WO2021192481A1 - プラズマ処理装置用電極板の製造方法及びプラズマ処理装置用電極板 - Google Patents

プラズマ処理装置用電極板の製造方法及びプラズマ処理装置用電極板 Download PDF

Info

Publication number
WO2021192481A1
WO2021192481A1 PCT/JP2021/000074 JP2021000074W WO2021192481A1 WO 2021192481 A1 WO2021192481 A1 WO 2021192481A1 JP 2021000074 W JP2021000074 W JP 2021000074W WO 2021192481 A1 WO2021192481 A1 WO 2021192481A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
drill
hole
diameter
plasma processing
Prior art date
Application number
PCT/JP2021/000074
Other languages
English (en)
French (fr)
Inventor
東 浩司
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US17/800,602 priority Critical patent/US20230077433A1/en
Priority to KR1020227027868A priority patent/KR20220156807A/ko
Priority to CN202180019324.8A priority patent/CN115244660A/zh
Publication of WO2021192481A1 publication Critical patent/WO2021192481A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to a method for manufacturing an electrode plate for a plasma processing apparatus and an electrode plate for a plasma processing apparatus.
  • the present application claims priority based on Japanese Patent Application No. 2020-053222 filed in Japan on March 24, 2020, the contents of which are incorporated herein by reference.
  • a plasma processing device such as a plasma etching device or a plasma CVD device used in a semiconductor device manufacturing process
  • an upper electrode and a lower electrode connected to a high-frequency power source are arranged in a chamber facing each other, for example, in the vertical direction.
  • the lower electrode is in a state where the substrate to be processed is arranged on the lower electrode, and the upper electrode has ventilation holes, and a high frequency voltage is applied while the etching gas is circulated from the ventilation holes toward the substrate to be processed.
  • the plasma processing apparatus is configured to generate plasma and perform processing such as etching on the substrate to be processed.
  • Patent Document 1 discloses an electrode plate for plasma etching that suppresses the generation of particles.
  • This plasma etching electrode plate is provided with through pores (gas holes) parallel to the thickness direction of the electrode plate made of single crystal silicon.
  • the through pores are composed of a large-diameter straight hole portion and a small-diameter straight hole portion. According to this electrode plate, large particles are not generated, the number of cleanings can be reduced, and the silicon wafer can be plasma-etched more efficiently than before.
  • the thicker the electrode plate the longer the life. Recently, it may be necessary to deeply etch a multi-layered complex three-dimensional structure (for example, 3D-NAND) of a substrate to be processed, and for that purpose, the gas pressure for etching must be increased. Then, the gas holes are consumed faster, and the life of the electrode plate having a conventional thickness is shortened. Therefore, a thick electrode plate is required to extend the service life.
  • there are methods such as drilling, laser, water jet, and electric discharge machining for gas hole machining of the electrode plate, but laser machining can only open a depth of several mm (about 5 mm). The shape of the opening of the gas hole cannot be satisfactorily processed by the hole processing by the water jet. Electric discharge machining can only be used with materials that are energized. On the other hand, drilling is excellent in workability, versatility, and quality.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is an electrode plate for a plasma processing apparatus capable of forming a gas hole having a small roundness even when a gas hole having a depth of more than 12 mm is machined.
  • the present invention is to provide an electrode plate for a plasma processing apparatus provided with a gas hole having a small roundness.
  • a plurality of gas holes having a straight portion having a length exceeding at least 12 mm in the thickness direction of the electrode plate main body are formed in a penetrating state in parallel with each other.
  • a pilot hole having a diameter of 50% or more and 80% or less of the diameter of the straight portion is formed by the first drill, and then the straight portion is formed by the second drill.
  • the second drill performs hole drilling with a small machining load obtained by subtracting the pilot hole cutting region from the original cutting region of the entire straight portion. Since the machining load on the second drill is reduced, the machining accuracy by the second drill is improved, and a straight portion having a small roundness can be formed.
  • the diameter of the prepared hole is less than 50% of the diameter of the straight portion, the effect of reducing the machining load on the second drill is small, and if it exceeds 80%, the machining load on the first drill having a small diameter becomes large and the first drill.
  • the drill may be broken.
  • the processing load of the drill increases, so buckling of the drill is likely to occur. Therefore, single crystal diamond drills, polycrystalline diamond drills, sintered body drills, drills with refueling ports, etc., which are resistant to buckling strength and processing load, may be used. The risk of drill breakage due to machining load can be avoided.
  • the pilot hole forming step it is preferable to form a pilot hole halfway through the thickness of the electrode plate body with the first drill.
  • the prepared hole has a processing depth of more than 5 mm.
  • a pilot hole having an inner diameter of 50% or more and 80% or less of the inner diameter of a straight portion of the gas hole is thick before the gas hole is formed in the electrode plate body. It can be vacated halfway in the direction. Since the pilot hole may be formed halfway in the thickness direction of the electrode plate body, the cutting length of the first drill may be shorter than the thickness of the electrode plate body. That is, since the first drill for pilot holes has a short diameter even if it has a small diameter, it is unlikely to break.
  • the length of the pilot hole is 5 mm or less, the effect of reducing the machining load by the second drill is reduced with respect to the straight portion having a length exceeding 12 mm, so that the length of the prepared hole should be formed to exceed 5 mm.
  • the second drill is a drill having a diameter larger than that of the first drill, and drills a pilot hole made by the first drill coaxially from the same direction as the pilot hole, for example.
  • the second drill can perform hole drilling with a small machining load obtained by subtracting the pilot hole cutting region from the original cutting region of the entire straight portion. Therefore, in the second drill, buckling due to the cumulative increase in the machining load is less likely to occur.
  • the second drill is preferably drilled coaxially with the prepared hole formed by the first drill, but a slight deviation within the diameter difference between the two drills is allowed.
  • the second drill may be drilled from the one surface of the electrode plate body, or may be drilled from the other surface of the electrode plate body. May be good.
  • the second drill when the second drill drill drills a hole from the other surface of the electrode plate body, the hole is drilled in the direction opposite to that when the first drill forms a pilot hole. Even in this case, the machining load after reaching the pilot hole cutting region that has already been removed from one surface by drilling the second drill substantially coaxially with the pilot hole corresponds to the pilot hole cutting region. Since the amount is reduced, the overall machining load is also smaller than that of drilling the entire original gas hole.
  • the second drill reaches a predetermined depth from the other surface, it leads to a pilot hole formed from one surface. After that, in the second drill, the machining load corresponding to the pilot hole cutting region is reduced.
  • the second drill can perform hole drilling with a small machining load obtained by subtracting the pilot hole cutting region from the cutting region for the entire original straight portion from the middle of the thickness direction (after reaching the pilot hole cutting region). It becomes. Therefore, in the second drill, the machining load from the middle in the thickness direction is reduced, and buckling due to the cumulative increase in the machining load is less likely to occur. That is, even if the cutting length of the second drill is longer than the cutting length of the first drill, the machining load is reduced and the risk of breakage is reduced.
  • the position information is set in the machining center (processing machine) using a hole other than the gas hole as a reference hole, and the first drill and the second drill Coaxial machining can be performed by setting the machining position of the above to the same coordinates.
  • the second drill drills a hole from the other surface of the electrode plate body.
  • it is common to automatically change the drill changer (drill, tool storage) of the machining center coaxially by the auto change function.
  • the second drill when the second drill is drilled from the other surface of the electrode plate body, the second drill reaches the prepared hole and reaches the middle of the thickness of the electrode plate body. A straight portion may be formed.
  • the gas hole formed by this manufacturing method has a stepped hole shape in which a small-diameter hole that was a pilot hole is opened on one surface of the electrode plate body and a large-diameter hole that is a straight portion is opened on the other surface. Also in this case, the machining load of each drill can be reduced, and the application can be applied to a thick electrode plate.
