SW2を介してソレノイド311が駆動される。
 一方で、図30に示すようにソレノイド311a、311bを冗長に持つ場合には、ECU10-3がソレノイド311bを駆動し、ECU10-2ソレノイド311aを駆動することも可能である。なお、図示しないトランスミッション310内部の油圧回路によりORまたはセレクタ回路を構成することも可能である。トランスミッション310を制御するECU10-3が故障した際に、動力源200を制御するECU10-2により伝達部300を制御する場合、制御対象が冗長にあってもECU10-3正常時にはECU10-1、またはECU10-2が制御する制御対象が動作せず、ECU10-3故障時にはECU10-3が制御する制御対象が動作しないため、動作性能が低下してしまうおそれがある。そこで望ましくは、ECU10-3、ECU10-2がセレクタ回路SW2を介して冗長に用意した制御対象(ソレノイド311a、311b)を駆動するようにすれば、信頼性、動作性能ともに向上させることができる。
 図31は図5に示すパラレルハイブリッド駆動系において、コントロールバルブユニットCVUを制御するECUを冗長化せずに、他のECUが動作を代替する実施例である。
 本実施例では元来コントロールバルブユニットCVUを制御するECU10-3が正常な時には、ECU10-3がコントロールバルブユニットCVUを制御し、ECU10-2が電力変換器212を制御する。ECU10-3が故障したときには、元来電力変換器212を制御していたECU10-2が電力変換器212の制御を停止して、コントロールバルブユニットCVUを制御する。以上述べたように本実施例によれば、コントロールバルブユニットCVUを制御するECUを冗長化せずに、他のECUが動作を代替することでコントロールバルブユニットCVUを介して自動変速機ATを制御することができる。その結果、ECU10-2が電力変換器212の制御を停止して、モータ(またはモータジェネレータ)211の駆動を停止しても、エンジン100(110)の駆動力により、クラッチCL1、自動変速機ATを経由して駆動輪400を駆動することができる。また、停車時にエンジン110の駆動力モータ(またはモータジェネレータ)211で発電する動作をしなければ、図32に示すようにクラッチCL2を省略することも可能である。
 図33から図40を用いて、本発明の実施例8を説明する。なお、実施例3と実施例6と同様の構成については説明を省略する。本実施例は、実施例6に記載の発明をシリーズハイブリッド駆動系、またはシリーズパラレルハイブリッド駆動系に適用した実施例である。
 本実施例では、動力(エネルギ)源100としてエンジン-発電機120、動力(エネルギ)源200としてバッテリ220、混合伝達部300として出力側モータ(+電力変換器(インバータ))320を有する。エンジン-発電機120はエンジン121、発電機122、電力変換器123から構成され、出力側モータ(+電力変換器(インバータ))320は出力側モータ(またはモータジェネレータ)321と電力変換器(インバータ)322から構成される。
 図34に示すように出力側モータ321を駆動する電力変換器(インバータ)322が冗長化されておらず1重系の場合には、ECU10-3、ECU10-2からの制御信号によりORまたはSW2を介して電力変換器(インバータ)322が駆動される。
 一方で、図35に示すように、混合伝達部300が電力変換器(インバータ)322a、322bを冗長に持つ場合には、ECU10-3、ECU10-2がそれぞれ電力変換器(インバータ)322a、322bを駆動する。なお、図示しない出力側モータ321内部の巻き線も冗長とすることも可能である。
