WO2021191719A1 - 撮像装置および電子機器 - Google Patents

撮像装置および電子機器 Download PDF

Info

Publication number
WO2021191719A1
WO2021191719A1 PCT/IB2021/052110 IB2021052110W WO2021191719A1 WO 2021191719 A1 WO2021191719 A1 WO 2021191719A1 IB 2021052110 W IB2021052110 W IB 2021052110W WO 2021191719 A1 WO2021191719 A1 WO 2021191719A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
circuit
layer
electrically connected
drain
Prior art date
Application number
PCT/IB2021/052110
Other languages
English (en)
French (fr)
Inventor
廣瀬丈也
米田誠一
井上広樹
池田隆之
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202180024385.3A priority Critical patent/CN115336254A/zh
Priority to US17/911,193 priority patent/US20230109524A1/en
Priority to JP2022509744A priority patent/JPWO2021191719A1/ja
Priority to KR1020227034842A priority patent/KR20220160007A/ko
Publication of WO2021191719A1 publication Critical patent/WO2021191719A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/705Pixels for depth measurement, e.g. RGBZ
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • One aspect of the present invention relates to an imaging device.
  • One aspect of the present invention is not limited to the above technical fields.
  • the technical field of one aspect of the invention disclosed in the present specification and the like relates to a product, a method, or a manufacturing method.
  • one aspect of the invention relates to a process, machine, manufacture, or composition of matter. Therefore, more specifically, the technical fields of one aspect of the present invention disclosed in the present specification include semiconductor devices, display devices, liquid crystal display devices, light emitting devices, lighting devices, power storage devices, storage devices, imaging devices, and the like. An operating method or a method of manufacturing them can be given as an example.
  • the semiconductor device refers to all devices that can function by utilizing the semiconductor characteristics.
  • Transistors and semiconductor circuits are one aspect of semiconductor devices.
  • the storage device, the display device, the image pickup device, and the electronic device may have a semiconductor device.
  • Patent Document 1 discloses an image pickup apparatus having an oxide semiconductor and using a transistor having an extremely low off-current in a pixel circuit.
  • Patent Document 2 discloses a technique for adding a calculation function to an image pickup apparatus.
  • Imaging devices installed in mobile devices and the like have a general function of acquiring high-resolution images. In the next generation, it is required that the image pickup device be equipped with more intelligent functions.
  • the image data (analog data) acquired by the image pickup apparatus is converted into digital data, and after being taken out to the outside, image processing is performed as necessary. If the processing can be performed in the imaging device, the cooperation with an external device becomes faster and the convenience of the user is improved. In addition, the load and power consumption of peripheral devices can be reduced. Further, if complicated data processing can be performed in the state of analog data, the time required for data conversion can be shortened.
  • the distance information can be inferred by calculating the luminance gradient from the difference information of the data between adjacent pixels and using the luminance gradient as the data by using DNN (deep neural network) or the like.
  • DNN deep neural network
  • a mobile information terminal such as a smartphone can acquire information on the distance of the captured subject and process the captured image (such as blurring the front and back of the target subject).
  • the information on the distance is acquired by using parallax by a plurality of cameras. If distance information can be obtained by image processing, the cameras can be integrated and the manufacturing cost can be reduced.
  • one aspect of the present invention is to provide an image pickup apparatus capable of performing image processing.
  • one of the purposes is to provide an imaging device capable of acquiring distance information.
  • Another object of the present invention is to provide an imaging device capable of acquiring information on the luminance gradient between adjacent pixels.
  • Another object of the present invention is to provide an imaging device that functions as a part of a neural network.
  • Another object of the present invention is to provide an image pickup device having low power consumption.
  • one of the purposes is to provide a highly reliable imaging device.
  • one of the purposes is to provide a new imaging device or the like.
  • Another object of the present invention is to provide a method for driving the image pickup apparatus.
  • one of the purposes is to provide a new semiconductor device or the like.
  • One aspect of the present invention relates to an image pickup apparatus having an image processing function.
  • One aspect of the present invention includes a pixel and a readout circuit, and the pixel has a first light receiving circuit, a second light receiving circuit, an amplifier circuit, and an amplifier circuit, and the amplifier circuit has an amplifier circuit.
  • the potential corresponding to the difference between the first data held in the first light receiving circuit and the second data held in the second light receiving circuit can be output to the amplifier circuit, and the amplifier circuit can output the potential. It has a first node and a second node, and a first potential output by an amplifier circuit is written in the first node when the first data and the second data have the same value.
  • the second potential output by the amplifier circuit when the first data and the second data are generated by photoelectric conversion is written to the second node, and the first node and the second node A third potential can be added to each, and the read circuit uses the current flowing according to the potential of the first node and the current flowing according to the potential of the second node to obtain the second potential.
  • the read circuit has a current mirror circuit and a correlated double sampling circuit, and the current mirror circuit has a first transistor and a second transistor, and the source or drain of the first transistor. One and the gate are electrically connected to the first node, and one of the source or drain of the second transistor can be electrically connected to the second node and the correlated double sampling circuit.
  • another aspect of the present invention includes a pixel, a read-out circuit, and the pixel has a first light-receiving circuit, a second light-receiving circuit, an amplification circuit, and an arithmetic circuit.
  • the amplification circuit has a first input terminal and a second input terminal
  • the arithmetic circuit has a first node, a second node, a first capacitor, and a second capacitor.
  • a first transistor and a second transistor, the first node is electrically connected to one electrode of the first capacitor and the gate of the first transistor, and the second node.
  • the readout circuit is electrically connected, the first light receiving circuit is electrically connected to the first input terminal, the second light receiving circuit is electrically connected to the second input terminal, and the first The first potential output by the amplification circuit when the same potential is input to the first input terminal and the second input terminal is written to the node, and the first light receiving circuit is written to the second node.
  • the second potential output by the amplification circuit is written according to the difference between the generated data and the data generated by the second light receiving circuit, and the first node and the second node each have a first potential.
  • a third potential can be added via a capacitor or a second capacitor, and the readout circuit will perform a second calculation using the current flowing through the first transistor and the current flowing through the second transistor. It is an imaging device capable of extracting the product of a potential and a third potential.
  • the read circuit has a current mirror circuit and a correlated double sampling circuit, and the current mirror circuit has a third transistor and a fourth transistor, and the source or drain of the third transistor.
  • One and the gate are electrically connected to one of the source or drain of the first transistor, and one of the source or drain of the fourth transistor is one of the source or drain of the second transistor and a correlated double sampling circuit. Can be electrically connected to.
  • Each of the first light receiving circuit and the second light receiving circuit has a photoelectric conversion device, a fifth transistor, a sixth transistor, and a third capacitor, and one electrode of the photoelectric conversion device is , Which is electrically connected to one of the source or drain of the fifth transistor, the other of the source or drain of the fifth transistor is one of the source or drain of the sixth transistor, and one electrode of the third transistor.
  • the other of the source or drain of the sixth transistor of the first light receiving circuit is electrically connected to the first input terminal and is electrically connected to the second light receiving circuit of the sixth transistor.
  • the other of the source or drain can be electrically connected to the second input terminal.
  • the fifth transistor and the sixth transistor have a metal oxide in the channel forming region, and the metal oxides are In, Zn, and M (M is Al, Ti, Ga, Ge, Sn, Y, Zr). , La, Ce, Nd or Hf), and preferably.
  • Each of the first light receiving circuit and the second light receiving circuit further has a seventh transistor and an eighth transistor, and the gate of the seventh transistor is electric with one electrode of the third capacitor. It is preferable that one of the source or drain of the seventh transistor is electrically connected to one of the source or drain of the eighth transistor.
  • the amplification circuit includes a ninth transistor, a tenth transistor, and an eleventh transistor, and one of the source or drain of the ninth transistor is of the third capacitor of the first light receiving circuit. Electrically connected to one electrode, the other of the source or drain of the ninth transistor is electrically connected to the first input terminal, and one of the source or drain of the tenth transistor receives the second light. Electrically connected to one electrode of the third transistor of the circuit, the other of the source or drain of the tenth transistor is electrically connected to the second input terminal and the source or drain of the eleventh transistor. One can be electrically connected to the first input terminal and the other of the source or drain of the eleventh transistor can be electrically connected to the second input terminal.
  • the ninth transistor to the eleventh transistor have a metal oxide in the channel forming region, and the metal oxides are In, Zn, and M (M is Al, Ti, Ga, Ge, Sn, Y, Zr). , La, Ce, Nd or Hf), and preferably.
  • a plurality of pixels can be electrically connected to one readout circuit.
  • Another aspect of the present invention is an electronic device that processes a part of an image based on the distance information of the subject in the image captured by the image pickup device and the image analyzed by the image pickup device.
  • an image pickup apparatus capable of performing image processing.
  • an imaging device capable of acquiring distance information.
  • an imaging device capable of acquiring information on the luminance gradient between adjacent pixels.
  • an imaging device that functions as a part of a neural network can be provided.
  • a low power consumption imaging device can be provided.
  • a highly reliable imaging device can be provided.
  • a new imaging device or the like can be provided.
  • a method for driving the image pickup apparatus can be provided.
  • a new semiconductor device or the like can be provided.
  • FIG. 1 is a block diagram illustrating an imaging device.
  • FIG. 2 is a diagram illustrating a pixel block 200 and a circuit 240.
  • FIG. 3 is a diagram illustrating the pixel 100.
  • FIG. 4A is a diagram illustrating a light receiving circuit.
  • FIG. 4B is a diagram illustrating a differential amplifier circuit.
  • 5A and 5B are diagrams illustrating a current source circuit.
  • FIG. 6 is a timing chart illustrating the operation of the pixel block 200.
  • 7A and 7B are diagrams for explaining the circuit 301 and the circuit 302.
  • FIG. 8 is a diagram illustrating a memory cell.
  • 9A and 9B are diagrams showing a configuration example of a neural network.
  • 10A to 10D are diagrams for explaining the configuration of pixels of the image pickup apparatus.
  • FIG. 11A to 11C are diagrams for explaining the configuration of the photoelectric conversion device.
  • FIG. 12 is a cross-sectional view illustrating the pixels.
  • 13A to 13C are diagrams for explaining Si transistors.
  • FIG. 14 is a cross-sectional view illustrating the pixels.
  • FIG. 15 is a cross-sectional view illustrating the pixels.
  • FIG. 16 is a cross-sectional view illustrating the pixels.
  • 17A to 17D are diagrams for explaining an OS transistor.
  • FIG. 18 is a cross-sectional view illustrating the pixels.
  • 19A to 19C are perspective views (cross-sectional views) illustrating pixels.
  • 20A1 to 20A3 and 20B1 to 20B3 are perspective views of a package and a module containing an imaging device.
  • 21A to 21F are diagrams for explaining electronic devices.
  • FIG. 22 is a diagram illustrating an automobile.
  • the element may be composed of a plurality of elements as long as there is no functional inconvenience.
  • a plurality of transistors operating as switches may be connected in series or in parallel.
  • the capacitor may be divided and arranged at a plurality of positions.
  • one conductor may have a plurality of functions such as wiring, electrodes, and terminals, and in the present specification, a plurality of names may be used for the same element. Further, even if the elements are shown to be directly connected on the circuit diagram, the elements may actually be connected via one or a plurality of conductors. , In the present specification, such a configuration is also included in the category of direct connection.
  • the imaging device holds analog data (image data) acquired in the imaging operation in pixels, and can extract data obtained by multiplying the analog data by an arbitrary weighting coefficient.
  • the difference data between the adjacent light receiving devices can be acquired, and the information of the luminance gradient can be obtained.
  • the information By incorporating the information into a neural network or the like, it is possible to infer distance information or the like. Further, since a huge amount of image data can be held in the pixels in the state of analog data, processing can be performed efficiently.
  • the distance information in the image it is possible to support the picking work by the robot, the automatic driving of the moving body, the distance measurement, and the like. Further, in smartphones and the like, a plurality of cameras are used to acquire distance information, but distance information can be obtained with one camera, and the manufacturing cost can be reduced.
  • FIG. 1 is a block diagram illustrating an imaging device according to an aspect of the present invention.
  • the imaging device includes a pixel array 300, a circuit 301, a circuit 302, a circuit 303, a circuit 304, and a circuit 305.
  • Each of the circuits 301 to 305 is not limited to a single circuit configuration, and may be configured by a combination of a plurality of circuits. Alternatively, any one of the above circuits may be integrated. Further, a circuit other than the above may be connected.
  • the pixel array 300 has an imaging function and a calculation function.
  • the circuit 301 has an arithmetic function.
  • the circuit 302 has an arithmetic function or a data conversion function.
  • the circuits 303 and 304 have a selection function.
  • the circuit 305 has a function of supplying a potential for multiply-accumulate calculation to the pixels.
  • a shift register, a decoder, or the like can be used for the circuit having the selection function.
  • the circuits 301 and 302 may be provided externally.
  • the pixel array 300 has a plurality of pixel blocks 200. As shown in FIG. 2, the pixel block 200 has a pixel array 210 and a circuit 220.
  • the pixel array 210 has a plurality of pixels 100 arranged in a matrix, and each pixel 100 is electrically connected to the wiring 151 and the wiring 152, and the wiring 151 and the wiring 152 are electrically connected to the circuit 220, respectively. Connected to.
  • the circuit 220 is a read circuit and has a circuit 230 and a circuit 240.
  • the circuit 230 is a current source circuit and has a function of controlling the current flowing through the pixel array 210 and the circuit 240.
  • the circuit 240 is a difference extraction circuit, and for example, a correlated double sampling circuit (CDS circuit) can be used.
  • CDS circuit correlated double sampling circuit
  • the circuit 230, the circuit 240, and the pixel array 210 are preferably formed so that any two or more of them have an overlapping region. With this configuration, the area of the pixel block 200 can be reduced and the resolution can be increased.
  • the circuit 240 can also be provided outside the pixel block 200.
  • the number of pixels of the pixel array 210 is set to 3 ⁇ 3 as an example, but the number of pixels is not limited to this. For example, it can be 2 ⁇ 2, 4 ⁇ 4, or the like. Alternatively, the number of pixels in the horizontal direction and the number of pixels in the vertical direction may be different. Alternatively, a switch or the like may be provided between the pixel 100 and the wiring 151 and the wiring 152 to make the number of pixels variable. Further, some pixels may be shared by adjacent pixel blocks 200. Further, an amplifier circuit or a gain adjustment circuit may be electrically connected to the wiring 151.
  • the pixel 100 can acquire image data, generate arithmetic data using the image data, generate data obtained by adding the arithmetic data and a weighting coefficient, and the like. Further, the pixel block 200 having the above configuration can be operated as a product-sum calculation circuit.
  • FIG. 10 A configuration example of the pixel 100 is shown in FIG.
  • the pixel 100 has circuits 10a and 10b, a circuit 20, and a circuit 30.
  • the circuits 10a and 10b are light receiving circuits and have a function of generating imaging data by a photoelectric conversion device.
  • the circuit 20 is a differential amplifier circuit, and has a function of outputting an amplified data potential according to a difference in data input from the circuit 10a and the circuit 10b.
  • the circuit 30 is an arithmetic circuit, and has a function of holding a data potential output from the circuit 20 and a function of giving a weight (potential corresponding to a weighting coefficient) to the data potential.
  • the circuits 10a and 10b can have the same configuration, and include a photoelectric conversion device 101 (photoelectric conversion devices 101a and 101b), transistors 102 (transistors 102a and 102b), transistors 103 (transistors 103a and 103b), and a capacitor 106. (Capacitors 106a, 106b) can be provided.
  • One electrode of the photoelectric conversion device 101 is electrically connected to one of the source and drain of the transistor 102.
  • the other of the source or drain of the transistor 102 is electrically connected to one of the source or drain of the transistor 103 and one of the electrodes of the capacitor 106.
  • the other electrode of the photoelectric conversion device 101 is electrically connected to the wiring 114.
  • the other of the source or drain of the transistor 103 is electrically connected to the wiring 115.
  • the gate of the transistor 102 is electrically connected to the wiring 116.
  • the gate of the transistor 103 is electrically connected to the wiring 117.
  • a node FD (node FDa, node FDb) is an electrical connection point between the other of the source or drain of the transistor 102, one of the source or drain of the transistor 103, and one electrode of the capacitor 106.
  • the wirings 114 and 115 can have a function as a power supply line.
  • the wiring 114 can function as a high-potential power supply line
  • the wiring 115 can function as a low-potential power supply line.
  • the wirings 116 and 117 can function as signal lines for controlling the continuity of each transistor.
  • a photodiode can be used as the photoelectric conversion device 101. Regardless of the type of photodiode, a Si photodiode having silicon in the photoelectric conversion layer, an organic photodiode having an organic photoconductive film in the photoelectric conversion layer, or the like can be used. If it is desired to increase the light detection sensitivity at low illuminance, it is preferable to use an avalanche photodiode.
  • the transistor 102 can have a function of controlling the potential of the node FD.
  • the transistor 103 can have a function of initializing the potential of the node FD.
  • a high voltage may be applied, and it is preferable to use a high voltage transistor for the transistor connected to the photoelectric conversion device 101.
  • a high voltage transistor for example, a transistor using a metal oxide in the channel forming region (hereinafter, OS transistor) or the like can be used. Specifically, it is preferable to apply an OS transistor to the transistor 102.
  • the OS transistor also has a characteristic that the off-current is extremely low.
  • the period during which the electric charge can be held in the node FD can be extremely extended. Therefore, it is possible to apply the global shutter method in which charge accumulation operation is performed simultaneously in all pixels without complicating the circuit configuration and operation method. Further, while holding the image data in the node FD, it is possible to perform a plurality of operations using the image data.
  • Si transistor silicon in the channel forming region
  • an OS transistor and a Si transistor may be arbitrarily combined and applied.
  • the Si transistor include a transistor having amorphous silicon, a transistor having crystalline silicon (microcrystalline silicon, low temperature polysilicon, single crystal silicon), and the like.
  • the above is an example of the circuit configuration of the circuits 10a and 10b, and the photoelectric conversion operation can be performed by another circuit configuration.
  • the circuits 10a and 10b may have a configuration including transistors 175 (transistors 175a and 175b) and transistors 176 (transistors 176a and 176b).
  • the gate of transistor 175 is electrically connected to the node FD.
  • One of the source or drain of the transistor 175 is electrically connected to the wiring 118, and the other of the source or drain of the transistor 175 is electrically connected to one of the source or drain of the transistor 176.
  • the other of the source or drain of the transistor 176 is electrically connected to the wiring OUT.
  • the wiring 118 can function as a power supply line and may be connected to the wiring 115.
  • the transistor 175 is a source follower element that outputs data according to the potential of the node FD. Further, the transistor 176 functions as a selection transistor for selecting a light receiving circuit to be read. Therefore, by using the circuits 10a and 10b having the configuration of FIG. 4A, the image data can be read out from each light receiving circuit to the wiring OUT. Further, in this configuration, image data can be read out in parallel with the operation of the circuit 20.
  • the circuit 20 can include a transistor 104 (transistors 104a, 104b), a transistor 105 (transistors 105a, 105b), a transistor 107, a transistor 108, and a transistor 131 (transistors 131a, 131b).
  • One of the source or drain of transistor 104a is electrically connected to one of the gate of transistor 105a and one of the source or drain of transistor 107.
  • One of the source or drain of transistor 104b is electrically connected to the gate of transistor 105b and the other of source or drain of transistor 107.
  • One of the source or drain of the transistor 105a is electrically connected to one of the source or drain of the transistor 131a and the gate.
  • One of the source or drain of transistor 105b is electrically connected to one of the source or drain of transistor 131b and the gate.
  • the other of the source or drain of the transistor 105a is electrically connected to the other of the source or drain of the transistor 105b and one of the source or drain of the transistor 108.
  • the other of the source or drain of the transistor 131 is electrically connected to the wiring 124.
  • the other of the source or drain of the transistor 108 is electrically connected to a reference potential line or a low potential power supply line such as GND wiring.
  • the gate of the transistor 104a is electrically connected to the wiring 121.
  • the gate of the transistor 104b is electrically connected to the wiring 122.
  • the gate of the transistor 107 is electrically connected to the wiring 123.
  • the wiring 124 can have a function as, for example, a power supply line for supplying a high potential power source.
  • the wiring 121, the wiring 122, and the wiring 123 can have a function as a signal line for controlling the continuity of each transistor.
  • the transistor 104 functions as a switch.
  • the other of the source or drain of the transistor 104a is electrically connected to the node FDa of the circuit 10a.
  • the other side of the source or drain of the transistor 104b is electrically connected to the node FDb of the circuit 10b. Therefore, it can be said that the transistor 104 is an element of the circuits 10a and 10b.
  • the transistor 105 functions as a differential transistor pair in the differential amplifier circuit.
  • the gate of the transistor 105a functions as a first input terminal of the circuit 20.
  • the gate of the transistor 105b functions as a second input terminal of the circuit 20. Therefore, the data generated by the circuit 10a can be input to the first input terminal. Further, the data generated by the circuit 10b can be input to the second input terminal.
  • the transistor 107 functions as a switch, and the first input terminal and the second input terminal can have the same potential.
  • the switch can be used when acquiring reference data.
  • the transistor 108 functions as a current source, and an appropriate potential (Bias) is supplied to the gate.
  • An appropriate potential (Bias) is supplied to the gate.
  • a resistance element may be used instead of the transistor 108.
  • the transistor 131 functions as a voltage conversion circuit. Although the transistor 131 is illustrated as a diode-connected p-channel transistor in FIG. 3, it may be a diode-connected n-channel transistor. Alternatively, a diode element, a resistance element, or a cascode circuit may be used instead of the transistor 131.
  • a part of the wiring connecting one of the source or drain of the transistor 105b and one of the source or drain of the transistor 131b also functions as an output terminal, and is represented as a node N in FIG.
  • An amplified data potential can be output to the output terminal (node N) according to the difference between the output data of the circuit 10a and the output data of the circuit 10b.
  • the circuit 20 may have a configuration in which the transistor 104 and the transistor 107 are omitted.
  • the transistor 104 and the transistor 107 are provided so that the first input terminal and the second input terminal have the same potential, but if the potential (reset potential) of the wiring 115 supplied from the transistor 103 is used as the potential, the potential of the wiring 115 (reset potential) can be used.
  • the transistor 104 and the transistor 107 can be omitted.
  • the circuit 30 can have a configuration including a transistor 132, a transistor 133, a transistor 134, a transistor 142, a transistor 143, a transistor 144, a capacitor 135, and a capacitor 145.
  • One of the source or drain of transistor 132 is electrically connected to one electrode of capacitor 135 and the gate of transistor 133.
  • the other electrode of the capacitor 135 is electrically connected to one of the source or drain of the transistor 134.
  • One of the source or drain of the transistor 142 is electrically connected to one electrode of the capacitor 145 and the gate of the transistor 143.
  • the other electrode of the capacitor 145 is electrically connected to one of the source or drain of the transistor 144.
  • the gate of the transistor 132 is electrically connected to the wiring 125.
  • the gate of the transistor 142 is electrically connected to the wiring 126.
  • the gate of the transistor 134 and the gate of the transistor 144 are electrically connected to the wiring 127.
  • the other source or drain of transistor 132 and the other source or drain of transistor 142 are electrically connected to node N.
  • the other of the source or drain of the transistor 134 and the other of the source or drain of the transistor 144 are electrically connected to the wiring 128.
  • One of the source and drain of the transistor 133 is electrically connected to the wiring 151.
  • One of the source or drain of the transistor 143 is electrically connected to the wiring 152.
  • the other of the source or drain of the transistor 133 and the other of the source or drain of the transistor 143 are electrically connected to a reference or low potential line of force such as GND wiring.
  • the wiring 125, the wiring 126, and the wiring 127 can have a function as a signal line for controlling the continuity of each transistor.
  • the wiring 128 is, for example, a wiring capable of supplying a potential corresponding to a weighting coefficient (such as a filter for convolution processing), and is electrically connected to the circuit 305 (see FIG. 1).
  • the wiring 151 is a wiring electrically connected to the circuit 230 and the circuit 240, and the wiring 152 is a wiring electrically connected to the circuit 230 (see FIG. 2).
  • a point (wiring) to which one of the source or drain of the transistor 132, one electrode of the capacitor 135, and the gate of the transistor 133 are connected is referred to as a node P1.
  • a point (wiring) to which one of the source or drain of the transistor 142, one electrode of the capacitor 145, and the gate of the transistor 143 is connected is referred to as a node P2.
  • Data output by the circuit 20 can be stored in the node P1 and the node P2. Further, the node P1 and the node P2 can be made floating. Therefore, the potential (weighting coefficient) supplied from the wiring 128 can be given to the data held in the node P1 and the node P2 by the capacitive coupling of the capacitor 135 or the capacitor 145.
  • the readout circuit 220 includes a circuit 230 that functions as a current source circuit and a circuit 240 that functions as a difference extraction circuit.
  • the circuit 230 can flow a current according to the data held in the pixel 100, and can be configured as shown in FIG. 5A, for example.
  • the circuit 230 can be configured to include a current supply unit 225 and a current mirror unit 226.
  • FIG. 5A shows a configuration using an n-ch type transistor.
  • the current supply unit 225 may have a configuration including transistors 222 and 252 and transistors 223 and 253.
  • One of the source and drain of the transistor 222 is electrically connected to the signal line FG.
  • the other of the source or drain of transistor 222 is electrically connected to the gate of transistor 223.
  • One of the source and drain of the transistor 252 is electrically connected to the signal line FGREF.
  • the other of the source or drain of transistor 252 is electrically connected to the gate of transistor 253.
  • the gate of transistor 222 and the gate of transistor 252 are electrically connected to wiring 213.
  • One of the source or drain of the transistor 223 is electrically connected to the wiring 151.
  • One of the source or drain of the transistor 253 is electrically connected to the wiring 152.
  • the other of the source or drain of the transistor 223 and the other of the source or drain of the transistor 253 are electrically connected to the high potential power line (VDD).
  • an appropriate signal potential is supplied to the signal lines FG and FGREF, and by supplying a high potential (“H”) to the wiring 213, the transistors 222 and 252 and the transistors 223 and 253 become conductive.
  • the wiring 151 and the wiring 152 can be supplied with an electric current.
  • the current mirror unit 226 may have a transistor 254 and a transistor 224.
  • One of the gate and source or drain of transistor 254 is electrically connected to wire 152.
  • One of the source or drain of the transistor 224 is electrically connected to the wiring 151.
  • the other source or drain of transistor 224 and the other source or drain of transistor 254 are electrically connected to a low potential power line (VSS).
  • the gate of the transistor 224 is electrically connected to the gate of the transistor 254, and the same current (ICM) as that of the transistor 254 can be passed through the transistor 224.
  • the current supply unit 225 may have a configuration using a p-ch type transistor as shown in FIG. 5B.
  • the output side of the transistor 262 is electrically connected to the wiring 152 and the gate of the transistor 261.
  • the circuit 240 is a difference extraction circuit, and the product of the data and the weighting coefficient (product-sum calculation result) can be extracted by using the current flowing through the pixel 100 and the circuit 230. As shown in FIG. 2, each pixel 100 is electrically connected to each other by wiring 151. The circuit 240 can perform calculations using the sum of the currents flowing through the transistors 133 of each pixel 100.
  • the circuit 240 includes a capacitor 202, a transistor 203, a transistor 204, a transistor 205, a transistor 206, and a transistor 207 as a voltage conversion circuit.
  • An appropriate analog potential (Bias) is applied to the gate of transistor 207.
  • One electrode of the capacitor 202 is electrically connected to one of the source or drain of transistor 203 and the gate of transistor 204.
  • One of the source or drain of transistor 204 is electrically connected to one of the source or drain of transistor 205 and one of the source or drain of transistor 206.
  • the other electrode of the capacitor 202 is electrically connected to one of the wires 151 and the source or drain of the transistor 207.
  • a point connecting one electrode of the capacitor 202, one of the source or drain of the transistor 203, and the gate of the transistor 204 is referred to as a node C.
  • the other of the source or drain of transistor 203 is electrically connected to wiring 218.
  • the other of the source or drain of transistor 204 is electrically connected to wire 219.
  • the other of the source or drain of the transistor 205 is electrically connected to a reference power line such as GND wiring.
  • the other of the source or drain of the transistor 206 is electrically connected to the wiring 212.
  • the other of the source or drain of transistor 207 is electrically connected to a reference power line such as GND wiring.
  • the gate of transistor 203 is electrically connected to wiring 216.
  • the gate of the transistor 205 is electrically connected to the wiring 215.
  • the gate of transistor 206 is electrically connected to wiring 214.
  • Wiring 218 and 219 can have a function as a power supply line.
  • the wiring 218 can have a function as a wiring for supplying a reset potential (Vr) for reading.
  • the wiring 219 can function as a high-potential power supply line.
  • the wirings 214, 215, and 216 can function as signal lines for controlling the continuity of each transistor.
  • the wiring 212 is an output line and can be electrically connected to, for example, the circuit 301 shown in FIG.
  • the transistor 203 can have a function of resetting the potential of the node C to the potential of the wiring 218.