  • the electrode plate for a plasma processing device is an electrode plate for a plasma processing device in which a plurality of gas holes are provided in a penetrating state in parallel with each other in the thickness direction of the electrode plate body. It has a straight portion having a length of at least 12 mm or more, and the straight portion has a diameter of 0.5 mm or more and 1.0 mm or less and a roundness of 0.01 mm or less.
  • the electrode plate main body is formed with a thickness exceeding 12 mm, and the life can be extended.
  • the roundness of the straight portion is 0.01 mm or less, unevenness in the gas flow is less likely to occur.
  • the gas hole communicates with a small diameter portion that opens on one surface of the electrode plate main body and a large diameter portion that opens on the other surface in the middle of the thickness direction.
  • the large diameter portion can be said to be the straight portion.
  • the risk of drill breakage is reduced even when a gas hole is formed in the electrode plate for a plasma processing apparatus having a thickness of more than 12 mm. Therefore, a high-precision gas hole can be formed. According to the electrode plate for the plasma processing apparatus, the life can be extended by the thick electrode plate. Moreover, when the roundness of the straight portion is 0.01 mm or less, unevenness in the gas flow is less likely to occur.
  • FIG. 5 is a cross-sectional view showing a stepped gas hole formed by the method shown in FIG.
  • FIG. 1 is a plan view of an electrode plate for a plasma processing apparatus according to an embodiment of the present invention.
  • the electrode plate for plasma processing equipment (hereinafter, also simply referred to as “electrode plate”) 11 is made of single crystal silicon, columnar crystal silicon, or polycrystalline silicon, and has a thickness t of more than 12 mm and 30 mm or less, and a diameter of 200 mm or more and 550 mm or less.
  • a plurality of gas holes 21 are formed in the electrode plate main body 12 formed on the disk of the above at a pitch of several mm to 10 mm, for example, vertically and horizontally. It is formed so as to penetrate parallel to the thickness direction in an aligned state.
  • the gas hole 21 has a straight portion 22 having a length exceeding at least 12 mm in the thickness direction of the electrode plate main body 12.
  • the gas hole 21 is formed in a straight shape over the entire thickness of the electrode plate body 12. Therefore, the straight portion 22 of the present embodiment constitutes the entire length of the gas hole 21, and the length exceeds 12 mm.
  • the straight portion 22 has a diameter d of 0.5 mm or more and 1.0 mm or less, and a roundness of 0.01 mm or less.
  • the electrode plate 11 for a plasma processing apparatus is manufactured by forming gas holes in a disk-shaped electrode plate main body 12 obtained by slicing a silicon ingot such as single crystal silicon, and then subjecting it to etching, polishing, or the like.
  • the electrode plate body 12 is formed with a pilot hole 23 having a diameter of 50% or more and 80% or less of the diameter of the hole forming the straight portion 22 with the first drill 31 from one surface of the electrode plate body 12. It has a pilot hole forming step of forming halfway through the thickness of the above, and a straight portion forming step of forming a gas hole 21 by superimposing the straight portion 22 on the prepared hole 23 with the second drill 32.
  • a tungsten (W) sintered material drill As the drills 31 and 32, a tungsten (W) sintered material drill, a diamond electrodeposited drill, a diamond polycrystalline drill, a diamond single crystal drill, or the like can be used. As a result of selecting these drills, it was found that the single crystal drill is particularly suitable because the number of drill breakages is the smallest.
  • the pilot hole 23 having an inner diameter of 50% or more and 80% or less with respect to the inner diameter of the straight portion 22 of the gas hole 21 is formed in the electrode plate main body 12. Process to the middle of the thickness.
  • a pilot hole 23 having a diameter of 0.3 mm to 0.8 mm is used.
  • the pilot hole 23 is machined with the first drill 31 to the middle of the thickness of the electrode plate main body 12, for example, to a depth L1 of about 8 mm. Therefore, the diameter d1 of the first drill 31 is smaller than the diameter of the straight portion 22.
  • the straight portion 22 is formed to have a diameter larger than that of the prepared hole 23 by about 0.2 mm (0.1 mm on each side). Therefore, the diameter d2 of the second drill 32 is larger than the diameter d1 of the first drill 31.
  • the pilot hole cutting region 41 formed in the pilot hole forming step is shown by a solid line
  • the straight portion cutting region 42 to be formed in the straight portion forming step is shown by a chain line. In the examples shown in FIGS.
  • the second drill 32 is drilled coaxially with the pilot hole 23 from the same direction as the first drill 31 when the pilot hole 23 is machined.
  • the second drill 32 is drilled until it penetrates the electrode plate main body 12. Therefore, the straight portion 22 is formed over the entire thickness of the electrode plate body 12.
  • the prepared hole 23 having an inner diameter of 50% or more and 80% or less with respect to the inner diameter of the straight portion 22 of the gas hole 21 is formed in the thickness direction. It is formed halfway. Since the pilot hole 23 may be formed halfway in the thickness direction of the electrode plate main body 12, the cutting length of the first drill 31 may be shorter than the thickness of the electrode plate main body 12. That is, although the pilot hole first drill 31 has a small diameter, it is not easily broken because it is short.
  • the second drill 32 has a larger diameter and a longer length than the first drill 31, and the linear length exceeds at least 12 mm.
  • the second drill 32 is above the prepared hole 23 drilled by the first drill 31. Therefore, the hole may be drilled until it penetrates the electrode plate main body 12 coaxially with the prepared hole 23. That is, by processing the hole coaxially with the prepared hole 23, the processing load corresponding to the prepared hole cutting area 41 that has already been removed is reduced. Therefore, the second drill 32 can perform hole drilling with a small machining load obtained by subtracting the pilot hole cutting region 41 from the cutting region of the entire original gas hole 21 (straight line portion 22). Therefore, in the second drill 32, buckling due to the cumulative increase in the machining load is less likely to occur.
  • the gas hole 21 of the electrode plate body 12 is a hole formed by at least two drills (eg, the first drill 31 and the second drill 32) having different drill diameters.
  • the second drill 32 is preferably drilled coaxially with the prepared hole 23 formed by the first drill 31, but a slight deviation within the diameter difference between the two drills 31 and 32 is allowed.
  • the machining depth of the pilot hole 23 in the first drill 31 is preferably more than 5 mm and less than 15 mm, whereas the length of the straight portion 22 is more than 12 mm and 30 mm or less. If the machining depth of the prepared hole 23 is shallow (5 mm or less), the machining load of the second drill 32 cannot be reduced, which may lead to breakage of the second drill 32 or a decrease in roundness. If the machining depth of the prepared hole 23 is deep, the machining load on the first drill 31 becomes large, which leads to breakage of the first drill 31. More preferably, it is 7 mm or more and 13 mm or less. Therefore, if the thickness of the electrode plate body 12 is less than 15 mm, preferably 13 mm or less, the pilot hole 23 in the first drill 31 may be formed so as to penetrate the electrode plate body 12.
  • the gas hole 21 has a straight portion 22 having a length of at least 12 mm or more.
  • the entire length of the gas hole 21 is the straight line portion 22.
  • the straight portion 22 has a diameter of 0.5 mm or more and 1.0 mm or less and a roundness of 0.01 mm or less.
  • the electrode plate 11 at least the length of the straight portion 22 exceeds 12 mm, so that the electrode plate main body 12 is formed with a thickness exceeding 12 mm, and the life can be extended.
  • the roundness of the straight portion 22 is 0.01 mm or less, unevenness in the gas flow is less likely to occur.
  • the outer diameters of the two drills shall be the same as those capable of forming the final gas hole, and the first drill may be used to drill a hole halfway through the thickness of the electrode plate body, and the first drill may be formed from above the hole.
  • a method of drilling a second hole with the second drill to penetrate the electrode plate body (2) Set the outer diameters of the two drills to the same outer diameter capable of forming the final gas hole, and use the first drill. The first hole is drilled halfway through the thickness of the electrode plate body, and the tip of the second drill is inserted into the hole, and the second hole is drilled from the end of the first drilled hole.
  • a drill with a short cutting length can be used for the first hole drilling, so the risk of drill breakage is small, but The first machined hole and the second machined hole are misaligned, the opening end of the hole is distorted, and the roundness of the hole tends to decrease. There is also a risk of breakage because the drill will run out during the second drilling.
  • the second drill 32 may be drilled from the same direction as the first drill 31 in which the pilot hole 23 is formed, or is opposite to the first drill 31 of the electrode plate body 12. Holes may be drilled from the side surface.
  • FIG. 5 shows an example in which the second drill 32 for machining the straight portion 22 is formed from a direction opposite to the forming direction of the prepared hole 23. Similar to FIG. 3, the first drill 31 is formed with a hole 23 from one surface of the electrode plate main body 12 to the middle in the thickness direction.
