WO2021192359A1 - 双方向dc-dcコンバータ - Google Patents

双方向dc-dcコンバータ Download PDF

Info

Publication number
WO2021192359A1
WO2021192359A1 PCT/JP2020/034590 JP2020034590W WO2021192359A1 WO 2021192359 A1 WO2021192359 A1 WO 2021192359A1 JP 2020034590 W JP2020034590 W JP 2020034590W WO 2021192359 A1 WO2021192359 A1 WO 2021192359A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
bidirectional
power supply
conversion unit
Prior art date
Application number
PCT/JP2020/034590
Other languages
English (en)
French (fr)
Inventor
アビジタ チョデリ
叶田 玲彦
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021192359A1 publication Critical patent/WO2021192359A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a bidirectional DC-DC converter that bidirectionally converts DC power input / output between two DC power supplies.
  • the isolated DC-DC converter can adopt various configurations depending on the power range used, and is generally configured by using a semiconductor switch, a high frequency transformer, various passive elements (inductors, capacitors), and the like. ..
  • the basic function of an isolated DC-DC converter is to regulate the output voltage and output current.
  • Patent Document 1 As a typical example of an isolated DC-DC converter, a bidirectional DC-DC converter as shown in Patent Document 1 below is widely known.
  • Patent Document 1 includes a pair of bridge circuits configured by combining a plurality of IGBTs (Insulated Gate Bipolar Transistors) and diodes on the primary side and the secondary side of the transformer, and inputs and outputs between the DC power supplies V1 and V2.
  • IGBTs Insulated Gate Bipolar Transistors
  • the bidirectional DC-DC converter according to the present invention is connected between the first DC power supply and the second DC power supply, and has a first DC power corresponding to the first DC power supply and the second DC power supply. It is a DC-DC converter capable of bidirectionally converting power from the second DC power corresponding to the above, and when the first DC power is input, the input first DC power is converted to the second DC power. When the second DC power is input, the input second DC power is converted into the first DC power and output, and the power conversion unit and the above.
  • a switch for switching the connection destinations of the input side and the output side of the power conversion unit between the first DC power supply and the second DC power supply, and a control unit for controlling the switch are provided.
  • FIG. 1 is a schematic configuration diagram of a bidirectional DC-DC converter according to the first embodiment of the present invention.
  • the bidirectional DC-DC converter 1 shown in FIG. 1 is connected between the DC power supply 100 and the DC power supply 101, and can convert DC power in both directions between the DC power supply 100 and the DC power supply 101. It is a DC converter. That is, when power flows from the DC power supply 100 to the DC power supply 101, the DC power output from the DC power supply 100 is converted into power by the bidirectional DC-DC converter 1 and input to the DC power supply 101. On the contrary, when power flows from the DC power supply 101 in the direction of the DC power supply 100, the DC power output from the DC power supply 101 is converted into power by the bidirectional DC-DC converter 1 and input to the DC power supply 100.
  • the bidirectional DC-DC converter 1 includes a converter circuit unit 121 and a control unit 122.
  • the converter circuit unit 121 includes switches 102a, 102b, 102c and 102d, an inrush current limiting resistor 104, a bypass switch 105, a power conversion unit 107, voltage sensors 115, 117, 118 and 120, and current sensors 116 and 119. And are configured with.
  • the switch 102a switches the connection destination of the positive electrode input wiring 103 connected to the positive electrode input terminal of the power conversion unit 107 to either the first positive electrode input bus 128 or the second positive electrode input bus 111.
  • the first positive electrode input bus 128 is connected to the positive electrode side of the DC power supply 100
  • the second positive electrode input bus 111 is connected to the positive electrode side of the DC power supply 101.
  • the switch 102b switches the connection destination of the negative electrode input wiring 108 connected to the negative electrode input terminal of the power conversion unit 107 to either the first negative electrode input bus 129 or the second negative electrode input bus 112.
  • the first negative electrode input bus 129 is connected to the negative electrode side of the DC power supply 100
  • the second negative electrode input bus 112 is connected to the negative electrode side of the DC power supply 101.
  • the switch 102c switches the connection destination of the positive electrode output wiring 109 connected to the positive electrode output terminal of the power conversion unit 107 to either the first positive electrode output bus 113 or the second positive electrode output bus 130.
  • the first positive electrode output bus 113 is connected to the positive electrode side of the DC power supply 100
  • the second positive electrode output bus 130 is connected to the positive electrode side of the DC power supply 101.
  • the switch 102d switches the connection destination of the negative electrode output wiring 110 connected to the negative electrode output terminal of the power conversion unit 107 to either the first negative electrode output bus 114 or the second negative electrode output bus 131.
  • the first negative electrode output bus 114 is connected to the negative electrode side of the DC power supply 100
  • the second negative electrode output bus 131 is connected to the negative electrode side of the DC power supply 101.
  • the connection destinations of the input side and the output side of the power conversion unit 107 are switched between the DC power supply 100 and the DC power supply 101 by the switching operation of the switches 102a to 102d described above.
  • the operations of the switches 102a to 102d are controlled according to the switch control signals 124a to 124d input from the control unit 122, respectively.
  • the switches 102a to 102d are configured by using, for example, various relays.
  • the inrush current limiting resistor 104 is connected between the switch 102a and the power conversion unit 107 in the positive electrode input wiring 103, and limits the input current to the power conversion unit 107 to less than a predetermined value.
  • the bypass switch 105 is connected in parallel with the inrush current limiting resistor 104 in the positive electrode input wiring 103, and bypasses between both ends of the inrush current limiting resistor 104.
  • the bypass switch 105 is controlled according to the switching state of the switch 102a. Specifically, when the input side of the power conversion unit 107 is switched from the DC power supply 100 to the DC power supply 101 or from the DC power supply 101 to the DC power supply 100 by the switching operation of the switch 102a, the bypass switch 105 is disconnected. Can be switched to. As a result, the inrush current limiting resistor 104 limits the inrush current to the power conversion unit 107. After that, when a predetermined time elapses after the switching operation of the switch 102a is performed, the bypass switch 105 is switched to the conductive state. As a result, when the inrush current is not flowing, both ends of the inrush current limiting resistor 104 are bypassed, and the loss of the input power to the power conversion unit 107 is reduced.
  • the inrush current limiting resistor 104 and the bypass switch 105 may be connected to the negative electrode input wiring 108 side instead of the positive electrode input wiring 103 side. Further, if the allowable input current of the power conversion unit 107 is sufficient for the inrush current, the inrush current limiting resistor 104 and the bypass switch 105 may not be provided.
  • the power conversion unit 107 performs power conversion on the DC power input via the positive input wiring 103 and the negative side input wiring 108, and the DC power after the power conversion is performed via the positive side output wiring 109 and the negative side output wiring 110. Is output.
  • the operation of the power conversion unit 107 is controlled according to the converter control signal 123 input from the control unit 122.
  • the voltage sensor 115 detects the voltage of the DC power supply 100.
  • the voltage sensor 117 detects the input voltage of the power conversion unit 107.
  • the voltage sensor 118 detects the output voltage of the power conversion unit 107.
  • the voltage sensor 120 detects the voltage of the DC power supply 101. The detection result of each voltage by these voltage sensors is output from the converter circuit unit 121 to the control unit 122 as a sensor signal 125.
  • the current sensor 116 detects the input current of the power conversion unit 107.
  • the current sensor 119 detects the output current of the power conversion unit 107. The detection result of each current by these current sensors is output from the converter circuit unit 121 to the control unit 122 as a sensor signal 125.
  • the control unit 122 generates the converter control signal 123 and the switch control signals 124a to 124d by performing predetermined arithmetic processing based on the sensor signal 125 from each sensor, and the power conversion unit 107 and the switches 102a to 102d, respectively. Output. Thereby, the power conversion unit 107 and the switches 102a to 102d are controlled.
  • the control unit 122 is configured by using, for example, a microcomputer, and realizes a desired arithmetic processing by executing a program stored in advance in a memory or the like.
  • the control unit 122 may be configured by using a logic circuit such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit) instead of the microcomputer or by using it in combination with the microcomputer.
  • FIG. 2 is a diagram showing a circuit configuration of the power conversion unit 107.
  • the power conversion unit 107 is configured by using a power conversion circuit 316 which is a full-bridge LLC converter.
  • the power conversion circuit 316 includes an input voltage sensor 312, an input capacitor 313, an output voltage sensor 314, an output capacitor 315, inverter legs 317 and 318, diode legs 319 and 320, an insulating transformer 321 and an output current sensor. 322 and.
  • the input voltage sensor 312 is connected between the positive electrode input wiring 103 and the negative electrode input wiring 108, and detects the voltage between them as the input voltage of the power conversion circuit 316.
  • the input capacitor 313 is connected between the positive electrode input wiring 103 and the negative electrode input wiring 108, and smoothes the input voltage of the power conversion circuit 316.
  • the output voltage sensor 314 is connected between the positive electrode output wiring 109 and the negative electrode output wiring 110, and detects the voltage between them as the output voltage of the power conversion circuit 316.