  • the transistors 204 and 205 can have a function as a source follower circuit.
  • the transistor 206 can have a function of controlling reading.
  • the circuit 240 has a function as a correlated double sampling circuit (CDS circuit), and can be replaced with a circuit having another configuration having the function.
  • CDS circuit correlated double sampling circuit
  • the data obtained by voltage-converting the current flowing from the circuit 230 to the circuit 240 based on the reference data and the difference data and the current flowing from the circuit 230 to the circuit 240 when the reference data and the difference data are weighted are voltage-converted.
  • the differential potential with the data is extracted by the circuit 240.
  • the differential potential corresponds to data obtained by removing various offset components from the current flowing through the circuit 220, and is data obtained by voltage-converting the current represented by the term of the product of the difference data and the weighting coefficient. That is, the product of the difference data and the weighting coefficient can be extracted.
  • the description of the operation of the pixel 100 is omitted, and the difference data (obtained by photoelectric conversion) of the circuit 10a and the circuit 10b is connected to the node P1.
  • the data potential X corresponding to the difference between the data) is stored, and the data potential (reference data, ideally 0) output by the circuit 20 when there is no difference between the outputs of the circuit 10a and the circuit 10b is stored in the node P2. It will be described as being in the stored state. The detailed operation of the pixel 100 will be described later.
  • an offset component other than the product of the difference data (potential X) and the weighting coefficient (potential W) can be removed to extract the target WX.
  • the flow of WX extraction when the circuit shown in FIG. 5A is used as the circuit 230 is as follows.
  • the transistor 203 is brought into a conductive state, and the potential Vr is written from the wiring 218 to the node C.
  • the potential Vr is a reset potential used for the read operation.
  • the difference data (potential X) is written in the node P1 of the circuit 30 of the pixel 100. Further, it is assumed that the reference data 0 is written in the node P2. Further, the weighting coefficient written from the wiring 128 is set to 0.
  • the total current flowing from the circuit 230 to the transistor 133 of each pixel 100 is k ⁇ (XV th ) 2 . Further, the total current flowing from the circuit 230 to the transistor 143 of each pixel 100 is k ⁇ (0 ⁇ V th ) 2 .
  • k is a constant and Vth is the threshold voltage of each transistor.
  • the total current flowing through the transistor 223 is defined as an IC
  • the total current flowing through the transistor 253 is defined as an ICFEF
  • the total current flowing through the transistor 224 and the transistor 254 is defined as an ICM (see FIG. 5A).
  • ICM 0 ICREF 0- k ⁇ (0-V th ) 2 .
  • the transistor 203 of the circuit 240 is brought into a non-conducting state, and the potential Vr is held at the node C.
  • a potential corresponding to the weighting coefficient (W) is supplied to the wiring 128, and the weighting coefficient (W) is given to the node P1 and the node P2 by capacitive coupling.
  • the total current flowing from the circuit 230 to the transistor 133 of each pixel 100 is k ⁇ (X + W ⁇ V th ) 2 . Further, the total current flowing from the circuit 230 to the transistor 143 of each pixel 100 is k ⁇ (WV th ) 2 .
  • the difference can be extracted by the circuit 240.
  • IR 0 is initialized as the potential Vr of the node C, and the potential of the wiring 151 changes from the state of the weight coefficient 0 to the state of the weight coefficient W when the node C is floating. ( Corresponding to the difference between IR 0 and IR) is added to the node C by the capacitive coupling of the capacitor 202.
  • the pixel 100 described here has the configuration shown in FIG. Further, it is assumed that a predetermined potential is supplied to the power supply line and the like.
  • the transistor 104b and the transistor 107 are conductive, and the potential of the node FDb is input to the first input terminal (gate of the transistor 105a) and the second input terminal (gate of the transistor 105b) of the circuit 20.
  • the output terminal (node N) of the circuit 20 outputs the amplified data potential according to the difference between the data input to the first input terminal and the data input to the second input terminal. ..
  • the data potential output to the output terminal (node N) of the circuit 20 can be referred to as reference data.
  • the reference data is data that is output when there is no difference between the data input to the first input terminal and the data input to the second input terminal.
  • the reference data may be output when the node FDa and the node FDb are set to the reset potentials.
  • the potential of the wiring 126 is "H" at time T4
  • the potential of the output terminal (node N) of the circuit 20 is written to the node P2 of the circuit 30.
  • the potential of the wiring 126 is set to “L”, and the potential of the node P2 is held.
  • the potential of the wiring 127 is set to "H”
  • the potential of the other electrode of the capacitors 135 and 145 is set to the potential of the wiring 128 (for example, 0).
  • the data potential amplified according to the difference between the node FDa and the node FDb is output to the output terminal (node N) of the circuit 20.
  • the data potential output to the output terminal (node N) of the circuit 20 is a potential amplified according to the difference between the image data acquired by the circuit 10a and the image data acquired by the circuit 10b, and is different from the difference data. Can be called. Alternatively, it can also be called image data or imaging data.
  • the potential of the wiring 125 is "H” at time T6
  • the potential of the output terminal (node N) of the circuit 20 is written to the node P1 of the circuit 30.
  • the potential of the wiring 125 is set to “L”, and the potential of the node P1 is held.
  • the ICREF is the sum of the current (ICM) flowing through the transistor 254 and the current flowing through the transistor 143 of the circuit 30.
  • the current IC is the sum of the current (ICM) flowing through the transistor 224, the current flowing through the transistor 133 of the circuit 30, and the current flowing through the transistor 207 of the circuit 240.
  • the potential of the wiring 151 is determined in the above state, the potential of the wiring 216 is set to "H”, and the potential “Vr" of the wiring 218 is written to the node C. Then, the potential of the wiring 216 is set to "L”, the node C is set to floating, and the potential "Vr" is held.
  • the circuit 240 can output the signal potential corresponding to the WX to the wiring 212 by the source follower operation.
  • the potential of the wiring 127 is set to "L”
  • the potential of the wiring 213 is set to “L”
  • the potential of the wiring 214 is set to “L”
  • the potential of the wiring 215 is set to “L”
  • the WX output from the circuit 240 by the above operation can be input to the circuit 301.
  • the data of the node P1 and the node P2 may have a time difference.
  • information including motion parallax can be extracted.
  • Depth (distance) information can be obtained from motion parallax, and a stereoscopic image can be constructed.
  • FIG. 7A is a diagram illustrating a circuit 301 and a circuit 302 connected to the circuit 240.
  • the product-sum calculation result data output from the circuit 240 is sequentially input to the circuit 301.
  • the circuit 301 may have various arithmetic functions. Alternatively, the function of the circuit 301 may be replaced by software processing.
  • the circuit 301 can have a circuit that performs an operation of an activation function.
  • a comparator circuit can be used for the circuit.
  • the comparator circuit outputs the result of comparing the input data with the set threshold value as binary data. That is, the pixel block 200 and the circuit 301 can act as a part of the neural network.
  • the circuit 301 may have an A / D converter.
  • the circuit 301 can convert the analog data into digital data.
  • the circuit 10a and the circuit 10b shown in FIG. 4A can be electrically connected to the circuit 301 via the wiring OUT.
  • the data output by the pixel block 200 corresponds to the image data of a plurality of bits, but if it can be binarized by the circuit 301, it can be said that the image data is compressed.
  • the data output from the circuit 301 is sequentially input to the circuit 302.
  • the circuit 302 can be configured to include, for example, a latch circuit and a shift register. With this configuration, parallel serial conversion can be performed, and the data input in parallel can be output to the wiring 311 as serial data.
  • the connection destination of the wiring 311 is not limited. For example, it can be connected to a neural network, a storage device, a communication device, or the like.
  • the circuit 302 may have a neural network.
  • the neural network has memory cells arranged in a matrix, and each memory cell holds a weighting coefficient.
  • the data output from the circuit 301 is input to each of the memory cells 320, and the product-sum operation can be performed.
  • the number of memory cells shown in FIG. 7B is an example and is not limited.
  • the neural network shown in FIG. 7B has memory cells 320 and reference memory cells 325 installed in a matrix, a circuit 330, a circuit 350, a circuit 360, and a circuit 370.
  • FIG. 8 shows an example of the memory cell 320 and the reference memory cell 325.
  • Reference memory cells 325 are provided in an arbitrary row.
  • the memory cell 320 and the reference memory cell 325 have a similar configuration and include a transistor 161 and a transistor 162 and a capacitor 163.
  • One of the source or drain of transistor 161 is electrically connected to the gate of transistor 162.
  • the gate of transistor 162 is electrically connected to one electrode of capacitor 163.
  • a node NM is a point where one of the source and drain of the transistor 161, the gate of the transistor 162, and one electrode of the capacitor 163 are connected.
  • the gate of the transistor 161 is electrically connected to the wiring WL.
  • the other electrode of the capacitor 163 is electrically connected to the wiring RW.
  • One of the source and drain of the transistor 162 is electrically connected to a reference potential wiring such as a GND wiring.
  • the other of the source or drain of the transistor 161 is electrically connected to the wiring WD.
  • the other of the source or drain of the transistor 162 is electrically connected to the wiring BL.
  • the other of the source or drain of the transistor 161 is electrically connected to the wiring WDref.
  • the other of the source or drain of the transistor 162 is electrically connected to the wiring BLref.
  • the wiring WL is electrically connected to the circuit 330.
  • a decoder, a shift register, or the like can be used for the circuit 330.
  • the wiring RW is electrically connected to the circuit 301.
  • Binary data output from the circuit 301 is written to each memory cell.
  • a sequential circuit such as a shift register may be provided between the circuit 301 and each memory cell.
  • the wiring WD and the wiring WDref are electrically connected to the circuit 350.
  • a decoder, a shift register, or the like can be used for the circuit 350.
  • the circuit 350 may have a D / A converter and an SRAM.
  • the circuit 350 can output the weighting factor written to the node NM.
  • the wiring BL and the wiring BLref are electrically connected to the circuit 360.
  • the circuit 360 can have the same configuration as the circuit 240.
  • the circuit 360 can obtain a signal obtained by removing the offset component from the product-sum calculation result.
  • the circuit 360 is electrically connected to the circuit 370.
  • the circuit 370 can also be rephrased as an activation function circuit.
  • the activation function circuit has a function of performing an operation for converting a signal input from the circuit 360 according to a predefined activation function.
  • As the activation function for example, a sigmoid function, a tanh function, a softmax function, a ReLU function, a threshold function, and the like can be used.
  • the signal converted by the activation function circuit is output to the outside as output data.
  • the neural network NN can be composed of an input layer IL, an output layer OL, and an intermediate layer (hidden layer) HL.
  • the input layer IL, the output layer OL, and the intermediate layer HL each have one or more neurons (units).
  • the intermediate layer HL may be one layer or two or more layers.
  • a neural network having two or more intermediate layers HL can also be called a DNN (deep neural network). Learning using a deep neural network can also be called deep learning.
  • Input data is input to each neuron in the input layer IL.
  • the output signals of the neurons in the anterior layer or the posterior layer are input to each neuron in the middle layer HL.
  • the output signals of the neurons in the presheaf layer are input to each neuron in the output layer OL.
  • Each neuron may be connected to all neurons in the anterior and posterior layers (fully connected), or may be connected to some neurons.
  • FIG. 9B shows an example of calculation by neurons.
  • two neurons in the presheaf layer that output a signal to the neuron N and the neuron N are shown.
  • the output x 1 of the presheaf neuron and the output x 2 of the presheaf neuron are input to the neuron N.
  • the sum of the multiplication result of the output x 1 and the weight w 1 (x 1 w 1 ) and the multiplication result of the output x 2 and the weight w 2 (x 2 w 2 ) is x 1 w 1 + x 2 w 2.
  • the operation by the neuron includes the operation of adding the product of the output of the neuron in the previous layer and the weight, that is, the product-sum operation (x 1 w 1 + x 2 w 2 above ).
  • This product-sum operation may be performed by software using a program or by hardware.
  • the product-sum calculation is performed using an analog circuit as hardware.
  • an analog circuit is used for the product-sum calculation circuit, the processing speed can be improved and the power consumption can be reduced by reducing the circuit scale of the product-sum calculation circuit or reducing the number of times the memory is accessed.
  • the product-sum calculation circuit preferably has an OS transistor. Since the OS transistor has an extremely small off current, it is suitable as a transistor constituting an analog memory of a product-sum calculation circuit.
  • the product-sum calculation circuit may be configured by using both the Si transistor and the OS transistor.
  • FIG. 10A is a diagram showing an example of the pixel structure of the image pickup apparatus, and can be a laminated structure of layers 561 and 563.
  • Layer 561 has a photoelectric conversion device 101.
  • the photoelectric conversion device 101 can have a layer 565a and a layer 565b as shown in FIG. 11A. In some cases, the layer may be referred to as an area.
  • the photoelectric conversion device 101 shown in FIG. 11A is a pn junction type photodiode.
  • a p-type semiconductor can be used for the layer 565a and an n-type semiconductor can be used for the layer 565b.
  • an n-type semiconductor may be used for the layer 565a and a p-type semiconductor may be used for the layer 565b.
  • the pn junction type photodiode can be typically formed by using single crystal silicon.
  • a photodiode having a single crystal silicon as a photoelectric conversion layer has a relatively wide spectral sensitivity characteristic from ultraviolet light to near infrared light, and can detect light of various wavelengths by combining with an optical conversion layer described later. Can be done.
  • a compound semiconductor may be used as the photoelectric conversion layer of the pn junction type photodiode.
  • the compound semiconductor include gallium-arsenide-phosphorus compound (GaAsP), gallium-phosphorus compound (GaP), indium-gallium-arsenide compound (InGaAs), lead-sulfur compound (PbS), and lead-selenium compound (PbSe). ), Indium-arsenide compound (InAs), indium-antimonide compound (InSb), mercury-cadmium-tellulu compound (HgCdTe) and the like can be used.
  • the compound semiconductor includes a compound semiconductor having Group 13 elements (aluminum, gallium, indium, etc.) and Group 15 elements (nitrogen, phosphorus, arsenic, antimony, etc.) (also referred to as Group 3-5 compound semiconductor), or Group 12 elements. It is preferably a compound semiconductor (also referred to as a Group 2-6 compound semiconductor) having (magnesium, zinc, cadmium, mercury, etc.) and Group 16 elements (oxygen, sulfur, selenium, tellurium, etc.).
  • the band gap of a compound semiconductor can be changed according to the combination of constituent elements and the atomic number ratio thereof, a photodiode having sensitivity in various wavelength ranges from ultraviolet light to infrared light can be formed.
  • the wavelength of ultraviolet light is around 0.01 ⁇ m to 0.38 ⁇ m
  • the wavelength of visible light is around 0.38 ⁇ m to 0.75 ⁇ m
  • the wavelength of near infrared light is around 0.75 ⁇ m to 2.5 ⁇ m.
  • the wavelength of mid-infrared light can be generally defined as around 2.5 ⁇ m to 4 ⁇ m
  • the wavelength of far-infrared light can be generally defined as near 4 ⁇ m to around 1000 ⁇ m.
  • GaP gallium phosphide
  • the photoelectric conversion layer in order to form a photodiode having light sensitivity from ultraviolet light to visible light, GaP or the like can be used for the photoelectric conversion layer.
  • the above-mentioned silicon or GaAsP can be used for the photoelectric conversion layer.
  • InGaAs or the like in order to form a photodiode having light sensitivity from visible light to mid-infrared light.
  • PbS, InAs, or the like can be used for the photoelectric conversion layer.
  • PbSe, InSb, HgCdTe or the like can be used for the photoelectric conversion layer.
  • the photodiode using the compound semiconductor may be a pin junction as well as a pn junction. Further, the pn junction and the pin junction are not limited to the homozygous structure, and may be a heterojunction structure.
  • a first compound semiconductor can be used for one layer of the pn junction structure, and a second compound semiconductor different from the first compound semiconductor can be used for the other layer.
  • a first compound semiconductor can be used for any one or two layers of the pin junction structure, and a second compound semiconductor different from the first compound semiconductor can be used for the other layers.
  • One of the first compound semiconductor and the second compound semiconductor may be a single semiconductor such as silicon.
  • the photoelectric conversion layer of the photodiode may be formed by using a different material for each pixel. Pixels that detect ultraviolet light by using this configuration. It is possible to form an image pickup apparatus having any two types of pixels, such as a pixel that detects visible light and a pixel that detects infrared light, or three types of pixels.
  • the photoelectric conversion device 101 included in the layer 561 may be a laminate of the layer 566a, the layer 566b, the layer 566c, and the layer 566d.
  • the photoelectric conversion device 101 shown in FIG. 11B is an example of an avalanche photodiode, in which layers 566a and 566d correspond to electrodes, and layers 566b and 566c correspond to photoelectric conversion units.
  • the layer 566a is preferably a low resistance metal layer or the like.
  • a low resistance metal layer or the like aluminum, titanium, tungsten, tantalum, silver or a laminate thereof can be used.
  • the layer 566d it is preferable to use a conductive layer having high translucency with respect to visible light.
  • a conductive layer having high translucency with respect to visible light For example, indium oxide, tin oxide, zinc oxide, indium-tin oxide, gallium-zinc oxide, indium-gallium-zinc oxide, graphene and the like can be used.
  • the layer 566d may be omitted.
  • the layers 566b and 566c of the photoelectric conversion unit can be configured as a pn junction type photodiode using, for example, a selenium-based material as a photoelectric conversion layer. It is preferable that a selenium-based material, which is a p-type semiconductor, is used as the layer 566b, and gallium oxide, which is an n-type semiconductor, is used as the layer 566c.
  • a photoelectric conversion device using a selenium-based material has a characteristic of high external quantum efficiency with respect to visible light.
  • the amplification of electrons with respect to the amount of incident light can be increased by utilizing the avalanche multiplication.
  • the selenium-based material has a high light absorption coefficient, it has a production advantage such that the photoelectric conversion layer can be formed of a thin film.
  • a thin film of a selenium-based material can be formed by a vacuum vapor deposition method, a sputtering method, or the like.
  • selenium-based material crystalline selenium (single crystal selenium, polycrystalline selenium) and amorphous selenium can be used. These have photosensitivity from ultraviolet light to visible light. Further, a compound of copper, indium and selenium (CIS), a compound of copper, indium, gallium and selenium (CIGS) and the like can be used. These have photosensitivity from ultraviolet light to near infrared light.
  • CIS copper, indium and selenium
  • CGS indium, gallium and selenium
  • the n-type semiconductor is preferably formed of a material having a wide bandgap and translucency with respect to visible light.
  • a material having a wide bandgap and translucency with respect to visible light For example, zinc oxide, gallium oxide, indium oxide, tin oxide, or an oxide in which they are mixed can be used.
  • these materials also have a function as a hole injection blocking layer, and can reduce the dark current.
  • the photoelectric conversion device 101 included in the layer 561 may be a laminate of the layer 567a, the layer 567b, the layer 567c, the layer 567d, and the layer 567e.
  • the photoelectric conversion device 101 shown in FIG. 11C is an example of an organic photoconductive film, layer 567a is a lower electrode, layer 567e is a translucent upper electrode, and layers 567b, 567c, and 567d correspond to a photoelectric conversion unit. ..
  • One of the layers 567b and 567d of the photoelectric conversion unit can be a hole transport layer and the other can be an electron transport layer. Further, the layer 567c can be a photoelectric conversion layer.
  • the hole transport layer for example, molybdenum oxide or the like can be used.
  • the electron transport layer for example, fullerenes such as C 60 and C 70 , or derivatives thereof and the like can be used.
  • the photoelectric conversion layer a mixed layer (bulk heterojunction structure) of an n-type organic semiconductor and a p-type organic semiconductor can be used.
  • a mixed layer bulk heterojunction structure
  • organic semiconductors There are various types of organic semiconductors, and a material having photosensitivity at a target wavelength may be selected for the photoelectric conversion layer.
  • a silicon substrate can be used as the layer 563 shown in FIG. 10A.
  • the silicon substrate has a Si transistor and the like.
  • the Si transistor can be used to form a circuit for driving the pixel circuit, an image signal readout circuit, an image processing circuit, a neural network, a communication circuit, and the like.
  • a storage circuit such as a DRAM (Dynamic Random Access Memory), a CPU (Central Processing Unit), an MCU (Micro Controller Unit), or the like may be formed.
  • the above circuit excluding the pixel circuit is referred to as a functional circuit.
  • a part or all of them may be provided on the layer 563. can.
  • the layer 563 may be a stack of a plurality of layers as shown in FIG. 10B.
  • FIG. 10B three layers of layers 563a, 563b, and 563c are illustrated, but two layers may be used.
  • the layer 563 may be a stack of four or more layers. These layers can be laminated by using, for example, a bonding step. With this configuration, the pixel circuit and the functional circuit can be dispersed in a plurality of layers, and the pixel circuit and the functional circuit can be provided in an overlapping manner, so that a compact and highly functional imaging device can be manufactured.
  • the pixel may have a laminated structure of layers 561, 562, and 563.
  • Layer 562 can have an OS transistor.
  • One or more of the above-mentioned functional circuits may be formed of OS transistors.
  • one or more functional circuits may be formed by using the Si transistor included in the layer 563 and the OS transistor included in the layer 562.
  • the layer 563 may be used as a support substrate such as a glass substrate, and the functional circuit may be formed by the OS transistor included in the layer 562.
  • a normally-off CPU (also referred to as "Noff-CPU") can be realized by using an OS transistor and a Si transistor.
  • the Nonf-CPU is an integrated circuit including a normally-off type transistor that is in a non-conducting state (also referred to as an off state) even when the gate voltage is 0V.
  • the Noff-CPU can stop the power supply to the unnecessary circuit in the Noff-CPU and put the circuit in the standby state. No power is consumed in the circuit where the power supply is stopped and the circuit is in the standby state. Therefore, the Nonf-CPU can minimize the amount of power used. Further, the Nonf-CPU can retain information necessary for operation such as setting conditions for a long period of time even if the power supply is stopped. To return from the standby state, it is only necessary to restart the power supply to the circuit, and it is not necessary to rewrite the setting conditions and the like. That is, high-speed recovery from the standby state is possible. In this way, the Nonf-CPU can reduce the power consumption without significantly reducing the operating speed.
  • the layer 562 may be a stack of a plurality of layers as shown in FIG. 10D.
  • FIG. 10D two layers of layers 562a and 563b are illustrated, but three or more layers may be laminated. These layers can be formed so as to be stacked on, for example, layer 563.
  • the layer formed on the layer 563 and the layer formed on the layer 561 may be bonded together.
  • a metal oxide having an energy gap of 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more can be used.
  • a typical example is an oxide semiconductor containing indium, and for example, CAAC-OS or CAC-OS, which will be described later, can be used.
  • CAAC-OS is suitable for transistors and the like in which the atoms constituting the crystal are stable and reliability is important. Further, since CAC-OS exhibits high mobility characteristics, it is suitable for a transistor or the like that performs high-speed driving.
  • the OS transistor Since the OS transistor has a large energy gap in the semiconductor layer, it exhibits an extremely low off-current characteristic of several yA / ⁇ m (current value per 1 ⁇ m of channel width). Further, the OS transistor has features different from those of the Si transistor such as impact ionization, avalanche breakdown, and short channel effect, and can form a circuit having high withstand voltage and high reliability. In addition, variations in electrical characteristics due to crystallinity non-uniformity, which is a problem with Si transistors, are unlikely to occur with OS transistors.
  • the semiconductor layer of the OS transistor includes, for example, indium, zinc and M (one or more selected from metals such as indium, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium or hafnium). It can be a film represented by an In—M—Zn-based oxide containing.
  • the In—M—Zn-based oxide can be typically formed by a sputtering method. Alternatively, it may be formed by using an ALD (Atomic layer deposition) method.
  • the atomic number ratio of the metal element of the sputtering target used for forming the In—M—Zn-based oxide by the sputtering method preferably satisfies In ⁇ M and Zn ⁇ M.
  • the atomic number ratio of the semiconductor layer to be formed includes fluctuations of plus or minus 40% of the atomic number ratio of the metal element contained in the sputtering target.
  • the semiconductor layer an oxide semiconductor having a low carrier density is used.
  • the semiconductor layer has a carrier density of 1 ⁇ 10 17 / cm 3 or less, preferably 1 ⁇ 10 15 / cm 3 or less, more preferably 1 ⁇ 10 13 / cm 3 or less, and more preferably 1 ⁇ 10 11 / cm. 3 or less, more preferably less than 1 ⁇ 10 10 / cm 3, it is possible to use an oxide semiconductor of 1 ⁇ 10 -9 / cm 3 or more carrier density.
  • Such oxide semiconductors are referred to as high-purity intrinsic or substantially high-purity intrinsic oxide semiconductors. It can be said that the oxide semiconductor is an oxide semiconductor having a low defect level density and stable characteristics.
  • a transistor having an appropriate composition may be used according to the required semiconductor characteristics and electrical characteristics (field effect mobility, threshold voltage, etc.) of the transistor. Further, in order to obtain the required semiconductor characteristics of the transistor, it is preferable that the carrier density, impurity concentration, defect density, atomic number ratio of metal element and oxygen, interatomic distance, density and the like of the semiconductor layer are appropriate. ..
  • the concentration of silicon or carbon in the semiconductor layer is set to 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal in the semiconductor layer is 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen concentration in the semiconductor layer is preferably 5 ⁇ 10 18 atoms / cm 3 or less.
  • the oxide semiconductor constituting the semiconductor layer when the oxide semiconductor constituting the semiconductor layer contains hydrogen, it reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency in the oxide semiconductor. If the channel formation region in the oxide semiconductor contains oxygen deficiency, the transistor may have a normally-on characteristic. In addition, a defect containing hydrogen in an oxygen deficiency may function as a donor and generate electrons as carriers. In addition, a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing a large amount of hydrogen tends to have a normally-on characteristic.
  • Defects containing hydrogen in oxygen deficiencies can function as donors for oxide semiconductors. However, it is difficult to quantitatively evaluate the defect. Therefore, in oxide semiconductors, the carrier concentration may be evaluated instead of the donor concentration. Therefore, in the present specification and the like, as the parameter of the oxide semiconductor, the carrier concentration assuming a state in which an electric field is not applied may be used instead of the donor concentration. That is, the "carrier concentration" described in the present specification and the like may be paraphrased as the "donor concentration".
  • the hydrogen concentration obtained by secondary ion mass spectrometry is less than 1 ⁇ 10 20 atoms / cm 3 , preferably 1 ⁇ 10 19 atoms / cm. It is less than 3, more preferably less than 5 ⁇ 10 18 atoms / cm 3 , and even more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • the semiconductor layer may have a non-single crystal structure, for example.
  • the non-single crystal structure includes, for example, a CAAC-OS (C-Axis Aligned Crystalline Oxide Semiconductor) having crystals oriented on the c-axis, a polycrystalline structure, a microcrystal structure, or an amorphous structure.
  • CAAC-OS C-Axis Aligned Crystalline Oxide Semiconductor
  • the amorphous structure has the highest defect level density
  • CAAC-OS has the lowest defect level density.
  • An oxide semiconductor film having an amorphous structure has, for example, a disordered atomic arrangement and no crystal component.
  • the oxide film having an amorphous structure has, for example, a completely amorphous structure and has no crystal portion.
  • the semiconductor layer is a mixed film having two or more of an amorphous structure region, a microcrystal structure region, a polycrystalline structure region, a CAAC-OS region, and a single crystal structure region. good.
  • the mixed film may have, for example, a single-layer structure or a laminated structure including any two or more of the above-mentioned regions.
  • CAC Cloud-Aligned Composite
  • the CAC-OS is, for example, a composition of a material in which the elements constituting the oxide semiconductor are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 2 nm or less, or a size close thereto.
  • the oxide semiconductor one or more metal elements are unevenly distributed, and the region having the metal elements is 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 2 nm or less, or a size in the vicinity thereof.
  • the state of being mixed with is also called a mosaic shape or a patch shape.
  • the oxide semiconductor preferably contains at least indium. In particular, it preferably contains indium and zinc. Also, in addition to them, aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, or magnesium, etc. One or more selected from the above may be included.
  • CAC-OS in In-Ga-Zn oxide is indium oxide (hereinafter, InO).
  • InO indium oxide
  • X1 is a real number greater than 0
  • In X2 Zn Y2 O Z2 X2, Y2, and Z2 are real numbers greater than 0
  • GaO X3 (X3 is a real number larger than 0)
  • gallium zinc oxide hereinafter, Ga X4 Zn Y4 O Z4 (X4, Y4, and Z4 are real numbers larger than 0)
  • the material is separated into a mosaic-like structure, and the mosaic-like InO X1 or In X2 Zn Y2 O Z2 is uniformly distributed in the film (hereinafter, also referred to as cloud-like).
  • CAC-OS is a composite oxide semiconductor having a structure in which a region containing GaO X3 as a main component and a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component are mixed.
  • the atomic number ratio of In to the element M in the first region is larger than the atomic number ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that of region 2.
  • IGZO is a common name, and may refer to one compound consisting of In, Ga, Zn, and O. As a typical example, it is represented by InGaO 3 (ZnO) m1 (m1 is a natural number) or In (1 + x0) Ga (1-x0) O 3 (ZnO) m0 (-1 ⁇ x0 ⁇ 1, m0 is an arbitrary number). Crystalline compounds can be mentioned.
  • the crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC structure.
  • the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have a c-axis orientation and are connected without being oriented on the ab plane.
  • CAC-OS relates to the material composition of oxide semiconductors.
  • CAC-OS is a region that is partially observed as nanoparticles containing Ga as a main component and nanoparticles containing In as a main component in a material composition containing In, Ga, Zn, and O. The regions observed in the shape are randomly dispersed in a mosaic pattern. Therefore, in CAC-OS, the crystal structure is a secondary element.
  • the CAC-OS does not include a laminated structure of two or more types of films having different compositions. For example, it does not include a structure consisting of two layers, a film containing In as a main component and a film containing Ga as a main component.
  • CAC-OS has a region observed in the form of nanoparticles containing the metal element as a main component and a nano having In as a main component in a part.
  • the regions observed in the form of particles refer to a configuration in which the regions are randomly dispersed in a mosaic pattern.
  • the CAC-OS can be formed by a sputtering method, for example, under the condition that the substrate is not intentionally heated.
  • a sputtering method one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as the film forming gas. good.
  • the lower the flow rate ratio of the oxygen gas to the total flow rate of the film-forming gas at the time of film formation is preferable.
  • the flow rate ratio of the oxygen gas is preferably 0% or more and less than 30%, preferably 0% or more and 10% or less. ..