  • the electrode plate body 12 is coaxial with the pilot hole 23 from the other surface of the electrode plate body 12 (the surface opposite to one surface or the surface facing one surface). Drill holes until they penetrate.
  • the straight portion 22 penetrating the electrode plate body 12 is formed over the entire thickness of the electrode plate body 12. Therefore, the shape of the formed gas hole 21 is the same as that of the processing shown in FIGS. 3 and 4, and is straight as shown in FIG.
  • the straight portion 22 does not necessarily have to be formed to have a length that penetrates the electrode plate main body 12.
  • FIG. 6 shows that the straight portion 22 is formed from the opposite side of the electrode plate body 12 with respect to the prepared hole 23 as in FIG. 5, but the straight portion 22 also has a depth L2 that reaches the tip of the prepared hole 23 and is the electrode plate main body.
  • a stepped gas hole 211 in which the pilot hole 23 and the straight portion 22 communicate with each other is formed.
  • the prepared hole 23 is a small diameter portion 24 formed from one surface side of the electrode plate main body 12 to the middle in the thickness direction.
  • the straight portion 22 is a large diameter portion 25 that is coaxial with the small diameter portion 24 from the other surface side of the electrode plate main body 12 and communicates with the small diameter portion 24 to be formed halfway in the thickness direction of the electrode plate main body 12.
  • the electrode plate main body 12 is formed with a stepped gas hole 211 in which the small diameter portion 24 and the large diameter portion 25 are connected.
  • the gas holes 21 and 211 formed by the methods shown in FIGS. 3 to 6 above have a straight portion 22 having a length of at least 12 mm or more, and the diameter of the straight portion 22 is 0.5 mm or more. It is 0 mm or less and the roundness is 0.01 mm or less.
  • the straight portion 22 is coaxially formed by the second drill 32 from the same direction in the range of the length L2 to the middle of the thickness of the electrode plate main body 12 (see FIG. 8).
  • the state shown in FIG. 9 is obtained by coaxially drilling a hole from the other surface of the electrode plate main body 12 with a third drill 33 at a depth reaching the straight portion cutting region 42.
  • FIGS. 7 the method shown in FIGS. 7 to 9.
  • the straight portion 22 is the large diameter portion 25 and the hole formed by the third drill 33 is the small diameter portion 24.
  • These become stepped gas holes 212 that communicate with each other at an intermediate position in the thickness of the electrode plate main body 12.
  • the straight portion 22 is formed to have a length L2 exceeding 12 mm.
  • the diameter of the third drill 33 is smaller than that of the second drill 32, but a straight line is formed by using a third drill having a diameter larger than that of the second drill 32 to form a hole communicating with the straight portion 22. It is also possible to make the portion 22 a small diameter portion and the hole formed by the third drill 33 to be a large diameter portion.
  • Samples are prepared by the following multiple hole processing methods, and after hole processing, a second drill is performed by image processing using a three-dimensional image measuring machine manufactured by Mitutoyo Co., Ltd. (Quick Vision QVX606-PROO manufactured by Mitutoyo Co., Ltd.).
  • the hole diameter and roundness of the opening on the inlet side were measured, and the presence or absence of breakage of the drill during machining was also confirmed.
  • the test was performed 5 times (5 holes were machined), and the average values of the hole diameter and roundness were obtained, and how many of the 5 drills were broken was investigated. If it was broken, it was excluded from the measurement sample.
  • Example 1 A straight hole is formed in a 20 mm thick electrode plate body with a diameter of 0.8 mm in a penetrating state.
  • Conventional example Processing method A Holes were drilled from one surface of the electrode plate body at a time with a drill having a diameter of 0.8 mm and a cutting length of 20 mm.
  • (2) Comparative example Processing method A A drill with a diameter of 0.8 mm and a cutting length of 10 mm (first drill: in the comparative example, the first drill is the first drill and the second drill is the second drill. The same applies hereinafter) to one of the electrode plate bodies.
  • a hole with a depth of 20 mm is included from one surface of the electrode plate body with a drill (second drill) having a diameter of 0.8 mm and a cutting length of 20 mm. It was processed to penetrate the electrode plate body.
  • Example Processing method A After drilling a pilot hole with a depth of 10 mm from one surface of the electrode plate body with a first drill with a diameter of 0.6 mm and a cutting length of 10 mm, the electrode plate body is machined with a second drill with a diameter of 0.8 mm and a cutting length of 20 mm. A hole having a depth of 20 mm was drilled from one surface so as to include a pilot hole, and the electrode plate body was penetrated. These results are shown in Table 1. The evaluation of the drill breakage of the conventional example is described in the column of the first drill (the same applies to Tables 2 and 3).
  • Example A In Conventional Example A, the hole diameter and roundness were not measured because the drill was broken in all five tests. In both Comparative Examples A and B, the drill (second drill) was broken in 3 out of 5 tests, the hole diameter had a large error with respect to the target hole diameter, and the roundness was also poor. On the other hand, in the processing method of Example A, no breakage was observed in any of the drills, the error in the hole diameter of the machined hole was small, and a hole with a small roundness could be machined.
  • Example 2 A straight hole is formed in the electrode plate body having a thickness of 30 mm so as to penetrate the electrode plate body with a diameter of 0.8 mm.
  • Conventional example Processing method B Holes were drilled from one surface of the electrode plate body at a time with a drill having a diameter of 0.8 mm and a cutting length of 30 mm.
  • Example Processing method B After drilling a pilot hole with a depth of 10 mm from one surface of the electrode plate body with a first drill with a diameter of 0.6 mm and a cutting length of 10 mm, the electrode plate body is machined with a second drill with a diameter of 0.8 mm and a cutting length of 30 mm. A hole with a depth of 30 mm was drilled from one surface so as to include a pilot hole, and the electrode plate body was penetrated. These results are shown in Table 2.
  • Example B the drill was broken in all five tests, and in Comparative Examples C and D, the second drill was broken in all five tests, so the hole diameter and roundness were not measured. rice field.
  • the processing method of Example B no breakage was observed in any of the drills, the error in the hole diameter of the machined hole was small, and a hole with a small roundness could be machined.
  • it is also effective for processing a gas hole having a straight portion having a length of 30 mm.
  • Example 3 A straight hole is formed in the electrode plate body having a thickness of 13 mm so as to penetrate the electrode plate body with a diameter of 0.8 mm.
  • Conventional example Processing method C Holes were drilled from one surface of the electrode plate body at a time with a drill having a diameter of 0.8 mm and a cutting length of 13 mm.
  • Example Processing method C After drilling a pilot hole with a depth of 10 mm from one surface of the electrode plate body with a first drill with a diameter of 0.6 mm and a cutting length of 10 mm, the electrode plate body is machined with a second drill with a diameter of 0.8 mm and a cutting length of 13 mm. A hole with a depth of 13 mm was drilled from one surface so as to include a pilot hole, and the electrode plate body was penetrated.
  • Example Processing method D After drilling a pilot hole (penetration) with a depth of 13 mm from one surface of the electrode plate body with a first drill with a diameter of 0.6 mm and a cutting length of 13 mm, a second drill with a diameter of 0.8 mm and a cutting length of 13 mm is used.
  • the electrode plate body was prepared by drilling a hole with a depth of 13 mm from one surface of the electrode plate body so as to include a pilot hole.
  • the drill was broken in 3 out of 5 tests, and in Comparative Examples E and F, the 2nd drill was broken in 1 out of 5 tests, but the drilling depth of the hole was in Example 1. Since it is smaller than 2 and 2, there is little breakage of the drill and some holes can be drilled, but the formed holes have a large error in hole diameter and the roundness is not satisfactory. It is considered that the hole drilling with the second drill of Comparative Example F has a depth of 3 mm and the load is small. rice field. In Example C, none of the drills was broken, the hole diameter error was small, and the roundness was also small. In Example D, breakage was observed in the first drill in one of the five tests, but the hole diameter error was small and the roundness was also small.
  • an electrode plate for a plasma processing apparatus of the present invention even when a gas hole is formed in an electrode plate for a plasma processing apparatus having a thickness of more than 12 mm, the risk of breakage of the drill is reduced and the value is high. Accurate gas holes can be formed. According to the electrode plate for the plasma processing apparatus, the life can be extended by the thick electrode plate. Moreover, when the roundness of the straight portion is 0.01 mm or less, unevenness in the gas flow is less likely to occur.
  • Electrode plate (Electrode plate for plasma processing equipment) 12 Electrode plate body 21,21,122 Gas hole 22 Straight part 23 Pilot hole 24 Small diameter part 25 Large diameter part 31 First drill 32 Second drill 41 Pilot hole cutting area 42 Straight part cutting area