  • the output capacitor 315 is connected between the positive electrode output wiring 109 and the negative electrode output wiring 110, and smoothes the output voltage of the power conversion circuit 316.
  • the output current sensor 322 is connected to the positive electrode output wiring 109 and detects the output current of the power conversion circuit 316.
  • the inverter leg 317 is configured by connecting the switching elements 301 and 302 in series.
  • the inverter leg 318 is configured by connecting the switching elements 303 and 304 in series.
  • the switching elements 301 to 304 operate in response to the converter control signal 123 input from the control unit 122, and are switched to either an on or off state.
  • the switching elements 301 to 304 are configured by using, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). Reflux diodes are connected in antiparallel to each of the switching elements 301 to 304.
  • the inverter legs 317 and 318 constitute an H-bridge type inverter bridge circuit.
  • This inverter bridge circuit is arranged on the primary side of the isolation transformer 321 and converts the DC power input to the power conversion circuit 316 into AC power and supplies it to the primary side of the isolation transformer 321.
  • the isolation transformer 321 is configured by winding a primary winding and a secondary winding around an iron core at a predetermined turns ratio, and has a voltage conversion unit 311 and an inductor 309.
  • the voltage conversion unit 311 is a part that performs voltage conversion according to the turns ratio of the primary winding and the secondary winding, and corresponds to an ideal transformer that does not consider the leakage flux component.
  • the inductor 309 is a portion corresponding to the leakage flux of the isolation transformer 321 and has a predetermined inductance.
  • a capacitor 310 is connected between the isolation transformer 321 and the inverter leg 317.
  • the power conversion circuit 316 which is an LLC converter, is realized by forming the resonance circuit on the primary side of the isolation transformer 321 using the inductor 309 and the capacitor 310.
  • the inductor 309 may be realized by a coil connected to the primary side of the isolation transformer 321 instead of the leakage flux component of the isolation transformer 321.
  • the diode leg 319 is configured by connecting diodes 305 and 306 in series.
  • the diode leg 320 is configured by connecting diodes 307 and 308 in series.
  • the diode legs 319 and 320 constitute a diode bridge circuit. This diode bridge circuit is arranged on the secondary side of the isolation transformer 321 and converts the AC power output from the secondary side of the isolation transformer 321 into DC power to the positive output wiring 109 and the negative output wiring 110. Output.
  • the power conversion circuit 316 adjusts the voltage and current of the DC power input via the positive input wiring 103 and the negative input wiring 108 according to the circuit configuration described above, and outputs the DC power to the positive output wiring 109 and the negative output wiring 110. can do. By such an operation of the power conversion circuit 316, the power conversion unit 107 in the bidirectional DC-DC converter 1 of the present embodiment is realized.
  • the power conversion unit 107 may be configured by connecting a plurality of power conversion circuits 316 in parallel.
  • FIG. 3 is a schematic configuration diagram of a power conversion unit 107 by connecting a plurality of power conversion circuits 316 in parallel.
  • N power conversion circuits 316 are connected in parallel between the positive electrode input wiring 103 and the negative electrode input wiring 108 and the positive electrode output wiring 109 and the negative electrode output wiring 110. ..
  • the circuit configuration of each power conversion circuit 316 is the same as that described with reference to FIG. In this way, the power conversion unit 107 that can handle a wide range of power can be configured.
  • FIG. 4 is a diagram showing a switching state of the switches 102a to 102d when power flows in the positive direction.
  • the switch 102a switches the connection destination of the positive electrode input wiring 103 connected to the positive electrode input terminal of the power conversion unit 107 to the first positive electrode input bus 128 side.
  • the switch 102b switches the connection destination of the negative electrode input wiring 108 connected to the negative electrode input terminal of the power conversion unit 107 to the first negative electrode input bus 129 side.
  • the DC power output from the DC power supply 100 is input to the power conversion unit 107 via the switches 102a and 102b.
  • connection destination of the positive electrode output wiring 109 connected to the positive electrode output terminal of the power conversion unit 107 is switched to the second positive electrode output bus 130 side by the switch 102c. Further, the switch 102d switches the connection destination of the negative electrode output wiring 110 connected to the negative electrode output terminal of the power conversion unit 107 to the second negative electrode output bus 131 side. As a result, the DC power output from the power conversion unit 107 is input to the DC power supply 101 via the switches 102c and 102d.
  • control unit 122 controls the switching state of the switches 102a to 102d as shown in FIG. 4, so that the DC power supply 100 is connected to the DC power supply 101 via the power conversion unit 107.
  • the power can be made to flow in the direction of.
  • FIG. 5 is a diagram showing a switching state of the switches 102a to 102d when power flows in the opposite direction.
  • the switch 102a switches the connection destination of the positive electrode input wiring 103 connected to the positive electrode input terminal of the power conversion unit 107 to the second positive electrode input bus 111 side.
  • the switch 102b switches the connection destination of the negative electrode input wiring 108 connected to the negative electrode input terminal of the power conversion unit 107 to the second negative electrode input bus 112 side.
  • the DC power output from the DC power supply 101 is input to the power conversion unit 107 via the switches 102a and 102b.
  • the connection destination of the positive electrode output wiring 109 connected to the positive electrode output terminal of the power conversion unit 107 is switched to the first positive electrode output bus 113 side by the switch 102c. Further, the switch 102d switches the connection destination of the negative electrode output wiring 110 connected to the negative electrode output terminal of the power conversion unit 107 to the first negative electrode output bus 114 side. As a result, the DC power output from the power conversion unit 107 is input to the DC power supply 100 via the switches 102c and 102d.
  • control unit 122 controls the switching state of the switches 102a to 102d as shown in FIG. 5, so that the DC power supply 101 is connected to the DC power supply 100 via the power conversion unit 107.
  • the power can be made to flow in the direction of.
  • FIG. 6 is a diagram illustrating switching control of switches 102a to 102d by the control unit 122.
  • the control unit 122 can control the switching of the switches 102a to 102d by repeating the mode 1, the mode 2, and the mode 3 at predetermined time intervals.
  • Mode 1 is a state in which the switches 102a and 102b are switched to the DC power supply 100 side, the input side of the power conversion unit 107 is connected to the DC power supply 100, and the switches 102c and 102d are switched to the DC power supply 101 side.
  • it is a control mode in which switch control signals 124a to 124d are output from the control unit 122 so that the output side of the power conversion unit 107 is connected to the DC power supply 101.
  • the switches 102a and 102b are switched to the DC power supply 101 side, the input side of the power conversion unit 107 is connected to the DC power supply 101, and the switches 102c and 102d are connected to the DC power supply 100 side.
  • This is a control mode in which the switch control signals 124a to 124d are output from the control unit 122 so that the output side of the power conversion unit 107 is connected to the DC power supply 100 as the switching state 701.
  • the mode 1 corresponds to the switching state of the switches 102a to 102d shown in FIG. 4
  • the mode 3 corresponds to the switching state of the switches 102a to 102d shown in FIG.
  • the switches 102a to 102d are set to the intermediate states 702 of the above switching states 701 and 703, and the control unit is set so that the currents flowing to the input side and the output side of the power conversion unit 107 are reduced to almost zero, respectively.
  • This is a control mode in which switch control signals 124a to 124d are output from 122.
  • the mode 2 corresponds to the states of the switches 102a to 102d shown in FIG.
  • mode 2 Both when switching from mode 1 to mode 3 and when switching from mode 3 to mode 1, mode 2 as a transition period is set for a predetermined time, sandwiched between these modes.
  • mode 2 the input / output power between the DC power supplies 100 and 101 and the power conversion unit 107 is cut off.
  • the setting time of the mode 2 can be determined according to the characteristics of each component constituting the bidirectional DC-DC converter 1 and the required value on the system side on which the bidirectional DC-DC converter 1 is mounted. Is.
  • FIG. 7 is a functional configuration diagram of the control unit 122.
  • the control unit 122 has each functional block of the power flow direction determination unit 801 and the control mode selection unit 802, the converter control signal generation unit 803, and the switch control signal generation unit 804 as its functions.
  • the control unit 122 can realize these functional blocks by executing a predetermined program, for example.
  • the power flow direction determination unit 801 determines the power flow direction between the DC power supply 100 and the DC power supply 101.
  • the power flow direction determination unit 801 determines the power flow direction in response to a control command input by, for example, an operator who operates the system on which the bidirectional DC-DC converter 1 is mounted via an operation unit (not shown). do.
  • the power flow direction may be automatically determined using a predetermined program without the intervention of an operator.
  • the power flow direction determination unit 801 outputs a command signal 805 indicating the determined power flow direction to the control mode selection unit 802.
  • the control mode selection unit 802 selects the control mode based on the sensor signal 125 from each sensor and the command signal 805 from the power flow direction determination unit 801.
  • the control mode selection unit 802 is based on the voltage of the DC power supplies 100 and 101 indicated by the sensor signal 125, the input / output voltage and input / output current of the power conversion unit 107, and the power flow direction indicated by the command signal 805. Select one of the above-mentioned modes 1, mode 2, and mode 3 described above. Then, the command signal 806 corresponding to the selected control mode is output to the converter control signal generation unit 803 and the switch control signal generation unit 804.
