WO2019092911A1 - 電力変換装置の試験システム及び試験方法 - Google Patents
電力変換装置の試験システム及び試験方法 Download PDFInfo
- Publication number
- WO2019092911A1 WO2019092911A1 PCT/JP2018/022164 JP2018022164W WO2019092911A1 WO 2019092911 A1 WO2019092911 A1 WO 2019092911A1 JP 2018022164 W JP2018022164 W JP 2018022164W WO 2019092911 A1 WO2019092911 A1 WO 2019092911A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- test
- terminal
- voltage
- converter
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/40—Testing power supplies
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/337—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
Definitions
- the present invention relates to a test system and a test method of a power conversion device, and more particularly to a test of a power conversion device which performs DC voltage conversion in which both input and output are DC voltage.
- Patent Document 1 As a power conversion device for DC voltage conversion (hereinafter also referred to as "DC / DC conversion"), two single-phase or three-phase full bridge circuits are disclosed in Patent Document 1 (US Pat. No. 5,027,264). A configuration that includes a transformer is described as being suitable for high power applications. Specifically, for two full bridge circuits, DC terminals are connected to DC voltage input terminals and output terminals, and AC terminals are connected to primary and secondary windings of a transformer. . Thus, a power conversion device capable of DC / DC conversion in which the primary side and the secondary side are isolated is realized. Furthermore, in patent document 1, suppressing a power loss is described by applying soft switching to the semiconductor switching element which comprises each full bridge circuit.
- test power supply and peripheral devices such as a protective circuit breaker and a measuring instrument are required.
- the increase in rated capacity of the test power supply and the peripheral devices may cause the increase in size and cost of the test system.
- the present invention has been made to solve such problems, and an object of the present invention is to provide a system and method for efficiently testing a power converter performing DC / DC conversion. It is.
- a test system of a power converter includes at least one power converter to be tested, a test power source to be tested, and first and second connection members.
- Each power conversion device performs DC voltage conversion between a primary side DC terminal and a secondary side DC terminal for inputting and outputting a DC voltage.
- the first connection member connects the test power supply to the input side of the test target.
- the second connecting member electrically connects the output side to be tested and the test power supply.
- the second connection member transmits the active power output from the output side of the test object to the input side of the test object.
- a test method of a power conversion device for testing at least one power conversion device wherein each power conversion device is a primary side DC for inputting and outputting a DC voltage.
- DC voltage conversion is performed between the terminal and the secondary side DC terminal.
- the output side and the input side of the test object are electrically connected via the second connection member from the test power source electrically connected to the input side of the test object by the first connection member.
- Active power smaller than the active power passing through the test object is supplied to the test object in the connected state via the first connection member.
- the power converter can be efficiently tested by supplying an active power smaller than the active power passing through the power converter to be tested from the test power supply.
- FIG. 1 is a block diagram for explaining a configuration example of a test system of a power conversion device according to a first embodiment. It is a conceptual diagram explaining operation
- FIG. 16 is a block diagram for explaining a configuration example of a test system of a power conversion device according to a modification of the first embodiment.
- FIG. 16 is a block diagram for explaining a configuration example of a test system of a power conversion device according to a second embodiment. It is a block diagram explaining the example of a structure of the converter for a test shown by FIG. It is a circuit diagram explaining the 1st structural example of the submodule shown by FIG. It is a circuit diagram explaining the 2nd structural example of the submodule shown by FIG. FIG.
- FIG. 16 is a block diagram for explaining a configuration example of a test system of a power conversion device according to a modification of the second embodiment.
- FIG. 18 is a block diagram for explaining a configuration example of a test system of a power conversion device according to a third embodiment.
- Embodiment 1 (Description of test object) First, a configuration example of a power conversion device to be tested in the present embodiment will be described.
- FIG. 1 is a block diagram for explaining a first example of a power converter to be tested.
- a power conversion device 100 a according to a first example includes primary side DC terminals 1 a and 1 b, secondary side DC terminals 2 a and 2 b, and a plurality of converter cells 10. Each of the converter cells 10 performs DC / DC conversion.
- FIG. 2 is a circuit diagram illustrating a first configuration example of the converter cell 10 shown in FIG.
- the converter cell 10 according to the first configuration example includes capacitors 6 and 7, a single-phase transformer 8, a first switching circuit 41, and a second switching circuit 42. And a control circuit 45.
- the control circuit 45 can be configured by dedicated hardware such as an analog circuit or an application specific integrated circuit (ASIC). Alternatively, some or all of the functions of the control circuit 45 can be realized by software processing by executing a program installed in a memory (not shown) by a processor (not shown).
- ASIC application specific integrated circuit
- Transformer 8 includes a single phase primary winding 8x connected to primary side AC nodes 81a and 81b, and a single phase secondary winding 8y connected to secondary side AC nodes 82a and 82b. .
- Capacitor 6 is connected between primary side DC nodes 11a and 11b.
- Capacitor 7 is connected between secondary side DC nodes 12a and 12b.
- the first switching circuit 41 is connected between the primary side DC nodes 11a and 11b and the primary side AC nodes 81a and 81b.
- the first switching circuit 41 has single-phase full-bridge connected semiconductor switching elements Q11 to Q14 and free-wheeling diodes D11 to D14 connected antiparallel to the semiconductor switching elements Q11 to Q14.
- the second switching circuit 42 is connected between the secondary side DC nodes 12a and 12b and the secondary side AC nodes 82a and 82b.
- the second switching circuit 42 has single-phase full-bridge connected semiconductor switching elements Q21 to Q24, and free wheel diodes D21 to D24 connected antiparallel to the semiconductor switching elements Q21 to Q24.
- Each of the semiconductor switching elements Q11 to Q14 and Q21 to Q24 can be configured by a self-arc-extinguishing switching element such as an IGBT (Insulated Gate Bipolar Transistor).
- the on / off of the semiconductor switching elements Q11 to Q14 and Q21 to Q24 can be controlled by control signals S11 to S14 and S21 to S24 from the control circuit 45, respectively.
- the semiconductor switching elements Q11 to Q14 perform power conversion (DC / AC conversion) between the DC voltage Vc1 of the primary side DC nodes 11a and 11b and the AC voltage (single phase) V41 of the primary side AC nodes 81a and 81b. To be controlled. Similarly, on / off of semiconductor switching elements Q21 to Q24 is converted between AC voltage (single phase) V42 of secondary side AC nodes 82a and 82b and DC voltage Vc2 of secondary side DC nodes 12a and 12b (AC / AC). Controlled to perform DC conversion).
- converter cell 10 is configured as a so-called single-phase DAB (Dual-Active Bridge) that converts DC voltage to DC voltage via a single-phase AC voltage transmitted with insulation by transformer 8 Be done.
- the first switching circuit 41 corresponds to one embodiment of the “first power conversion unit”
- the second switching circuit 42 corresponds to one embodiment of the “second power conversion unit”.
- the power between the primary side and the secondary side is controlled by controlling the amplitudes and phases of AC voltages V41 and V42 by on / off control of semiconductor switching elements Q11 to Q14 and Q21 to Q24.
- the amount of transmission and the direction of power transmission can be freely controlled.
- the control method is known and described, for example, in Non-Patent Document 1.
- the control circuit 45 also controls the semiconductor switching elements Q11 to Q14, Q21 according to the outputs of the temperature sensors (not shown) disposed in the semiconductor switching elements Q11 to Q14, Q21 to Q24 and the freewheeling diodes D11 to D14, D21 to D24.
- the temperatures TQ11 to TQ14, TQ21 to TQ24 of the to Q24, and the temperatures TD11 to TD14, TD21 to TD24 of the reflux diodes D11 to D14, D21 to D24 can be detected.
- control circuit 45 can detect DC voltages Vc1 and Vc2.
- the control circuit 45 can also detect an alternating current (single phase) flowing through the transformer 3.
- FIG. 3 shows a second configuration example of the converter cell 10 shown in FIG.
- converter cell 10 according to the second configuration example includes three-phase transformer 3, capacitors 6 and 7, a first switching circuit 51, and a second switching circuit 52. And a control circuit 55. Similar to the control circuit 45, the function of the control circuit 55 can also be realized by dedicated hardware and / or software processing by execution of a program.
- the transformer 3 includes three-phase two-phase two-phase two-phase two-phase two-phase two-phase connected three-phase primary side winding (not shown) connected to the primary side AC nodes 31a, 31b, 31c. And a secondary winding (not shown).
- Capacitors 6 and 7 are connected between primary side DC nodes 11a and 11b and between secondary side DC nodes 12a and 12b, respectively, as in FIG.
- the first switching circuit 51 is connected between the primary side DC nodes 11a and 11b and the secondary side AC nodes 32a, 32b and 32c.
- the first switching circuit 51 has three-phase full bridge semiconductor switching elements Q61 to Q66 and free-wheeling diodes D61 to D66 connected in antiparallel to the semiconductor switching elements Q61 to Q66.
- the second switching circuit 52 is connected between the secondary side DC nodes 12a and 12b and the secondary side AC nodes 32a, 32b and 32c.
- the second switching circuit 52 has three-phase full-bridge connected semiconductor switching elements Q71 to Q76 and free-wheeling diodes D71 to D76 connected antiparallel to the semiconductor switching elements Q71 to Q76.
- Each of the semiconductor switching elements Q61 to Q66 and Q71 to Q76 can also be configured by a self-arc-extinguishing switching element such as an IGBT (Insulated Gate Bipolar Transistor).
- IGBT Insulated Gate Bipolar Transistor
- the on / off of the semiconductor switching elements Q61 to Q66 and Q71 to Q76 can be controlled by control signals S61 to S66 and S71 to S76 from the control circuit 55, respectively.
- Semiconductor switching elements Q61 to Q66 are turned on / off by converting power (DC / AC conversion) between DC voltage Vc1 of primary side DC nodes 11a and 11b and AC voltages (three phases) of primary side AC nodes 31a, 31b and 31c. It is controlled to execute. Similarly, on / off of the semiconductor switching elements Q71 to Q76 is converted between AC voltages (three phases) of the secondary side AC nodes 32a, 32b and 32c and DC voltage Vc2 of the secondary side DC nodes 12a and 12b (AC Control to execute (DC conversion).
- converter cell 10 is configured as a so-called three-phase DAB (Dual-Active Bridge) that converts DC voltage to DC voltage via three-phase AC voltage transmitted with insulation by transformer 3 Be done.
- the first switching circuit 51 corresponds to one embodiment of the “first power conversion unit”
- the second switching circuit 52 corresponds to one embodiment of the “second power conversion unit”.
- the control circuit 55 controls the semiconductor switching elements according to the outputs of the temperature sensors (not shown) disposed in the semiconductor switching elements Q61 to Q66 and Q71 to Q76 and the freewheeling diodes D61 to D66 and D71 to D76.
- the temperatures TQ61 to TQ66, TQ71 to TQ76 of Q61 to Q66 and Q71 to Q76, and the temperatures TD61 to TD66, TD71 to TD76 of the reflux diodes D61 to D66, D71 to D76 can be detected. It is also possible to arrange a voltage sensor (not shown) in the capacitors 6 and 7 and to arrange a current sensor (not shown) in the transformer 8.
- the control circuit 45 can further detect the DC voltages Vc1 and Vc2 and the alternating current (three phases) flowing through the transformer 8.
- the primary side DC nodes 11 a and 11 b of the plurality of converter cells 10 are connected to the primary side DC terminals 1 a and 1 b. Connected in parallel to each other.
- secondary side DC nodes 12a and 12b of the plurality of converter cells 10 are connected in series between the secondary side DC terminals 2a and 2b.
- the power conversion apparatus 100a can handle large current power on the primary side, and can handle high voltage power on the secondary side. Furthermore, low voltage DC power can be converted to high voltage DC power.
- FIG. 4 is a block diagram for explaining a second example of the power conversion device to be tested.
- power converter 100b according to the second example is similar to power converter 100a, with primary side DC terminals 1a and 1b, secondary side DC terminals 2a and 2b, and a plurality of converters. And a cell 10.
- a plurality of converter cells 10 are connected in series on both the primary side and the secondary side.
- the primary side DC nodes 11a and 11b of each of the plurality of converter cells 10 are connected in series between the primary side DC terminals 1a and 1b.
- the secondary side DC nodes 12a and 12b of the plurality of converter cells 10 are connected in series between the secondary side DC terminals 2a and 2b. This allows high voltage DC voltage to be handled on both the primary and secondary sides.
- the turns ratio of the primary side winding and secondary side winding of transformers 3 and 8 in each converter cell 10 to 1: 1, in power converter 100 b, between primary side DC terminals 1 a and 1 b. And the DC voltage between the secondary side DC terminals 2a and 2b are equal.
- FIG. 5 is a block diagram for explaining a third example of the power conversion device to be tested.
- a power conversion device 100c according to a third example includes primary side DC terminals 1a and 1b, secondary side DC terminals 2a and 2b, and a plurality of power conversion devices similar to power conversion devices 100a and 100b. And a converter cell 10.
- a plurality of converter cells 10 are connected in parallel on both the primary side and the secondary side.
- the primary side DC nodes 11a and 11b of each of the plurality of converter cells 10 are connected in parallel to the primary side DC terminals 1a and 1b.
- the secondary side DC nodes 12a and 12b of the plurality of converter cells 10 are connected in parallel to the secondary side DC terminals 2a and 2b.
- a large current DC voltage can be handled on both the primary side and the secondary side.
- the primary DC terminals 1a and 1b are also in the power conversion device 100c. The DC voltage between them is equal to the DC voltage between the secondary side DC terminals 2a and 2b.
- FIG. 6 is a block diagram for explaining a fourth example of the power conversion device to be tested.
- a power conversion device 100d according to a third example includes primary side DC terminals 1a and 1b, secondary side DC terminals 2a and 2b, and a plurality of power conversion devices similar to the power conversion devices 100a to 100c. And a converter cell 10.
- secondary side DC nodes 12a and 12b of the plurality of converter cells 10 are between secondary side DC terminals 2a and 2b. Connected in series.
- the primary side DC nodes 11a and 11b of two converter cells 10 are connected in parallel, and further, two converter cells 10 connected in parallel are connected in parallel.
- Primary side DC nodes 11a and 11b are connected in series between primary side DC terminals 1a and 1b. That is, on the primary side, a plurality of converter cells 10 are connected in series and parallel.
- the intermediate side is higher than the primary side of power conversion device (FIG. 5) 100c and lower than power conversion device 100b (FIG. 4) Can handle any kind of direct current voltage. Then, an intermediate DC voltage on the primary side can be converted to a high voltage equivalent to that of the power conversion device 100b on the secondary side.
- a power conversion device 100 having a plurality of converter cells 10 including the power conversion devices 100a to 100d described with reference to FIGS. 1 and 4 to 6 is to be tested. That is, power converter 100 includes the above-described power converters 100a to 100d, and includes a plurality of converter cells 10 arranged in any number and in any connection mode (serial, parallel, or series-parallel).
- DC voltage V1 between primary side DC terminals 1a and 1b and DC voltage V2 between secondary side DC terminals 2a and 2b are freely set according to the number and connection mode of a plurality of converter cells 10
- DC power of various voltages can be converted to DC power of various other voltages.
- V1 V2.
- FIG. 7 is a block diagram for explaining a configuration example of a test system 5 a of the power conversion device according to the first embodiment.
- the test system 5a includes a DC power supply 201 which is an example of a “test power supply”, a circuit breaker 205 for test, measuring devices 206 to 209, power cables PL1 and PL2, and a control device 250.
- DC power supply 201 which is an example of a “test power supply”
- circuit breaker 205 for test for test
- measuring devices 206 to 209 power cables PL1 and PL2
- control device 250 a control device 250.
- primary side direct current terminals 1a and 1b correspond to an "input side”
- secondary side direct current terminals 2a and 2b correspond to an "output side.”