 図34と図35の実施例を比較すると、図35の実施例では電力変換器(インバータ)322a、322bも冗長化しているために電力変換器(インバータ)の故障に対しても動作を継続できるメリットがある。しかし、電力変換器(インバータ)322aはECU10-3が正常な時にしか使用されず、電力変換器(インバータ)322bはECU10-3が以上で、ECU10-2がその機能を代替しているときにしか使用されないため、電力変換器(インバータ)の利用効率が悪い。これに対して、図34の実施例では、切り替えスイッチSW2により制御するECUが切り替わるため、ECU10-3が正常な時も異常な時も電力変換器(インバータ)322が常時使用されるために電力変換器(インバータ)の利用効率が良い。なお、図9に示す実施例では、正常時にはECU10-3a、10-3bが電力変換器(インバータ)322a、322bを同時に制御して2台分の出力の並列運転が可能であるため、電力変換器(インバータ)の利用効率が悪化しない。
 図36はECU10-1、ECU10-3がそれぞれ電力変換器(インバータ)322a、322bを制御して、出力側モータ321を駆動する実施例である。
 ECU10-1、ECU10-3がそれぞれ電力変換器(インバータ)322a、322bを制御して、出力側モータ321を駆動し、ECU10-3正常時にはECU10-3が電力変換器(インバータ)322bを制御し、ECU10-3故障時にはECU10-1が電力変換器(インバータ)322aを制御して出力側モータ321を駆動する。
 シリーズハイブリッドシステム、もしくはシリーズパラレルハイブリッドシステムにおいて、ECU10-3が故障した際に第1動力源100を制御する制御装置であるECU10-1により混合伝達部300を制御することの利点として、切り替え時間の短縮が挙げられる。これは、第1動力源100であるエンジン―発電機120の電力変換器123の制御と混合伝達部300に含まれる電力変換器(インバータ)322aの制御は極めて類似しているので、ECU10-1の大きな機能の切り替えなしでECU10-3故障時に元来電力変換器123を制御していたECU10-1により電力変換器(インバータ)322aを制御することが可能となるからである。なお、図34に示す様に電力変換器322が一重系の場合であっても、ECU10-3が故障時にECU10-1で混合伝達部300の電力変換器322を制御する構成とすれば、前述した電力変換器322が冗長である場合と同様の効果を奏する。
 図37はシリーズハイブリッド駆動系(レンジエクステンダを含む)に本発明を適用したさらに詳細な実施例である。エンジン121の駆動出力軸は発電機122に機械的に接続され発電機122の電力端子は電力変換器123を介してバッテリ220、電力変換器
(インバータ)322に接続されている。電力変換器(インバータ)322は、電力変換器123、バッテリ220からの電力(直流)を3相交流電力に変換して出力側モータ(またはモータジェネレータ)321を駆動する。
 本実施例においてはECU10-1、ECU10-3が切り替えスイッチSW2を介して電力変換器(インバータ)322を制御して、出力側モータ321を駆動し、ECU10-3正常時にはECU10-3が電力変換器(インバータ)322を制御し、ECU10-3故障時にはECU10-1が電力変換器(インバータ)322を制御して出力側モータ321を駆動する。
  なお、図38に示すようにエンジン121、発電機122を機械的に接続しているの駆動出力軸をクラッチCL1を介して出力側モータ(またはモータジェネレータ)321の駆動出力軸に機械的に接続することで、高負荷時にはエンジンの駆動出力を直接駆動輪400に伝えることで、発電機122、電力変換器123、電力変換器(インバータ)322、出力側モータ(またはモータジェネレータ)321と一旦電力に変換することによる変換損失をなくすことも可能である。なお、この場合もECU10-1、ECU10-3が切り替えスイッチSW2を介してクラッチCL1を制御する。
 図39はシリーズパラレルハイブリッド駆動系に本発明を適用したさらに詳細な実施例である。本実施例においても、ECU10-1、ECU10-3が切り替えスイッチSW2を介して電力変換器(インバータ)322を制御して、出力側モータ321を駆動し、ECU10-3正常時にはECU10-3が電力変換器(インバータ)322を制御し、ECU10-3故障時にはECU10-1が電力変換器(インバータ)322を制御して出力側モータ321を駆動する。