  • CAC-OS is characterized by the fact that no clear peak is observed when measured using the ⁇ / 2 ⁇ scan by the Out-of-plane method, which is one of the X-ray diffraction (XRD) measurement methods. Have. That is, from the X-ray diffraction measurement, it can be seen that the orientation of the measurement region in the ab plane direction and the c-axis direction is not observed.
  • XRD X-ray diffraction
  • CAC-OS has a ring-shaped region with high brightness (ring region) and the ring in an electron diffraction pattern obtained by irradiating an electron beam having a probe diameter of 1 nm (also referred to as a nanobeam electron beam). Multiple bright spots are observed in the area. Therefore, from the electron diffraction pattern, it can be seen that the crystal structure of CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
  • GaO X3 is the main component by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that the region and the region containing In X2 Zn Y2 O Z2 or InO X1 as the main component have a structure in which they are unevenly distributed and mixed.
  • EDX energy dispersive X-ray spectroscopy
  • CAC-OS has a structure different from that of the IGZO compound in which metal elements are uniformly distributed, and has properties different from those of the IGZO compound. That is, the CAC-OS is a region in which GaO X3 or the like is the main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is the main component are phase-separated from each other and each element is the main component. Has a mosaic-like structure.
  • the region in which In X2 Zn Y2 O Z2 or InO X1 is the main component is a region having higher conductivity than the region in which GaO X3 or the like is the main component. That is, when the carrier flows through the region where In X2 Zn Y2 O Z2 or InO X1 is the main component, the conductivity as an oxide semiconductor is exhibited. Therefore, a high field effect mobility ( ⁇ ) can be realized by distributing the region containing In X2 Zn Y2 O Z2 or InO X1 as the main component in the oxide semiconductor in a cloud shape.
  • the region in which GaO X3 or the like is the main component is a region having higher insulating property than the region in which In X2 Zn Y2 O Z2 or InO X1 is the main component. That is, since the region containing GaO X3 or the like as the main component is distributed in the oxide semiconductor, the leakage current can be suppressed and a good switching operation can be realized.
  • CAC-OS when CAC-OS is used for a semiconductor element, the insulation property caused by GaO X3 and the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act complementarily to be high. On current (I on ) and high field effect mobility ( ⁇ ) can be achieved.
  • CAC-OS is suitable as a constituent material for various semiconductor devices.
  • ⁇ Laminate structure 1> Next, the laminated structure of the image pickup apparatus will be described with reference to a cross-sectional view.
  • the elements such as the insulating layer and the conductive layer shown below are examples, and other elements may be included. Alternatively, some of the elements shown below may be omitted.
  • the laminated structure shown below can be formed by using a bonding step, a polishing step, or the like, if necessary.
  • FIG. 12 is an example of a cross-sectional view of a laminated body having layers 560, 561 and 563 and having a bonding surface between the layers 563a and 563b constituting the layer 563.
  • the layer 563b can have a functional circuit provided on the silicon substrate 611.
  • the transistor 105, the transistor 108, and the transistor 131 included in the circuit 20 are shown as a part of the functional circuit.
  • the layer 563b is provided with a silicon substrate 611 and insulating layers 612, 613, 614, 616, 617, and 618.
  • the insulating layer 612 has a function as a protective film.
  • the insulating layers 613, 613, 616, and 617 have functions as an interlayer insulating film and a flattening film.
  • the insulating layer 618 and the conductive layer 619 have a function as a bonding layer.
  • the conductive layer 619 is electrically connected to the gate of the transistor 105.
  • a silicon nitride film, a silicon oxide film, an aluminum oxide film, or the like can be used as the protective film.
  • an inorganic insulating film such as a silicon oxide film or an organic insulating film such as an acrylic resin or a polyimide resin can be used.
  • a silicon nitride film, a silicon oxide film, an aluminum oxide film, or the like can be used as the dielectric layer of the capacitor. The bonding layer will be described later.
  • Conductors that can be used as wiring, electrodes, and plugs for electrical connections between devices include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, and hafnium. , Vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum, etc. Etc. may be appropriately selected and used.
  • the conductor is not limited to a single layer, and may be a plurality of layers made of different materials.
  • Layer 563a has elements of pixel 100. Further, it may have an element of a functional circuit. Here, the transistor 102 is shown as a part of the elements of the pixel 100. Further, as an element of the functional circuit, the transistor 104 included in the circuit 20 is shown.
  • the layer 563a is provided with a silicon substrate 632 and insulating layers 631, 633, 634, 635, 637, 638. Further, conductive layers 636 and 639 are provided.
  • the insulating layer 631 and the conductive layer 639 have a function as a bonding layer.
  • the insulating layers 634, 635, and 637 have a function as an interlayer insulating film and a flattening film.
  • the insulating layer 633 has a function as a protective film.
  • the insulating layer 638 has a function of insulating the silicon substrate 632 and the conductive layer 639.
  • the insulating layer 638 can be formed of the same material as other insulating layers. Further, the insulating layer 638 may be made of the same material as the insulating layer 631.
  • the conductive layer 639 is electrically connected to the other of the source or drain of the transistor 105 and to the conductive layer 619. Further, the conductive layer 636 is electrically connected to the wiring 114 (see FIG. 3).
  • the Si transistor shown in FIG. 12 is a fin type having a channel forming region on a silicon substrate (silicon substrates 611, 632). A cross section in the channel width direction (cross section of A1-A2 shown in layer 563a of FIG. 12) is shown in FIG. 13A.
  • the Si transistor may be a planar type as shown in FIG. 13B.
  • the transistor may have a semiconductor layer 545 of a silicon thin film.
  • the semiconductor layer 545 can be, for example, single crystal silicon (SOI (Silicon on Insulator)) formed on the insulating layer 546 on the silicon substrate 611.
  • SOI Silicon on Insulator
  • Layer 561 has a photoelectric conversion device 101.
  • the photoelectric conversion device 101 can be formed on the layer 563a.
  • FIG. 12 shows a configuration in which the organic photoconductive film shown in FIG. 11C is used for the photoelectric conversion layer as the photoelectric conversion device 101.
  • the layer 567a is used as a cathode and the layer 567e is used as an anode.
  • the layer 561 is provided with insulating layers 651, 652, 653, 654, and a conductive layer 655.
  • the insulating layers 651, 653, and 654 have a function as an interlayer insulating film and a flattening film. Further, the insulating layer 654 is provided so as to cover the end portion of the photoelectric conversion device 101, and has a function of preventing a short circuit between the layer 567e and the layer 567a.
  • the insulating layer 652 has a function as an element separation layer. It is preferable to use an organic insulating film or the like as the element separation layer.
  • the layer 567a corresponding to the cathode of the photoelectric conversion device 101 is electrically connected to one of the source and drain of the transistor 102 included in the layer 563a.
  • the layer 567e corresponding to the anode of the photoelectric conversion device 101 is electrically connected to the conductive layer 636 of the layer 563a via the conductive layer 655.
  • Layer 560 is formed on layer 561.
  • Layer 560 includes a light-shielding layer 671, an optical conversion layer 672, and a microlens array 673.
  • the light-shielding layer 671 can suppress the inflow of light to adjacent pixels.
  • a metal layer such as aluminum or tungsten can be used for the light-shielding layer 671. Further, the metal layer and a dielectric film having a function as an antireflection film may be laminated.
  • a color filter can be used for the optical conversion layer 672.
  • a color image can be obtained by assigning colors such as (red), G (green), B (blue), Y (yellow), C (cyan), and M (magenta) to the color filter for each pixel.
  • colors such as (red), G (green), B (blue), Y (yellow), C (cyan), and M (magenta) to the color filter for each pixel.
  • the color filter 672R (red), the color filter 672G (green), and the color filter 672B (blue) can be assigned to different pixels.
  • an image pickup device capable of obtaining images in various wavelength regions can be obtained.
  • the infrared imaging apparatus can be obtained.
  • the optical conversion layer 672 uses a filter that blocks light having a wavelength of near infrared rays or less, a far infrared ray imaging device can be obtained.
  • the optical conversion layer 672 uses an ultraviolet filter that blocks light having a wavelength equal to or higher than that of visible light, the optical conversion layer 672 can be used as an ultraviolet imaging device.
  • a plurality of different optical conversion layers may be arranged in one image pickup apparatus.
  • the color filter 672R red
  • the color filter 672G green
  • the color filter 672B blue
  • the infrared filter 672IR can be assigned to different pixels. In this configuration, a visible light image and an infrared light image can be acquired at the same time.
  • the color filter 672R red
  • the color filter 672G green
  • the color filter 672B blue
  • the ultraviolet filter 672UV can be assigned to different pixels.
  • a visible light image and an ultraviolet light image can be acquired at the same time.
  • the image pickup device can obtain an image that visualizes the intensity of radiation used in an X-ray image pickup device or the like.
  • radiation such as X-rays transmitted through a subject
  • a scintillator it is converted into light (fluorescence) such as visible light or ultraviolet light by a photoluminescence phenomenon.
  • the image data is acquired by detecting the light with the photoelectric conversion device 101.
  • an imaging device having the above configuration may be used as a radiation detector or the like.
  • Scintillators include substances that, when irradiated with radiation such as X-rays or gamma rays, absorb the energy and emit visible or ultraviolet light.
  • radiation such as X-rays or gamma rays
  • Gd 2 O 2 S Tb
  • Gd 2 O 2 S Pr
  • Gd 2 O 2 S Eu
  • BaFCl Eu
  • NaI, CsI, CaF 2 , BaF 2 , CeF 3 LiF, LiI, ZnO, etc.
  • Those dispersed in resin or ceramics can be used.
  • an inspection function, a security function, a sensor function, and the like can be added to the imaging device.
  • an inspection function, a security function, a sensor function, and the like can be added to the imaging device.
  • an inspection function, a security function, a sensor function, and the like can be added to the imaging device.
  • non-destructive inspection of products selection of agricultural products (sugar content meter function, etc.), vein authentication, medical inspection, etc.
  • vein authentication e.g., vein authentication, medical inspection, etc.
  • ultraviolet light it is possible to detect ultraviolet light emitted from a light source or a flame, and it is possible to manage a light source, a heat source, a production apparatus, and the like.
  • a microlens array 673 is provided on the optical conversion layer 672. Light passing through the individual lenses of the microlens array 673 passes through the optical conversion layer 672 directly below and irradiates the photoelectric conversion device 101. By providing the microlens array 673, the focused light can be incident on the photoelectric conversion device 101, so that photoelectric conversion can be performed efficiently.
  • the microlens array 673 is preferably formed of a resin or glass having high translucency with respect to light of a target wavelength.
  • the layer 563b is provided with an insulating layer 618 and a conductive layer 619.
  • the conductive layer 619 has a region embedded in the insulating layer 618. Further, the surfaces of the insulating layer 618 and the conductive layer 619 are flattened so that their heights match.
  • the layer 563a is provided with an insulating layer 631 and a conductive layer 639.
  • the conductive layer 639 has a region embedded in the insulating layer 631. Further, the surfaces of the insulating layer 631 and the conductive layer 639 are flattened so that their heights match.
  • the conductive layer 619 and the conductive layer 639 are metal elements having the same main components. Further, it is preferable that the insulating layer 618 and the insulating layer 631 are composed of the same components.
  • Cu, Al, Sn, Zn, W, Ag, Pt, Au, or the like can be used for the conductive layers 619 and 639.
  • Cu, Al, W, or Au is preferably used because of the ease of joining.
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, titanium nitride and the like can be used for the insulating layers 618 and 631.
  • the conductive layer 619 and the conductive layer 639 may have a multi-layer structure of a plurality of layers, and in that case, the surface layer (bonding surface) may be the same metal material. Further, the insulating layer 618 and the insulating layer 631 may also have a multi-layer structure of a plurality of layers, in which case, the insulating materials having the same surface layer (bonding surface) may be used.
  • a surface-activated bonding method can be used in which the oxide film on the surface and the adsorption layer of impurities are removed by sputtering or the like, and the cleaned and activated surfaces are brought into contact with each other for bonding. ..
  • a diffusion bonding method or the like in which surfaces are bonded to each other by using both temperature and pressure can be used. Since bonds occur at the atomic level in both cases, excellent bonding can be obtained not only electrically but also mechanically.
  • the surfaces treated with hydrophilicity by oxygen plasma or the like are brought into contact with each other for temporary bonding, and then main bonding is performed by dehydration by heat treatment.
  • a joining method or the like can be used. Since the hydrophilic bonding method also causes bonding at the atomic level, it is possible to obtain mechanically excellent bonding.
  • a method can be used in which the surface is cleaned after polishing, the surface of the metal layer is subjected to an antioxidant treatment, and then a hydrophilic treatment is performed to join the metal layer.
  • the surface of the metal layer may be made of a refractory metal such as Au and subjected to hydrophilic treatment.
  • a joining method other than the above-mentioned method may be used.
  • the circuit of the layer 563b and the element of the pixel 100 of the layer 563a can be electrically connected.
  • FIG. 14 is a modification of the laminated structure shown in FIG. 12, in which the configuration of the photoelectric conversion device 101 included in the layer 561 and the partial configuration of the layer 563a are different, and the bonded surface is also formed between the layer 561 and the layer 563a. It is a configuration having.
  • the layer 561 has a photoelectric conversion device 101, insulating layers 661, 662, 664, 665 and conductive layers 685, 686.
  • the photoelectric conversion device 101 is a pn junction type photodiode, and has a layer 565b corresponding to a p-type region and a layer 565a corresponding to an n-type region.
  • a pn junction type photodiode is formed on a silicon substrate.
  • the photoelectric conversion device 101 is an embedded photodiode, and a thin p-type region (a part of the layer 565b) provided on the surface side (current extraction side) of the layer 565a can suppress dark current and reduce noise. can.
  • the insulating layer 661 and the conductive layers 685 and 686 have a function as a bonding layer.
  • the insulating layer 662 has a function as an interlayer insulating film and a flattening film.
  • the insulating layer 664 has a function as an element separation layer.
  • the silicon substrate is provided with a groove for separating pixels, and the insulating layer 665 is provided on the upper surface of the silicon substrate and the groove.
  • the insulating layer 665 By providing the insulating layer 665, it is possible to prevent the carriers generated in the photoelectric conversion device 101 from flowing out to the adjacent pixels.
  • the insulating layer 665 also has a function of suppressing the intrusion of stray light. Therefore, the insulating layer 665 can suppress color mixing.
  • An antireflection film may be provided between the upper surface of the silicon substrate and the insulating layer 665.
  • the insulating layer 664 can be formed by using the LOCOS (LOCOxidation of Silicon) method. Alternatively, it may be formed by using an STI (Shallow Trench Isolation) method or the like.
  • LOCOS LOCxidation of Silicon
  • STI Shallow Trench Isolation
  • an inorganic insulating film such as silicon oxide or silicon nitride, or an organic insulating film such as a polyimide resin or an acrylic resin can be used.
  • the insulating layer 665 may have a multi-layer structure. Further, a space may be provided in a part of the insulating layer 665. The space may have a gas such as air or an inert gas. Further, the space may be in a decompressed state.
  • the layer 565a (n-type region, corresponding to the cathode) of the photoelectric conversion device 101 is electrically connected to the conductive layer 685.
  • the layer 565b (p-type region, corresponding to the anode) is electrically connected to the conductive layer 686.
  • the conductive layers 685 and 686 have a region embedded in the insulating layer 661. Further, the surfaces of the insulating layer 661 and the conductive layers 685 and 686 are flattened so that their heights match.
  • an insulating layer 638 is formed on the insulating layer 637. Further, a conductive layer 683 that is electrically connected to one of the source and drain of the transistor 102 and a conductive layer 684 that is electrically connected to the conductive layer 636 are formed.
  • the insulating layer 638 and the conductive layers 683 and 684 have a function as a bonding layer.
  • the conductive layers 683 and 684 have a region embedded in the insulating layer 638. Further, the surfaces of the insulating layer 638 and the conductive layers 683 and 684 are flattened so that their heights match.
  • the conductive layers 683, 684, 685, and 686 are the same bonded layers as the conductive layers 619 and 639 described above. Further, the insulating layers 638 and 661 are the same bonded layers as the above-mentioned insulating layers 618 and 631.
  • the conductive layer 683 and the conductive layer 685 one of the source or drain of the transistor 102 can be electrically connected to the layer 565a (n-type region, corresponding to the cathode) of the photoelectric conversion device 101. Further, by laminating the conductive layer 684 and the conductive layer 686, the layer 565b (p-type region, corresponding to the anode) of the photoelectric conversion device 101 and the wiring 114 (see FIG. 3) can be electrically connected. Further, by laminating the insulating layer 638 and the insulating layer 661, the layer 561 and the layer 563a can be electrically and mechanically bonded.
  • FIG. 15 is a modification different from the above, and the transistor 102 is provided on the layer 561.
  • one of the source or drain of the transistor 102 is directly connected to the photoelectric conversion device 101, and the other of the source or drain acts as a node FD.
  • the charge accumulated by the photoelectric conversion device 101 can be completely transferred, and an image pickup device with less noise can be obtained.
  • the other of the source or drain of the transistor 102 included in the layer 561 is electrically connected to the conductive layer 692.
  • one of the source and drain of the transistor 104 included in the layer 563 is electrically connected to the conductive layer 691.
  • the conductive layers 691 and 692 are the same bonded layers as the conductive layers 619 and 639 described above.
  • FIG. 16 is an example of a cross-sectional view of a laminated body having layers 560, 561, 562, and 563 and having no bonding surface.
  • a Si transistor is provided on the layer 563.
  • An OS transistor is provided on the layer 562. Since the configurations of the layers 563, 561 and 560 are the same as those shown in FIG. 12, the description thereof will be omitted here.
  • Layer 562 is formed on layer 563.
  • Layer 562 has an OS transistor.
  • the transistor 102 and the transistor 104 are shown. In the cross-sectional view shown in FIG. 16, the electrical connection between the two is not shown.
  • the layer 562 is provided with insulating layers 621, 622, 623, 624, 625, 626, 628. Further, a conductive layer 627 is provided. The conductive layer 627 can be electrically connected to the wiring 114 (see FIG. 3).
  • the insulating layer 621 has a function as a blocking layer.
  • the insulating layers 622, 623, 625, 626, and 628 have functions as an interlayer insulating film and a flattening film.
  • the insulating layer 624 has a function as a protective film.
  • the blocking layer it is preferable to use a film having a function of preventing the diffusion of hydrogen.
  • hydrogen is required to terminate dangling bonds, but hydrogen in the vicinity of the OS transistor becomes one of the factors that generate carriers in the oxide semiconductor layer, which reduces reliability. .. Therefore, it is preferable to provide a hydrogen blocking film between the layer on which the Si device is formed and the layer on which the OS transistor is formed.
  • the blocking film for example, aluminum oxide, aluminum nitride, gallium oxide, gallium oxide, yttrium oxide, yttrium oxide, hafnium oxide, hafnium oxide, yttria-stabilized zirconia (YSZ) and the like can be used.
  • aluminum oxide, aluminum nitride, gallium oxide, gallium oxide, yttrium oxide, yttrium oxide, hafnium oxide, hafnium oxide, yttria-stabilized zirconia (YSZ) and the like can be used.
  • the other of the source or drain of the transistor 104 is electrically connected to the gate of the transistor 105 via a plug. Further, the conductive layer 627 is electrically connected to the wiring 114 (see FIG. 3A).
  • One of the source and drain of the transistor 102 is electrically connected to the cathode of the photoelectric conversion device 101 included in the layer 561.
  • the conductive layer 627 is electrically connected to the anode of the photoelectric conversion device 101 included in the layer 561.
  • FIG. 17A shows the details of the OS transistor.
  • the OS transistor shown in FIG. 17A is a self-aligned type in which an insulating layer is provided on a laminate of an oxide semiconductor layer and a conductive layer, and an opening reaching the oxide semiconductor layer is provided to form a source electrode 705 and a drain electrode 706. It is the composition of.
  • the OS transistor may have a channel forming region 708, a source region 703, and a drain region 704 formed in the oxide semiconductor layer, as well as a gate electrode 701 and a gate insulating film 702. At least the gate insulating film 702 and the gate electrode 701 are provided in the opening. An oxide semiconductor layer 707 may be further provided in the opening.
  • the OS transistor may have a self-aligned configuration in which the source region 703 and the drain region 704 are formed in the semiconductor layer using the gate electrode 701 as a mask.
  • FIG. 17C it may be a non-self-aligned top gate type transistor having a region where the source electrode 705 or the drain electrode 706 and the gate electrode 701 overlap.
  • the OS transistor shows a structure having a back gate 735, it may have a structure without a back gate.
  • the back gate 735 may be electrically connected to the front gate of the transistor provided opposite to each other as shown in the cross-sectional view of the transistor in the channel width direction shown in FIG. 17D.
  • FIG. 17D shows a cross section of the transistor B1-B2 of FIG. 17A as an example, but the same applies to transistors having other structures.
  • the back gate 735 may be configured to be able to supply a fixed potential different from that of the front gate.
  • FIG. 18 is a modification of the laminated structure shown in FIG. 17, in which the configuration of the photoelectric conversion device 101 included in the layer 561 and the partial configuration of the layer 562 are different, and a bonded surface is formed between the layer 561 and the layer 562. It is a structure to have.
  • the photoelectric conversion device 101 included in the layer 561 is a pn junction type photodiode, and has the same configuration as shown in FIG.
  • an insulating layer 648 is formed on the insulating layer 628. Further, a conductive layer 688 electrically connected to one of the source or drain of the transistor 102 and a conductive layer 689 electrically connected to the conductive layer 627 are formed.
  • the insulating layer 648 and the conductive layers 688 and 689 have a function as a bonding layer.
  • the conductive layers 688 and 689 have a region embedded in the insulating layer 648. Further, the surfaces of the insulating layer 648 and the conductive layers 683 and 684 are flattened so that their heights match.
  • the conductive layers 688 and 689 are the same bonded layers as the above-mentioned conductive layers 619 and 639.
  • the insulating layer 648 is the same bonded layer as the above-mentioned insulating layers 618 and 631.
  • the conductive layer 688 and the conductive layer 685 by laminating the conductive layer 688 and the conductive layer 685, one of the source or drain of the transistor 102 can be electrically connected to the layer 565a (n-type region, corresponding to the cathode) of the photoelectric conversion device. Further, by laminating the conductive layer 689 and the conductive layer 686, the layer 565b (p-type region, corresponding to the anode) of the photoelectric conversion device and the wiring 114 (see FIG. 3) can be electrically connected. Further, by laminating the insulating layer 648 and the insulating layer 661, the layer 561 and the layer 562a can be electrically and mechanically bonded.
  • a configuration in which the transistor 102 is provided on the layer 561 shown in FIG. 15 may be applied to the configuration.
  • FIG. 20A1 is an external perspective view of the upper surface side of the package containing the image sensor chip.
  • the package has a package substrate 410 for fixing the image sensor chip 450 (see FIG. 20A3), a cover glass 420, an adhesive 430 for adhering both, and the like.
  • FIG. 20A2 is an external perspective view of the lower surface side of the package.
  • BGA Ball grid array
  • LGA Land grid array
  • PGA Peripheral array
  • FIG. 20A3 is a perspective view of the package shown by omitting a part of the cover glass 420 and the adhesive 430.
  • An electrode pad 460 is formed on the package substrate 410, and the electrode pad 460 and the bump 440 are electrically connected via a through hole.
  • the electrode pad 460 is electrically connected to the image sensor chip 450 by a wire 470.
  • FIG. 20B1 is an external perspective view of the upper surface side of the camera module in which the image sensor chip is housed in a lens-integrated package.
  • the camera module has an image sensor chip 451 (a package substrate 411 for fixing FIG. 20B3, a lens cover 421, a lens 435, etc.
  • An IC chip 490 having a function such as a signal conversion circuit (FIG. 20B3 is also provided, and has a configuration as a SiP (Sensem in package)).
  • FIG. 20B2 is an external perspective view of the lower surface side of the camera module.
  • the lower surface and the side surface of the package substrate 411 have a QFN (Quad flat no-lead package) configuration in which a land 441 for mounting is provided.
  • the configuration is an example, and QFP (Quad flat package) or the above-mentioned BGA may be provided.
  • FIG. 20B3 is a perspective view of the module shown by omitting a part of the lens cover 421 and the lens 435.
  • the land 441 is electrically connected to the electrode pad 461, and the electrode pad 461 is electrically connected to the image sensor chip 451 or the IC chip 490 by a wire 471.
  • the image sensor chip By housing the image sensor chip in a package having the above-mentioned form, it can be easily mounted on a printed circuit board or the like, and the image sensor chip can be incorporated into various semiconductor devices and electronic devices.
  • Electronic devices that can use the imaging device according to one aspect of the present invention include a display device, a personal computer, an image storage device or image reproduction device provided with a recording medium, a mobile phone, a game machine including a portable type, and a portable data terminal.
  • Electronic book terminals video cameras, cameras such as digital still cameras, goggles type displays (head mount displays), navigation systems, sound reproduction devices (car audio, digital audio players, etc.), copiers, facsimiles, printers, multifunction printers , Automatic cash deposit / payment machine (ATM), vending machine, etc. Specific examples of these electronic devices are shown in FIGS. 21A to 21F.
  • FIG. 21A is an example of a portable information terminal, which includes a housing 981, a display unit 982, an operation button 983, an external connection port 984, a speaker 985, a microphone 986, a camera 987, and the like.
  • the portable information terminal includes a touch sensor on the display unit 982. All operations such as making a phone call or inputting characters can be performed by touching the display unit 982 with a finger or a stylus.
  • An imaging device according to an aspect of the present invention and an operation method thereof can be applied to the portable information terminal.
  • the camera 987 has an imaging device according to an aspect of the present invention, and can acquire distance information of a subject from an image acquired by the camera 987. Based on the distance information, a part of the image acquired by the camera 987 can be processed. For example, image processing that blurs the front and back of the main subject can be performed.
  • FIG. 21B is an information terminal, which includes a housing 911, a display unit 912, a speaker 913, a camera 919, and the like. Information can be input and output by the touch panel function of the display unit 912. In addition, characters and the like can be recognized from the image acquired by the camera 919, and the characters can be output as voice by the speaker 913.
  • An imaging device according to an aspect of the present invention and an operation method thereof can be applied to the portable data terminal.
  • FIG. 21C is a surveillance camera, which has a support base 951, a camera unit 952, a protective cover 953, and the like.
  • the camera unit 952 is provided with a rotation mechanism or the like, and by installing it on the ceiling, it is possible to take an image of the entire surroundings.
  • An image pickup apparatus according to an aspect of the present invention and an operation method thereof can be applied to an element for image acquisition in the camera unit.
  • the surveillance camera is an idiomatic name and does not limit its use.
  • a device having a function as a surveillance camera is also called a camera or a video camera.
  • FIG. 21D is a video camera, which includes a first housing 971, a second housing 972, a display unit 973, an operation key 974, a lens 975, a connection unit 976, a speaker 977, a microphone 978, and the like.
  • the operation key 974 and the lens 975 are provided in the first housing 971, and the display unit 973 is provided in the second housing 972.
  • An imaging device according to one aspect of the present invention and an operation method thereof can be applied to the video camera.
  • FIG. 21E is a digital camera, which includes a housing 961, a shutter button 962, a microphone 963, a light emitting unit 967, a lens 965, and the like.
  • An imaging device according to one aspect of the present invention and an operation method thereof can be applied to the digital camera.
  • FIG. 21F is a wristwatch-type information terminal, which includes a display unit 932, a housing / wristband 933, a camera 939, and the like.
  • the display unit 932 includes a touch panel for operating the information terminal.
  • the display unit 932 and the housing / wristband 933 have flexibility and are excellent in wearability to the body.
  • An imaging device according to an aspect of the present invention and an operation method thereof can be applied to the information terminal.
  • FIG. 22A illustrates an external view of an automobile as an example of a moving body.
  • the automobile 890 has a plurality of cameras 891 and the like, and can acquire information on the front, rear, left, right, and above of the automobile 890.
  • An image pickup apparatus according to an aspect of the present invention and an operation method thereof can be applied to the camera 891.
  • the automobile 890 is equipped with various sensors (not shown) such as an infrared radar, a millimeter wave radar, and a laser radar.
  • the automobile 890 can analyze the images acquired by the camera 891 for a plurality of imaging directions 892, determine the surrounding traffic conditions such as the presence or absence of guardrails and pedestrians, and perform automatic driving. It can also be used in systems for road guidance, danger prediction, and the like.
  • the obtained image data is subjected to arithmetic processing such as a neural network to increase the resolution of the image, reduce image noise, face recognition (for security purposes, etc.), and object recognition. It can perform processing such as (purpose of automatic operation, etc.), image compression, image correction (wide dynamic range), image restoration of lensless image sensor, positioning, character recognition, and reduction of reflection reflection.
  • arithmetic processing such as a neural network to increase the resolution of the image, reduce image noise, face recognition (for security purposes, etc.), and object recognition. It can perform processing such as (purpose of automatic operation, etc.), image compression, image correction (wide dynamic range), image restoration of lensless image sensor, positioning, character recognition, and reduction of reflection reflection.
  • the automobile is described as an example of the moving body, but the automobile may be an automobile having an internal combustion engine, an electric vehicle, a hydrogen vehicle, or the like.
  • the moving body is not limited to the automobile.
  • moving objects include trains, monorails, ships, flying objects (helicopters, unmanned aerial vehicles (drones), airplanes, rockets), etc., and the computer of one aspect of the present invention is applied to these moving objects. Therefore, a system using artificial intelligence can be provided.
  • 10a circuit, 10b: circuit, 20: circuit, 30: circuit, 100: pixel, 101: photoelectric conversion device, 101a: photoelectric conversion device, 101b: photoelectric conversion device, 102: transistor, 102a: transistor, 102b: transistor, 103: Transistor, 103a: Transistor, 103b: Transistor, 104: Transistor, 104a: Transistor, 104b: Transistor, 105: Transistor, 105a: Transistor, 105b: Transistor, 106: Capacitor, 106a: Capacitor, 106b: Transistor, 107: Transistor, 108: Transistor, 114: Wiring, 115: Wiring, 116: Wiring, 117: Wiring, 118: Wiring, 121: Wiring, 122: Wiring, 123: Wiring, 124: Wiring, 125: Wiring, 126: Wiring, 127: Wiring, 128: Wiring, 131: Transistor