- Power cable PL1 electrically connects DC power supply 201 and primary side DC terminals 1a and 1b of power conversion device 100.
- Power cable PL2 has one end connected to secondary side DC terminals 2a and 2b of power conversion device 100, and the other end electrically connected to power cable PL1.
- the power cable PL2 electrically connects the secondary side DC terminals 2a and 2b of the power conversion device 100 to the DC power supply 201. That is, the power cable PL1 corresponds to one embodiment of the "first connection member", and the power cable PL2 corresponds to one embodiment of the "second connection member".
- Circuit breaker 205 is connected in series with power cable PL1.
- the circuit breaker 205 has a protection function of interrupting or forming the current path in accordance with the switching command from the control device 250, and automatically interrupting the current path when the current value exceeds a predetermined reference value.
- the measuring instrument 206 detects the output voltage (power supply voltage) of the DC power supply 201.
- the measuring device 207 measures the output current (power supply current) of the DC power supply 201.
- the measuring device 208 is connected to the power cable PL1 to measure the current passing through the primary side DC terminals 1a and 1b.
- the measuring device 209 is connected to the power cable PL2 to measure the current passing through the secondary side DC terminals 2a and 2b.
- the measured values by the measuring devices 206 to 209 are input to the control device 250.
- the function of the control circuit 250 can also be configured by dedicated hardware such as an analog circuit or an ASIC.
- control circuit 250 is configured by a microcomputer or the like having an arithmetic processing function, and a part or all of the functions of the control circuit 250 can be processed by a program installed in a memory (not shown). It is also possible to realize by software processing by executing at.
- control device 250 can generate a command value for the DC power supply 201, a switching command for the circuit breaker 205, and a command value for the power conversion device 100.
- control of the output of DC power supply 201, opening and closing of circuit breaker 205, and operation in power conversion device 100 (for example, on / off of semiconductor switching elements forming converter cell 10) can do.
- the detection value in the power conversion device 100 for example, the temperature detection value at the time of the test of the semiconductor switching element and the free wheeling diode described in FIGS. 3 and 4 can also be input to the control device 250.
- the power cable PL2 transmits the output power from the secondary side DC terminals 2a and 2b of the power conversion device 100 to the primary side DC terminals 1a and 1b of the power conversion device 100. And become part of the input power to the power converter 100. Therefore, active power Pi input to primary side DC terminals 1a and 1b of power conversion apparatus 100, active power Po output from secondary side DC terminals 2a and 2b of power conversion apparatus 100, and power supplied from DC power supply 201
- the following equation (1) is established among the effective powers Ps to be generated.
- the active power Ps can be measured using the measuring devices 206 and 207.
- the active power Pi can be measured using the measuring devices 206 and 208, and the active power Po can be measured using the measuring devices 206 and 209.
- the power conversion device 100 can be tested by supplying the active power Ps smaller than the active power Po passing through the power conversion device 100. Therefore, the rated capacities of the test power supply (DC power supply 201), the circuit breaker 205, and the measuring device 207 can be reduced. As a result, downsizing and cost reduction of the test system 5a can be achieved, and thus the power conversion apparatus 100 can be efficiently tested.
- FIG. 8 is a conceptual diagram for explaining the operation of the converter cell 10 shown in FIG. 2 at the time of test.
- FIG. 8 shows an AC equivalent circuit of single-phase DAB.
- equivalent voltage source 410 is configured by turning on and off semiconductor switching elements Q11 to Q14 in first switching circuit 41. As shown in FIG. 2, the equivalent voltage source 410 outputs an AC voltage (line voltage) V ⁇ b> 41 to the primary side AC nodes 81 a and 81 b of the transformer 8. Similarly, turning on / off of the semiconductor switching elements Q21 to Q24 in the second switching circuit 42 constitutes an equivalent voltage source 420. The equivalent voltage source 420 outputs an AC voltage (line voltage) V42 to the secondary side AC nodes 82a and 82b of the transformer 8 as shown in FIG.
- the equivalent voltage sources 410 and 420 are equivalently connected via the equivalent inductance 80.
- the equivalent inductance 80 corresponds to the leakage inductance of the transformer 8.
- the inductance of the inductor is also included in the equivalent inductance 80.
- the phases and amplitudes of line voltages V 41 and 42 are the on / off control of semiconductor switching elements Q 11 to Q 14 in first switching circuit 41 and of semiconductor switching elements Q 21 to Q 24 in second switching circuit 42. It can be freely controlled by on-off control.
- control signals S11 to S14 and S21 are set so that switching patterns of semiconductor switching elements Q11 to Q14 and Q21 to Q24 for producing a phase difference according to the command value of active power Pc are realized by control circuit 45. S24 can be generated.
- control signals S11 to S14 and S21 are set such that switching patterns of semiconductor switching elements Q11 to Q14 and Q21 to Q24 for realizing an amplitude difference according to the command value of reactive power Qc are realized by control circuit 45. S24 can be generated.
- control signals S11 to S14 and S21 to S24 are generated to control the switching patterns of the semiconductor switching elements Q11 to Q14 and Q21 to Q24 according to a combination of the command value of active power Pc and the command value of reactive power Qc. Is also possible.
- the capacitors 6 and 7 are connected in parallel by the power cables PL1 and PL2 to have the same voltage.
- one of the first switching circuit 41 and the second switching circuit 42 performs a zero voltage output operation. Specifically, at the time of zero voltage output operation, while the semiconductor switching elements Q11 and Q13 (or Q12 and Q14) are turned on in the first switching circuit 41, the semiconductor switching elements Q12 and Q14 (or Q11 and Q13) are turned on. Is turned off, the voltage difference between the AC nodes 81a and 81b is made zero.
- the semiconductor switching elements Q21 and Q23 are turned on, while the semiconductor switching elements Q22 and Q24 (or Q21 and Q23) are switched on. By turning off, the voltage difference between the secondary side AC nodes 82a and 82b is made zero.
- the line voltage V41 and the line voltage V41 can be obtained by executing a normal operation for outputting an AC voltage (single phase) whose phase and amplitude are controlled.
- An amplitude difference of the line voltage V42 can be generated.
- reactive power Qc can be generated in each converter cell 10 also at the time of the test in the test system 5a of FIG.
- FIG. 9 is a conceptual diagram illustrating the operation of the converter cell 10 shown in FIG. 3 at the time of test.
- FIG. 9 shows an AC-side equivalent circuit of the three-phase DAB.
- equivalent voltage source 510 is configured by turning on and off semiconductor switching elements Q61 to Q66 in first switching circuit 51.
- the equivalent voltage source 510 outputs AC voltages (inter-line voltages) V51a to V51c to the primary side AC nodes 31a, 31b and 31c of the transformer 3 as shown in FIG.
- a phase difference of 120 degrees is provided between the AC voltages (line voltages) V51a to V51c.
- the equivalent voltage source 520 outputs AC voltages (phase voltages) V52a to V52c to the secondary side AC nodes 32a, 32b and 32c of the transformer 3 as shown in FIG. A phase difference of 120 degrees is provided between AC voltages (phase voltages) V52a to V52c.
- the equivalent voltage sources 510 and 520 are equivalently connected via the equivalent inductance 30.
- the equivalent inductance 30 corresponds to the leakage inductance of the transformer 3.
- the inductance of the inductor is also included in the equivalent inductance 30.
- the phases and amplitudes of the phase voltages V51a to V51c can be freely controlled by the on / off control of the semiconductor switching elements Q61 to Q66 in the first switching circuit 51.
- the phases and amplitudes of the phase voltages V52a to V52c can be freely controlled by the on / off control of the semiconductor switching elements Q71 to Q76 in the second switching circuit 52.
- the active power Pc passing through the converter cell 10 can be controlled by controlling the phase difference between the phase voltages V51a to V51c and the phase voltages V52a to V52c.
- the reactive power Qc passing through the converter cell 10 can be controlled by controlling the difference in amplitude between the phase voltages V51a to V51c and the phase voltages V52a to V52c.
- control circuit 55 switching pattern of semiconductor switching elements Q61 to Q66 and Q71 to Q76 for realizing phase difference and / or amplitude difference according to the command value of at least one of active power Pc and reactive power Qc is realized by control circuit 55.
- Control signals S61 to S66 and S71 to S76 can be generated as described above.
- the semiconductor switching elements Q61, Q63, Q65 are turned on during the zero voltage operation of the first switching circuit 51, while the semiconductor switching element Q62 is turned on.
- Q64, Q66 or Q61, Q63, Q65
- the voltage difference between the primary side AC nodes 31a-31c is made zero.
- the semiconductor switching elements Q71, Q73, Q75 also Q72, Q74, Q76 turn on Q72, Q74, Q76
- the semiconductor switching elements Q22, Q22 By turning off Q24 (or Q71, Q73, Q75), the voltage difference between the secondary side AC nodes 32a to 32c is made zero.
- active power Pc of each converter cell 10 is controlled in accordance with the command value from control device 250 as described in FIGS.
- the active power Pi input to the primary side DC terminals 1a and 1b, the active power Po output from the secondary side DC terminals 2a and 2b, and the active power Ps supplied from the DC power supply 201 for testing are By measuring, the controllability of the active power of the power conversion device 100 and the power loss of the power conversion device 100 can be measured.
- controllability and the overcurrent of the power conversion device 100 are measured by measuring the alternating current detected by the current sensor disposed in the transformer 3 (FIG. 2) or the transformer 8 (FIG. 3). It is possible to confirm the occurrence of
- the current balance among the converter cells 10 is secured by measuring the currents of the primary side DC nodes 11a and 11b and the secondary side DC nodes 12a and 12b of the plurality of converter cells 10. It is also possible to confirm the presence of Furthermore, by measuring the voltages (DC voltages Vc1, Vc2) of the capacitors 6, 7 of the plurality of converter cells 10, it can be confirmed whether the voltage balance among the converter cells 10 is maintained.
- the test system 5a as a heat run test, by measuring the temperatures of the semiconductor switching elements and the free wheeling diode that constitute each converter cell 10, it is confirmed whether the temperature is in a lower range than the allowable value. can do.
- the allowable value in the heat run test can be set to about 125 to 150.degree.
- the reactive power is power that is generated inside the power conversion device 100 and does not flow out of the power conversion device 100.
- test DC power supply 201 by generating reactive power, it is possible to reduce the active power supplied by the test DC power supply 201, and therefore the rating of the test power supply (DC power supply 201), the circuit breaker 205, and the measuring devices 207 to 209.
- the capacity can be further reduced, and the rated capacities of the power cables PL1, PL2 for test connection can also be reduced.
- reactive power can be easily generated by on / off control of the semiconductor switching elements in each converter cell 10.
- the above effect is expanded as the reactive power is increased.
- the reactive power in the power conversion device 100 to be tested can be larger than the active power passing through the power conversion device 100.
- FIG. 10 is a block diagram for explaining a configuration example of a test system 5b of a power conversion device according to a modification of the first embodiment.
- test system 5b two power conversion devices 100 with V1 ⁇ V2 are tested as one set. That is, power conversion device 100 shown in FIG. 10 is an example of the “second power conversion device”.
- V1 V2 ⁇ V2.
- the power electronics device 100 one located on the left side in FIG. 10 is also referred to as the power electronics device 100 for the previous stage, and one located on the right side in FIG.
- the power cable PL1 electrically connects the DC power supply 201 and the primary side DC terminals 1a and 1b of the power conversion device 100 at the front stage.
- Power cable PL2 has one end connected to secondary side DC terminals 2a and 2b of power conversion device 100 in the rear stage, and the other end electrically connected to power cable PL1.
- the power cable PL3 connects the secondary side DC terminals 2a and 2b for inputting and outputting the DC voltage V2 of the two power electronics devices 100.
- the primary side DC terminals 1a and 1b of the power conversion device 100 at the front stage correspond to the input side of the test object
- the primary side DC terminals 1a and 1b of the power conversion device 100 at the rear stage Corresponds to the output side.
- the power cable PL1 corresponds to an example of the "first connection member”
- the power cable PL2 corresponds to an example of the "second connection member”.
- the circuit breaker 205 and the measuring devices 206 and 207 are connected to the power cable PL1 similarly to the test system 5a.
- a measuring instrument 208 for measuring the current of the primary side DC terminals 1a and 1b of the power conversion device 100 of the former stage is further arranged.
- measuring instruments 210 and 211 for measuring DC current and DC voltage (V2) are arranged in power cable PL3, and measurement for DC current and DC voltage (V1) is measured in power cable PL2.
- the containers 209 and 212 are arranged.
- the measured values by the measuring devices 206 to 212 are input to the control device 250.
- the active power Ps can be measured by the measuring devices 206 and 207, the active power Pi by the measuring devices 206 and 208, the active power Pm by the measuring devices 210 and 211, and the active power Po by the measuring devices 209 and 212, respectively.
- the control device 250 can generate, in addition to the functions described in the test system 5a, command values for controlling the operation (power conversion) for each of the power conversion devices 100 in the former and latter stages.
- the command value includes the command values of the active power Pc and the reactive power Qc described in the first embodiment.
- the detection values of the temperature, the voltage, and the current described in the first embodiment can be acquired from the control circuits 45 and 55 of each power conversion device 100.
- the operation of the power converter 100 at the front stage is to boost the DC voltage V1 input to the primary DC terminals 1a and 1b and output the DC voltage V2 from the secondary DC terminals 2a and 2b.
- the DC voltage V2 input to the secondary DC terminals 2a and 2b is stepped down to output the DC voltage V1 from the primary DC terminals 1a and 1b.
- at least one of the active power Pc and the reactive power Qc is controlled in each of the front and rear power conversion devices 100.
- the active power Pm corresponds to the previous stage with respect to the active power Pi input from the test DC power supply 201 to the primary side DC terminals 1a and 1b of the power conversion device 100 in the previous stage.
- the power is output from the secondary side DC terminals 2a and 2b of the power conversion device 100 and is input to the secondary side DC terminals 2a and 2b of the power conversion device 100 in the subsequent stage.
- Active power Po output from primary side DC terminals 1a and 1b of power conversion device 100 in the latter stage is transmitted by power cable PL2 and becomes a part of input power to power conversion device 100 in the previous stage.
- Pi-Pm corresponds to the power loss in the power conversion device 100 in the front stage
- test system 5b As described above, according to test system 5b according to the modification of the first embodiment, active power Ps smaller than active power Po passing through the test target is used for power conversion device 100 having different input voltages and output voltages as the test target. Can test the power converter. Therefore, the rated capacities of the test power supply (DC power supply 201), the circuit breaker 205 and the measuring instrument 207 can be reduced. As a result, downsizing and cost reduction of the test system 5b can be achieved, and therefore, the power conversion device 100 with different input voltages and output voltages can be efficiently tested.
- a power supply with a low rated voltage is achieved by configuring the low voltage side (V1 ⁇ V2) primary side DC terminals 1a and 1b to be connected to the test power supply (DC power supply 201). Can be used as a test power supply (DC power supply 201). Furthermore, since the withstand voltage required for the test power supply and the power cables PL1 and PL2 is reduced, the miniaturization of the insulating member enables the miniaturization and cost reduction of the test system 5b.
- test contents in each power conversion device 100 can be performed in the same manner as in Embodiment 1 including the heat run test and the generation of reactive power, and thus the detailed description will not be repeated.
- the power conversion operation in the direction in which the primary side direct current terminals 1a and 1b are input and the secondary side direct current terminals 2a and 2b are output in the power conversion device 100 of the former stage, and the power conversion device 100 of the latter stage. It is possible to simultaneously test both the power conversion operation in the direction in which the secondary side DC terminals 2a and 2b are input and the primary side DC terminals 1a and 1b are output. Therefore, the test time can be shortened.
- the power conversion device 100 at the front stage controls the DC voltage V2 of the secondary side DC terminals 2a and 2b
- the power conversion device 100 at the rear stage controls the active power Po. it can.