  • the converter control signal generation unit 803 generates the converter control signal 123 based on the command signal 806 from the control mode selection unit 802. Then, the generated converter control signal 123 is output to the power conversion unit 107 to control the operation of the power conversion unit 107.
  • the switch control signal generation unit 804 generates switch control signals 124a to 124d based on the command signal 806 from the control mode selection unit 802. Then, by outputting the generated switch control signals 124a to 124d to the switches 102a to 102d, respectively, the operation of the switches 102a to 102d is controlled.
  • the control unit 122 is based on the power flow direction between the DC power supply 100 and the DC power supply 101 and the input voltage, input current, output voltage, and output current of the power conversion unit 107 by the processing of each functional block described above. Therefore, the converter control signal 123 and the switch control signals 124a to 124d can be generated.
  • the converter control signal generation unit 803 and the switch control signal generation unit 804 have the converter control signal 123 and the switch control signal generation unit 804 so that the input current or output current of the power conversion unit 107 becomes a predetermined maximum current value, for example, 10 [A] or less.
  • the switch control signals 124a to 124d may be output respectively. In this way, the entire bidirectional DC-DC converter 1 including the power conversion unit 107 can be protected from an excessive current, so that safety can be improved and deterioration can be suppressed.
  • FIG. 8 is a diagram showing an arrangement example of each component in the bidirectional DC-DC converter 1.
  • the switches 102a to 102d are mounted on the circuit board 902, and each component of the power conversion unit 107, that is, the input capacitor 313, the output capacitor 315, the inverter legs 317, 318, and the diode leg is mounted on the circuit board 903. 319, 320, an insulated transformer 321 and a capacitor 310 are mounted.
  • FIG. 8 omits the illustration of the input voltage sensor 312, the output voltage sensor 314, and the output current sensor 322.
  • the circuit board 903 is electrically separated into a primary side (input side) and a secondary side (output side) by an insulation boundary line 901 formed by an isolation transformer 321.
  • the circuit board 902 is electrically separated into a primary side (input side) and a secondary side (output side) by the insulation boundary line 900 formed by the switches 102a to 102d.
  • the primary side of the circuit board 902 and the primary side of the circuit board 903 are electrically connected, and the secondary side of the circuit board 902 and the secondary side of the circuit board 903 are electrically connected.
  • the circuit board 902 is arranged so as to be overlapped on the circuit board 903 at a predetermined distance from the circuit board 903. As a result, it is possible to reduce the mounting space of each component in the bidirectional DC-DC converter 1 and reduce the size while ensuring the electrical insulation between the primary side and the secondary side of the circuit boards 902 and 903. ..
  • the bidirectional DC-DC converter 1 is connected between the DC power supply 100 and the DC power supply 101, and has a DC power corresponding to the DC power supply 100 (first DC power) and a DC power corresponding to the DC power supply 101. It is a DC-DC converter capable of bidirectionally converting (second DC power).
  • first DC power is input from the DC power supply 100
  • the bidirectional DC-DC converter 1 converts the input first DC power into a second DC power and outputs it to the DC power supply 101 to direct current.
  • the second DC power is input from the power supply 101, the input of the power conversion unit 107 and the power conversion unit 107 that convert the input second DC power into the first DC power and output it to the DC power supply 100.
  • the switches 102a to 102d for switching the connection destinations on the side and the output side between the DC power supply 100 and the DC power supply 101, respectively, and the control unit 122 for controlling the switches 102a to 102d are provided. Since this is done, an inverter bridge circuit that combines switching elements 301 to 304 and a freewheeling diode is provided only on the primary side of the isolation transformer 321. Therefore, a power conversion unit 107 capable of power conversion in only one direction is used. , Bidirectional DC-DC converter 1 can be realized. Therefore, it is possible to provide a bidirectional DC-DC converter that can be realized at low cost.
  • the bidirectional DC-DC converter 1 has switches 102a to 102d as switches for switching the connection destinations of the input side and the output side of the power conversion unit 107 between the DC power supply 100 and the DC power supply 101, respectively. ..
  • the switch 102a connects the positive electrode input terminal of the power conversion unit 107 to the positive electrode side of the DC power supply 100 or the DC power supply 101.
  • the switch 102b connects the negative electrode input terminal of the power conversion unit 107 to the negative electrode side of the DC power supply 100 or the DC power supply 101.
  • the switch 102c connects the positive electrode output terminal of the power conversion unit 107 to the positive electrode side of the DC power supply 100 or the DC power supply 101.
  • the switch 102d connects the negative electrode output terminal of the power conversion unit 107 to the negative electrode side of the DC power supply 100 or the DC power supply 101.
  • the switches 102a to 102d can be configured by using relays. In this way, switches 102a to 102d having high environmental resistance and reliability can be realized at low cost.
  • the power conversion unit 107 is mounted on the circuit board 903, for example, and the switches 102a to 102d are mounted on the circuit board 902, for example.
  • the circuit board 902 can be placed on top of the circuit board 903 at a predetermined distance from the circuit board 903. By doing so, it is possible to reduce the size of the bidirectional DC-DC converter 1 while ensuring the electrical insulation between the input side and the output side.
  • the control unit 122 converts power based on the direction of power input / output between the DC power supply 100 and the DC power supply 101 and the input voltage, input current, output voltage, and output current of the power conversion unit 107.
  • the converter control signal 123 for controlling the unit 107 and the switch control signals 124a to 124d for controlling the switches 102a to 102d are output, respectively. Since this is done, the operation of the power conversion unit 107 and the switches 102a to 102d can be appropriately controlled by using the control unit 122.
  • the bidirectional DC-DC converter 1 converts the voltage sensor 117 that detects the input voltage of the power conversion unit 107, the current sensor 116 that detects the input current of the power conversion unit 107, and the output voltage of the power conversion unit 107. It includes a voltage sensor 118 for detecting and a current sensor 119 for detecting the output current of the power conversion unit 107.
  • the control unit 122 outputs the converter control signal 123 and the switch control signals 124a to 124d so that the input current or output current of the power conversion unit 107 becomes a predetermined maximum current value, for example, 10 [A] or less. You may. In this way, the entire bidirectional DC-DC converter 1 including the power conversion unit 107 can be protected from an excessive current, and safety can be improved and deterioration can be suppressed.
  • the bidirectional DC-DC converter 1 is connected to the input side of the power conversion unit 107 and is connected in parallel with the inrush current limiting resistor 104 that limits the input current to the power conversion unit 107 and the inrush current limiting resistor 104.
  • the bypass switch 105 is provided. As a result, the inrush current to the power conversion unit 107 can be limited, and the loss of the input power to the power conversion unit 107 can be reduced when the inrush current is not flowing.
  • the power conversion unit 107 is composed of an insulating transformer 321 and switching elements 301 to 304, and is an inverter bridge circuit (inverter legs 317, 318) arranged on the primary side of the insulating transformer 321 and a diode 305 to. It is configured by connecting one or a plurality of power conversion circuits 316 having a diode bridge circuit (diode legs 319, 320) arranged on the secondary side of the insulated transformer 321 using 308 in parallel. NS. Therefore, the power conversion unit 107 can be realized by an appropriate configuration according to the power range in which the bidirectional DC-DC converter 1 is used.
  • the control unit 122 switches with the DC power supply 100 and the power conversion unit 107, and the mode 2 in which the current between the DC power supply 101 and the power conversion unit 107 is reduced to almost zero, respectively. Switching between 102a and 102d is performed. Since this is done, it is possible to suppress a sudden current change and voltage change in the bidirectional DC-DC converter 1 and protect each component in the bidirectional DC-DC converter 1.
  • FIG. 9 is a schematic configuration diagram of a bidirectional DC-DC converter according to a second embodiment of the present invention.
  • the bidirectional DC-DC converter 1A shown in FIG. 9 is connected between the DC power supply 100 and the DC power supply 101, and is connected to the DC power supply 100, similarly to the bidirectional DC-DC converter 1 described in the first embodiment. It is a DC-DC converter capable of converting DC power in both directions between the DC power supply 101 and the DC power supply 101.
  • the difference between the bidirectional DC-DC converter 1A of the present embodiment and the bidirectional DC-DC converter 1 of the first embodiment is that a diode 200 is added to the output side of the power conversion unit 107 in the converter circuit unit 121. It is a point provided.
  • the diode 200 is for preventing the power conversion unit 107 from being destroyed by applying a high voltage or a large current to the output side of the power conversion unit 107.
  • the bidirectional DC-DC converter 1 and the bidirectional DC-DC converter 1A are common.
  • the bidirectional DC-DC converter 1A includes a diode 200 connected to the output side of the power conversion unit 107. Since this is done, the output side of the power conversion unit 107 can be reliably protected.
  • the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the spirit of the present invention.
  • the above embodiment is for explaining the present invention in an easy-to-understand manner, and does not necessarily include all the components. Any component can be added, deleted, or replaced without departing from the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