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Plasma Technology (AREA)

Abstract

電極板本体(12)の厚さ方向に少なくとも12mmを超える長さの直線部(22)を有する複数のガス孔(21)を相互に平行に貫通状態に形成するプラズマ処理装置用電極板(11)の製造方法において、電極板本体(12)の一方の面から第1ドリル(31)で直線部(22)を形成する孔の直径の50%以上80%以下の直径の下穴(23)を形成する下穴形成工程と、第2ドリル(32)で下穴(23)に重ねて直線部(22)を形成する直線部形成工程と、を有する。

Description

プラズマ処理装置用電極板の製造方法及びプラズマ処理装置用電極板
 本発明は、プラズマ処理装置用電極板の製造方法及びプラズマ処理装置用電極板に関する。
 本願は、2020年3月24日に、日本に出願された特願2020-053222号に基づき優先権を主張し、その内容をここに援用する。
 半導体デバイス製造プロセスに使用されるプラズマエッチング装置やプラズマCVD装置等のプラズマ処理装置は、チャンバー内に、高周波電源に接続される上部電極と下部電極とが例えば上下方向に対向配置されている。下部電極は、その上に被処理基板を配置した状態とし、上部電極は、通気孔を有し、この通気孔からエッチングガスを被処理基板に向かって流通させながら高周波電圧を印加する。これにより、プラズマ処理装置は、プラズマを発生させ、被処理基板にエッチング等の処理を行う構成とされている。
 特許文献1には、パーティクルの発生を抑制するプラズマエッチング用電極板が開示される。このプラズマエッチング用電極板は、単結晶シリコンからなる電極板の厚さ方向に平行に貫通細孔(ガス孔)が設けられている。貫通細孔は、大径ストレート孔部分及び小径ストレート孔部分で構成される。この電極板によれば、大きなパーティクルの発生がなく、洗浄回数を減らすことができ、従来よりも効率よくシリコンウエハをプラズマエッチングできる。
 電極板は、厚い方が寿命が長い。最近は、被処理基板の多層の複雑立体構造(例えば3D-NAND)のように深くエッチングしなければならないこともあり、そのためにはエッチングのガス圧を高めなければならない。そうすると、ガス穴の消耗も早くなり、従来の厚さの電極板だと寿命が短くなってしまう。そのため、より長寿命化するように、厚い電極板が求められている。
 一方、電極板のガス孔加工には、ドリル、レーザ、ウォータージェット、放電加工などによる方法があるが、レーザ加工では深さ数mm(およそ5mm程度)までくらいしか空けられない。ウォータージェットによる孔加工ではガス孔の開口部の形状が良好に加工できない。放電加工は通電する素材でないと使用できない。これに対し、ドリル加工が加工性、多様性、品質的にも優れている。
特開2001-102357号公報
 しかしながら、このドリル加工においても、例えばガス孔が直径0.5mm~1.0mmで深さが大きくなると、加工負荷により、ドリルに振れが生じて、ガス孔の真円度が大きくなる(悪くなる)不具合があり、プラズマ処理の品質を低下させるおそれがある。
 本発明は上記事情に鑑みてなされたもので、その目的は、12mmを超える深さのガス孔を加工する場合であっても、真円度の小さいガス孔を形成できるプラズマ処理装置用電極板の製造方法及び真円度の小さいガス孔を備えるプラズマ処理装置用電極板を提供することにある。
 本発明の一態様に係るプラズマ処理装置用電極板の製造方法は、電極板本体の厚さ方向に少なくとも12mmを超える長さの直線部を有する複数のガス孔を相互に平行に貫通状態に形成するプラズマ処理装置用電極板の製造方法において、前記電極板本体の一方の面から第1ドリルで前記直線部の直径の50%以上80%以下の直径の下穴を形成する下穴形成工程と、第2ドリルで前記下穴に重ねて前記直線部を形成する直線部形成工程と、を有する。
 このプラズマ処理装置用電極板の製造方法によれば、直線部の直径の50%以上80%以下の直径の下穴を第1ドリルで形成してから第2ドリルで直線部を形成するので、第2ドリルは、本来の直線部全体の切削領域から下穴切削領域を減じた少ない加工負荷での孔加工となる。第2ドリルに対する加工負荷が小さくなる分、第2ドリルによる加工精度が高められ、真円度の小さい直線部を形成することができる。この場合、下穴の直径が直線部の直径の50%未満では第2ドリルに対する加工負荷軽減の効果が少なく、80%を超えると、径の小さい第1ドリルに対する加工負荷が大きくなって第1ドリルに折損等が生じるおそれがある。
 加工深さが大きくなる(電極板が厚くなる)と、ドリルの加工負荷も大きくなるため、ドリルの座屈が起こりやすくなる。そのため、座屈強度や加工負荷に強い、単結晶ダイヤモンドドリルや多結晶ダイヤモンドドリル、焼結体ドリル、給油口付きドリルなどが用いられることもあるが、以下のような製造方法とすることにより、加工負荷によるドリルの折損リスクは回避できる。
 本発明の一態様に係る製造方法において、前記下穴形成工程では、前記第1ドリルで前記電極板本体の厚さの途中まで下穴を形成するとよい。この場合、前記下穴は加工深さが5mmを超えているとよい。
 このプラズマ処理装置用電極板の製造方法によれば、ガス孔が電極板本体に形成される前に、ガス孔の直線部の内径に対して50%以上80%以下の内径の下穴が厚さ方向の途中まで空けられる。下穴は、電極板本体の厚さ方向の途中まで形成すればよいので、第1ドリルの切削長さは電極板本体の厚さよりも短くてよい。すなわち、下穴用第1ドリルは、小径であっても短尺となるため、折損しにくい。
 この場合、12mmを超える長さの直線部に対して、下穴の長さは、5mm以下では第2ドリルによる加工負荷軽減の効果が少なくなるので、5mmを超える長さに形成するとよい。
 一方、第2ドリルは、第1ドリルより径が大きいドリルであり、第1ドリルにより空けられた下穴に対して、例えば下穴と同方向から同軸で孔加工する。ここで、第2ドリルは、下穴と同軸で孔加工することにより、既に除去されている下穴切削領域に相当する分の加工負荷が軽減される。従って、第2ドリルは、本来の直線部全体の切削領域から下穴切削領域を減じた少ない加工負荷での孔加工が可能となる。このため、第2ドリルでは、加工負荷の累積的な増大による座屈が生じにくくなる。その結果、第2ドリルの切削長さは、第1ドリルの切削長さより長くても、加工負荷が減じられる分、折損リスクが少なくなる。
 第2ドリルは、第1ドリルにより形成した下穴に同軸上に孔加工するのが好ましいが、両ドリルの直径差以内のわずかなずれは許容される。
 本発明の一態様に係る製造方法において、前記第2ドリルは、前記電極板本体の前記一方の面から孔加工することとしてもよいし、前記電極板本体の他方の面から孔加工することとしてもよい。
 このプラズマ処理装置用電極板の製造方法において、第2ドリルが電極板本体の他方の面から孔加工する場合、第1ドリルが下穴を形成したときとは反対方向で孔加工する。この場合でも、第2ドリルは、下穴とほぼ同軸で孔加工することにより、一方の面から既に除去されている下穴切削領域に到達した後の加工負荷は、下穴切削領域に相当する分が軽減されるので、本来のガス孔全体を孔加工するのに比べて全体の加工負荷も小さくなる。第2ドリルが、他方の面から所定の深さに達すると、一方の面から形成されている下穴に繋がる。これ以降、第2ドリルは、下穴切削領域に相当する分の加工負荷が軽減される。