- the power conversion device 100 of the former stage controls the active power Pm while the power conversion device 100 of the latter stage controls the DC voltage V2 of the secondary side DC terminals 2a and 2b.
- the controllability of the output voltage and the controllability (for example, control) of the output power (active power) for the two power conversion devices 100 to be tested It is also possible to verify accuracy and control response simultaneously.
- FIG. 11 is a block diagram for explaining a configuration example of a test system 5c of the power conversion device according to the second embodiment.
- the test system 5c includes an AC power supply 301, a circuit breaker 305 for test, measuring devices 206, 208, 209, 212, 306 to 308, test converters 400a and 400b, and power.
- the cables PL1, PL2, PL10, and PL11, and the control device 350 are provided. Similar to the control circuit 250, the function of the control circuit 350 can also be configured by dedicated hardware such as an analog circuit or an ASIC. Alternatively, the control circuit 350 is configured by a microcomputer or the like having an arithmetic processing function, and a part or all of the functions of the control circuit 350 can be processed by a program installed in a memory (not shown). It is also possible to realize by software processing by executing at.
- the AC power supply 301 can be configured by an output controllable power supply device or an AC power system (for example, 6.6 kV).
- the test converter 400 a performs AC / DC conversion between the AC voltage of the AC power supply 301 and the DC voltage V ⁇ b> 1 at the primary side DC terminals 1 a and 1 b of the power conversion device 100.
- the test converter 400 b performs DC / AC conversion between the DC voltage V 2 of the secondary side DC terminals 2 a and 2 b of the power conversion device 100 and the AC voltage of the AC power supply 301.
- FIG. 12 shows a configuration example of the test transducers 400a and 400b shown in FIG. Since each of the test transducers 400a and 400b has the same configuration, hereinafter, both will be collectively referred to simply as the test transducer 400.
- test converter 400 performs AC / DC power conversion or DC / AC power conversion in both directions between AC nodes 406u, 406v and 406v and DC nodes 407x and 407y, It can be configured by a modular multilevel converter.
- an arm circuit 430 in which a plurality of submodules 50 and a reactor are connected in series is arranged on each of the positive side and the negative side.
- three arm circuits 430 (positive side) of U, V, and W phases are connected between the AC nodes 406u, 406v, and 406v and the DC node 407x, respectively.
- three arm circuits 430 (negative side) of U, V, and W phases are connected between the AC nodes 406 u, 406 v, and 406 v and the DC node 407 y, respectively.
- the output terminals 408x and 408y of the plurality of submodules 50 are connected in series.
- FIG. 13 A first configuration example of the submodule 50 shown in FIG. 12 is shown in FIG. Referring to FIG. 13, the submodule 50 according to the first configuration example has a so-called half bridge configuration. Specifically, the submodule 50 includes a pair of output terminals 408x and 408y, a capacitor Ca, semiconductor switching elements Q91 and Q92, and free wheeling diodes D91 and D92. The output terminals 408x and 408y are electrically connected to the output terminals 408x and 408y of the other submodule 50, the AC nodes 406u, 406v and 406w, or the DC nodes 407x and 407y for the series connection shown in FIG. Connected
- Capacitor Ca is connected between nodes Nx and Ny, semiconductor switching element Q91 is electrically connected between output terminal 408x and node Nx, and semiconductor switching element Q92 is between output terminals 408x and 408y. Electrically connected.
- the freewheeling diodes D91 and D92 are connected in antiparallel to the semiconductor switching elements Q91 and Q92.
- the capacitor Ca is connected between the output terminals 408 x and 408 y via the semiconductor switching element Q 91.
- the output voltage between the output terminals 408x and 408y is controlled to + Vca or 0 by turning on and off the semiconductor switching elements Q91 and Q92 using the voltage Vca of the capacitor Ca.
- FIG. 14 A second configuration example of the submodule 50 shown in FIG. 12 is shown in FIG. Referring to FIG. 14, the submodule 50 according to the second configuration example has a so-called full bridge configuration. Specifically, the submodule 50 has a pair of output terminals 408x and 408y, a capacitor Ca, semiconductor switching elements Q91 to Q94, and free wheeling diodes D91 to D94. The output terminals 408x and 408y are electrically connected to the output terminals 408x and 408y of the other submodules 50, the AC nodes 406u, 406v and 406w, or the DC nodes 407x and 407y.
- Capacitor Ca is connected between nodes Nx and Ny.
- the semiconductor switching element Q91 is electrically connected between the node Nx and the output terminal 408x, and the semiconductor switching element Q92 is electrically connected between the output terminal 408x and the node Ny.
- semiconductor switching element Q93 is electrically connected between node Nx and output terminal 408y, and semiconductor switching element Q94 is electrically connected between output terminal 408y and node Ny.
- the freewheeling diodes D91 to D94 are connected in antiparallel with the semiconductor switching elements Q91 to Q94.
- capacitor Ca is connected to output terminals 408x and 408y with different polarities according to the combination of on / off of semiconductor switching elements Q91-Q94. Therefore, the output voltage between the output terminals 408x and 408y can be switched between + Vca, 0 and -Vca using the voltage Vca of the capacitor Ca.
- each arm circuit 430 the output voltage between the output terminals 408x and 408y of the plurality of submodules 50 is controlled by turning on and off the semiconductor switching element.
- the aforementioned AC / DC conversion or DC / B can be bi-directionally between the DC voltage of DC nodes 407x and 407y and the AC voltages (three phase voltages) of AC nodes 406u, 406v and 406w. AC conversion can be performed.
- the DC voltage between DC nodes 407x and 407y can be arbitrarily controlled in accordance with the voltage command value.
- DC nodes 407x and 407y (FIG. 12) of test converter 400a are electrically connected to primary side DC terminals 1a and 1b of power conversion device 100 via power cable PL1. Be done.
- DC nodes 407x and 407y (FIG. 12) of test converter 400b are electrically connected to secondary side DC terminals 2a and 2b of power converter 100 via power cable PL2.
- AC power supply 301 is electrically connected to AC nodes 406u, 406v and 406w (FIG. 12) of test converter 400a by power cable PL10.
- AC nodes 406u, 406v, 406w of test converter 400b are electrically connected to AC power supply 301 via power cables PL11 and PL10.
- AC nodes 406u, 406v, and 406w can be electrically connected to power cable PL10 or PL11 via a three-phase transformer (not shown).
- the breaker 305 and the measuring device 306 are connected to the power cable PL10.
- the circuit breaker 305 has a protection function of interrupting or forming the current path in accordance with the switching command from the control device 350 and automatically interrupting the current path when the current value exceeds a predetermined reference value.
- the measuring device 306 measures the active power Ps supplied from the AC power supply 301.
- a measuring device 307 for measuring AC power input / output to / from test converter 400a.
- a measuring device 308 for measuring AC power input to and output from the test converter 400b is connected.
- Measuring devices 206 and 208 for measuring active power Pi are connected to power cable PL1
- measuring devices 209 and 212 for measuring active power Po are connected to power cable PL2. The measured value by each measuring instrument is input to the control device 350.
- control device 350 can generate an open / close command of the circuit breaker 305, a command value of the power conversion device 100, and a command value of the test converter (modular multi-level converter) 400a, 400b.
- test converter module multi-level converter
- control device 350 controls the command value for test converter 400a connected to primary side DC terminals 1a and 1b, and controls the DC voltage between DC nodes 7x and 7y of the modular multilevel converter to DC voltage V1. To generate Similarly, control device 350 controls the command values for secondary side DC terminals 2a and 2b and test converter 400b, and the DC voltage between DC nodes 7x and 7y of the modular multilevel converter is controlled to DC voltage V2. To generate.
- control of the detection value in the power conversion device 100 for example, the temperature detection value at the time of the test of the semiconductor switching element and the free wheeling diode described in FIGS. It can be input into device 350.
- primary side direct current terminals 1a and 1b correspond to an "input side”
- secondary side direct current terminals 2a and 2b correspond to an "output side.”
- test converter 400a performs AC / DC conversion to control power cable PL1 to DC voltage V1
- test converter 400b converts power cable PL2 into a DC voltage. Perform DC / AC conversion to control to voltage V2.
- active power Pf is generated on the AC side (power cable PL10) of test converter 400a
- active power Pb is generated on the AC side (power cable PL11) of test converter 400b.
- Active power Pb on the AC side of test converter 400b is part of active power Pf on the AC side of test converter 400a. That is, active power Po output from secondary side DC terminals 2a and 2b of power converter 100 by power cables PL2 and PL11 is accompanied by power conversion by test converters 400a and 400b. The power is transmitted to the primary side DC terminals 1 a and 1 b and becomes part of the active power Pi input to the power conversion device 100.
- Pf-Pi corresponds to the loss in the test converter 400a
- Po-Pf corresponds to the loss in the test converter 400b
- Po-Pi corresponds to the loss in the power converter 100. It is understood that power Ps corresponds to the sum of losses in test converters 400 a and 400 b and power converter 100.
- the power converter 100 can be tested by supplying the active power Ps smaller than the active power Po passing through the power converter 100. Therefore, the rated capacities of the test power supply (AC power supply 301), the circuit breaker 305, and the measuring instrument 306 can be reduced. As a result, downsizing and cost reduction of the test system 5c can be achieved, so that the power conversion apparatus 100 can be efficiently tested even with a configuration using an AC power supply (including a power supply system) as a test power supply. .
- power cables PL10 and PL1 correspond to an example of "first connection member”
- power cables PL11 and PL2 correspond to an example of "second connection member”.
- test converter 400 a corresponds to the “first test converter”
- test converter 400 b corresponds to the “second test converter”.
- test contents of power conversion device 100 can be performed in the same manner as in Embodiment 1 including the heat run test and the generation of reactive power, and therefore detailed description will not be repeated. Also in the test system 5c according to the second embodiment, it is possible to execute the heat run test in which the reactive power Qc flows. In particular, since the rated power of test converters 400a and 400b can be suppressed by generating reactive power Qc in power converter 100, not only AC power supply 301 but also test converters 400a and 400b. It can be miniaturized.
- the power converter 100 controls the active powers Po and Pi, but the control sharing is changed. It is also possible.
- one of the test converters 400a and 400b can control one of the DC voltages V1 and V2, and the other of the DC voltages V1 and V2 can be controlled by the power conversion device 100.
- the other of the test converters 400a and 400b controls the active power (Pi or Pb) rather than the DC voltage (V1 or V2). According to the test operated as described above, the voltage controllability of the power converter 100 can be evaluated.
- test system 5c it is possible to evaluate the behavior when the DC side voltage of the power conversion device 100 falls sharply by rapidly reducing the DC voltage controlled by the test converter 400a or 400b.
- FIG. 15 is a block diagram for explaining a configuration example of a test system 5 d of a power conversion device according to a modification of the second embodiment.
- test system 5d includes AC power supply 301, circuit breaker 305 for test, measuring devices 206, 208, 209, 306, converter 400a for test, power cables PL1, PL2, PL10. And a controller 350. Furthermore, in the power conversion device 100 to be tested, the DC voltage V1 of the primary side DC terminals 1a and 1b and the DC voltage V2 of the secondary side DC terminals 2a and 2b are equal.
- test system 5d differs in that the arrangement of the test converter 400b and the power cable PL11 is omitted. Further, power cable PL2 is electrically connected between secondary side DC terminals 2a and 2b of power converter 100 and power cable PL1 as in the first embodiment and its modification (FIG. 7, FIG. 10). Be done.
- the configuration of the other parts of test system 5d is the same as that of test system 5c according to the second embodiment, and therefore detailed description will not be repeated.
- Power cable PL2 electrically connects secondary side DC terminals 2a and 2b of power converter 100 with AC power supply 301 via power cables PL1, PL10 and test converter 400a. That is, in the configuration example of FIG. 15, the power cable PL1 corresponds to one embodiment of the "first connection member", and the power cable PL2 corresponds to one embodiment of the "second connection member”.
- the active power Po output from the secondary side DC terminals 2a and 2b of the power conversion device 100 is transmitted to the primary side DC terminals 1a and 1b of the power conversion device 100 by the power cable PL2, It becomes part of the active power Pi input to the converter 100.
- the active power Ps supplied from the AC power supply 301 is equal to the active power Pf on the AC side of the test converter 400a, and Pf ⁇ Pi corresponds to the loss of the test converter 400a.
- active power Ps corresponds to the sum of losses in test converter 400 a and power converter 100.
- the power conversion device 100 can be tested by supplying the active power Ps smaller than the active power Po passing through the power conversion device 100.
- the test system 5d can be downsized and cost-reduced.
- test contents in power conversion device 100 can be executed in the same manner as in Embodiment 1 including the heat run test and the generation of reactive power, and therefore detailed description will not be repeated.
- FIG. 15 exemplifies the power conversion device 100 (first power conversion device) having equal DC voltages V1 and V2 as a test target, but in the test system 5d, FIG. 10 (a modification of the first embodiment) It is also possible to test two power converters (second power converters) having different DC voltages V1 and V2 connected in the same manner as in the example.
- the third embodiment will describe a test system and a test method in which an inductance element is added to the DC terminal of the power conversion device to be tested in the first and second embodiments and their modifications.
- FIG. 16 is a block diagram for explaining a configuration example of a test system of a power conversion device according to a third embodiment.
- test system 5e according to the third embodiment is different from test system 5c according to the first embodiment (FIG. 7) in that inductance element 801 is applied to primary side DC terminal 1a of power conversion device 100. While adding, the inductance element 802 is added with respect to the secondary side output terminal 2a.
- inductance elements 801 and 802 can be added by connection of inductors.
- inductance elements 801 and 802 may be added by parasitic inductances of the power cables PL1 and PL2 which are “connection members”. For example, it is possible to add inductance elements 801 and 802 by intentionally lengthening power cables PL1 and PL2.
- the ripple current When the ripple current is generated by the switching operation of the power conversion device 100, the ripple current does not flow out of the power conversion device 100 because it flows to the capacitors 6, 7 (FIG. 2) inherent in the power conversion device 100. .
- the inductance component outside the direct current terminal group (1a, 1b, 2a, 2b) of the power conversion device 100 is small, the filter effect of the capacitor is not sufficiently exhibited, and the ripple current becomes a direct current terminal group (1a , 1b, 2a, 2b) may flow out of the power converter 100.
- the ripple current flowing in the capacitor causes a power loss in the capacitor and raises the temperature of the capacitor. Since heat generation in the capacitor greatly affects the life of the power conversion device 100, it needs to be evaluated by a test. On the other hand, when the ripple current flows out of the power converter 100 as described above during the test, the effect of the ripple current in the capacitor in the power converter 100 can not be correctly tested, and the life evaluation of the power converter 100 is correct. There is concern that it will not be possible.
- an inductance element is added to at least a part of the DC terminals (1a, 1b, 2a, 2b) of the power conversion device 100 to be tested. That is, in a state where an inductance element is added to at least a part of DC terminals (1a, 1b, 2a, 2b) of power converter 100, power is supplied from DC power supply 201 (test power supply). By supplying, the test of the power converter 100 (test object) is performed.
- the test of the power conversion device 100 can be performed in a mode in which the ripple current flows to the capacitor in the power conversion device 100 without flowing out to the outside of the power conversion device 100. As a result, it is possible to improve the test accuracy of the life evaluation of the power conversion device 100.
- inductance elements 801 and 802 are added to primary side DC terminal 1a and secondary side DC terminal 2a in FIG. 16, inductance element 801 is added to primary side DC terminal 1b on the primary side. May be Similarly, the inductance element 802 may be added to the secondary side DC terminal 2b on the secondary side. Alternatively, it is also possible to add the inductance element 801 or 802 to only one of the primary side and the secondary side.
- FIG. 16 a configuration example in which an inductance element is added to the test system 5a (FIG. 7) of the first embodiment has been described, but a modification (FIG. 10) of the first embodiment, a second embodiment Also in the test system according to FIG. 11) and the modified example of the second embodiment (FIG. 15), the primary side DC terminals 1a and 1b and the secondary side DC terminals 2a are the same as described in FIG. It is possible to add an inductance element to at least one of.