第1の直流電源と第2の直流電源の間に接続され、前記第1の直流電源に対応する第1の直流電力と、前記第2の直流電源に対応する第2の直流電力とを双方向に電力変換可能なDC-DCコンバータは、前記第1の直流電力が入力されると、入力された前記第1の直流電力を前記第2の直流電力に変換して出力し、前記第2の直流電力が入力されると、入力された前記第2の直流電力を前記第1の直流電力に変換して出力する電力変換部と、前記電力変換部の入力側および出力側の接続先を、前記第1の直流電源と前記第2の直流電源との間でそれぞれ切り替えるスイッチと、前記スイッチを制御する制御部と、を備える。

Description

双方向DC-DCコンバータ
 本発明は、2つの直流電源間で入出力される直流電力を双方向に変換する双方向DC-DCコンバータに関する。
 近年、風力発電や太陽光発電等の様々な再生可能エネルギーによる発電電力の利用が進んでおり、これに伴って、異なる発電方法で得られた複数種類の発電電力を集めて送電網に出力するシステムへの需要が増加している。また、電気自動車、無停電電源、モバイルコンピュータ等の様々な用途に用いられ、低電力から高電力までの幅広い範囲に対応可能な直流電源の充電システムも求められている。これらのシステムを実現するためには、複数の直流電源を共通に接続する技術が重要となる。
 上記システムにおいて重要な構成要素の一つに、絶縁型DC-DCコンバータがある。絶縁型DC-DCコンバータは、使用される電力範囲に応じて様々な構成を採用可能であり、一般的には半導体スイッチ、高周波トランス、各種受動素子(インダクタ、コンデンサ)等を用いて構成される。絶縁型DC-DCコンバータの基本的な機能は、出力電圧および出力電流を調整することにある。
 絶縁型DC-DCコンバータの代表例として、下記の特許文献1のような双方向DC-DCコンバータが広く知られている。特許文献1には、トランスの一次側と二次側に、複数のIGBT(Insulated Gate Bipolar Transistor)とダイオードを組み合わせてそれぞれ構成された一対のブリッジ回路を備え、直流電源V1,V2間で入出力される直流電力を双方向に変換可能な双方向DC-DCコンバータが開示されている。
米国特許出願公開第2015/0381064号明細書
 特許文献1に記載の従来の双方向DC-DCコンバータでは、トランスの一次側と二次側にIGBTとダイオードを組み合わせたパワー半導体素子のブリッジ回路をそれぞれ設ける必要があり、高コスト化の要因となっている。
 本発明による双方向DC-DCコンバータは、第1の直流電源と第2の直流電源の間に接続され、前記第1の直流電源に対応する第1の直流電力と、前記第2の直流電源に対応する第2の直流電力とを双方向に電力変換可能なDC-DCコンバータであって、前記第1の直流電力が入力されると、入力された前記第1の直流電力を前記第2の直流電力に変換して出力し、前記第2の直流電力が入力されると、入力された前記第2の直流電力を前記第1の直流電力に変換して出力する電力変換部と、前記電力変換部の入力側および出力側の接続先を、前記第1の直流電源と前記第2の直流電源との間でそれぞれ切り替えるスイッチと、前記スイッチを制御する制御部と、を備える。
 本発明によれば、低コストで実現可能な双方向DC-DCコンバータを提供することができる。
本発明の第1の実施形態に係る双方向DC-DCコンバータの概略構成図である。 電力変換部の回路構成を示す図である。 複数の電力変換回路の並列接続による電力変換部の概略構成図である。 正方向に電力が流れる場合のスイッチの切り替え状態を示す図である。 逆方向に電力が流れる場合のスイッチの切り替え状態を示す図である。 制御部によるスイッチの切り替え制御を説明する図である。 制御部の機能構成図である。 双方向DC-DCコンバータにおける各部品の配置例を示す図である。 本発明の第2の実施形態に係る双方向DC-DCコンバータの概略構成図である。
 以下では、本発明の実施形態について説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る双方向DC-DCコンバータの概略構成図である。図1に示す双方向DC-DCコンバータ1は、直流電源100と直流電源101の間に接続されており、直流電源100と直流電源101の間で双方向に直流電力の変換が可能なDC-DCコンバータである。すなわち、直流電源100から直流電源101の方向に電力が流れる場合は、直流電源100から出力された直流電力が双方向DC-DCコンバータ1において電力変換され、直流電源101に入力される。反対に、直流電源101から直流電源100の方向に電力が流れる場合は、直流電源101から出力された直流電力が双方向DC-DCコンバータ1において電力変換され、直流電源100に入力される。
 双方向DC-DCコンバータ1は、コンバータ回路部121および制御部122を備える。コンバータ回路部121は、スイッチ102a,102b,102cおよび102dと、突入電流制限抵抗104と、バイパススイッチ105と、電力変換部107と、電圧センサ115,117,118および120と、電流センサ116および119と、を備えて構成される。
 スイッチ102aは、電力変換部107の正極入力端子と接続された正極入力配線103の接続先を、第1正極入力母線128または第2正極入力母線111のいずれかに切り替える。第1正極入力母線128は直流電源100の正極側に接続されており、第2正極入力母線111は直流電源101の正極側に接続されている。このスイッチ102aの切り替え動作により、電力変換部107の正極入力端子が直流電源100または直流電源101の正極側に接続される。
 スイッチ102bは、電力変換部107の負極入力端子と接続された負極入力配線108の接続先を、第1負極入力母線129または第2負極入力母線112のいずれかに切り替える。第1負極入力母線129は直流電源100の負極側に接続されており、第2負極入力母線112は直流電源101の負極側に接続されている。このスイッチ102bの切り替え動作により、電力変換部107の負極入力端子が直流電源100または直流電源101の負極側に接続される。
 スイッチ102cは、電力変換部107の正極出力端子と接続された正極出力配線109の接続先を、第1正極出力母線113または第2正極出力母線130のいずれかに切り替える。第1正極出力母線113は直流電源100の正極側に接続されており、第2正極出力母線130は直流電源101の正極側に接続されている。このスイッチ102cの切り替え動作により、電力変換部107の正極出力端子が直流電源100または直流電源101の正極側に接続される。
 スイッチ102dは、電力変換部107の負極出力端子と接続された負極出力配線110の接続先を、第1負極出力母線114または第2負極出力母線131のいずれかに切り替える。第1負極出力母線114は直流電源100の負極側に接続されており、第2負極出力母線131は直流電源101の負極側に接続されている。このスイッチ102dの切り替え動作により、電力変換部107の負極出力端子が直流電源100または直流電源101の負極側に接続される。
 コンバータ回路部121では、以上説明したスイッチ102a~102dの切り替え動作により、電力変換部107の入力側および出力側の接続先が、直流電源100と直流電源101との間でそれぞれ切り替えられる。スイッチ102a~102dの動作は、制御部122から入力されるスイッチ制御信号124a~124dに応じてそれぞれ制御される。なお、スイッチ102a~102dは、例えば各種リレーを用いて構成される。
 突入電流制限抵抗104は、正極入力配線103においてスイッチ102aと電力変換部107の間に接続されており、電力変換部107への入力電流を所定値未満に制限する。バイパススイッチ105は、正極入力配線103において突入電流制限抵抗104と並列に接続されており、突入電流制限抵抗104の両端間をバイパスする。