 従って、第2ドリルは、本来の直線部全体に対する切削領域から下穴切削領域を減じた少ない加工負荷での孔加工が、厚さ方向の途中から(下穴切削領域に到達してから)可能となる。このため、第2ドリルでは、厚さ方向の途中からの加工負荷を軽減し、加工負荷の累積的な増大による座屈が生じにくくなる。つまり、第2ドリルの切削長さは、第1ドリルの切削長さより長くても、加工負荷が減じられる分、折損リスクが少なくなる。
 第1ドリルでの加工と第2ドリルでの加工を同軸に合わせる方法としては、ガス孔ではない穴を基準穴としてマシニングセンタ(加工機)にその位置情報を設定し、第1ドリルと第2ドリルの加工位置を同座標に設定することにより同軸加工できる。第2ドリルが電極板本体の他方の面から孔加工する場合でも、同様である。また第1ドリルから第2ドリルへの交換は、マシニングセンタのドリルチェンジャー(ドリル,ツール保管庫)からオートチェンジ機能によって自動で同軸に交換するのが一般的である。
 本発明の一態様に係る製造方法において、前記第2ドリルは、前記電極板本体の他方の面から孔加工する場合、前記下穴に到達し、かつ前記電極板本体の厚さの途中まで前記直線部を形成することとしてもよい。
 この製造方法で形成されるガス孔は、電極板本体の一方の面に下穴であった小径穴、他方の面に直線部となる大径穴が開口する段付き孔形状になる。この場合も、各ドリルの加工負荷を低減することができ、厚い電極板に適用することができる。
 本発明の一態様に係るプラズマ処理装置用電極板は、電極板本体の厚さ方向に相互に平行に複数のガス孔が貫通状態に設けられたプラズマ処理装置用電極板において、前記ガス孔は、少なくとも長さが12mmを超える直線部を有しており、該直線部は、直径が0.5mm以上1.0mm以下で、かつ真円度が0.01mm以下である。
 このプラズマ処理装置用電極板によれば、少なくとも直線部の長さが12mmを超えているので、電極板本体は、12mmを超える厚さで形成され、長寿命化することができる。これに加え、直線部の真円度が0.01mm以下であることにより、さらにガスの流れにムラが生じにくくなる。
 このプラズマ処理装置用電極板において、前記ガス孔は、前記電極板本体の一方の面に開口する小径部と、他方の面に開口する大径部とが厚さ方向の途中で連通しており、前記大径部が前記直線部であるとすることができる。
 本発明の上記態様に係るプラズマ処理装置用電極板の製造方法によれば、12mmを超える厚さのプラズマ処理装置用電極板にガス孔を加工する場合であっても、ドリルの折損リスクを低減して、高精度のガス孔を形成できる。そのプラズマ処理装置用電極板によれば、厚肉の電極板により長寿命化できる。しかも、直線部の真円度が0.01mm以下であることにより、さらにガスの流れにムラが生じにくくなる。
本発明の実施形態に係るプラズマ処理装置用電極板の平面図である。 図1の要部の縦断面図である。 実施形態の製造方法のうち、下穴形成工程で下穴を形成している状態を示す断面図である。 下穴形成工程の後の直線部形成工程で、下穴と同じ方向から直線部を形成する状態を示す断面図である。 下穴形成工程の後の直線部形成工程で、下穴とは反対方向から直線部を形成している状態を示す断面図である。 下穴と直線部とで段付き形状のガス孔とした例を示す断面図である。 下穴形成工程の後、電極板本体の厚さ方向の途中まで直線部を形成するために第2ドリルを配置した状態を示す断面図である。 電極板本体の厚さ方向の途中まで形成した直線部に第3ドリルによって直線部より小径の孔を形成している状態を示す断面図である。 図8に示す方法で形成された段付き形状のガス孔を示す断面図である。
 以下、本発明の実施形態を図面を参照して説明する。
 図1は、本発明の実施形態に係るプラズマ処理装置用電極板の平面図である。
 プラズマ処理装置用電極板(以下、単に「電極板」とも称す。)11は、単結晶シリコン、柱状晶シリコン、又は多結晶シリコンにより、厚さtが12mmを超え30mm以下、直径200mm以上550mm以下の円板に形成された電極板本体12に、数mm~10mmピッチで複数(この場合、数百~1000個、少なくとも100個以上又は少なくとも500個以上、など)のガス孔21が例えば縦横に整列した状態で厚さ方向に平行に貫通するように形成されている。ガス孔21は、電極板本体12の厚さ方向に少なくとも12mmを超える長さの直線部22を有している。図2に示す例では、ガス孔21は、電極板本体12の厚さの全体にわたってストレート状に形成されている。したがって、本実施形態の直線部22は、ガス孔21の長さ全部を構成しており、その長さが12mmを超えている。直線部22は、直径dが0.5mm以上1.0mm以下で、真円度が0.01mm以下である。
 プラズマ処理装置用電極板11は、単結晶シリコン等のシリコンインゴットをスライスして得た円板状の電極板本体12にガス孔を形成した後、エッチング、ポリッシング加工等を施して製造される。
 ガス孔の形成にあっては、電極板本体12の一方の面から第1ドリル31で直線部22を形成する孔の直径の50%以上80%以下の直径の下穴23を電極板本体12の厚さの途中まで形成する下穴形成工程と、第2ドリル32で直線部22を下穴23に重ねて形成することによりガス孔21を形成する直線部形成工程と、を有する。
 ドリル31,32は、タングステン(W)の焼結材のドリル、ダイヤモンド粒子を電着したドリル、ダイヤモンドの多結晶ドリル、ダイヤモンドの単結晶ドリルなどを用いることができる。これらのドリルを選定した結果では、特に単結晶ドリルが、最もドリルの折損の件数が少なく好適であることが分かった。
 ガス孔形成工程をより詳細に説明すると、まず、下穴形成工程においては、ガス孔21の直線部22の内径に対して50%以上80%以下の内径の下穴23を電極板本体12の厚さの途中まで加工する。直線部22の直径が0.5mm以上1.0mm以下の場合、例えば0.3mm~0.8mmの直径の下穴23とする。下穴23を第1ドリル31で電極板本体12の厚さの途中まで、例えば深さL1が8mm程度まで加工する。したがって、第1ドリル31は直径d1が直線部22の直径より小さい。図3は、第1ドリル31で下穴23を加工している状態を示しており、深さL1=8mm程度まで加工したら、第1ドリル31を下穴23から抜き去る。
 次いで、直線部形成工程において、下穴23より大きい0.5mm~1.0mmの直径の直線部22を第2ドリル32で加工して電極板本体12を貫通する。例えば、直線部22は、下穴23より直径で0.2mm程度(片側0.1mmずつ)大きい直径に形成される。したがって、第2ドリル32は、直径d2が第1ドリル31の直径d1より大きい。
 図3及び図4には、下穴形成工程で形成した下穴切削領域41を実線で示し、直線部形成工程で形成されるべき直線部切削領域42を鎖線で示している。図3及び図4に示す例では、第2ドリル32は、下穴23を加工したときの第1ドリル31と同じ方向から下穴23と同軸で孔加工している。直線部形成工程では、第2ドリル32は電極板本体12を貫通するまで孔加工する。したがって、直線部22は電極板本体12の全厚さにわたって形成される。