- the configurations of power converter 100 and test converter 400 are exemplary, and any similar DC / DC conversion or AC / DC conversion is possible.
- the points where the circuit configuration is applicable will be described in a positive manner.
- a power cable is shown as an example of the “connecting member”, but it is possible to apply other than the power cable as long as electrical connection can be ensured. it can. That is, "connecting member” does not necessarily refer to a wire having a protective outer coating on an insulated power supply, but means a conductor capable of flowing current. In the case where a bare conductor (for example, a bus bar) in which the conductor is not insulated is used as the "connection member”, it is preferable to insulate with a insulator or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inverter Devices (AREA)
Abstract
試験対象となる電力変換装置(100)は、一次側直流端子(1a,1b)及び二次側直流端子(2a,2b)の間で直流電圧変換を実行する。第1の接続部材(PL1)は、試験用電源(201)と、試験対象の入力側となる一次側直流端子(1a,1b)とを電気的に接続する。第2の接続部材(PL2)は、電力変換装置(100)の一次側直流端子(1a,1b)及び二次側直流端子(2a,2b)を電気的に接続することによって、二次側直流端子(2a,2b)から出力された有効電力(Po)を、一次側直流端子(1a,1b)に伝達して、一次側直流端子(1a,1b)へ入力される有効電力(Pi)の一部とする。
Description
この発明は、電力変換装置の試験システム及び試験方法に関し、より特定的には、入出力ともに直流電圧である直流電圧変換を行う電力変換装置の試験に関する。
直流電圧変換(以下、「DC/DC変換」とも称する)のための電力変換装置として、特許文献1(米国特許第5027264号公報)には、2個の単相又は三相フルブリッジ回路と、変圧器とを含む構成が、大電力用途に適したものとして記載されている。具体的には、2個のフルブリッジ回路について、直流端子が直流電圧の入力端子及び出力端子と接続されるとともに、交流端子が変圧器の一次側巻線及び二次側巻線と接続される。これにより、一次側と二次側とが絶縁されたDC/DC変換が可能な電力変換装置が実現される。さらに、特許文献1では、各フルブリッジ回路を構成する半導体スイッチング素子にソフトスイッチングを適用することによって電力損失を抑制することが記載されている。
Rik W.A.A. De Doncker他著、タイトル"A Three-Phase Soft-Switched High-Power-Density dc/dc Converter for High-Power Applications(ソフトスイッチングが適用された高電力用途の高電力密度三相DC/DC変換器)",IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 27, NO. 1, JANUARY/FEBRUARY 1991の論文集に掲載
特許文献1を始めとする電力変換装置の試験において、試験用電源、並びに、保護用の遮断器及び測定器等の周辺機器が必要となる。特に、大電力用途の電力変換装置の試験では、試験用電源及び周辺機器の定格容量が大きくなることで、試験システムの大型化及び高コスト化が懸念される。
この発明はこのような問題点を解決するためになされたものであって、本発明の目的は、DC/DC変換を行う電力変換装置を効率的に試験するためのシステム及び方法を提供することである。
本発明のある局面によれば、電力変換装置の試験システムは、試験対象となる少なくとも1台の電力変換装置と、試験対象の試験用電源と、第1及び第2の接続部材とを備える。各電力変換装置は、直流電圧を入出力するための一次側直流端子および二次側直流端子の間で直流電圧変換を実行する。第1の接続部材は、試験用電源と試験対象の入力側とを接続する。第2の接続部材は、試験対象の出力側及び試験用電源を電気的に接続する。第2の接続部材によって、試験用対象の出力側から出力された有効電力が試験対象の入力側へ伝達される。
本発明の他のある局面によれば、少なくとも1台の電力変換装置を試験対象とする電力変換装置の試験方法であって、各電力変換装置は、直流電圧を入出力するための一次側直流端子および二次側直流端子の間で直流電圧変換を実行する。試験対象の試験時において、第1の接続部材によって試験対象の入力側と電気的に接続された試験用電源から、第2の接続部材を経由して試験対象の出力側及び入力側が電気的に接続された状態の試験対象に対して、試験対象を通過する有効電力よりも小さい有効電力が前記第1の接続部材を経由して供給される。
本発明によれば、試験対象とされる電力変換装置を通過する有効電力よりも小さい有効電力を試験用電源から供給する態様により、電力変換装置を効率的に試験することができる。
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお以下では、図中の同一又は相当部分には同一符号を付してその説明は原則的に繰り返さない。
実施の形態1.
(試験対象の説明)
まず、本実施の形態において試験対象となる電力変換装置の構成例について説明する。
(試験対象の説明)
まず、本実施の形態において試験対象となる電力変換装置の構成例について説明する。
図1は、試験対象となる電力変換装置の第1の例を説明するブロック図である。
図1を参照して、第1の例に係る電力変換装置100aは、一次側直流端子1a,1bと、二次側直流端子2a,2bと、複数の変換器セル10とを備える。変換器セル10の各々は、DC/DC変換を実行する。
図1を参照して、第1の例に係る電力変換装置100aは、一次側直流端子1a,1bと、二次側直流端子2a,2bと、複数の変換器セル10とを備える。変換器セル10の各々は、DC/DC変換を実行する。
図2は、図1に示された変換器セル10の第1の構成例を説明する回路図である。
図2を参照して、第1の構成例に係る変換器セル10は、キャパシタ6,7と、単相の変圧器8と、第1のスイッチング回路41と、第2のスイッチング回路42と、制御回路45とを含む。制御回路45は、アナログ回路やASIC(Application Specific Integrated Circuit)等による専用ハードウェアで構成することが可能である。或いは、制御回路45の一部又は全部の機能について、メモリ(図示せず)に搭載されたプログラムをプロセッサ(図示せず)で実行することによるソフトウェア処理によって実現することも可能である。
図2を参照して、第1の構成例に係る変換器セル10は、キャパシタ6,7と、単相の変圧器8と、第1のスイッチング回路41と、第2のスイッチング回路42と、制御回路45とを含む。制御回路45は、アナログ回路やASIC(Application Specific Integrated Circuit)等による専用ハードウェアで構成することが可能である。或いは、制御回路45の一部又は全部の機能について、メモリ(図示せず)に搭載されたプログラムをプロセッサ(図示せず)で実行することによるソフトウェア処理によって実現することも可能である。
変圧器8は、一次側交流ノード81a,81bと接続された単相の一次側巻線8xと、二次側交流ノード82a,82bと接続された単相の二次側巻線8yとを含む。キャパシタ6は、一次側直流ノード11a及び11bの間に接続される。キャパシタ7は、二次側直流ノード12a及び12bの間に接続される。
第1のスイッチング回路41は、一次側直流ノード11a,11bと、一次側交流ノード81a,81bとの間に接続される。第1のスイッチング回路41は、単相フルブリッジ接続された半導体スイッチング素子Q11~Q14と、半導体スイッチング素子Q11~Q14に対して逆並列に接続された還流ダイオードD11~D14とを有する。
同様に、第2のスイッチング回路42は、二次側直流ノード12a,12bと、二次側交流ノード82a,82bとの間に接続される。第2のスイッチング回路42は、単相フルブリッジ接続された半導体スイッチング素子Q21~Q24と、半導体スイッチング素子Q21~Q24に対して逆並列に接続された還流ダイオードD21~D24とを有する。
半導体スイッチング素子Q11~Q14,Q21~Q24の各々は、IGBT(Insulated Gate Bipolar Transistor)等の自己消弧型のスイッチング素子によって構成することができる。半導体スイッチング素子Q11~Q14,Q21~Q24のオンオフは、制御回路45からの制御信号S11~S14,S21~S24によってそれぞれ制御することができる。
半導体スイッチング素子Q11~Q14のオンオフは、一次側直流ノード11a,11bの直流電圧Vc1及び一次側交流ノード81a,81bの交流電圧(単相)V41の間で電力変換(DC/AC変換)を実行するように制御される。同様に、半導体スイッチング素子Q21~Q24のオンオフは、二次側交流ノード82a,82bの交流電圧(単相)V42及び二次側直流ノード12a,12bの直流電圧Vc2の間で電力変換(AC/DC変換)を実行するように制御される。これにより、変換器セル10は、変圧器8による絶縁を伴って伝送される単相の交流電圧を経由して直流電圧から直流電圧に変換する、いわゆる単相DAB(Dual-Active Bridge)として構成される。第1のスイッチング回路41は「第1の電力変換ユニット」の一実施例に対応し、第2のスイッチング回路42は「第2の電力変換ユニット」の一実施例に対応する。
図2の変換器セル10では、半導体スイッチング素子Q11~Q14,Q21~Q24のオンオフ制御によって、交流電圧V41,V42の振幅及び位相を制御することで、一次側及び二次側の間での電力伝送量及び電力伝送方向を自由に制御することができる。その制御方法は公知であり、例えば、非特許文献1に記載される。
また、半導体スイッチング素子Q11~Q14,Q21~Q24及び還流ダイオードD11~D14,D21~D24に配置された温度センサ(図示せず)の出力によって、制御回路45は、半導体スイッチング素子Q11~Q14,Q21~Q24の温度TQ11~TQ14,TQ21~TQ24及び還流ダイオードD11~D14,D21~D24の温度TD11~TD14,TD21~TD24を検出することができる。さらに、キャパシタ6及び7に電圧センサ(図示せず)を配置することによって、制御回路45は、直流電圧Vc1,Vc2を検出することができる。同様に、変圧器3に電流センサ(図示せず)を配置することによって、制御回路45は、変圧器3を流れる交流電流(単相)を検出することも可能である。
図3には、図1に示された変換器セル10の第2の構成例が示される。
図3を参照して、第2の構成例に係る変換器セル10は、三相の変圧器3と、キャパシタ6,7と、第1のスイッチング回路51と、第2のスイッチング回路52と、制御回路55とを含む。制御回路55の機能についても、制御回路45と同様に、専用ハードウェア、及び/又は、プログラムの実行によるソフトウェア処理によって実現することが可能である。
図3を参照して、第2の構成例に係る変換器セル10は、三相の変圧器3と、キャパシタ6,7と、第1のスイッチング回路51と、第2のスイッチング回路52と、制御回路55とを含む。制御回路55の機能についても、制御回路45と同様に、専用ハードウェア、及び/又は、プログラムの実行によるソフトウェア処理によって実現することが可能である。
変圧器3は、一次側交流ノード31a,31b,31cと接続された三相の一次側巻線(図示せず)と、二次側交流ノード32a,32b,32cと接続された三相の二次側巻線(図示せず)とを含む。キャパシタ6及び7は、図2と同様に、一次側直流ノード11a,11b間、及び、二次側直流ノード12a,12b間にそれぞれ接続される。
第1のスイッチング回路51は、一次側直流ノード11a,11bと、二次側交流ノード32a,32b,32cとの間に接続される。第1のスイッチング回路51は、三相フルブリッジ接続された半導体スイッチング素子Q61~Q66と、半導体スイッチング素子Q61~Q66に対して逆並列に接続された還流ダイオードD61~D66とを有する。
同様に、第2のスイッチング回路52は、二次側直流ノード12a,12bと、二次側交流ノード32a,32b,32cとの間に接続される。第2のスイッチング回路52は、三相フルブリッジ接続された半導体スイッチング素子Q71~Q76と、半導体スイッチング素子Q71~Q76に対して逆並列に接続された還流ダイオードD71~D76とを有する。
半導体スイッチング素子Q61~Q66,Q71~Q76の各々についても、IGBT(Insulated Gate Bipolar Transistor)等の自己消弧型のスイッチング素子によって構成することができる。半導体スイッチング素子Q61~Q66,Q71~Q76のオンオフは、制御回路55からの制御信号S61~S66,S71~S76によってそれぞれ制御することができる。
半導体スイッチング素子Q61~Q66のオンオフは、一次側直流ノード11a,11bの直流電圧Vc1及び一次側交流ノード31a,31b,31cの交流電圧(三相)の間で電力変換(DC/AC変換)を実行するように制御される。同様に、半導体スイッチング素子Q71~Q76のオンオフは、二次側交流ノード32a,32b,32cの交流電圧(三相)及び二次側直流ノード12a,12bの直流電圧Vc2の間で電力変換(AC/DC変換)を実行するように制御される。これにより、変換器セル10は、変圧器3による絶縁を伴って伝送される三相の交流電圧を経由して直流電圧から直流電圧に変換する、いわゆる三相DAB(Dual-Active Bridge)として構成される。第1のスイッチング回路51は「第1の電力変換ユニット」の一実施例に対応し、第2のスイッチング回路52は「第2の電力変換ユニット」の一実施例に対応する。
図3の変換器セル10においても、半導体スイッチング素子Q61~Q66,Q71~Q76のオンオフ制御により三相交流電圧の振幅及び位相を制御することで、一次側及び二次側の間での電力伝送量及び電力伝送方向を自由に制御することができる。その制御方法は公知であり、例えば、非特許文献1に記載される。
図3の構成においても、半導体スイッチング素子Q61~Q66,Q71~Q76及び還流ダイオードD61~D66,D71~D76に配置された温度センサ(図示せず)の出力によって、制御回路55は、半導体スイッチング素子Q61~Q66,Q71~Q76の温度TQ61~TQ66,TQ71~TQ76及び還流ダイオードD61~D66,D71~D76の温度TD61~TD66,TD71~TD76を検出することができる。また、キャパシタ6及び7に電圧センサ(図示せず)を配置するとともに、変圧器8に電流センサ(図示せず)を配置することも可能である。これにより、制御回路45は、直流電圧Vc1,Vc2及び変圧器8を流れる交流電流(三相)をさらに検出することができる。
再び図1を参照して、第1の例に係る電力変換装置100aでは、一次側において、複数の変換器セル10の各々の一次側直流ノード11a,11bが、一次側直流端子1a,1bに対して並列接続される。一方で、電力変換装置100aの二次側では、複数の変換器セル10の二次側直流ノード12a,12bが、二次側直流端子2a及び2bの間に直列接続される。
これにより、電力変換装置100aでは、一次側において大電流の電力を取り扱うことができるとともに、二次側において、高電圧の電力を取り扱うことができる。さらに、低電圧の直流電力を高電圧の直流電力に変換することができる。
図4は、試験対象となる電力変換装置の第2の例を説明するブロック図である。
図4を参照して、第2の例に係る電力変換装置100bは、電力変換装置100aと同様の、一次側直流端子1a,1bと、二次側直流端子2a,2bと、複数の変換器セル10とを備える。電力変換装置100bでは、一次側及び二次側の両方で複数の変換器セル10が直列接続される。
図4を参照して、第2の例に係る電力変換装置100bは、電力変換装置100aと同様の、一次側直流端子1a,1bと、二次側直流端子2a,2bと、複数の変換器セル10とを備える。電力変換装置100bでは、一次側及び二次側の両方で複数の変換器セル10が直列接続される。
具体的には、電力変換装置100bの一次側では、複数の変換器セル10の各々の一次側直流ノード11a,11bが、一次側直流端子1a及び1bの間に直列接続される。電力変換装置100bの二次側においても、複数の変換器セル10の二次側直流ノード12a,12bが、二次側直流端子2a及び2bの間に直列接続される。これにより、一次側及び二次側の両方で高電圧の直流電圧を取り扱うことができる。なお、各変換器セル10における変圧器3,8の一次側巻線及び二次側巻線の巻数比を1:1とすることにより、電力変換装置100bでは、一次側直流端子1a,1b間の直流電圧と、二次側直流端子2a,2b間の直流電圧とが同等となる。
図5は、試験対象となる電力変換装置の第3の例を説明するブロック図である。
図5を参照して、第3の例に係る電力変換装置100cは、電力変換装置100a,100bと同様の、一次側直流端子1a,1bと、二次側直流端子2a,2bと、複数の変換器セル10とを備える。電力変換装置100cでは、一次側及び二次側の両方で複数の変換器セル10が並列接続される。