Abstract

画像処理機能を有する撮像装置を提供する。 画像処理などの付加機能を備えた撮像装置であって、撮像動作で取得したアナログデータを画素に保持し、当該アナログデータと任意の重み係数とを乗じたデータを取り出すことができる。画素では、隣接する受光デバイス間の差分データを取得することができ、輝度勾配の情報を得ることができる。当該情報をニューラルネットワークなどに取り込むことで、距離情報などの推論を行うことができる。また、膨大な画像データをアナログデータの状態で画素に保持することができるため、効率良く処理を行うことができる。

Description

撮像装置および電子機器
本発明の一態様は、撮像装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの動作方法、または、それらの製造方法、を一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、表示装置、撮像装置、電子機器は、半導体装置を有する場合がある。
基板上に形成された酸化物半導体薄膜を用いてトランジスタを構成する技術が注目されている。例えば、酸化物半導体を有するオフ電流が極めて低いトランジスタを画素回路に用いる構成の撮像装置が特許文献1に開示されている。
また、撮像装置に演算機能を付加する技術が特許文献2に開示されている。
特開2011−119711号公報 特開2016−123087号公報
携帯機器などに搭載される撮像装置では、高解像度の画像を取得できる機能が一般化している。次世代においては、撮像装置にさらに知的な機能を搭載することが求められている。
撮像装置で取得した画像データ(アナログデータ)は、デジタルデータに変換され、外部に取り出した後に必要に応じて画像処理が行われる。当該処理を撮像装置内で行うことができれば、外部の機器との連携がより高速となり、使用者の利便性が向上する。また、周辺装置などの負荷および消費電力も低減することができる。また、アナログデータの状態で複雑なデータ処理が行えれば、データ変換に要する時間も短縮することができる。
例えば、隣接する画素間のデータの差分情報から輝度勾配を算出し、当該輝度勾配をデータとしてDNN(ディープニューラルネットワーク)などを用いることにより、距離情報を推論することができる。画素間の差分データの演算およびDNNの一部の演算を撮像装置内で行うことにより、低消費電力で高速な推論が可能となる。
また、スマートフォンなどの携帯情報端末では、撮像された被写体の距離の情報を取得し、撮像した画像の加工(目的とする被写体の前後をぼかすなど)を行うことができる。当該距離の情報は、複数のカメラによる視差を用いて取得している。画像処理により距離の情報を得ることができれば、カメラを一つにすることができ、製造コストを低減することができる。
したがって、本発明の一態様では、画像処理を行うことができる撮像装置を提供することを目的の一つとする。または、距離の情報を取得できる撮像装置を提供することを目的の一つとする。または、隣接する画素間の輝度勾配の情報を取得できる撮像装置を提供することを目的の一つとする。または、ニューラルネットワークの一部の要素として機能する撮像装置を提供することを目的の一つとする。または、低消費電力の撮像装置を提供することを目的の一つとする。または、信頼性の高い撮像装置を提供することを目的の一つとする。または、新規な撮像装置などを提供することを目的の一つとする。または、上記撮像装置の駆動方法を提供することを目的の一つとする。または、新規な半導体装置などを提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、画像処理機能を有する撮像装置に関する。
本発明の一態様は、画素と、読み出し回路と、を有し、画素は、第1の受光回路と、第2の受光回路と、増幅回路と、演算回路と、を有し、増幅回路は、第1の受光回路に保持された第1のデータと、第2の受光回路に保持された第2のデータとの差分に応じた電位を演算回路に出力することができ、演算回路は、第1のノードと、第2のノードと、を有し、第1のノードには、第1のデータと第2のデータを同じ値としたときに増幅回路が出力する第1の電位が書き込まれ、第2のノードには、第1のデータおよび第2のデータが光電変換により生成されたときに増幅回路が出力する第2の電位が書き込まれ、第1のノードおよび第2のノードのそれぞれには、第3の電位を加算することができ、読み出し回路は、第1のノードの電位に従って流れる電流と、第2のノードの電位に従って流れる電流を用いた演算により、第2の電位と第3の電位との積を抽出することができる撮像装置である。
読み出し回路は、カレントミラー回路と、相関二重サンプリング回路と、を有し、カレントミラー回路は、第1のトランジスタと、第2のトランジスタと、を有し、第1のトランジスタのソースまたはドレインの一方およびゲートは、第1のノードと電気的に接続され、第2のトランジスタのソースまたはドレインの一方は、第2のノードおよび相関二重サンプリング回路と電気的に接続することができる。
また、本発明の他の一態様は、画素と、読み出し回路と、を有し、画素は、第1の受光回路と、第2の受光回路と、増幅回路と、演算回路と、を有し、増幅回路は、第1の入力端子と、第2の入力端子と、を有し、演算回路は、第1のノードと、第2のノードと、第1のキャパシタと、第2のキャパシタと、第1のトランジスタと、第2のトランジスタと、を有し、第1のノードには、第1のキャパシタの一方の電極および第1のトランジスタのゲートが電気的に接続され、第2のノードには、第2のキャパシタの一方の電極および第2のトランジスタのゲートが電気的に接続され、第1のトランジスタのソースまたはドレインの一方、および第2のトランジスタのソースまたはドレインの一方には、読み出し回路が電気的に接続され、第1の受光回路は、第1の入力端子と電気的に接続され、第2の受光回路は、第2の入力端子と電気的に接続され、第1のノードには、第1の入力端子および第2の入力端子に同じ電位が入力されたときに増幅回路が出力する第1の電位が書き込まれ、第2のノードには、第1の受光回路が生成するデータと、第2の受光回路が生成するデータとの差分に応じて増幅回路が出力する第2の電位が書き込まれ、第1のノードおよび第2のノードのそれぞれには、第1のキャパシタまたは第2のキャパシタを介して、第3の電位を加算することができ、読み出し回路は、第1のトランジスタに流れる電流と、第2のトランジスタに流れる電流を用いた演算により、第2の電位と第3の電位との積を抽出することができる撮像装置である。
読み出し回路は、カレントミラー回路と、相関二重サンプリング回路と、を有し、カレントミラー回路は、第3のトランジスタと、第4のトランジスタと、を有し、第3のトランジスタのソースまたはドレインの一方およびゲートは、第1のトランジスタのソースまたはドレインの一方と電気的に接続され、第4のトランジスタのソースまたはドレインの一方は、第2のトランジスタのソースまたはドレインの一方および相関二重サンプリング回路と電気的に接続することができる。
第1の受光回路および第2の受光回路のそれぞれは、光電変換デバイスと、第5のトランジスタと、第6のトランジスタと、第3のキャパシタと、を有し、光電変換デバイスの一方の電極は、第5のトランジスタのソースまたはドレインの一方と電気的に接続され、第5のトランジスタのソースまたはドレインの他方は、第6のトランジスタのソースまたはドレインの一方、および第3のキャパシタの一方の電極と電気的に接続され、第1の受光回路が有する第6のトランジスタのソースまたはドレインの他方は、第1の入力端子と電気的に接続され、第2の受光回路が有する第6のトランジスタのソースまたはドレインの他方は、第2の入力端子と電気的に接続することができる。
第5のトランジスタおよび第6のトランジスタは、チャネル形成領域に金属酸化物を有し、金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Ge、Sn、Y、Zr、La、Ce、NdまたはHfの一つまたは複数)と、を有することが好ましい。
第1の受光回路および第2の受光回路のそれぞれは、さらに第7のトランジスタと、第8のトランジスタと、を有し、第7のトランジスタのゲートは、第3のキャパシタの一方の電極と電気的に接続され、第7のトランジスタのソースまたはドレインの一方は、第8のトランジスタのソースまたはドレインの一方と電気的に接続することが好ましい。
増幅回路は、第9のトランジスタと、第10のトランジスタと、第11のトランジスタと、を有し、第9のトランジスタのソースまたはドレインの一方は、第1の受光回路が有する第3のキャパシタの一方の電極と電気的に接続され、第9のトランジスタのソースまたはドレインの他方は、第1の入力端子と電気的に接続され、第10のトランジスタのソースまたはドレインの一方は、第2の受光回路が有する第3のキャパシタの一方の電極と電気的に接続され、第10のトランジスタのソースまたはドレインの他方は、第2の入力端子と電気的に接続され、第11のトランジスタのソースまたはドレインの一方は、第1の入力端子と電気的に接続され、第11のトランジスタのソースまたはドレインの他方は、第2の入力端子と電気的に接続することができる。
第9のトランジスタ乃至第11のトランジスタは、チャネル形成領域に金属酸化物を有し、金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Ge、Sn、Y、Zr、La、Ce、NdまたはHfの一つまたは複数)と、を有することが好ましい。
また、上記において、一つの読み出し回路には、複数の画素を電気的に接続することができる。
また、本発明の他の一態様は、上記撮像装置で撮像した画像と、上記撮像装置で解析した画像における被写体の距離情報に基づき、画像の一部を加工する電子機器である。
本発明の一態様を用いることで、画像処理を行うことができる撮像装置を提供することができる。または、距離の情報を取得できる撮像装置を提供することができる。または、隣接する画素間の輝度勾配の情報を取得できる撮像装置を提供することができる。または、ニューラルネットワークの一部の要素として機能する撮像装置を提供することができる。または、低消費電力の撮像装置を提供することができる。または、信頼性の高い撮像装置を提供することができる。または、新規な撮像装置などを提供することができる。または、上記撮像装置の駆動方法を提供することができる。または、新規な半導体装置などを提供することができる。
図1は、撮像装置を説明するブロック図である。
図2は、画素ブロック200および回路240を説明する図である。
図3は、画素100を説明する図である。
図4Aは、受光回路を説明する図である。図4Bは、差動増幅回路を説明する図である。
図5A、図5Bは、電流源回路を説明する図である。
図6は、画素ブロック200の動作を説明するタイミングチャートである。
図7A、図7Bは、回路301および回路302を説明する図である。
図8は、メモリセルを説明する図である。
図9A、図9Bは、ニューラルネットワークの構成例を示す図である。
図10A乃至図10Dは、撮像装置の画素の構成を説明する図である。
図11A乃至図11Cは、光電変換デバイスの構成を説明する図である。
図12は、画素を説明する断面図である。
図13A乃至図13Cは、Siトランジスタを説明する図である。
図14は、画素を説明する断面図である。
図15は、画素を説明する断面図である。
図16は、画素を説明する断面図である。
図17A乃至図17Dは、OSトランジスタを説明する図である。
図18は、画素を説明する断面図である。
図19A乃至図19Cは、画素を説明する斜視図(断面図)である。
図20A1乃至図20A3、図20B1乃至図20B3は、撮像装置を収めたパッケージ、モジュールの斜視図である。
図21A乃至図21Fは、電子機器を説明する図である。
図22は、自動車を説明する図である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。
また、回路図上では単一の要素として図示されている場合であっても、機能的に不都合がなければ、当該要素が複数で構成されてもよい。例えば、スイッチとして動作するトランジスタは、複数が直列または並列に接続されてもよい場合がある。また、キャパシタを分割して複数の位置に配置する場合もある。
また、一つの導電体が、配線、電極および端子のような複数の機能を併せ持っている場合があり、本明細書においては、同一の要素に対して複数の呼称を用いる場合がある。また、回路図上で要素間が直接接続されているように図示されている場合であっても、実際には当該要素間が一つまたは複数の導電体を介して接続されている場合があり、本明細書ではこのような構成でも直接接続の範疇に含める。
(実施の形態1)
本実施の形態では、本発明の一態様である撮像装置について、図面を参照して説明する。
本発明の一態様は、画像処理などの付加機能を備えた撮像装置である。当該撮像装置は、撮像動作で取得したアナログデータ(画像データ)を画素に保持し、当該アナログデータと任意の重み係数とを乗じたデータを取り出すことができる。
また、画素では、隣接する受光デバイス間の差分データを取得することができ、輝度勾配の情報を得ることができる。当該情報をニューラルネットワークなどに取り込むことで、距離情報などの推論を行うことができる。また、膨大な画像データをアナログデータの状態で画素に保持することができるため、効率良く処理を行うことができる。
画像における距離の情報を得ることで、ロボットによるピッキング作業、移動体の自動運転、距離計測などを支援することができる。また、スマートフォンなどにおいては、距離情報の取得に複数のカメラを用いていたが、一つのカメラで距離情報を得ることができ、製造コストを低減することができる。
<撮像装置>
図1は、本発明の一態様の撮像装置を説明するブロック図である。撮像装置は、画素アレイ300と、回路301と、回路302と、回路303と、回路304と、回路305を有する。なお、回路301乃至回路305のそれぞれは、単一の回路構成に限らず、複数の回路の組み合わせで構成される場合がある。または、上記いずれか複数の回路が統合されていてもよい。また、上記以外の回路が接続されてもよい。
画素アレイ300は、撮像機能および演算機能を有する。回路301は、演算機能を有する。回路302は、演算機能またはデータ変換機能を有する。回路303、304は、選択機能を有する。回路305は、画素に積和演算用の電位を供給する機能を有する。選択機能を有する回路には、シフトレジスタまたはデコーダなどを用いることができる。なお、回路301、302は、外部に設けられていてもよい。
画素アレイ300は、複数の画素ブロック200を有する。画素ブロック200は、図2に示すように、画素アレイ210および回路220を有する。
画素アレイ210は、マトリクス状に配置された複数の画素100を有し、それぞれの画素100は、配線151および配線152と電気的に接続され、配線151および配線152は、それぞれ回路220と電気的に接続される。
回路220は読み出し回路であり、回路230および回路240を有する。回路230は電流源回路であり、画素アレイ210および回路240に流れる電流を制御する機能を有する。回路240は、差分抽出回路であり、例えば、相関二重サンプリング回路(CDS回路)を用いることができる。
回路230、回路240、および画素アレイ210は、いずれか2つ以上が互いに重なる領域を有するように形成されることが好ましい。当該構成とすることで、画素ブロック200の面積を小さくすることができ、解像度を上げることができる。なお、回路240は、画素ブロック200の外側に設けることもできる。
なお、図2においては、一例として画素アレイ210が有する画素数を3×3としているが、これに限らない。例えば、2×2、4×4などとすることができる。または、水平方向と垂直方向の画素数が異なっていてもよい。または、画素100と配線151および配線152のそれぞれの間にスイッチなどを設け、画素数を可変としてもよい。また、一部の画素を隣り合う画素ブロック200で共有してもよい。また、配線151には、増幅回路またはゲイン調整回路が電気的に接続されていてもよい。
画素100では、画像データの取得、当該画像データを用いた演算データの生成、当該演算データと重み係数とを加算したデータの生成、などを行うことができる。また、上記構成の画素ブロック200は、積和演算回路として動作させることができる。
<画素回路>
画素100の構成例を図3に示す。画素100は、回路10a、10b、回路20、回路30を有する。
回路10a、10bは受光回路であり、光電変換デバイスにより撮像データを生成する機能を有する。回路20は差動増幅回路であり、回路10aおよび回路10bから入力されたデータの差に応じて増幅されたデータ電位を出力する機能を有する。回路30は演算回路であり、回路20から出力されたデータ電位を保持する機能、および当該データ電位に重み(重み係数に相当する電位)を与える機能を有する。
<受光回路>
回路10a、10bは同様の構成とすることができ、光電変換デバイス101(光電変換デバイス101a、101b)と、トランジスタ102(トランジスタ102a、102b)と、トランジスタ103(トランジスタ103a、103b)と、キャパシタ106(キャパシタ106a、106b)を有することができる。
光電変換デバイス101の一方の電極は、トランジスタ102のソースまたはドレインの一方と電気的に接続される。トランジスタ102のソースまたはドレインの他方は、トランジスタ103のソースまたはドレインの一方、およびキャパシタ106の一方の電極と電気的に接続される。
光電変換デバイス101の他方の電極は、配線114と電気的に接続される。トランジスタ103のソースまたはドレインの他方は、配線115と電気的に接続される。トランジスタ102のゲートは、配線116と電気的に接続される。トランジスタ103のゲートは、配線117と電気的に接続される。
ここで、トランジスタ102のソースまたはドレインの他方と、トランジスタ103のソースまたはドレインの一方と、キャパシタ106の一方の電極との電気的な接続点をノードFD(ノードFDa、ノードFDb)とする。
配線114、115は、電源線としての機能を有することができる。例えば、配線114、は高電位電源線、配線115は低電位電源線として機能させることができる。配線116、117は、各トランジスタの導通を制御する信号線として機能させることができる。
光電変換デバイス101としては、フォトダイオードを用いることができる。フォトダイオードの種類は問わず、シリコンを光電変換層に有するSiフォトダイオード、有機光導電膜を光電変換層に有する有機フォトダイオードなどを用いることができる。なお、低照度時の光検出感度を高めたい場合は、アバランシェフォトダイオードを用いることが好ましい。
トランジスタ102は、ノードFDの電位を制御する機能を有することができる。トランジスタ103は、ノードFDの電位を初期化する機能を有することができる。
光電変換デバイス101にアバランシェフォトダイオードを用いる場合は、高電圧を印加することがあり、光電変換デバイス101と接続されるトランジスタには高耐圧のトランジスタを用いることが好ましい。高耐圧のトランジスタには、例えば、チャネル形成領域に金属酸化物を用いたトランジスタ(以下、OSトランジスタ)などを用いることができる。具体的には、トランジスタ102にOSトランジスタを適用することが好ましい。
また、OSトランジスタは、オフ電流が極めて低い特性も有する。トランジスタ102、103にOSトランジスタを用いることによって、ノードFDで電荷を保持できる期間を極めて長くすることができる。そのため、回路構成および動作方法を複雑にすることなく、全画素で同時に電荷の蓄積動作を行うグローバルシャッタ方式を適用することができる。また、ノードFDに画像データを保持させつつ、当該画像データを用いた複数回の演算を行うこともできる。
一方で、高速動作などが望まれる場合は、シリコンをチャネル形成領域に用いた移動度が高いトランジスタ(以下、Siトランジスタ)を用いることが好ましい。したがって、トランジスタ102、103にSiトランジスタを適用してもよい。
なお、上記に限らず、OSトランジスタおよびSiトランジスタを任意に組み合わせて適用してもよい。Siトランジスタとしては、アモルファスシリコンを有するトランジスタ、結晶性のシリコン(微結晶シリコン、低温ポリシリコン、単結晶シリコン)を有するトランジスタなどが挙げられる。
なお、上記は回路10a、10bの回路構成の一例であり、光電変換動作に関しては他の回路構成で行うこともできる。
また、回路10a、10bは、図4Aに示すように、トランジスタ175(トランジスタ175a、175b)、およびトランジスタ176(トランジスタ176a、176b)を有する構成としてもよい。
トランジスタ175のゲートは、ノードFDと電気的に接続される。トランジスタ175のソースまたはドレインの一方は、配線118と電気的に接続される、トランジスタ175のソースまたはドレインの他方は、トランジスタ176のソースまたはドレインの一方と電気的に接続される。トランジスタ176のソースまたはドレインの他方は、配線OUTと電気的に接続される。配線118は、電源線として機能することができ、配線115と接続されていてもよい。
トランジスタ175は、ノードFDの電位に従ってデータを出力するソースフォロアの要素である。また、トランジスタ176は、読み出す受光回路を選択するための選択トランジスタとして機能する。したがって、図4Aの構成の回路10a、10bを用いることで、各受光回路から画像データを配線OUTに読み出すことができる。また、当該構成では、回路20の動作と並行して画像データの読み出しを行うこともできる。
<差動増幅回路>
回路20は、トランジスタ104(トランジスタ104a、104b)と、トランジスタ105(トランジスタ105a、105b)と、トランジスタ107と、トランジスタ108と、トランジスタ131(トランジスタ131a、131b)を有する構成とすることができる。
トランジスタ104aのソースまたはドレインの一方は、トランジスタ105aのゲートおよびトランジスタ107のソースまたはドレインの一方と電気的に接続される。トランジスタ104bのソースまたはドレインの一方は、トランジスタ105bのゲートおよびトランジスタ107のソースまたはドレインの他方と電気的に接続される。トランジスタ105aのソースまたはドレインの一方は、トランジスタ131aのソースまたはドレインの一方およびゲートと電気的に接続される。トランジスタ105bのソースまたはドレインの一方は、トランジスタ131bのソースまたはドレインの一方およびゲートと電気的に接続される。トランジスタ105aのソースまたはドレインの他方は、トランジスタ105bのソースまたはドレインの他方およびトランジスタ108のソースまたはドレインの一方と電気的に接続される。
トランジスタ131のソースまたはドレインの他方は、配線124と電気的に接続される。トランジスタ108のソースまたはドレインの他方は、GND配線などの基準電位線または低電位電源線と電気的に接続される。トランジスタ104aのゲートは、配線121と電気的に接続される。トランジスタ104bのゲートは、配線122と電気的に接続される。トランジスタ107のゲートは、配線123と電気的に接続される。
配線124は、例えば、高電位電源を供給する電源線としての機能を有することができる。配線121、配線122、配線123は、各トランジスタの導通を制御する信号線としての機能を有することができる。
トランジスタ104は、スイッチとして機能する。トランジスタ104aのソースまたはドレインの他方は回路10aのノードFDaと電気的に接続される。また、トランジスタ104bのソースまたはドレインの他方は、回路10bのノードFDbと電気的に接続される。したがって、トランジスタ104は、回路10a、10bの要素であるということもできる。
トランジスタ105は、差動増幅回路の差動トランジスタ対として機能する。トランジスタ105aのゲートは、回路20の第1の入力端子として機能する。また、トランジスタ105bのゲートは、回路20の第2の入力端子として機能する。したがって、第1の入力端子には、回路10aが生成したデータを入力することができる。また、第2の入力端子には、回路10bが生成したデータを入力することができる。
トランジスタ107はスイッチとして機能し、第1の入力端子と第2の入力端子とを同じ電位にすることができる。当該スイッチは、参照データの取得時に用いることができる。
トランジスタ108は電流源として機能し、ゲートには適切な電位(Bias)が供給される。なお、トランジスタ108の替わりに抵抗素子を用いてもよい。
トランジスタ131は、電圧変換回路として機能する。なお、図3では、トランジスタ131をダイオード接続のpチャネル型トランジスタとして例示しているが、ダイオード接続のnチャネル型トランジスタとしてもよい。または、トランジスタ131の替わりにダイオード素子、抵抗素子、またはカスコード回路を用いてもよい。
また、トランジスタ105bのソースまたはドレインの一方とトランジスタ131bのソースまたはドレインの一方を接続する配線の一部は出力端子としても機能し、図3では、ノードNとして表している。出力端子(ノードN)には、回路10aの出力データと回路10bの出力データの差に応じて増幅されたデータ電位を出力することができる。
なお、回路20は、図4Bに示すように、トランジスタ104およびトランジスタ107を省いた構成としてもよい。トランジスタ104およびトランジスタ107は、第1の入力端子および第2の入力端子を同じ電位とするために設けられるが、当該電位としてトランジスタ103から供給される配線115の電位(リセット電位)を用いれば、トランジスタ104およびトランジスタ107を省くことができる。
<演算回路>
回路30は、トランジスタ132と、トランジスタ133と、トランジスタ134と、トランジスタ142と、トランジスタ143と、トランジスタ144と、キャパシタ135と、キャパシタ145を有する構成とすることができる。
トランジスタ132のソースまたはドレインの一方は、キャパシタ135の一方の電極およびトランジスタ133のゲートと電気的に接続される。キャパシタ135の他方の電極は、トランジスタ134のソースまたはドレインの一方と電気的に接続される。トランジスタ142のソースまたはドレインの一方は、キャパシタ145の一方の電極およびトランジスタ143のゲートと電気的に接続される。キャパシタ145の他方の電極は、トランジスタ144のソースまたはドレインの一方と電気的に接続される。