 以上の製造方法において、ガス孔21が電極板本体12に形成される前に、ガス孔21の直線部22の内径に対して50%以上80%以下の内径の下穴23が厚さ方向の途中まで形成される。下穴23は、電極板本体12の厚さ方向の途中まで形成すればよいので、第1ドリル31の切削長さは電極板本体12の厚さよりも短くてよい。すなわち、下穴用第1ドリル31は、小径であるが、短尺となるため折損しにくい。
 第2ドリル32は、第1ドリル31よりも大径かつ長尺で、少なくとも直線長さが12mmを超えているが、第2ドリル32は、第1ドリル31により空けられた下穴23の上から、下穴23と同軸で電極板本体12を貫通するまで孔加工すればよい。つまり、下穴23と同軸で孔加工することにより、既に除去されている下穴切削領域41に相当する分の加工負荷が軽減される。従って、第2ドリル32は、本来のガス孔21(直線部22)全体の切削領域から下穴切削領域41を減じた少ない加工負荷での孔加工が可能となる。このため、第2ドリル32では、加工負荷の累積的な増大による座屈が生じにくくなる。その結果、第2ドリル32は、第1ドリル31より切削長さが長くても、加工負荷が減じられる分、折損リスクが少なくなる。このように、第1ドリル31と第2ドリル32とは、互いにドリルの径が異なる。従って、電極板本体12のガス孔21は、互いにドリルの径が異なる少なくとも2つのドリル(例、第1ドリル31及び第2ドリル32)によって形成された孔である。
 第2ドリル32は、第1ドリル31により形成した下穴23に同軸上に孔加工するのが好ましいが、両ドリル31,32の直径差以内のわずかなずれは許容される。
 第1ドリル31での下穴23の加工深さは、直線部22の長さが12mmを超え30mm以下であるのに対して、5mmを超え15mm未満の深さが好ましい。下穴23の加工深さが浅い(5mm以下)と第2ドリル32での加工負荷が低減できず、第2ドリル32の折損や真円度の低下に繋がるおそれがある。下穴23の加工深さが深いと第1ドリル31での加工負荷が大きくなり、第1ドリル31の折損に繋がる。より好ましくは7mm以上13mm以下である。したがって、電極板本体12の厚さが15mm未満、好ましくは13mm以下であれば、第1ドリル31での下穴23が電極板本体12を貫通するように形成してもよい。
 この製造方法で得られた電極板11では、ガス孔21は、少なくとも長さが12mmを超える直線部22を有している。図2に示す例では、ガス孔21の長さ全体が直線部22である。直線部22は、直径が0.5mm以上1.0mm以下で、かつ真円度が0.01mm以下である。
 電極板11によれば、少なくとも直線部22の長さが12mmを超えているので、電極板本体12は、12mmを超える厚さで形成され、長寿命化できる。これに加え、直線部22の真円度が0.01mm以下であることにより、さらにガスの流れにムラが生じにくくなる。
 2本のドリルを使って孔加工する場合に、以下の方法も考えられる。
(1)2本のドリルの外径を最終のガス孔を形成可能な同じ外径のものとし、第1のドリルで電極板本体の厚さの途中まで孔加工し、その孔の上から第2のドリルで2回目の孔加工をして電極板本体を貫通させる方法
(2)2本のドリルの外径を最終のガス孔を形成可能な同じ外径のものとし、第1のドリルで電極板本体の厚さの途中まで1回目の孔加工し、その孔の中に第2のドリルの先端部を挿入した状態で、1回目の孔加工した孔の端部から2回目の孔加工をして電極板本体を貫通させる方法
これら(1)(2)の方法では、1回目の孔加工は切削長さが短いドリルを使用することができるので、ドリルの折損のリスクは小さいが、1回目に加工した孔と、2回目に加工した孔とに位置ずれが生じ、孔の開口端に歪みが生じて、孔の真円度が低下し易い。2回目の孔加工でドリルに振れが生じることから、折損するリスクもある。
 本発明において、第2ドリル32は、上記のように、下穴23を形成した第1ドリル31と同じ方向から孔加工することとしてもよいし、第1ドリル31とは電極板本体12の反対側の面から孔加工することとしてもよい。
 図5は、直線部22を加工するための第2ドリル32を下穴23の形成方向とは反対方向から形成する例を示している。第1ドリル31は、図3と同様、電極板本体12の一方の面から厚さ方向の途中まで孔加工して下穴23を形成する。これに対して、第2ドリル32は、電極板本体12の他方の面(一方の面とは反対側の面、又は一方の面と対向する面)から下穴23と同軸で電極板本体12を貫通するまで孔加工する。これにより、電極板本体12を貫通する直線部22が電極板本体12の全厚さにわたって形成される。したがって、形成されたガス孔21の形状は図3及び図4に示す加工の場合と同じであり、図2に示すようにストレート状となる。
 本発明においては、直線部22は、必ずしも電極板本体12を貫通する長さに形成されていなくてもよい。
 図6は、図5と同様、下穴23に対して直線部22を電極板本体12の反対側から形成するが、直線部22も下穴23の先端部に届く深さL2で電極板本体12の厚さの途中までとすることにより、下穴23と直線部22とが連通した段付き形状のガス孔211が形成されている。
 この場合、下穴23は、電極板本体12の一方の面側から厚さ方向の途中まで形成された小径部24となる。直線部22は、電極板本体12の他方の面側から小径部24と同軸で、小径部24に連通して電極板本体12の厚さ方向の途中まで形成される大径部25となる。これにより、電極板本体12には、小径部24と大径部25とが繋がった段付き形状のガス孔211が形成される。
 以上の図3から図6に示す方法で形成されるガス孔21,211は、少なくとも長さが12mmを超える直線部22を有しており、この直線部22の直径が0.5mm以上1.0mm以下で、かつ真円度が0.01mm以下である。
 段付き形状のガス孔を形成する場合は、図7から図9に示す方法により形成してもよい。
 この例の方法では、まず、第1ドリル31(図7から図8には図示略、図3参照)で電極板本体12の一方の面から厚さ方向の途中まで形成した下穴切削領域41に対して、図7に示すように同じ方向から第2ドリル32で同軸に直線部22を長さL2の範囲で電極板本体12の厚さの途中まで形成する(図8参照)。電極板本体12の他方の面から、直線部切削領域42に到達する深さで第3ドリル33により同軸に孔加工して図9に示す状態とする。図7から図9に示す例では、第3ドリル33の直径が第2ドリル32の直径より小さいことから、直線部22が大径部25で、第3ドリル33により形成した孔が小径部24となり、これらが電極板本体12の厚さの途中位置で連通した段付き形状のガス孔212となる。この場合も、直線部22が12mmを超える長さL2に形成される。
 図示は省略するが、第3ドリル33を第2ドリル32より小径としたが、第2ドリル32より大径の第3ドリルを用いて、直線部22に連通する孔を加工することにより、直線部22を小径部とし、第3ドリル33により形成した孔を大径部とすることも可能である。