図5を参照して、第3の例に係る電力変換装置100cは、電力変換装置100a,100bと同様の、一次側直流端子1a,1bと、二次側直流端子2a,2bと、複数の変換器セル10とを備える。電力変換装置100cでは、一次側及び二次側の両方で複数の変換器セル10が並列接続される。
具体的には、電力変換装置100cの一次側では、複数の変換器セル10の各々の一次側直流ノード11a,11bが、一次側直流端子1a,1bに対して並列接続される。電力変換装置100cの二次側においても、複数の変換器セル10の二次側直流ノード12a,12bが、二次側直流端子2a,2bに対して並列接続される。これにより、一次側及び二次側の両方で大電流の直流電圧を取り扱うことができる。なお、各変換器セル10における変圧器3,8の一次側巻線及び二次側巻線の巻数比を1:1とすることにより、電力変換装置100cにおいても、一次側直流端子1a,1b間の直流電圧と、二次側直流端子2a,2b間の直流電圧とが同等となる。
図6は、試験対象となる電力変換装置の第4の例を説明するブロック図である。
図6を参照して、第3の例に係る電力変換装置100dは、電力変換装置100a~100cと同様の、一次側直流端子1a,1bと、二次側直流端子2a,2bと、複数の変換器セル10とを備える。
図6を参照して、第3の例に係る電力変換装置100dは、電力変換装置100a~100cと同様の、一次側直流端子1a,1bと、二次側直流端子2a,2bと、複数の変換器セル10とを備える。
電力変換装置100dの二次側では、電力変換装置100b(図4)と同様に、複数の変換器セル10の二次側直流ノード12a,12bが、二次側直流端子2a及び2bの間に直列接続される。これに対して、電力変換装置100dの一次側では、2個ずつの変換器セル10の一次側直流ノード11a,11bが並列接続され、さらに、並列接続された2個ずつの変換器セル10の一次側直流ノード11a,11bが、一次側直流端子1a及び1bの間に直列接続される。すなわち、一次側では、複数の変換器セル10が直並列接続される。
これにより、電力変換装置100dの一次側では、同一個数の変換器セル10を用いて、電力変換器(図5)100cの一次側よりも高く、電力変換装置100b(図4)よりも低い中間的な直流電圧を取り扱うことができる。そして、一次側での中間的な直流電圧を、二次側では、電力変換装置100bと同等の高電圧に変換することができる。
本実施の形態では、図1及び図4~図6で説明した電力変換装置100a~100dを含む、複数の変換器セル10を有する電力変換装置100が試験対象とされる。すなわち、電力変換装置100は、上述の電力変換装置100a~100dを含むとともに、任意の個数かつ任意の接続態様(直列、並列、又は直並列)で配置された複数の変換器セル10を含む。
電力変換装置100では、複数の変換器セル10の個数及び接続態様によって、一次側直流端子1a,1b間の直流電圧V1及び二次側直流端子2a,2b間の直流電圧V2を自由に設定して、様々な電圧の直流電力を、他の様々な電圧の直流電力に変換することができる。さらに、図4及び図5で説明したように、V1=V2とすることも可能である。
(試験システムの構成)
図7は、実施の形態1に係る電力変換装置の試験システム5aの構成例を説明するブロック図である。
図7は、実施の形態1に係る電力変換装置の試験システム5aの構成例を説明するブロック図である。
図7を参照して、試験システム5aは、V1=V2である電力変換装置100を試験対象とする。すなわち、図7に示された電力変換装置100は「第1の電力変換装置」の一実施例である。
試験システム5aは、「試験用電源」の一例である直流電源201と、試験用の遮断器205と、測定器206~209と、電力ケーブルPL1,PL2と、制御装置250とを備える。試験システム5aの試験対象である電力変換装置100では、一次側直流端子1a,1bが「入力側」に対応し、二次側直流端子2a,2bが「出力側」に対応する。
電力ケーブルPL1は、直流電源201及び電力変換装置100の一次側直流端子1a,1bを電気的に接続する。電力ケーブルPL2は、電力変換装置100の二次側直流端子2a,2bと接続された一端と、電力ケーブルPL1と電気的に接続された他端とを有する。これにより、電力ケーブルPL2は、電力変換装置100の二次側直流端子2a,2bを直流電源201と電気的に接続する。すなわち、電力ケーブルPL1は「第1の接続部材」の一実施例に対応し、電力ケーブルPL2は「第2の接続部材」の一実施例に対応する。
遮断器205は、電力ケーブルPL1と直列に接続される。遮断器205は、制御装置250からの開閉指令に従って電流経路を遮断又は形成するとともに、電流値が予め定められた基準値を超えた場合には自動的に電流経路を遮断する保護機能を有する。
測定器206は、直流電源201の出力電圧(電源電圧)を検出する。測定器207は、直流電源201の出力電流(電源電流)を測定する。測定器208は、電力ケーブルPL1に接続されて、一次側直流端子1a,1bを通過する電流を測定する。測定器209は、電力ケーブルPL2に接続されて、二次側直流端子2a,2bを通過する電流を測定する。測定器206~209による測定値は、制御装置250へ入力される。制御回路250の機能についても、アナログ回路やASIC等による専用ハードウェアで構成することが可能である。或いは、制御回路250を、演算処理機能を有するマイクロコンピュータ等によって構成して、制御回路250の機能の一部又は全部を、メモリ(図示せず)に搭載されたプログラムをプロセッサ(図示せず)で実行することによるソフトウェア処理で実現することも可能である。
さらに、制御装置250は、直流電源201への指令値、遮断器205の開閉指令、及び電力変換装置100の指令値を生成することができる。これにより、電力変換装置100の試験時において、直流電源201の出力、遮断器205の開閉、及び電力変換装置100での動作(例えば、変換器セル10を構成する半導体スイッチング素子のオンオフ)を制御することができる。また、電力変換装置100における検出値、例えば、図3及び図4で説明した、半導体スイッチング素子及び還流ダイオードの試験時における温度検出値についても、制御装置250に入力することができる。
試験システム5aにおける電力変換装置100の試験時には、電力ケーブルPL2によって、電力変換装置100の二次側直流端子2a,2bからの出力電力が、電力変換装置100の一次側直流端子1a,1bに伝達されて、電力変換装置100への入力電力の一部となる。したがって、電力変換装置100の一次側直流端子1a,1bに入力される有効電力Pi、電力変換装置100の二次側直流端子2a,2bから出力される有効電力Po、及び、直流電源201から供給される有効電力Psの間には、下記の式(1)が成立する。
Ps+Po=Pi …(1)
式(1)より、Ps=Pi-Poである。Pi-Poは、電力変換装置100での損失電力に相当し、この損失電力が、直流電源201から供給される有効電力Psと同等となることが理解される。なお、有効電力Psは、測定器206及び207を用いて測定することができる。同様に、有効電力Piは、測定器206及び208を用いて測定可能であり、有効電力Poは、測定器206及び209を用いて測定可能である。
式(1)より、Ps=Pi-Poである。Pi-Poは、電力変換装置100での損失電力に相当し、この損失電力が、直流電源201から供給される有効電力Psと同等となることが理解される。なお、有効電力Psは、測定器206及び207を用いて測定することができる。同様に、有効電力Piは、測定器206及び208を用いて測定可能であり、有効電力Poは、測定器206及び209を用いて測定可能である。
このように、実施の形態1に係る試験システム5aによれば、電力変換装置100を通過する有効電力Poよりも小さな有効電力Psの供給によって電力変換装置100の試験を行うことができる。したがって、試験用電源(直流電源201)、遮断器205、及び測定器207の定格容量を小さくすることができる。この結果、試験システム5aの小型化及び低コスト化が可能となるので、電力変換装置100を効率的に試験することができる。
次に、電力変換装置100の試験時における各変換器セル10の動作について詳細に説明する。
図8は、図2に示された変換器セル10の試験時における動作を説明する概念図である。図8には、単相DABの交流等価回路が示される。
図8を参照して、第1のスイッチング回路41における半導体スイッチング素子Q11~Q14のオンオフにより、等価電圧源410が構成される。等価電圧源410は、図2に示したように、変圧器8の一次側交流ノード81a,81bに対して、交流電圧(線間電圧)V41を出力する。同様に、第2のスイッチング回路42における半導体スイッチング素子Q21~Q24のオンオフにより、等価電圧源420が構成される。等価電圧源420は、図2に示したように、変圧器8の二次側交流ノード82a,82bに対して、交流電圧(線間電圧)V42を出力する。
等価電圧源410及び420の間は、等価インダクタンス80を経由して等価的に接続される。等価インダクタンス80は、変圧器8の漏れインダクタンスに相当する。あるいは、変圧器8と直列にインダクタを追加接続する場合には、当該インダクタのインダクタンスも等価インダクタンス80に含まれる。
図8の等価回路において、線間電圧V41及び42の位相及び振幅は、第1のスイッチング回路41における半導体スイッチング素子Q11~Q14のオンオフ制御及び第2のスイッチング回路42における半導体スイッチング素子Q21~Q24のオンオフ制御によって自由に制御することができる。
線間電圧V41及び線間電圧V42の位相差を制御することによって、変換器セル10を通過する有効電力Pcを制御することができる。したがって、制御回路45によって、有効電力Pcの指令値に従った位相差を生じさせるための半導体スイッチング素子Q11~Q14,Q21~Q24のスイッチングパターンが実現されるように、制御信号S11~S14,S21~S24を生成することができる。
また、線間電圧V41及び線間電圧V42の振幅差を制御することによって、変換器セル10に生じる無効電力Qcを制御することができる。したがって、制御回路45によって、無効電力Qcの指令値に従った振幅差を生じさせるための半導体スイッチング素子Q11~Q14,Q21~Q24のスイッチングパターンが実現されるように、制御信号S11~S14,S21~S24を生成することができる。
あるいは、有効電力Pcの指令値及び無効電力Qcの指令値の組み合わせに従って半導体スイッチング素子Q11~Q14,Q21~Q24のスイッチングパターンを制御するように、制御信号S11~S14,S21~S24を生成することも可能である。
なお、図7の試験システム5aでは、電力ケーブルPL1,PL2によって、キャパシタ6及び7は並列接続されて同電圧となる。この場合には、第1のスイッチング回路41及び第2のスイッチング回路42の一方では零電圧出力動作が実行される。具体的には、零電圧出力動作時には、第1のスイッチング回路41において、半導体スイッチング素子Q11,Q13(または、Q12,Q14)をオンする一方で、半導体スイッチング素子Q12,Q14(または、Q11,Q13)をオフすることで、交流ノード81a,81b間の電圧差が零とされる。同様に、第2のスイッチング回路42において、零電圧出力動作時には、半導体スイッチング素子Q21,Q23(または、Q22,Q24)をオンする一方で、半導体スイッチング素子Q22,Q24(または、Q21,Q23)をオフすることで、二次側交流ノード82a,82b間の電圧差が零とされる。
さらに、第1のスイッチング回路41及び第2のスイッチング回路42の他方では、位相及び振幅が制御された交流電圧(単相)を出力するための通常動作を実行することで、線間電圧V41及び線間電圧V42の振幅差を生じさせることができる。これにより、図7の試験システム5aにおける試験時においても、各変換器セル10に無効電力Qcを生じさせることができる。
図9は、図3に示された変換器セル10の試験時における動作を説明する概念図である。図9には、三相DABの交流側等価回路が示される。
図9を参照して、第1のスイッチング回路51における半導体スイッチング素子Q61~Q66のオンオフにより、等価電圧源510が構成される。等価電圧源510は、図2に示したように、変圧器3の一次側交流ノード31a,31b,31cに対して、交流電圧(線間電圧)V51a~V51cを出力する。交流電圧(線間電圧)V51a~V51cの間には、120度ずつの位相差が設けられる。
同様に、第2のスイッチング回路52における半導体スイッチング素子Q71~Q76のオンオフにより、等価電圧源520が構成される。等価電圧源520は、図2に示したように、変圧器3の二次側交流ノード32a,32b,32cに対して、交流電圧(相電圧)V52a~V52cを出力する。交流電圧(相電圧)V52a~V52cの間には、120度ずつの位相差が設けられる。
等価電圧源510及び520の間は、等価インダクタンス30を経由して等価的に接続される。等価インダクタンス30は、変圧器3の漏れインダクタンスに相当する。あるいは、変圧器3と直列にインダクタを追加接続する場合には、当該インダクタのインダクタンスも等価インダクタンス30に含まれる。
図9の等価回路において、相電圧V51a~V51cの位相及び振幅は、第1のスイッチング回路51における半導体スイッチング素子Q61~Q66のオンオフ制御によって自由に制御することができる。同様に、相電圧V52a~V52cの位相及び振幅は、第2のスイッチング回路52における半導体スイッチング素子Q71~Q76のオンオフ制御によって自由に制御することができる。
図3の三相DAB回路においても、相電圧V51a~V51cと相電圧V52a~V52cとの位相差を制御することによって、変換器セル10を通過する有効電力Pcを制御することができる。同様に、相電圧V51a~V51cと相電圧V52a~V52cとの振幅差を制御することによって、変換器セル10を通過する無効電力Qcを制御することができる。
したがって、制御回路55によって、有効電力Pc及び無効電力Qcの少なくとも一方の指令値に従った位相差及び/又は振幅差を生じさせるための半導体スイッチング素子Q61~Q66,Q71~Q76のスイッチングパターンが実現されるように、制御信号S61~S66,S71~S76を生成することができる。
なお、図3の変換器セル10では、第1のスイッチング回路51の零電圧動作時には、半導体スイッチング素子Q61,Q63,Q65(または、Q62,Q64,Q66)をオンする一方で、半導体スイッチング素子Q62,Q64,Q66(または、Q61,Q63,Q65)をオフすることで、一次側交流ノード31a~31c間の電圧差が零とされる。同様に、第2のスイッチング回路52の零電圧出力動作時には、半導体スイッチング素子Q71,Q73,Q75(またQ72,Q74,Q76は、Q72,Q74,Q76)をオンする一方で、半導体スイッチング素子Q22,Q24(または、Q71,Q73,Q75)をオフすることで、二次側交流ノード32a~32c間の電圧差が零とされる。
すなわち、図7の試験システム5aにおいて、図3の変換器セル10を備えた電力変換装置100aが試験対象である場合にも、第1のスイッチング回路51及び第2のスイッチング回路52の一方で零電圧出力動作を実行し、他方で位相及び振幅が制御された交流電圧(三相)を出力するための通常動作を実行することで、各変換器セル10に無効電力Qcを生じさせることができる。
再び図7を参照して、試験システム5aにおいて、図8及び図9で説明したように制御装置250からの指令値に従って各変換器セル10の有効電力Pcを制御した状態で、図7に示された、一次側直流端子1a,1bに入力される有効電力Pi、二次側直流端子2a,2bから出力される有効電力Po、及び、試験用の直流電源201から供給される有効電力Psを測定することによって、電力変換装置100の有効電力の制御性や、電力変換装置100の電力損失を測定することができる。
さらに、試験システム5aにおいて、変圧器3(図2)又は変圧器8(図3)に配置された電流センサによって検出される交流電流を測定することで、電力変換装置100の制御性及び過電流の発生有無を確認することができる。
また、試験システム5aにおいて、複数の変換器セル10の一次側直流ノード11a,11b及び二次側直流ノード12a,12bの電流を測定することで、変換器セル10間の電流バランスが確保されているかを確認することも可能である。さらに、複数の変換器セル10のキャパシタ6,7の電圧(直流電圧Vc1,Vc2)を測定することで、変換器セル10間の電圧バランスが確保されているかを確認することができる。
さらに、試験システム5aにおいて、ヒートラン試験として、各変換器セル10を構成する半導体スイッチング素子および還流ダイオードの温度を測定することで、その温度が許容値よりも低い範囲内であるか否かを確認することができる。例えば、ヒートラン試験における許容値は、125~150℃程度に設定することができる。
なお、ヒートラン試験では、必ずしも有効電力を制御する必要はなく、無効電力Qcを制御した状態で、ヒートラン試験を実行することも可能である。無効電力は、電力変換装置100の内部で発生し、電力変換装置100の外部には流出しない電力である。
なお、電力変換装置100を通過する総電力Ptは、有効電力Pcの2乗及び無効電力Qcの2乗の和の平方根に相当する(Pt=(Pc2+Qc2)1/2)。したがって、試験システム5aによれば、試験用電源(直流電源201)から供給される有効電力Psが、電力変換装置100を通過する総電力Ptよりも小さくなる。
すなわち、無効電力を発生させることで、試験用の直流電源201が供給する有効電力を削減することができるので、試験用電源(直流電源201)、遮断器205、及び測定器207~209の定格容量をさらに小さくできるとともに、試験接続用の電力ケーブルPL1,PL2の定格容量についても低減することができる。
上述のように、各変換器セル10における半導体スイッチング素子のオンオフ制御によって無効電力は容易に発生させることができる。無効電力を大きくすればする程上記の効果は拡大する。例えば、試験対象の電力変換装置100内での無効電力を、電力変換装置100を通過する有効電力よりも大きくすることができる。
実施の形態1の変形例.