トランジスタ132のゲートは、配線125と電気的に接続される。トランジスタ142のゲートは、配線126と電気的に接続される。トランジスタ134のゲートおよびトランジスタ144のゲートは、配線127と電気的に接続される。トランジスタ132のソースまたはドレインの他方およびトランジスタ142のソースまたはドレインの他方は、ノードNと電気的に接続される。トランジスタ134のソースまたはドレインの他方およびトランジスタ144のソースまたはドレインの他方は、配線128と電気的に接続される。
トランジスタ133のソースまたはドレインの一方は、配線151と電気的に接続される。トランジスタ143のソースまたはドレインの一方は、配線152と電気的に接続される。
トランジスタ133のソースまたはドレインの他方およびトランジスタ143のソースまたはドレインの他方は、GND配線などの基準電位線または低電位電源線と電気的に接続される。
配線125、配線126、配線127は、各トランジスタの導通を制御する信号線としての機能を有することができる。配線128は、例えば、重み係数(畳み込み処理のフィルタなど)に相当する電位を供給することができる配線であり、回路305(図1参照)と電気的に接続される。配線151は、回路230および回路240と電気的に接続される配線であり、配線152は、回路230と電気的に接続される配線である(図2参照)。
ここで、トランジスタ132のソースまたはドレインの一方、キャパシタ135の一方の電極、およびトランジスタ133のゲートが接続される点(配線)をノードP1とする。また、トランジスタ142のソースまたはドレインの一方、キャパシタ145の一方の電極、およびトランジスタ143のゲートが接続される点(配線)をノードP2とする。
ノードP1およびノードP2には、回路20が出力するデータを格納することができる。また、ノードP1およびノードP2はフローティングとすることができる。したがって、ノードP1およびノードP2に保持されたデータに、配線128から供給される電位(重み係数)をキャパシタ135またはキャパシタ145の容量結合で与えることができる。
<読み出し回路>
次に、読み出し回路220の構成について説明する。読み出し回路220は、電流源回路として機能する回路230と、差分抽出回路として機能する回路240を有する。
<電流源回路>
回路230は画素100に保持されたデータに従って電流を流すことができ、例えば、図5Aに示す構成とすることができる。回路230は、電流供給部225およびカレントミラー部226を有する構成とすることができる。
図5Aは、n−ch型トランジスタを用いた構成である。電流供給部225は、トランジスタ222、252、トランジスタ223、253を有する構成とすることができる。
トランジスタ222のソースまたはドレインの一方は、信号線FGと電気的に接続される。トランジスタ222のソースまたはドレインの他方は、トランジスタ223のゲートと電気的に接続される。トランジスタ252のソースまたはドレインの一方は、信号線FGREFと電気的に接続される。トランジスタ252のソースまたはドレインの他方は、トランジスタ253のゲートと電気的に接続される。トランジスタ222のゲート、およびトランジスタ252のゲートは、配線213と電気的に接続される。
トランジスタ223のソースまたはドレインの一方は配線151と電気的に接続される。トランジスタ253のソースまたはドレインの一方は配線152と電気的に接続される。トランジスタ223のソースまたはドレインの他方、およびトランジスタ253のソースまたはドレインの他方は、高電位電源線(VDD)と電気的に接続される。
電流供給部225では、信号線FG、FGREFには適切な信号電位が供給され、配線213に高電位(“H”)を供給することで、トランジスタ222、252、およびトランジスタ223、253が導通し、配線151および配線152に電流を供給することができる。
カレントミラー部226は、トランジスタ254、およびトランジスタ224を有する構成とすることができる。トランジスタ254のゲートおよびソースまたはドレインの一方は配線152と電気的に接続される。トランジスタ224のソースまたはドレインの一方は配線151と電気的に接続される。トランジスタ224のソースまたはドレインの他方およびトランジスタ254のソースまたはドレインの他方は、低電位電源線(VSS)と電気的に接続される。トランジスタ224のゲートはトランジスタ254のゲートと電気的に接続され、トランジスタ224にはトランジスタ254と同じ電流(ICM)を流すことができる。
なお、電流供給部225は、図5Bに示すようにp−ch型トランジスタを用いた構成であってもよい。トランジスタ262の出力側が配線152およびトランジスタ261のゲートと電気的に接続された構成となっている。
<差分抽出回路>
回路240は差分抽出回路であり、画素100および回路230に流れる電流を用いて、データと重み係数との積(積和演算結果)を抽出することができる。図2に示すように、各画素100は、配線151で互いに電気的に接続される。回路240は、各画素100のトランジスタ133に流れる電流の和を用いて演算を行うことができる。
回路240は、キャパシタ202と、トランジスタ203と、トランジスタ204と、トランジスタ205と、トランジスタ206と、電圧変換回路としてトランジスタ207を有する。トランジスタ207のゲートには、適切なアナログ電位(Bias)が印加される。
キャパシタ202の一方の電極は、トランジスタ203のソースまたはドレインの一方、およびトランジスタ204のゲートと電気的に接続される。トランジスタ204のソースまたはドレインの一方は、トランジスタ205のソースまたはドレインの一方、およびトランジスタ206のソースまたはドレインの一方と電気的に接続される。キャパシタ202の他方の電極は、配線151およびトランジスタ207のソースまたはドレインの一方と電気的に接続される。
ここで、キャパシタ202の一方の電極、トランジスタ203のソースまたはドレインの一方、およびトランジスタ204のゲートを接続する点をノードCとする。
トランジスタ203のソースまたはドレインの他方は、配線218と電気的に接続される。トランジスタ204のソースまたはドレインの他方は、配線219と電気的に接続される。トランジスタ205のソースまたはドレインの他方は、GND配線などの基準電源線と電気的に接続される。トランジスタ206のソースまたはドレインの他方は、配線212と電気的に接続される。トランジスタ207のソースまたはドレインの他方は、GND配線などの基準電源線と電気的に接続される。トランジスタ203のゲートは、配線216と電気的に接続される。トランジスタ205のゲートは、配線215と電気的に接続される。トランジスタ206のゲートは、配線214と電気的に接続される。
配線218、219は、電源線としての機能を有することができる。例えば、配線218は、読み出し用のリセット電位(Vr)を供給する配線としての機能を有することができる。配線219は、高電位電源線として機能させることができる。配線214、215、216は、各トランジスタの導通を制御する信号線として機能させることができる。配線212は出力線であり、例えば、図1に示す回路301と電気的に接続することができる。
トランジスタ203は、ノードCの電位を配線218の電位にリセットする機能を有することができる。トランジスタ204、205は、ソースフォロア回路としての機能を有することができる。トランジスタ206は、読み出しを制御する機能を有することができる。なお、回路240は、相関二重サンプリング回路(CDS回路)としての機能を有し、当該機能を有する他の構成の回路に置き換えることもできる。
<動作>
次に、本発明の一態様の撮像装置の動作を説明する。本発明の一態様では、まず、画素100において、回路10aと回路10bの出力に差がないときのデータ(参照データ)を取得する。次に、回路10aと回路10bのそれぞれにおいて、光電変換により画像データを取得し、それらの差分データを取得する。
次に、参照データおよび差分データに基づいて回路230から回路240に流れる電流を電圧変換したデータと、参照データおよび差分データに重みを与えたときに回路230から回路240に流れる電流を電圧変換したデータとの差分電位を回路240で抽出する。
当該差分電位は、回路220が流す電流から様々なオフセット成分を除いたデータに相当し、差分データと重み係数との積の項で表される電流を電圧変換したデータとなる。すなわち、差分データと重み係数との積を抽出することができる。
差分データと重み係数との積の抽出について、ここでは全体の流れを説明するため、画素100の動作の説明は省略し、ノードP1に、回路10aおよび回路10bの差分データ(光電変換により得られたデータの差分)に相当するデータ電位Xが格納され、ノードP2に、回路10aと回路10bの出力に差がないときに回路20が出力するデータ電位(参照データ、理想的には0)が格納された状態であるとして説明する。画素100の詳細な動作は後述する。
画素ブロック200では、差分データ(電位X)と重み係数(電位W)との積以外のオフセット成分を除去し、目的のWXを抽出することができる。回路230として図5Aに示す回路を用いた場合のWX抽出の流れは以下の通りである。
まず、回路240において、トランジスタ203を導通状態とし、配線218からノードCに電位Vrを書き込む。ここで電位Vrは、読み出し動作に用いるリセット電位である。
このとき、画素100の回路30のノードP1には、差分データ(電位X)が書き込まれているとする。また、ノードP2には、参照データ0が書き込まれていることとする。また、配線128から書き込まれる重み係数は0とする。
このとき、回路230から各画素100のトランジスタ133に流れる電流の合計は、kΣ(X−Vthとなる。また、回路230から各画素100のトランジスタ143に流れる電流の合計は、kΣ(0−Vthとなる。ここで、kは定数、Vthはそれぞれのトランジスタのしきい値電圧である。
回路230において、トランジスタ223に流れる電流の合計をIC、トランジスタ253に流れる電流の合計をICFEF、トランジスタ224およびトランジスタ254に流れる電流をICMとする(図5A参照)。
このとき、ICREF(重み0のときのICREF)=ICM+kΣ(0−Vthであるから、ICM=ICREF−kΣ(0−Vthとなる。
ここで、回路240のトランジスタ207に流れる電流IR(重み0のときのIR)は、IR=IC−ICM−kΣ(X−Vthとなる。すなわち、IR=IC−ICREF+kΣ(0−Vth−kΣ(X−Vthとなる。
そして、回路240のトランジスタ203を非導通状態とし、ノードCに電位Vrを保持する。
次に、配線128に重み係数(W)に相当する電位を供給し、容量結合でノードP1、ノードP2に重み係数(W)を与える。
このとき、回路230から各画素100のトランジスタ133に流れる電流の合計は、kΣ(X+W−Vthとなる。また、回路230から各画素100のトランジスタ143に流れる電流の合計は、kΣ(W−Vthとなる。
したがって、回路240のトランジスタ207に流れる電流IRは、IR=IC−ICM−kΣ(X+W−Vthとなる。すなわち、IR=IC−ICREF+kΣ(W−Vth−kΣ(X+W−Vthとなる。
ここで、IRとIRの差分をとると、IR−IR=kΣ(Vth−(X−Vth)−(W−Vth)+(W+X−Vth))=kΣ(2WX)となる。すなわち、オフセット成分が除かれ、WXからなる項を抽出することができる。
上記差分は、回路240で抽出することができる。IRはノードCの電位Vrとして初期化されており、ノードCがフローティングの状態で配線151の電位が、重み係数0の状態から重み係数Wの状態に変化することから、当該電位の差分Y(IRとIRの差分に相当)がキャパシタ202の容量結合でノードCに付加される。ここで、ノードCはVr+Yとなり、電位Vr=0とみなせば、YはIRとIRの差分を電圧変換した電位そのものである。すなわち、WXを抽出することができる。
次に、図6に示すタイミングチャートに従って、画素100の動作および画素ブロック200の動作を説明する。なお、ここで説明する画素100は、図3に示す構成とする。また、電源線などには所定の電位が供給されていることとする。
<画素100の動作>
時刻T1に、配線116の電位を“H”、配線117の電位を“H”、配線121の電位を“H”、配線122の電位を“H”、配線123の電位を“L”とすると、回路10aおよび回路10bにおいて、トランジスタ102、トランジスタ103が導通し、ノードFDaの電位およびノードFDbの電位がリセット電位(配線115の電位)となる。
時刻T2に、配線116の電位を“L”、配線117の電位を“L”、配線121の電位を“L”、配線122の電位を“L”、配線123の電位を“L”とすると、トランジスタ102、トランジスタ103、トランジスタ104が非導通となり、ノードFDaおよびノードFDbには、リセット電位が保持される。また、光電変換デバイス101では、蓄積動作が開始される。
時刻T3に、配線116の電位を“H”、配線122の電位を“H”、配線123の電位を“H”とすると、トランジスタ102が導通し、光電変換デバイス101に蓄積された電荷がノードFDaおよびノードFDbに転送される。その後、配線116の電位を“L”とし、ノードFDaおよびノードFDbの電位を保持する。
また、トランジスタ104b、トランジスタ107が導通し、ノードFDbの電位が回路20の第1の入力端子(トランジスタ105aのゲート)および第2の入力端子(トランジスタ105bのゲート)に入力される。
このとき、回路20の出力端子(ノードN)には、第1の入力端子に入力されたデータと第2の入力端子に入力されたデータの差に応じて増幅されたデータ電位が出力される。ここで、回路20の出力端子(ノードN)に出力されるデータ電位は、参照データと呼ぶことかできる。参照データは、第1の入力端子に入力されたデータと第2の入力端子に入力されたデータとの差がないときに出力されるデータである。
なお、回路20に図4Bの構成を用いた場合は、ノードFDaおよびノードFDbをリセット電位としたときに参照データを出力すればよい。
時刻T4に、配線126の電位を“H”とすると、回路30のノードP2に回路20の出力端子(ノードN)の電位が書き込まれる。その後、配線126の電位を“L”とし、ノードP2の電位を保持する。なお、時刻T4より前に配線127の電位を“H”とし、キャパシタ135、145の他方の電極の電位を配線128の電位(例えば0)としておく。
時刻T5に、配線121の電位を“H”、配線122の電位を“H”、配線123の電位を“L”とすると、トランジスタ104aが導通し、トランジスタ107が非導通となり、回路20の第1の入力端子にはノードFDaの電位が書き込まれる。なお、回路20の第2の入力端子には、ノードFDbの電位が書き込まれている。
したがって、回路20の出力端子(ノードN)には、ノードFDaとノードFDbとの差分に応じて増幅されたデータ電位が出力される。ここで、回路20の出力端子(ノードN)に出力されるデータ電位は、回路10aが取得した画像データと回路10bが取得した画像データの差に応じて増幅された電位であり、差分データと呼ぶことができる。または、画像データ、撮像データと呼ぶこともできる。
時刻T6に、配線125の電位を“H”とすると、回路30のノードP1に回路20の出力端子(ノードN)の電位が書き込まれる。その後、配線125の電位を“L”とし、ノードP1の電位を保持する。
時刻T7に、配線121の電位を“L”、配線122の電位を“L”、配線127の電位を“L”とすると、トランジスタ104、トランジスタ134、トランジスタ144が非導通となり、回路10a、回路10b、および回路20の一連の動作が終了する。
<回路220、回路230の動作>
また、時刻T7に、配線213の電位を“H”とすると、回路230において、トランジスタ222、トランジスタ252のゲートに適切なバイアスが供給され、トランジスタ223に電流ICが流れ、トランジスタ253に電流ICREFが流れる(図5A参照)。そして、配線213の電位を“L”とする。
ここで、ICREFは、トランジスタ254に流れる電流(ICM)と、回路30のトランジスタ143に流れる電流の和になる。また、電流ICは、トランジスタ224に流れる電流(ICM)と、回路30のトランジスタ133に流れる電流と、回路240のトランジスタ207に流れる電流との和になる。
また、上記状態で配線151の電位が確定しているとき、配線216の電位を“H”とし、ノードCに配線218の電位“Vr”を書き込む。そして、配線216の電位を“L”とし、ノードCをフローティングとして電位“Vr”を保持する。
時刻T8に、配線127の電位を“H”とし、トランジスタ134、144を導通させ、配線128に重み係数に相当する電位Wを供給すると、回路30のノードP1、ノードP2に保持されている電位に、電位Wが容量結合で与えられる。このとき、重み係数0の状態から重み係数Wの状態に変化することから、回路230のトランジスタ207に流れる電流が変化する。
このとき、配線151の電位の変化分“Y”がキャパシタ202の容量結合でノードCに付加される。ここで、ノードCの電位は“Vr+Y”となり、電位“Vr”=0とみなせば、ノードCの電位はトランジスタ207に流れる電流の差分を電圧変換した電位“Y”となる。すなわち、前述した電流式に従ってWXを抽出することができる。
時刻T9に、配線214の電位を“H”、配線215に適切なバイアスを供給すると、回路240はソースフォロア動作により、WXに応じた信号電位を配線212に出力することができる。
時刻T10に、配線127の電位を“L”、配線213の電位を“L”、配線214の電位を“L”、配線215の電位を“L”とし、読み出し動作を終了する。
上記動作によって回路240から出力されるWXは、回路301に入力することができる。
なお、上記ではノードP1およびノードP2に同時性のあるデータを書き込み、当該データに従ったデータを抽出する例を示したが、ノードP1およびノードP2のデータに時差があってもよい。例えば、第1のフレームのデータをノードP1に書き込み、第2のフレームのデータをノードP2に書き込むことで、運動視差を含む情報を抽出することができる。運動視差からは奥行(距離)の情報を得ることができ、立体映像を構成することができる。
<回路301、302>
図7Aは、回路240と接続する回路301および回路302を説明する図である。回路240から出力される積和演算結果のデータは、回路301に順次入力される。回路301は、様々な演算機能を有していてもよい。または、回路301の機能をソフトウェア処理で代替えしてもよい。
例えば、回路301は、活性化関数の演算を行う回路を有することができる。当該回路には、例えばコンパレータ回路を用いることができる。コンパレータ回路では、入力されたデータと、設定されたしきい値とを比較した結果を2値データとして出力する。すなわち、画素ブロック200および回路301は、ニューラルネットワークの一部の要素として作用することができる。
また、回路301はA/Dコンバータを有していてもよい。積和演算などを行わず、画像データを外部に出力するときは、回路301でアナログデータをデジタルデータに変換することができる。例えば、図4Aに示す回路10aおよび回路10bが配線OUTを介して回路301と電気的に接続することができる。
また、画素ブロック200が出力するデータは複数ビットの画像データに相当するが、回路301で2値化できる場合は、画像データを圧縮しているともいえる。
回路301から出力されたデータは、回路302に順次入力される。回路302は、例えばラッチ回路およびシフトレジスタなどを有する構成とすることができる。当該構成によって、パラレルシリアル変換を行うことができ、並行して入力されたデータを配線311にシリアルデータとして出力することができる。配線311の接続先は限定されない。例えば、ニューラルネットワーク、記憶装置、通信装置などと接続することができる。
また、図7Bに示すように、回路302はニューラルネットワークを有していてもよい。当該ニューラルネットワークは、マトリクス状に配置されたメモリセルを有し、各メモリセルには重み係数が保持されている。回路301から出力されたデータはメモリセル320にそれぞれ入力され、積和演算を行うことができる。なお、図7Bに示すメモリセルの数は一例であり、限定されない。
図7Bに示すニューラルネットワークは、マトリクス状に設置されたメモリセル320および参照メモリセル325と、回路330と、回路350と、回路360と、回路370を有する。
図8にメモリセル320および参照メモリセル325の一例を示す。参照メモリセル325は、任意の一列に設けられる。メモリセル320および参照メモリセル325は同様の構成を有し、トランジスタ161と、トランジスタ162と、キャパシタ163と、を有する。
トランジスタ161のソースまたはドレインの一方は、トランジスタ162のゲートと電気的に接続される。トランジスタ162のゲートは、キャパシタ163の一方の電極と電気的に接続される。ここで、トランジスタ161のソースまたはドレインの一方、トランジスタ162のゲート、キャパシタ163の一方の電極が接続される点をノードNMとする。
トランジスタ161のゲートは、配線WLと電気的に接続される。キャパシタ163の他方の電極は、配線RWと電気的に接続される。トランジスタ162のソースまたはドレインの一方は、GND配線等の基準電位配線と電気的に接続される。
メモリセル320において、トランジスタ161のソースまたはドレインの他方は、配線WDと電気的に接続される。トランジスタ162のソースまたはドレインの他方は、配線BLと電気的に接続される。
参照メモリセル325において、トランジスタ161のソースまたはドレインの他方は、配線WDrefと電気的に接続される。トランジスタ162のソースまたはドレインの他方は、配線BLrefと電気的に接続される。
配線WLは、回路330と電気的に接続される。回路330にはデコーダまたはシフトレジスタなどを用いることができる。
配線RWは、回路301と電気的に接続される。各メモリセルには、回路301から出力された2値のデータが書き込まれる。なお、回路301と各メモリセルとの間にシフトレジスタなどの順序回路を有していてもよい。
配線WDおよび配線WDrefは、回路350と電気的に接続される。回路350には、デコーダまたはシフトレジスタなどを用いることができる。また、回路350は、D/AコンバータおよびSRAMを有していてもよい。回路350は、ノードNMに書き込まれる重み係数を出力することができる。
配線BLおよび配線BLrefは、回路360と電気的に接続される。回路360は、回路240と同等の構成とすることができる。回路360により、積和演算結果からオフセット成分を除いた信号を得ることができる。
回路360は、回路370と電気的に接続される。回路370は、活性化関数回路とも換言できる。活性化関数回路は、回路360から入力された信号を、あらかじめ定義された活性化関数に従って変換するための演算を行う機能を有する。活性化関数としては、例えば、シグモイド関数、tanh関数、softmax関数、ReLU関数、しきい値関数などを用いることができる。活性化関数回路によって変換された信号は、出力データとして外部に出力される。
図9Aに示すように、ニューラルネットワークNNは、入力層IL、出力層OL、中間層(隠れ層)HLによって構成することができる。入力層IL、出力層OL、中間層HLは、それぞれ1または複数のニューロン(ユニット)を有する。なお、中間層HLは1層であってもよいし2層以上であってもよい。2層以上の中間層HLを有するニューラルネットワークはDNN(ディープニューラルネットワーク)と呼ぶこともできる。また、ディープニューラルネットワークを用いた学習は、深層学習と呼ぶこともできる。
入力層ILの各ニューロンには、入力データが入力される。中間層HLの各ニューロンには、前層または後層のニューロンの出力信号が入力される。出力層OLの各ニューロンには、前層のニューロンの出力信号が入力される。なお、各ニューロンは、前後の層の全てのニューロンと結合されていてもよいし(全結合)、一部のニューロンと結合されていてもよい。
図9Bに、ニューロンによる演算の例を示す。ここでは、ニューロンNと、ニューロンNに信号を出力する前層の2つのニューロンを示している。ニューロンNには、前層のニューロンの出力xと、前層のニューロンの出力xが入力される。そして、ニューロンNにおいて、出力xと重みwの乗算結果(x)と出力xと重みwの乗算結果(x)の総和x+xが計算された後、必要に応じてバイアスbが加算され、値a=x+x+bが得られる。そして、値aは活性化関数hによって変換され、ニューロンNから出力信号y=ahが出力される。
このように、ニューロンによる演算には、前層のニューロンの出力と重みの積を足し合わせる演算、すなわち積和演算が含まれる(上記のx+x)。この積和演算は、プログラムを用いてソフトウェア上で行ってもよいし、ハードウェアによって行われてもよい。
本発明の一態様では、ハードウェアとしてアナログ回路を用いて積和演算を行う。積和演算回路にアナログ回路を用いる場合、積和演算回路の回路規模の縮小、または、メモリへのアクセス回数の減少による処理速度の向上および消費電力の低減を図ることができる。
積和演算回路は、OSトランジスタを有する構成とすることが好ましい。OSトランジスタはオフ電流が極めて小さいため、積和演算回路のアナログメモリを構成するトランジスタとして好適である。なお、SiトランジスタとOSトランジスタの両方を用いて積和演算回路を構成してもよい。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態2)
本実施の形態では、本発明の一態様の撮像装置の構造例などについて説明する。
<構造例>
図10Aは、撮像装置の画素の構造の一例を示す図であり、層561および層563の積層構造とすることができる。
層561は、光電変換デバイス101を有する。光電変換デバイス101は、図11Aに示すように層565aと、層565bを有することができる。なお、場合によって、層を領域と言い換えてもよい。
図11Aに示す光電変換デバイス101はpn接合型フォトダイオードであり、例えば、層565aにp型半導体、層565bにn型半導体を用いることができる。または、層565aにn型半導体、層565bにp型半導体用いてもよい。
上記pn接合型フォトダイオードは、代表的には単結晶シリコンを用いて形成することができる。単結晶シリコンを光電変換層とするフォトダイオードは、紫外光から近赤外光まで比較的広い分光感度特性を有し、後述する光学変換層と組み合わせることで、様々な波長の光を検出することができる。