 バイパススイッチ105は、スイッチ102aの切り替え状態に応じて制御される。具体的には、スイッチ102aの切り替え動作によって電力変換部107の入力側が直流電源100から直流電源101へと、または直流電源101から直流電源100へと切り替えられたときに、バイパススイッチ105が切断状態に切り替えられる。これにより、突入電流制限抵抗104によって電力変換部107への突入電流が制限される。その後、スイッチ102aの切り替え動作が行われてから所定時間が経過すると、バイパススイッチ105が導通状態に切り替えられる。これにより、突入電流が流れていないときには突入電流制限抵抗104の両端間がバイパスされ、電力変換部107への入力電力の損失が低減される。
 なお、突入電流制限抵抗104およびバイパススイッチ105は、正極入力配線103側でなく、負極入力配線108側に接続されていてもよい。また、突入電流に対して電力変換部107の許容入力電流が十分であれば、突入電流制限抵抗104およびバイパススイッチ105を設けなくてもよい。
 電力変換部107は、正極入力配線103および負極入力配線108を介して入力された直流電力に対して電力変換を行い、正極出力配線109および負極出力配線110を介して、電力変換後の直流電力を出力する。電力変換部107の動作は、制御部122から入力されるコンバータ制御信号123に応じて制御される。
 電圧センサ115は、直流電源100の電圧を検出する。電圧センサ117は、電力変換部107の入力電圧を検出する。電圧センサ118は、電力変換部107の出力電圧を検出する。電圧センサ120は、直流電源101の電圧を検出する。これらの電圧センサによる各電圧の検出結果は、センサ信号125として、コンバータ回路部121から制御部122へ出力される。
 電流センサ116は、電力変換部107の入力電流を検出する。電流センサ119は、電力変換部107の出力電流を検出する。これらの電流センサによる各電流の検出結果は、センサ信号125として、コンバータ回路部121から制御部122へ出力される。
 制御部122は、各センサからのセンサ信号125に基づいて所定の演算処理を行うことにより、コンバータ制御信号123およびスイッチ制御信号124a~124dを生成し、電力変換部107とスイッチ102a~102dにそれぞれ出力する。これにより、電力変換部107およびスイッチ102a~102dを制御する。制御部122は、例えばマイクロコンピュータを用いて構成され、メモリ等に予め記憶されたプログラムを実行することで所望の演算処理を実現する。なお、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)等の論理回路をマイクロコンピュータの代わりに用いて、またはマイクロコンピュータと併用して、制御部122を構成してもよい。
 図2は、電力変換部107の回路構成を示す図である。電力変換部107は、フルブリッジLLCコンバータである電力変換回路316を用いて構成されている。電力変換回路316は、入力電圧センサ312と、入力コンデンサ313と、出力電圧センサ314と、出力コンデンサ315と、インバータレグ317および318と、ダイオードレグ319および320と、絶縁トランス321と、出力電流センサ322と、を備えて構成される。
 入力電圧センサ312は、正極入力配線103と負極入力配線108の間に接続されており、これらの間の電圧を電力変換回路316の入力電圧として検出する。入力コンデンサ313は、正極入力配線103と負極入力配線108の間に接続されており、電力変換回路316の入力電圧を平滑化する。
 出力電圧センサ314は、正極出力配線109と負極出力配線110の間に接続されており、これらの間の電圧を電力変換回路316の出力電圧として検出する。出力コンデンサ315は、正極出力配線109と負極出力配線110の間に接続されており、電力変換回路316の出力電圧を平滑化する。出力電流センサ322は、正極出力配線109に接続されており、電力変換回路316の出力電流を検出する。
 インバータレグ317は、スイッチング素子301,302の直列接続により構成されている。同様に、インバータレグ318は、スイッチング素子303,304の直列接続により構成されている。スイッチング素子301~304は、制御部122から入力されるコンバータ制御信号123に応じてそれぞれ動作し、オンまたはオフいずれかの状態に切り替わる。スイッチング素子301~304は、例えばIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal‐Oxide‐Semiconductor Field‐Effect Transistor)を用いて構成される。スイッチング素子301~304には、還流ダイオードが逆並列にそれぞれ接続されている。
 上記インバータレグ317および318により、Hブリッジ型のインバータブリッジ回路が構成される。このインバータブリッジ回路は、絶縁トランス321の一次側に配置されており、電力変換回路316に入力された直流電力を交流電力に変換して、絶縁トランス321の一次側に供給する。
 絶縁トランス321は、鉄心の周囲に一次巻線と二次巻線が所定の巻数比でそれぞれ巻回されることにより構成されており、電圧変換部311およびインダクタ309を有する。電圧変換部311は、一次巻線と二次巻線の巻数比に応じた電圧変換を行う部分であり、漏れ磁束成分を考慮しない理想的なトランスに相当する。インダクタ309は、絶縁トランス321の漏れ磁束に相当する部分であり、所定のインダクタンスを有する。絶縁トランス321とインバータレグ317の間には、コンデンサ310が接続されている。このように、インダクタ309およびコンデンサ310を用いて絶縁トランス321の一次側に共振回路が構成されることで、LLCコンバータである電力変換回路316が実現される。なお、インダクタ309を絶縁トランス321の漏れ磁束成分ではなく、絶縁トランス321の一次側に接続されたコイルにより実現してもよい。
 ダイオードレグ319は、ダイオード305,306の直列接続により構成されている。同様に、ダイオードレグ320は、ダイオード307,308の直列接続により構成されている。ダイオードレグ319および320により、ダイオードブリッジ回路が構成される。このダイオードブリッジ回路は、絶縁トランス321の二次側に配置されており、絶縁トランス321の二次側から出力される交流電力を直流電力に変換して、正極出力配線109および負極出力配線110に出力する。
 電力変換回路316は、以上説明した回路構成により、正極入力配線103および負極入力配線108を介して入力された直流電力の電圧および電流を調整して、正極出力配線109および負極出力配線110に出力することができる。こうした電力変換回路316の動作により、本実施形態の双方向DC-DCコンバータ1における電力変換部107が実現される。
 なお、複数の電力変換回路316を並列に接続することで電力変換部107を構成してもよい。図3は、複数の電力変換回路316の並列接続による電力変換部107の概略構成図である。図3に示した電力変換部107では、正極入力配線103および負極入力配線108と、正極出力配線109および負極出力配線110との間に、N個の電力変換回路316が並列に接続されている。各電力変換回路316の回路構成は、図2で説明したのとそれぞれ同様である。このようにすれば、幅広い電力範囲に対応可能な電力変換部107を構成することができる。
 次に、直流電源100と直流電源101の間に流れる電力の方向に応じたスイッチ102a~102dの切り替え動作について、図4および図5を参照して以下に説明する。
 図4は、正方向に電力が流れる場合のスイッチ102a~102dの切り替え状態を示す図である。図4では、スイッチ102aにより、電力変換部107の正極入力端子と接続された正極入力配線103の接続先が、第1正極入力母線128側に切り替えられている。また、スイッチ102bにより、電力変換部107の負極入力端子と接続された負極入力配線108の接続先が、第1負極入力母線129側に切り替えられている。これにより、直流電源100から出力される直流電力が、スイッチ102a,102bを介して電力変換部107に入力される。
 一方、図4では、スイッチ102cにより、電力変換部107の正極出力端子と接続された正極出力配線109の接続先が、第2正極出力母線130側に切り替えられている。また、スイッチ102dにより、電力変換部107の負極出力端子と接続された負極出力配線110の接続先が、第2負極出力母線131側に切り替えられている。これにより、電力変換部107から出力される直流電力が、スイッチ102c,102dを介して直流電源101に入力される。