図10は、実施の形態1の変形例に係る電力変換装置の試験システム5bの構成例を説明するブロック図である。
図10は、実施の形態1の変形例に係る電力変換装置の試験システム5bの構成例を説明するブロック図である。
図10を参照して、試験システム5bでは、V1≠V2である電力変換装置100が2台を1セットとして試験対象とされる。すなわち、図10に示された電力変換装置100は「第2の電力変換装置」の一実施例である。
なお、図10では、V1<V2であるものとする。また以下では、2台の電力変換装置100のうち、図10で左側に位置する一方を前段の電力変換装置100とも称し、図10で右側に位置する一方を後段の電力変換装置100とも称する。
電力ケーブルPL1は、直流電源201及び前段の電力変換装置100の一次側直流端子1a,1bを電気的に接続する。電力ケーブルPL2は、後段の電力変換装置100の二次側直流端子2a,2bと接続された一端と、電力ケーブルPL1と電気的に接続された他端とを有する。電力ケーブルPL3は、2台の電力変換装置100の直流電圧V2を入出力する二次側直流端子2a,2b同士を接続する。
図10の試験システム5bでは、前段の電力変換装置100の一次側直流端子1a,1bが試験対象の入力側に対応し、後段の電力変換装置100の一次側直流端子1a,1bが試験対象の出力側に対応する。したがって、試験システム5bにおいても、電力ケーブルPL1は「第1の接続部材」の一実施例に対応し、電力ケーブルPL2は「第2の接続部材」の一実施例に対応する。
遮断器205及び測定器206,207は、試験システム5aと同様に、電力ケーブルPL1に接続される。電力ケーブルPL1には、前段の電力変換装置100の一次側直流端子1a,1bの電流を測定するための測定器208がさらに配置される。さらに、電力ケーブルPL3には、直流電流及び直流電圧(V2)を測定するための測定器210,211が配置され、電力ケーブルPL2には、直流電流及び直流電圧(V1)を測定するための測定器209,212が配置される。
測定器206~212による測定値は、制御装置250へ入力される。測定器206,207により有効電力Ps、測定器206,208により有効電力Pi、測定器210,211により有効電力Pm、測定器209及び212により有効電力Poをそれぞれ測定することができる。
制御装置250は、試験システム5aで説明した機能に加えて、前段及び後段の電力変換装置100の各々について、動作(電力変換)を制御するための指令値を生成することができる。当該指令値には、実施の形態1で説明した有効電力Pc及び無効電力Qcの指令値が含まれる。また、各電力変換装置100の制御回路45,55から、実施の形態1で説明した温度、電圧及び電流の検出値を取得することができる。
試験システム5bにおいて、前段の電力変換装置100の動作は、一次側直流端子1a,1bに入力された直流電圧V1を昇圧して、二次側直流端子2a,2bから直流電圧V2を出力するように制御される。これに対して、後段の電力変換装置100の動作は、二次側直流端子2a,2bに入力された直流電圧V2を降圧して、一次側直流端子1a,1bから直流電圧V1を出力するように制御される。さらに、前段及び後段の電力変換装置100の各々において、有効電力Pc及び無効電力Qcの少なくとも一方が制御される。
試験システム5bにおける電力変換装置100の試験時には、試験用の直流電源201から前段の電力変換装置100の一次側直流端子1a,1bに入力された有効電力Piに対して、有効電力Pmが、前段の電力変換装置100の二次側直流端子2a,2bから出力されて、後段の電力変換装置100の二次側直流端子2a,2bへ入力される。後段の電力変換装置100の一次側直流端子1a,1bから出力された有効電力Poは、電力ケーブルPL2によって伝達されて、前段の電力変換装置100への入力電力の一部となる。
したがって、交流電源301から供給される有効電力Psは、Ps=Pi-Poとなる。図10において、Pi-Pmは、前段の電力変換装置100での損失電力に相当し、Pm-Poは、前段の電力変換装置100での損失電力に相当する。したがって、直流電源201から供給される有効電力Ps(Ps=Pi-Po)は、前段及び後段の電力変換装置100の両方での損失電力と同等となることが理解される。
このように、実施の形態1の変形例に係る試験システム5bによれば、入力電圧及び出力電圧が異なる電力変換装置100を試験対象として、試験対象を通過する有効電力Poよりも小さな有効電力Psの供給によって、電力変換装置の試験を行うことができる。したがって、試験用電源(直流電源201)、遮断器205及び測定器207の定格容量を小さくすることができる。この結果、試験システム5bの小型化及び低コスト化が可能となるので、入力電圧及び出力電圧が異なる電力変換装置100を効率的に試験することができる。
さらに、前段の電力変換装置100において、低電圧側(V1<V2)の一次側直流端子1a,1bが試験用電源(直流電源201)と接続される構成とすることにより、定格電圧が低い電源を試験用電源(直流電源201)として使用することができる。さらに、試験用電源や電力ケーブルPL1,PL2に必要な耐圧が低下するので、絶縁部材の小型化によって、試験システム5bの小型化及び低コスト化がさらに可能となる。
各電力変換装置100での試験内容については、ヒートラン試験及び無効電力の発生を含めて、実施の形態1と同様に実行することができるので、詳細な説明は繰り返さない。
さらに、試験システム5bでは、前段の電力変換装置100における、一次側直流端子1a、1bを入力とし二次側直流端子2a、2bを出力とする方向の電力変換動作と、後段の電力変換装置100における、二次側直流端子2a、2bを入力とし一次側直流端子1a、1bを出力する方向の電力変換動作との両方を、同時に試験することができる。したがって、試験時間の短縮が可能である。
さらに、2台の電力変換装置100のうち、前段の電力変換装置100が二次側直流端子2a、2bの直流電圧V2を制御し、後段の電力変換装置100が有効電力Poを制御することができる。あるいは、後段の電力変換装置100が二次側直流端子2a、2bの直流電圧V2を制御する一方で、前段の電力変換装置100が、有効電力Pmを制御することも可能である。このように、試験システム5bを用いた電力変換装置の試験では、試験対象となる2台の電力変換装置100について、出力電圧の制御性と、出力電力(有効電力)の制御性(例えば、制御精度及び制御応答性)を同時に検証することも可能である。
実施の形態2.
実施の形態2では、交流電源を試験用電源として用いる試験システムについて説明する。
実施の形態2では、交流電源を試験用電源として用いる試験システムについて説明する。
図11は、実施の形態2に係る電力変換装置の試験システム5cの構成例を説明するブロック図である。
図11を参照して、試験システム5cは、交流電源301と、試験用の遮断器305と、測定器206,208,209,212,306~308と、試験用変換器400a,400bと、電力ケーブルPL1,PL2,PL10,PL11と、制御装置350とを備える。制御回路350の機能についても、制御回路250と同様に、アナログ回路やASIC等による専用ハードウェアで構成することが可能である。或いは、制御回路350を、演算処理機能を有するマイクロコンピュータ等によって構成して、制御回路350の機能の一部又は全部を、メモリ(図示せず)に搭載されたプログラムをプロセッサ(図示せず)で実行することによるソフトウェア処理で実現することも可能である。
交流電源301は、出力制御可能な電源装置又は交流の電力系統(例えば、6.6kV)によって構成することができる。試験用変換器400aは、交流電源301の交流電圧と、電力変換装置100の一次側直流端子1a,1bの直流電圧V1との間でAC/DC変換を実行する。試験用変換器400bは、電力変換装置100の二次側直流端子2a,2bの直流電圧V2と、交流電源301の交流電圧との間でDC/AC変換を実行する。
図12には、図11に示された試験用変換器400a,400bの構成例が示される。試験用変換器400a,400bの各々は同様の構成を有するので、以下では、両者を包括して、単に、試験用変換器400とも称する。
図12を参照して、試験用変換器400は、交流ノード406u,406v,406vと、直流ノード407x、407yの間で、双方向にAC/DC電力変換又はDC/AC電力変換を実行する、モジュラーマルチレベル変換器によって構成することができる。
モジュラーマルチレベル変換器では、交流電圧の各相(U,V,W)において、複数のサブモジュール50及びリアクトルが直列接続されたアーム回路430が、正側及び負側の各々に配置される。図12の例では、交流ノード406u,406v,406vと直流ノード407xとの間には、U,V,W相の3個のアーム回路430(正側)がそれぞれ接続される。同様に、交流ノード406u,406v,406vと直流ノード407yとの間には、U,V,W相の3個のアーム回路430(負側)がそれぞれ接続される。各アーム回路430において、複数のサブモジュール50の出力端子408x,408yが直列接続される。
図13には、図12に示されたサブモジュール50の第1の構成例が示される。
図13を参照して、第1の構成例に係る従うサブモジュール50は、いわゆるハーフブリッジ構成を有する。具体的には、サブモジュール50は、1対の出力端子408x,408yと、キャパシタCaと、半導体スイッチング素子Q91,Q92と、還流ダイオードD91,D92とを有する。出力端子408x,408yは、図12に示された直列接続のために、他のサブモジュール50の出力端子408x,408y、交流ノード406u,406v,406w、又は、直流ノード407x,407yと電気的に接続される。
図13を参照して、第1の構成例に係る従うサブモジュール50は、いわゆるハーフブリッジ構成を有する。具体的には、サブモジュール50は、1対の出力端子408x,408yと、キャパシタCaと、半導体スイッチング素子Q91,Q92と、還流ダイオードD91,D92とを有する。出力端子408x,408yは、図12に示された直列接続のために、他のサブモジュール50の出力端子408x,408y、交流ノード406u,406v,406w、又は、直流ノード407x,407yと電気的に接続される。
キャパシタCaは、ノードNxおよびノードNyの間に接続され、半導体スイッチング素子Q91は、出力端子408x及びノードNxの間に電気的に接続され、半導体スイッチング素子Q92は、出力端子408x及び408yの間に電気的に接続される。還流ダイオードD91,D92は、半導体スイッチング素子Q91,Q92と逆並列に接続される。
図13のサブモジュール50では、キャパシタCaは、出力端子408x及び408yの間に、半導体スイッチング素子Q91を経由して接続される。キャパシタCaの電圧Vcaを用いて、半導体スイッチング素子Q91,Q92のオンオフにより、出力端子408x,408y間の出力電圧は、+Vca又は0に制御される。
図14には、図12に示されたサブモジュール50の第2の構成例が示される。
図14を参照して、第2の構成例に係る従うサブモジュール50は、いわゆるフルブリッジ構成を有する。具体的には、サブモジュール50は、1対の出力端子408x,408yと、キャパシタCaと、半導体スイッチング素子Q91~Q94と、還流ダイオードD91~D94とを有する。出力端子408x,408yは、他のサブモジュール50の出力端子408x,408y、交流ノード406u,406v,406w、又は、直流ノード407x,407yと電気的に接続される。
図14を参照して、第2の構成例に係る従うサブモジュール50は、いわゆるフルブリッジ構成を有する。具体的には、サブモジュール50は、1対の出力端子408x,408yと、キャパシタCaと、半導体スイッチング素子Q91~Q94と、還流ダイオードD91~D94とを有する。出力端子408x,408yは、他のサブモジュール50の出力端子408x,408y、交流ノード406u,406v,406w、又は、直流ノード407x,407yと電気的に接続される。
キャパシタCaは、ノードNx及びNyの間に接続される。半導体スイッチング素子Q91は、ノードNx及び出力端子408xの間に電気的に接続され、半導体スイッチング素子Q92は、出力端子408x及びノードNyの間に電気的に接続される。同様に、半導体スイッチング素子Q93は、ノードNx及び出力端子408yの間に電気的に接続され、半導体スイッチング素子Q94は、出力端子408y及びノードNyの間に電気的に接続される。還流ダイオードD91~D94は、半導体スイッチング素子Q91~Q94と逆並列に接続される。
図13のサブモジュール50では、半導体スイッチング素子Q91~Q94のオンオフの組み合わせに応じて、キャパシタCaは、出力端子408x及び408yに対して異なる極性で接続される。したがって、出力端子408x,408y間の出力電圧は、キャパシタCaの電圧Vcaを用いて、+Vca,0,-Vcaの間で切替えることができる。
再び図12を参照して、各アーム回路430において、複数のサブモジュール50の出力端子408x,408y間の出力電圧は、半導体スイッチング素子のオンオフによって制御される。この結果、モジュラーマルチレベル変換器では、直流ノード407x,407yの直流電圧及び交流ノード406u,406v,406wの交流電圧(三相電圧)の間で双方向に、上述のAC/DC変換又はDC/AC変換を実行することができる。特に、モジュラーマルチレベル変換器では、直流ノード407x,407y間の直流電圧は、電圧指令値に応じて任意に制御可能である。
再び図11を参照して、試験用変換器400aの直流ノード407x,407y(図12)は、電力ケーブルPL1を経由して、電力変換装置100の一次側直流端子1a,1bと電気的に接続される。試験用変換器400bの直流ノード407x,407y(図12)は、電力ケーブルPL2を経由して、電力変換装置100の二次側直流端子2a,2bと電気的に接続される。
交流電源301は、電力ケーブルPL10によって試験用変換器400aの交流ノード406u,406v,406w(図12)と電気的に接続される。試験用変換器400bの交流ノード406u,406v,406wは、電力ケーブルPL11及びPL10を経由して、交流電源301と電気的に接続される。なお、試験用変換器400a及び400bの各々において、交流ノード406u,406v,406wは、図示しない三相変圧器を経由して、電力ケーブルPL10又はPL11と電気的に接続することも可能である。
電力ケーブルPL10には、遮断器305及び測定器306が接続される。遮断器305は、制御装置350からの開閉指令に従って電流経路を遮断又は形成するとともに、電流値が予め定められた基準値を超えた場合には自動的に電流経路を遮断する保護機能を有する。測定器306は、交流電源301から供給される有効電力Psを測定する。
電力ケーブルPL10には、試験用変換器400aに入出力される交流電力を測定するための測定器307が接続される。同様に、電力ケーブルPL11には、試験用変換器400bに入出力される交流電力を測定するための測定器308が接続される。電力ケーブルPL1には、有効電力Piを測定するための測定器206,208が接続され、電力ケーブルPL2には、有効電力Poを測定するための測定器209,212が接続される。各測定器による測定値は、制御装置350へ入力される。
さらに、制御装置350は、遮断器305の開閉指令、電力変換装置100の指令値、及び、試験用変換器(モジュラーマルチレベル変換器)400a,400bの指令値を生成することができる。これにより、電力変換装置100の試験時において、遮断器305の開閉、電力変換装置100での動作(例えば、変換器セル10を構成する半導体スイッチング素子のオンオフ)、及び、試験用変換器400a,400の出力電圧を制御することができる。
例えば、制御装置350は、一次側直流端子1a,1bと接続された試験用変換器400aに対する指令値を、モジュラーマルチレベル変換器の直流ノード7x,7y間の直流電圧が直流電圧V1に制御されるように生成する。同様に、制御装置350は、二次側直流端子2a,2bと試験用変換器400bに対する指令値を、モジュラーマルチレベル変換器の直流ノード7x,7y間の直流電圧が直流電圧V2に制御されるように生成する。
また、実施の形態1での制御装置250と同様に、電力変換装置100における検出値、例えば、図3及び図4で説明した、半導体スイッチング素子及び還流ダイオードの試験時における温度検出値を、制御装置350に入力することができる。
試験システム5cの試験対象である電力変換装置100では、一次側直流端子1a,1bが「入力側」に対応し、二次側直流端子2a,2bが「出力側」に対応する。なお、試験用変換器400a,400bによって電力ケーブルPL1,PL2の直流電圧を制御できるため、試験システム5cの試験対象は、V1=V2である電力変換装置(第1の電力変換装置)及び、V1≠V2である電力変換装置100(第2の電力変換器)のいずれであってもよい。
試験システム5cにおける電力変換装置100の試験時には、制御装置350からの指令値に従って電力変換装置100の有効電力を制御することで、一次側直流端子1a,1bに有効電力Piが入力される一方で、二次側直流端子2a,2bから有効電力Poが出力される。さらに、制御装置350からの指令値に従って、試験用変換器400aは、電力ケーブルPL1を直流電圧V1に制御するようにAC/DC変換を実行し、試験用変換器400bは、電力ケーブルPL2を直流電圧V2に制御するようにDC/AC変換を実行する。
この結果、試験用変換器400aの交流側(電力ケーブルPL10)に有効電力Pfが生じ、試験用変換器400bの交流側(電力ケーブルPL11)に有効電力Pbが生じる。
試験用変換器400bの交流側の有効電力Pbは、試験用変換器400aの交流側の有効電力Pfの一部となる。すなわち、電力ケーブルPL2及びPL11によって、電力変換装置100の二次側直流端子2a,2bから出力された有効電力Poが、試験用変換器400a,400bによる電力変換を伴って、電力変換装置100の一次側直流端子1a,1bに伝達されて、電力変換装置100へ入力される有効電力Piの一部となる。