 またさらに図40に示すよう、動力分配機構124と出力側モータ(またはモータジェネレータ)321の出力軸をクラッチCL1を介して機械的に接続することにより、高速で軽負荷で巡航時にクラッチCL1によりエンジン121を切り離すことで、エンジン121が負荷となることを防いで損失を低減することも可能である。なお、この場合もECU10-1、ECU10-3が切り替えスイッチSW2を介してクラッチCL1を制御する。
 本発明の実施例9について図41を用いて説明する。
 図41はECUを統合化した実施例で、ECU10-1とECU10-3を共通の筐体、配線基板、半導体チップなどで構成した実施例である。本実施例によれば、ECU10-1とECU10-2とは別々の筐体、配線基板、半導体チップなどで構成されるため、両者の間の共通原因故障の発生を削減することができる。さらにECU10-3と故障時に機能を代替するECU10-2とも別々の筐体、配線基板、チップなどで構成されるため、両者の間の共通原因故障の発生を削減することができ、冗長化の効果を高めることができる。
 本発明の実施例10について、図42を用いて説明する。図42はシリーズハイブリッドを制御するECU10-1~3を統合化した統合ECU10-allとした実施例である。
 ECU10-3を構成するマイコンコア10-3が正常時には、マイコンコア10-1-1、2がECU10-1を構成し、動力(エネルギ)源100を制御する。具体的には、マイコンコア10-1-1がエンジン121を制御し、マイコンコア10-1-2が発電機(ジェネレータ)122を制御する。同様にマイコンコア10-2がECU10-2を構成し、動力(エネルギ)源200であるバッテリー210を制御する。また、マイコンコア10-3がECU10-3を構成し、伝達部300である出力側モータ321を制御する。
 マイコンコア10-3が故障時には、マイコンコア10-1-2は発電機122制御を停止して、マイコンコア10-3に代わって伝達部300である出力側モータ321を制御する。
 ECU10-1、2、3と制御対象であるエンジン121、発電機122、バッテリー210、伝達部300に接続するセンサ、ドライバとはインタフェース(I/F)を介してネットワークで接続するのが望ましい。ネットワーク化しない場合には、制御対象であるエンジン121、発電機122、バッテリー210、伝達部300に接続する配線ごとに切り替えスイッチSW2が必要になるのに対して、ネットワークで接続することにより図に示すようにSW2で切り変える配線点数を大幅に削減することができる。
 また、ECU10-1、2、3を構成するマイコンコアの実装方法として、ECU10-1を構成するマイコンコア10-1-1、2は同一チップ構成でもよいが、同一故障対策の見地から、ECU10-1を構成するマイコンコアとECU10-3を構成するマイコンコアとは別チップとすることが望ましく、同様にECU10-1を構成するマイコンコアとECU10-2を構成するマイコンコアとは別チップとすることが望ましい。
 図43、図44は不必要な急制動の防止、制御出力の保護協調のためのモーター制御の実施例である。ECU10-1、2、3を構成するマイコンからは制御出力11-1,2,3に加えて、制御モード信号CNTL12-1,2,3を出力し、異常検出手段からは異常検出結果OK/NG13-1,2,3を出力する。
 ECU10-3を構成するマイコンは、ECU10-3が正常でモータ制御モードであるとき(図44でS1)には、伝達部300(モータ321)を制御しながら、制御モード信号CNTL12-3としてモータ制御モード(H)を出力し、異常検出手段からは異常検出結果OK/NG13-3としてOK(H)を出力する。ECU10-3で故障が発生した場合(図44でS2)には、故障をマイコンが検出できる場合には制御モード信号CNTL12-3として非モータ制御モード(L)を出力する。故障をマイコンが検出できない場合であっても異常検出手段からは異常検出結果OK/NG13-3としてNG(L)を出力する。