 本実施形態の双方向DC-DCコンバータ1では、制御部122により、スイッチ102a~102dの切り替え状態を図4のように制御することで、直流電源100から電力変換部107を介して直流電源101の方向に電力が流れるようにすることができる。
 図5は、逆方向に電力が流れる場合のスイッチ102a~102dの切り替え状態を示す図である。図5では、スイッチ102aにより、電力変換部107の正極入力端子と接続された正極入力配線103の接続先が、第2正極入力母線111側に切り替えられている。また、スイッチ102bにより、電力変換部107の負極入力端子と接続された負極入力配線108の接続先が、第2負極入力母線112側に切り替えられている。これにより、直流電源101から出力される直流電力が、スイッチ102a,102bを介して電力変換部107に入力される。
 一方、図5では、スイッチ102cにより、電力変換部107の正極出力端子と接続された正極出力配線109の接続先が、第1正極出力母線113側に切り替えられている。また、スイッチ102dにより、電力変換部107の負極出力端子と接続された負極出力配線110の接続先が、第1負極出力母線114側に切り替えられている。これにより、電力変換部107から出力される直流電力が、スイッチ102c,102dを介して直流電源100に入力される。
 本実施形態の双方向DC-DCコンバータ1では、制御部122により、スイッチ102a~102dの切り替え状態を図5のように制御することで、直流電源101から電力変換部107を介して直流電源100の方向に電力が流れるようにすることができる。
 図6は、制御部122によるスイッチ102a~102dの切り替え制御を説明する図である。制御部122は、図6に示すように、モード1、モード2およびモード3を所定時間ごとに繰り返すことで、スイッチ102a~102dの切り替え制御を行うことができる。モード1とは、スイッチ102a,102bを直流電源100側への切り替え状態701として、電力変換部107の入力側を直流電源100に接続するとともに、スイッチ102c,102dを直流電源101側への切り替え状態703として、電力変換部107の出力側を直流電源101に接続するように、制御部122からスイッチ制御信号124a~124dを出力する制御モードのことである。一方、モード3とは、スイッチ102a,102bを直流電源101側への切り替え状態703として、電力変換部107の入力側を直流電源101に接続するとともに、スイッチ102c,102dを直流電源100側への切り替え状態701として、電力変換部107の出力側を直流電源100に接続するように、制御部122からスイッチ制御信号124a~124dを出力する制御モードのことである。なお、モード1は、図4に示したスイッチ102a~102dの切り替え状態に相当し、モード3は、図5に示したスイッチ102a~102dの切り替え状態に相当する。
 また、モード2とは、スイッチ102a~102dを上記の切り替え状態701,703の中間状態702として、電力変換部107の入力側および出力側に流れる電流がそれぞれほぼゼロまで低下するように、制御部122からスイッチ制御信号124a~124dを出力する制御モードのことである。なお、モード2は、図1に示したスイッチ102a~102dの状態に相当する。
 モード1からモード3への切り替え時と、モード3からモード1への切り替え時とのいずれにおいても、これらのモード間に挟まれて、移行期間としてのモード2が所定時間だけ設定される。モード2のときには、直流電源100,101と電力変換部107との間の入出力電力が遮断される。これにより、双方向DC-DCコンバータ1内での急激な電流変化や電圧変化を抑制し、双方向DC-DCコンバータ1内の各部品を保護することができる。なお、モード2の設定時間は、双方向DC-DCコンバータ1を構成する各部品の特性や、双方向DC-DCコンバータ1が搭載されるシステム側の要求値などに応じて決定することが可能である。
 図7は、制御部122の機能構成図である。制御部122は、その機能として、電力流れ方向決定部801、制御モード選択部802、コンバータ制御信号生成部803およびスイッチ制御信号生成部804の各機能ブロックを有する。制御部122は、例えば所定のプログラムを実行することで、これらの機能ブロックを実現することができる。
 電力流れ方向決定部801は、直流電源100と直流電源101の間における電力の流れ方向を決定する。電力流れ方向決定部801は、例えば、双方向DC-DCコンバータ1が搭載されるシステムの操作を行うオペレータが不図示の操作部を介して入力した制御指令に応じて、電力の流れ方向を決定する。あるいは、オペレータの操作を介さずに、所定のプログラムを用いて電力の流れ方向を自動的に決定してもよい。電力流れ方向決定部801は、決定した電力の流れ方向を示す指令信号805を、制御モード選択部802に出力する。
 制御モード選択部802は、各センサからのセンサ信号125と、電力流れ方向決定部801からの指令信号805とに基づいて、制御モードの選択を行う。制御モード選択部802は、センサ信号125が示す直流電源100,101の電圧、電力変換部107の入出力電圧および入出力電流と、指令信号805が示す電力の流れ方向とに基づき、図6で説明した前述のモード1、モード2、モード3のいずれかを選択する。そして、選択した制御モードに応じた指令信号806を、コンバータ制御信号生成部803およびスイッチ制御信号生成部804に出力する。
 コンバータ制御信号生成部803は、制御モード選択部802からの指令信号806に基づいて、コンバータ制御信号123を生成する。そして、生成したコンバータ制御信号123を電力変換部107に出力することで、電力変換部107の動作を制御する。
 スイッチ制御信号生成部804は、制御モード選択部802からの指令信号806に基づいて、スイッチ制御信号124a~124dを生成する。そして、生成したスイッチ制御信号124a~124dをスイッチ102a~102dにそれぞれ出力することで、スイッチ102a~102dの動作を制御する。
 制御部122は、以上説明した各機能ブロックの処理により、直流電源100と直流電源101の間における電力の流れ方向と、電力変換部107の入力電圧、入力電流、出力電圧および出力電流とに基づいて、コンバータ制御信号123およびスイッチ制御信号124a~124dを生成することができる。
 なお、コンバータ制御信号生成部803およびスイッチ制御信号生成部804は、電力変換部107の入力電流または出力電流が所定の最大電流値、例えば10[A]以下となるように、コンバータ制御信号123およびスイッチ制御信号124a~124dをそれぞれ出力してもよい。このようにすれば、電力変換部107を含む双方向DC-DCコンバータ1全体を過大な電流から保護することができるため、安全性の向上や劣化の抑制を図ることができる。
 図8は、双方向DC-DCコンバータ1における各部品の配置例を示す図である。図8の配置例では、回路基板902にスイッチ102a~102dが搭載されており、回路基板903に電力変換部107の各部品、すなわち入力コンデンサ313、出力コンデンサ315、インバータレグ317,318、ダイオードレグ319,320、絶縁トランス321およびコンデンサ310が搭載されている。なお、図8では入力電圧センサ312、出力電圧センサ314および出力電流センサ322の図示を省略している。
 回路基板903は、絶縁トランス321によって形成される絶縁境界線901により、一次側(入力側)と二次側(出力側)に電気的に分離される。同様に、回路基板902は、スイッチ102a~102dによって形成される絶縁境界線900により、一次側(入力側)と二次側(出力側)に電気的に分離される。回路基板902の一次側と回路基板903の一次側は電気的に接続され、回路基板902の二次側と回路基板903の二次側は電気的に接続される。
 回路基板902は、回路基板903から所定の間隔を離して、回路基板903の上に重ねて配置される。これにより、回路基板902,903における一次側と二次側との電気的絶縁を確保した状態で、双方向DC-DCコンバータ1における各部品の搭載スペースを削減し、小型化を図ることができる。