したがって、交流電源301から供給される有効電力Psは、Ps=Pf-Pbとなる。Pf-Piが、試験用変換器400aでの損失に相当し、Po-Pfが、試験用変換器400bでの損失に相当しPo-Piが電力変換装置100での損失に相当するため、有効電力Psは、試験用変換器400a及び400b、並びに、電力変換装置100における損失の合計に相当することが理解される。
したがって、実施の形態2に係る試験システム5cによれば、電力変換装置100を通過する有効電力Poよりも小さな有効電力Psの供給によって電力変換装置100の試験を行うことができる。したがって、試験用電源(交流電源301)、遮断器305、及び測定器306の定格容量を小さくすることができる。この結果、試験システム5cの小型化及び低コスト化が可能となるので、試験用電源として交流電源(電源系統を含む)を用いた構成としても電力変換装置100を効率的に試験することができる。
なお、図11の構成例において、電力ケーブルPL10及びPL1は「第1の接続部材」の一実施例に対応し、電力ケーブルPL11及びPL2は「第2の接続部材」の一実施例に対応する。さらに、試験用変換器400aは「第1の試験用変換器」のに対応し、試験用変換器400bは「第2の試験用変換器」に対応する。
電力変換装置100での試験内容については、ヒートラン試験及び無効電力の発生を含めて、実施の形態1と同様に実行することができるので、詳細な説明は繰り返さない。実施の形態2に係る試験システム5cにおいても、無効電力Qcを流すヒートラン試験を実行することが可能である。特に、電力変換装置100で無効電力Qcを生じさせることにより、試験用変換器400a,400bの定格電力を抑制することができるので、交流電源301のみならず、試験用変換器400a,400bについても小型化することができる。
なお、試験システム5cでは、試験用変換器400a,400bが直流電圧V1,V2を制御する一方で、電力変換装置100が有効電力Po,Piを制御する例を説明したが、この制御分担は変更することも可能である。例えば、試験用変換器400a,400bの一方が直流電圧V1,V2の一方を制御するとともに、直流電圧V1,V2の他方を電力変換装置100によって制御することが可能である。この場合には、試験用変換器400a,400bの他方は、直流電圧(V1又はV2)ではなく有効電力(Pi又はPb)を制御することになる。このように動作させる試験によれば、電力変換装置100の電圧制御性を評価することができる。
あるいは、試験システム5cにおいて、試験用変換器400a又は400bが制御する直流電圧を急激に低下させることで、電力変換装置100の直流側電圧が急激に低下した際の挙動を評価することができる。
実施の形態2の変形例.
実施の形態2に係る試験システム5cは、V1=V2である電力変換装置100及びV1≠V2である電力変換装置100の両方を試験対象とすることができる一方で、直流電圧V1,V2をそれぞれ制御するために2台の試験用変換器400a,400bが配置される。実施の形態2の変形例では、V1=V2である電力変換装置100に特化した試験システムの簡易な構成について説明する。
実施の形態2に係る試験システム5cは、V1=V2である電力変換装置100及びV1≠V2である電力変換装置100の両方を試験対象とすることができる一方で、直流電圧V1,V2をそれぞれ制御するために2台の試験用変換器400a,400bが配置される。実施の形態2の変形例では、V1=V2である電力変換装置100に特化した試験システムの簡易な構成について説明する。
図15は、実施の形態2の変形例に係る電力変換装置の試験システム5dの構成例を説明するブロック図である。
図15を参照して、試験システム5dは、交流電源301と、試験用の遮断器305と、測定器206,208,209,306と、試験用変換器400aと、電力ケーブルPL1,PL2,PL10と、制御装置350とを備える。さらに、試験対象となる電力変換装置100は、一次側直流端子1a,1bの直流電圧V1と、二次側直流端子2a,2bの直流電圧V2とが同等である。
実施の形態2に係る試験システム5c(図11)と比較して、試験システム5dでは、試験用変換器400b及び電力ケーブルPL11の配置が省略される点で異なる。また、電力ケーブルPL2は、実施の形態1及びその変形例(図7,図10)と同様に、電力変換装置100の二次側直流端子2a,2b及び電力ケーブルPL1の間に電気的に接続される。試験システム5dのその他の部分の構成は、実施の形態2に係る試験システム5cと同様であるので、詳細な説明は繰り返さない。
電力ケーブルPL2は、電力変換装置100の二次側直流端子2a,2bを、電力ケーブルPL1,PL10及び試験用変換器400aを経由して交流電源301と電気的に接続する。すなわち、図15の構成例において、電力ケーブルPL1は「第1の接続部材」の一実施例に対応し、電力ケーブルPL2は「第2の接続部材」の一実施例に対応する。
試験システム5dでは、電力ケーブルPL2によって、電力変換装置100の二次側直流端子2a,2bから出力された有効電力Poが、電力変換装置100の一次側直流端子1a,1bに伝達されて、電力変換装置100へ入力される有効電力Piの一部となる。
さらに、交流電源301から供給される有効電力Psは、試験用変換器400aの交流側の有効電力Pfと等しく、Pf-Piは、試験用変換器400aの損失に相当する。この結果、有効電力Psは、試験用変換器400a及び電力変換装置100における損失の合計に相当することが理解される。
したがって、実施の形態2の変形例に係る試験システム5dによれば、電力変換装置100を通過する有効電力Poよりも小さな有効電力Psの供給によって電力変換装置100の試験を行うことができる。この結果、試験用電源(交流電源301)、遮断器305、及び測定器306の定格容量を小さくすることができるので、試験システム5dの小型化及び低コスト化が可能となる。
さらに、試験システム5cと比較して、試験用変換器の配置個数が削減されるので、試験用電源として交流電源(電源系統を含む)を用いた構成において、V1=V2である電力変換装置100に特化した試験システムをさらに小型化することができる。
なお、試験システム5dにおいても、電力変換装置100での試験内容は、ヒートラン試験及び無効電力の発生を含めて、実施の形態1と同様に実行することができるので、詳細な説明は繰り返さない。また、図15では、直流電圧V1及びV2が同等である電力変換装置100(第1の電力変換装置)を試験対象として例示したが、試験システム5dにおいては、図10(実施の形態1の変形例)と同様に接続された、直流電圧V1及びV2が異なる2台の電力変換装置(第2の電力変換装置)を試験対象とすることも可能である。
実施の形態3.
実施の形態3では、実施の形態1および2、ならびに、それらの変形例において、試験対象となる電力変換装置の直流端子にインダクタンス要素を付加した試験システム及び試験方法を説明する。
実施の形態3では、実施の形態1および2、ならびに、それらの変形例において、試験対象となる電力変換装置の直流端子にインダクタンス要素を付加した試験システム及び試験方法を説明する。
図16は、実施の形態3に係る電力変換装置の試験システムの構成例を説明するブロック図である。
図16を参照して、実施の形態3に係る試験システム5eは、実施の形態1に係る試験システム5c(図7)において、電力変換装置100の一次側直流端子1aに対してインダクタンス要素801を付加するとともに、二次側出力端子2aに対してインダクタンス要素802を付加する。代表的には、インダクタンス要素801,802は、インダクタの接続によって付加することができる。あるいは、「接続部材」である電力ケーブルPL1,PL2の寄生インダクタンスによってインダクタンス要素801,802が付加されてもよい。例えば、電力ケーブルPL1,PL2を意図的に長くすることで、インダクタンス要素801,802を付加することが可能である。
電力変換装置100のスイッチング動作によりリプル電流が発生すると、本来、当該リプル電流は、電力変換装置100に内在するキャパシタ6,7(図2)に流れるため、電力変換装置100の外部には流出しない。しかしながら、電力変換装置100の直流端子群(1a,1b,2a,2b)から外側のインダクタンス成分が小さい場合には、上記キャパシタのフィルタ効果が十分に発揮されず、リプル電流が直流端子群(1a,1b,2a,2b)から電力変換装置100の外側へ流出することが懸念される。
リプル電流がキャパシタに流れることで、キャパシタでは電力損失が発生して、キャパシタの温度が上昇する。キャパシタでの発熱は電力変換装置100の寿命に大きく影響するため、試験によって評価することが必要である。一方で、試験時に、上記のようにリプル電流が電力変換装置100の外部に流出すると、電力変換装置100内のキャパシタにおけるリプル電流の影響を正しく試験できず、電力変換装置100の正しい寿命評価ができなくなることが懸念される。
実施の形態3に係る試験システムでは、試験対象である電力変換装置100の直流端子群(1a,1b,2a,2b)の少なくとも一部に対して、インダクタンス要素が付加される。すなわち、すなわち、電力変換装置100の直流端子群(1a,1b,2a,2b)の少なくとも一部に対して、インダクタンス要素が付加された状態の下で、DC電源201(試験電源)から電力を供給することによって、電力変換装置100(試験対象)の試験が実行される。
これにより、リプル電流が、電力変換装置100の外部に流出することなく、電力変換装置100内のキャパシタに流れる態様で、電力変換装置100の試験を実行することができる。この結果、電力変換装置100の寿命評価についての試験精度の向上を図ることができる。
なお、図16では、一次側直流端子1a及び二次側直流端子2aに対してインダクタンス要素801,802を付加したが、インダクタンス要素801は、一次側において、一次側直流端子1bに対して付加されてもよい。同様に、インダクタンス要素802は、二次側において、二次側直流端子2bに対して付加されてもよい。或いは、一次側及び二次側の一方のみに、インダクタンス要素801又は802を付加することも可能である。
また、図16では、実施の形態1の試験システム5a(図7)に対してインダクタンス要素を付加する構成例を説明したが、実施の形態1の変形例(図10)、実施の形態2(図11)、及び、実施の形態2の変形例(図15)に係る試験システムに対しても、図16で説明したのと同様に、一次側直流端子1a,1b及び二次側直流端子2a,2bの少なくとも一方に対して、インダクタンス要素を付加することが可能である。
実施の形態1~3ならびにそれらの変形例において、電力変換装置100及び試験用変換器400の構成は例示であって、同様のDC/DC変換又はAC/DC変換が可能であれば、任意の回路構成を適用可能である点について、確認的に記載する。
なお、実施の形態1~3ならびにそれらの変形例では、「接続部材」の実施例として電力ケーブルを示したが、電気的な接続の確保が可能であれば、電力ケーブル以外も適用することができる。すなわち、「接続部材」は、必ずしも絶縁電源上に保護外被覆を施した電線を指すものではなく、電流を流すことができる導体を意味する。なお、導体に絶縁が施されていない裸導体(例えば、バスバー)を「接続部材」として用いる場合には、絶縁碍子などで絶縁を施すことが好ましい。
今回開示された各実施の形態は、適宜組合わせて実施することも予定されている。そして、今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
1a,1b 一次側直流端子、2a,2b 二次側直流端子、3,8 変圧器、5a~5d 試験システム、6,7,Ca キャパシタ、8x 一次側巻線、8y 二次側巻線、10 変換器セル、11a,11b 一次側直流ノード(電力変換装置)、12a,12b 二次側直流ノード(電力変換装置)、30,80 等価インダクタンス、31a~31c,81a,81b 一次側交流ノード、32a~32c,82a,82b 二次側交流ノード、41,51 第1のスイッチング回路、42,52 第2のスイッチング回路、45,55 制御回路、50 サブモジュール、100,100a~100d 電力変換装置、201 直流電源、205,305 遮断器、206~212,306~308 測定器、250,350 制御装置、301 交流電源、400,400a,400b 試験用変換器、406u,406v,406w 交流ノード(MMC)、407x,407y 直流ノード(MMC)、408x,408y 出力端子(MMC)、410,420,510,520 等価電圧源、430 アーム回路(MMC)、801,802 インダクタンス要素、D11~D14,D21~D24,D61~D66,D71~D76,D91~D94 還流ダイオード、Nx,Ny ノード、Pb,Pc,Pf,Pi,Pm,Po,Ps 有効電力、PL1~PL3,PL10,PL11 電力ケーブル、Q11~Q14,Q21~Q24,Q61~Q66,Q71~Q76,Q91~Q94 半導体スイッチング素子、Qc 無効電力、S11~S14,S21~S24,S61~S66,S71~S76 制御信号(半導体スイッチング素子)。
Claims (22)
- 試験対象となる少なくとも1台の電力変換装置を備え、
各前記電力変換装置は、直流電圧を入出力するための一次側直流端子および二次側直流端子の間で直流電圧変換を実行し、
前記試験対象の試験用電源と、
前記試験用電源及び前記試験対象の入力側を電気的に接続する第1の接続部材と、
前記試験対象の出力側及び前記試験用電源を電気的に接続することによって、前記試験対象の前記出力側から出力された有効電力を前記試験対象の入力側へ伝達するための第2の接続部材とをさらに備える、電力変換装置の試験システム。 - 前記試験対象は、前記一次側直流端子及び前記二次側直流端子の間で前記直流電圧が同等である第1の電力変換装置であり、
前記第1の接続部材は、前記試験用電源及び前記一次側直流端子を電気的に接続し、
前記第2の接続部材は、前記二次側直流端子及び前記第1の接続部材の間を電気的に接続する、請求項1記載の電力変換装置の試験システム。 - 前記試験対象は、前記一次側直流端子及び前記二次側直流端子の間で前記直流電圧が異なる2台の第2の電力変換装置を含み、
前記2台の第2の電力変換装置の前記二次側直流端子同士は電気的に接続され、
前記第1の接続部材は、前記2台の第2の電力変換装置のうちの一方の前記一次側直流端子と前記試験用電源とを電気的に接続し、
前記第2の接続部材は、前記2台の第2の電力変換装置のうちの他方の前記一次側直流端子と前記第1の接続部材との間を電気的に接続する、請求項1記載の電力変換装置の試験システム。 - 前記一次側直流端子の前記直流電圧は、前記二次側直流端子の前記直流電圧よりも低い、請求項3記載の電力変換装置の試験システム。
- 前記試験用電源は、直流電源を含む、請求項1~4のいずれか1項に記載の電力変換装置の試験システム。
- 前記試験用電源は、交流電源を含み、
前記試験システムは、
前記交流電源と前記一次側直流端子との間に前記第1の接続部材を経由して電気的に接続されて、前記交流電源と電気的に接続された第1の交流ノード及び前記一次側直流端子と電気的に接続された第1の直流ノードの間で交流直流電圧変換を実行する第1の試験用変換器と、
前記交流電源と前記二次側直流端子との間に前記第2の接続部材を経由して電気的に接続されて、前記二次側直流端子と電気的に接続された第2の直流ノード及び前記交流電源と電気的に接続された第2の交流ノードの間で直流交流電圧変換を実行する第2の試験用変換器とをさらに備える、請求項1記載の電力変換装置の試験システム。 - 前記試験対象は、前記一次側直流端子及び前記二次側直流端子の間で前記直流電圧が同等である第1の電力変換装置、又は、前記一次側直流端子及び前記二次側直流端子の間で前記直流電圧が異なる2台の第2の電力変換装置を含み、
前記試験用電源は、交流電源を含み、
前記試験システムは、
前記交流電源と前記一次側直流端子との間に前記第1の接続部材を経由して電気的に接続されて、前記交流電源と電気的に接続された交流ノード及び前記一次側直流端子と電気的に接続された直流ノードの間で交流直流電圧変換を実行する試験用変換器をさらに備え、
前記第1の接続部材は、前記直流ノードと前記一次側直流端子とを電気的に接続し、
前記第2の接続部材は、前記二次側直流端子と前記第1の接続部材との間を電気的に接続する、請求項1記載の電力変換装置の試験システム。 - 各前記試験用変換器は、複数のサブモジュールを有するモジュラーマルチレベル変換器である、請求項6又は7記載の電力変換装置の試験システム。
- 各前記電力変換装置は、複数の変換器セルを含み、
前記複数の変換器セルの各々は、
前記一次側直流端子と電気的に接続された一次側直流ノードと、
前記二次側直流端子と電気的に接続された二次側直流ノードと、
一次側巻線及び二次側巻線を有する変圧器と、
前記一次側直流ノード及び前記一次側巻線の間に接続された第1の電力変換ユニットと、
前記一次側直流ノードに接続された第1のキャパシタと、
前記二次側直流ノード及び前記二次側巻線の間に接続された第2の電力変換ユニットと、
前記二次側直流ノードに接続された第2のキャパシタとを含み、
前記第1及び第2の電力変換ユニットの各々は、複数の半導体スイッチング素子のオンオフ制御によって直流電圧及び交流電圧の間の電力変換を行うように構成される、請求項1~8のいずれか1項に記載の電力変換装置の試験システム。 - 前記複数の半導体スイッチング素子は、各前記電力変換装置において、交流電圧によって生じる無効電力が前記電力変換装置を通過する有効電力よりも大きくなるように制御される、請求項9記載の電力変換装置の試験システム。
- 各前記電力変換装置において、前記一次側直流端子及び前記二次側直流端子の少なくとも一方に対して付加されたインダクタンス要素をさらに備える、請求項1~10のいずれか1項に記載の電力変換装置の試験システム。
- 少なくとも1台の電力変換装置を試験対象とする電力変換装置の試験方法であって、
前記電力変換装置は、直流電圧を入出力するための一次側直流端子および二次側直流端子の間で直流電圧変換を実行し、
前記試験対象の試験時において、第1の接続部材によって前記試験対象の入力側と電気的に接続された試験用電源から、第2の接続部材を経由して前記試験対象の出力側及び前記入力側が電気的に接続された状態の前記試験対象に対して、前記試験対象を通過する有効電力よりも小さい有効電力が前記第1の接続部材を経由して供給される、電力変換装置の試験方法。 - 前記試験対象は、前記一次側直流端子及び前記二次側直流端子の間で前記直流電圧が同等である第1の電力変換装置であり、