 次の複数種の孔加工方法により試料を作製し、孔加工後に、株式会社ミツトヨ製三次元画像測定機(株式会社ミツトヨ製クイックビジョンQVX606-PRО)を使用して、画像処理にて第2ドリル入口側の開口部の孔径、真円度の測定を行うとともに、加工時のドリルの折損の有無も確認した。5回テストし(5個の孔加工し)、孔径、真円度については、その平均値を求め、5回のうち何本ドリルが折損したかを調べた。折損した場合は測定サンプルから除外した。
[実施例1]
 厚さ20mmの電極板本体に、直径0.8mm狙いでストレートの孔を貫通状態に形成する。
(1)従来例加工方法A
 直径0.8mm、切削長さ20mmのドリルで電極板本体の一方の面から一度に孔加工した。
(2)比較例加工方法A
 直径0.8mm、切削長さ10mmのドリル(第1ドリル:比較例においても最初のドリルを第1ドリル、2番目のドリルを第2ドリルとする。以下、同様。)で電極板本体の一方の面から深さ10mmの下孔を加工した後、直径0.8mm、切削長さ20mmのドリル(第2ドリル)で電極板本体の一方の面から下穴を含むように深さ20mmの孔加工をして電極板本体を貫通させた。
(3)比較例加工方法B
 直径0.8mm、切削長さ10mmのドリル(第1ドリル)で電極本体の一方の面から深さ10mmの下穴を加工した後、直径0.8mm、切削長さ20mmのドリル(第2ドリル)の先端部を下穴内に挿入し、深さ10mmの位置から深さ10mm分の孔加工をして電極板本体を貫通させた。
(4)実施例加工方法A
 直径0.6mm、切削長さ10mmの第1ドリルで電極板本体の一方の面から深さ10mmの下穴を加工した後、直径0.8mm、切削長さ20mmの第2ドリルで電極板本体の一方の面から下穴を含むように深さ20mmの孔加工をして電極板本体を貫通させた。
 これらの結果を表1に示す。従来例のドリル折損の評価は第1ドリルの欄に記載した(表2及び表3も同様)。
Figure JPOXMLDOC01-appb-T000001
 従来例Aでは、5回のテストのすべてでドリルの折損が生じたため、孔径や真円度の測定は行わなかった。
 比較例A,Bとも5回中3回のテストでドリル(第2ドリル)の折損が生じ、孔径も狙いの孔径に対する誤差が大きく、真円度も悪いものであった。
 これに対して、実施例Aの加工方法では、いずれのドリルも折損は認められず、加工された孔の孔径の誤差も小さく、小さい真円度の孔を加工することができた。
[実施例2]
 厚さ30mmの電極板本体に、直径0.8mm狙いでストレートの孔を貫通状態に形成する。
(1)従来例加工方法B
 直径0.8mm、切削長さ30mmのドリルで電極板本体の一方の面から一度に孔加工した。
(2)比較例加工方法C
 直径0.8mm、切削長さ10mmのドリル(第1ドリル)で電極板本体の一方の面から深さ10mmの下孔を加工した後、直径0.8mm、切削長さ30mmのドリル(第2ドリル)で電極板本体の一方の面から下穴を含むように深さ30mmの孔加工をして電極板本体を貫通させた。
(3)比較例加工方法D
 直径0.8mm、切削長さ10mmのドリル(第1ドリル)で電極本体の一方の面から深さ10mmの下穴を加工した後、直径0.8mm、切削長さ30mmのドリル(第2ドリル)の先端部を下穴内に挿入し、深さ10mmの位置から深さ20mm分の孔加工をして電極板本体を貫通させた。
(4)実施例加工方法B
 直径0.6mm、切削長さ10mmの第1ドリルで電極板本体の一方の面から深さ10mmの下穴を加工した後、直径0.8mm、切削長さ30mmの第2ドリルで電極板本体の一方の面から下穴を含むように深さ30mmの孔加工をして電極板本体を貫通させた。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 従来例Bは5回のテストのすべてでドリルに折損が生じ、比較例C,Dは、5回のテストのすべてで第2ドリルに折損が生じたため、孔径や真円度の測定は行わなかった。
 実施例Bの加工方法では、いずれのドリルも折損は認められず、加工された孔の孔径の誤差も小さく、小さい真円度の孔を加工することができた。このように、本発明の方法によれば、長さ30mmの直線部を有するガス孔の加工にも有効である。
[実施例3]
 厚さ13mmの電極板本体に、直径0.8mm狙いでストレートの孔を貫通状態に形成する。
(1)従来例加工方法C
 直径0.8mm、切削長さ13mmのドリルで電極板本体の一方の面から一度に孔加工した。
(2)比較例加工方法E
 直径0.8mm、切削長さ10mmのドリル(第1ドリル)で電極板本体の一方の面から深さ10mmの下孔を加工した後、直径0.8mm、切削長さ13mmのドリル(第2ドリル)で電極板本体の一方の面から下穴を含むように深さ13mmの孔加工をして電極板本体を貫通させた。
(3)比較例加工方法F
 直径0.8mm、切削長さ10mmのドリル(第1ドリル)で電極本体の一方の面から深さ10mmの下穴を加工した後、直径0.8mm、切削長さ13mmのドリル(第2ドリル)の先端部を下穴内に挿入し、深さ10mmの位置から深さ3mm分の孔加工をして電極板本体を貫通させた。
(4)実施例加工方法C
 直径0.6mm、切削長さ10mmの第1ドリルで電極板本体の一方の面から深さ10mmの下穴を加工した後、直径0.8mm、切削長さ13mmの第2ドリルで電極板本体の一方の面から下穴を含むように深さ13mmの孔加工をして電極板本体を貫通させた。
(5)実施例加工方法D
 直径0.6mm、切削長さ13mmの第1ドリルで電極板本体の一方の面から深さ13mmの下穴(貫通)を加工した後、直径0.8mm、切削長さ13mmの第2ドリルで電極板本体の一方の面から下穴を含むように深さ13mmの孔加工をして電極板本体を作製した。
 これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 従来例では5回中3回のテストでドリルに折損が生じ、比較例E,Fでは5回中1回のテストで第2ドリルに折損が生じたが、孔の加工深さが実施例1,2より小さいために、ドリルの折損が少なく、孔加工できたものもあったが、形成された孔は、孔径の誤差が大きく、真円度も満足できるものではない。比較例Fの第2ドリルでの孔加工は深さ3mm分の加工で負荷が小さいと考えられるが、1回目で空けた穴内で振れやすいために、5回中1回のテストで折損が生じた。
 実施例Cは、いずれのドリルにも折損がなく、孔径の誤差が小さく、真円度も小さかった。
 実施例Dは、5回中、1回のテストで第1ドリルに折損が認められたが、孔径の誤差が小さく、真円度も小さかった。
 以上の実施例で明らかなように、本発明の製造方法によれば、電極板本体が厚いものであっても、12mmの長さを超える直線部の孔を、高精度(小さい真円度)に形成することができる。
 本発明のプラズマ処理装置用電極板の製造方法によれば、12mmを超える厚さのプラズマ処理装置用電極板にガス孔を加工する場合であっても、ドリルの折損リスクを低減して、高精度のガス孔を形成できる。そのプラズマ処理装置用電極板によれば、厚肉の電極板により長寿命化できる。しかも、直線部の真円度が0.01mm以下であることにより、さらにガスの流れにムラが生じにくくなる。
11 電極板(プラズマ処理装置用電極板)
12 電極板本体
21,211,212 ガス孔
22 直線部
23 下穴
24 小径部
25 大径部
31 第1ドリル
32 第2ドリル
41 下穴切削領域
42 直線部切削領域