 ECU10-1または2を構成するマイコンは制御モード信号CNTL12-3および異常検出結果OK/NG13-3を常時モニターし、制御モード信号CNTL12-3がモータ制御モード(H)かつ異常検出結果OK/NG13-3がOK(H)であるときは、元来割り当てられた動力(エネルギ)源100または動力(エネルギ)源200を制御する(図44でS1)。ECU10-3で故障が発生し(図44でS2),制御モード信号CNTL12-3が非モータ制御モード(L)または、異常検出結果OK/NG13-3がNG(L)となった場合には元来割り当てられた動力(エネルギ)源100または動力(エネルギ)源200を制御を停止し、伝達部300(モータ321)制御の準備(具体的にはプログラムのダウンロード、初期化など)を開始する(図44でS3)。
 伝達部300(モータ321)制御の準備の終了後にはECU10-1または2は伝達部300(モータ321)制御を開始し、制御モード信号CNTL12-1,2を非モータ制御モード(L)からモータ制御モード(H)をし、ECU10-1または2が正常な場合には、異常検出機能が異常検出結果OK/NG13-1,2としてOK(H)を出力する(図44でS4)。
 コンバータ322への制御入力を選択するSW2は制御モード信号CNTL12-3と異常検出結果OK/NG13-3、または制御モード信号CNTL12-1,2と異常検出結果OK/NG13-1,2によって制御され、いずれかがともにHであるECUの出力を選択するように動作する。図43では制御モード信号CNTL12-3と異常検出結果OK/NG13-3はともにHであるときに制御出力11-3を選択するように動作する。
 コンバータ322の相出力を開閉するSW3、コンバータ322への電力供給を制御するSW4は制御モード信号CNTL12-3と異常検出結果OK/NG13-3はともにHであるとき、または制御モード信号CNTL12-1,2と異常検出結果OK/NG13-1,2がともにHであるときにONとなり、コンバータ322は出力側モータ321を駆動することができる。以上のような実施例により、ECU10-3、またはECU10-1,2のいずれかがモータ制御モード、すなわち出力側モータ321を駆動することができ、かつ異常検出結果OK/NGがON、すなわち正常であるときのみコンバータ322は出力側モータ321を駆動することができ、異常なECUまたはモータ制御の準備が整っていないECUがコンバータ322を制御して出力側モータ321を駆動することがないようにしている。
 以上、シリーズハイブリッドまたはシリーズパラレルハイブリッド駆動系の出力側モータ321の制御出力の保護協調の実施例について述べたが、パラレルハイブリッド駆動系についても同様に制御される。なおそのためには、図45にしめすように電力変換器322をソレノイドドライバ320、出力側モータ321をトランスミッション310やクラッチCL1, CL2に置きかえればよい。
 以上述べたように本発明によれば、ハイブリッド駆動システムが備える異なる動力(エネルギ)源からの動力(エネルギ)を混合して駆動輪にエネルギを伝達する伝達部の制御部を冗長構成とすることにより、ハイブリッド駆動システムを構成する制御部のいずれかが故障しても、システム全体としては動作を継続することが可能となる。例えば、一方の動力(エネルギ)源または、該動力(エネルギ)源の制御部の故障時であっても、伝達部が他方の動力(エネルギ)源からの動力(エネルギ)により駆動輪にエネルギを伝達するように制御することで動作を継続することができる。また、システム全体の単一故障点となる伝達部の制御部に故障時動作継続機能を持たせることで、伝達部の制御部に故障が発生しても伝達部の制御を継続でき、システム全体としては動作を継続することが可能となり、即ちフェールオペレーショナルとなる。
 ハイブリッド駆動システムが備える異なる動力(エネルギ)源を冗長化された動力(エネルギ)源と看做すことにより、さらなる冗長化が不要で、最小限の冗長化によりハイブリッド駆動系のフェールオペレーショナルを実現することができ、故障時動作継続性の実現とコスト抑制を両立できる。
100、200……動力(エネルギ)源、300……混合伝達部、400……駆動輪、10……電子コントロールユニットECU