前記試験対象の試験時において、前記第1の電力変換装置は、前記第1の接続部材によって前記試験用電源と前記一次側直流端子とが電気的に接続され、かつ、前記第2の接続部材によって前記二次側直流端子及び前記第1の接続部材の間が電気的に接続された状態で、前記試験用電源から電力を供給される、請求項12記載の電力変換装置の試験方法。 - 前記試験対象は、前記一次側直流端子及び前記二次側直流端子の間で前記直流電圧が異なる2台の第2の電力変換装置を含み、
前記2台の第2の電力変換装置の前記二次側直流端子同士は電気的に接続され、
前記第1の接続部材は、前記2台の第2の電力変換装置のうちの一方の前記一次側直流端子と前記試験用電源とを電気的に接続し、
前記試験対象の試験時において、前記2台の第2の電力変換装置は、前記第2の接続部材によって前記2台の第2の電力変換装置のうちの他方の前記一次側直流端子と前記第1の接続部材との間が電気的に接続された状態で、前記試験用電源から電力を供給される、請求項12記載の電力変換装置の試験方法。 - 前記一次側直流端子の前記直流電圧は、前記二次側直流端子の前記直流電圧よりも低い、請求項14記載の電力変換装置の試験方法。
- 前記試験用電源は、直流電源を含む、請求項12~15のいずれか1項に記載の電力変換装置の試験方法。
- 前記試験用電源は、交流電源を含み、
前記試験対象の試験時において、前記交流電源と前記一次側直流端子との間に前記第1の接続部材を経由して電気的に接続された第1の試験用変換器によって、前記交流電源の交流電圧と前記一次側直流端子の直流電圧との間で交流直流電圧変換が実行され、
前記交流電源と前記二次側直流端子との間に前記第2の接続部材を経由して電気的に接続された第2の試験用変換器によって、前記二次側直流端子の直流電圧と前記交流電源の交流電圧との間で直流交流電圧変換が実行され、
前記電力変換装置は、前記一次側直流端子及び前記二次側直流端子が前記第1及び第2の接続部材を経由して電気的に接続された状態で、前記試験用電源から電力を供給される、請求項12記載の電力変換装置の試験方法。 - 前記試験対象は、前記一次側直流端子及び前記二次側直流端子の間で前記直流電圧が同等である第1の電力変換装置、又は、前記一次側直流端子及び前記二次側直流端子の間で前記直流電圧が異なる2台の第2の電力変換装置を含み、
前記試験用電源は、交流電源を含み、
前記試験対象の試験時において、前記交流電源と前記一次側直流端子との間に前記第1の接続部材を経由して電気的に接続された試験用変換器によって、前記交流電源の交流電圧と前記一次側直流端子の直流電圧との間で交流直流電圧変換が実行され、
前記第1の電力変換装置は、前記一次側直流端子及び前記二次側直流端子が前記第1及び第2の接続部材を経由して電気的に接続された状態で、前記試験用電源から電力を供給される、請求項12記載の電力変換装置の試験方法。 - 各前記試験用変換器は、複数のサブモジュールを有するモジュラーマルチレベル変換器である、請求項17又は18記載の電力変換装置の試験方法。
- 前記電力変換装置は、複数の変換器セルを含み、
前記複数の変換器セルの各々は、
前記一次側直流端子と電気的に接続された一次側直流ノードと、
前記二次側直流端子と電気的に接続された二次側直流ノードと、
一次側巻線及び二次側巻線を有する変圧器と、
前記一次側直流ノード及び前記一次側巻線の間に接続された第1の電力変換ユニットと、
前記一次側直流ノードに接続された第1のキャパシタと、
前記二次側直流ノード及び前記二次側巻線の間に接続された第2の電力変換ユニットと、
前記二次側直流ノードに接続された第2のキャパシタとを含み、
前記第1及び第2の電力変換ユニットの各々は、複数の半導体スイッチング素子のオンオフ制御によって直流電圧及び交流電圧の間の電力変換を行うように構成される、請求項12~19のいずれか1項に記載の電力変換装置の試験方法。 - 前記試験対象の試験時において、前記複数の半導体スイッチング素子は、各前記電力変換装置において、交流電圧によって生じる無効電力が前記電力変換装置を通過する有効電力よりも大きくなるように制御される、請求項20記載の電力変換装置の試験方法。
- 前記試験時において、各前記電力変換装置の前記一次側直流端子及び前記二次側直流端子の少なくとも一方にインダクタンス要素が付加された状態の下で、前記試験用電源から前記第1の接続部材を経由して前記試験対象へ電力が供給される、請求項12~21のいずれか1項に記載の電力変換装置の試験方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18877150.5A EP3709493B1 (en) | 2017-11-10 | 2018-06-11 | Test system and test method for power conversion device |
US16/649,798 US11428748B2 (en) | 2017-11-10 | 2018-06-11 | System and method for testing power conversion device |
JP2018553255A JP6456578B1 (ja) | 2017-11-10 | 2018-06-11 | 電力変換装置の試験システム及び試験方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017217083 | 2017-11-10 | ||
JP2017-217083 | 2017-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019092911A1 true WO2019092911A1 (ja) | 2019-05-16 |
Family
ID=66438791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022164 WO2019092911A1 (ja) | 2017-11-10 | 2018-06-11 | 電力変換装置の試験システム及び試験方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11428748B2 (ja) |
EP (1) | EP3709493B1 (ja) |
WO (1) | WO2019092911A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021192359A1 (ja) * | 2020-03-25 | 2021-09-30 | 株式会社日立製作所 | 双方向dc-dcコンバータ |
JP7567282B2 (ja) | 2020-08-24 | 2024-10-16 | 株式会社プロテリアル | 絶縁形コンバータの試験方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230057705A1 (en) * | 2021-08-23 | 2023-02-23 | Infineon Technologies Americas Corp. | Trans-inductance multi-phase power converters, monitoring and management |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01162675U (ja) * | 1988-04-30 | 1989-11-13 | ||
US5027264A (en) | 1989-09-29 | 1991-06-25 | Wisconsin Alumni Research Foundation | Power conversion apparatus for DC/DC conversion using dual active bridges |
JP2000241477A (ja) * | 1999-02-18 | 2000-09-08 | Shindengen Electric Mfg Co Ltd | 被試験用直流電源装置の運転方法 |
WO2016125374A1 (ja) * | 2015-02-02 | 2016-08-11 | 三菱電機株式会社 | Dc/dcコンバータ |
JP2017143621A (ja) * | 2016-02-09 | 2017-08-17 | 株式会社東芝 | 電力変換装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPQ113799A0 (en) * | 1999-06-22 | 1999-07-15 | University Of Queensland, The | A method and device for measuring lymphoedema |
JP4235936B2 (ja) * | 2002-05-17 | 2009-03-11 | Tdkラムダ株式会社 | 電源エージング試験装置 |
EP2341594A1 (en) | 2009-12-29 | 2011-07-06 | Converteam Technology Ltd | Power collection and transmission systems |
HK1147389A2 (en) * | 2010-06-04 | 2011-08-05 | Wong Hon Ki | A power supply burn-in system |
CN105811460B (zh) * | 2016-05-04 | 2019-10-25 | 中车株洲电力机车研究所有限公司 | 一种用于电子电力变压器的功率模块高频测试系统 |
US11750080B2 (en) * | 2018-12-25 | 2023-09-05 | Mitsubishi Electric Corporation | Power conversion device |
JP7090745B2 (ja) * | 2019-01-21 | 2022-06-24 | 三菱電機株式会社 | 電力変換装置及び直流配電システム |
CN113767536B (zh) * | 2019-05-10 | 2023-06-06 | 三菱电机株式会社 | 直流供配电系统 |
CN112840549B (zh) * | 2019-09-02 | 2023-08-01 | 东芝三菱电机产业系统株式会社 | 逆变器装置的测试装置 |
CN112362989B (zh) * | 2020-10-30 | 2021-11-02 | 湖北工业大学 | 高压静电除尘器火花放电模拟装置及试验方法 |
-
2018
- 2018-06-11 WO PCT/JP2018/022164 patent/WO2019092911A1/ja unknown
- 2018-06-11 EP EP18877150.5A patent/EP3709493B1/en active Active
- 2018-06-11 US US16/649,798 patent/US11428748B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01162675U (ja) * | 1988-04-30 | 1989-11-13 | ||
US5027264A (en) | 1989-09-29 | 1991-06-25 | Wisconsin Alumni Research Foundation | Power conversion apparatus for DC/DC conversion using dual active bridges |
JP2000241477A (ja) * | 1999-02-18 | 2000-09-08 | Shindengen Electric Mfg Co Ltd | 被試験用直流電源装置の運転方法 |
WO2016125374A1 (ja) * | 2015-02-02 | 2016-08-11 | 三菱電機株式会社 | Dc/dcコンバータ |
JP2017143621A (ja) * | 2016-02-09 | 2017-08-17 | 株式会社東芝 | 電力変換装置 |
Non-Patent Citations (2)
Title |
---|
RIK W.A.A. DE DONCKER: "A Three-Phase Soft-Switched High-Power-Density dc/dc Converter for High-Power Applications", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, vol. 27, no. 1, January 1991 (1991-01-01) |
See also references of EP3709493A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021192359A1 (ja) * | 2020-03-25 | 2021-09-30 | 株式会社日立製作所 | 双方向dc-dcコンバータ |
JP7567282B2 (ja) | 2020-08-24 | 2024-10-16 | 株式会社プロテリアル | 絶縁形コンバータの試験方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3709493B1 (en) | 2023-12-13 |
EP3709493A4 (en) | 2020-12-23 |
EP3709493A1 (en) | 2020-09-16 |
US20200264239A1 (en) | 2020-08-20 |
US11428748B2 (en) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3238315B1 (en) | Modular multi-level converter with thyristor valves | |
KR101633049B1 (ko) | 전력 변환 장치 | |
EP2946464B1 (en) | A multilevel converter with hybrid full-bridge cells | |
US10256745B2 (en) | Multilevel converter with reduced AC fault handling rating | |
WO2019092911A1 (ja) | 電力変換装置の試験システム及び試験方法 | |
EP3288169B1 (en) | Power conversion device | |
JP2010512134A (ja) | 電流変換装置 | |
US9819286B2 (en) | Converter for outputting reactive power, and method for controlling said converter | |
KR101999638B1 (ko) | 조정 변압기 | |
US10224716B2 (en) | Apparatus for generating AC superimposed DC signal | |
JP6685477B1 (ja) | 電力変換装置、および電力変換システム | |
US20220255419A1 (en) | Power conversion device | |
US9774187B2 (en) | Coupling-in and coupling-out of power in a branch of a DC voltage network node comprising a longitudinal voltage source | |
JP6456578B1 (ja) | 電力変換装置の試験システム及び試験方法 | |
JP7177500B2 (ja) | 電力変換装置、発電システム、モータドライブシステム及び電力連系システム | |
US11444553B2 (en) | Electrical power conversion system and associated method | |
US20130293010A1 (en) | Current supply arrangement with a first and a second current supply device, wherein the second current supply device is connected to the first current supply device | |
Lüth et al. | A DC/DC converter suitable for HVDC applications with large step-ratios | |
Lüth et al. | Choice of AC operating voltage in HV DC/AC/DC system | |
WO2015090627A1 (en) | Power unit and multi-phase electric drive using the same | |
JP7387078B1 (ja) | 電力変換装置 | |
FI128738B (en) | Inverter device and method for controlling inverter device | |
JP7371674B2 (ja) | 電力変換装置 | |
JP7169742B2 (ja) | 電力変換装置 | |
RU2641649C1 (ru) | Устройство симметрирования и стабилизации трехфазного напряжения |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018553255 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18877150 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018877150 Country of ref document: EP Effective date: 20200610 |