そのほか、pn接合型フォトダイオードの光電変換層として、化合物半導体を用いてもよい。当該化合物半導体としては、例えば、ガリウム−ヒ素−リン化合物(GaAsP)、ガリウム−リン化合物(GaP)、インジウム−ガリウム−ヒ素化合物(InGaAs)、鉛−硫黄化合物(PbS)、鉛−セレン化合物(PbSe)、インジウム−ヒ素化合物(InAs)、インジウム−アンチモン化合物(InSb)、水銀−カドミウム−テルル化合物(HgCdTe)などを用いることができる。
化合物半導体としては、13族元素(アルミニウム、ガリウム、インジウムなど)および15族元素(窒素、リン、ヒ素、アンチモンなど)を有する化合物半導体(3−5族化合物半導体とも言う)、または、12族元素(マグネシウム、亜鉛、カドミウム、水銀など)および16族元素(酸素、硫黄、セレン、テルルなど)を有する化合物半導体(2−6族化合物半導体とも言う)であることが好ましい。
化合物半導体は、構成元素の組み合わせおよびその原子数比に応じてバンドギャップを変化させることができるため、紫外光から赤外光まで様々な波長範囲に感度を有するフォトダイオードを形成することができる。
なお、紫外光の波長は、0.01μm近傍乃至0.38μm近傍、可視光の波長は、0.38μm近傍乃至0.75μm近傍、近赤外光の波長は、0.75μm近傍乃至2.5μm近傍)、中赤外光の波長は、2.5μm近傍乃至4μm近傍、遠赤外光の波長は、4μm近傍乃至1000μm近傍、と一般的に定義することができる。
例えば、紫外光から可視光にかけて光感度を有するフォトダイオードを形成するには、光電変換層にGaPなどを用いることができる。また、紫外光から近赤外光にかけて光感度を有するフォトダイオードを形成するには、光電変換層に前述したシリコンまたはGaAsPなどを用いることができる。また、可視光から中赤外光にかけて光感度を有するフォトダイオードを形成するには、光電変換層にInGaAsなどを用いることができる。また、近赤外光から中赤外光にかけて光感度を有するフォトダイオードを形成するには、光電変換層にPbSまたはInAsなどを用いることができる。また、中赤外光から遠赤外光にかけて光感度を有するフォトダイオードを形成するには、光電変換層にPbSe、InSbまたはHgCdTeなどを用いることができる。
なお、上記化合物半導体を用いたフォトダイオードは、pn接合だけでなく、pin接合であってもよい。また、pn接合およびpin接合は、ホモ接合構造に限らず、ヘテロ接合構造であってもよい。
例えば、ヘテロ接合では、pn接合構造の一方の層に第1の化合物半導体を用い、他方の層に第1の化合物半導体とは異なる第2の化合物半導体を用いることができる。また、pin接合構造のいずれか1層または2層に第1の化合物半導体を用い、その他の層に第1の化合物半導体とは異なる第2の化合物半導体を用いることができる。なお、第1の化合物半導体または第2の化合物半導体の一方は、シリコンなどの単体の半導体であってもよい。
なお、画素毎に異なる材料を用いて、フォトダイオードの光電変換層を形成してもよい。当該構成を用いることで、紫外光を検出する画素。可視光を検出する画素、赤外光を検出する画素などのいずれか2種類の画素、または3種類の画素を有する撮像装置を形成することができる。
また、層561が有する光電変換デバイス101は、図11Bに示すように、層566aと、層566bと、層566cと、層566dとの積層としてもよい。図11Bに示す光電変換デバイス101はアバランシェフォトダイオードの一例であり、層566a、層566dは電極に相当し、層566b、566cは光電変換部に相当する。
層566aは、低抵抗の金属層などとすることが好ましい。例えば、アルミニウム、チタン、タングステン、タンタル、銀またはそれらの積層を用いることができる。
層566dは、可視光に対して高い透光性を有する導電層を用いることが好ましい。例えば、インジウム酸化物、錫酸化物、亜鉛酸化物、インジウム−錫酸化物、ガリウム−亜鉛酸化物、インジウム−ガリウム−亜鉛酸化物、またはグラフェンなどを用いることができる。なお、層566dを省く構成とすることもできる。
光電変換部の層566b、566cは、例えばセレン系材料を光電変換層としたpn接合型フォトダイオードの構成とするができる。層566bとしてはp型半導体であるセレン系材料を用い、層566cとしてはn型半導体であるガリウム酸化物などを用いることが好ましい。
セレン系材料を用いた光電変換デバイスは、可視光に対する外部量子効率が高い特性を有する。当該光電変換デバイスでは、アバランシェ増倍を利用することにより、入射される光の量に対する電子の増幅を大きくすることができる。また、セレン系材料は光吸収係数が高いため、光電変換層を薄膜で作製できるなどの生産上の利点を有する。セレン系材料の薄膜は、真空蒸着法またはスパッタ法などを用いて形成することができる。
セレン系材料としては、結晶性セレン(単結晶セレン、多結晶セレン)、非晶質セレンを用いることができる。これらは、紫外光から可視光にかけて光感度を有する。また、銅、インジウム、セレンの化合物(CIS)、または、銅、インジウム、ガリウム、セレンの化合物(CIGS)などを用いることができる。これらは、紫外光から近赤外光にかけて光感度を有する。
n型半導体は、バンドギャップが広く、可視光に対して透光性を有する材料で形成することが好ましい。例えば、亜鉛酸化物、ガリウム酸化物、インジウム酸化物、錫酸化物、またはそれらが混在した酸化物などを用いることができる。また、これらの材料は正孔注入阻止層としての機能も有し、暗電流を小さくすることもできる。
また、層561が有する光電変換デバイス101は、図11Cに示すように、層567aと、層567bと、層567cと、層567dと、層567eとの積層としてもよい。図11Cに示す光電変換デバイス101は有機光導電膜の一例であり、層567aは下部電極、層567eは透光性を有する上部電極であり、層567b、567c、567dは光電変換部に相当する。
光電変換部の層567b、567dのいずれか一方はホール輸送層、他方は電子輸送層とすることができる。また、層567cは光電変換層とすることができる。
ホール輸送層としては、例えば酸化モリブデンなどを用いることができる。電子輸送層としては、例えば、C60、C70などのフラーレン、またはそれらの誘導体などを用いることができる。
光電変換層としては、n型有機半導体およびp型有機半導体の混合層(バルクヘテロ接合構造)を用いることができる。有機半導体には様々な種類があり、目的の波長に光感度を有する材料を光電変換層に選べばよい。
図10Aに示す層563としては、例えばシリコン基板を用いることができる。当該シリコン基板は、Siトランジスタ等を有する。当該Siトランジスタを用いて、画素回路の他、当該画素回路を駆動する回路、画像信号の読み出し回路、画像処理回路、ニューラルネットワーク、通信回路等を形成することができる。また、DRAM(Dynamic Random Access Memory)などの記憶回路、CPU(Central Processing Unit)、MCU(Micro Controller Unit)などを形成してもよい。なお、画素回路を除く上記回路を本実施の形態では、機能回路と呼ぶ。
例えば、実施の形態1で説明した画素回路(画素100)および機能回路(回路220、301、302、303、304、305など)が有するトランジスタにおいて、その一部または全てを層563に設けることができる。
また、層563は、図10Bに示すように複数の層の積層であってもよい。図10Bでは、層563a、563b、563cの三層を例示しているが、二層であってもよい。または、層563は四層以上の積層であってもよい。これらの層は、例えば貼り合わせ工程などを用いて積層することができる。当該構成とすることで、画素回路と機能回路を複数の層に分散させ、画素回路と機能回路を重ねて設けることができるため、小型で高機能の撮像装置を作製することができる。
また、画素は、図10Cに示すように層561、層562および層563の積層構造を有していてもよい。
層562は、OSトランジスタを有することができる。前述した機能回路の一つ以上をOSトランジスタで形成してもよい。または、層563が有するSiトランジスタと層562が有するOSトランジスタを用いて、機能回路の一つ以上を形成してもよい。または、層563をガラス基板などの支持基板とし、層562が有するOSトランジスタで機能回路を形成してもよい。
例えば、OSトランジスタおよびSiトランジスタを用いて、ノーマリーオフCPU(「Noff−CPU」ともいう)を実現することができる。なお、Noff−CPUとは、ゲート電圧が0Vであっても非導通状態(オフ状態ともいう)であるノーマリーオフ型のトランジスタを含む集積回路である。
Noff−CPUは、Noff−CPU内の動作不要な回路への電力供給を停止し、当該回路を待機状態にすることができる。電力供給が停止され、待機状態になった回路では電力が消費されない。よって、Noff−CPUは、電力使用量を最小限にすることができる。また、Noff−CPUは、電力供給が停止されても設定条件などの動作に必要な情報を長期間保持することができる。待機状態からの復帰は当該回路への電力供給を再開するだけでよく、設定条件などの再書き込みが不要である。すなわち、待機状態からの高速復帰が可能である。このように、Noff−CPUは、動作速度を大きく落とすことなく消費電力を低減できる。
また、層562は、図10Dに示すように複数の層の積層であってもよい。図10Dでは、層562a、563bの二層を例示しているが、三層以上の積層であってもよい。これらの層は、例えば層563上に積み上げるように形成することができる。または、層563上に形成した層と、層561上に形成した層とを貼り合わせて形成してもよい。
OSトランジスタに用いる半導体材料としては、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である金属酸化物を用いることができる。代表的には、インジウムを含む酸化物半導体などであり、例えば、後述するCAAC−OSまたはCAC−OSなどを用いることができる。CAAC−OSは結晶を構成する原子が安定であり、信頼性を重視するトランジスタなどに適する。また、CAC−OSは、高移動度特性を示すため、高速駆動を行うトランジスタなどに適する。
OSトランジスタは半導体層のエネルギーギャップが大きいため、数yA/μm(チャネル幅1μmあたりの電流値)という極めて低いオフ電流特性を示す。また、OSトランジスタは、インパクトイオン化、アバランシェ降伏、および短チャネル効果などが生じないなどSiトランジスタとは異なる特徴を有し、高耐圧で信頼性の高い回路を形成することができる。また、Siトランジスタでは問題となる結晶性の不均一性に起因する電気特性のばらつきもOSトランジスタでは生じにくい。
OSトランジスタが有する半導体層は、例えばインジウム、亜鉛およびM(アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウム等の金属から選ばれた一つ、または複数)を含むIn−M−Zn系酸化物で表記される膜とすることができる。In−M−Zn系酸化物は、代表的には、スパッタリング法で形成することができる。または、ALD(Atomic layer deposition)法を用いて形成してもよい。
In−M−Zn系酸化物をスパッタリング法で形成するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8等が好ましい。なお、成膜される半導体層の原子数比はそれぞれ、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。
半導体層としては、キャリア密度の低い酸化物半導体を用いる。例えば、半導体層は、キャリア密度が1×1017/cm以下、好ましくは1×1015/cm以下、さらに好ましくは1×1013/cm以下、より好ましくは1×1011/cm以下、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上のキャリア密度の酸化物半導体を用いることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。当該酸化物半導体は欠陥準位密度が低く、安定な特性を有する酸化物半導体であるといえる。
なお、これらに限られず、必要とするトランジスタの半導体特性および電気特性(電界効果移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とするトランジスタの半導体特性を得るために、半導体層のキャリア密度、不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
半導体層を構成する酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸素欠損が増加し、n型化してしまう。このため、半導体層におけるシリコンまたは炭素の濃度(二次イオン質量分析法により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、アルカリ金属およびアルカリ土類金属は、酸化物半導体と結合するとキャリアを生成する場合があり、トランジスタのオフ電流が増大してしまうことがある。このため、半導体層におけるアルカリ金属またはアルカリ土類金属の濃度(二次イオン質量分析法により得られる濃度)を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、半導体層を構成する酸化物半導体に窒素が含まれていると、キャリアである電子が生じてキャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため半導体層における窒素濃度(二次イオン質量分析法により得られる濃度)は、5×1018atoms/cm以下にすることが好ましい。
また、半導体層を構成する酸化物半導体に水素が含まれていると、金属原子と結合する酸素と反応して水になるため、酸化物半導体中に酸素欠損を形成する場合がある。酸化物半導体中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となる場合がある。さらに、酸素欠損に水素が入った欠陥はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。したがって、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。
酸素欠損に水素が入った欠陥は、酸化物半導体のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、酸化物半導体においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、酸化物半導体のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。
よって、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。水素などの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
また、半導体層は、例えば非単結晶構造でもよい。非単結晶構造は、例えば、c軸に配向した結晶を有するCAAC−OS(C−Axis Aligned Crystalline Oxide Semiconductor)、多結晶構造、微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。
非晶質構造の酸化物半導体膜は、例えば、原子配列が無秩序であり、結晶成分を有さない。または、非晶質構造の酸化物膜は、例えば、完全な非晶質構造であり、結晶部を有さない。
なお、半導体層が、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のうち、二種以上を有する混合膜であってもよい。混合膜は、例えば上述した領域のうち、いずれか二種以上の領域を含む単層構造、または積層構造を有する場合がある。
以下では、非単結晶の半導体層の一態様であるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
CAC−OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
なお、酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、およびZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、およびZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。
つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、混合している構成を有する複合酸化物半導体である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。
なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。
一方、CAC−OSは、酸化物半導体の材料構成に関する。CAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。したがって、CAC−OSにおいて、結晶構造は副次的な要素である。
なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。
CAC−OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、および窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
CAC−OSは、X線回折(XRD:X−ray diffraction)測定法のひとつであるOut−of−plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折測定から、測定領域のa−b面方向、およびc軸方向の配向は見られないことが分かる。
また、CAC−OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域(リング領域)と、該リング領域に複数の輝点が観測される。したがって、電子線回折パターンから、CAC−OSの結晶構造が、平面方向、および断面方向において、配向性を有さないnc(nano−crystal)構造を有することがわかる。
また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。
CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。したがって、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。
したがって、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することができる。
また、CAC−OSを用いた半導体素子は、信頼性が高い。したがって、CAC−OSは、様々な半導体装置の構成材料として適している。
<積層構造1>
次に、撮像装置の積層構造について、断面図を用いて説明する。なお、以下に示す絶縁層および導電層などの要素は一例であり、さらに他の要素が含まれていてもよい。または、以下に示す要素の一部が省かれていてもよい。また、以下に示す積層構造は、必要に応じて、貼り合わせ工程、研磨工程などを用いて形成することができる。
図12は、層560、561、層563を有し、層563を構成する層563aと層563bの間に貼り合わせ面を有する積層体の断面図の一例である。
<層563b>
層563bは、シリコン基板611に設けられた機能回路を有することができる。ここでは、機能回路の一部として、回路20が有するトランジスタ105、トランジスタ108およびトランジスタ131を示している。
層563bには、シリコン基板611、絶縁層612、613、614、616、617、618が設けられる。絶縁層612は保護膜としての機能を有する。絶縁層613、613、616、617は、層間絶縁膜および平坦化膜としての機能を有する。絶縁層618および導電層619は、貼り合わせ層としての機能を有する。導電層619は、トランジスタ105のゲートと電気的に接続される。
保護膜としては、例えば、窒化シリコン膜、酸化シリコン膜、酸化アルミニウム膜などを用いることができる。層間絶縁膜および平坦化膜としては、例えば、酸化シリコン膜などの無機絶縁膜、アクリル樹脂、ポリイミド樹脂などの有機絶縁膜を用いることができる。キャパシタの誘電体層としては、窒化シリコン膜、酸化シリコン膜、酸化アルミニウム膜などを用いることができる。貼り合わせ層に関しては後述する。
なお、デバイス間の電気的な接続に用いられる配線、電極およびプラグとして用いることのできる導電体には、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を適宜選択して用いればよい。当該導電体は単層に限らず、異なる材料で構成された複数の層であってもよい。
<層563a>
層563aは、画素100の要素を有する。また、機能回路の要素を有していてもよい。ここでは、画素100の要素の一部として、トランジスタ102を示している。また、機能回路の要素として、回路20が有するトランジスタ104を示している。
層563aには、シリコン基板632、絶縁層631、633、634、635、637、638が設けられる。また、導電層636、639が設けられる。
絶縁層631および導電層639は、貼り合わせ層としての機能を有する。絶縁層634、635、637は、層間絶縁膜および平坦化膜としての機能を有する。絶縁層633は、保護膜としての機能を有する。絶縁層638は、シリコン基板632と導電層639を絶縁する機能を有する。絶縁層638は、他の絶縁層と同様の材料で形成することができる。また、絶縁層638は、絶縁層631と同一の材料で形成されていてもよい。
導電層639は、トランジスタ105のソースまたはドレインの他方および導電層619と電気的に接続される。また、導電層636は、配線114(図3参照)と電気的に接続される。
図12に示すSiトランジスタはシリコン基板(シリコン基板611、632)にチャネル形成領域を有するフィン型である。チャネル幅方向の断面(図12の層563aに示すA1−A2の断面)を図13Aに示す。なお、Siトランジスタは、図13Bに示すようにプレーナー型であってもよい。
または、図13Cに示すように、シリコン薄膜の半導体層545を有するトランジスタであってもよい。半導体層545は、例えば、シリコン基板611上の絶縁層546上に形成された単結晶シリコン(SOI(Silicon on Insulator))とすることができる。
<層561>
層561は、光電変換デバイス101を有する。光電変換デバイス101は、層563a上に形成することができる。図12では、光電変換デバイス101として、図11Cに示す有機光導電膜を光電変換層に用いた構成を示している。なお、ここでは、層567aをカソード、層567eをアノードとする。
層561には、絶縁層651、652、653、654、および導電層655が設けられる。
絶縁層651、653、654は、層間絶縁膜および平坦化膜としての機能を有する。また、絶縁層654は光電変換デバイス101の端部を覆って設けられ、層567eと層567aとの短絡を防止する機能も有する。絶縁層652は、素子分離層としての機能を有する。素子分離層としては、有機絶縁膜などを用いることが好ましい。
光電変換デバイス101のカソードに相当する層567aは、層563aが有するトランジスタ102のソースまたはドレインの一方と電気的に接続される。光電変換デバイス101のアノードに相当する層567eは、導電層655を介して、層563aが有する導電層636と電気的に接続される。
<層560>
層560は、層561上に形成される。層560は、遮光層671、光学変換層672およびマイクロレンズアレイ673を有する。
遮光層671は、隣接する画素への光の流入を抑えることができる。遮光層671には、アルミニウム、タングステンなどの金属層を用いることができる。また、当該金属層と反射防止膜としての機能を有する誘電体膜を積層してもよい。
光電変換デバイス101が可視光に感度を有するとき、光学変換層672にカラーフィルタを用いることができる。カラーフィルタに(赤)、G(緑)、B(青)、Y(黄)、C(シアン)、M(マゼンタ)などの色を画素別に割り当てることにより、カラー画像を得ることができる。例えば、図19Aの斜視図(断面を含む)に示すように、カラーフィルタ672R(赤)、カラーフィルタ672G(緑)、カラーフィルタ672B(青)をそれぞれ異なる画素に割り当てることができる。
また、適切な光電変換デバイス101と光学変換層672との組み合わせにおいて、光学変換層672に波長カットフィルタを用いれば、様々な波長領域における画像が得られる撮像装置とすることができる。
例えば、光学変換層672に可視光線の波長以下の光を遮る赤外線フィルタを用いれば、赤外線撮像装置とすることができる。また、光学変換層672に近赤外線の波長以下の光を遮るフィルタを用いれば、遠赤外線撮像装置とすることができる。また、光学変換層672に可視光線の波長以上の光を遮る紫外線フィルタを用いれば、紫外線撮像装置とすることができる。
なお、一つの撮像装置内に異なる光学変換層を複数配置してもよい。例えば、図19Bに示すように、カラーフィルタ672R(赤)、カラーフィルタ672G(緑)、カラーフィルタ672B(青)、赤外線フィルタ672IRをそれぞれ異なる画素に割り当てることができる。当該構成では、可視光画像および赤外光画像を同時に取得することができる。
または、図19Cに示すように、カラーフィルタ672R(赤)、カラーフィルタ672G(緑)、カラーフィルタ672B(青)、紫外線フィルタ672UVをそれぞれ異なる画素に割り当てることができる。当該構成では、可視光画像および紫外光画像を同時に取得することができる。
また、光学変換層672にシンチレータを用いれば、X線撮像装置などに用いる放射線の強弱を可視化した画像を得る撮像装置とすることができる。被写体を透過したX線等の放射線がシンチレータに入射されると、フォトルミネッセンス現象により可視光線または紫外光線などの光(蛍光)に変換される。そして、当該光を光電変換デバイス101で検知することにより画像データを取得する。また、放射線検出器などに当該構成の撮像装置を用いてもよい。
シンチレータは、X線またはガンマ線などの放射線が照射されると、そのエネルギーを吸収して可視光または紫外光を発する物質を含む。例えば、GdS:Tb、GdS:Pr、GdS:Eu、BaFCl:Eu、NaI、CsI、CaF、BaF、CeF、LiF、LiI、ZnOなどを樹脂またはセラミクスに分散させたものを用いることができる。