Claims (15)

  1.  駆動輪にエネルギを伝達する伝達部と、
     前記伝達部を制御する第1制御部と、
     前記伝達部へエネルギを入力する第1源と、
     前記伝達部へエネルギを入力する第2源と、
     前記第1源を制御する第2制御部と、前記第2源を制御する第3制御部と、を備え、
     前記第1制御部が故障した場合には、前記第2制御部もしくは前記第3制御部が前記伝達部を制御することを特徴とする車両制御システム。
  2.  前記第1源と前記第2源から前記伝達部へのエネルギ入力を制御する第4制御部を備え、
     前記第4制御部は、前記第1制御部が故障した際には、第2もしくは第3制御部の機能切り替えの際に不要な制動が発生しないよう、前記伝達部へ駆動輪へのエネルギの伝達をOFFするよう指令を送信し、
     前記第2制御部もしくは第3制御部は、機能が切り替わった後に前記伝達部へ駆動輪へのエネルギの伝達をONするよう指令を送信することを特徴とする請求項1に記載の車両制御システム。
  3.  前記第4制御部は、
     前記第1源また前記は第2制御部が故障時には、前記第2源からのエネルギのみを前記伝達部へ入力する制御をし、
     前記第2源また前記は第3制御部が故障時には、前記第1源からのエネルギのみを前記伝達部へ入力する制御をすることを特徴とする請求項2記載の車両制御システム。
  4.  前記伝達部はモータとインバータを有し、前記第1源はエンジン及び発電機を含み、前記第2源はバッテリであるシリーズハイブリッドであることを特徴とする請求項1乃至3の何れかに記載の車両制御システム。
  5.  前記第1の制御部が故障した際には、前記第2制御部で前記伝達部を制御し、
     前記伝達部は、リレーをOFFすることで前記駆動輪へのエネルギの伝達のOFFを実現する請求項4に記載の車両制御システム
  6.  前記第1の制御部は第1のマイコンにより実施され、前記第2の制御部はエンジンを制御する第2のマイコンと発電機を制御する第3のマイコンにより実施され、前記第1と第2と第3のマイコンを有する制御装置を備え、
     前記第1のマイコンが故障した場合には、前記第3のマイコンで前記伝達部を制御する請求項5に記載の車両制御システム
  7.  前記第1のマイコンと前記第3のマイコンは別の電源ICで駆動される等の共通原因故障対策が施されている請求項6に記載の車両制御システム
  8.  前記伝達部はトランスミッションであり、前記第1源はエンジンであり、前記第2源はバッテリ及びモータを含むパラレルハイブリッドであることを特徴とする請求項1乃至3の何れかに記載の車両制御システム。
  9.  前記第1の制御部が故障した際には、前記第3制御部で前記伝達部を制御し、
     前記伝達部は、クラッチをOFFすることで前記駆動輪へのエネルギの伝達のOFFを実現する請求項8に記載の車両制御システム
  10.  前記伝達部はモータであり、前記第1源はエンジン及び発電機を含み、前記第2源はバッテリであるシリーズパラレルハイブリッドであることを特徴とする請求項1乃至3の何れかに車両制御システム。
  11.  駆動輪にエネルギを伝達する伝達部と、前記伝達部を制御する第1制御部と、前記伝達部へエネルギを入力する第1源と、前記伝達部へエネルギを入力する第2源と、前記第1源を制御する第2制御部と、前記第2源を制御する第3制御部と、を備える車両に搭載される車両制御装置において、
     前記第1制御部が故障した場合には、前記第2制御部もしくは前記第3制御部が前記伝達部を制御するように指令を送信する車両制御装置。
  12.  前記第1制御部が故障した際には、前記伝達部へ駆動輪へのエネルギの伝達をOFFするよう指令を送信する請求項1に記載の車両制御装置
  13.  前記第1源はエンジン及び発電機を含むシリーズハイブリッドもしくはシリーズパラレルハイブリッドの車両に搭載される場合には、
     前記第1制御部が故障した場合には、前記第2制御部に対して前記伝達部を制御するように指令を送信する請求項12に記載の車両制御装置
  14.  前記伝達部はトランスミッションであり、前記第1源はエンジンであり、前記第2源はバッテリ及びモータを含むパラレルハイブリッドの車両に搭載される場合には、
     前記第1制御部が故障した場合には、前記第3制御部に対して前記伝達部を制御するように指令を送信する請求項12に記載の車両制御装置
  15.  前記第1源と前記第2源から前記伝達部へのエネルギ入力を制御し、
     前記第1制御部が故障した場合には、前記第2源のみで前記伝達部へエネルギ入力するように制御する請求項11乃至14の何れかに記載の車両制御装置
PCT/JP2021/001190 2020-03-27 2021-01-15 車両制御装置 WO2021192532A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180007112.8A CN114787009A (zh) 2020-03-27 2021-01-15 车辆控制装置
US17/777,872 US20230076114A1 (en) 2020-03-27 2021-01-15 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-057070 2020-03-27
JP2020057070A JP7316245B2 (ja) 2020-03-27 2020-03-27 車両制御システム及び車両制御装置