Claims (8)

  1.  電極板本体の厚さ方向に少なくとも12mmを超える長さの直線部を有する複数のガス孔を相互に平行に貫通状態に形成するプラズマ処理装置用電極板の製造方法において、前記電極板本体の一方の面から第1ドリルで前記直線部を形成する孔の直径の50%以上80%以下の直径の下穴を形成する下穴形成工程と、第2ドリルで前記下穴に重ねて前記直線部を形成する直線部形成工程と、を有することを特徴とするプラズマ処理装置用電極板の製造方法。
  2.  前記下穴は前記電極板本体の厚さの途中まで形成することを特徴とする請求項1に記載のプラズマ処理装置用電極板の製造方法。
  3.  前記下穴は加工深さが5mmを超えることを特徴とする請求項1又は2に記載のプラズマ処理装置用電極板の製造方法。
  4.  前記第2ドリルは、前記電極板本体の前記一方の面から孔加工することを特徴とする請求項1から3のいずれか一項に記載のプラズマ処理装置用電極板の製造方法。
  5.  前記第2ドリルは、前記電極板本体の他方の面から孔加工することを特徴とする請求項1から3のいずれか一項に記載のプラズマ処理装置用電極板の製造方法。
  6.  前記第2ドリルは、前記下穴に到達し、かつ前記電極板本体の厚さの途中まで前記直線部を形成することを特徴とする請求項5に記載のプラズマ処理装置用電極板の製造方法。
  7.  電極板本体の厚さ方向に相互に平行に複数のガス孔が貫通状態に設けられたプラズマ処理装置用電極板において、前記ガス孔は、少なくとも長さが12mmを超える直線部を有しており、該直線部は、直径が0.5mm以上1.0mm以下で、かつ真円度が0.01mm以下であることを特徴とするプラズマ処理装置用電極板。
  8.  前記ガス孔は、前記電極板本体の一方の面に開口する小径部と、他方の面に開口する大径部とが厚さ方向の途中で連通しており、前記大径部が前記直線部であることを特徴とする請求項7に記載のプラズマ処理装置用電極板。
PCT/JP2021/000074 2020-03-24 2021-01-05 プラズマ処理装置用電極板の製造方法及びプラズマ処理装置用電極板 WO2021192481A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/800,602 US20230077433A1 (en) 2020-03-24 2021-01-05 Method of manufacturing electrode plate for plasma processing device and electrode plate for plasma processing device
KR1020227027868A KR20220156807A (ko) 2020-03-24 2021-01-05 플라즈마 처리 장치용 전극판의 제조 방법 및 플라즈마 처리 장치용 전극판
CN202180019324.8A CN115244660A (zh) 2020-03-24 2021-01-05 等离子体处理装置用电极板的制造方法及等离子体处理装置用电极板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-053222 2020-03-24
JP2020053222A JP7439605B2 (ja) 2020-03-24 2020-03-24 プラズマ処理装置用電極板の製造方法及びプラズマ処理装置用電極板

Publications (1)

Publication Number Publication Date
WO2021192481A1 true WO2021192481A1 (ja) 2021-09-30

Family

ID=77886725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000074 WO2021192481A1 (ja) 2020-03-24 2021-01-05 プラズマ処理装置用電極板の製造方法及びプラズマ処理装置用電極板

Country Status (6)

Country Link
US (1) US20230077433A1 (ja)
JP (2) JP7439605B2 (ja)
KR (1) KR20220156807A (ja)
CN (1) CN115244660A (ja)
TW (1) TW202137322A (ja)
WO (1) WO2021192481A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050677A (ja) * 1996-07-31 1998-02-20 Ibiden Co Ltd プラズマエッチング用電極板
JPH10286708A (ja) * 1997-04-11 1998-10-27 Akimichi Koide 微細孔加工方法及びこれに用いる加工装置
JP2001102357A (ja) * 1999-09-28 2001-04-13 Mitsubishi Materials Corp プラズマエッチング用電極板およびその製造方法
JP2003238178A (ja) * 2002-02-21 2003-08-27 Toshiba Ceramics Co Ltd ガス導入用シャワープレート及びその製造方法
JP2003324072A (ja) * 2002-05-07 2003-11-14 Nec Electronics Corp 半導体製造装置
WO2006112392A1 (ja) * 2005-04-18 2006-10-26 Hokuriku Seikei Industrial Co., Ltd. シャワープレート及びその製造方法
JP2008311297A (ja) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp プラズマ処理装置用電極板、その製造方法及びプラズマ処理装置
JP2009149471A (ja) * 2007-12-20 2009-07-09 Nippon Electric Glass Co Ltd ガラス板の製造方法およびその装置
JP2012119590A (ja) * 2010-12-02 2012-06-21 Mitsubishi Materials Corp プラズマ処理装置用電極板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050677A (ja) * 1996-07-31 1998-02-20 Ibiden Co Ltd プラズマエッチング用電極板
JPH10286708A (ja) * 1997-04-11 1998-10-27 Akimichi Koide 微細孔加工方法及びこれに用いる加工装置
JP2001102357A (ja) * 1999-09-28 2001-04-13 Mitsubishi Materials Corp プラズマエッチング用電極板およびその製造方法
JP2003238178A (ja) * 2002-02-21 2003-08-27 Toshiba Ceramics Co Ltd ガス導入用シャワープレート及びその製造方法
JP2003324072A (ja) * 2002-05-07 2003-11-14 Nec Electronics Corp 半導体製造装置
WO2006112392A1 (ja) * 2005-04-18 2006-10-26 Hokuriku Seikei Industrial Co., Ltd. シャワープレート及びその製造方法
JP2008311297A (ja) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp プラズマ処理装置用電極板、その製造方法及びプラズマ処理装置
JP2009149471A (ja) * 2007-12-20 2009-07-09 Nippon Electric Glass Co Ltd ガラス板の製造方法およびその装置
JP2012119590A (ja) * 2010-12-02 2012-06-21 Mitsubishi Materials Corp プラズマ処理装置用電極板

Also Published As

Publication number Publication date
JP2023181538A (ja) 2023-12-21
JP2021153131A (ja) 2021-09-30
KR20220156807A (ko) 2022-11-28
CN115244660A (zh) 2022-10-25
JP7439605B2 (ja) 2024-02-28
TW202137322A (zh) 2021-10-01
US20230077433A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US5644467A (en) Method and structure for improving gas breakdown resistance and reducing the potential of arcing in a electrostatic chuck
US10584053B2 (en) Manufacturing method of glass substrate with hole
CN108687388B (zh) 用于高温合金材料上小转角深壁面型腔数控铣的加工方法
EP3682993B1 (en) Small-diameter drill and small-diameter drill manufacturing method
WO2021192481A1 (ja) プラズマ処理装置用電極板の製造方法及びプラズマ処理装置用電極板
CN106573314B (zh) 切削工具及制作切削工具的方法
KR102464458B1 (ko) 반도체 플라즈마 에칭 공정 특성을 개선한 포커스 링
JPWO2012029666A1 (ja) ガラスの孔あけドリル
JP2017161749A (ja) ペリクル枠およびペリクル枠の製造方法
JP2011111370A (ja) ガラス板の製造装置とその製造方法
JP2010274409A (ja) マシナブルセラミックス加工用小径ドリル
JP2012119590A (ja) プラズマ処理装置用電極板
JPH10223613A (ja) プラズマエッチング用シリコン電極板の貫通細孔形成方法
US6388265B1 (en) Method for distinguishing a specific region in a sample to be observed by a microscope
US11819948B2 (en) Methods to fabricate chamber component holes using laser drilling
US20220111468A1 (en) Methods to fabricate chamber component using laser drilling
JPH1187319A (ja) 傾斜貫通細孔を有するプラズマエッチング用シリコン電極板
CN116968200A (zh) 一种脆性材料电极微孔加工方法
KR102110432B1 (ko) 내외경 동시 가공홀더
JPWO2018088468A1 (ja) 非貫通孔を有する基板
JP2009083071A (ja) シート面加工工具およびシート面加工方法並びにそのシート面加工工具を用いたインジェクタの製造方法
JP2017134093A (ja) ペリクル枠およびペリクル枠の製造方法
JP2002018623A (ja) 段差部を有する切削工具
KR20240071550A (ko) 고밀도 Plasma CVD 공정용 고경도 Sapphire 소재 Plasma Diffusion Nozzle 제조방법
KR20220154542A (ko) Hdp cvd공정용 사파이어 소재를 이용한 플라즈마 디퓨전 노즐 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775956

Country of ref document: EP

Kind code of ref document: A1