赤外光または紫外光による撮像を行うことで、検査機能、セキュリティ機能、センサ機能などを撮像装置に付与することができる。例えば、赤外光による撮像を行うことで、生産物の非破壊検査、農産物の選別(糖度計機能など)、静脈認証、医療検査などを行うことができる。また、紫外光による撮像を行うことで、光源または火炎から放出される紫外光を検出することができ、光源、熱源、生産装置等の管理などを行うことができる。
光学変換層672上にはマイクロレンズアレイ673が設けられる。マイクロレンズアレイ673が有する個々のレンズを通る光が直下の光学変換層672を通り、光電変換デバイス101に照射されるようになる。マイクロレンズアレイ673を設けることにより、集光した光を光電変換デバイス101に入射することができるため、効率よく光電変換を行うことができる。マイクロレンズアレイ673は、目的の波長の光に対して透光性の高い樹脂またはガラスなどで形成することが好ましい。
<貼り合わせ>
次に、層563bと層563aの貼り合わせについて説明する。
層563bには、絶縁層618および導電層619が設けられる。導電層619は、絶縁層618に埋設された領域を有する。また、絶縁層618および導電層619の表面は、それぞれ高さが一致するように平坦化されている。
層563aには、絶縁層631および導電層639が設けられる。導電層639は、絶縁層631に埋設された領域を有する。また、絶縁層631および導電層639の表面は、それぞれ高さが一致するように平坦化されている。
ここで、導電層619および導電層639は、主成分が同一の金属元素であることが好ましい。また、絶縁層618および絶縁層631は、同一の成分で構成されていることが好ましい。
例えば、導電層619、639には、Cu、Al、Sn、Zn、W、Ag、PtまたはAuなどを用いることができる。接合のしやすさから、好ましくはCu、Al、W、またはAuを用いる。また、絶縁層618、631には、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、窒化チタンなどを用いることができる。
つまり、導電層619および導電層639のそれぞれに、上記に示す同一の金属材料を用いることが好ましい。また、絶縁層618および絶縁層631のそれぞれに、上記に示す同一の絶縁材料を用いることが好ましい。当該構成とすることで、層563bと層563aの境を接合位置とする、貼り合わせを行うことができる。
なお、導電層619および導電層639は複数の層の多層構造であってもよく、その場合は、表層(接合面)が同一の金属材料であればよい。また、絶縁層618および絶縁層631も複数の層の多層構造であってもよく、その場合は、表層(接合面)が同一の絶縁材料であればよい。
当該貼り合わせによって、導電層619および導電層639の電気的な接続を得ることができる。また、絶縁層618および絶縁層631の機械的な強度を有する接続を得ることができる。
金属層同士の接合には、表面の酸化膜および不純物の吸着層などをスパッタリング処理などで除去し、清浄化および活性化した表面同士を接触させて接合する表面活性化接合法を用いることができる。または、温度と圧力を併用して表面同士を接合する拡散接合法などを用いることができる。どちらも原子レベルでの結合が起こるため、電気的だけでなく機械的にも優れた接合を得ることができる。
また、絶縁層同士の接合には、研磨などによって高い平坦性を得たのち、酸素プラズマ等で親水性処理をした表面同士を接触させて仮接合し、熱処理による脱水で本接合を行う親水性接合法などを用いることができる。親水性接合法も原子レベルでの結合が起こるため、機械的に優れた接合を得ることができる。
層563bと層563aを貼り合わせる場合、それぞれの接合面には絶縁層と金属層が混在するため、例えば、表面活性化接合法および親水性接合法を組み合わせて行えばよい。
例えば、研磨後に表面を清浄化し、金属層の表面に酸化防止処理を行ったのちに親水性処理を行って接合する方法などを用いることができる。また、金属層の表面をAuなどの難酸化性金属とし、親水性処理を行ってもよい。なお、上述した方法以外の接合方法を用いてもよい。
上記の貼り合わせにより、層563bが有する回路と、層563aが有する画素100の要素を電気的に接続することができる。
<積層構造1の変形例>
図14は、図12に示す積層構造の変形例であり、層561が有する光電変換デバイス101の構成、および層563aの一部構成が異なり、層561と層563aとの間にも貼り合わせ面を有する構成である。
層561は、光電変換デバイス101、絶縁層661、662、664、665および導電層685、686を有する。
光電変換デバイス101はpn接合型のフォトダイオードであり、p型領域に相当する層565bおよびn型領域に相当する層565aを有する。なお、ここでは、pn接合型のフォトダイオードがシリコン基板に形成された例を示す。光電変換デバイス101は埋め込み型フォトダイオードであり、層565aの表面側(電流の取り出し側)に設けられた薄いp型の領域(層565bの一部)によって暗電流を抑えノイズを低減させることができる。
絶縁層661、導電層685、686は、貼り合わせ層としての機能を有する。絶縁層662は、層間絶縁膜および平坦化膜としての機能を有する。絶縁層664は、素子分離層としての機能を有する。
シリコン基板には画素を分離する溝が設けられ、絶縁層665はシリコン基板上面および当該溝に設けられる。絶縁層665が設けられることにより、光電変換デバイス101内で発生したキャリアが隣接する画素に流出することを抑えることができる。また、絶縁層665は、迷光の侵入を抑制する機能も有する。したがって、絶縁層665により、混色を抑制することができる。なお、シリコン基板の上面と絶縁層665との間に反射防止膜が設けられていてもよい。
絶縁層664は、LOCOS(LOCal Oxidation of Silicon)法を用いて形成することができる。または、STI(Shallow Trench Isolation)法等を用いて形成してもよい。絶縁層665としては、例えば、酸化シリコン、窒化シリコンなどの無機絶縁膜、ポリイミド樹脂、アクリル樹脂などの有機絶縁膜を用いることができる。なお、絶縁層665は多層構成であってもよい。また、絶縁層665の一部に空間を設けてもよい。当該空間は空気または不活性ガスなどの気体を有していてもよい。また、当該空間は減圧状態であってもよい。
光電変換デバイス101の層565a(n型領域、カソードに相当)は、導電層685と電気的に接続される。層565b(p型領域、アノードに相当)は、導電層686と電気的に接続される。導電層685、686は、絶縁層661に埋設された領域を有する。また、絶縁層661および導電層685、686の表面は、それぞれ高さが一致するように平坦化されている。
層563aにおいて、絶縁層637上には、絶縁層638が形成される。また、トランジスタ102のソースまたはドレインの一方と電気的に接続される導電層683、および導電層636と電気的に接続される導電層684が形成される。
絶縁層638、導電層683、684は、貼り合わせ層としての機能を有する。導電層683、684は、絶縁層638に埋設された領域を有する。また、絶縁層638および導電層683、684の表面は、それぞれ高さが一致するように平坦化されている。
ここで、導電層683、684、685、686は、前述した導電層619、639と同じ貼り合わせ層である。また、絶縁層638、661は、前述した絶縁層618、631と同じ貼り合わせ層である。
したがって、導電層683と導電層685を貼り合わせることで、光電変換デバイス101の層565a(n型領域、カソードに相当)とトランジスタ102のソースまたはドレインの一方を電気的に接続することができる。また、導電層684と導電層686を貼り合わせることで、光電変換デバイス101の層565b(p型領域、アノードに相当)と配線114(図3参照)を電気的に接続することができる。また、絶縁層638と絶縁層661を貼り合わせることで、層561と層563aの電気的な接合および機械的な接合を行うことができる。
また、図15は上記とは異なる変形例であり、トランジスタ102が層561に設けられる構成である。当該構成では、トランジスタ102のソースまたはドレインの一方は、光電変換デバイス101と直結され、ソースまたはドレインの他方は、ノードFDとして作用する。当該構成では、光電変換デバイス101で蓄積した電荷の完全転送が可能であり、ノイズの少ない撮像装置とすることができる。
ここで、層561が有するトランジスタ102のソースまたはドレインの他方は、導電層692と電気的に接続される。また、層563が有するトランジスタ104のソースまたはドレインの一方は、導電層691と電気的に接続される。導電層691、692は、前述した導電層619、639と同じ貼り合わせ層である。
<積層構造2>
図16は、層560、561、562、563を有し、貼り合わせ面を有さない積層体の断面図の一例である。層563には、Siトランジスタが設けられる。層562には、OSトランジスタが設けられる。なお、層563、層561および層560の構成は、図12に示す構成と同一であるため、ここでは説明を省略する。
<層562>
層562は、層563上に形成される。層562は、OSトランジスタを有する。ここでは、トランジスタ102およびトランジスタ104を示している。図16に示す断面図では、両者の電気的な接続は図示されていない。
層562には、絶縁層621、622、623、624、625、626、628が設けられる。また、導電層627が設けられる。導電層627は、配線114(図3参照)と電気的に接続することができる。
絶縁層621は、ブロッキング層としての機能を有する。絶縁層622、623、625、626、628は、層間絶縁膜および平坦化膜としての機能を有する。絶縁層624は、保護膜としての機能を有する。
ブロッキング層としては、水素の拡散を防止する機能を有する膜を用いることが好ましい。Siデバイスにおいて、水素はダングリングボンドを終端するために必要とされるが、OSトランジスタの近傍にある水素は、酸化物半導体層中にキャリアを生成する要因の一つとなり、信頼性を低下させる。したがって、Siデバイスが形成される層とOSトランジスタが形成される層との間には、水素のブロッキング膜が設けられることが好ましい。
当該ブロッキング膜としては、例えば、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム、イットリア安定化ジルコニア(YSZ)等を用いることができる。
トランジスタ104のソースまたはドレインの他方は、プラグを介してトランジスタ105のゲートと電気的に接続される。また、導電層627は、配線114(図3A参照)と電気的に接続される。
トランジスタ102のソースまたはドレインの一方は、層561が有する光電変換デバイス101のカソードと電気的に接続される。導電層627は、層561が有する光電変換デバイス101のアノードと電気的に接続される。
図17AにOSトランジスタの詳細を示す。図17Aに示すOSトランジスタは、酸化物半導体層および導電層の積層上に絶縁層を設け、当該酸化物半導体層に達する開口部を設けることでソース電極705およびドレイン電極706を形成するセルフアライン型の構成である。
OSトランジスタは、酸化物半導体層に形成されるチャネル形成領域708、ソース領域703およびドレイン領域704のほか、ゲート電極701、ゲート絶縁膜702を有する構成とすることができる。当該開口部には少なくともゲート絶縁膜702およびゲート電極701が設けられる。当該開口部には、さらに酸化物半導体層707が設けられていてもよい。
OSトランジスタは、図17Bに示すように、ゲート電極701をマスクとして半導体層にソース領域703およびドレイン領域704を形成するセルフアライン型の構成としてもよい。
または、図17Cに示すように、ソース電極705またはドレイン電極706とゲート電極701とが重なる領域を有するノンセルフアライン型のトップゲート型トランジスタであってもよい。
OSトランジスタはバックゲート735を有する構造を示しているが、バックゲートを有さない構造であってもよい。バックゲート735は、図17Dに示すトランジスタのチャネル幅方向の断面図のように、対向して設けられるトランジスタのフロントゲートと電気的に接続してもよい。なお、図17Dは図17AのトランジスタのB1−B2の断面を例として示しているが、その他の構造のトランジスタも同様である。また、バックゲート735にフロントゲートとは異なる固定電位を供給することができる構成であってもよい。
<積層構造2の変形例>
図18は、図17に示す積層構造の変形例であり、層561が有する光電変換デバイス101の構成、および層562の一部構成が異なり、層561と層562との間に貼り合わせ面を有する構成である。
層561が有する光電変換デバイス101は、pn接合型のフォトダイオードであり、図14に示す構成と同様である。
層562において、絶縁層628上には、絶縁層648が形成される。また、トランジスタ102のソースまたはドレインの一方と電気的に接続される導電層688、および導電層627と電気的に接続される導電層689が形成される。
絶縁層648、導電層688、689は、貼り合わせ層としての機能を有する。導電層688、689は、絶縁層648に埋設された領域を有する。また、絶縁層648および導電層683、684の表面は、それぞれ高さが一致するように平坦化されている。
ここで、導電層688、689は、前述した導電層619、639と同じ貼り合わせ層である。また、絶縁層648は、前述した絶縁層618、631と同じ貼り合わせ層である。
したがって、導電層688と導電層685を貼り合わせることで、光電変換デバイスの層565a(n型領域、カソードに相当)とトランジスタ102のソースまたはドレインの一方を電気的に接続することができる。また、導電層689と導電層686を貼り合わせることで、光電変換デバイスの層565b(p型領域、アノードに相当)と配線114(図3参照)を電気的に接続することができる。また、絶縁層648と絶縁層661を貼り合わせることで、層561と層562aの電気的な接合および機械的な接合を行うことができる。
Siデバイスを複数積層する場合、研磨工程および貼り合わせ工程が複数回必要になる。そのため、工程数が多い、専用の装置が必要、低歩留まりなどの課題があり、製造コストも高い。OSトランジスタは、デバイスが形成された半導体基板上に積層して形成することができるため、貼り合わせ工程を削減することができる。
なお、当該構成に、図15に示す層561にトランジスタ102を設ける構成を適用してもよい。
<パッケージ、モジュール>
図20A1は、イメージセンサチップを収めたパッケージの上面側の外観斜視図である。当該パッケージは、イメージセンサチップ450(図20A3参照)を固定するパッケージ基板410、カバーガラス420および両者を接着する接着剤430等を有する。
図20A2は、当該パッケージの下面側の外観斜視図である。パッケージの下面には、半田ボールをバンプ440としたBGA(Ball grid array)を有する。なお、BGAに限らず、LGA(Land grid array)またはPGA(Pin Grid Array)などを有していてもよい。
図20A3は、カバーガラス420および接着剤430の一部を省いて図示したパッケージの斜視図である。パッケージ基板410上には電極パッド460が形成され、電極パッド460およびバンプ440はスルーホールを介して電気的に接続されている。電極パッド460は、イメージセンサチップ450とワイヤ470によって電気的に接続されている。
また、図20B1は、イメージセンサチップをレンズ一体型のパッケージに収めたカメラモジュールの上面側の外観斜視図である。当該カメラモジュールは、イメージセンサチップ451(図20B3を固定するパッケージ基板411、レンズカバー421、およびレンズ435等を有する。また、パッケージ基板411およびイメージセンサチップ451の間には撮像装置の駆動回路および信号変換回路などの機能を有するICチップ490(図20B3も設けられており、SiP(System in package)としての構成を有している。
図20B2は、当該カメラモジュールの下面側の外観斜視図である。パッケージ基板411の下面および側面には、実装用のランド441が設けられたQFN(Quad flat no−lead package)の構成を有する。なお、当該構成は一例であり、QFP(Quad flat package)または前述したBGAが設けられていてもよい。
図20B3は、レンズカバー421およびレンズ435の一部を省いて図示したモジュールの斜視図である。ランド441は電極パッド461と電気的に接続され、電極パッド461はイメージセンサチップ451またはICチップ490とワイヤ471によって電気的に接続されている。
イメージセンサチップを上述したような形態のパッケージに収めることでプリント基板等への実装が容易になり、イメージセンサチップを様々な半導体装置、電子機器に組み込むことができる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態3)
本発明の一態様に係る撮像装置を用いることができる電子機器として、表示機器、パーソナルコンピュータ、記録媒体を備えた画像記憶装置または画像再生装置、携帯電話、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ払い機(ATM)、自動販売機などが挙げられる。これら電子機器の具体例を図21A乃至図21Fに示す。
図21Aは携帯型情報端末の一例であり、筐体981、表示部982、操作ボタン983、外部接続ポート984、スピーカ985、マイク986、カメラ987等を有する。当該携帯型情報端末は、表示部982にタッチセンサを備える。電話を掛ける、或いは文字を入力するなどのあらゆる操作は、指またはスタイラスなどで表示部982に触れることで行うことができる。当該携帯型情報端末に本発明の一態様の撮像装置およびその動作方法を適用することができる。
カメラ987は本発明の一態様の撮像装置を有し、カメラ987で取得した画像から被写体の距離情報を取得することができる。当該距離情報に基づいて、カメラ987で取得した画像の一部を加工することができる。例えば、主の被写体の前後をぼかす画像処理などを行うことができる。
図21Bは情報端末であり、筐体911、表示部912、スピーカ913、カメラ919等を有する。表示部912が有するタッチパネル機能により情報の入出力を行うことができる。また、カメラ919で取得した画像から文字等を認識し、スピーカ913で当該文字を音声出力することができる。当該携帯データ端末に本発明の一態様の撮像装置およびその動作方法を適用することができる。
図21Cは監視カメラであり、支持台951、カメラユニット952、保護カバー953等を有する。カメラユニット952には回転機構などが設けられ、天井に設置することで全周囲の撮像が可能となる。当該カメラユニットにおける画像取得のための要素に本発明の一態様の撮像装置およびその動作方法を適用することができる。なお、監視カメラとは慣用的な名称であり、用途を限定するものではない。例えば監視カメラとしての機能を有する機器はカメラ、またはビデオカメラとも呼ばれる。
図21Dはビデオカメラであり、第1筐体971、第2筐体972、表示部973、操作キー974、レンズ975、接続部976、スピーカ977、マイク978等を有する。操作キー974およびレンズ975は第1筐体971に設けられており、表示部973は第2筐体972に設けられている。当該ビデオカメラに本発明の一態様の撮像装置およびその動作方法を適用することができる。
図21Eはデジタルカメラであり、筐体961、シャッターボタン962、マイク963、発光部967、レンズ965等を有する。当該デジタルカメラに本発明の一態様の撮像装置およびその動作方法を適用することができる。
図21Fは腕時計型の情報端末であり、表示部932、筐体兼リストバンド933、カメラ939等を有する。表示部932は、情報端末の操作を行うためのタッチパネルを備える。表示部932および筐体兼リストバンド933は可撓性を有し、身体への装着性が優れている。当該情報端末に本発明の一態様の撮像装置およびその動作方法を適用することができる。
図22Aは、移動体の一例として自動車の外観図を図示している。自動車890は、複数のカメラ891等を有し、自動車890の前後左右および上方の情報を取得することができる。カメラ891には、本発明の一態様の撮像装置およびその動作方法を適用することができる。また、自動車890は、赤外線レーダー、ミリ波レーダー、レーザーレーダーなど各種センサ(図示せず)などを備える。自動車890は、複数の撮像方向892に対してカメラ891が取得した画像の解析を行い、ガードレールおよび歩行者の有無など、周囲の交通状況を判断し、自動運転を行うことができる。また、道路案内、危険予測などを行うシステムに用いることができる。
本発明の一態様の撮像装置では、得られた画像データをニューラルネットワークなどの演算処理を行うことで、例えば、画像の高解像度化、画像ノイズの低減、顔認識(防犯目的など)、物体認識(自動運転の目的など)、画像圧縮、画像補正(広ダイナミックレンジ化)、レンズレスイメージセンサの画像復元、位置決め、文字認識、反射映り込み低減などの処理を行うことができる。
なお、上述では、移動体の一例として自動車について説明しているが、自動車は、内燃機関を有する自動車、電気自動車、水素自動車など、いずれであってもよい。また、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のコンピュータを適用して、人工知能を利用したシステムを付与することができる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
10a:回路、10b:回路、20:回路、30:回路、100:画素、101:光電変換デバイス、101a:光電変換デバイス、101b:光電変換デバイス、102:トランジスタ、102a:トランジスタ、102b:トランジスタ、103:トランジスタ、103a:トランジスタ、103b:トランジスタ、104:トランジスタ、104a:トランジスタ、104b:トランジスタ、105:トランジスタ、105a:トランジスタ、105b:トランジスタ、106:キャパシタ、106a:キャパシタ、106b:キャパシタ、107:トランジスタ、108:トランジスタ、114:配線、115:配線、116:配線、117:配線、118:配線、121:配線、122:配線、123:配線、124:配線、125:配線、126:配線、127:配線、128:配線、131:トランジスタ、131a:トランジスタ、131b:トランジスタ、132:トランジスタ、133:トランジスタ、134:トランジスタ、135:キャパシタ、142:トランジスタ、143:トランジスタ、144:トランジスタ、145:キャパシタ、151:配線、152:配線、161:トランジスタ、162:トランジスタ、163:キャパシタ、175:トランジスタ、175a:トランジスタ、175b:トランジスタ、176:トランジスタ、176a:トランジスタ、176b:トランジスタ、200:画素ブロック、202:キャパシタ、203:トランジスタ、204:トランジスタ、205:トランジスタ、206:トランジスタ、207:トランジスタ、210:画素アレイ、212:配線、213:配線、214:配線、215:配線、216:配線、218:配線、219:配線、220:回路、222:トランジスタ、223:トランジスタ、224:トランジスタ、225:電流供給部、226:カレントミラー部、230:回路、240:回路、252:トランジスタ、253:トランジスタ、254:トランジスタ、261:トランジスタ、262:トランジスタ、300:画素アレイ、301:回路、302:回路、303:回路、304:回路、305:回路、311:配線、320:メモリセル、325:参照メモリセル、330:回路、350:回路、360:回路、370:回路、410:パッケージ基板、411:パッケージ基板、420:カバーガラス、421:レンズカバー、430:接着剤、435:レンズ、440:バンプ、441:ランド、450:イメージセンサチップ、451:イメージセンサチップ、460:電極パッド、461:電極パッド、470:ワイヤ、471:ワイヤ、490:ICチップ、545:半導体層、546:絶縁層、560:層、561:層、562:層、562a:層、563:層、563a:層、563b:層、563c:層、565a:層、565b:層、566a:層、566b:層、566c:層、566d:層、567a:層、567b:層、567c:層、567d:層、567e:層、611:シリコン基板、612:絶縁層、613:絶縁層、614:絶縁層、616:絶縁層、617:絶縁層、618:絶縁層、619:導電層、621:絶縁層、622:絶縁層、623:絶縁層、624:絶縁層、625:絶縁層、626:絶縁層、627:導電層、628:絶縁層、631:絶縁層、632:シリコン基板、633:絶縁層、634:絶縁層、635:絶縁層、636:導電層、637:絶縁層、638:絶縁層、639:導電層、648:絶縁層、651:絶縁層、652:絶縁層、653:絶縁層、654:絶縁層、655:導電層、661:絶縁層、662:絶縁層、664:絶縁層、665:絶縁層、671:遮光層、672:光学変換層、672B:カラーフィルタ、672G:カラーフィルタ、672IR:赤外線フィルタ、672R:カラーフィルタ、672UV:紫外線フィルタ、673:マイクロレンズアレイ、683:導電層、684:導電層、685:導電層、686:導電層、688:導電層、689:導電層、691:導電層、692:導電層、701:ゲート電極、702:ゲート絶縁膜、703:ソース領域、704:ドレイン領域、705:ソース電極、706:ドレイン電極、707:酸化物半導体層、708:チャネル形成領域、735:バックゲート、890:自動車、891:カメラ、892:撮像方向、911:筐体、912:表示部、913:スピーカ、919:カメラ、932:表示部、933:筐体兼リストバンド、939:カメラ、951:支持台、952:カメラユニット、953:保護カバー、961:筐体、962:シャッターボタン、963:マイク、965:レンズ、967:発光部、971:筐体、972:筐体、973:表示部、974:操作キー、975:レンズ、976:接続部、977:スピーカ、978:マイク、981:筐体、982:表示部、983:操作ボタン、984:外部接続ポート、985:スピーカ、986:マイク、987:カメラ