Publications (1)

Publication Number Publication Date
WO2021192532A1 true WO2021192532A1 (ja) 2021-09-30

Family

ID=77890078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001190 WO2021192532A1 (ja) 2020-03-27 2021-01-15 車両制御装置

Country Status (4)

Country Link
US (1) US20230076114A1 (ja)
JP (1) JP7316245B2 (ja)
CN (1) CN114787009A (ja)
WO (1) WO2021192532A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2619587A (en) * 2022-03-30 2023-12-13 Porsche Ag Modular system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220147992A (ko) * 2021-04-28 2022-11-04 현대자동차주식회사 차량 전원 제어 장치 및 방법
JP2023046133A (ja) 2021-09-22 2023-04-03 株式会社ブリヂストン タイヤ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221075A (ja) * 2001-01-25 2002-08-09 Denso Corp 車両統合制御におけるフェイルセーフシステム
JP2008302754A (ja) * 2007-06-06 2008-12-18 Daihatsu Motor Co Ltd ハイブリッド自動車の制御装置
WO2016156204A1 (en) * 2015-03-30 2016-10-06 Volvo Truck Corporation Method and arrangement for providing redundancy in a vehicle electrical control system
WO2018229930A1 (ja) * 2017-06-15 2018-12-20 株式会社日立製作所 コントローラ
JP2019043427A (ja) * 2017-09-05 2019-03-22 トヨタ自動車株式会社 ハイブリッド車両
JP2019073204A (ja) * 2017-10-18 2019-05-16 トヨタ自動車株式会社 ハイブリッド自動車

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105993125B (zh) * 2014-02-25 2019-07-23 日立汽车系统株式会社 马达控制系统及马达控制方法
JP6606453B2 (ja) 2016-03-29 2019-11-13 株式会社Subaru ハイブリッド車両の制御システム及びモータ制御ユニット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221075A (ja) * 2001-01-25 2002-08-09 Denso Corp 車両統合制御におけるフェイルセーフシステム
JP2008302754A (ja) * 2007-06-06 2008-12-18 Daihatsu Motor Co Ltd ハイブリッド自動車の制御装置
WO2016156204A1 (en) * 2015-03-30 2016-10-06 Volvo Truck Corporation Method and arrangement for providing redundancy in a vehicle electrical control system
WO2018229930A1 (ja) * 2017-06-15 2018-12-20 株式会社日立製作所 コントローラ
JP2019043427A (ja) * 2017-09-05 2019-03-22 トヨタ自動車株式会社 ハイブリッド車両
JP2019073204A (ja) * 2017-10-18 2019-05-16 トヨタ自動車株式会社 ハイブリッド自動車

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2619587A (en) * 2022-03-30 2023-12-13 Porsche Ag Modular system
GB2619587B (en) * 2022-03-30 2024-06-05 Porsche Ag Modular system

Also Published As

Publication number Publication date
JP2021154870A (ja) 2021-10-07
US20230076114A1 (en) 2023-03-09
JP7316245B2 (ja) 2023-07-27
CN114787009A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2021192532A1 (ja) 車両制御装置
US6234930B1 (en) Transmission and vehicle using same
US6724100B1 (en) HEV charger/generator unit
JP6694325B2 (ja) 車両制御システム
US7597165B2 (en) Hybrid vehicle and control method of the same
US7749130B2 (en) Vehicle, driving system, and control methods of the same
US11325500B2 (en) On-board electrical network for a motor vehicle
US9834206B1 (en) Fault-tolerant operation of hybrid electric vehicle
JPH11151942A (ja) ハイブリッド車両の非常駆動装置
JP4162781B2 (ja) ハイブリッド車の制御装置
US20210078443A1 (en) Method for operating an on-board electrical network of a motor vehicle
CN110435626A (zh) 一种备份控制系统
CN113043826B (zh) 三电机增程系统
JPH10327504A (ja) ハイブリッド電気自動車
WO2021006261A1 (ja) 車両制御装置並びに車両制御システム
JP3852228B2 (ja) エンジン始動制御装置
JP4162782B2 (ja) ハイブリッド車の制御装置
JP2000166021A (ja) ハイブリッド車の制御装置
JP6365072B2 (ja) ハイブリッド車両システム
CN111824109A (zh) 混合动力车的控制装置及混合动力车的控制方法
JP2000166020A (ja) ハイブリッド車の制御装置
CN113353058A (zh) 混合动力汽车的车辆行驶控制系统及车辆行驶控制方法
WO2024043023A1 (ja) 電力供給網、電動車両及び電力変換装置
EP4106127B1 (en) Electrical architecture
JP2004120906A (ja) ハイブリッド電気自動車の電源回路システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776905

Country of ref document: EP

Kind code of ref document: A1