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)双方向DC-DCコンバータ1は、直流電源100と直流電源101の間に接続され、直流電源100に対応する直流電力(第1の直流電力)と、直流電源101に対応する直流電力(第2の直流電力)とを双方向に変換可能なDC-DCコンバータである。双方向DC-DCコンバータ1は、直流電源100から第1の直流電力が入力されると、入力された第1の直流電力を第2の直流電力に変換して直流電源101へ出力し、直流電源101から第2の直流電力が入力されると、入力された第2の直流電力を第1の直流電力に変換して直流電源100へ出力する電力変換部107と、電力変換部107の入力側および出力側の接続先を、直流電源100と直流電源101との間でそれぞれ切り替えるスイッチ102a~102dと、スイッチ102a~102dを制御する制御部122と、を備える。このようにしたので、絶縁トランス321の一次側のみにスイッチング素子301~304と還流ダイオードを組み合わせたインバータブリッジ回路を備えており、そのため一方向のみの電力変換が可能な電力変換部107を用いて、双方向DC-DCコンバータ1を実現できる。そのため、低コストで実現可能な双方向DC-DCコンバータを提供することができる。
(2)双方向DC-DCコンバータ1は、電力変換部107の入力側および出力側の接続先を直流電源100と直流電源101との間でそれぞれ切り替えるためのスイッチとして、スイッチ102a~102dを有する。スイッチ102aは、電力変換部107の正極入力端子を、直流電源100または直流電源101の正極側に接続する。スイッチ102bは、電力変換部107の負極入力端子を、直流電源100または直流電源101の負極側に接続する。スイッチ102cは、電力変換部107の正極出力端子を、直流電源100または直流電源101の正極側に接続する。スイッチ102dは、電力変換部107の負極出力端子を、直流電源100または直流電源101の負極側に接続する。このようにしたので、電力変換部107の入力側および出力側の接続先を、直流電源100と直流電源101との間で確実に切り替え可能なスイッチを実現できる。
(3)スイッチ102a~102dは、リレーを用いてそれぞれ構成することができる。このようにすれば、耐環境性や信頼性の高いスイッチ102a~102dを安価に実現できる。
(4)電力変換部107は、例えば回路基板903に搭載されており、スイッチ102a~102dは、例えば回路基板902にそれぞれ搭載されている。回路基板902は、回路基板903から所定の間隔を離して、回路基板903の上に重ねて配置することができる。このようにすれば、入力側と出力側の電気的絶縁性を確保しつつ、双方向DC-DCコンバータ1の小型化を図ることができる。
(5)制御部122は、直流電源100と直流電源101の間で入出力される電力の方向と、電力変換部107の入力電圧、入力電流、出力電圧および出力電流とに基づいて、電力変換部107を制御するためのコンバータ制御信号123と、スイッチ102a~102dを制御するためのスイッチ制御信号124a~124dとをそれぞれ出力する。このようにしたので、制御部122を用いて、電力変換部107およびスイッチ102a~102dの動作を適切に制御することができる。
(6)双方向DC-DCコンバータ1は、電力変換部107の入力電圧を検出する電圧センサ117と、電力変換部107の入力電流を検出する電流センサ116と、電力変換部107の出力電圧を検出する電圧センサ118と、電力変換部107の出力電流を検出する電流センサ119と、を備える。このようにしたので、制御部122がコンバータ制御信号123およびスイッチ制御信号124a~124dを出力するために必要な電力変換部107の入出力電圧および入出力電流を、確実に取得することができる。
(7)制御部122は、電力変換部107の入力電流または出力電流が所定の最大電流値、例えば10[A]以下となるように、コンバータ制御信号123およびスイッチ制御信号124a~124dを出力してもよい。このようにすれば、電力変換部107を含む双方向DC-DCコンバータ1全体を過大な電流から保護し、安全性の向上や劣化の抑制を図ることができる。
(8)双方向DC-DCコンバータ1は、電力変換部107の入力側に接続されて電力変換部107への入力電流を制限する突入電流制限抵抗104と、突入電流制限抵抗104と並列に接続されるバイパススイッチ105と、を備える。このようにしたので、電力変換部107への突入電流を制限するとともに、突入電流が流れていないときには電力変換部107への入力電力の損失を低減することができる。
(9)電力変換部107は、絶縁トランス321と、スイッチング素子301~304を用いて構成され、絶縁トランス321の一次側に配置されたインバータブリッジ回路(インバータレグ317,318)と、ダイオード305~308を用いて構成され、絶縁トランス321の二次側に配置されたダイオードブリッジ回路(ダイオードレグ319,320)と、を有する電力変換回路316を、一つまたは複数個並列に接続して構成される。このようにしたので、双方向DC-DCコンバータ1が使用される電力範囲に応じた適切な構成により、電力変換部107を実現できる。
(10)制御部122は、それぞれ直流電源100と電力変換部107、および、直流電源101と電力変換部107の間の電流をほぼゼロに低減する状態であるモード2を間に挟んで、スイッチ102a~102dの切り替えを行う。このようにしたので、双方向DC-DCコンバータ1内での急激な電流変化や電圧変化を抑制し、双方向DC-DCコンバータ1内の各部品を保護することができる。
(第2の実施形態)
 図9は、本発明の第2の実施形態に係る双方向DC-DCコンバータの概略構成図である。図9に示す双方向DC-DCコンバータ1Aは、第1の実施形態で説明した双方向DC-DCコンバータ1と同様に、直流電源100と直流電源101の間に接続されており、直流電源100と直流電源101の間で双方向に直流電力の変換が可能なDC-DCコンバータである。
 本実施形態の双方向DC-DCコンバータ1Aと、第1の実施形態の双方向DC-DCコンバータ1との違いは、コンバータ回路部121において、電力変換部107の出力側にダイオード200が追加で設けられている点である。ダイオード200は、電力変換部107の出力側に高電圧や大電流が印加されることで電力変換部107が破壊されるのを防止するためのものである。これ以外の点では、双方向DC-DCコンバータ1と双方向DC-DCコンバータ1Aとは共通である。
 以上説明した本発明の第2の実施形態によれば、双方向DC-DCコンバータ1Aは、電力変換部107の出力側に接続されたダイオード200を備えている。このようにしたので、電力変換部107の出力側を確実に保護することができる。
 なお、本発明は上述した実施形態や変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。例えば、上記実施形態は本発明を分かりやすく説明するためのものであり、必ずしも全ての構成要素を含む必要はない。本発明を逸脱しない範囲で、任意の構成要素の追加、削除、置換が可能である。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2020-53733(2020年3月25日出願)
 1:双方向DC-DCコンバータ、100,101:直流電源、102a,102b,102c,102d:スイッチ、104:突入電流制限抵抗、105:バイパススイッチ、107:電力変換部、115,117,118,120:電圧センサ、116,119:電流センサ、121:コンバータ回路部、122:制御部、123:コンバータ制御信号、124a,124b,124c,124d:スイッチ制御信号、125:センサ信号、200:ダイオード、301,302,303,304:スイッチング素子、305,306,307,308:ダイオード、316:電力変換回路、317,318:インバータレグ、319,320:ダイオードレグ、321:絶縁トランス