Claims (11)

  1. 画素と、読み出し回路と、を有し、
    前記画素は、第1の受光回路と、第2の受光回路と、増幅回路と、演算回路と、を有し、
    前記増幅回路は、前記第1の受光回路に保持された第1のデータと、前記第2の受光回路に保持された第2のデータとの差分に応じて増幅した電位を前記演算回路に出力することができ、
    前記演算回路は、第1のノードと、第2のノードと、を有し、
    前記第1のノードには、前記第1のデータと前記第2のデータを同じ値としたときに前記増幅回路が出力する第1の電位が書き込まれ、
    前記第2のノードには、前記第1のデータおよび前記第2のデータが光電変換により生成されたときに前記増幅回路が出力する第2の電位が書き込まれ、
    前記第1のノードおよび前記第2のノードのそれぞれには、第3の電位を加算することができ、
    前記読み出し回路は、前記第1のノードの電位に従って流れる電流と、前記第2のノードの電位に従って流れる電流を用いた演算により、前記第2の電位と前記第3の電位との積を抽出することができる撮像装置。
  2. 請求項1において、
    前記読み出し回路は、カレントミラー回路と、相関二重サンプリング回路と、を有し、
    前記カレントミラー回路は、第1のトランジスタと、第2のトランジスタと、を有し、
    前記第1のトランジスタのソースまたはドレインの一方およびゲートは、前記第1のノードと電気的に接続され、
    前記第2のトランジスタのソースまたはドレインの一方は、前記第2のノードおよび前記相関二重サンプリング回路と電気的に接続される撮像装置。
  3. 画素と、読み出し回路と、を有し、
    前記画素は、第1の受光回路と、第2の受光回路と、増幅回路と、演算回路と、を有し、
    前記増幅回路は、第1の入力端子と、第2の入力端子と、を有し、
    前記演算回路は、第1のノードと、第2のノードと、第1のキャパシタと、第2のキャパシタと、第1のトランジスタと、第2のトランジスタと、を有し、
    前記第1のノードには、前記第1のキャパシタの一方の電極および前記第1のトランジスタのゲートが電気的に接続され、
    前記第2のノードには、前記第2のキャパシタの一方の電極および前記第2のトランジスタのゲートが電気的に接続され、
    前記第1のトランジスタのソースまたはドレインの一方、および前記第2のトランジスタのソースまたはドレインの一方には、前記読み出し回路が電気的に接続され、
    前記第1の受光回路は、前記第1の入力端子と電気的に接続され、
    前記第2の受光回路は、前記第2の入力端子と電気的に接続され、
    前記第1のノードには、前記第1の入力端子および前記第2の入力端子に同じ電位が入力されたときに前記増幅回路が出力する第1の電位が書き込まれ、
    前記第2のノードには、前記第1の受光回路が生成するデータと、前記第2の受光回路が生成するデータとの差分に応じて前記増幅回路が出力する第2の電位が書き込まれ、
    前記第1のノードおよび前記第2のノードのそれぞれには、前記第1のキャパシタまたは前記第2のキャパシタを介して、第3の電位を加算することができ、
    前記読み出し回路は、前記第1のトランジスタに流れる電流と、前記第2のトランジスタに流れる電流を用いた演算により、前記第2の電位と前記第3の電位との積を抽出することができる撮像装置。
  4. 請求項3において、
    前記読み出し回路は、カレントミラー回路と、相関二重サンプリング回路と、を有し、
    前記カレントミラー回路は、第3のトランジスタと、第4のトランジスタと、を有し、
    前記第3のトランジスタのソースまたはドレインの一方およびゲートは、前記第1のトランジスタのソースまたはドレインの一方と電気的に接続され、
    前記第4のトランジスタのソースまたはドレインの一方は、前記第2のトランジスタのソースまたはドレインの一方および前記相関二重サンプリング回路と電気的に接続される撮像装置。
  5. 請求項3または4において、
    前記第1の受光回路および前記第2の受光回路のそれぞれは、光電変換デバイスと、第5のトランジスタと、第6のトランジスタと、第3のキャパシタと、を有し、
    前記光電変換デバイスの一方の電極は、前記第5のトランジスタのソースまたはドレインの一方と電気的に接続され、前記第5のトランジスタのソースまたはドレインの他方は、前記第6のトランジスタのソースまたはドレインの一方、および前記第3のキャパシタの一方の電極と電気的に接続され、
    前記第1の受光回路が有する前記第6のトランジスタのソースまたはドレインの他方は、前記第1の入力端子と電気的に接続され、
    前記第2の受光回路が有する前記第6のトランジスタのソースまたはドレインの他方は、前記第2の入力端子と電気的に接続される撮像装置。
  6. 請求項5において、
    前記第5のトランジスタおよび前記第6のトランジスタは、チャネル形成領域に金属酸化物を有し、前記金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Ge、Sn、Y、Zr、La、Ce、NdまたはHfの一つまたは複数)と、を有する撮像装置。
  7. 請求項5または6において、
    前記第1の受光回路および前記第2の受光回路のそれぞれは、さらに第7のトランジスタと、第8のトランジスタと、を有し、
    前記第7のトランジスタのゲートは、前記第3のキャパシタの一方の電極と電気的に接続され、
    前記第7のトランジスタのソースまたはドレインの一方は、前記第8のトランジスタのソースまたはドレインの一方と電気的に接続される撮像装置。
  8. 請求項5乃至7のいずれか一項において、
    前記増幅回路は、第9のトランジスタと、第10のトランジスタと、第11のトランジスタと、を有し、
    前記第9のトランジスタのソースまたはドレインの一方は、前記第1の受光回路が有する前記第3のキャパシタの一方の電極と電気的に接続され、
    前記第9のトランジスタのソースまたはドレインの他方は、前記第1の入力端子と電気的に接続され、
    前記第10のトランジスタのソースまたはドレインの一方は、前記第2の受光回路が有する前記第3のキャパシタの一方の電極と電気的に接続され、
    前記第10のトランジスタのソースまたはドレインの他方は、前記第2の入力端子と電気的に接続され、
    前記第11のトランジスタのソースまたはドレインの一方は、前記第1の入力端子と電気的に接続され、
    前記第11のトランジスタのソースまたはドレインの他方は、前記第2の入力端子と電気的に接続される撮像装置。
  9. 請求項8において、
    前記第9のトランジスタ乃至第11のトランジスタは、チャネル形成領域に金属酸化物を有し、前記金属酸化物は、Inと、Znと、M(MはAl、Ti、Ga、Ge、Sn、Y、Zr、La、Ce、NdまたはHfの一つまたは複数)と、を有する撮像装置。
  10. 請求項1乃至9のいずれか一項において、
    一つの前記読み出し回路には、複数の前記画素が電気的に接続されている撮像装置。
  11. 請求項1乃至10のいずれか一項に記載の撮像装置を有し、前記撮像装置で撮像した画像と、前記撮像装置で解析した前記画像における被写体の距離情報に基づき、前記画像の一部を加工する電子機器。
PCT/IB2021/052110 2020-03-27 2021-03-15 撮像装置および電子機器 WO2021191719A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180024385.3A CN115336254A (zh) 2020-03-27 2021-03-15 摄像装置及电子设备
US17/911,193 US20230109524A1 (en) 2020-03-27 2021-03-15 Imaging device and electronic device
JP2022509744A JPWO2021191719A1 (ja) 2020-03-27 2021-03-15
KR1020227034842A KR20220160007A (ko) 2020-03-27 2021-03-15 촬상 장치 및 전자 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020057810 2020-03-27
JP2020-057810 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021191719A1 true WO2021191719A1 (ja) 2021-09-30

Family

ID=77890986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/052110 WO2021191719A1 (ja) 2020-03-27 2021-03-15 撮像装置および電子機器

Country Status (5)

Country Link
US (1) US20230109524A1 (ja)
JP (1) JPWO2021191719A1 (ja)
KR (1) KR20220160007A (ja)
CN (1) CN115336254A (ja)
WO (1) WO2021191719A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220147799A1 (en) * 2020-11-12 2022-05-12 Samsung Electronics Co., Ltd. Neural computer including image sensor capable of controlling photocurrent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123087A (ja) * 2014-12-10 2016-07-07 株式会社半導体エネルギー研究所 半導体装置および電子機器
WO2018215882A1 (ja) * 2017-05-26 2018-11-29 株式会社半導体エネルギー研究所 撮像装置および電子機器
WO2019012369A1 (ja) * 2017-07-14 2019-01-17 株式会社半導体エネルギー研究所 撮像装置、及び電子機器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3642591B2 (ja) * 1994-11-29 2005-04-27 株式会社日立メディコ 画像処理装置
US7151844B2 (en) * 2001-12-06 2006-12-19 General Motors Corporation Image sensor method and apparatus having hardware implemented edge detection processing
US7215370B2 (en) * 2003-07-23 2007-05-08 Alphaplus Semiconductor Inc. Pseudo-BJT based retinal focal-plane sensing system
CN104485341A (zh) 2009-11-06 2015-04-01 株式会社半导体能源研究所 半导体装置
US9762834B2 (en) * 2014-09-30 2017-09-12 Qualcomm Incorporated Configurable hardware for computing computer vision features
US20160328642A1 (en) * 2015-05-06 2016-11-10 Indiana University Research And Technology Corporation Sensor signal processing using an analog neural network
JP2017063420A (ja) * 2015-09-25 2017-03-30 株式会社半導体エネルギー研究所 半導体装置
KR102631381B1 (ko) * 2016-11-07 2024-01-31 삼성전자주식회사 컨볼루션 신경망 처리 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123087A (ja) * 2014-12-10 2016-07-07 株式会社半導体エネルギー研究所 半導体装置および電子機器
WO2018215882A1 (ja) * 2017-05-26 2018-11-29 株式会社半導体エネルギー研究所 撮像装置および電子機器
WO2019012369A1 (ja) * 2017-07-14 2019-01-17 株式会社半導体エネルギー研究所 撮像装置、及び電子機器

Also Published As

Publication number Publication date
JPWO2021191719A1 (ja) 2021-09-30
KR20220160007A (ko) 2022-12-05
US20230109524A1 (en) 2023-04-06
CN115336254A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
JP7467587B2 (ja) 撮像装置及び電子機器
US11728355B2 (en) Imaging device and electronic device
US20220321794A1 (en) Imaging device and electronic device
WO2021191719A1 (ja) 撮像装置および電子機器
WO2021033065A1 (ja) 撮像装置および電子機器
WO2020222059A1 (ja) 撮像装置、その動作方法、および電子機器
WO2021214616A1 (ja) 撮像装置
WO2021209868A1 (ja) 撮像装置および電子機器
WO2021165781A1 (ja) 撮像装置、電子機器および移動体
WO2022018561A1 (ja) 撮像装置および電子機器
JP7480137B2 (ja) 撮像装置および電子機器
WO2021053449A1 (ja) 撮像システムおよび電子機器
WO2022064307A1 (ja) 撮像装置および電子機器
CN115211101A (zh) 摄像装置及电子设备
JP2018164139A (ja) 撮像装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509744

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227034842

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775432

Country of ref document: EP

Kind code of ref document: A1