Claims (11)

  1.  第1の直流電源と第2の直流電源の間に接続され、前記第1の直流電源に対応する第1の直流電力と、前記第2の直流電源に対応する第2の直流電力とを双方向に電力変換可能なDC-DCコンバータであって、
     前記第1の直流電力が入力されると、入力された前記第1の直流電力を前記第2の直流電力に変換して出力し、前記第2の直流電力が入力されると、入力された前記第2の直流電力を前記第1の直流電力に変換して出力する電力変換部と、
     前記電力変換部の入力側および出力側の接続先を、前記第1の直流電源と前記第2の直流電源との間でそれぞれ切り替えるスイッチと、
     前記スイッチを制御する制御部と、を備える双方向DC-DCコンバータ。
  2.  請求項1に記載の双方向DC-DCコンバータにおいて、
     前記スイッチは、
     前記電力変換部の正極入力端子を、前記第1の直流電源または前記第2の直流電源の正極側に接続する第1のスイッチと、
     前記電力変換部の負極入力端子を、前記第1の直流電源または前記第2の直流電源の負極側に接続する第2のスイッチと、
     前記電力変換部の正極出力端子を、前記第1の直流電源または前記第2の直流電源の正極側に接続する第3のスイッチと、
     前記電力変換部の負極出力端子を、前記第1の直流電源または前記第2の直流電源の負極側に接続する第4のスイッチと、を有する双方向DC-DCコンバータ。
  3.  請求項2に記載の双方向DC-DCコンバータにおいて、
     前記第1のスイッチ、前記第2のスイッチ、前記第3のスイッチおよび前記第4のスイッチは、リレーを用いてそれぞれ構成される双方向DC-DCコンバータ。
  4.  請求項2に記載の双方向DC-DCコンバータにおいて、
     前記電力変換部は、第1の回路基板に搭載されており、
     前記第1のスイッチ、前記第2のスイッチ、前記第3のスイッチおよび前記第4のスイッチは、第2の回路基板にそれぞれ搭載されており、
     前記第2の回路基板は、前記第1の回路基板から所定の間隔を離して、前記第1の回路基板の上に重ねて配置される双方向DC-DCコンバータ。
  5.  請求項1に記載の双方向DC-DCコンバータにおいて、
     前記制御部は、前記第1の直流電源と前記第2の直流電源の間で入出力される電力の方向と、前記電力変換部の入力電圧、入力電流、出力電圧および出力電流とに基づいて、前記電力変換部を制御するためのコンバータ制御信号と、前記スイッチを制御するためのスイッチ制御信号とをそれぞれ出力する双方向DC-DCコンバータ。
  6.  請求項5に記載の双方向DC-DCコンバータにおいて、
     前記入力電圧を検出する入力電圧センサと、
     前記入力電流を検出する入力電流センサと、
     前記出力電圧を検出する出力電圧センサと、
     前記出力電流を検出する出力電流センサと、を備える双方向DC-DCコンバータ。
  7.  請求項5に記載の双方向DC-DCコンバータにおいて、
     前記制御部は、前記電力変換部の入力電流または出力電流が所定の最大電流値以下となるように、前記コンバータ制御信号および前記スイッチ制御信号を出力する双方向DC-DCコンバータ。
  8.  請求項1に記載の双方向DC-DCコンバータにおいて、
     前記電力変換部の出力側に接続されたダイオードを備える双方向DC-DCコンバータ。
  9.  請求項1に記載の双方向DC-DCコンバータにおいて、
     前記電力変換部の入力側に接続されて前記電力変換部への入力電流を制限する突入電流制限抵抗と、前記突入電流制限抵抗と並列に接続されるバイパススイッチと、を備える双方向DC-DCコンバータ。
  10.  請求項1に記載の双方向DC-DCコンバータにおいて、
     前記電力変換部は、絶縁トランスと、複数のスイッチング素子を用いて構成され、前記絶縁トランスの一次側に配置されたインバータブリッジ回路と、複数のダイオードを用いて構成され、前記絶縁トランスの二次側に配置されたダイオードブリッジ回路と、を有する電力変換回路を、一つまたは複数個並列に接続して構成される双方向DC-DCコンバータ。
  11.  請求項1に記載の双方向DC-DCコンバータにおいて、
     前記制御部は、それぞれ前記第1の直流電源と前記電力変換部、および、第2の直流電源と前記電力変換部の間の電流をほぼゼロに低減する状態を間に挟んで、前記スイッチの切り替えを行う双方向DC-DCコンバータ。
PCT/JP2020/034590 2020-03-25 2020-09-11 双方向dc-dcコンバータ WO2021192359A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020053733A JP2021158703A (ja) 2020-03-25 2020-03-25 双方向dc−dcコンバータ
JP2020-053733 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021192359A1 true WO2021192359A1 (ja) 2021-09-30

Family

ID=77890179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034590 WO2021192359A1 (ja) 2020-03-25 2020-09-11 双方向dc-dcコンバータ

Country Status (2)

Country Link
JP (1) JP2021158703A (ja)
WO (1) WO2021192359A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252919A (ja) * 1998-02-25 1999-09-17 Mitsubishi Electric Corp 双方向dc/dcコンバータ
JP2008035675A (ja) * 2006-07-31 2008-02-14 Mitsumi Electric Co Ltd 双方向性コンバータおよび電子装置
JP2012034559A (ja) * 2010-07-08 2012-02-16 Sumitomo Electric Ind Ltd 電力変換装置および電力変換システム
JP2012157166A (ja) * 2011-01-26 2012-08-16 Denso Corp 分散型電源設備
JP2018191413A (ja) * 2017-05-01 2018-11-29 株式会社村田製作所 昇降圧コンバータおよび電源システム
WO2019092911A1 (ja) * 2017-11-10 2019-05-16 三菱電機株式会社 電力変換装置の試験システム及び試験方法
WO2020043258A1 (en) * 2018-08-31 2020-03-05 Aalborg Universitet Flexible and efficient switched string converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252919A (ja) * 1998-02-25 1999-09-17 Mitsubishi Electric Corp 双方向dc/dcコンバータ
JP2008035675A (ja) * 2006-07-31 2008-02-14 Mitsumi Electric Co Ltd 双方向性コンバータおよび電子装置
JP2012034559A (ja) * 2010-07-08 2012-02-16 Sumitomo Electric Ind Ltd 電力変換装置および電力変換システム
JP2012157166A (ja) * 2011-01-26 2012-08-16 Denso Corp 分散型電源設備
JP2018191413A (ja) * 2017-05-01 2018-11-29 株式会社村田製作所 昇降圧コンバータおよび電源システム
WO2019092911A1 (ja) * 2017-11-10 2019-05-16 三菱電機株式会社 電力変換装置の試験システム及び試験方法
WO2020043258A1 (en) * 2018-08-31 2020-03-05 Aalborg Universitet Flexible and efficient switched string converter

Also Published As

Publication number Publication date
JP2021158703A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
US7622825B2 (en) Wide-voltage-range converter
JP5995139B2 (ja) 双方向dc/dcコンバータ
US9391503B2 (en) Converter circuit
JP5403005B2 (ja) 電力変換装置
EP3430714B1 (en) Bidirectional dc-dc converter and control method therefor
JPWO2012067167A1 (ja) 交流−交流変換装置
JP6288773B2 (ja) 電力変換装置
US10924024B2 (en) Regenerative power conversion system with inverter and converter
JP5522265B2 (ja) フィルタ回路及びそれを備える双方向電力変換装置
US20230036842A1 (en) Dc-to-dc converter with freewheeling circuits
WO2016163201A1 (ja) 電力変換装置
JP2013059248A (ja) 3レベル電力変換装置
US11362654B2 (en) Auxiliary circuit
US10811984B2 (en) Bidirectional DC-to-DC converter with voltage limitation device including switching element and voltage limitation capacitor
WO2021192359A1 (ja) 双方向dc-dcコンバータ
JP2008005636A (ja) 電力変換装置
JP5407744B2 (ja) 交流−直流変換装置
JP5233492B2 (ja) 交直変換回路
JP4361334B2 (ja) Dc/dcコンバータ
JP6676991B2 (ja) 電力変換装置
JP7349417B2 (ja) 双方向dc-dcコンバータ
JP2018153037A (ja) 直流変換装置
FI128738B (en) Inverter device and method for controlling inverter device
JP7169742B2 (ja) 電力変換装置
FI20185995A1 (en) Suuntaajalaite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927834

Country of ref document: EP

Kind code of ref document: A1